2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/ioport.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/spi/spi.h>
28 #include <linux/workqueue.h>
29 #include <linux/delay.h>
30 #include <linux/clk.h>
31 #include <linux/gpio.h>
32 #include <linux/slab.h>
36 #include <asm/delay.h>
39 #include <mach/regs-ssp.h>
41 #include <mach/pxa2xx_spi.h>
43 MODULE_AUTHOR("Stephen Street");
44 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
45 MODULE_LICENSE("GPL");
46 MODULE_ALIAS("platform:pxa2xx-spi");
50 #define RX_THRESH_DFLT 8
51 #define TX_THRESH_DFLT 8
52 #define TIMOUT_DFLT 1000
54 #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
55 #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
56 #define IS_DMA_ALIGNED(x) ((((u32)(x)) & 0x07) == 0)
57 #define MAX_DMA_LEN 8191
58 #define DMA_ALIGNMENT 8
61 * for testing SSCR1 changes that require SSP restart, basically
62 * everything except the service and interrupt enables, the pxa270 developer
63 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
64 * list, but the PXA255 dev man says all bits without really meaning the
65 * service and interrupt enables
67 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
68 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
69 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
70 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
71 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
72 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
74 #define DEFINE_SSP_REG(reg, off) \
75 static inline u32 read_##reg(void const __iomem *p) \
76 { return __raw_readl(p + (off)); } \
78 static inline void write_##reg(u32 v, void __iomem *p) \
79 { __raw_writel(v, p + (off)); }
81 DEFINE_SSP_REG(SSCR0
, 0x00)
82 DEFINE_SSP_REG(SSCR1
, 0x04)
83 DEFINE_SSP_REG(SSSR
, 0x08)
84 DEFINE_SSP_REG(SSITR
, 0x0c)
85 DEFINE_SSP_REG(SSDR
, 0x10)
86 DEFINE_SSP_REG(SSTO
, 0x28)
87 DEFINE_SSP_REG(SSPSP
, 0x2c)
89 #define START_STATE ((void*)0)
90 #define RUNNING_STATE ((void*)1)
91 #define DONE_STATE ((void*)2)
92 #define ERROR_STATE ((void*)-1)
94 #define QUEUE_RUNNING 0
95 #define QUEUE_STOPPED 1
98 /* Driver model hookup */
99 struct platform_device
*pdev
;
102 struct ssp_device
*ssp
;
104 /* SPI framework hookup */
105 enum pxa_ssp_type ssp_type
;
106 struct spi_master
*master
;
109 struct pxa2xx_spi_master
*master_info
;
111 /* DMA setup stuff */
116 /* SSP register addresses */
117 void __iomem
*ioaddr
;
126 /* Driver message queue */
127 struct workqueue_struct
*workqueue
;
128 struct work_struct pump_messages
;
130 struct list_head queue
;
134 /* Message Transfer pump */
135 struct tasklet_struct pump_transfers
;
137 /* Current message transfer state info */
138 struct spi_message
* cur_msg
;
139 struct spi_transfer
* cur_transfer
;
140 struct chip_data
*cur_chip
;
153 int (*write
)(struct driver_data
*drv_data
);
154 int (*read
)(struct driver_data
*drv_data
);
155 irqreturn_t (*transfer_handler
)(struct driver_data
*drv_data
);
156 void (*cs_control
)(u32 command
);
173 int gpio_cs_inverted
;
174 int (*write
)(struct driver_data
*drv_data
);
175 int (*read
)(struct driver_data
*drv_data
);
176 void (*cs_control
)(u32 command
);
179 static void pump_messages(struct work_struct
*work
);
181 static void cs_assert(struct driver_data
*drv_data
)
183 struct chip_data
*chip
= drv_data
->cur_chip
;
185 if (chip
->cs_control
) {
186 chip
->cs_control(PXA2XX_CS_ASSERT
);
190 if (gpio_is_valid(chip
->gpio_cs
))
191 gpio_set_value(chip
->gpio_cs
, chip
->gpio_cs_inverted
);
194 static void cs_deassert(struct driver_data
*drv_data
)
196 struct chip_data
*chip
= drv_data
->cur_chip
;
198 if (chip
->cs_control
) {
199 chip
->cs_control(PXA2XX_CS_DEASSERT
);
203 if (gpio_is_valid(chip
->gpio_cs
))
204 gpio_set_value(chip
->gpio_cs
, !chip
->gpio_cs_inverted
);
207 static int flush(struct driver_data
*drv_data
)
209 unsigned long limit
= loops_per_jiffy
<< 1;
211 void __iomem
*reg
= drv_data
->ioaddr
;
214 while (read_SSSR(reg
) & SSSR_RNE
) {
217 } while ((read_SSSR(reg
) & SSSR_BSY
) && --limit
);
218 write_SSSR(SSSR_ROR
, reg
);
223 static int null_writer(struct driver_data
*drv_data
)
225 void __iomem
*reg
= drv_data
->ioaddr
;
226 u8 n_bytes
= drv_data
->n_bytes
;
228 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
229 || (drv_data
->tx
== drv_data
->tx_end
))
233 drv_data
->tx
+= n_bytes
;
238 static int null_reader(struct driver_data
*drv_data
)
240 void __iomem
*reg
= drv_data
->ioaddr
;
241 u8 n_bytes
= drv_data
->n_bytes
;
243 while ((read_SSSR(reg
) & SSSR_RNE
)
244 && (drv_data
->rx
< drv_data
->rx_end
)) {
246 drv_data
->rx
+= n_bytes
;
249 return drv_data
->rx
== drv_data
->rx_end
;
252 static int u8_writer(struct driver_data
*drv_data
)
254 void __iomem
*reg
= drv_data
->ioaddr
;
