Staging: strip: delete the driver
[linux/fpc-iii.git] / drivers / scsi / qla2xxx / qla_sup.c
blob8b3de4e54c28bfb5ebdd6b5901e62e37101fe36f
1 /*
2 * QLogic Fibre Channel HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
5 * See LICENSE.qla2xxx for copyright and licensing details.
6 */
7 #include "qla_def.h"
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/vmalloc.h>
12 #include <asm/uaccess.h>
15 * NVRAM support routines
18 /**
19 * qla2x00_lock_nvram_access() -
20 * @ha: HA context
22 static void
23 qla2x00_lock_nvram_access(struct qla_hw_data *ha)
25 uint16_t data;
26 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
28 if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
29 data = RD_REG_WORD(&reg->nvram);
30 while (data & NVR_BUSY) {
31 udelay(100);
32 data = RD_REG_WORD(&reg->nvram);
35 /* Lock resource */
36 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
37 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
38 udelay(5);
39 data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
40 while ((data & BIT_0) == 0) {
41 /* Lock failed */
42 udelay(100);
43 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
44 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
45 udelay(5);
46 data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
51 /**
52 * qla2x00_unlock_nvram_access() -
53 * @ha: HA context
55 static void
56 qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
58 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
60 if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
61 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
62 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
66 /**
67 * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
68 * @ha: HA context
69 * @data: Serial interface selector
71 static void
72 qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
74 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
76 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
77 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
78 NVRAM_DELAY();
79 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
80 NVR_WRT_ENABLE);
81 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
82 NVRAM_DELAY();
83 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
84 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
85 NVRAM_DELAY();
88 /**
89 * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
90 * NVRAM.
91 * @ha: HA context
92 * @nv_cmd: NVRAM command
94 * Bit definitions for NVRAM command:
96 * Bit 26 = start bit
97 * Bit 25, 24 = opcode
98 * Bit 23-16 = address
99 * Bit 15-0 = write data
101 * Returns the word read from nvram @addr.
103 static uint16_t
104 qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
106 uint8_t cnt;
107 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
108 uint16_t data = 0;
109 uint16_t reg_data;
111 /* Send command to NVRAM. */
112 nv_cmd <<= 5;
113 for (cnt = 0; cnt < 11; cnt++) {
114 if (nv_cmd & BIT_31)
115 qla2x00_nv_write(ha, NVR_DATA_OUT);
116 else
117 qla2x00_nv_write(ha, 0);
118 nv_cmd <<= 1;
121 /* Read data from NVRAM. */
122 for (cnt = 0; cnt < 16; cnt++) {
123 WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
124 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
125 NVRAM_DELAY();
126 data <<= 1;
127 reg_data = RD_REG_WORD(&reg->nvram);
128 if (reg_data & NVR_DATA_IN)
129 data |= BIT_0;
130 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
131 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
132 NVRAM_DELAY();
135 /* Deselect chip. */
136 WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
137 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
138 NVRAM_DELAY();
140 return data;
145 * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
146 * request routine to get the word from NVRAM.
147 * @ha: HA context
148 * @addr: Address in NVRAM to read
150 * Returns the word read from nvram @addr.
152 static uint16_t
153 qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
155 uint16_t data;
156 uint32_t nv_cmd;
158 nv_cmd = addr << 16;
159 nv_cmd |= NV_READ_OP;
160 data = qla2x00_nvram_request(ha, nv_cmd);
162 return (data);
166 * qla2x00_nv_deselect() - Deselect NVRAM operations.
167 * @ha: HA context
169 static void
170 qla2x00_nv_deselect(struct qla_hw_data *ha)
172 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
174 WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
175 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
176 NVRAM_DELAY();
180 * qla2x00_write_nvram_word() - Write NVRAM data.
181 * @ha: HA context
182 * @addr: Address in NVRAM to write
183 * @data: word to program
185 static void
186 qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
188 int count;
189 uint16_t word;
190 uint32_t nv_cmd, wait_cnt;
191 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
193 qla2x00_nv_write(ha, NVR_DATA_OUT);
194 qla2x00_nv_write(ha, 0);
195 qla2x00_nv_write(ha, 0);
197 for (word = 0; word < 8; word++)
198 qla2x00_nv_write(ha, NVR_DATA_OUT);
200 qla2x00_nv_deselect(ha);
202 /* Write data */
203 nv_cmd = (addr << 16) | NV_WRITE_OP;
204 nv_cmd |= data;
205 nv_cmd <<= 5;
206 for (count = 0; count < 27; count++) {
207 if (nv_cmd & BIT_31)
208 qla2x00_nv_write(ha, NVR_DATA_OUT);
209 else
210 qla2x00_nv_write(ha, 0);
212 nv_cmd <<= 1;
215 qla2x00_nv_deselect(ha);
217 /* Wait for NVRAM to become ready */
218 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
219 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
220 wait_cnt = NVR_WAIT_CNT;
221 do {
222 if (!--wait_cnt) {
223 DEBUG9_10(qla_printk(KERN_WARNING, ha,
224 "NVRAM didn't go ready...\n"));
225 break;
227 NVRAM_DELAY();
228 word = RD_REG_WORD(&reg->nvram);
229 } while ((word & NVR_DATA_IN) == 0);
231 qla2x00_nv_deselect(ha);
233 /* Disable writes */
234 qla2x00_nv_write(ha, NVR_DATA_OUT);
235 for (count = 0; count < 10; count++)
236 qla2x00_nv_write(ha, 0);
238 qla2x00_nv_deselect(ha);
241 static int
242 qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
243 uint16_t data, uint32_t tmo)
245 int ret, count;
246 uint16_t word;
247 uint32_t nv_cmd;
248 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
250 ret = QLA_SUCCESS;
252 qla2x00_nv_write(ha, NVR_DATA_OUT);
253 qla2x00_nv_write(ha, 0);
254 qla2x00_nv_write(ha, 0);
256 for (word = 0; word < 8; word++)
257 qla2x00_nv_write(ha, NVR_DATA_OUT);
259 qla2x00_nv_deselect(ha);
261 /* Write data */
262 nv_cmd = (addr << 16) | NV_WRITE_OP;
263 nv_cmd |= data;
264 nv_cmd <<= 5;
265 for (count = 0; count < 27; count++) {
266 if (nv_cmd & BIT_31)
267 qla2x00_nv_write(ha, NVR_DATA_OUT);
268 else
269 qla2x00_nv_write(ha, 0);
271 nv_cmd <<= 1;
274 qla2x00_nv_deselect(ha);
276 /* Wait for NVRAM to become ready */
277 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
278 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
279 do {
280 NVRAM_DELAY();
281 word = RD_REG_WORD(&reg->nvram);
282 if (!--tmo) {
283 ret = QLA_FUNCTION_FAILED;
284 break;
286 } while ((word & NVR_DATA_IN) == 0);
288 qla2x00_nv_deselect(ha);
290 /* Disable writes */
291 qla2x00_nv_write(ha, NVR_DATA_OUT);
292 for (count = 0; count < 10; count++)
293 qla2x00_nv_write(ha, 0);
295 qla2x00_nv_deselect(ha);
297 return ret;
301 * qla2x00_clear_nvram_protection() -
302 * @ha: HA context
304 static int
305 qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
307 int ret, stat;
308 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
309 uint32_t word, wait_cnt;
310 uint16_t wprot, wprot_old;
312 /* Clear NVRAM write protection. */
313 ret = QLA_FUNCTION_FAILED;
315 wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
316 stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
317 __constant_cpu_to_le16(0x1234), 100000);
318 wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
319 if (stat != QLA_SUCCESS || wprot != 0x1234) {
320 /* Write enable. */
321 qla2x00_nv_write(ha, NVR_DATA_OUT);
322 qla2x00_nv_write(ha, 0);
323 qla2x00_nv_write(ha, 0);
324 for (word = 0; word < 8; word++)
325 qla2x00_nv_write(ha, NVR_DATA_OUT);
327 qla2x00_nv_deselect(ha);
329 /* Enable protection register. */
330 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
331 qla2x00_nv_write(ha, NVR_PR_ENABLE);
332 qla2x00_nv_write(ha, NVR_PR_ENABLE);
333 for (word = 0; word < 8; word++)
334 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
336 qla2x00_nv_deselect(ha);
338 /* Clear protection register (ffff is cleared). */
339 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
340 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
341 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
342 for (word = 0; word < 8; word++)
343 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
345 qla2x00_nv_deselect(ha);
347 /* Wait for NVRAM to become ready. */
348 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
349 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
350 wait_cnt = NVR_WAIT_CNT;
351 do {
352 if (!--wait_cnt) {
353 DEBUG9_10(qla_printk(KERN_WARNING, ha,
354 "NVRAM didn't go ready...\n"));
355 break;
357 NVRAM_DELAY();
358 word = RD_REG_WORD(&reg->nvram);
359 } while ((word & NVR_DATA_IN) == 0);
361 if (wait_cnt)
362 ret = QLA_SUCCESS;
363 } else
364 qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
366 return ret;
369 static void
370 qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
372 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
373 uint32_t word, wait_cnt;
375 if (stat != QLA_SUCCESS)
376 return;
378 /* Set NVRAM write protection. */
379 /* Write enable. */
380 qla2x00_nv_write(ha, NVR_DATA_OUT);
381 qla2x00_nv_write(ha, 0);
382 qla2x00_nv_write(ha, 0);
383 for (word = 0; word < 8; word++)
384 qla2x00_nv_write(ha, NVR_DATA_OUT);
386 qla2x00_nv_deselect(ha);
388 /* Enable protection register. */
389 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
390 qla2x00_nv_write(ha, NVR_PR_ENABLE);
391 qla2x00_nv_write(ha, NVR_PR_ENABLE);
392 for (word = 0; word < 8; word++)
393 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
395 qla2x00_nv_deselect(ha);
397 /* Enable protection register. */
398 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
399 qla2x00_nv_write(ha, NVR_PR_ENABLE);
400 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
