Staging: strip: delete the driver
[linux/fpc-iii.git] / drivers / scsi / libfc / fc_exch.c
blobe5df0d4db67ed7190e5d6a5c6d4e178cd039bc42
1 /*
2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
3 * Copyright(c) 2008 Red Hat, Inc. All rights reserved.
4 * Copyright(c) 2008 Mike Christie
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 * Maintained at www.Open-FCoE.org
23 * Fibre Channel exchange and sequence handling.
26 #include <linux/timer.h>
27 #include <linux/slab.h>
28 #include <linux/err.h>
30 #include <scsi/fc/fc_fc2.h>
32 #include <scsi/libfc.h>
33 #include <scsi/fc_encode.h>
35 #include "fc_libfc.h"
37 u16 fc_cpu_mask; /* cpu mask for possible cpus */
38 EXPORT_SYMBOL(fc_cpu_mask);
39 static u16 fc_cpu_order; /* 2's power to represent total possible cpus */
40 static struct kmem_cache *fc_em_cachep; /* cache for exchanges */
41 struct workqueue_struct *fc_exch_workqueue;
44 * Structure and function definitions for managing Fibre Channel Exchanges
45 * and Sequences.
47 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
49 * fc_exch_mgr holds the exchange state for an N port
51 * fc_exch holds state for one exchange and links to its active sequence.
53 * fc_seq holds the state for an individual sequence.
56 /**
57 * struct fc_exch_pool - Per cpu exchange pool
58 * @next_index: Next possible free exchange index
59 * @total_exches: Total allocated exchanges
60 * @lock: Exch pool lock
61 * @ex_list: List of exchanges
63 * This structure manages per cpu exchanges in array of exchange pointers.
64 * This array is allocated followed by struct fc_exch_pool memory for
65 * assigned range of exchanges to per cpu pool.
67 struct fc_exch_pool {
68 u16 next_index;
69 u16 total_exches;
70 spinlock_t lock;
71 struct list_head ex_list;
74 /**
75 * struct fc_exch_mgr - The Exchange Manager (EM).
76 * @class: Default class for new sequences
77 * @kref: Reference counter
78 * @min_xid: Minimum exchange ID
79 * @max_xid: Maximum exchange ID
80 * @ep_pool: Reserved exchange pointers
81 * @pool_max_index: Max exch array index in exch pool
82 * @pool: Per cpu exch pool
83 * @stats: Statistics structure
85 * This structure is the center for creating exchanges and sequences.
86 * It manages the allocation of exchange IDs.
88 struct fc_exch_mgr {
89 enum fc_class class;
90 struct kref kref;
91 u16 min_xid;
92 u16 max_xid;
93 mempool_t *ep_pool;
94 u16 pool_max_index;
95 struct fc_exch_pool *pool;
98 * currently exchange mgr stats are updated but not used.
99 * either stats can be expose via sysfs or remove them
100 * all together if not used XXX
102 struct {
103 atomic_t no_free_exch;
104 atomic_t no_free_exch_xid;
105 atomic_t xid_not_found;
106 atomic_t xid_busy;
107 atomic_t seq_not_found;
108 atomic_t non_bls_resp;
109 } stats;
111 #define fc_seq_exch(sp) container_of(sp, struct fc_exch, seq)
114 * struct fc_exch_mgr_anchor - primary structure for list of EMs
115 * @ema_list: Exchange Manager Anchor list
116 * @mp: Exchange Manager associated with this anchor
117 * @match: Routine to determine if this anchor's EM should be used
119 * When walking the list of anchors the match routine will be called
120 * for each anchor to determine if that EM should be used. The last
121 * anchor in the list will always match to handle any exchanges not
122 * handled by other EMs. The non-default EMs would be added to the
123 * anchor list by HW that provides FCoE offloads.
125 struct fc_exch_mgr_anchor {
126 struct list_head ema_list;
127 struct fc_exch_mgr *mp;
128 bool (*match)(struct fc_frame *);
131 static void fc_exch_rrq(struct fc_exch *);
132 static void fc_seq_ls_acc(struct fc_seq *);
133 static void fc_seq_ls_rjt(struct fc_seq *, enum fc_els_rjt_reason,
134 enum fc_els_rjt_explan);
135 static void fc_exch_els_rec(struct fc_seq *, struct fc_frame *);
136 static void fc_exch_els_rrq(struct fc_seq *, struct fc_frame *);
139 * Internal implementation notes.
141 * The exchange manager is one by default in libfc but LLD may choose
142 * to have one per CPU. The sequence manager is one per exchange manager
143 * and currently never separated.
145 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field
146 * assigned by the Sequence Initiator that shall be unique for a specific
147 * D_ID and S_ID pair while the Sequence is open." Note that it isn't
148 * qualified by exchange ID, which one might think it would be.
149 * In practice this limits the number of open sequences and exchanges to 256
150 * per session. For most targets we could treat this limit as per exchange.
152 * The exchange and its sequence are freed when the last sequence is received.
153 * It's possible for the remote port to leave an exchange open without
154 * sending any sequences.
156 * Notes on reference counts:
158 * Exchanges are reference counted and exchange gets freed when the reference
159 * count becomes zero.
161 * Timeouts:
162 * Sequences are timed out for E_D_TOV and R_A_TOV.
164 * Sequence event handling:
166 * The following events may occur on initiator sequences:
168 * Send.
169 * For now, the whole thing is sent.
170 * Receive ACK
171 * This applies only to class F.
172 * The sequence is marked complete.
173 * ULP completion.
174 * The upper layer calls fc_exch_done() when done
175 * with exchange and sequence tuple.
176 * RX-inferred completion.
177 * When we receive the next sequence on the same exchange, we can
178 * retire the previous sequence ID. (XXX not implemented).
179 * Timeout.
180 * R_A_TOV frees the sequence ID. If we're waiting for ACK,
181 * E_D_TOV causes abort and calls upper layer response handler
182 * with FC_EX_TIMEOUT error.
183 * Receive RJT
184 * XXX defer.
185 * Send ABTS
186 * On timeout.
188 * The following events may occur on recipient sequences:
190 * Receive
191 * Allocate sequence for first frame received.
192 * Hold during receive handler.
193 * Release when final frame received.
194 * Keep status of last N of these for the ELS RES command. XXX TBD.
195 * Receive ABTS
196 * Deallocate sequence
197 * Send RJT
198 * Deallocate
200 * For now, we neglect conditions where only part of a sequence was
201 * received or transmitted, or where out-of-order receipt is detected.
205 * Locking notes:
207 * The EM code run in a per-CPU worker thread.
209 * To protect against concurrency between a worker thread code and timers,
210 * sequence allocation and deallocation must be locked.
211 * - exchange refcnt can be done atomicly without locks.
212 * - sequence allocation must be locked by exch lock.
213 * - If the EM pool lock and ex_lock must be taken at the same time, then the
214 * EM pool lock must be taken before the ex_lock.
218 * opcode names for debugging.
220 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
222 #define FC_TABLE_SIZE(x) (sizeof(x) / sizeof(x[0]))
225 * fc_exch_name_lookup() - Lookup name by opcode
226 * @op: Opcode to be looked up
227 * @table: Opcode/name table
228 * @max_index: Index not to be exceeded
230 * This routine is used to determine a human-readable string identifying
231 * a R_CTL opcode.
233 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
234 unsigned int max_index)
236 const char *name = NULL;
238 if (op < max_index)
239 name = table[op];
240 if (!name)
241 name = "unknown";
242 return name;
246 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
247 * @op: The opcode to be looked up
249 static const char *fc_exch_rctl_name(unsigned int op)
251 return fc_exch_name_lookup(op, fc_exch_rctl_names,
252 FC_TABLE_SIZE(fc_exch_rctl_names));
256 * fc_exch_hold() - Increment an exchange's reference count
257 * @ep: Echange to be held
259 static inline void fc_exch_hold(struct fc_exch *ep)
261 atomic_inc(&ep->ex_refcnt);
265 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
266 * and determine SOF and EOF.
267 * @ep: The exchange to that will use the header
268 * @fp: The frame whose header is to be modified
269 * @f_ctl: F_CTL bits that will be used for the frame header
271 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
272 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
274 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
275 u32 f_ctl)
277 struct fc_frame_header *fh = fc_frame_header_get(fp);
278 u16 fill;
280 fr_sof(fp) = ep->class;
281 if (ep->seq.cnt)
282 fr_sof(fp) = fc_sof_normal(ep->class);
284 if (f_ctl & FC_FC_END_SEQ) {
285 fr_eof(fp) = FC_EOF_T;
286 if (fc_sof_needs_ack(ep->class))
287 fr_eof(fp) = FC_EOF_N;
289 * From F_CTL.
290 * The number of fill bytes to make the length a 4-byte
291 * multiple is the low order 2-bits of the f_ctl.
