2 * drivers/sbus/char/jsflash.c
4 * Copyright (C) 1991, 1992 Linus Torvalds (drivers/char/mem.c)
5 * Copyright (C) 1997 Eddie C. Dost (drivers/sbus/char/flash.c)
6 * Copyright (C) 1997-2000 Pavel Machek <pavel@ucw.cz> (drivers/block/nbd.c)
7 * Copyright (C) 1999-2000 Pete Zaitcev
9 * This driver is used to program OS into a Flash SIMM on
10 * Krups and Espresso platforms.
12 * TODO: do not allow erase/programming if file systems are mounted.
13 * TODO: Erase/program both banks of a 8MB SIMM.
15 * It is anticipated that programming an OS Flash will be a routine
16 * procedure. In the same time it is exeedingly dangerous because
17 * a user can program its OBP flash with OS image and effectively
20 * This driver uses an interface different from Eddie's flash.c
21 * as a silly safeguard.
23 * XXX The flash.c manipulates page caching characteristics in a certain
24 * dubious way; also it assumes that remap_pfn_range() can remap
25 * PCI bus locations, which may be false. ioremap() must be used
26 * instead. We should discuss this.
29 #include <linux/module.h>
30 #include <linux/smp_lock.h>
31 #include <linux/types.h>
32 #include <linux/errno.h>
33 #include <linux/miscdevice.h>
34 #include <linux/fcntl.h>
35 #include <linux/poll.h>
36 #include <linux/init.h>
37 #include <linux/string.h>
38 #include <linux/genhd.h>
39 #include <linux/blkdev.h>
40 #include <asm/uaccess.h>
41 #include <asm/pgtable.h>
44 #include <asm/oplib.h>
46 #include <asm/jsflash.h> /* ioctl arguments. <linux/> ?? */
47 #define JSFIDSZ (sizeof(struct jsflash_ident_arg))
48 #define JSFPRGSZ (sizeof(struct jsflash_program_arg))
51 * Our device numbers have no business in system headers.
52 * The only thing a user knows is the device name /dev/jsflash.
54 * Block devices are laid out like this:
55 * minor+0 - Bootstrap, for 8MB SIMM 0x20400000[0x800000]
56 * minor+1 - Filesystem to mount, normally 0x20400400[0x7ffc00]
57 * minor+2 - Whole flash area for any case... 0x20000000[0x01000000]
58 * Total 3 minors per flash device.
60 * It is easier to have static size vectors, so we define
61 * a total minor range JSF_MAX, which must cover all minors.
63 /* character device */
64 #define JSF_MINOR 178 /* 178 is registered with hpa */
66 #define JSF_MAX 3 /* 3 minors wasted total so far. */
67 #define JSF_NPART 3 /* 3 minors per flash device */
68 #define JSF_PART_BITS 2 /* 2 bits of minors to cover JSF_NPART */
69 #define JSF_PART_MASK 0x3 /* 2 bits mask */
73 * We could ioremap(), but it's easier this way.
75 static unsigned int jsf_inl(unsigned long addr
)
79 __asm__
__volatile__("lda [%1] %2, %0\n\t" :
81 "r" (addr
), "i" (ASI_M_BYPASS
));
85 static void jsf_outl(unsigned long addr
, __u32 data
)
88 __asm__
__volatile__("sta %0, [%1] %2\n\t" : :
89 "r" (data
), "r" (addr
), "i" (ASI_M_BYPASS
) :
105 unsigned long busy
; /* In use? */
106 struct jsflash_ident_arg id
;
107 /* int mbase; */ /* Minor base, typically zero */
108 struct jsfd_part dv
[JSF_NPART
];
112 * We do not map normal memory or obio as a safety precaution.
113 * But offsets are real, for ease of userland programming.
115 #define JSF_BASE_TOP 0x30000000
116 #define JSF_BASE_ALL 0x20000000
118 #define JSF_BASE_JK 0x20400000
122 static struct gendisk
*jsfd_disk
[JSF_MAX
];
125 * Let's pretend we may have several of these...