401 for (word = 0; word < 8; word++)
402 qla2x00_nv_write(ha, NVR_PR_ENABLE);
404 qla2x00_nv_deselect(ha);
406 /* Wait for NVRAM to become ready. */
407 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
408 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
409 wait_cnt = NVR_WAIT_CNT;
410 do {
411 if (!--wait_cnt) {
412 DEBUG9_10(qla_printk(KERN_WARNING, ha,
413 "NVRAM didn't go ready...\n"));
414 break;
416 NVRAM_DELAY();
417 word = RD_REG_WORD(&reg->nvram);
418 } while ((word & NVR_DATA_IN) == 0);
422 /*****************************************************************************/
423 /* Flash Manipulation Routines */
424 /*****************************************************************************/
426 #define OPTROM_BURST_SIZE 0x1000
427 #define OPTROM_BURST_DWORDS (OPTROM_BURST_SIZE / 4)
429 static inline uint32_t
430 flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
432 return ha->flash_conf_off | faddr;
435 static inline uint32_t
436 flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
438 return ha->flash_data_off | faddr;
441 static inline uint32_t
442 nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
444 return ha->nvram_conf_off | naddr;
447 static inline uint32_t
448 nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
450 return ha->nvram_data_off | naddr;
453 static uint32_t
454 qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
456 int rval;
457 uint32_t cnt, data;
458 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
460 WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
461 /* Wait for READ cycle to complete. */
462 rval = QLA_SUCCESS;
463 for (cnt = 3000;
464 (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
465 rval == QLA_SUCCESS; cnt--) {
466 if (cnt)
467 udelay(10);
468 else
469 rval = QLA_FUNCTION_TIMEOUT;
470 cond_resched();
473 /* TODO: What happens if we time out? */
474 data = 0xDEADDEAD;
475 if (rval == QLA_SUCCESS)
476 data = RD_REG_DWORD(&reg->flash_data);
478 return data;
481 uint32_t *
482 qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
483 uint32_t dwords)
485 uint32_t i;
486 struct qla_hw_data *ha = vha->hw;
488 /* Dword reads to flash. */
489 for (i = 0; i < dwords; i++, faddr++)
490 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
491 flash_data_addr(ha, faddr)));
493 return dwptr;
496 static int
497 qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
499 int rval;
500 uint32_t cnt;
501 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
503 WRT_REG_DWORD(&reg->flash_data, data);
504 RD_REG_DWORD(&reg->flash_data); /* PCI Posting. */
505 WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
506 /* Wait for Write cycle to complete. */
507 rval = QLA_SUCCESS;
508 for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
509 rval == QLA_SUCCESS; cnt--) {
510 if (cnt)
511 udelay(10);
512 else
513 rval = QLA_FUNCTION_TIMEOUT;
514 cond_resched();
516 return rval;
519 static void
520 qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
521 uint8_t *flash_id)
523 uint32_t ids;
525 ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
526 *man_id = LSB(ids);
527 *flash_id = MSB(ids);
529 /* Check if man_id and flash_id are valid. */
530 if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
531 /* Read information using 0x9f opcode
532 * Device ID, Mfg ID would be read in the format:
533 * <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
534 * Example: ATMEL 0x00 01 45 1F
535 * Extract MFG and Dev ID from last two bytes.
537 ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
538 *man_id = LSB(ids);
539 *flash_id = MSB(ids);
543 static int
544 qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
546 const char *loc, *locations[] = { "DEF", "PCI" };
547 uint32_t pcihdr, pcids;
548 uint32_t *dcode;
549 uint8_t *buf, *bcode, last_image;
550 uint16_t cnt, chksum, *wptr;
551 struct qla_flt_location *fltl;
552 struct qla_hw_data *ha = vha->hw;
553 struct req_que *req = ha->req_q_map[0];
556 * FLT-location structure resides after the last PCI region.
559 /* Begin with sane defaults. */
560 loc = locations[0];
561 *start = 0;
562 if (IS_QLA24XX_TYPE(ha))
563 *start = FA_FLASH_LAYOUT_ADDR_24;
564 else if (IS_QLA25XX(ha))
565 *start = FA_FLASH_LAYOUT_ADDR;
566 else if (IS_QLA81XX(ha))
567 *start = FA_FLASH_LAYOUT_ADDR_81;
568 /* Begin with first PCI expansion ROM header. */
569 buf = (uint8_t *)req->ring;
570 dcode = (uint32_t *)req->ring;
571 pcihdr = 0;
572 last_image = 1;
573 do {
574 /* Verify PCI expansion ROM header. */
575 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
576 bcode = buf + (pcihdr % 4);
577 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
578 goto end;
580 /* Locate PCI data structure. */
581 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
582 qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
583 bcode = buf + (pcihdr % 4);
585 /* Validate signature of PCI data structure. */
586 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
587 bcode[0x2] != 'I' || bcode[0x3] != 'R')
588 goto end;
590 last_image = bcode[0x15] & BIT_7;
592 /* Locate next PCI expansion ROM. */
593 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
594 } while (!last_image);
596 /* Now verify FLT-location structure. */
597 fltl = (struct qla_flt_location *)req->ring;
598 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
599 sizeof(struct qla_flt_location) >> 2);
600 if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
601 fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
602 goto end;
604 wptr = (uint16_t *)req->ring;
605 cnt = sizeof(struct qla_flt_location) >> 1;
606 for (chksum = 0; cnt; cnt--)
607 chksum += le16_to_cpu(*wptr++);
608 if (chksum) {
609 qla_printk(KERN_ERR, ha,
610 "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
611 qla2x00_dump_buffer(buf, sizeof(struct qla_flt_location));
612 return QLA_FUNCTION_FAILED;
615 /* Good data. Use specified location. */
616 loc = locations[1];
617 *start = (le16_to_cpu(fltl->start_hi) << 16 |
618 le16_to_cpu(fltl->start_lo)) >> 2;
619 end:
620 DEBUG2(qla_printk(KERN_DEBUG, ha, "FLTL[%s] = 0x%x.\n", loc, *start));
621 return QLA_SUCCESS;
624 static void
625 qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
627 const char *loc, *locations[] = { "DEF", "FLT" };
628 const uint32_t def_fw[] =
629 { FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
630 const uint32_t def_boot[] =
631 { FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
632 const uint32_t def_vpd_nvram[] =
633 { FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
634 const uint32_t def_vpd0[] =
635 { 0, 0, FA_VPD0_ADDR_81 };
636 const uint32_t def_vpd1[] =
637 { 0, 0, FA_VPD1_ADDR_81 };
638 const uint32_t def_nvram0[] =
639 { 0, 0, FA_NVRAM0_ADDR_81 };
640 const uint32_t def_nvram1[] =
641 { 0, 0, FA_NVRAM1_ADDR_81 };
642 const uint32_t def_fdt[] =
643 { FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
644 FA_FLASH_DESCR_ADDR_81 };
645 const uint32_t def_npiv_conf0[] =
646 { FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
647 FA_NPIV_CONF0_ADDR_81 };
648 const uint32_t def_npiv_conf1[] =
649 { FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
650 FA_NPIV_CONF1_ADDR_81 };
651 uint32_t def;
652 uint16_t *wptr;
653 uint16_t cnt, chksum;
654 uint32_t start;
655 struct qla_flt_header *flt;
656 struct qla_flt_region *region;
657 struct qla_hw_data *ha = vha->hw;
658 struct req_que *req = ha->req_q_map[0];
660 ha->flt_region_flt = flt_addr;
661 wptr = (uint16_t *)req->ring;
662 flt = (struct qla_flt_header *)req->ring;
663 region = (struct qla_flt_region *)&flt[1];
664 ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
665 flt_addr << 2, OPTROM_BURST_SIZE);
666 if (*wptr == __constant_cpu_to_le16(0xffff))
667 goto no_flash_data;
668 if (flt->version != __constant_cpu_to_le16(1)) {
669 DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported FLT detected: "
670 "version=0x%x length=0x%x checksum=0x%x.\n",
671 le16_to_cpu(flt->version), le16_to_cpu(flt->length),
672 le16_to_cpu(flt->checksum)));
673 goto no_flash_data;
676 cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
677 for (chksum = 0; cnt; cnt--)
678 chksum += le16_to_cpu(*wptr++);
679 if (chksum) {
680 DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FLT detected: "
681 "version=0x%x length=0x%x checksum=0x%x.\n",
682 le16_to_cpu(flt->version), le16_to_cpu(flt->length),
683 chksum));
684 goto no_flash_data;
687 loc = locations[1];
688 cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
689 for ( ; cnt; cnt--, region++) {
690 /* Store addresses as DWORD offsets. */
691 start = le32_to_cpu(region->start) >> 2;
693 DEBUG3(qla_printk(KERN_DEBUG, ha, "FLT[%02x]: start=0x%x "
694 "end=0x%x size=0x%x.\n", le32_to_cpu(region->code), start,
695 le32_to_cpu(region->end) >> 2, le32_to_cpu(region->size)));
697 switch (le32_to_cpu(region->code) & 0xff) {
698 case FLT_REG_FW:
699 ha->flt_region_fw = start;
700 break;
701 case FLT_REG_BOOT_CODE:
702 ha->flt_region_boot = start;
703 break;
704 case FLT_REG_VPD_0:
705 ha->flt_region_vpd_nvram = start;
706 if (ha->flags.port0)
707 ha->flt_region_vpd = start;
708 break;
709 case FLT_REG_VPD_1:
710 if (!ha->flags.port0)
711 ha->flt_region_vpd = start;
712 break;
713 case FLT_REG_NVRAM_0:
714 if (ha->flags.port0)
715 ha->flt_region_nvram = start;
716 break;
717 case FLT_REG_NVRAM_1:
718 if (!ha->flags.port0)
719 ha->flt_region_nvram = start;
720 break;
721 case FLT_REG_FDT:
722 ha->flt_region_fdt = start;
723 break;
724 case FLT_REG_NPIV_CONF_0:
725 if (ha->flags.port0)
726 ha->flt_region_npiv_conf = start;
727 break;
728 case FLT_REG_NPIV_CONF_1:
729 if (!ha->flags.port0)
730 ha->flt_region_npiv_conf = start;
731 break;
732 case FLT_REG_GOLD_FW:
733 ha->flt_region_gold_fw = start;
734 break;
737 goto done;
739 no_flash_data:
740 /* Use hardcoded defaults. */
741 loc = locations[0];
742 def = 0;
743 if (IS_QLA24XX_TYPE(ha))
744 def = 0;
745 else if (IS_QLA25XX(ha))
746 def = 1;
747 else if (IS_QLA81XX(ha))
748 def = 2;
749 ha->flt_region_fw = def_fw[def];
750 ha->flt_region_boot = def_boot[def];
751 ha->flt_region_vpd_nvram = def_vpd_nvram[def];
752 ha->flt_region_vpd = ha->flags.port0 ?