292 * The fill itself will have been cleared by the frame
293 * allocation.
294 * After this, the length will be even, as expected by
295 * the transport.
297 fill = fr_len(fp) & 3;
298 if (fill) {
299 fill = 4 - fill;
300 /* TODO, this may be a problem with fragmented skb */
301 skb_put(fp_skb(fp), fill);
302 hton24(fh->fh_f_ctl, f_ctl | fill);
304 } else {
305 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */
306 fr_eof(fp) = FC_EOF_N;
310 * Initialize remainig fh fields
311 * from fc_fill_fc_hdr
313 fh->fh_ox_id = htons(ep->oxid);
314 fh->fh_rx_id = htons(ep->rxid);
315 fh->fh_seq_id = ep->seq.id;
316 fh->fh_seq_cnt = htons(ep->seq.cnt);
320 * fc_exch_release() - Decrement an exchange's reference count
321 * @ep: Exchange to be released
323 * If the reference count reaches zero and the exchange is complete,
324 * it is freed.
326 static void fc_exch_release(struct fc_exch *ep)
328 struct fc_exch_mgr *mp;
330 if (atomic_dec_and_test(&ep->ex_refcnt)) {
331 mp = ep->em;
332 if (ep->destructor)
333 ep->destructor(&ep->seq, ep->arg);
334 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
335 mempool_free(ep, mp->ep_pool);
340 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
341 * @ep: The exchange that is complete
343 static int fc_exch_done_locked(struct fc_exch *ep)
345 int rc = 1;
348 * We must check for completion in case there are two threads
349 * tyring to complete this. But the rrq code will reuse the
350 * ep, and in that case we only clear the resp and set it as
351 * complete, so it can be reused by the timer to send the rrq.
353 ep->resp = NULL;
354 if (ep->state & FC_EX_DONE)
355 return rc;
356 ep->esb_stat |= ESB_ST_COMPLETE;
358 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
359 ep->state |= FC_EX_DONE;
360 if (cancel_delayed_work(&ep->timeout_work))
361 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
362 rc = 0;
364 return rc;
368 * fc_exch_ptr_get() - Return an exchange from an exchange pool
369 * @pool: Exchange Pool to get an exchange from
370 * @index: Index of the exchange within the pool
372 * Use the index to get an exchange from within an exchange pool. exches
373 * will point to an array of exchange pointers. The index will select
374 * the exchange within the array.
376 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
377 u16 index)
379 struct fc_exch **exches = (struct fc_exch **)(pool + 1);
380 return exches[index];
384 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
385 * @pool: The pool to assign the exchange to
386 * @index: The index in the pool where the exchange will be assigned
387 * @ep: The exchange to assign to the pool
389 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
390 struct fc_exch *ep)
392 ((struct fc_exch **)(pool + 1))[index] = ep;
396 * fc_exch_delete() - Delete an exchange
397 * @ep: The exchange to be deleted
399 static void fc_exch_delete(struct fc_exch *ep)
401 struct fc_exch_pool *pool;
403 pool = ep->pool;
404 spin_lock_bh(&pool->lock);
405 WARN_ON(pool->total_exches <= 0);
406 pool->total_exches--;
407 fc_exch_ptr_set(pool, (ep->xid - ep->em->min_xid) >> fc_cpu_order,
408 NULL);
409 list_del(&ep->ex_list);
410 spin_unlock_bh(&pool->lock);
411 fc_exch_release(ep); /* drop hold for exch in mp */
415 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
416 * the exchange lock held
417 * @ep: The exchange whose timer will start
418 * @timer_msec: The timeout period
420 * Used for upper level protocols to time out the exchange.
421 * The timer is cancelled when it fires or when the exchange completes.
423 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
424 unsigned int timer_msec)
426 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
427 return;
429 FC_EXCH_DBG(ep, "Exchange timer armed\n");
431 if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
432 msecs_to_jiffies(timer_msec)))
433 fc_exch_hold(ep); /* hold for timer */
437 * fc_exch_timer_set() - Lock the exchange and set the timer
438 * @ep: The exchange whose timer will start
439 * @timer_msec: The timeout period
441 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
443 spin_lock_bh(&ep->ex_lock);
444 fc_exch_timer_set_locked(ep, timer_msec);
445 spin_unlock_bh(&ep->ex_lock);
449 * fc_seq_send() - Send a frame using existing sequence/exchange pair
450 * @lport: The local port that the exchange will be sent on
451 * @sp: The sequence to be sent
452 * @fp: The frame to be sent on the exchange
454 static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
455 struct fc_frame *fp)
457 struct fc_exch *ep;
458 struct fc_frame_header *fh = fc_frame_header_get(fp);
459 int error;
460 u32 f_ctl;
462 ep = fc_seq_exch(sp);
463 WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT);
465 f_ctl = ntoh24(fh->fh_f_ctl);
466 fc_exch_setup_hdr(ep, fp, f_ctl);
469 * update sequence count if this frame is carrying
470 * multiple FC frames when sequence offload is enabled
471 * by LLD.
473 if (fr_max_payload(fp))
474 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
475 fr_max_payload(fp));
476 else
477 sp->cnt++;
480 * Send the frame.
482 error = lport->tt.frame_send(lport, fp);
485 * Update the exchange and sequence flags,
486 * assuming all frames for the sequence have been sent.
487 * We can only be called to send once for each sequence.
489 spin_lock_bh(&ep->ex_lock);
490 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */
491 if (f_ctl & (FC_FC_END_SEQ | FC_FC_SEQ_INIT))
492 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
493 spin_unlock_bh(&ep->ex_lock);
494 return error;
498 * fc_seq_alloc() - Allocate a sequence for a given exchange
499 * @ep: The exchange to allocate a new sequence for
500 * @seq_id: The sequence ID to be used
502 * We don't support multiple originated sequences on the same exchange.
503 * By implication, any previously originated sequence on this exchange
504 * is complete, and we reallocate the same sequence.
506 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
508 struct fc_seq *sp;
510 sp = &ep->seq;
511 sp->ssb_stat = 0;
512 sp->cnt = 0;
513 sp->id = seq_id;
514 return sp;
518 * fc_seq_start_next_locked() - Allocate a new sequence on the same
519 * exchange as the supplied sequence
520 * @sp: The sequence/exchange to get a new sequence for
522 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
524 struct fc_exch *ep = fc_seq_exch(sp);
526 sp = fc_seq_alloc(ep, ep->seq_id++);
527 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
528 ep->f_ctl, sp->id);
529 return sp;
533 * fc_seq_start_next() - Lock the exchange and get a new sequence
534 * for a given sequence/exchange pair
535 * @sp: The sequence/exchange to get a new exchange for
537 static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
539 struct fc_exch *ep = fc_seq_exch(sp);
541 spin_lock_bh(&ep->ex_lock);
542 sp = fc_seq_start_next_locked(sp);
543 spin_unlock_bh(&ep->ex_lock);
545 return sp;
549 * fc_seq_exch_abort() - Abort an exchange and sequence
550 * @req_sp: The sequence to be aborted
551 * @timer_msec: The period of time to wait before aborting
553 * Generally called because of a timeout or an abort from the upper layer.
555 static int fc_seq_exch_abort(const struct fc_seq *req_sp,
556 unsigned int timer_msec)
558 struct fc_seq *sp;
559 struct fc_exch *ep;
560 struct fc_frame *fp;
561 int error;
563 ep = fc_seq_exch(req_sp);
565 spin_lock_bh(&ep->ex_lock);
566 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
567 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
568 spin_unlock_bh(&ep->ex_lock);
569 return -ENXIO;
573 * Send the abort on a new sequence if possible.
575 sp = fc_seq_start_next_locked(&ep->seq);
576 if (!sp) {
577 spin_unlock_bh(&ep->ex_lock);
578 return -ENOMEM;
581 ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
582 if (timer_msec)
583 fc_exch_timer_set_locked(ep, timer_msec);
584 spin_unlock_bh(&ep->ex_lock);
587 * If not logged into the fabric, don't send ABTS but leave
588 * sequence active until next timeout.
590 if (!ep->sid)
591 return 0;
594 * Send an abort for the sequence that timed out.