127 static struct jsflash jsf0
;
130 * Wait for AMD to finish its embedded algorithm.
131 * We use the Toggle bit DQ6 (0x40) because it does not
132 * depend on the data value as /DATA bit DQ7 does.
134 * XXX Do we need any timeout here? So far it never hanged, beware broken hw.
136 static void jsf_wait(unsigned long p
) {
142 if ((x1
& 0x40404040) == (x2
& 0x40404040)) return;
147 * Programming will only work if Flash is clean,
148 * we leave it to the programmer application.
150 * AMD must be programmed one byte at a time;
151 * thus, Simple Tech SIMM must be written 4 bytes at a time.
153 * Write waits for the chip to become ready after the write
154 * was finished. This is done so that application would read
155 * consistent data after the write is done.
157 static void jsf_write4(unsigned long fa
, u32 data
) {
159 jsf_outl(fa
, 0xAAAAAAAA); /* Unlock 1 Write 1 */
160 jsf_outl(fa
, 0x55555555); /* Unlock 1 Write 2 */
161 jsf_outl(fa
, 0xA0A0A0A0); /* Byte Program */
169 static void jsfd_read(char *buf
, unsigned long p
, size_t togo
) {
184 static void jsfd_do_request(struct request_queue
*q
)
188 req
= blk_fetch_request(q
);
190 struct jsfd_part
*jdp
= req
->rq_disk
->private_data
;
191 unsigned long offset
= blk_rq_pos(req
) << 9;
192 size_t len
= blk_rq_cur_bytes(req
);
195 if ((offset
+ len
) > jdp
->dsize
)
198 if (rq_data_dir(req
) != READ
) {
199 printk(KERN_ERR
"jsfd: write\n");
203 if ((jdp
->dbase
& 0xff000000) != 0x20000000) {
204 printk(KERN_ERR
"jsfd: bad base %x\n", (int)jdp
->dbase
);
208 jsfd_read(req
->buffer
, jdp
->dbase
+ offset
, len
);
211 if (!__blk_end_request_cur(req
, err
))
212 req
= blk_fetch_request(q
);
217 * The memory devices use the full 32/64 bits of the offset, and so we cannot
218 * check against negative addresses: they are ok. The return value is weird,
219 * though, in that case (0).
221 * also note that seeking relative to the "end of file" isn't supported:
222 * it has no meaning, so it returns -EINVAL.
224 static loff_t
jsf_lseek(struct file
* file
, loff_t offset
, int orig
)
231 file
->f_pos
= offset
;
235 file
->f_pos
+= offset
;
246 * OS SIMM Cannot be read in other size but a 32bits word.
248 static ssize_t
jsf_read(struct file
* file
, char __user
* buf
,
249 size_t togo
, loff_t
*ppos
)
251 unsigned long p
= *ppos
;
252 char __user
*tmp
= buf
;
259 if (p
< JSF_BASE_ALL
|| p
>= JSF_BASE_TOP
) {
263 if ((p
+ togo
) < p
/* wrap */
264 || (p
+ togo
) >= JSF_BASE_TOP
) {
265 togo
= JSF_BASE_TOP
- p
;
268 if (p
< JSF_BASE_ALL
&& togo
!= 0) {
269 #if 0 /* __bzero XXX */
270 size_t x
= JSF_BASE_ALL
- p
;
271 if (x
> togo
) x
= togo
;
278 * Implementation of clear_user() calls __bzero
279 * without regard to modversions,
280 * so we cannot build a module.
289 if (copy_to_user(tmp
, b
.s
, 4))
296 * XXX Small togo may remain if 1 byte is ordered.
297 * It would be nice if we did a word size read and unpacked it.
