2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt2x00 queue datastructures and routines
29 #include <linux/prefetch.h>
32 * DOC: Entry frame size
34 * Ralink PCI devices demand the Frame size to be a multiple of 128 bytes,
35 * for USB devices this restriction does not apply, but the value of
36 * 2432 makes sense since it is big enough to contain the maximum fragment
37 * size according to the ieee802.11 specs.
38 * The aggregation size depends on support from the driver, but should
39 * be something around 3840 bytes.
41 #define DATA_FRAME_SIZE 2432
42 #define MGMT_FRAME_SIZE 256
43 #define AGGREGATION_SIZE 3840
46 * DOC: Number of entries per queue
48 * Under normal load without fragmentation, 12 entries are sufficient
49 * without the queue being filled up to the maximum. When using fragmentation
50 * and the queue threshold code, we need to add some additional margins to
51 * make sure the queue will never (or only under extreme load) fill up
53 * Since we don't use preallocated DMA, having a large number of queue entries
54 * will have minimal impact on the memory requirements for the queue.
58 #define BEACON_ENTRIES 1
59 #define ATIM_ENTRIES 8
62 * enum data_queue_qid: Queue identification
64 * @QID_AC_BE: AC BE queue
65 * @QID_AC_BK: AC BK queue
66 * @QID_AC_VI: AC VI queue
67 * @QID_AC_VO: AC VO queue
68 * @QID_HCCA: HCCA queue
69 * @QID_MGMT: MGMT queue (prio queue)
71 * @QID_OTHER: None of the above (don't use, only present for completeness)
72 * @QID_BEACON: Beacon queue (value unspecified, don't send it to device)
73 * @QID_ATIM: Atim queue (value unspeficied, don't send it to device)
89 * enum skb_frame_desc_flags: Flags for &struct skb_frame_desc
91 * @SKBDESC_DMA_MAPPED_RX: &skb_dma field has been mapped for RX
92 * @SKBDESC_DMA_MAPPED_TX: &skb_dma field has been mapped for TX
93 * @SKBDESC_IV_STRIPPED: Frame contained a IV/EIV provided by
94 * mac80211 but was stripped for processing by the driver.
95 * @SKBDESC_NOT_MAC80211: Frame didn't originate from mac80211,
96 * don't try to pass it back.
98 enum skb_frame_desc_flags
{
99 SKBDESC_DMA_MAPPED_RX
= 1 << 0,
100 SKBDESC_DMA_MAPPED_TX
= 1 << 1,
101 SKBDESC_IV_STRIPPED
= 1 << 2,
102 SKBDESC_NOT_MAC80211
= 1 << 3,
106 * struct skb_frame_desc: Descriptor information for the skb buffer
108 * This structure is placed over the driver_data array, this means that
109 * this structure should not exceed the size of that array (40 bytes).
111 * @flags: Frame flags, see &enum skb_frame_desc_flags.
112 * @desc_len: Length of the frame descriptor.
113 * @tx_rate_idx: the index of the TX rate, used for TX status reporting
114 * @tx_rate_flags: the TX rate flags, used for TX status reporting
115 * @desc: Pointer to descriptor part of the frame.
116 * Note that this pointer could point to something outside
117 * of the scope of the skb->data pointer.
118 * @iv: IV/EIV data used during encryption/decryption.
119 * @skb_dma: (PCI-only) the DMA address associated with the sk buffer.
120 * @entry: The entry to which this sk buffer belongs.
122 struct skb_frame_desc
{
135 struct queue_entry
*entry
;
139 * get_skb_frame_desc - Obtain the rt2x00 frame descriptor from a sk_buff.
140 * @skb: &struct sk_buff from where we obtain the &struct skb_frame_desc
142 static inline struct skb_frame_desc
* get_skb_frame_desc(struct sk_buff
*skb
)
144 BUILD_BUG_ON(sizeof(struct skb_frame_desc
) >
145 IEEE80211_TX_INFO_DRIVER_DATA_SIZE
);
146 return (struct skb_frame_desc
*)&IEEE80211_SKB_CB(skb
)->driver_data
;
150 * enum rxdone_entry_desc_flags: Flags for &struct rxdone_entry_desc
152 * @RXDONE_SIGNAL_PLCP: Signal field contains the plcp value.