596 fp = fc_frame_alloc(ep->lp, 0);
597 if (fp) {
598 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
599 FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
600 error = fc_seq_send(ep->lp, sp, fp);
601 } else
602 error = -ENOBUFS;
603 return error;
607 * fc_exch_timeout() - Handle exchange timer expiration
608 * @work: The work_struct identifying the exchange that timed out
610 static void fc_exch_timeout(struct work_struct *work)
612 struct fc_exch *ep = container_of(work, struct fc_exch,
613 timeout_work.work);
614 struct fc_seq *sp = &ep->seq;
615 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
616 void *arg;
617 u32 e_stat;
618 int rc = 1;
620 FC_EXCH_DBG(ep, "Exchange timed out\n");
622 spin_lock_bh(&ep->ex_lock);
623 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
624 goto unlock;
626 e_stat = ep->esb_stat;
627 if (e_stat & ESB_ST_COMPLETE) {
628 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
629 spin_unlock_bh(&ep->ex_lock);
630 if (e_stat & ESB_ST_REC_QUAL)
631 fc_exch_rrq(ep);
632 goto done;
633 } else {
634 resp = ep->resp;
635 arg = ep->arg;
636 ep->resp = NULL;
637 if (e_stat & ESB_ST_ABNORMAL)
638 rc = fc_exch_done_locked(ep);
639 spin_unlock_bh(&ep->ex_lock);
640 if (!rc)
641 fc_exch_delete(ep);
642 if (resp)
643 resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
644 fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
645 goto done;
647 unlock:
648 spin_unlock_bh(&ep->ex_lock);
649 done:
651 * This release matches the hold taken when the timer was set.
653 fc_exch_release(ep);
657 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
658 * @lport: The local port that the exchange is for
659 * @mp: The exchange manager that will allocate the exchange
661 * Returns pointer to allocated fc_exch with exch lock held.
663 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
664 struct fc_exch_mgr *mp)
666 struct fc_exch *ep;
667 unsigned int cpu;
668 u16 index;
669 struct fc_exch_pool *pool;
671 /* allocate memory for exchange */
672 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
673 if (!ep) {
674 atomic_inc(&mp->stats.no_free_exch);
675 goto out;
677 memset(ep, 0, sizeof(*ep));
679 cpu = smp_processor_id();
680 pool = per_cpu_ptr(mp->pool, cpu);
681 spin_lock_bh(&pool->lock);
682 index = pool->next_index;
683 /* allocate new exch from pool */
684 while (fc_exch_ptr_get(pool, index)) {
685 index = index == mp->pool_max_index ? 0 : index + 1;
686 if (index == pool->next_index)
687 goto err;
689 pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
691 fc_exch_hold(ep); /* hold for exch in mp */
692 spin_lock_init(&ep->ex_lock);
694 * Hold exch lock for caller to prevent fc_exch_reset()
695 * from releasing exch while fc_exch_alloc() caller is
696 * still working on exch.
698 spin_lock_bh(&ep->ex_lock);
700 fc_exch_ptr_set(pool, index, ep);
701 list_add_tail(&ep->ex_list, &pool->ex_list);
702 fc_seq_alloc(ep, ep->seq_id++);
703 pool->total_exches++;
704 spin_unlock_bh(&pool->lock);
707 * update exchange
709 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
710 ep->em = mp;
711 ep->pool = pool;
712 ep->lp = lport;
713 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */
714 ep->rxid = FC_XID_UNKNOWN;
715 ep->class = mp->class;
716 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
717 out:
718 return ep;
719 err:
720 spin_unlock_bh(&pool->lock);
721 atomic_inc(&mp->stats.no_free_exch_xid);
722 mempool_free(ep, mp->ep_pool);
723 return NULL;
727 * fc_exch_alloc() - Allocate an exchange from an EM on a
728 * local port's list of EMs.
729 * @lport: The local port that will own the exchange
730 * @fp: The FC frame that the exchange will be for
732 * This function walks the list of exchange manager(EM)
733 * anchors to select an EM for a new exchange allocation. The
734 * EM is selected when a NULL match function pointer is encountered
735 * or when a call to a match function returns true.
737 static struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
738 struct fc_frame *fp)
740 struct fc_exch_mgr_anchor *ema;
741 struct fc_exch *ep;
743 list_for_each_entry(ema, &lport->ema_list, ema_list) {
744 if (!ema->match || ema->match(fp)) {
745 ep = fc_exch_em_alloc(lport, ema->mp);
746 if (ep)
747 return ep;
750 return NULL;
754 * fc_exch_find() - Lookup and hold an exchange
755 * @mp: The exchange manager to lookup the exchange from
756 * @xid: The XID of the exchange to look up
758 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
760 struct fc_exch_pool *pool;
761 struct fc_exch *ep = NULL;
763 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
764 pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
765 spin_lock_bh(&pool->lock);
766 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
767 if (ep) {
768 fc_exch_hold(ep);
769 WARN_ON(ep->xid != xid);
771 spin_unlock_bh(&pool->lock);
773 return ep;
778 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
779 * the memory allocated for the related objects may be freed.
780 * @sp: The sequence that has completed
782 static void fc_exch_done(struct fc_seq *sp)
784 struct fc_exch *ep = fc_seq_exch(sp);
785 int rc;
787 spin_lock_bh(&ep->ex_lock);
788 rc = fc_exch_done_locked(ep);
789 spin_unlock_bh(&ep->ex_lock);
790 if (!rc)
791 fc_exch_delete(ep);
795 * fc_exch_resp() - Allocate a new exchange for a response frame
796 * @lport: The local port that the exchange was for
797 * @mp: The exchange manager to allocate the exchange from
798 * @fp: The response frame
800 * Sets the responder ID in the frame header.
802 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
803 struct fc_exch_mgr *mp,
804 struct fc_frame *fp)
806 struct fc_exch *ep;
807 struct fc_frame_header *fh;
809 ep = fc_exch_alloc(lport, fp);
810 if (ep) {
811 ep->class = fc_frame_class(fp);
814 * Set EX_CTX indicating we're responding on this exchange.
816 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */
817 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */
818 fh = fc_frame_header_get(fp);
819 ep->sid = ntoh24(fh->fh_d_id);
820 ep->did = ntoh24(fh->fh_s_id);
821 ep->oid = ep->did;
824 * Allocated exchange has placed the XID in the
825 * originator field. Move it to the responder field,
826 * and set the originator XID from the frame.
828 ep->rxid = ep->xid;
829 ep->oxid = ntohs(fh->fh_ox_id);
830 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
831 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
832 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
834 fc_exch_hold(ep); /* hold for caller */
835 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */
837 return ep;
841 * fc_seq_lookup_recip() - Find a sequence where the other end
842 * originated the sequence
843 * @lport: The local port that the frame was sent to
844 * @mp: The Exchange Manager to lookup the exchange from
845 * @fp: The frame associated with the sequence we're looking for
847 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
848 * on the ep that should be released by the caller.
850 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
851 struct fc_exch_mgr *mp,
852 struct fc_frame *fp)
854 struct fc_frame_header *fh = fc_frame_header_get(fp);
855 struct fc_exch *ep = NULL;
856 struct fc_seq *sp = NULL;
857 enum fc_pf_rjt_reason reject = FC_RJT_NONE;
858 u32 f_ctl;
859 u16 xid;
861 f_ctl = ntoh24(fh->fh_f_ctl);
862 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
865 * Lookup or create the exchange if we will be creating the sequence.
867 if (f_ctl & FC_FC_EX_CTX) {
868 xid = ntohs(fh->fh_ox_id); /* we originated exch */
869 ep = fc_exch_find(mp, xid);
870 if (!ep) {
871 atomic_inc(&mp->stats.xid_not_found);
872 reject = FC_RJT_OX_ID;
873 goto out;
875 if (ep->rxid == FC_XID_UNKNOWN)
876 ep->rxid = ntohs(fh->fh_rx_id);
877 else if (ep->rxid != ntohs(fh->fh_rx_id)) {
878 reject = FC_RJT_OX_ID;
879 goto rel;
881 } else {
882 xid = ntohs(fh->fh_rx_id); /* we are the responder */
885 * Special case for MDS issuing an ELS TEST with a
886 * bad rxid of 0.
887 * XXX take this out once we do the proper reject.
889 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
890 fc_frame_payload_op(fp) == ELS_TEST) {
891 fh->fh_rx_id = htons(FC_XID_UNKNOWN);
892 xid = FC_XID_UNKNOWN;
896 * new sequence - find the exchange
898 ep = fc_exch_find(mp, xid);
899 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
900 if (ep) {
901 atomic_inc(&mp->stats.xid_busy);
902 reject = FC_RJT_RX_ID;
903 goto rel;
905 ep = fc_exch_resp(lport, mp, fp);
906 if (!ep) {
907 reject = FC_RJT_EXCH_EST; /* XXX */
908 goto out;
910 xid = ep->xid; /* get our XID */
911 } else if (!ep) {
912 atomic_inc(&mp->stats.xid_not_found);
913 reject = FC_RJT_RX_ID; /* XID not found */
914 goto out;
919 * At this point, we have the exchange held.
920 * Find or create the sequence.