256 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
257 || (drv_data
->tx
== drv_data
->tx_end
))
260 write_SSDR(*(u8
*)(drv_data
->tx
), reg
);
266 static int u8_reader(struct driver_data
*drv_data
)
268 void __iomem
*reg
= drv_data
->ioaddr
;
270 while ((read_SSSR(reg
) & SSSR_RNE
)
271 && (drv_data
->rx
< drv_data
->rx_end
)) {
272 *(u8
*)(drv_data
->rx
) = read_SSDR(reg
);
276 return drv_data
->rx
== drv_data
->rx_end
;
279 static int u16_writer(struct driver_data
*drv_data
)
281 void __iomem
*reg
= drv_data
->ioaddr
;
283 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
284 || (drv_data
->tx
== drv_data
->tx_end
))
287 write_SSDR(*(u16
*)(drv_data
->tx
), reg
);
293 static int u16_reader(struct driver_data
*drv_data
)
295 void __iomem
*reg
= drv_data
->ioaddr
;
297 while ((read_SSSR(reg
) & SSSR_RNE
)
298 && (drv_data
->rx
< drv_data
->rx_end
)) {
299 *(u16
*)(drv_data
->rx
) = read_SSDR(reg
);
303 return drv_data
->rx
== drv_data
->rx_end
;
306 static int u32_writer(struct driver_data
*drv_data
)
308 void __iomem
*reg
= drv_data
->ioaddr
;
310 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
311 || (drv_data
->tx
== drv_data
->tx_end
))
314 write_SSDR(*(u32
*)(drv_data
->tx
), reg
);
320 static int u32_reader(struct driver_data
*drv_data
)
322 void __iomem
*reg
= drv_data
->ioaddr
;
324 while ((read_SSSR(reg
) & SSSR_RNE
)
325 && (drv_data
->rx
< drv_data
->rx_end
)) {
326 *(u32
*)(drv_data
->rx
) = read_SSDR(reg
);
330 return drv_data
->rx
== drv_data
->rx_end
;
333 static void *next_transfer(struct driver_data
*drv_data
)
335 struct spi_message
*msg
= drv_data
->cur_msg
;
336 struct spi_transfer
*trans
= drv_data
->cur_transfer
;
338 /* Move to next transfer */
339 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
340 drv_data
->cur_transfer
=
341 list_entry(trans
->transfer_list
.next
,
344 return RUNNING_STATE
;
349 static int map_dma_buffers(struct driver_data
*drv_data
)
351 struct spi_message
*msg
= drv_data
->cur_msg
;
352 struct device
*dev
= &msg
->spi
->dev
;
354 if (!drv_data
->cur_chip
->enable_dma
)
357 if (msg
->is_dma_mapped
)
358 return drv_data
->rx_dma
&& drv_data
->tx_dma
;
360 if (!IS_DMA_ALIGNED(drv_data
->rx
) || !IS_DMA_ALIGNED(drv_data
->tx
))
363 /* Modify setup if rx buffer is null */
364 if (drv_data
->rx
== NULL
) {
365 *drv_data
->null_dma_buf
= 0;
366 drv_data
->rx
= drv_data
->null_dma_buf
;
367 drv_data
->rx_map_len
= 4;
369 drv_data
->rx_map_len
= drv_data
->len
;
372 /* Modify setup if tx buffer is null */
373 if (drv_data
->tx
== NULL
) {
374 *drv_data
->null_dma_buf
= 0;
375 drv_data
->tx
= drv_data
->null_dma_buf
;
376 drv_data
->tx_map_len
= 4;
378 drv_data
->tx_map_len
= drv_data
->len
;
380 /* Stream map the tx buffer. Always do DMA_TO_DEVICE first
381 * so we flush the cache *before* invalidating it, in case
382 * the tx and rx buffers overlap.
384 drv_data
->tx_dma
= dma_map_single(dev
, drv_data
->tx
,
385 drv_data
->tx_map_len
, DMA_TO_DEVICE
);
386 if (dma_mapping_error(dev
, drv_data
->tx_dma
))
389 /* Stream map the rx buffer */
390 drv_data
->rx_dma
= dma_map_single(dev
, drv_data
->rx
,
391 drv_data
->rx_map_len
, DMA_FROM_DEVICE
);
392 if (dma_mapping_error(dev
, drv_data
->rx_dma
)) {
393 dma_unmap_single(dev
, drv_data
->tx_dma
,
394 drv_data
->tx_map_len
, DMA_TO_DEVICE
);
401 static void unmap_dma_buffers(struct driver_data
*drv_data
)
405 if (!drv_data
->dma_mapped
)
408 if (!drv_data
->cur_msg
->is_dma_mapped
) {
409 dev
= &drv_data
->cur_msg
->spi
->dev
;
410 dma_unmap_single(dev
, drv_data
->rx_dma
,
411 drv_data
->rx_map_len
, DMA_FROM_DEVICE
);
412 dma_unmap_single(dev
, drv_data
->tx_dma
,
413 drv_data
->tx_map_len
, DMA_TO_DEVICE
);
416 drv_data
->dma_mapped
= 0;
419 /* caller already set message->status; dma and pio irqs are blocked */
420 static void giveback(struct driver_data
*drv_data
)
422 struct spi_transfer
* last_transfer
;
424 struct spi_message
*msg
;
426 spin_lock_irqsave(&drv_data
->lock
, flags
);
427 msg
= drv_data
->cur_msg
;
428 drv_data
->cur_msg
= NULL
;
429 drv_data
->cur_transfer
= NULL
;
430 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
431 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
433 last_transfer
= list_entry(msg
->transfers
.prev
,
437 /* Delay if requested before any change in chip select */
438 if (last_transfer
->delay_usecs
)
439 udelay(last_transfer
->delay_usecs
);
441 /* Drop chip select UNLESS cs_change is true or we are returning
442 * a message with an error, or next message is for another chip
444 if (!last_transfer
->cs_change
)
445 cs_deassert(drv_data
);
447 struct spi_message
*next_msg
;
449 /* Holding of cs was hinted, but we need to make sure
450 * the next message is for the same chip. Don't waste
451 * time with the following tests unless this was hinted.