153 * @RXDONE_SIGNAL_BITRATE: Signal field contains the bitrate value.
154 * @RXDONE_SIGNAL_MCS: Signal field contains the mcs value.
155 * @RXDONE_MY_BSS: Does this frame originate from device's BSS.
156 * @RXDONE_CRYPTO_IV: Driver provided IV/EIV data.
157 * @RXDONE_CRYPTO_ICV: Driver provided ICV data.
158 * @RXDONE_L2PAD: 802.11 payload has been padded to 4-byte boundary.
160 enum rxdone_entry_desc_flags
{
161 RXDONE_SIGNAL_PLCP
= BIT(0),
162 RXDONE_SIGNAL_BITRATE
= BIT(1),
163 RXDONE_SIGNAL_MCS
= BIT(2),
164 RXDONE_MY_BSS
= BIT(3),
165 RXDONE_CRYPTO_IV
= BIT(4),
166 RXDONE_CRYPTO_ICV
= BIT(5),
167 RXDONE_L2PAD
= BIT(6),
171 * RXDONE_SIGNAL_MASK - Define to mask off all &rxdone_entry_desc_flags flags
172 * except for the RXDONE_SIGNAL_* flags. This is useful to convert the dev_flags
173 * from &rxdone_entry_desc to a signal value type.
175 #define RXDONE_SIGNAL_MASK \
176 ( RXDONE_SIGNAL_PLCP | RXDONE_SIGNAL_BITRATE | RXDONE_SIGNAL_MCS )
179 * struct rxdone_entry_desc: RX Entry descriptor
181 * Summary of information that has been read from the RX frame descriptor.
183 * @timestamp: RX Timestamp
184 * @signal: Signal of the received frame.
185 * @rssi: RSSI of the received frame.
186 * @noise: Measured noise during frame reception.
187 * @size: Data size of the received frame.
188 * @flags: MAC80211 receive flags (See &enum mac80211_rx_flags).
189 * @dev_flags: Ralink receive flags (See &enum rxdone_entry_desc_flags).
190 * @rate_mode: Rate mode (See @enum rate_modulation).
191 * @cipher: Cipher type used during decryption.
192 * @cipher_status: Decryption status.
193 * @iv: IV/EIV data used during decryption.
194 * @icv: ICV data used during decryption.
196 struct rxdone_entry_desc
{
213 * enum txdone_entry_desc_flags: Flags for &struct txdone_entry_desc
215 * @TXDONE_UNKNOWN: Hardware could not determine success of transmission.
216 * @TXDONE_SUCCESS: Frame was successfully send
217 * @TXDONE_FALLBACK: Frame was successfully send using a fallback rate.
218 * @TXDONE_FAILURE: Frame was not successfully send
219 * @TXDONE_EXCESSIVE_RETRY: In addition to &TXDONE_FAILURE, the
220 * frame transmission failed due to excessive retries.
222 enum txdone_entry_desc_flags
{
227 TXDONE_EXCESSIVE_RETRY
,
231 * struct txdone_entry_desc: TX done entry descriptor
233 * Summary of information that has been read from the TX frame descriptor
234 * after the device is done with transmission.
236 * @flags: TX done flags (See &enum txdone_entry_desc_flags).
237 * @retry: Retry count.
239 struct txdone_entry_desc
{
245 * enum txentry_desc_flags: Status flags for TX entry descriptor
247 * @ENTRY_TXD_RTS_FRAME: This frame is a RTS frame.
248 * @ENTRY_TXD_CTS_FRAME: This frame is a CTS-to-self frame.
249 * @ENTRY_TXD_GENERATE_SEQ: This frame requires sequence counter.
250 * @ENTRY_TXD_FIRST_FRAGMENT: This is the first frame.
251 * @ENTRY_TXD_MORE_FRAG: This frame is followed by another fragment.
252 * @ENTRY_TXD_REQ_TIMESTAMP: Require timestamp to be inserted.
253 * @ENTRY_TXD_BURST: This frame belongs to the same burst event.