922 if (fc_sof_is_init(fr_sof(fp))) {
923 sp = fc_seq_start_next(&ep->seq);
924 if (!sp) {
925 reject = FC_RJT_SEQ_XS; /* exchange shortage */
926 goto rel;
928 sp->id = fh->fh_seq_id;
929 sp->ssb_stat |= SSB_ST_RESP;
930 } else {
931 sp = &ep->seq;
932 if (sp->id != fh->fh_seq_id) {
933 atomic_inc(&mp->stats.seq_not_found);
934 reject = FC_RJT_SEQ_ID; /* sequence/exch should exist */
935 goto rel;
938 WARN_ON(ep != fc_seq_exch(sp));
940 if (f_ctl & FC_FC_SEQ_INIT)
941 ep->esb_stat |= ESB_ST_SEQ_INIT;
943 fr_seq(fp) = sp;
944 out:
945 return reject;
946 rel:
947 fc_exch_done(&ep->seq);
948 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */
949 return reject;
953 * fc_seq_lookup_orig() - Find a sequence where this end
954 * originated the sequence
955 * @mp: The Exchange Manager to lookup the exchange from
956 * @fp: The frame associated with the sequence we're looking for
958 * Does not hold the sequence for the caller.
960 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
961 struct fc_frame *fp)
963 struct fc_frame_header *fh = fc_frame_header_get(fp);
964 struct fc_exch *ep;
965 struct fc_seq *sp = NULL;
966 u32 f_ctl;
967 u16 xid;
969 f_ctl = ntoh24(fh->fh_f_ctl);
970 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
971 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
972 ep = fc_exch_find(mp, xid);
973 if (!ep)
974 return NULL;
975 if (ep->seq.id == fh->fh_seq_id) {
977 * Save the RX_ID if we didn't previously know it.
979 sp = &ep->seq;
980 if ((f_ctl & FC_FC_EX_CTX) != 0 &&
981 ep->rxid == FC_XID_UNKNOWN) {
982 ep->rxid = ntohs(fh->fh_rx_id);
985 fc_exch_release(ep);
986 return sp;
990 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
991 * @ep: The exchange to set the addresses for
992 * @orig_id: The originator's ID
993 * @resp_id: The responder's ID
995 * Note this must be done before the first sequence of the exchange is sent.
997 static void fc_exch_set_addr(struct fc_exch *ep,
998 u32 orig_id, u32 resp_id)
1000 ep->oid = orig_id;
1001 if (ep->esb_stat & ESB_ST_RESP) {
1002 ep->sid = resp_id;
1003 ep->did = orig_id;
1004 } else {
1005 ep->sid = orig_id;
1006 ep->did = resp_id;
1011 * fc_seq_els_rsp_send() - Send an ELS response using infomation from
1012 * the existing sequence/exchange.
1013 * @sp: The sequence/exchange to get information from
1014 * @els_cmd: The ELS command to be sent
1015 * @els_data: The ELS data to be sent
1017 static void fc_seq_els_rsp_send(struct fc_seq *sp, enum fc_els_cmd els_cmd,
1018 struct fc_seq_els_data *els_data)
1020 switch (els_cmd) {
1021 case ELS_LS_RJT:
1022 fc_seq_ls_rjt(sp, els_data->reason, els_data->explan);
1023 break;
1024 case ELS_LS_ACC:
1025 fc_seq_ls_acc(sp);
1026 break;
1027 case ELS_RRQ:
1028 fc_exch_els_rrq(sp, els_data->fp);
1029 break;
1030 case ELS_REC:
1031 fc_exch_els_rec(sp, els_data->fp);
1032 break;
1033 default:
1034 FC_EXCH_DBG(fc_seq_exch(sp), "Invalid ELS CMD:%x\n", els_cmd);
1039 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1040 * @sp: The sequence that is to be sent
1041 * @fp: The frame that will be sent on the sequence
1042 * @rctl: The R_CTL information to be sent
1043 * @fh_type: The frame header type
1045 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1046 enum fc_rctl rctl, enum fc_fh_type fh_type)
1048 u32 f_ctl;
1049 struct fc_exch *ep = fc_seq_exch(sp);
1051 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1052 f_ctl |= ep->f_ctl;
1053 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1054 fc_seq_send(ep->lp, sp, fp);
1058 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1059 * @sp: The sequence to send the ACK on
1060 * @rx_fp: The received frame that is being acknoledged
1062 * Send ACK_1 (or equiv.) indicating we received something.
1064 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1066 struct fc_frame *fp;
1067 struct fc_frame_header *rx_fh;
1068 struct fc_frame_header *fh;
1069 struct fc_exch *ep = fc_seq_exch(sp);
1070 struct fc_lport *lport = ep->lp;
1071 unsigned int f_ctl;
1074 * Don't send ACKs for class 3.
1076 if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1077 fp = fc_frame_alloc(lport, 0);
1078 if (!fp)
1079 return;
1081 fh = fc_frame_header_get(fp);
1082 fh->fh_r_ctl = FC_RCTL_ACK_1;
1083 fh->fh_type = FC_TYPE_BLS;
1086 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1087 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1088 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1089 * Last ACK uses bits 7-6 (continue sequence),
1090 * bits 5-4 are meaningful (what kind of ACK to use).
1092 rx_fh = fc_frame_header_get(rx_fp);
1093 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1094 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1095 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1096 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1097 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1098 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1099 hton24(fh->fh_f_ctl, f_ctl);
1101 fc_exch_setup_hdr(ep, fp, f_ctl);
1102 fh->fh_seq_id = rx_fh->fh_seq_id;
1103 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1104 fh->fh_parm_offset = htonl(1); /* ack single frame */
1106 fr_sof(fp) = fr_sof(rx_fp);
1107 if (f_ctl & FC_FC_END_SEQ)
1108 fr_eof(fp) = FC_EOF_T;
1109 else
1110 fr_eof(fp) = FC_EOF_N;
1112 lport->tt.frame_send(lport, fp);
1117 * fc_exch_send_ba_rjt() - Send BLS Reject
1118 * @rx_fp: The frame being rejected
1119 * @reason: The reason the frame is being rejected
1120 * @explan: The explaination for the rejection
1122 * This is for rejecting BA_ABTS only.
1124 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1125 enum fc_ba_rjt_reason reason,
1126 enum fc_ba_rjt_explan explan)
1128 struct fc_frame *fp;
1129 struct fc_frame_header *rx_fh;
1130 struct fc_frame_header *fh;
1131 struct fc_ba_rjt *rp;
1132 struct fc_lport *lport;
1133 unsigned int f_ctl;
1135 lport = fr_dev(rx_fp);
1136 fp = fc_frame_alloc(lport, sizeof(*rp));
1137 if (!fp)
1138 return;
1139 fh = fc_frame_header_get(fp);
1140 rx_fh = fc_frame_header_get(rx_fp);
1142 memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1144 rp = fc_frame_payload_get(fp, sizeof(*rp));
1145 rp->br_reason = reason;
1146 rp->br_explan = explan;
1149 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1151 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1152 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1153 fh->fh_ox_id = rx_fh->fh_ox_id;
1154 fh->fh_rx_id = rx_fh->fh_rx_id;
1155 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1156 fh->fh_r_ctl = FC_RCTL_BA_RJT;
1157 fh->fh_type = FC_TYPE_BLS;
1160 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1161 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1162 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1163 * Last ACK uses bits 7-6 (continue sequence),
1164 * bits 5-4 are meaningful (what kind of ACK to use).
1165 * Always set LAST_SEQ, END_SEQ.
1167 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1168 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1169 FC_FC_END_CONN | FC_FC_SEQ_INIT |
1170 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1171 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1172 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1173 f_ctl &= ~FC_FC_FIRST_SEQ;
1174 hton24(fh->fh_f_ctl, f_ctl);
1176 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1177 fr_eof(fp) = FC_EOF_T;
1178 if (fc_sof_needs_ack(fr_sof(fp)))
1179 fr_eof(fp) = FC_EOF_N;
1181 lport->tt.frame_send(lport, fp);
1185 * fc_exch_recv_abts() - Handle an incoming ABTS
1186 * @ep: The exchange the abort was on
1187 * @rx_fp: The ABTS frame
1189 * This would be for target mode usually, but could be due to lost
1190 * FCP transfer ready, confirm or RRQ. We always handle this as an
1191 * exchange abort, ignoring the parameter.