304 static ssize_t
jsf_write(struct file
* file
, const char __user
* buf
,
305 size_t count
, loff_t
*ppos
)
312 static int jsf_ioctl_erase(unsigned long arg
)
316 /* p = jsf0.base; hits wrong bank */
319 jsf_outl(p
, 0xAAAAAAAA); /* Unlock 1 Write 1 */
320 jsf_outl(p
, 0x55555555); /* Unlock 1 Write 2 */
321 jsf_outl(p
, 0x80808080); /* Erase setup */
322 jsf_outl(p
, 0xAAAAAAAA); /* Unlock 2 Write 1 */
323 jsf_outl(p
, 0x55555555); /* Unlock 2 Write 2 */
324 jsf_outl(p
, 0x10101010); /* Chip erase */
328 * This code is ok, except that counter based timeout
329 * has no place in this world. Let's just drop timeouts...
334 for (i
= 0; i
< 1000000; i
++) {
336 if ((x
& 0x80808080) == 0x80808080) break;
338 if ((x
& 0x80808080) != 0x80808080) {
339 printk("jsf0: erase timeout with 0x%08x\n", x
);
341 printk("jsf0: erase done with 0x%08x\n", x
);
352 * Program a block of flash.
353 * Very simple because we can do it byte by byte anyway.
355 static int jsf_ioctl_program(void __user
*arg
)
357 struct jsflash_program_arg abuf
;
366 if (copy_from_user(&abuf
, arg
, JSFPRGSZ
))
370 if ((togo
& 3) || (p
& 3)) return -EINVAL
;
372 uptr
= (char __user
*) (unsigned long) abuf
.data
;
375 if (copy_from_user(&b
.s
[0], uptr
, 4))
385 static long jsf_ioctl(struct file
*f
, unsigned int cmd
, unsigned long arg
)
389 void __user
*argp
= (void __user
*)arg
;
391 if (!capable(CAP_SYS_ADMIN
)) {
397 if (copy_to_user(argp
, &jsf0
.id
, JSFIDSZ
)) {
403 error
= jsf_ioctl_erase(arg
);
405 case JSFLASH_PROGRAM
:
406 error
= jsf_ioctl_program(argp
);
414 static int jsf_mmap(struct file
* file
, struct vm_area_struct
* vma
)
419 static int jsf_open(struct inode
* inode
, struct file
* filp
)
422 if (jsf0
.base
== 0) {
426 if (test_and_set_bit(0, (void *)&jsf0
.busy
) != 0) {
432 return 0; /* XXX What security? */
435 static int jsf_release(struct inode
*inode
, struct file
*file
)
441 static const struct file_operations jsf_fops
= {
442 .owner
= THIS_MODULE
,
446 .unlocked_ioctl
= jsf_ioctl
,
449 .release
= jsf_release
,
452 static struct miscdevice jsf_dev
= { JSF_MINOR
, "jsflash", &jsf_fops
};
454 static const struct block_device_operations jsfd_fops
= {
455 .owner
= THIS_MODULE
,
458 static int jsflash_init(void)
464 struct linux_prom_registers reg0
;
466 node
= prom_getchild(prom_root_node
);
467 node
= prom_searchsiblings(node
, "flash-memory");
468 if (node
!= 0 && node
!= -1) {
469 if (prom_getproperty(node
, "reg",
470 (char *)®0
, sizeof(reg0
)) == -1) {
471 printk("jsflash: no \"reg\" property\n");
474 if (reg0
.which_io
!= 0) {
475 printk("jsflash: bus number nonzero: 0x%x:%x\n",
476 reg0
.which_io
, reg0
.phys_addr
);
480 * Flash may be somewhere else, for instance on Ebus.
481 * So, don't do the following check for IIep flash space.