453 * We cannot postpone this until pump_messages, because
454 * after calling msg->complete (below) the driver that
455 * sent the current message could be unloaded, which
456 * could invalidate the cs_control() callback...
459 /* get a pointer to the next message, if any */
460 spin_lock_irqsave(&drv_data
->lock
, flags
);
461 if (list_empty(&drv_data
->queue
))
464 next_msg
= list_entry(drv_data
->queue
.next
,
465 struct spi_message
, queue
);
466 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
468 /* see if the next and current messages point
471 if (next_msg
&& next_msg
->spi
!= msg
->spi
)
473 if (!next_msg
|| msg
->state
== ERROR_STATE
)
474 cs_deassert(drv_data
);
479 msg
->complete(msg
->context
);
481 drv_data
->cur_chip
= NULL
;
484 static int wait_ssp_rx_stall(void const __iomem
*ioaddr
)
486 unsigned long limit
= loops_per_jiffy
<< 1;
488 while ((read_SSSR(ioaddr
) & SSSR_BSY
) && --limit
)
494 static int wait_dma_channel_stop(int channel
)
496 unsigned long limit
= loops_per_jiffy
<< 1;
498 while (!(DCSR(channel
) & DCSR_STOPSTATE
) && --limit
)
504 static void dma_error_stop(struct driver_data
*drv_data
, const char *msg
)
506 void __iomem
*reg
= drv_data
->ioaddr
;
509 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
510 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
511 write_SSSR(drv_data
->clear_sr
, reg
);
512 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->dma_cr1
, reg
);
513 if (drv_data
->ssp_type
!= PXA25x_SSP
)
516 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
518 unmap_dma_buffers(drv_data
);
520 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
522 drv_data
->cur_msg
->state
= ERROR_STATE
;
523 tasklet_schedule(&drv_data
->pump_transfers
);
526 static void dma_transfer_complete(struct driver_data
*drv_data
)
528 void __iomem
*reg
= drv_data
->ioaddr
;
529 struct spi_message
*msg
= drv_data
->cur_msg
;
531 /* Clear and disable interrupts on SSP and DMA channels*/
532 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->dma_cr1
, reg
);
533 write_SSSR(drv_data
->clear_sr
, reg
);
534 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
535 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
537 if (wait_dma_channel_stop(drv_data
->rx_channel
) == 0)
538 dev_err(&drv_data
->pdev
->dev
,
539 "dma_handler: dma rx channel stop failed\n");
541 if (wait_ssp_rx_stall(drv_data
->ioaddr
) == 0)
542 dev_err(&drv_data
->pdev
->dev
,
543 "dma_transfer: ssp rx stall failed\n");
545 unmap_dma_buffers(drv_data
);
547 /* update the buffer pointer for the amount completed in dma */
548 drv_data
->rx
+= drv_data
->len
-
549 (DCMD(drv_data
->rx_channel
) & DCMD_LENGTH
);
551 /* read trailing data from fifo, it does not matter how many
552 * bytes are in the fifo just read until buffer is full
553 * or fifo is empty, which ever occurs first */
554 drv_data
->read(drv_data
);
556 /* return count of what was actually read */
557 msg
->actual_length
+= drv_data
->len
-
558 (drv_data
->rx_end
- drv_data
->rx
);
560 /* Transfer delays and chip select release are
561 * handled in pump_transfers or giveback
564 /* Move to next transfer */
565 msg
->state
= next_transfer(drv_data
);
567 /* Schedule transfer tasklet */
568 tasklet_schedule(&drv_data
->pump_transfers
);
571 static void dma_handler(int channel
, void *data
)
573 struct driver_data
*drv_data
= data
;
574 u32 irq_status
= DCSR(channel
) & DMA_INT_MASK
;
576 if (irq_status
& DCSR_BUSERR
) {
578 if (channel
== drv_data
->tx_channel
)
579 dma_error_stop(drv_data
,
581 "bad bus address on tx channel");
583 dma_error_stop(drv_data
,
585 "bad bus address on rx channel");
589 /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
590 if ((channel
== drv_data
->tx_channel
)
591 && (irq_status
& DCSR_ENDINTR
)
592 && (drv_data
->ssp_type
== PXA25x_SSP
)) {
594 /* Wait for rx to stall */
595 if (wait_ssp_rx_stall(drv_data
->ioaddr
) == 0)
596 dev_err(&drv_data
->pdev
->dev
,
597 "dma_handler: ssp rx stall failed\n");
599 /* finish this transfer, start the next */
600 dma_transfer_complete(drv_data
);
604 static irqreturn_t
dma_transfer(struct driver_data
*drv_data
)
607 void __iomem
*reg
= drv_data
->ioaddr
;
609 irq_status
= read_SSSR(reg
) & drv_data
->mask_sr
;
610 if (irq_status
& SSSR_ROR
) {
611 dma_error_stop(drv_data
, "dma_transfer: fifo overrun");
615 /* Check for false positive timeout */
616 if ((irq_status
& SSSR_TINT
)
617 && (DCSR(drv_data
->tx_channel
) & DCSR_RUN
)) {
618 write_SSSR(SSSR_TINT
, reg
);
622 if (irq_status
& SSSR_TINT
|| drv_data
->rx
== drv_data