254 * @ENTRY_TXD_ACK: An ACK is required for this frame.
255 * @ENTRY_TXD_RETRY_MODE: When set, the long retry count is used.
256 * @ENTRY_TXD_ENCRYPT: This frame should be encrypted.
257 * @ENTRY_TXD_ENCRYPT_PAIRWISE: Use pairwise key table (instead of shared).
258 * @ENTRY_TXD_ENCRYPT_IV: Generate IV/EIV in hardware.
259 * @ENTRY_TXD_ENCRYPT_MMIC: Generate MIC in hardware.
260 * @ENTRY_TXD_HT_AMPDU: This frame is part of an AMPDU.
261 * @ENTRY_TXD_HT_BW_40: Use 40MHz Bandwidth.
262 * @ENTRY_TXD_HT_SHORT_GI: Use short GI.
264 enum txentry_desc_flags
{
267 ENTRY_TXD_GENERATE_SEQ
,
268 ENTRY_TXD_FIRST_FRAGMENT
,
270 ENTRY_TXD_REQ_TIMESTAMP
,
273 ENTRY_TXD_RETRY_MODE
,
275 ENTRY_TXD_ENCRYPT_PAIRWISE
,
276 ENTRY_TXD_ENCRYPT_IV
,
277 ENTRY_TXD_ENCRYPT_MMIC
,
280 ENTRY_TXD_HT_SHORT_GI
,
284 * struct txentry_desc: TX Entry descriptor
286 * Summary of information for the frame descriptor before sending a TX frame.
288 * @flags: Descriptor flags (See &enum queue_entry_flags).
289 * @queue: Queue identification (See &enum data_queue_qid).
290 * @header_length: Length of 802.11 header.
291 * @l2pad: Amount of padding to align 802.11 payload to 4-byte boundrary.
292 * @length_high: PLCP length high word.
293 * @length_low: PLCP length low word.
294 * @signal: PLCP signal.
295 * @service: PLCP service.
299 * @rate_mode: Rate mode (See @enum rate_modulation).
300 * @mpdu_density: MDPU density.
301 * @retry_limit: Max number of retries.
304 * @cw_min: cwmin value.
305 * @cw_max: cwmax value.
306 * @cipher: Cipher type used for encryption.
307 * @key_idx: Key index used for encryption.
308 * @iv_offset: Position where IV should be inserted by hardware.
309 * @iv_len: Length of IV data.
311 struct txentry_desc
{
314 enum data_queue_qid queue
;
343 * enum queue_entry_flags: Status flags for queue entry
345 * @ENTRY_BCN_ASSIGNED: This entry has been assigned to an interface.
346 * As long as this bit is set, this entry may only be touched
347 * through the interface structure.
348 * @ENTRY_OWNER_DEVICE_DATA: This entry is owned by the device for data
349 * transfer (either TX or RX depending on the queue). The entry should
350 * only be touched after the device has signaled it is done with it.
351 * @ENTRY_OWNER_DEVICE_CRYPTO: This entry is owned by the device for data
352 * encryption or decryption. The entry should only be touched after
353 * the device has signaled it is done with it.
354 * @ENTRY_DATA_PENDING: This entry contains a valid frame and is waiting
355 * for the signal to start sending.
357 enum queue_entry_flags
{
359 ENTRY_OWNER_DEVICE_DATA
,
360 ENTRY_OWNER_DEVICE_CRYPTO
,
365 * struct queue_entry: Entry inside the &struct data_queue
367 * @flags: Entry flags, see &enum queue_entry_flags.
368 * @queue: The data queue (&struct data_queue) to which this entry belongs.
369 * @skb: The buffer which is currently being transmitted (for TX queue),
370 * or used to directly recieve data in (for RX queue).
371 * @entry_idx: The entry index number.
372 * @priv_data: Private data belonging to this queue entry. The pointer
373 * points to data specific to a particular driver and queue type.
378 struct data_queue
*queue
;
382 unsigned int entry_idx
;
388 * enum queue_index: Queue index type
390 * @Q_INDEX: Index pointer to the current entry in the queue, if this entry is
391 * owned by the hardware then the queue is considered to be full.