753 def_vpd0[def]: def_vpd1[def];
754 ha->flt_region_nvram = ha->flags.port0 ?
755 def_nvram0[def]: def_nvram1[def];
756 ha->flt_region_fdt = def_fdt[def];
757 ha->flt_region_npiv_conf = ha->flags.port0 ?
758 def_npiv_conf0[def]: def_npiv_conf1[def];
759 done:
760 DEBUG2(qla_printk(KERN_DEBUG, ha, "FLT[%s]: boot=0x%x fw=0x%x "
761 "vpd_nvram=0x%x vpd=0x%x nvram=0x%x fdt=0x%x flt=0x%x "
762 "npiv=0x%x.\n", loc, ha->flt_region_boot, ha->flt_region_fw,
763 ha->flt_region_vpd_nvram, ha->flt_region_vpd, ha->flt_region_nvram,
764 ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_npiv_conf));
767 static void
768 qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
770 #define FLASH_BLK_SIZE_4K 0x1000
771 #define FLASH_BLK_SIZE_32K 0x8000
772 #define FLASH_BLK_SIZE_64K 0x10000
773 const char *loc, *locations[] = { "MID", "FDT" };
774 uint16_t cnt, chksum;
775 uint16_t *wptr;
776 struct qla_fdt_layout *fdt;
777 uint8_t man_id, flash_id;
778 uint16_t mid, fid;
779 struct qla_hw_data *ha = vha->hw;
780 struct req_que *req = ha->req_q_map[0];
782 wptr = (uint16_t *)req->ring;
783 fdt = (struct qla_fdt_layout *)req->ring;
784 ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
785 ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
786 if (*wptr == __constant_cpu_to_le16(0xffff))
787 goto no_flash_data;
788 if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
789 fdt->sig[3] != 'D')
790 goto no_flash_data;
792 for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
793 cnt++)
794 chksum += le16_to_cpu(*wptr++);
795 if (chksum) {
796 DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FDT detected: "
797 "checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0],
798 le16_to_cpu(fdt->version)));
799 DEBUG9(qla2x00_dump_buffer((uint8_t *)fdt, sizeof(*fdt)));
800 goto no_flash_data;
803 loc = locations[1];
804 mid = le16_to_cpu(fdt->man_id);
805 fid = le16_to_cpu(fdt->id);
806 ha->fdt_wrt_disable = fdt->wrt_disable_bits;
807 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
808 ha->fdt_block_size = le32_to_cpu(fdt->block_size);
809 if (fdt->unprotect_sec_cmd) {
810 ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
811 fdt->unprotect_sec_cmd);
812 ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
813 flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
814 flash_conf_addr(ha, 0x0336);
816 goto done;
817 no_flash_data:
818 loc = locations[0];
819 qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
820 mid = man_id;
821 fid = flash_id;
822 ha->fdt_wrt_disable = 0x9c;
823 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
824 switch (man_id) {
825 case 0xbf: /* STT flash. */
826 if (flash_id == 0x8e)
827 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
828 else
829 ha->fdt_block_size = FLASH_BLK_SIZE_32K;
831 if (flash_id == 0x80)
832 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
833 break;
834 case 0x13: /* ST M25P80. */
835 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
836 break;
837 case 0x1f: /* Atmel 26DF081A. */
838 ha->fdt_block_size = FLASH_BLK_SIZE_4K;
839 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
840 ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
841 ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
842 break;
843 default:
844 /* Default to 64 kb sector size. */
845 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
846 break;
848 done:
849 DEBUG2(qla_printk(KERN_DEBUG, ha, "FDT[%s]: (0x%x/0x%x) erase=0x%x "
850 "pro=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc, mid, fid,
851 ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
852 ha->fdt_unprotect_sec_cmd, ha->fdt_wrt_disable,
853 ha->fdt_block_size));
857 qla2xxx_get_flash_info(scsi_qla_host_t *vha)
859 int ret;
860 uint32_t flt_addr;
861 struct qla_hw_data *ha = vha->hw;
863 if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA81XX(ha))
864 return QLA_SUCCESS;
866 ret = qla2xxx_find_flt_start(vha, &flt_addr);
867 if (ret != QLA_SUCCESS)
868 return ret;
870 qla2xxx_get_flt_info(vha, flt_addr);
871 qla2xxx_get_fdt_info(vha);
873 return QLA_SUCCESS;
876 void
877 qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
879 #define NPIV_CONFIG_SIZE (16*1024)
880 void *data;
881 uint16_t *wptr;
882 uint16_t cnt, chksum;
883 int i;
884 struct qla_npiv_header hdr;
885 struct qla_npiv_entry *entry;
886 struct qla_hw_data *ha = vha->hw;
888 if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA81XX(ha))
889 return;
891 ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
892 ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
893 if (hdr.version == __constant_cpu_to_le16(0xffff))
894 return;
895 if (hdr.version != __constant_cpu_to_le16(1)) {
896 DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported NPIV-Config "
897 "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
898 le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
899 le16_to_cpu(hdr.checksum)));
900 return;
903 data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
904 if (!data) {
905 DEBUG2(qla_printk(KERN_INFO, ha, "NPIV-Config: Unable to "
906 "allocate memory.\n"));
907 return;
910 ha->isp_ops->read_optrom(vha, (uint8_t *)data,
911 ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
913 cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
914 sizeof(struct qla_npiv_entry)) >> 1;
915 for (wptr = data, chksum = 0; cnt; cnt--)
916 chksum += le16_to_cpu(*wptr++);
917 if (chksum) {
918 DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent NPIV-Config "
919 "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
920 le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
921 chksum));
922 goto done;
925 entry = data + sizeof(struct qla_npiv_header);
926 cnt = le16_to_cpu(hdr.entries);
927 for (i = 0; cnt; cnt--, entry++, i++) {
928 uint16_t flags;
929 struct fc_vport_identifiers vid;
930 struct fc_vport *vport;
932 memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));
934 flags = le16_to_cpu(entry->flags);
935 if (flags == 0xffff)
936 continue;
937 if ((flags & BIT_0) == 0)
938 continue;
940 memset(&vid, 0, sizeof(vid));
941 vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
942 vid.vport_type = FC_PORTTYPE_NPIV;
943 vid.disable = false;
944 vid.port_name = wwn_to_u64(entry->port_name);
945 vid.node_name = wwn_to_u64(entry->node_name);
947 DEBUG2(qla_printk(KERN_INFO, ha, "NPIV[%02x]: wwpn=%llx "
948 "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
949 (unsigned long long)vid.port_name,
950 (unsigned long long)vid.node_name,
951 le16_to_cpu(entry->vf_id),
952 entry->q_qos, entry->f_qos));
954 if (i < QLA_PRECONFIG_VPORTS) {
955 vport = fc_vport_create(vha->host, 0, &vid);
956 if (!vport)
957 qla_printk(KERN_INFO, ha,
958 "NPIV-Config: Failed to create vport [%02x]: "
959 "wwpn=%llx wwnn=%llx.\n", cnt,
960 (unsigned long long)vid.port_name,
961 (unsigned long long)vid.node_name);
964 done:
965 kfree(data);
968 static int
969 qla24xx_unprotect_flash(scsi_qla_host_t *vha)
971 struct qla_hw_data *ha = vha->hw;
972 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
974 if (ha->flags.fac_supported)
975 return qla81xx_fac_do_write_enable(vha, 1);
977 /* Enable flash write. */
978 WRT_REG_DWORD(&reg->ctrl_status,
979 RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
980 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
982 if (!ha->fdt_wrt_disable)
983 goto done;
985 /* Disable flash write-protection, first clear SR protection bit */
986 qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
987 /* Then write zero again to clear remaining SR bits.*/
988 qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
989 done:
990 return QLA_SUCCESS;
993 static int
994 qla24xx_protect_flash(scsi_qla_host_t *vha)
996 uint32_t cnt;
997 struct qla_hw_data *ha = vha->hw;
998 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1000 if (ha->flags.fac_supported)
1001 return qla81xx_fac_do_write_enable(vha, 0);
1003 if (!ha->fdt_wrt_disable)
1004 goto skip_wrt_protect;
1006 /* Enable flash write-protection and wait for completion. */
1007 qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1008 ha->fdt_wrt_disable);
1009 for (cnt = 300; cnt &&
1010 qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1011 cnt--) {
1012 udelay(10);
1015 skip_wrt_protect:
1016 /* Disable flash write. */
1017 WRT_REG_DWORD(&reg->ctrl_status,
1018 RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1019 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1021 return QLA_SUCCESS;