1193 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1195 struct fc_frame *fp;
1196 struct fc_ba_acc *ap;
1197 struct fc_frame_header *fh;
1198 struct fc_seq *sp;
1200 if (!ep)
1201 goto reject;
1202 spin_lock_bh(&ep->ex_lock);
1203 if (ep->esb_stat & ESB_ST_COMPLETE) {
1204 spin_unlock_bh(&ep->ex_lock);
1205 goto reject;
1207 if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1208 fc_exch_hold(ep); /* hold for REC_QUAL */
1209 ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1210 fc_exch_timer_set_locked(ep, ep->r_a_tov);
1212 fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1213 if (!fp) {
1214 spin_unlock_bh(&ep->ex_lock);
1215 goto free;
1217 fh = fc_frame_header_get(fp);
1218 ap = fc_frame_payload_get(fp, sizeof(*ap));
1219 memset(ap, 0, sizeof(*ap));
1220 sp = &ep->seq;
1221 ap->ba_high_seq_cnt = htons(0xffff);
1222 if (sp->ssb_stat & SSB_ST_RESP) {
1223 ap->ba_seq_id = sp->id;
1224 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1225 ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1226 ap->ba_low_seq_cnt = htons(sp->cnt);
1228 sp = fc_seq_start_next_locked(sp);
1229 spin_unlock_bh(&ep->ex_lock);
1230 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1231 fc_frame_free(rx_fp);
1232 return;
1234 reject:
1235 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1236 free:
1237 fc_frame_free(rx_fp);
1241 * fc_exch_recv_req() - Handler for an incoming request where is other
1242 * end is originating the sequence
1243 * @lport: The local port that received the request
1244 * @mp: The EM that the exchange is on
1245 * @fp: The request frame
1247 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1248 struct fc_frame *fp)
1250 struct fc_frame_header *fh = fc_frame_header_get(fp);
1251 struct fc_seq *sp = NULL;
1252 struct fc_exch *ep = NULL;
1253 enum fc_sof sof;
1254 enum fc_eof eof;
1255 u32 f_ctl;
1256 enum fc_pf_rjt_reason reject;
1258 /* We can have the wrong fc_lport at this point with NPIV, which is a
1259 * problem now that we know a new exchange needs to be allocated
1261 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1262 if (!lport) {
1263 fc_frame_free(fp);
1264 return;
1267 fr_seq(fp) = NULL;
1268 reject = fc_seq_lookup_recip(lport, mp, fp);
1269 if (reject == FC_RJT_NONE) {
1270 sp = fr_seq(fp); /* sequence will be held */
1271 ep = fc_seq_exch(sp);
1272 sof = fr_sof(fp);
1273 eof = fr_eof(fp);
1274 f_ctl = ntoh24(fh->fh_f_ctl);
1275 fc_seq_send_ack(sp, fp);
1278 * Call the receive function.
1280 * The receive function may allocate a new sequence
1281 * over the old one, so we shouldn't change the
1282 * sequence after this.
1284 * The frame will be freed by the receive function.
1285 * If new exch resp handler is valid then call that
1286 * first.
1288 if (ep->resp)
1289 ep->resp(sp, fp, ep->arg);
1290 else
1291 lport->tt.lport_recv(lport, sp, fp);
1292 fc_exch_release(ep); /* release from lookup */
1293 } else {
1294 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1295 reject);
1296 fc_frame_free(fp);
1301 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1302 * end is the originator of the sequence that is a
1303 * response to our initial exchange
1304 * @mp: The EM that the exchange is on
1305 * @fp: The response frame
1307 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1309 struct fc_frame_header *fh = fc_frame_header_get(fp);
1310 struct fc_seq *sp;
1311 struct fc_exch *ep;
1312 enum fc_sof sof;
1313 u32 f_ctl;
1314 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1315 void *ex_resp_arg;
1316 int rc;
1318 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1319 if (!ep) {
1320 atomic_inc(&mp->stats.xid_not_found);
1321 goto out;
1323 if (ep->esb_stat & ESB_ST_COMPLETE) {
1324 atomic_inc(&mp->stats.xid_not_found);
1325 goto out;
1327 if (ep->rxid == FC_XID_UNKNOWN)
1328 ep->rxid = ntohs(fh->fh_rx_id);
1329 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1330 atomic_inc(&mp->stats.xid_not_found);
1331 goto rel;
1333 if (ep->did != ntoh24(fh->fh_s_id) &&
1334 ep->did != FC_FID_FLOGI) {
1335 atomic_inc(&mp->stats.xid_not_found);
1336 goto rel;
1338 sof = fr_sof(fp);
1339 if (fc_sof_is_init(sof)) {
1340 sp = fc_seq_start_next(&ep->seq);
1341 sp->id = fh->fh_seq_id;
1342 sp->ssb_stat |= SSB_ST_RESP;
1343 } else {
1344 sp = &ep->seq;
1345 if (sp->id != fh->fh_seq_id) {
1346 atomic_inc(&mp->stats.seq_not_found);
1347 goto rel;
1350 f_ctl = ntoh24(fh->fh_f_ctl);
1351 fr_seq(fp) = sp;
1352 if (f_ctl & FC_FC_SEQ_INIT)
1353 ep->esb_stat |= ESB_ST_SEQ_INIT;
1355 if (fc_sof_needs_ack(sof))
1356 fc_seq_send_ack(sp, fp);
1357 resp = ep->resp;
1358 ex_resp_arg = ep->arg;
1360 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1361 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1362 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1363 spin_lock_bh(&ep->ex_lock);
1364 rc = fc_exch_done_locked(ep);
1365 WARN_ON(fc_seq_exch(sp) != ep);
1366 spin_unlock_bh(&ep->ex_lock);
1367 if (!rc)
1368 fc_exch_delete(ep);
1372 * Call the receive function.
1373 * The sequence is held (has a refcnt) for us,
1374 * but not for the receive function.
1376 * The receive function may allocate a new sequence
1377 * over the old one, so we shouldn't change the
1378 * sequence after this.
1380 * The frame will be freed by the receive function.
1381 * If new exch resp handler is valid then call that
1382 * first.
1384 if (resp)
1385 resp(sp, fp, ex_resp_arg);
1386 else
1387 fc_frame_free(fp);
1388 fc_exch_release(ep);
1389 return;
1390 rel:
1391 fc_exch_release(ep);
1392 out:
1393 fc_frame_free(fp);
1397 * fc_exch_recv_resp() - Handler for a sequence where other end is
1398 * responding to our sequence
1399 * @mp: The EM that the exchange is on
1400 * @fp: The response frame
1402 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1404 struct fc_seq *sp;
1406 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */
1408 if (!sp)
1409 atomic_inc(&mp->stats.xid_not_found);
1410 else
1411 atomic_inc(&mp->stats.non_bls_resp);
1413 fc_frame_free(fp);
1417 * fc_exch_abts_resp() - Handler for a response to an ABT
1418 * @ep: The exchange that the frame is on
1419 * @fp: The response frame
1421 * This response would be to an ABTS cancelling an exchange or sequence.
1422 * The response can be either BA_ACC or BA_RJT
1424 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1426 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1427 void *ex_resp_arg;
1428 struct fc_frame_header *fh;
1429 struct fc_ba_acc *ap;
1430 struct fc_seq *sp;
1431 u16 low;
1432 u16 high;
1433 int rc = 1, has_rec = 0;
1435 fh = fc_frame_header_get(fp);
1436 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1437 fc_exch_rctl_name(fh->fh_r_ctl));
1439 if (cancel_delayed_work_sync(&ep->timeout_work))
1440 fc_exch_release(ep); /* release from pending timer hold */
1442 spin_lock_bh(&ep->ex_lock);
1443 switch (fh->fh_r_ctl) {
1444 case FC_RCTL_BA_ACC:
1445 ap = fc_frame_payload_get(fp, sizeof(*ap));
1446 if (!ap)
1447 break;
1450 * Decide whether to establish a Recovery Qualifier.
1451 * We do this if there is a non-empty SEQ_CNT range and
1452 * SEQ_ID is the same as the one we aborted.
1454 low = ntohs(ap->ba_low_seq_cnt);
1455 high = ntohs(ap->ba_high_seq_cnt);
1456 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1457 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1458 ap->ba_seq_id == ep->seq_id) && low != high) {
1459 ep->esb_stat |= ESB_ST_REC_QUAL;
1460 fc_exch_hold(ep); /* hold for recovery qualifier */
1461 has_rec = 1;
1463 break;
1464 case FC_RCTL_BA_RJT:
1465 break;
1466 default:
1467 break;
1470 resp = ep->resp;
1471 ex_resp_arg = ep->arg;
1473 /* do we need to do some other checks here. Can we reuse more of
1474 * fc_exch_recv_seq_resp
1476 sp = &ep->seq;
1478 * do we want to check END_SEQ as well as LAST_SEQ here?
1480 if (ep->fh_type != FC_TYPE_FCP &&
1481 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1482 rc = fc_exch_done_locked(ep);
1483 spin_unlock_bh(&ep->ex_lock);
1484 if (!rc)
1485 fc_exch_delete(ep);
1487 if (resp)
1488 resp(sp, fp, ex_resp_arg);
1489 else
1490 fc_frame_free(fp);
1492 if (has_rec)
1493 fc_exch_timer_set(ep, ep->r_a_tov);
1498 * fc_exch_recv_bls() - Handler for a BLS sequence
1499 * @mp: The EM that the exchange is on
1500 * @fp: The request frame
1502 * The BLS frame is always a sequence initiated by the remote side.
1503 * We may be either the originator or recipient of the exchange.