->rx_end
) {
624 /* Clear and disable timeout interrupt, do the rest in
625 * dma_transfer_complete */
626 if (drv_data
->ssp_type
!= PXA25x_SSP
)
629 /* finish this transfer, start the next */
630 dma_transfer_complete(drv_data
);
635 /* Opps problem detected */
639 static void int_error_stop(struct driver_data
*drv_data
, const char* msg
)
641 void __iomem
*reg
= drv_data
->ioaddr
;
643 /* Stop and reset SSP */
644 write_SSSR(drv_data
->clear_sr
, reg
);
645 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->int_cr1
, reg
);
646 if (drv_data
->ssp_type
!= PXA25x_SSP
)
649 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
651 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
653 drv_data
->cur_msg
->state
= ERROR_STATE
;
654 tasklet_schedule(&drv_data
->pump_transfers
);
657 static void int_transfer_complete(struct driver_data
*drv_data
)
659 void __iomem
*reg
= drv_data
->ioaddr
;
662 write_SSSR(drv_data
->clear_sr
, reg
);
663 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->int_cr1
, reg
);
664 if (drv_data
->ssp_type
!= PXA25x_SSP
)
667 /* Update total byte transfered return count actual bytes read */
668 drv_data
->cur_msg
->actual_length
+= drv_data
->len
-
669 (drv_data
->rx_end
- drv_data
->rx
);
671 /* Transfer delays and chip select release are
672 * handled in pump_transfers or giveback
675 /* Move to next transfer */
676 drv_data
->cur_msg
->state
= next_transfer(drv_data
);
678 /* Schedule transfer tasklet */
679 tasklet_schedule(&drv_data
->pump_transfers
);
682 static irqreturn_t
interrupt_transfer(struct driver_data
*drv_data
)
684 void __iomem
*reg
= drv_data
->ioaddr
;
686 u32 irq_mask
= (read_SSCR1(reg
) & SSCR1_TIE
) ?
687 drv_data
->mask_sr
: drv_data
->mask_sr
& ~SSSR_TFS
;
689 u32 irq_status
= read_SSSR(reg
) & irq_mask
;
691 if (irq_status
& SSSR_ROR
) {
692 int_error_stop(drv_data
, "interrupt_transfer: fifo overrun");
696 if (irq_status
& SSSR_TINT
) {
697 write_SSSR(SSSR_TINT
, reg
);
698 if (drv_data
->read(drv_data
)) {
699 int_transfer_complete(drv_data
);
704 /* Drain rx fifo, Fill tx fifo and prevent overruns */
706 if (drv_data
->read(drv_data
)) {
707 int_transfer_complete(drv_data
);
710 } while (drv_data
->write(drv_data
));
712 if (drv_data
->read(drv_data
)) {
713 int_transfer_complete(drv_data
);
717 if (drv_data
->tx
== drv_data
->tx_end
) {
718 write_SSCR1(read_SSCR1(reg
) & ~SSCR1_TIE
, reg
);
719 /* PXA25x_SSP has no timeout, read trailing bytes */
720 if (drv_data
->ssp_type
== PXA25x_SSP
) {
721 if (!wait_ssp_rx_stall(reg
))
723 int_error_stop(drv_data
, "interrupt_transfer: "
727 if (!drv_data
->read(drv_data
))
729 int_error_stop(drv_data
,
730 "interrupt_transfer: "
731 "trailing byte read failed");
734 int_transfer_complete(drv_data
);
738 /* We did something */
742 static irqreturn_t
ssp_int(int irq
, void *dev_id
)
744 struct driver_data
*drv_data
= dev_id
;
745 void __iomem
*reg
= drv_data
->ioaddr
;
747 if (!drv_data
->cur_msg
) {
749 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
750 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->int_cr1
, reg
);
751 if (drv_data
->ssp_type
!= PXA25x_SSP
)
753 write_SSSR(drv_data
->clear_sr
, reg
);
755 dev_err(&drv_data
->pdev
->dev
, "bad message state "
756 "in interrupt handler\n");
762 return drv_data
->transfer_handler(drv_data
);
765 static int set_dma_burst_and_threshold(struct chip_data
*chip
,
766 struct spi_device
*spi
,
767 u8 bits_per_word
, u32
*burst_code
,
770 struct pxa2xx_spi_chip
*chip_info
=
771 (struct pxa2xx_spi_chip
*)spi
->controller_data
;
778 /* Set the threshold (in registers) to equal the same amount of data
779 * as represented by burst size (in bytes). The computation below
780 * is (burst_size rounded up to nearest 8 byte, word or long word)
781 * divided by (bytes/register); the tx threshold is the inverse of
782 * the rx, so that there will always be enough data in the rx fifo
783 * to satisfy a burst, and there will always be enough space in the
784 * tx fifo to accept a burst (a tx burst will overwrite the fifo if
785 * there is not enough space), there must always remain enough empty
786 * space in the rx fifo for any data loaded to the tx fifo.
787 * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
788 * will be 8, or half the fifo;
789 * The threshold can only be set to 2, 4 or 8, but not 16, because
790 * to burst 16 to the tx fifo, the fifo would have to be empty;
791 * however, the minimum fifo trigger level is 1, and the tx will
792 * request service when the fifo is at this level, with only 15 spaces.