1024 static int
1025 qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
1027 struct qla_hw_data *ha = vha->hw;
1028 uint32_t start, finish;
1030 if (ha->flags.fac_supported) {
1031 start = fdata >> 2;
1032 finish = start + (ha->fdt_block_size >> 2) - 1;
1033 return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
1034 start), flash_data_addr(ha, finish));
1037 return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1038 (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
1039 ((fdata >> 16) & 0xff));
1042 static int
1043 qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1044 uint32_t dwords)
1046 int ret;
1047 uint32_t liter;
1048 uint32_t sec_mask, rest_addr;
1049 uint32_t fdata;
1050 dma_addr_t optrom_dma;
1051 void *optrom = NULL;
1052 struct qla_hw_data *ha = vha->hw;
1054 /* Prepare burst-capable write on supported ISPs. */
1055 if ((IS_QLA25XX(ha) || IS_QLA81XX(ha)) && !(faddr & 0xfff) &&
1056 dwords > OPTROM_BURST_DWORDS) {
1057 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1058 &optrom_dma, GFP_KERNEL);
1059 if (!optrom) {
1060 qla_printk(KERN_DEBUG, ha,
1061 "Unable to allocate memory for optrom burst write "
1062 "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
1066 rest_addr = (ha->fdt_block_size >> 2) - 1;
1067 sec_mask = ~rest_addr;
1069 ret = qla24xx_unprotect_flash(vha);
1070 if (ret != QLA_SUCCESS) {
1071 qla_printk(KERN_WARNING, ha,
1072 "Unable to unprotect flash for update.\n");
1073 goto done;
1076 for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1077 fdata = (faddr & sec_mask) << 2;
1079 /* Are we at the beginning of a sector? */
1080 if ((faddr & rest_addr) == 0) {
1081 /* Do sector unprotect. */
1082 if (ha->fdt_unprotect_sec_cmd)
1083 qla24xx_write_flash_dword(ha,
1084 ha->fdt_unprotect_sec_cmd,
1085 (fdata & 0xff00) | ((fdata << 16) &
1086 0xff0000) | ((fdata >> 16) & 0xff));
1087 ret = qla24xx_erase_sector(vha, fdata);
1088 if (ret != QLA_SUCCESS) {
1089 DEBUG9(qla_printk(KERN_WARNING, ha,
1090 "Unable to erase sector: address=%x.\n",
1091 faddr));
1092 break;
1096 /* Go with burst-write. */
1097 if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1098 /* Copy data to DMA'ble buffer. */
1099 memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1101 ret = qla2x00_load_ram(vha, optrom_dma,
1102 flash_data_addr(ha, faddr),
1103 OPTROM_BURST_DWORDS);
1104 if (ret != QLA_SUCCESS) {
1105 qla_printk(KERN_WARNING, ha,
1106 "Unable to burst-write optrom segment "
1107 "(%x/%x/%llx).\n", ret,
1108 flash_data_addr(ha, faddr),
1109 (unsigned long long)optrom_dma);
1110 qla_printk(KERN_WARNING, ha,
1111 "Reverting to slow-write.\n");
1113 dma_free_coherent(&ha->pdev->dev,
1114 OPTROM_BURST_SIZE, optrom, optrom_dma);
1115 optrom = NULL;
1116 } else {
1117 liter += OPTROM_BURST_DWORDS - 1;
1118 faddr += OPTROM_BURST_DWORDS - 1;
1119 dwptr += OPTROM_BURST_DWORDS - 1;
1120 continue;
1124 ret = qla24xx_write_flash_dword(ha,
1125 flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1126 if (ret != QLA_SUCCESS) {
1127 DEBUG9(printk("%s(%ld) Unable to program flash "
1128 "address=%x data=%x.\n", __func__,
1129 vha->host_no, faddr, *dwptr));
1130 break;
1133 /* Do sector protect. */
1134 if (ha->fdt_unprotect_sec_cmd &&
1135 ((faddr & rest_addr) == rest_addr))
1136 qla24xx_write_flash_dword(ha,
1137 ha->fdt_protect_sec_cmd,
1138 (fdata & 0xff00) | ((fdata << 16) &
1139 0xff0000) | ((fdata >> 16) & 0xff));
1142 ret = qla24xx_protect_flash(vha);
1143 if (ret != QLA_SUCCESS)
1144 qla_printk(KERN_WARNING, ha,
1145 "Unable to protect flash after update.\n");
1146 done:
1147 if (optrom)
1148 dma_free_coherent(&ha->pdev->dev,
1149 OPTROM_BURST_SIZE, optrom, optrom_dma);
1151 return ret;
1154 uint8_t *
1155 qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1156 uint32_t bytes)
1158 uint32_t i;
1159 uint16_t *wptr;
1160 struct qla_hw_data *ha = vha->hw;
1162 /* Word reads to NVRAM via registers. */
1163 wptr = (uint16_t *)buf;
1164 qla2x00_lock_nvram_access(ha);
1165 for (i = 0; i < bytes >> 1; i++, naddr++)
1166 wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
1167 naddr));
1168 qla2x00_unlock_nvram_access(ha);
1170 return buf;
1173 uint8_t *
1174 qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1175 uint32_t bytes)
1177 uint32_t i;
1178 uint32_t *dwptr;
1179 struct qla_hw_data *ha = vha->hw;
1181 /* Dword reads to flash. */
1182 dwptr = (uint32_t *)buf;
1183 for (i = 0; i < bytes >> 2; i++, naddr++)
1184 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1185 nvram_data_addr(ha, naddr)));
1187 return buf;
1191 qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1192 uint32_t bytes)
1194 int ret, stat;
1195 uint32_t i;
1196 uint16_t *wptr;
1197 unsigned long flags;
1198 struct qla_hw_data *ha = vha->hw;
1200 ret = QLA_SUCCESS;
1202 spin_lock_irqsave(&ha->hardware_lock, flags);
1203 qla2x00_lock_nvram_access(ha);
1205 /* Disable NVRAM write-protection. */
1206 stat = qla2x00_clear_nvram_protection(ha);
1208 wptr = (uint16_t *)buf;
1209 for (i = 0; i < bytes >> 1; i++, naddr++) {
1210 qla2x00_write_nvram_word(ha, naddr,
1211 cpu_to_le16(*wptr));
1212 wptr++;
1215 /* Enable NVRAM write-protection. */
1216 qla2x00_set_nvram_protection(ha, stat);
1218 qla2x00_unlock_nvram_access(ha);
1219 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1221 return ret;
1225 qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1226 uint32_t bytes)
1228 int ret;
1229 uint32_t i;
1230 uint32_t *dwptr;
1231 struct qla_hw_data *ha = vha->hw;
1232 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1234 ret = QLA_SUCCESS;
1236 /* Enable flash write. */
1237 WRT_REG_DWORD(&reg->ctrl_status,
1238 RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1239 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1241 /* Disable NVRAM write-protection. */
1242 qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1243 qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1245 /* Dword writes to flash. */
1246 dwptr = (uint32_t *)buf;
1247 for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
1248 ret = qla24xx_write_flash_dword(ha,
1249 nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1250 if (ret != QLA_SUCCESS) {
1251 DEBUG9(qla_printk(KERN_WARNING, ha,
1252 "Unable to program nvram address=%x data=%x.\n",
1253 naddr, *dwptr));
1254 break;
1258 /* Enable NVRAM write-protection. */
1259 qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1261 /* Disable flash write. */
1262 WRT_REG_DWORD(&reg->ctrl_status,
1263 RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1264 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1266 return ret;
1269 uint8_t *
1270 qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1271 uint32_t bytes)
1273 uint32_t i;
1274 uint32_t *dwptr;
1275 struct qla_hw_data *ha = vha->hw;
1277 /* Dword reads to flash. */
1278 dwptr = (uint32_t *)buf;
1279 for (i = 0; i < bytes >> 2; i++, naddr++)
1280 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1281 flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1283 return buf;
1287 qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1288 uint32_t bytes)
1290 struct qla_hw_data *ha = vha->hw;
1291 #define RMW_BUFFER_SIZE (64 * 1024)
1292 uint8_t *dbuf;
1294 dbuf = vmalloc(RMW_BUFFER_SIZE);
1295 if (!dbuf)
1296 return QLA_MEMORY_ALLOC_FAILED;
1297 ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1298 RMW_BUFFER_SIZE);
1299 memcpy(dbuf + (naddr << 2), buf, bytes);
1300 ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1301 RMW_BUFFER_SIZE);
1302 vfree(dbuf);
1304 return QLA_SUCCESS;
1307 static inline void
1308 qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1310 if (IS_QLA2322(ha)) {
1311 /* Flip all colors. */
1312 if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1313 /* Turn off. */
1314 ha->beacon_color_state = 0;
1315 *pflags = GPIO_LED_ALL_OFF;
1316 } else {
1317 /* Turn on. */
1318 ha->beacon_color_state = QLA_LED_ALL_ON;
1319 *pflags = GPIO_LED_RGA_ON;
1321 } else {
1322 /* Flip green led only. */
1323 if (ha->beacon_color_state == QLA_LED_GRN_ON) {
1324 /* Turn off. */
1325 ha->beacon_color_state = 0;
1326 *pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
1327 } else {
1328 /* Turn on. */
1329 ha->beacon_color_state = QLA_LED_GRN_ON;
1330 *pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
1335 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1337 void
1338 qla2x00_beacon_blink(struct scsi_qla_host *vha)