1505 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1507 struct fc_frame_header *fh;
1508 struct fc_exch *ep;
1509 u32 f_ctl;
1511 fh = fc_frame_header_get(fp);
1512 f_ctl = ntoh24(fh->fh_f_ctl);
1513 fr_seq(fp) = NULL;
1515 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1516 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1517 if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1518 spin_lock_bh(&ep->ex_lock);
1519 ep->esb_stat |= ESB_ST_SEQ_INIT;
1520 spin_unlock_bh(&ep->ex_lock);
1522 if (f_ctl & FC_FC_SEQ_CTX) {
1524 * A response to a sequence we initiated.
1525 * This should only be ACKs for class 2 or F.
1527 switch (fh->fh_r_ctl) {
1528 case FC_RCTL_ACK_1:
1529 case FC_RCTL_ACK_0:
1530 break;
1531 default:
1532 FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1533 fh->fh_r_ctl,
1534 fc_exch_rctl_name(fh->fh_r_ctl));
1535 break;
1537 fc_frame_free(fp);
1538 } else {
1539 switch (fh->fh_r_ctl) {
1540 case FC_RCTL_BA_RJT:
1541 case FC_RCTL_BA_ACC:
1542 if (ep)
1543 fc_exch_abts_resp(ep, fp);
1544 else
1545 fc_frame_free(fp);
1546 break;
1547 case FC_RCTL_BA_ABTS:
1548 fc_exch_recv_abts(ep, fp);
1549 break;
1550 default: /* ignore junk */
1551 fc_frame_free(fp);
1552 break;
1555 if (ep)
1556 fc_exch_release(ep); /* release hold taken by fc_exch_find */
1560 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1561 * @req_sp: The request sequence
1563 * If this fails due to allocation or transmit congestion, assume the
1564 * originator will repeat the sequence.
1566 static void fc_seq_ls_acc(struct fc_seq *req_sp)
1568 struct fc_seq *sp;
1569 struct fc_els_ls_acc *acc;
1570 struct fc_frame *fp;
1572 sp = fc_seq_start_next(req_sp);
1573 fp = fc_frame_alloc(fc_seq_exch(sp)->lp, sizeof(*acc));
1574 if (fp) {
1575 acc = fc_frame_payload_get(fp, sizeof(*acc));
1576 memset(acc, 0, sizeof(*acc));
1577 acc->la_cmd = ELS_LS_ACC;
1578 fc_seq_send_last(sp, fp, FC_RCTL_ELS_REP, FC_TYPE_ELS);
1583 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1584 * @req_sp: The request sequence
1585 * @reason: The reason the sequence is being rejected
1586 * @explan: The explaination for the rejection
1588 * If this fails due to allocation or transmit congestion, assume the
1589 * originator will repeat the sequence.
1591 static void fc_seq_ls_rjt(struct fc_seq *req_sp, enum fc_els_rjt_reason reason,
1592 enum fc_els_rjt_explan explan)
1594 struct fc_seq *sp;
1595 struct fc_els_ls_rjt *rjt;
1596 struct fc_frame *fp;
1598 sp = fc_seq_start_next(req_sp);
1599 fp = fc_frame_alloc(fc_seq_exch(sp)->lp, sizeof(*rjt));
1600 if (fp) {
1601 rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1602 memset(rjt, 0, sizeof(*rjt));
1603 rjt->er_cmd = ELS_LS_RJT;
1604 rjt->er_reason = reason;
1605 rjt->er_explan = explan;
1606 fc_seq_send_last(sp, fp, FC_RCTL_ELS_REP, FC_TYPE_ELS);
1611 * fc_exch_reset() - Reset an exchange
1612 * @ep: The exchange to be reset
1614 static void fc_exch_reset(struct fc_exch *ep)
1616 struct fc_seq *sp;
1617 void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1618 void *arg;
1619 int rc = 1;
1621 spin_lock_bh(&ep->ex_lock);
1622 ep->state |= FC_EX_RST_CLEANUP;
1623 if (cancel_delayed_work(&ep->timeout_work))
1624 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
1625 resp = ep->resp;
1626 ep->resp = NULL;
1627 if (ep->esb_stat & ESB_ST_REC_QUAL)
1628 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */
1629 ep->esb_stat &= ~ESB_ST_REC_QUAL;
1630 arg = ep->arg;
1631 sp = &ep->seq;
1632 rc = fc_exch_done_locked(ep);
1633 spin_unlock_bh(&ep->ex_lock);
1634 if (!rc)
1635 fc_exch_delete(ep);
1637 if (resp)
1638 resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1642 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1643 * @lport: The local port that the exchange pool is on
1644 * @pool: The exchange pool to be reset
1645 * @sid: The source ID
1646 * @did: The destination ID
1648 * Resets a per cpu exches pool, releasing all of its sequences
1649 * and exchanges. If sid is non-zero then reset only exchanges
1650 * we sourced from the local port's FID. If did is non-zero then
1651 * only reset exchanges destined for the local port's FID.
1653 static void fc_exch_pool_reset(struct fc_lport *lport,
1654 struct fc_exch_pool *pool,
1655 u32 sid, u32 did)
1657 struct fc_exch *ep;
1658 struct fc_exch *next;
1660 spin_lock_bh(&pool->lock);
1661 restart:
1662 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1663 if ((lport == ep->lp) &&
1664 (sid == 0 || sid == ep->sid) &&
1665 (did == 0 || did == ep->did)) {
1666 fc_exch_hold(ep);
1667 spin_unlock_bh(&pool->lock);
1669 fc_exch_reset(ep);
1671 fc_exch_release(ep);
1672 spin_lock_bh(&pool->lock);
1675 * must restart loop incase while lock
1676 * was down multiple eps were released.
1678 goto restart;
1681 spin_unlock_bh(&pool->lock);
1685 * fc_exch_mgr_reset() - Reset all EMs of a local port
1686 * @lport: The local port whose EMs are to be reset
1687 * @sid: The source ID
1688 * @did: The destination ID
1690 * Reset all EMs associated with a given local port. Release all
1691 * sequences and exchanges. If sid is non-zero then reset only the
1692 * exchanges sent from the local port's FID. If did is non-zero then
1693 * reset only exchanges destined for the local port's FID.
1695 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1697 struct fc_exch_mgr_anchor *ema;
1698 unsigned int cpu;
1700 list_for_each_entry(ema, &lport->ema_list, ema_list) {
1701 for_each_possible_cpu(cpu)
1702 fc_exch_pool_reset(lport,
1703 per_cpu_ptr(ema->mp->pool, cpu),
1704 sid, did);
1707 EXPORT_SYMBOL(fc_exch_mgr_reset);
1710 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1711 * @sp: The sequence the REC is on
1712 * @rfp: The REC frame
1714 * Note that the requesting port may be different than the S_ID in the request.
1716 static void fc_exch_els_rec(struct fc_seq *sp, struct fc_frame *rfp)
1718 struct fc_frame *fp;
1719 struct fc_exch *ep;
1720 struct fc_exch_mgr *em;
1721 struct fc_els_rec *rp;
1722 struct fc_els_rec_acc *acc;
1723 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1724 enum fc_els_rjt_explan explan;
1725 u32 sid;
1726 u16 rxid;
1727 u16 oxid;
1729 rp = fc_frame_payload_get(rfp, sizeof(*rp));
1730 explan = ELS_EXPL_INV_LEN;
1731 if (!rp)
1732 goto reject;
1733 sid = ntoh24(rp->rec_s_id);
1734 rxid = ntohs(rp->rec_rx_id);
1735 oxid = ntohs(rp->rec_ox_id);
1738 * Currently it's hard to find the local S_ID from the exchange
1739 * manager. This will eventually be fixed, but for now it's easier
1740 * to lookup the subject exchange twice, once as if we were
1741 * the initiator, and then again if we weren't.