795 /* find bytes/word */
796 if (bits_per_word
<= 8)
798 else if (bits_per_word
<= 16)
803 /* use struct pxa2xx_spi_chip->dma_burst_size if available */
805 req_burst_size
= chip_info
->dma_burst_size
;
807 switch (chip
->dma_burst_size
) {
809 /* if the default burst size is not set,
811 chip
->dma_burst_size
= DCMD_BURST8
;
823 if (req_burst_size
<= 8) {
824 *burst_code
= DCMD_BURST8
;
826 } else if (req_burst_size
<= 16) {
827 if (bytes_per_word
== 1) {
828 /* don't burst more than 1/2 the fifo */
829 *burst_code
= DCMD_BURST8
;
833 *burst_code
= DCMD_BURST16
;
837 if (bytes_per_word
== 1) {
838 /* don't burst more than 1/2 the fifo */
839 *burst_code
= DCMD_BURST8
;
842 } else if (bytes_per_word
== 2) {
843 /* don't burst more than 1/2 the fifo */
844 *burst_code
= DCMD_BURST16
;
848 *burst_code
= DCMD_BURST32
;
853 thresh_words
= burst_bytes
/ bytes_per_word
;
855 /* thresh_words will be between 2 and 8 */
856 *threshold
= (SSCR1_RxTresh(thresh_words
) & SSCR1_RFT
)
857 | (SSCR1_TxTresh(16-thresh_words
) & SSCR1_TFT
);
862 static unsigned int ssp_get_clk_div(struct ssp_device
*ssp
, int rate
)
864 unsigned long ssp_clk
= clk_get_rate(ssp
->clk
);
866 if (ssp
->type
== PXA25x_SSP
)
867 return ((ssp_clk
/ (2 * rate
) - 1) & 0xff) << 8;
869 return ((ssp_clk
/ rate
- 1) & 0xfff) << 8;
872 static void pump_transfers(unsigned long data
)
874 struct driver_data
*drv_data
= (struct driver_data
*)data
;
875 struct spi_message
*message
= NULL
;
876 struct spi_transfer
*transfer
= NULL
;
877 struct spi_transfer
*previous
= NULL
;
878 struct chip_data
*chip
= NULL
;
879 struct ssp_device
*ssp
= drv_data
->ssp
;
880 void __iomem
*reg
= drv_data
->ioaddr
;
886 u32 dma_thresh
= drv_data
->cur_chip
->dma_threshold
;
887 u32 dma_burst
= drv_data
->cur_chip
->dma_burst_size
;
889 /* Get current state information */
890 message
= drv_data
->cur_msg
;
891 transfer
= drv_data
->cur_transfer
;
892 chip
= drv_data
->cur_chip
;
894 /* Handle for abort */
895 if (message
->state
== ERROR_STATE
) {
896 message
->status
= -EIO
;
901 /* Handle end of message */
902 if (message
->state
== DONE_STATE
) {
908 /* Delay if requested at end of transfer before CS change */
909 if (message
->state
== RUNNING_STATE
) {
910 previous
= list_entry(transfer
->transfer_list
.prev
,
913 if (previous
->delay_usecs
)
914 udelay(previous
->delay_usecs
);
916 /* Drop chip select only if cs_change is requested */
917 if (previous
->cs_change
)
918 cs_deassert(drv_data
);
921 /* Check for transfers that need multiple DMA segments */
922 if (transfer
->len
> MAX_DMA_LEN
&& chip
->enable_dma
) {
924 /* reject already-mapped transfers; PIO won't always work */
925 if (message
->is_dma_mapped
926 || transfer
->rx_dma
|| transfer
->tx_dma
) {
927 dev_err(&drv_data
->pdev
->dev
,
928 "pump_transfers: mapped transfer length "
929 "of %u is greater than %d\n",
930 transfer
->len
, MAX_DMA_LEN
);
931 message
->status
= -EINVAL
;
936 /* warn ... we force this to PIO mode */
937 if (printk_ratelimit())
938 dev_warn(&message
->spi
->dev
, "pump_transfers: "
939 "DMA disabled for transfer length %ld "
941 (long)drv_data
->len
, MAX_DMA_LEN
);
944 /* Setup the transfer state based on the type of transfer */
945 if (flush(drv_data
) == 0) {
946 dev_err(&drv_data
->pdev
->dev
, "pump_transfers: flush failed\n");
947 message
->status
= -EIO
;
951 drv_data
->n_bytes
= chip
->n_bytes
;
952 drv_data
->dma_width
= chip
->dma_width
;
953 drv_data
->tx
= (void *)transfer
->tx_buf
;
954 drv_data
->tx_end
= drv_data
->tx
+ transfer
->len
;
955 drv_data
->rx
= transfer
->rx_buf
;
956 drv_data
->rx_end
= drv_data
->rx
+ transfer
->len
;
957 drv_data
->rx_dma
= transfer
->rx_dma
;
958 drv_data
->tx_dma
= transfer
->tx_dma
;
959 drv_data
->len
= transfer
->len
& DCMD_LENGTH
;
960 drv_data
->write
= drv_data
->tx
? chip
->write
: null_writer
;
961 drv_data
->read
= drv_data
->rx
? chip
->read
: null_reader
;
963 /* Change speed and bit per word on a per transfer */
965 if (transfer
->speed_hz
|| transfer
->bits_per_word
) {
967 bits
= chip
->bits_per_word
;
968 speed
= chip
->speed_hz
;
970 if (transfer
->speed_hz
)
971 speed
= transfer
->speed_hz
;
973 if (transfer
->bits_per_word
)
974 bits
= transfer
->bits_per_word
;
976 clk_div
= ssp_get_clk_div(ssp
, speed
);
979 drv_data
->n_bytes
= 1;
980 drv_data
->dma_width
= DCMD_WIDTH1
;
981 drv_data
->read
= drv_data
->read
!= null_reader
?