392 * @Q_INDEX_DONE: Index pointer to the next entry which will be completed by
393 * the hardware and for which we need to run the txdone handler. If this
394 * entry is not owned by the hardware the queue is considered to be empty.
395 * @Q_INDEX_CRYPTO: Index pointer to the next entry which encryption/decription
396 * will be completed by the hardware next.
397 * @Q_INDEX_MAX: Keep last, used in &struct data_queue to determine the size
398 * of the index array.
408 * struct data_queue: Data queue
410 * @rt2x00dev: Pointer to main &struct rt2x00dev where this queue belongs to.
411 * @entries: Base address of the &struct queue_entry which are
412 * part of this queue.
413 * @qid: The queue identification, see &enum data_queue_qid.
414 * @lock: Spinlock to protect index handling. Whenever @index, @index_done or
415 * @index_crypt needs to be changed this lock should be grabbed to prevent
416 * index corruption due to concurrency.
417 * @count: Number of frames handled in the queue.
418 * @limit: Maximum number of entries in the queue.
419 * @threshold: Minimum number of free entries before queue is kicked by force.
420 * @length: Number of frames in queue.
421 * @index: Index pointers to entry positions in the queue,
422 * use &enum queue_index to get a specific index field.
423 * @txop: maximum burst time.
424 * @aifs: The aifs value for outgoing frames (field ignored in RX queue).
425 * @cw_min: The cw min value for outgoing frames (field ignored in RX queue).
426 * @cw_max: The cw max value for outgoing frames (field ignored in RX queue).
427 * @data_size: Maximum data size for the frames in this queue.
428 * @desc_size: Hardware descriptor size for the data in this queue.
429 * @usb_endpoint: Device endpoint used for communication (USB only)
430 * @usb_maxpacket: Max packet size for given endpoint (USB only)
433 struct rt2x00_dev
*rt2x00dev
;
434 struct queue_entry
*entries
;
436 enum data_queue_qid qid
;
440 unsigned short limit
;
441 unsigned short threshold
;
442 unsigned short length
;
443 unsigned short index
[Q_INDEX_MAX
];
447 unsigned short cw_min
;
448 unsigned short cw_max
;
450 unsigned short data_size
;
451 unsigned short desc_size
;
453 unsigned short usb_endpoint
;
454 unsigned short usb_maxpacket
;
458 * struct data_queue_desc: Data queue description
460 * The information in this structure is used by drivers
461 * to inform rt2x00lib about the creation of the data queue.
463 * @entry_num: Maximum number of entries for a queue.
464 * @data_size: Maximum data size for the frames in this queue.
465 * @desc_size: Hardware descriptor size for the data in this queue.
466 * @priv_size: Size of per-queue_entry private data.
468 struct data_queue_desc
{
469 unsigned short entry_num
;
470 unsigned short data_size
;
471 unsigned short desc_size
;
472 unsigned short priv_size
;
476 * queue_end - Return pointer to the last queue (HELPER MACRO).
477 * @__dev: Pointer to &struct rt2x00_dev
479 * Using the base rx pointer and the maximum number of available queues,
480 * this macro will return the address of 1 position beyond the end of the
483 #define queue_end(__dev) \
484 &(__dev)->rx[(__dev)->data_queues]
487 * tx_queue_end - Return pointer to the last TX queue (HELPER MACRO).
488 * @__dev: Pointer to &struct rt2x00_dev
490 * Using the base tx pointer and the maximum number of available TX
491 * queues, this macro will return the address of 1 position beyond
492 * the end of the TX queue array.
494 #define tx_queue_end(__dev) \
495 &(__dev)->tx[(__dev)->ops->tx_queues]
498 * queue_next - Return pointer to next queue in list (HELPER MACRO).
499 * @__queue: Current queue for which we need the next queue
501 * Using the current queue address we take the address directly
502 * after the queue to take the next queue. Note that this macro
503 * should be used carefully since it does not protect against
504 * moving past the end of the list. (See macros &queue_end and
505 * &tx_queue_end for determining the end of the queue).
507 #define queue_next(__queue) \
511 * queue_loop - Loop through the queues within a specific range (HELPER MACRO).