1743 em = fc_seq_exch(sp)->em;
1744 ep = fc_exch_find(em, oxid);
1745 explan = ELS_EXPL_OXID_RXID;
1746 if (ep && ep->oid == sid) {
1747 if (ep->rxid != FC_XID_UNKNOWN &&
1748 rxid != FC_XID_UNKNOWN &&
1749 ep->rxid != rxid)
1750 goto rel;
1751 } else {
1752 if (ep)
1753 fc_exch_release(ep);
1754 ep = NULL;
1755 if (rxid != FC_XID_UNKNOWN)
1756 ep = fc_exch_find(em, rxid);
1757 if (!ep)
1758 goto reject;
1761 fp = fc_frame_alloc(fc_seq_exch(sp)->lp, sizeof(*acc));
1762 if (!fp) {
1763 fc_exch_done(sp);
1764 goto out;
1766 sp = fc_seq_start_next(sp);
1767 acc = fc_frame_payload_get(fp, sizeof(*acc));
1768 memset(acc, 0, sizeof(*acc));
1769 acc->reca_cmd = ELS_LS_ACC;
1770 acc->reca_ox_id = rp->rec_ox_id;
1771 memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1772 acc->reca_rx_id = htons(ep->rxid);
1773 if (ep->sid == ep->oid)
1774 hton24(acc->reca_rfid, ep->did);
1775 else
1776 hton24(acc->reca_rfid, ep->sid);
1777 acc->reca_fc4value = htonl(ep->seq.rec_data);
1778 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1779 ESB_ST_SEQ_INIT |
1780 ESB_ST_COMPLETE));
1781 sp = fc_seq_start_next(sp);
1782 fc_seq_send_last(sp, fp, FC_RCTL_ELS_REP, FC_TYPE_ELS);
1783 out:
1784 fc_exch_release(ep);
1785 fc_frame_free(rfp);
1786 return;
1788 rel:
1789 fc_exch_release(ep);
1790 reject:
1791 fc_seq_ls_rjt(sp, reason, explan);
1792 fc_frame_free(rfp);
1796 * fc_exch_rrq_resp() - Handler for RRQ responses
1797 * @sp: The sequence that the RRQ is on
1798 * @fp: The RRQ frame
1799 * @arg: The exchange that the RRQ is on
1801 * TODO: fix error handler.
1803 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1805 struct fc_exch *aborted_ep = arg;
1806 unsigned int op;
1808 if (IS_ERR(fp)) {
1809 int err = PTR_ERR(fp);
1811 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1812 goto cleanup;
1813 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1814 "frame error %d\n", err);
1815 return;
1818 op = fc_frame_payload_op(fp);
1819 fc_frame_free(fp);
1821 switch (op) {
1822 case ELS_LS_RJT:
1823 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1824 /* fall through */
1825 case ELS_LS_ACC:
1826 goto cleanup;
1827 default:
1828 FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1829 "for RRQ", op);
1830 return;
1833 cleanup:
1834 fc_exch_done(&aborted_ep->seq);
1835 /* drop hold for rec qual */
1836 fc_exch_release(aborted_ep);
1841 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
1842 * @lport: The local port to send the frame on
1843 * @fp: The frame to be sent
1844 * @resp: The response handler for this request
1845 * @destructor: The destructor for the exchange
1846 * @arg: The argument to be passed to the response handler
1847 * @timer_msec: The timeout period for the exchange
1849 * The frame pointer with some of the header's fields must be
1850 * filled before calling this routine, those fields are:
1852 * - routing control
1853 * - FC port did
1854 * - FC port sid
1855 * - FC header type
1856 * - frame control
1857 * - parameter or relative offset
1859 static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1860 struct fc_frame *fp,
1861 void (*resp)(struct fc_seq *,
1862 struct fc_frame *fp,
1863 void *arg),
1864 void (*destructor)(struct fc_seq *,
1865 void *),
1866 void *arg, u32 timer_msec)
1868 struct fc_exch *ep;
1869 struct fc_seq *sp = NULL;
1870 struct fc_frame_header *fh;
1871 int rc = 1;
1873 ep = fc_exch_alloc(lport, fp);
1874 if (!ep) {
1875 fc_frame_free(fp);
1876 return NULL;
1878 ep->esb_stat |= ESB_ST_SEQ_INIT;
1879 fh = fc_frame_header_get(fp);
1880 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
1881 ep->resp = resp;
1882 ep->destructor = destructor;
1883 ep->arg = arg;
1884 ep->r_a_tov = FC_DEF_R_A_TOV;
1885 ep->lp = lport;
1886 sp = &ep->seq;
1888 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
1889 ep->f_ctl = ntoh24(fh->fh_f_ctl);
1890 fc_exch_setup_hdr(ep, fp, ep->f_ctl);
1891 sp->cnt++;
1893 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD)
1894 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
1896 if (unlikely(lport->tt.frame_send(lport, fp)))
1897 goto err;
1899 if (timer_msec)
1900 fc_exch_timer_set_locked(ep, timer_msec);
1901 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */
1903 if (ep->f_ctl & FC_FC_SEQ_INIT)
1904 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1905 spin_unlock_bh(&ep->ex_lock);
1906 return sp;
1907 err:
1908 rc = fc_exch_done_locked(ep);
1909 spin_unlock_bh(&ep->ex_lock);
1910 if (!rc)
1911 fc_exch_delete(ep);
1912 return NULL;
1916 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
1917 * @ep: The exchange to send the RRQ on
1919 * This tells the remote port to stop blocking the use of
1920 * the exchange and the seq_cnt range.
1922 static void fc_exch_rrq(struct fc_exch *ep)
1924 struct fc_lport *lport;
1925 struct fc_els_rrq *rrq;
1926 struct fc_frame *fp;
1927 u32 did;
1929 lport = ep->lp;
1931 fp = fc_frame_alloc(lport, sizeof(*rrq));
1932 if (!fp)
1933 goto retry;
1935 rrq = fc_frame_payload_get(fp, sizeof(*rrq));
1936 memset(rrq, 0, sizeof(*rrq));
1937 rrq->rrq_cmd = ELS_RRQ;
1938 hton24(rrq->rrq_s_id, ep->sid);
1939 rrq->rrq_ox_id = htons(ep->oxid);
1940 rrq->rrq_rx_id = htons(ep->rxid);
1942 did = ep->did;
1943 if (ep->esb_stat & ESB_ST_RESP)
1944 did = ep->sid;
1946 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
1947 fc_host_port_id(lport->host), FC_TYPE_ELS,
1948 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
1950 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
1951 lport->e_d_tov))
1952 return;
1954 retry:
1955 spin_lock_bh(&ep->ex_lock);
1956 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
1957 spin_unlock_bh(&ep->ex_lock);
1958 /* drop hold for rec qual */
1959 fc_exch_release(ep);
1960 return;
1962 ep->esb_stat |= ESB_ST_REC_QUAL;
1963 fc_exch_timer_set_locked(ep, ep->r_a_tov);
1964 spin_unlock_bh(&ep->ex_lock);
1969 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
1970 * @sp: The sequence that the RRQ is on
1971 * @fp: The RRQ frame
1973 static void fc_exch_els_rrq(struct fc_seq *sp, struct fc_frame *fp)
1975 struct fc_exch *ep = NULL; /* request or subject exchange */
1976 struct fc_els_rrq *rp;
1977 u32 sid;
1978 u16 xid;
1979 enum fc_els_rjt_explan explan;
1981 rp = fc_frame_payload_get(fp, sizeof(*rp));
1982 explan = ELS_EXPL_INV_LEN;
1983 if (!rp)
1984 goto reject;
1987 * lookup subject exchange.
1989 ep = fc_seq_exch(sp);
1990 sid = ntoh24(rp->rrq_s_id); /* subject source */
1991 xid = ep->did == sid ? ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
1992 ep = fc_exch_find(ep->em, xid);
1994 explan = ELS_EXPL_OXID_RXID;
1995 if (!ep)
1996 goto reject;
1997 spin_lock_bh(&ep->ex_lock);
1998 if (ep->oxid != ntohs(rp->rrq_ox_id))
1999 goto unlock_reject;
2000 if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2001 ep->rxid != FC_XID_UNKNOWN)
2002 goto unlock_reject;
2003 explan = ELS_EXPL_SID;
2004 if (ep->sid != sid)
2005 goto unlock_reject;
2008 * Clear Recovery Qualifier state, and cancel timer if complete.
2010 if (ep->esb_stat & ESB_ST_REC_QUAL) {
2011 ep->esb_stat &= ~ESB_ST_REC_QUAL;
2012 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */
2014 if (ep->esb_stat & ESB_ST_COMPLETE) {
2015 if (cancel_delayed_work(&ep->timeout_work))
2016 atomic_dec(&ep->ex_refcnt); /* drop timer hold */
2019 spin_unlock_bh(&ep->ex_lock);
2022 * Send LS_ACC.