982 u8_reader
: null_reader
;
983 drv_data
->write
= drv_data
->write
!= null_writer
?
984 u8_writer
: null_writer
;
985 } else if (bits
<= 16) {
986 drv_data
->n_bytes
= 2;
987 drv_data
->dma_width
= DCMD_WIDTH2
;
988 drv_data
->read
= drv_data
->read
!= null_reader
?
989 u16_reader
: null_reader
;
990 drv_data
->write
= drv_data
->write
!= null_writer
?
991 u16_writer
: null_writer
;
992 } else if (bits
<= 32) {
993 drv_data
->n_bytes
= 4;
994 drv_data
->dma_width
= DCMD_WIDTH4
;
995 drv_data
->read
= drv_data
->read
!= null_reader
?
996 u32_reader
: null_reader
;
997 drv_data
->write
= drv_data
->write
!= null_writer
?
998 u32_writer
: null_writer
;
1000 /* if bits/word is changed in dma mode, then must check the
1001 * thresholds and burst also */
1002 if (chip
->enable_dma
) {
1003 if (set_dma_burst_and_threshold(chip
, message
->spi
,
1006 if (printk_ratelimit())
1007 dev_warn(&message
->spi
->dev
,
1009 "DMA burst size reduced to "
1010 "match bits_per_word\n");
1015 | SSCR0_DataSize(bits
> 16 ? bits
- 16 : bits
)
1017 | (bits
> 16 ? SSCR0_EDSS
: 0);
1020 message
->state
= RUNNING_STATE
;
1022 /* Try to map dma buffer and do a dma transfer if successful, but
1023 * only if the length is non-zero and less than MAX_DMA_LEN.
1025 * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
1026 * of PIO instead. Care is needed above because the transfer may
1027 * have have been passed with buffers that are already dma mapped.
1028 * A zero-length transfer in PIO mode will not try to write/read
1029 * to/from the buffers
1031 * REVISIT large transfers are exactly where we most want to be
1032 * using DMA. If this happens much, split those transfers into
1033 * multiple DMA segments rather than forcing PIO.
1035 drv_data
->dma_mapped
= 0;
1036 if (drv_data
->len
> 0 && drv_data
->len
<= MAX_DMA_LEN
)
1037 drv_data
->dma_mapped
= map_dma_buffers(drv_data
);
1038 if (drv_data
->dma_mapped
) {
1040 /* Ensure we have the correct interrupt handler */
1041 drv_data
->transfer_handler
= dma_transfer
;
1043 /* Setup rx DMA Channel */
1044 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
1045 DSADR(drv_data
->rx_channel
) = drv_data
->ssdr_physical
;
1046 DTADR(drv_data
->rx_channel
) = drv_data
->rx_dma
;
1047 if (drv_data
->rx
== drv_data
->null_dma_buf
)
1048 /* No target address increment */
1049 DCMD(drv_data
->rx_channel
) = DCMD_FLOWSRC
1050 | drv_data
->dma_width
1054 DCMD(drv_data
->rx_channel
) = DCMD_INCTRGADDR
1056 | drv_data
->dma_width
1060 /* Setup tx DMA Channel */
1061 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
1062 DSADR(drv_data
->tx_channel
) = drv_data
->tx_dma
;
1063 DTADR(drv_data
->tx_channel
) = drv_data
->ssdr_physical
;
1064 if (drv_data
->tx
== drv_data
->null_dma_buf
)
1065 /* No source address increment */
1066 DCMD(drv_data
->tx_channel
) = DCMD_FLOWTRG
1067 | drv_data
->dma_width
1071 DCMD(drv_data
->tx_channel
) = DCMD_INCSRCADDR
1073 | drv_data
->dma_width
1077 /* Enable dma end irqs on SSP to detect end of transfer */
1078 if (drv_data
->ssp_type
== PXA25x_SSP
)
1079 DCMD(drv_data
->tx_channel
) |= DCMD_ENDIRQEN
;
1081 /* Clear status and start DMA engine */
1082 cr1
= chip
->cr1
| dma_thresh
| drv_data
->dma_cr1
;
1083 write_SSSR(drv_data
->clear_sr
, reg
);
1084 DCSR(drv_data
->rx_channel
) |= DCSR_RUN
;
1085 DCSR(drv_data
->tx_channel
) |= DCSR_RUN
;
1087 /* Ensure we have the correct interrupt handler */
1088 drv_data
->transfer_handler
= interrupt_transfer
;
1091 cr1
= chip
->cr1
| chip
->threshold
| drv_data
->int_cr1
;
1092 write_SSSR(drv_data
->clear_sr
, reg
);
1095 /* see if we need to reload the config registers */
1096 if ((read_SSCR0(reg
) != cr0
)
1097 || (read_SSCR1(reg
) & SSCR1_CHANGE_MASK
) !=
1098 (cr1
& SSCR1_CHANGE_MASK
)) {
1100 /* stop the SSP, and update the other bits */
1101 write_SSCR0(cr0
& ~SSCR0_SSE
, reg
);
1102 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1103 write_SSTO(chip
->timeout
, reg
);
1104 /* first set CR1 without interrupt and service enables */
1105 write_SSCR1(cr1
& SSCR1_CHANGE_MASK
, reg
);
1106 /* restart the SSP */
1107 write_SSCR0(cr0
, reg
);
1110 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1111 write_SSTO(chip
->timeout
, reg
);
1114 cs_assert(drv_data