484 if ((reg0
.phys_addr
>> 24) != 0x20) {
485 printk("jsflash: suspicious address: 0x%x:%x\n",
486 reg0
.which_io
, reg0
.phys_addr
);
490 if ((int)reg0
.reg_size
<= 0) {
491 printk("jsflash: bad size 0x%x\n", (int)reg0
.reg_size
);
495 /* XXX Remove this code once PROLL ID12 got widespread */
496 printk("jsflash: no /flash-memory node, use PROLL >= 12\n");
497 prom_getproperty(prom_root_node
, "banner-name", banner
, 128);
498 if (strcmp (banner
, "JavaStation-NC") != 0 &&
499 strcmp (banner
, "JavaStation-E") != 0) {
503 reg0
.phys_addr
= 0x20400000;
504 reg0
.reg_size
= 0x00800000;
507 /* Let us be really paranoid for modifications to probing code. */
508 /* extern enum sparc_cpu sparc_cpu_model; */ /* in <asm/system.h> */
509 if (sparc_cpu_model
!= sun4m
) {
510 /* We must be on sun4m because we use MMU Bypass ASI. */
514 if (jsf0
.base
== 0) {
517 jsf
->base
= reg0
.phys_addr
;
518 jsf
->size
= reg0
.reg_size
;
520 /* XXX Redo the userland interface. */
521 jsf
->id
.off
= JSF_BASE_ALL
;
522 jsf
->id
.size
= 0x01000000; /* 16M - all segments */
523 strcpy(jsf
->id
.name
, "Krups_all");
525 jsf
->dv
[0].dbase
= jsf
->base
;
526 jsf
->dv
[0].dsize
= jsf
->size
;
527 jsf
->dv
[1].dbase
= jsf
->base
+ 1024;
528 jsf
->dv
[1].dsize
= jsf
->size
- 1024;
529 jsf
->dv
[2].dbase
= JSF_BASE_ALL
;
530 jsf
->dv
[2].dsize
= 0x01000000;
532 printk("Espresso Flash @0x%lx [%d MB]\n", jsf
->base
,
533 (int) (jsf
->size
/ (1024*1024)));
536 if ((rc
= misc_register(&jsf_dev
)) != 0) {
537 printk(KERN_ERR
"jsf: unable to get misc minor %d\n",
546 static struct request_queue
*jsf_queue
;
548 static int jsfd_init(void)
550 static DEFINE_SPINLOCK(lock
);
552 struct jsfd_part
*jdp
;
560 for (i
= 0; i
< JSF_MAX
; i
++) {
561 struct gendisk
*disk
= alloc_disk(1);
567 if (register_blkdev(JSFD_MAJOR
, "jsfd")) {
572 jsf_queue
= blk_init_queue(jsfd_do_request
, &lock
);
575 unregister_blkdev(JSFD_MAJOR
, "jsfd");
579 for (i
= 0; i
< JSF_MAX
; i
++) {
580 struct gendisk
*disk
= jsfd_disk
[i
];
581 if ((i
& JSF_PART_MASK
) >= JSF_NPART
) continue;
582 jsf
= &jsf0
; /* actually, &jsfv[i >> JSF_PART_BITS] */
583 jdp
= &jsf
->dv
[i
&JSF_PART_MASK
];
585 disk
->major
= JSFD_MAJOR
;
586 disk
->first_minor
= i
;
587 sprintf(disk
->disk_name
, "jsfd%d", i
);
588 disk
->fops
= &jsfd_fops
;
589 set_capacity(disk
, jdp
->dsize
>> 9);
590 disk
->private_data
= jdp
;
591 disk
->queue
= jsf_queue
;
593 set_disk_ro(disk
, 1);
598 put_disk(jsfd_disk
[i
]);
602 MODULE_LICENSE("GPL");
604 static int __init
jsflash_init_module(void) {
607 if ((rc
= jsflash_init()) == 0) {
614 static void __exit
jsflash_cleanup_module(void)
618 for (i
= 0; i
< JSF_MAX
; i
++) {
619 if ((i
& JSF_PART_MASK
) >= JSF_NPART
) continue;
620 del_gendisk(jsfd_disk
[i
]);
621 put_disk(jsfd_disk
[i
]);
624 printk("jsf0: cleaning busy unit\n");
628 misc_deregister(&jsf_dev
);
629 unregister_blkdev(JSFD_MAJOR
, "jsfd");
630 blk_cleanup_queue(jsf_queue
);
633 module_init(jsflash_init_module
);
634 module_exit(jsflash_cleanup_module
);