1340 uint16_t gpio_enable;
1341 uint16_t gpio_data;
1342 uint16_t led_color = 0;
1343 unsigned long flags;
1344 struct qla_hw_data *ha = vha->hw;
1345 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1347 spin_lock_irqsave(&ha->hardware_lock, flags);
1349 /* Save the Original GPIOE. */
1350 if (ha->pio_address) {
1351 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1352 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1353 } else {
1354 gpio_enable = RD_REG_WORD(&reg->gpioe);
1355 gpio_data = RD_REG_WORD(&reg->gpiod);
1358 /* Set the modified gpio_enable values */
1359 gpio_enable |= GPIO_LED_MASK;
1361 if (ha->pio_address) {
1362 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1363 } else {
1364 WRT_REG_WORD(&reg->gpioe, gpio_enable);
1365 RD_REG_WORD(&reg->gpioe);
1368 qla2x00_flip_colors(ha, &led_color);
1370 /* Clear out any previously set LED color. */
1371 gpio_data &= ~GPIO_LED_MASK;
1373 /* Set the new input LED color to GPIOD. */
1374 gpio_data |= led_color;
1376 /* Set the modified gpio_data values */
1377 if (ha->pio_address) {
1378 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1379 } else {
1380 WRT_REG_WORD(&reg->gpiod, gpio_data);
1381 RD_REG_WORD(&reg->gpiod);
1384 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1388 qla2x00_beacon_on(struct scsi_qla_host *vha)
1390 uint16_t gpio_enable;
1391 uint16_t gpio_data;
1392 unsigned long flags;
1393 struct qla_hw_data *ha = vha->hw;
1394 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1396 ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1397 ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1399 if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1400 qla_printk(KERN_WARNING, ha,
1401 "Unable to update fw options (beacon on).\n");
1402 return QLA_FUNCTION_FAILED;
1405 /* Turn off LEDs. */
1406 spin_lock_irqsave(&ha->hardware_lock, flags);
1407 if (ha->pio_address) {
1408 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1409 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1410 } else {
1411 gpio_enable = RD_REG_WORD(&reg->gpioe);
1412 gpio_data = RD_REG_WORD(&reg->gpiod);
1414 gpio_enable |= GPIO_LED_MASK;
1416 /* Set the modified gpio_enable values. */
1417 if (ha->pio_address) {
1418 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1419 } else {
1420 WRT_REG_WORD(&reg->gpioe, gpio_enable);
1421 RD_REG_WORD(&reg->gpioe);
1424 /* Clear out previously set LED colour. */
1425 gpio_data &= ~GPIO_LED_MASK;
1426 if (ha->pio_address) {
1427 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1428 } else {
1429 WRT_REG_WORD(&reg->gpiod, gpio_data);
1430 RD_REG_WORD(&reg->gpiod);
1432 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1435 * Let the per HBA timer kick off the blinking process based on
1436 * the following flags. No need to do anything else now.
1438 ha->beacon_blink_led = 1;
1439 ha->beacon_color_state = 0;
1441 return QLA_SUCCESS;
1445 qla2x00_beacon_off(struct scsi_qla_host *vha)
1447 int rval = QLA_SUCCESS;
1448 struct qla_hw_data *ha = vha->hw;
1450 ha->beacon_blink_led = 0;
1452 /* Set the on flag so when it gets flipped it will be off. */
1453 if (IS_QLA2322(ha))
1454 ha->beacon_color_state = QLA_LED_ALL_ON;
1455 else
1456 ha->beacon_color_state = QLA_LED_GRN_ON;
1458 ha->isp_ops->beacon_blink(vha); /* This turns green LED off */
1460 ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1461 ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1463 rval = qla2x00_set_fw_options(vha, ha->fw_options);
1464 if (rval != QLA_SUCCESS)
1465 qla_printk(KERN_WARNING, ha,
1466 "Unable to update fw options (beacon off).\n");
1467 return rval;
1471 static inline void
1472 qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1474 /* Flip all colors. */
1475 if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1476 /* Turn off. */
1477 ha->beacon_color_state = 0;
1478 *pflags = 0;
1479 } else {
1480 /* Turn on. */
1481 ha->beacon_color_state = QLA_LED_ALL_ON;
1482 *pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1486 void
1487 qla24xx_beacon_blink(struct scsi_qla_host *vha)
1489 uint16_t led_color = 0;
1490 uint32_t gpio_data;
1491 unsigned long flags;
1492 struct qla_hw_data *ha = vha->hw;
1493 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1495 /* Save the Original GPIOD. */
1496 spin_lock_irqsave(&ha->hardware_lock, flags);
1497 gpio_data = RD_REG_DWORD(&reg->gpiod);
1499 /* Enable the gpio_data reg for update. */
1500 gpio_data |= GPDX_LED_UPDATE_MASK;
1502 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1503 gpio_data = RD_REG_DWORD(&reg->gpiod);
1505 /* Set the color bits. */
1506 qla24xx_flip_colors(ha, &led_color);
1508 /* Clear out any previously set LED color. */
1509 gpio_data &= ~GPDX_LED_COLOR_MASK;
1511 /* Set the new input LED color to GPIOD. */
1512 gpio_data |= led_color;
1514 /* Set the modified gpio_data values. */
1515 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1516 gpio_data = RD_REG_DWORD(&reg->gpiod);
1517 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1521 qla24xx_beacon_on(struct scsi_qla_host *vha)
1523 uint32_t gpio_data;
1524 unsigned long flags;
1525 struct qla_hw_data *ha = vha->hw;
1526 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1528 if (ha->beacon_blink_led == 0) {
1529 /* Enable firmware for update */
1530 ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1532 if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1533 return QLA_FUNCTION_FAILED;
1535 if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1536 QLA_SUCCESS) {
1537 qla_printk(KERN_WARNING, ha,
1538 "Unable to update fw options (beacon on).\n");
1539 return QLA_FUNCTION_FAILED;
1542 spin_lock_irqsave(&ha->hardware_lock, flags);
1543 gpio_data = RD_REG_DWORD(&reg->gpiod);
1545 /* Enable the gpio_data reg for update. */
1546 gpio_data |= GPDX_LED_UPDATE_MASK;
1547 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1548 RD_REG_DWORD(&reg->gpiod);
1550 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1553 /* So all colors blink together. */
1554 ha->beacon_color_state = 0;
1556 /* Let the per HBA timer kick off the blinking process. */
1557 ha->beacon_blink_led = 1;
1559 return QLA_SUCCESS;
1563 qla24xx_beacon_off(struct scsi_qla_host *vha)
1565 uint32_t gpio_data;
1566 unsigned long flags;
1567 struct qla_hw_data *ha = vha->hw;
1568 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1570 ha->beacon_blink_led = 0;
1571 ha->beacon_color_state = QLA_LED_ALL_ON;
1573 ha->isp_ops->beacon_blink(vha); /* Will flip to all off. */
1575 /* Give control back to firmware. */
1576 spin_lock_irqsave(&ha->hardware_lock, flags);
1577 gpio_data = RD_REG_DWORD(&reg->gpiod);
1579 /* Disable the gpio_data reg for update. */
1580 gpio_data &= ~GPDX_LED_UPDATE_MASK;
1581 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1582 RD_REG_DWORD(&reg->gpiod);
1583 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1585 ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1587 if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1588 qla_printk(KERN_WARNING, ha,
1589 "Unable to update fw options (beacon off).\n");
1590 return QLA_FUNCTION_FAILED;
1593 if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1594 qla_printk(KERN_WARNING, ha,
1595 "Unable to get fw options (beacon off).\n");
1596 return QLA_FUNCTION_FAILED;
1599 return QLA_SUCCESS;
1604 * Flash support routines
1608 * qla2x00_flash_enable() - Setup flash for reading and writing.
1609 * @ha: HA context
1611 static void
1612 qla2x00_flash_enable(struct qla_hw_data *ha)
1614 uint16_t data;
1615 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1617 data = RD_REG_WORD(&reg->ctrl_status);
1618 data |= CSR_FLASH_ENABLE;
1619 WRT_REG_WORD(&reg->ctrl_status, data);
1620 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1624 * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1625 * @ha: HA context
1627 static void
1628 qla2x00_flash_disable(struct qla_hw_data *ha)
1630 uint16_t data;
1631 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1633 data = RD_REG_WORD(&reg->ctrl_status);
1634 data &= ~(CSR_FLASH_ENABLE);
1635 WRT_REG_WORD(&reg->ctrl_status, data);
1636 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1640 * qla2x00_read_flash_byte() - Reads a byte from flash
1641 * @ha: HA context
1642 * @addr: Address in flash to read
1644 * A word is read from the chip, but, only the lower byte is valid.
1646 * Returns the byte read from flash @addr.