2024 fc_seq_ls_acc(sp);
2025 goto out;
2027 unlock_reject:
2028 spin_unlock_bh(&ep->ex_lock);
2029 reject:
2030 fc_seq_ls_rjt(sp, ELS_RJT_LOGIC, explan);
2031 out:
2032 fc_frame_free(fp);
2033 if (ep)
2034 fc_exch_release(ep); /* drop hold from fc_exch_find */
2038 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2039 * @lport: The local port to add the exchange manager to
2040 * @mp: The exchange manager to be added to the local port
2041 * @match: The match routine that indicates when this EM should be used
2043 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2044 struct fc_exch_mgr *mp,
2045 bool (*match)(struct fc_frame *))
2047 struct fc_exch_mgr_anchor *ema;
2049 ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2050 if (!ema)
2051 return ema;
2053 ema->mp = mp;
2054 ema->match = match;
2055 /* add EM anchor to EM anchors list */
2056 list_add_tail(&ema->ema_list, &lport->ema_list);
2057 kref_get(&mp->kref);
2058 return ema;
2060 EXPORT_SYMBOL(fc_exch_mgr_add);
2063 * fc_exch_mgr_destroy() - Destroy an exchange manager
2064 * @kref: The reference to the EM to be destroyed
2066 static void fc_exch_mgr_destroy(struct kref *kref)
2068 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2070 mempool_destroy(mp->ep_pool);
2071 free_percpu(mp->pool);
2072 kfree(mp);
2076 * fc_exch_mgr_del() - Delete an EM from a local port's list
2077 * @ema: The exchange manager anchor identifying the EM to be deleted
2079 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2081 /* remove EM anchor from EM anchors list */
2082 list_del(&ema->ema_list);
2083 kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2084 kfree(ema);
2086 EXPORT_SYMBOL(fc_exch_mgr_del);
2089 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2090 * @src: Source lport to clone exchange managers from
2091 * @dst: New lport that takes references to all the exchange managers
2093 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2095 struct fc_exch_mgr_anchor *ema, *tmp;
2097 list_for_each_entry(ema, &src->ema_list, ema_list) {
2098 if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2099 goto err;
2101 return 0;
2102 err:
2103 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2104 fc_exch_mgr_del(ema);
2105 return -ENOMEM;
2109 * fc_exch_mgr_alloc() - Allocate an exchange manager
2110 * @lport: The local port that the new EM will be associated with
2111 * @class: The default FC class for new exchanges
2112 * @min_xid: The minimum XID for exchanges from the new EM
2113 * @max_xid: The maximum XID for exchanges from the new EM
2114 * @match: The match routine for the new EM
2116 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2117 enum fc_class class,
2118 u16 min_xid, u16 max_xid,
2119 bool (*match)(struct fc_frame *))
2121 struct fc_exch_mgr *mp;
2122 u16 pool_exch_range;
2123 size_t pool_size;
2124 unsigned int cpu;
2125 struct fc_exch_pool *pool;
2127 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2128 (min_xid & fc_cpu_mask) != 0) {
2129 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2130 min_xid, max_xid);
2131 return NULL;
2135 * allocate memory for EM
2137 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2138 if (!mp)
2139 return NULL;
2141 mp->class = class;
2142 /* adjust em exch xid range for offload */
2143 mp->min_xid = min_xid;
2144 mp->max_xid = max_xid;
2146 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2147 if (!mp->ep_pool)
2148 goto free_mp;
2151 * Setup per cpu exch pool with entire exchange id range equally
2152 * divided across all cpus. The exch pointers array memory is
2153 * allocated for exch range per pool.
2155 pool_exch_range = (mp->max_xid - mp->min_xid + 1) / (fc_cpu_mask + 1);
2156 mp->pool_max_index = pool_exch_range - 1;
2159 * Allocate and initialize per cpu exch pool
2161 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2162 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2163 if (!mp->pool)
2164 goto free_mempool;
2165 for_each_possible_cpu(cpu) {
2166 pool = per_cpu_ptr(mp->pool, cpu);
2167 spin_lock_init(&pool->lock);
2168 INIT_LIST_HEAD(&pool->ex_list);
2171 kref_init(&mp->kref);
2172 if (!fc_exch_mgr_add(lport, mp, match)) {
2173 free_percpu(mp->pool);
2174 goto free_mempool;
2178 * Above kref_init() sets mp->kref to 1 and then
2179 * call to fc_exch_mgr_add incremented mp->kref again,
2180 * so adjust that extra increment.
2182 kref_put(&mp->kref, fc_exch_mgr_destroy);
2183 return mp;
2185 free_mempool:
2186 mempool_destroy(mp->ep_pool);
2187 free_mp:
2188 kfree(mp);
2189 return NULL;
2191 EXPORT_SYMBOL(fc_exch_mgr_alloc);
2194 * fc_exch_mgr_free() - Free all exchange managers on a local port
2195 * @lport: The local port whose EMs are to be freed
2197 void fc_exch_mgr_free(struct fc_lport *lport)
2199 struct fc_exch_mgr_anchor *ema, *next;
2201 flush_workqueue(fc_exch_workqueue);
2202 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2203 fc_exch_mgr_del(ema);
2205 EXPORT_SYMBOL(fc_exch_mgr_free);
2208 * fc_exch_recv() - Handler for received frames
2209 * @lport: The local port the frame was received on
2210 * @fp: The received frame
2212 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2214 struct fc_frame_header *fh = fc_frame_header_get(fp);
2215 struct fc_exch_mgr_anchor *ema;
2216 u32 f_ctl, found = 0;
2217 u16 oxid;
2219 /* lport lock ? */
2220 if (!lport || lport->state == LPORT_ST_DISABLED) {
2221 FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2222 "has not been initialized correctly\n");
2223 fc_frame_free(fp);
2224 return;
2227 f_ctl = ntoh24(fh->fh_f_ctl);
2228 oxid = ntohs(fh->fh_ox_id);
2229 if (f_ctl & FC_FC_EX_CTX) {
2230 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2231 if ((oxid >= ema->mp->min_xid) &&
2232 (oxid <= ema->mp->max_xid)) {
2233 found = 1;
2234 break;
2238 if (!found) {
2239 FC_LPORT_DBG(lport, "Received response for out "
2240 "of range oxid:%hx\n", oxid);
2241 fc_frame_free(fp);
2242 return;
2244 } else
2245 ema = list_entry(lport->ema_list.prev, typeof(*ema), ema_list);
2248 * If frame is marked invalid, just drop it.
2250 switch (fr_eof(fp)) {
2251 case FC_EOF_T:
2252 if (f_ctl & FC_FC_END_SEQ)
2253 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2254 /* fall through */
2255 case FC_EOF_N:
2256 if (fh->fh_type == FC_TYPE_BLS)
2257 fc_exch_recv_bls(ema->mp, fp);
2258 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2259 FC_FC_EX_CTX)
2260 fc_exch_recv_seq_resp(ema->mp, fp);
2261 else if (f_ctl & FC_FC_SEQ_CTX)
2262 fc_exch_recv_resp(ema->mp, fp);
2263 else
2264 fc_exch_recv_req(lport, ema->mp, fp);
2265 break;
2266 default:
2267 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2268 fr_eof(fp));
2269 fc_frame_free(fp);
2272 EXPORT_SYMBOL(fc_exch_recv);
2275 * fc_exch_init() - Initialize the exchange layer for a local port
2276 * @lport: The local port to initialize the exchange layer for
2278 int fc_exch_init(struct fc_lport *lport)
2280 if (!lport->tt.seq_start_next)
2281 lport->tt.seq_start_next = fc_seq_start_next;
2283 if (!lport->tt.exch_seq_send)
2284 lport->tt.exch_seq_send = fc_exch_seq_send;
2286 if (!lport->tt.seq_send)
2287 lport->tt.seq_send = fc_seq_send;
2289 if (!lport->tt.seq_els_rsp_send)
2290 lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2292 if (!lport->tt.exch_done)
2293 lport->tt.exch_done = fc_exch_done;
2295 if (!lport->tt.exch_mgr_reset)
2296 lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2298 if (!lport->tt.seq_exch_abort)
2299 lport->tt.seq_exch_abort = fc_seq_exch_abort;
2301 return 0;
2303 EXPORT_SYMBOL(fc_exch_init);
2306 * fc_setup_exch_mgr() - Setup an exchange manager
2308 int fc_setup_exch_mgr()
2310 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2311 0, SLAB_HWCACHE_ALIGN, NULL);
2312 if (!fc_em_cachep)
2313 return -ENOMEM;
2316 * Initialize fc_cpu_mask and fc_cpu_order. The
2317 * fc_cpu_mask is set for nr_cpu_ids rounded up
2318 * to order of 2's * power and order is stored
2319 * in fc_cpu_order as this is later required in
2320 * mapping between an exch id and exch array index
2321 * in per cpu exch pool.
2323 * This round up is required to align fc_cpu_mask
2324 * to exchange id's lower bits such that all incoming
2325 * frames of an exchange gets delivered to the same
2326 * cpu on which exchange originated by simple bitwise
2327 * AND operation between fc_cpu_mask and exchange id.
2329 fc_cpu_mask = 1;
2330 fc_cpu_order = 0;
2331 while (fc_cpu_mask < nr_cpu_ids) {
2332 fc_cpu_mask <<= 1;
2333 fc_cpu_order++;
2335 fc_cpu_mask--;
2337 fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2338 if (!fc_exch_workqueue)
2339 return -ENOMEM;
2340 return 0;
2344 * fc_destroy_exch_mgr() - Destroy an exchange manager
2346 void fc_destroy_exch_mgr()
2348 destroy_workqueue(fc_exch_workqueue);
2349 kmem_cache_destroy(fc_em_cachep);