);
1116 /* after chip select, release the data by enabling service
1117 * requests and interrupts, without changing any mode bits */
1118 write_SSCR1(cr1
, reg
);
1121 static void pump_messages(struct work_struct
*work
)
1123 struct driver_data
*drv_data
=
1124 container_of(work
, struct driver_data
, pump_messages
);
1125 unsigned long flags
;
1127 /* Lock queue and check for queue work */
1128 spin_lock_irqsave(&drv_data
->lock
, flags
);
1129 if (list_empty(&drv_data
->queue
) || drv_data
->run
== QUEUE_STOPPED
) {
1131 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1135 /* Make sure we are not already running a message */
1136 if (drv_data
->cur_msg
) {
1137 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1141 /* Extract head of queue */
1142 drv_data
->cur_msg
= list_entry(drv_data
->queue
.next
,
1143 struct spi_message
, queue
);
1144 list_del_init(&drv_data
->cur_msg
->queue
);
1146 /* Initial message state*/
1147 drv_data
->cur_msg
->state
= START_STATE
;
1148 drv_data
->cur_transfer
= list_entry(drv_data
->cur_msg
->transfers
.next
,
1149 struct spi_transfer
,
1152 /* prepare to setup the SSP, in pump_transfers, using the per
1153 * chip configuration */
1154 drv_data
->cur_chip
= spi_get_ctldata(drv_data
->cur_msg
->spi
);
1156 /* Mark as busy and launch transfers */
1157 tasklet_schedule(&drv_data
->pump_transfers
);
1160 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1163 static int transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1165 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1166 unsigned long flags
;
1168 spin_lock_irqsave(&drv_data
->lock
, flags
);
1170 if (drv_data
->run
== QUEUE_STOPPED
) {
1171 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1175 msg
->actual_length
= 0;
1176 msg
->status
= -EINPROGRESS
;
1177 msg
->state
= START_STATE
;
1179 list_add_tail(&msg
->queue
, &drv_data
->queue
);
1181 if (drv_data
->run
== QUEUE_RUNNING
&& !drv_data
->busy
)
1182 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
1184 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1189 static int setup_cs(struct spi_device
*spi
, struct chip_data
*chip
,
1190 struct pxa2xx_spi_chip
*chip_info
)
1194 if (chip
== NULL
|| chip_info
== NULL
)
1197 /* NOTE: setup() can be called multiple times, possibly with
1198 * different chip_info, release previously requested GPIO
1200 if (gpio_is_valid(chip
->gpio_cs
))
1201 gpio_free(chip
->gpio_cs
);
1203 /* If (*cs_control) is provided, ignore GPIO chip select */
1204 if (chip_info
->cs_control
) {
1205 chip
->cs_control
= chip_info
->cs_control
;
1209 if (gpio_is_valid(chip_info
->gpio_cs
)) {
1210 err
= gpio_request(chip_info
->gpio_cs
, "SPI_CS");
1212 dev_err(&spi
->dev
, "failed to request chip select "
1213 "GPIO%d\n", chip_info
->gpio_cs
);
1217 chip
->gpio_cs
= chip_info
->gpio_cs
;
1218 chip
->gpio_cs_inverted
= spi
->mode
& SPI_CS_HIGH
;
1220 err
= gpio_direction_output(chip
->gpio_cs
,
1221 !chip
->gpio_cs_inverted
);
1227 static int setup(struct spi_device
*spi
)
1229 struct pxa2xx_spi_chip
*chip_info
= NULL
;
1230 struct chip_data
*chip
;
1231 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1232 struct ssp_device
*ssp
= drv_data
->ssp
;
1233 unsigned int clk_div
;
1234 uint tx_thres
= TX_THRESH_DFLT
;
1235 uint rx_thres
= RX_THRESH_DFLT
;
1237 if (drv_data
->ssp_type
!= PXA25x_SSP
1238 && (spi
->bits_per_word
< 4 || spi
->bits_per_word
> 32)) {
1239 dev_err(&spi
->dev
, "failed setup: ssp_type=%d, bits/wrd=%d "
1240 "b/w not 4-32 for type non-PXA25x_SSP\n",
1241 drv_data
->ssp_type
, spi
->bits_per_word
);
1244 else if (drv_data
->ssp_type
== PXA25x_SSP
1245 && (spi
->bits_per_word
< 4
1246 || spi
->bits_per_word
> 16)) {
1247 dev_err(&spi
->dev
, "failed setup: ssp_type=%d, bits/wrd=%d "
1248 "b/w not 4-16 for type PXA25x_SSP\n",
1249 drv_data
->ssp_type
, spi
->bits_per_word
);
1253 /* Only alloc on first setup */
1254 chip
= spi_get_ctldata(spi
);
1256 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1259 "failed setup: can't allocate chip data\n");
1264 chip
->enable_dma
= 0;
1265 chip
->timeout
= TIMOUT_DFLT
;
1266 chip
->dma_burst_size
= drv_data
->master_info
->enable_dma
?
1270 /* protocol drivers may change the chip settings, so...