1648 static uint8_t
1649 qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1651 uint16_t data;
1652 uint16_t bank_select;
1653 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1655 bank_select = RD_REG_WORD(&reg->ctrl_status);
1657 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1658 /* Specify 64K address range: */
1659 /* clear out Module Select and Flash Address bits [19:16]. */
1660 bank_select &= ~0xf8;
1661 bank_select |= addr >> 12 & 0xf0;
1662 bank_select |= CSR_FLASH_64K_BANK;
1663 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1664 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1666 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1667 data = RD_REG_WORD(&reg->flash_data);
1669 return (uint8_t)data;
1672 /* Setup bit 16 of flash address. */
1673 if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1674 bank_select |= CSR_FLASH_64K_BANK;
1675 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1676 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1677 } else if (((addr & BIT_16) == 0) &&
1678 (bank_select & CSR_FLASH_64K_BANK)) {
1679 bank_select &= ~(CSR_FLASH_64K_BANK);
1680 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1681 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1684 /* Always perform IO mapped accesses to the FLASH registers. */
1685 if (ha->pio_address) {
1686 uint16_t data2;
1688 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1689 do {
1690 data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1691 barrier();
1692 cpu_relax();
1693 data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1694 } while (data != data2);
1695 } else {
1696 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1697 data = qla2x00_debounce_register(&reg->flash_data);
1700 return (uint8_t)data;
1704 * qla2x00_write_flash_byte() - Write a byte to flash
1705 * @ha: HA context
1706 * @addr: Address in flash to write
1707 * @data: Data to write
1709 static void
1710 qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1712 uint16_t bank_select;
1713 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1715 bank_select = RD_REG_WORD(&reg->ctrl_status);
1716 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1717 /* Specify 64K address range: */
1718 /* clear out Module Select and Flash Address bits [19:16]. */
1719 bank_select &= ~0xf8;
1720 bank_select |= addr >> 12 & 0xf0;
1721 bank_select |= CSR_FLASH_64K_BANK;
1722 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1723 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1725 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1726 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1727 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1728 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1730 return;
1733 /* Setup bit 16 of flash address. */
1734 if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1735 bank_select |= CSR_FLASH_64K_BANK;
1736 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1737 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1738 } else if (((addr & BIT_16) == 0) &&
1739 (bank_select & CSR_FLASH_64K_BANK)) {
1740 bank_select &= ~(CSR_FLASH_64K_BANK);
1741 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1742 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1745 /* Always perform IO mapped accesses to the FLASH registers. */
1746 if (ha->pio_address) {
1747 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1748 WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1749 } else {
1750 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1751 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1752 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1753 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1758 * qla2x00_poll_flash() - Polls flash for completion.
1759 * @ha: HA context
1760 * @addr: Address in flash to poll
1761 * @poll_data: Data to be polled
1762 * @man_id: Flash manufacturer ID
1763 * @flash_id: Flash ID
1765 * This function polls the device until bit 7 of what is read matches data
1766 * bit 7 or until data bit 5 becomes a 1. If that hapens, the flash ROM timed
1767 * out (a fatal error). The flash book recommeds reading bit 7 again after
1768 * reading bit 5 as a 1.
1770 * Returns 0 on success, else non-zero.
1772 static int
1773 qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
1774 uint8_t man_id, uint8_t flash_id)
1776 int status;
1777 uint8_t flash_data;
1778 uint32_t cnt;
1780 status = 1;
1782 /* Wait for 30 seconds for command to finish. */
1783 poll_data &= BIT_7;
1784 for (cnt = 3000000; cnt; cnt--) {
1785 flash_data = qla2x00_read_flash_byte(ha, addr);
1786 if ((flash_data & BIT_7) == poll_data) {
1787 status = 0;
1788 break;
1791 if (man_id != 0x40 && man_id != 0xda) {
1792 if ((flash_data & BIT_5) && cnt > 2)
1793 cnt = 2;
1795 udelay(10);
1796 barrier();
1797 cond_resched();
1799 return status;
1803 * qla2x00_program_flash_address() - Programs a flash address
1804 * @ha: HA context
1805 * @addr: Address in flash to program
1806 * @data: Data to be written in flash
1807 * @man_id: Flash manufacturer ID
1808 * @flash_id: Flash ID
1810 * Returns 0 on success, else non-zero.
1812 static int
1813 qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
1814 uint8_t data, uint8_t man_id, uint8_t flash_id)
1816 /* Write Program Command Sequence. */
1817 if (IS_OEM_001(ha)) {
1818 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1819 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1820 qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
1821 qla2x00_write_flash_byte(ha, addr, data);
1822 } else {
1823 if (man_id == 0xda && flash_id == 0xc1) {
1824 qla2x00_write_flash_byte(ha, addr, data);
1825 if (addr & 0x7e)
1826 return 0;
1827 } else {
1828 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1829 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1830 qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
1831 qla2x00_write_flash_byte(ha, addr, data);
1835 udelay(150);
1837 /* Wait for write to complete. */
1838 return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
1842 * qla2x00_erase_flash() - Erase the flash.
1843 * @ha: HA context
1844 * @man_id: Flash manufacturer ID
1845 * @flash_id: Flash ID
1847 * Returns 0 on success, else non-zero.
1849 static int
1850 qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
1852 /* Individual Sector Erase Command Sequence */
1853 if (IS_OEM_001(ha)) {
1854 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1855 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1856 qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
1857 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1858 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1859 qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
1860 } else {
1861 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1862 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1863 qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1864 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1865 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1866 qla2x00_write_flash_byte(ha, 0x5555, 0x10);
1869 udelay(150);
1871 /* Wait for erase to complete. */
1872 return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
1876 * qla2x00_erase_flash_sector() - Erase a flash sector.
1877 * @ha: HA context
1878 * @addr: Flash sector to erase
1879 * @sec_mask: Sector address mask
1880 * @man_id: Flash manufacturer ID
1881 * @flash_id: Flash ID
1883 * Returns 0 on success, else non-zero.
1885 static int
1886 qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
1887 uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
1889 /* Individual Sector Erase Command Sequence */
1890 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1891 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1892 qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1893 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1894 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1895 if (man_id == 0x1f && flash_id == 0x13)
1896 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
1897 else
1898 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
1900 udelay(150);
1902 /* Wait for erase to complete. */
1903 return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
1907 * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
1908 * @man_id: Flash manufacturer ID
1909 * @flash_id: Flash ID
1911 static void
1912 qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
1913 uint8_t *flash_id)
1915 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1916 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1917 qla2x00_write_flash_byte(ha, 0x5555, 0x90);
1918 *man_id = qla2x00_read_flash_byte(ha, 0x0000);
1919 *flash_id = qla2x00_read_flash_byte(ha, 0x0001);
1920 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1921 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1922 qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
1925 static void
1926 qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
1927 uint32_t saddr, uint32_t length)
1929 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1930 uint32_t midpoint, ilength;
1931 uint8_t data;
1933 midpoint = length / 2;
1935 WRT_REG_WORD(&reg->nvram, 0);
1936 RD_REG_WORD(&reg->nvram);
1937 for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
1938 if (ilength == midpoint) {
1939 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1940 RD_REG_WORD(&reg->nvram);
1942 data = qla2x00_read_flash_byte(ha, saddr);
1943 if (saddr % 100)
1944 udelay(10);
1945 *tmp_buf = data;
1946 cond_resched();
1950 static inline void
1951 qla2x00_suspend_hba(struct scsi_qla_host *vha)
1953 int cnt;
1954 unsigned long flags;
1955 struct qla_hw_data *ha = vha->hw;
1956 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1958 /* Suspend HBA. */
1959 scsi_block_requests(vha->host);
1960 ha->isp_ops->disable_intrs(ha);
1961 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1963 /* Pause RISC. */
1964 spin_lock_irqsave(&ha->hardware_lock, flags);
1965 WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
1966 RD_REG_WORD(&reg->hccr);
1967 if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
1968 for (cnt = 0; cnt < 30000; cnt++) {
1969 if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
1970 break;
1971 udelay(100);
1973 } else {
1974 udelay(10);
1976 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1979 static inline void
1980 qla2x00_resume_hba(struct scsi_qla_host *vha)
1982 struct qla_hw_data *ha = vha->hw;
1984 /* Resume HBA. */
1985 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1986 set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
1987 qla2xxx_wake_dpc(vha);
1988 qla2x00_wait_for_chip_reset(vha);
1989 scsi_unblock_requests(vha->host);
1992 uint8_t *
1993 qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
1994 uint32_t offset, uint32_t length)
1996 uint32_t addr, midpoint;
1997 uint8_t *data;
1998 struct qla_hw_data *ha = vha->hw;
1999 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2001 /* Suspend HBA. */
2002 qla2x00_suspend_hba(vha);
2004 /* Go with read. */
2005 midpoint = ha->optrom_size / 2;
2007 qla2x00_flash_enable(ha);
2008 WRT_REG_WORD(&reg->nvram, 0);
2009 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
2010 for (addr = offset, data = buf; addr < length; addr++, data++) {
2011 if (addr == midpoint) {
2012 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2013 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
2016 *data = qla2x00_read_flash_byte(ha, addr);
2018 qla2x00_flash_disable(ha);
2020 /* Resume HBA. */
2021 qla2x00_resume_hba(vha);
2023 return buf;
2027 qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2028 uint32_t offset, uint32_t length)
2031 int rval;
2032 uint8_t man_id, flash_id, sec_number, data;
2033 uint16_t wd;
2034 uint32_t addr, liter, sec_mask, rest_addr;
2035 struct qla_hw_data *ha = vha->hw;
2036 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2038 /* Suspend HBA. */
2039 qla2x00_suspend_hba(vha);
2041 rval = QLA_SUCCESS;
2042 sec_number = 0;
2044 /* Reset ISP chip. */
2045 WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
2046 pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
2048 /* Go with write. */
2049 qla2x00_flash_enable(ha);
2050 do { /* Loop once to provide quick error exit */
2051 /* Structure of flash memory based on manufacturer */
2052 if (IS_OEM_001(ha)) {
2053 /* OEM variant with special flash part. */
2054 man_id = flash_id = 0;
2055 rest_addr = 0xffff;
2056 sec_mask = 0x10000;
2057 goto update_flash;
2059 qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
2060 switch (man_id) {
2061 case 0x20: /* ST flash. */
2062 if (flash_id == 0xd2 || flash_id == 0xe3) {
2064 * ST m29w008at part - 64kb sector size with
2065 * 32kb,8kb,8kb,16kb sectors at memory address
2066 * 0xf0000.