512 * @__entry: Pointer where the current queue entry will be stored in.
513 * @__start: Start queue pointer.
514 * @__end: End queue pointer.
516 * This macro will loop through all queues between &__start and &__end.
518 #define queue_loop(__entry, __start, __end) \
519 for ((__entry) = (__start); \
520 prefetch(queue_next(__entry)), (__entry) != (__end);\
521 (__entry) = queue_next(__entry))
524 * queue_for_each - Loop through all queues
525 * @__dev: Pointer to &struct rt2x00_dev
526 * @__entry: Pointer where the current queue entry will be stored in.
528 * This macro will loop through all available queues.
530 #define queue_for_each(__dev, __entry) \
531 queue_loop(__entry, (__dev)->rx, queue_end(__dev))
534 * tx_queue_for_each - Loop through the TX queues
535 * @__dev: Pointer to &struct rt2x00_dev
536 * @__entry: Pointer where the current queue entry will be stored in.
538 * This macro will loop through all TX related queues excluding
539 * the Beacon and Atim queues.
541 #define tx_queue_for_each(__dev, __entry) \
542 queue_loop(__entry, (__dev)->tx, tx_queue_end(__dev))
545 * txall_queue_for_each - Loop through all TX related queues
546 * @__dev: Pointer to &struct rt2x00_dev
547 * @__entry: Pointer where the current queue entry will be stored in.
549 * This macro will loop through all TX related queues including
550 * the Beacon and Atim queues.
552 #define txall_queue_for_each(__dev, __entry) \
553 queue_loop(__entry, (__dev)->tx, queue_end(__dev))
556 * rt2x00queue_empty - Check if the queue is empty.
557 * @queue: Queue to check if empty.
559 static inline int rt2x00queue_empty(struct data_queue
*queue
)
561 return queue
->length
== 0;
565 * rt2x00queue_full - Check if the queue is full.
566 * @queue: Queue to check if full.
568 static inline int rt2x00queue_full(struct data_queue
*queue
)
570 return queue
->length
== queue
->limit
;
574 * rt2x00queue_free - Check the number of available entries in queue.
575 * @queue: Queue to check.
577 static inline int rt2x00queue_available(struct data_queue
*queue
)
579 return queue
->limit
- queue
->length
;
583 * rt2x00queue_threshold - Check if the queue is below threshold
584 * @queue: Queue to check.
586 static inline int rt2x00queue_threshold(struct data_queue
*queue
)
588 return rt2x00queue_available(queue
) < queue
->threshold
;
592 * _rt2x00_desc_read - Read a word from the hardware descriptor.
593 * @desc: Base descriptor address
594 * @word: Word index from where the descriptor should be read.
595 * @value: Address where the descriptor value should be written into.
597 static inline void _rt2x00_desc_read(__le32
*desc
, const u8 word
, __le32
*value
)
603 * rt2x00_desc_read - Read a word from the hardware descriptor, this
604 * function will take care of the byte ordering.
605 * @desc: Base descriptor address
606 * @word: Word index from where the descriptor should be read.
607 * @value: Address where the descriptor value should be written into.
609 static inline void rt2x00_desc_read(__le32
*desc
, const u8 word
, u32
*value
)
612 _rt2x00_desc_read(desc
, word
, &tmp
);
613 *value
= le32_to_cpu(tmp
);
617 * rt2x00_desc_write - write a word to the hardware descriptor, this
618 * function will take care of the byte ordering.
619 * @desc: Base descriptor address
620 * @word: Word index from where the descriptor should be written.
621 * @value: Value that should be written into the descriptor.
623 static inline void _rt2x00_desc_write(__le32
*desc
, const u8 word
, __le32 value
)
629 * rt2x00_desc_write - write a word to the hardware descriptor.
630 * @desc: Base descriptor address
631 * @word: Word index from where the descriptor should be written.
632 * @value: Value that should be written into the descriptor.
634 static inline void rt2x00_desc_write(__le32
*desc
, const u8 word
, u32 value
)
636 _rt2x00_desc_write(desc
, word
, cpu_to_le32(value
));
639 #endif /* RT2X00QUEUE_H */