2068 rest_addr = 0xffff;
2069 sec_mask = 0x10000;
2070 break;
2073 * ST m29w010b part - 16kb sector size
2074 * Default to 16kb sectors
2076 rest_addr = 0x3fff;
2077 sec_mask = 0x1c000;
2078 break;
2079 case 0x40: /* Mostel flash. */
2080 /* Mostel v29c51001 part - 512 byte sector size. */
2081 rest_addr = 0x1ff;
2082 sec_mask = 0x1fe00;
2083 break;
2084 case 0xbf: /* SST flash. */
2085 /* SST39sf10 part - 4kb sector size. */
2086 rest_addr = 0xfff;
2087 sec_mask = 0x1f000;
2088 break;
2089 case 0xda: /* Winbond flash. */
2090 /* Winbond W29EE011 part - 256 byte sector size. */
2091 rest_addr = 0x7f;
2092 sec_mask = 0x1ff80;
2093 break;
2094 case 0xc2: /* Macronix flash. */
2095 /* 64k sector size. */
2096 if (flash_id == 0x38 || flash_id == 0x4f) {
2097 rest_addr = 0xffff;
2098 sec_mask = 0x10000;
2099 break;
2101 /* Fall through... */
2103 case 0x1f: /* Atmel flash. */
2104 /* 512k sector size. */
2105 if (flash_id == 0x13) {
2106 rest_addr = 0x7fffffff;
2107 sec_mask = 0x80000000;
2108 break;
2110 /* Fall through... */
2112 case 0x01: /* AMD flash. */
2113 if (flash_id == 0x38 || flash_id == 0x40 ||
2114 flash_id == 0x4f) {
2115 /* Am29LV081 part - 64kb sector size. */
2116 /* Am29LV002BT part - 64kb sector size. */
2117 rest_addr = 0xffff;
2118 sec_mask = 0x10000;
2119 break;
2120 } else if (flash_id == 0x3e) {
2122 * Am29LV008b part - 64kb sector size with
2123 * 32kb,8kb,8kb,16kb sector at memory address
2124 * h0xf0000.
2126 rest_addr = 0xffff;
2127 sec_mask = 0x10000;
2128 break;
2129 } else if (flash_id == 0x20 || flash_id == 0x6e) {
2131 * Am29LV010 part or AM29f010 - 16kb sector
2132 * size.
2134 rest_addr = 0x3fff;
2135 sec_mask = 0x1c000;
2136 break;
2137 } else if (flash_id == 0x6d) {
2138 /* Am29LV001 part - 8kb sector size. */
2139 rest_addr = 0x1fff;
2140 sec_mask = 0x1e000;
2141 break;
2143 default:
2144 /* Default to 16 kb sector size. */
2145 rest_addr = 0x3fff;
2146 sec_mask = 0x1c000;
2147 break;
2150 update_flash:
2151 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2152 if (qla2x00_erase_flash(ha, man_id, flash_id)) {
2153 rval = QLA_FUNCTION_FAILED;
2154 break;
2158 for (addr = offset, liter = 0; liter < length; liter++,
2159 addr++) {
2160 data = buf[liter];
2161 /* Are we at the beginning of a sector? */
2162 if ((addr & rest_addr) == 0) {
2163 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2164 if (addr >= 0x10000UL) {
2165 if (((addr >> 12) & 0xf0) &&
2166 ((man_id == 0x01 &&
2167 flash_id == 0x3e) ||
2168 (man_id == 0x20 &&
2169 flash_id == 0xd2))) {
2170 sec_number++;
2171 if (sec_number == 1) {
2172 rest_addr =
2173 0x7fff;
2174 sec_mask =
2175 0x18000;
2176 } else if (
2177 sec_number == 2 ||
2178 sec_number == 3) {
2179 rest_addr =
2180 0x1fff;
2181 sec_mask =
2182 0x1e000;
2183 } else if (
2184 sec_number == 4) {
2185 rest_addr =
2186 0x3fff;
2187 sec_mask =
2188 0x1c000;
2192 } else if (addr == ha->optrom_size / 2) {
2193 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2194 RD_REG_WORD(&reg->nvram);
2197 if (flash_id == 0xda && man_id == 0xc1) {
2198 qla2x00_write_flash_byte(ha, 0x5555,
2199 0xaa);
2200 qla2x00_write_flash_byte(ha, 0x2aaa,
2201 0x55);
2202 qla2x00_write_flash_byte(ha, 0x5555,
2203 0xa0);
2204 } else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
2205 /* Then erase it */
2206 if (qla2x00_erase_flash_sector(ha,
2207 addr, sec_mask, man_id,
2208 flash_id)) {
2209 rval = QLA_FUNCTION_FAILED;
2210 break;
2212 if (man_id == 0x01 && flash_id == 0x6d)
2213 sec_number++;
2217 if (man_id == 0x01 && flash_id == 0x6d) {
2218 if (sec_number == 1 &&
2219 addr == (rest_addr - 1)) {
2220 rest_addr = 0x0fff;
2221 sec_mask = 0x1f000;
2222 } else if (sec_number == 3 && (addr & 0x7ffe)) {
2223 rest_addr = 0x3fff;
2224 sec_mask = 0x1c000;
2228 if (qla2x00_program_flash_address(ha, addr, data,
2229 man_id, flash_id)) {
2230 rval = QLA_FUNCTION_FAILED;
2231 break;
2233 cond_resched();
2235 } while (0);
2236 qla2x00_flash_disable(ha);
2238 /* Resume HBA. */
2239 qla2x00_resume_hba(vha);
2241 return rval;
2244 uint8_t *
2245 qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2246 uint32_t offset, uint32_t length)
2248 struct qla_hw_data *ha = vha->hw;
2250 /* Suspend HBA. */
2251 scsi_block_requests(vha->host);
2252 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2254 /* Go with read. */
2255 qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2257 /* Resume HBA. */
2258 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2259 scsi_unblock_requests(vha->host);
2261 return buf;
2265 qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2266 uint32_t offset, uint32_t length)
2268 int rval;
2269 struct qla_hw_data *ha = vha->hw;
2271 /* Suspend HBA. */
2272 scsi_block_requests(vha->host);
2273 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2275 /* Go with write. */
2276 rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2277 length >> 2);
2279 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2280 scsi_unblock_requests(vha->host);
2282 return rval;
2285 uint8_t *
2286 qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2287 uint32_t offset, uint32_t length)
2289 int rval;
2290 dma_addr_t optrom_dma;
2291 void *optrom;
2292 uint8_t *pbuf;
2293 uint32_t faddr, left, burst;
2294 struct qla_hw_data *ha = vha->hw;
2296 if (IS_QLA25XX(ha) || IS_QLA81XX(ha))
2297 goto try_fast;
2298 if (offset & 0xfff)
2299 goto slow_read;
2300 if (length < OPTROM_BURST_SIZE)
2301 goto slow_read;
2303 try_fast:
2304 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2305 &optrom_dma, GFP_KERNEL);
2306 if (!optrom) {
2307 qla_printk(KERN_DEBUG, ha,
2308 "Unable to allocate memory for optrom burst read "
2309 "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
2311 goto slow_read;
2314 pbuf = buf;
2315 faddr = offset >> 2;
2316 left = length >> 2;
2317 burst = OPTROM_BURST_DWORDS;
2318 while (left != 0) {
2319 if (burst > left)
2320 burst = left;
2322 rval = qla2x00_dump_ram(vha, optrom_dma,
2323 flash_data_addr(ha, faddr), burst);
2324 if (rval) {
2325 qla_printk(KERN_WARNING, ha,
2326 "Unable to burst-read optrom segment "
2327 "(%x/%x/%llx).\n", rval,
2328 flash_data_addr(ha, faddr),
2329 (unsigned long long)optrom_dma);
2330 qla_printk(KERN_WARNING, ha,
2331 "Reverting to slow-read.\n");
2333 dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2334 optrom, optrom_dma);
2335 goto slow_read;
2338 memcpy(pbuf, optrom, burst * 4);
2340 left -= burst;
2341 faddr += burst;
2342 pbuf += burst * 4;
2345 dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
2346 optrom_dma);
2348 return buf;
2350 slow_read:
2351 return qla24xx_read_optrom_data(vha, buf, offset, length);
2355 * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2356 * @ha: HA context
2357 * @pcids: Pointer to the FCODE PCI data structure
2359 * The process of retrieving the FCODE version information is at best
2360 * described as interesting.
2362 * Within the first 100h bytes of the image an ASCII string is present
2363 * which contains several pieces of information including the FCODE
2364 * version. Unfortunately it seems the only reliable way to retrieve
2365 * the version is by scanning for another sentinel within the string,
2366 * the FCODE build date:
2368 * ... 2.00.02 10/17/02 ...
2370 * Returns QLA_SUCCESS on successful retrieval of version.
2372 static void
2373 qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2375 int ret = QLA_FUNCTION_FAILED;
2376 uint32_t istart, iend, iter, vend;
2377 uint8_t do_next, rbyte, *vbyte;
2379 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2381 /* Skip the PCI data structure. */
2382 istart = pcids +
2383 ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2384 qla2x00_read_flash_byte(ha, pcids + 0x0A));
2385 iend = istart + 0x100;
2386 do {
2387 /* Scan for the sentinel date string...eeewww. */
2388 do_next = 0;
2389 iter = istart;
2390 while ((iter < iend) && !do_next) {
2391 iter++;
2392 if (qla2x00_read_flash_byte(ha, iter) == '/') {
2393 if (qla2x00_read_flash_byte(ha, iter + 2) ==
2394 '/')
2395 do_next++;
2396 else if (qla2x00_read_flash_byte(ha,
2397 iter + 3) == '/')
2398 do_next++;
2401 if (!do_next)
2402 break;
2404 /* Backtrack to previous ' ' (space). */
2405 do_next = 0;
2406 while ((iter > istart) && !do_next) {
2407 iter--;
2408 if (qla2x00_read_flash_byte(ha, iter) == ' ')
2409 do_next++;
2411 if (!do_next)
2412 break;
2415 * Mark end of version tag, and find previous ' ' (space) or
2416 * string length (recent FCODE images -- major hack ahead!!!).
2418 vend = iter - 1;
2419 do_next = 0;
2420 while ((iter > istart) && !do_next) {
2421 iter--;
2422 rbyte = qla2x00_read_flash_byte(ha, iter);
2423 if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2424 do_next++;
2426 if (!do_next)
2427 break;
2429 /* Mark beginning of version tag, and copy data. */
2430 iter++;
2431 if ((vend - iter) &&
2432 ((vend - iter) < sizeof(ha->fcode_revision))) {
2433 vbyte = ha->fcode_revision;
2434 while (iter <= vend) {
2435 *vbyte++ = qla2x00_read_flash_byte(ha, iter);
2436 iter++;
2438 ret = QLA_SUCCESS;
2440 } while (0);
2442 if (ret != QLA_SUCCESS)
2443 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2447 qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2449 int ret = QLA_SUCCESS;
2450 uint8_t code_type, last_image;
2451 uint32_t pcihdr, pcids;
2452 uint8_t *dbyte;
2453 uint16_t *dcode;
2454 struct qla_hw_data *ha = vha->hw;
2456 if (!ha->pio_address || !mbuf)
2457 return QLA_FUNCTION_FAILED;
2459 memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2460 memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2461 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2462 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2464 qla2x00_flash_enable(ha);
2466 /* Begin with first PCI expansion ROM header. */
2467 pcihdr = 0;
2468 last_image = 1;
2469 do {
2470 /* Verify PCI expansion ROM header. */
2471 if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2472 qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2473 /* No signature */
2474 DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
2475 "signature.\n"));
2476 ret = QLA_FUNCTION_FAILED;
2477 break;
2480 /* Locate PCI data structure. */
2481 pcids = pcihdr +
2482 ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2483 qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2485 /* Validate signature of PCI data structure. */
2486 if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2487 qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2488 qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2489 qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2490 /* Incorrect header. */
2491 DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
2492 "found pcir_adr=%x.\n", pcids));
2493 ret = QLA_FUNCTION_FAILED;
2494 break;
2497 /* Read version */
2498 code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2499 switch (code_type) {
2500 case ROM_CODE_TYPE_BIOS:
2501 /* Intel x86, PC-AT compatible. */
2502 ha->bios_revision[0] =
2503 qla2x00_read_flash_byte(ha, pcids + 0x12);
2504 ha->bios_revision[1] =
2505 qla2x00_read_flash_byte(ha, pcids + 0x13);
2506 DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2507 ha->bios_revision[1], ha->bios_revision[0]));
2508 break;
2509 case ROM_CODE_TYPE_FCODE:
2510 /* Open Firmware standard for PCI (FCode). */
2511 /* Eeeewww... */
2512 qla2x00_get_fcode_version(ha, pcids);
2513 break;
2514 case ROM_CODE_TYPE_EFI:
2515 /* Extensible Firmware Interface (EFI). */
2516 ha->efi_revision[0] =
2517 qla2x00_read_flash_byte(ha, pcids + 0x12);
2518 ha->efi_revision[1] =
2519 qla2x00_read_flash_byte(ha, pcids + 0x13);
2520 DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2521 ha->efi_revision[1], ha->efi_revision[0]));
2522 break;
2523 default:
2524 DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
2525 "type %x at pcids %x.\n", code_type, pcids));
2526 break;
2529 last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2531 /* Locate next PCI expansion ROM. */
2532 pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2533 qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2534 } while (!last_image);
2536 if (IS_QLA2322(ha)) {
2537 /* Read firmware image information. */
2538 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2539 dbyte = mbuf;
2540 memset(dbyte, 0, 8);
2541 dcode = (uint16_t *)dbyte;
2543 qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2545 DEBUG3(qla_printk(KERN_DEBUG, ha, "dumping fw ver from "
2546 "flash:\n"));
2547 DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));
2549 if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2550 dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2551 (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2552 dcode[3] == 0)) {
2553 DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
2554 "revision at %x.\n", ha->flt_region_fw * 4));
2555 } else {
2556 /* values are in big endian */
2557 ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2558 ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2559 ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2563 qla2x00_flash_disable(ha);
2565 return ret;
2569 qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2571 int ret = QLA_SUCCESS;
2572 uint32_t pcihdr, pcids;
2573 uint32_t *dcode;
2574 uint8_t *bcode;
2575 uint8_t code_type, last_image;
2576 int i;
2577 struct qla_hw_data *ha = vha->hw;
2579 if (!mbuf)
2580 return QLA_FUNCTION_FAILED;
2582 memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2583 memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2584 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2585 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2587 dcode = mbuf;
2589 /* Begin with first PCI expansion ROM header. */
2590 pcihdr = ha->flt_region_boot << 2;
2591 last_image = 1;
2592 do {
2593 /* Verify PCI expansion ROM header. */
2594 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
2595 bcode = mbuf + (pcihdr % 4);
2596 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2597 /* No signature */
2598 DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
2599 "signature.\n"));
2600 ret = QLA_FUNCTION_FAILED;
2601 break;
2604 /* Locate PCI data structure. */
2605 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2607 qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
2608 bcode = mbuf + (pcihdr % 4);
2610 /* Validate signature of PCI data structure. */
2611 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2612 bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2613 /* Incorrect header. */
2614 DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
2615 "found pcir_adr=%x.\n", pcids));
2616 ret = QLA_FUNCTION_FAILED;
2617 break;
2620 /* Read version */
2621 code_type = bcode[0x14];
2622 switch (code_type) {
2623 case ROM_CODE_TYPE_BIOS:
2624 /* Intel x86, PC-AT compatible. */
2625 ha->bios_revision[0] = bcode[0x12];
2626 ha->bios_revision[1] = bcode[0x13];
2627 DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2628 ha->bios_revision[1], ha->bios_revision[0]));
2629 break;
2630 case ROM_CODE_TYPE_FCODE:
2631 /* Open Firmware standard for PCI (FCode). */
2632 ha->fcode_revision[0] = bcode[0x12];
2633 ha->fcode_revision[1] = bcode[0x13];
2634 DEBUG3(qla_printk(KERN_DEBUG, ha, "read FCODE %d.%d.\n",
2635 ha->fcode_revision[1], ha->fcode_revision[0]));
2636 break;
2637 case ROM_CODE_TYPE_EFI:
2638 /* Extensible Firmware Interface (EFI). */
2639 ha->efi_revision[0] = bcode[0x12];
2640 ha->efi_revision[1] = bcode[0x13];
2641 DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2642 ha->efi_revision[1], ha->efi_revision[0]));
2643 break;
2644 default:
2645 DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
2646 "type %x at pcids %x.\n", code_type, pcids));
2647 break;
2650 last_image = bcode[0x15] & BIT_7;
2652 /* Locate next PCI expansion ROM. */
2653 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2654 } while (!last_image);
2656 /* Read firmware image information. */
2657 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2658 dcode = mbuf;
2660 qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
2661 for (i = 0; i < 4; i++)
2662 dcode[i] = be32_to_cpu(dcode[i]);
2664 if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2665 dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2666 (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2667 dcode[3] == 0)) {
2668 DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
2669 "revision at %x.\n", ha->flt_region_fw * 4));
2670 } else {
2671 ha->fw_revision[0] = dcode[0];
2672 ha->fw_revision[1] = dcode[1];
2673 ha->fw_revision[2] = dcode[2];
2674 ha->fw_revision[3] = dcode[3];
2677 return ret;
2680 static int
2681 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
2683 if (pos >= end || *pos != 0x82)
2684 return 0;
2686 pos += 3 + pos[1];
2687 if (pos >= end || *pos != 0x90)
2688 return 0;
2690 pos += 3 + pos[1];
2691 if (pos >= end || *pos != 0x78)
2692 return 0;
2694 return 1;
2698 qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
2700 struct qla_hw_data *ha = vha->hw;
2701 uint8_t *pos = ha->vpd;
2702 uint8_t *end = pos + ha->vpd_size;
2703 int len = 0;
2705 if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
2706 return 0;
2708 while (pos < end && *pos != 0x78) {
2709 len = (*pos == 0x82) ? pos[1] : pos[2];
2711 if (!strncmp(pos, key, strlen(key)))
2712 break;
2714 if (*pos != 0x90 && *pos != 0x91)
2715 pos += len;
2717 pos += 3;
2720 if (pos < end - len && *pos != 0x78)
2721 return snprintf(str, size, "%.*s", len, pos + 3);
2723 return 0;