1271 * if chip_info exists, use it */
1272 chip_info
= spi
->controller_data
;
1274 /* chip_info isn't always needed */
1277 if (chip_info
->timeout
)
1278 chip
->timeout
= chip_info
->timeout
;
1279 if (chip_info
->tx_threshold
)
1280 tx_thres
= chip_info
->tx_threshold
;
1281 if (chip_info
->rx_threshold
)
1282 rx_thres
= chip_info
->rx_threshold
;
1283 chip
->enable_dma
= drv_data
->master_info
->enable_dma
;
1284 chip
->dma_threshold
= 0;
1285 if (chip_info
->enable_loopback
)
1286 chip
->cr1
= SSCR1_LBM
;
1289 chip
->threshold
= (SSCR1_RxTresh(rx_thres
) & SSCR1_RFT
) |
1290 (SSCR1_TxTresh(tx_thres
) & SSCR1_TFT
);
1292 /* set dma burst and threshold outside of chip_info path so that if
1293 * chip_info goes away after setting chip->enable_dma, the
1294 * burst and threshold can still respond to changes in bits_per_word */
1295 if (chip
->enable_dma
) {
1296 /* set up legal burst and threshold for dma */
1297 if (set_dma_burst_and_threshold(chip
, spi
, spi
->bits_per_word
,
1298 &chip
->dma_burst_size
,
1299 &chip
->dma_threshold
)) {
1300 dev_warn(&spi
->dev
, "in setup: DMA burst size reduced "
1301 "to match bits_per_word\n");
1305 clk_div
= ssp_get_clk_div(ssp
, spi
->max_speed_hz
);
1306 chip
->speed_hz
= spi
->max_speed_hz
;
1310 | SSCR0_DataSize(spi
->bits_per_word
> 16 ?
1311 spi
->bits_per_word
- 16 : spi
->bits_per_word
)
1313 | (spi
->bits_per_word
> 16 ? SSCR0_EDSS
: 0);
1314 chip
->cr1
&= ~(SSCR1_SPO
| SSCR1_SPH
);
1315 chip
->cr1
|= (((spi
->mode
& SPI_CPHA
) != 0) ? SSCR1_SPH
: 0)
1316 | (((spi
->mode
& SPI_CPOL
) != 0) ? SSCR1_SPO
: 0);
1318 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1319 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1320 dev_dbg(&spi
->dev
, "%ld Hz actual, %s\n",
1321 clk_get_rate(ssp
->clk
)
1322 / (1 + ((chip
->cr0
& SSCR0_SCR
) >> 8)),
1323 chip
->enable_dma
? "DMA" : "PIO");
1325 dev_dbg(&spi
->dev
, "%ld Hz actual, %s\n",
1326 clk_get_rate(ssp
->clk
) / 2
1327 / (1 + ((chip
->cr0
& SSCR0_SCR
) >> 8)),
1328 chip
->enable_dma
? "DMA" : "PIO");
1330 if (spi
->bits_per_word
<= 8) {
1332 chip
->dma_width
= DCMD_WIDTH1
;
1333 chip
->read
= u8_reader
;
1334 chip
->write
= u8_writer
;
1335 } else if (spi
->bits_per_word
<= 16) {
1337 chip
->dma_width
= DCMD_WIDTH2
;
1338 chip
->read
= u16_reader
;
1339 chip
->write
= u16_writer
;
1340 } else if (spi
->bits_per_word
<= 32) {
1341 chip
->cr0
|= SSCR0_EDSS
;
1343 chip
->dma_width
= DCMD_WIDTH4
;
1344 chip
->read
= u32_reader
;
1345 chip
->write
= u32_writer
;
1347 dev_err(&spi
->dev
, "invalid wordsize\n");
1350 chip
->bits_per_word
= spi
->bits_per_word
;
1352 spi_set_ctldata(spi
, chip
);
1354 return setup_cs(spi
, chip
, chip_info
);
1357 static void cleanup(struct spi_device
*spi
)
1359 struct chip_data
*chip
= spi_get_ctldata(spi
);
1364 if (gpio_is_valid(chip
->gpio_cs
))
1365 gpio_free(chip
->gpio_cs
);
1370 static int __init
init_queue(struct driver_data
*drv_data
)
1372 INIT_LIST_HEAD(&drv_data
->queue
);
1373 spin_lock_init(&drv_data
->lock
);
1375 drv_data
->run
= QUEUE_STOPPED
;
1378 tasklet_init(&drv_data
->pump_transfers
,
1379 pump_transfers
, (unsigned long)drv_data
);
1381 INIT_WORK(&drv_data
->pump_messages
, pump_messages
);
1382 drv_data
->workqueue
= create_singlethread_workqueue(
1383 dev_name(drv_data
->master
->dev
.parent
));
1384 if (drv_data
->workqueue
== NULL
)
1390 static int start_queue(struct driver_data
*drv_data
)
1392 unsigned long flags
;
1394 spin_lock_irqsave(&drv_data
->lock
, flags
);
1396 if (drv_data
->run
== QUEUE_RUNNING
|| drv_data
->busy
) {
1397 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1401 drv_data
->run
= QUEUE_RUNNING
;
1402 drv_data
->cur_msg
= NULL
;
1403 drv_data
->cur_transfer
= NULL
;
1404 drv_data
->cur_chip
= NULL
;
1405 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1407 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
1412 static int stop_queue(struct driver_data
*drv_data
)
1414 unsigned long flags
;
1415 unsigned limit
= 500;
1418 spin_lock_irqsave(&drv_data
->lock
, flags
);
1420 /* This is a bit lame, but is optimized for the common execution path.
1421 * A wait_queue on the drv_data->busy could be used, but then the common
1422 * execution path (pump_messages) would be required to call wake_up or
1423 * friends on every SPI message. Do this instead */
1424 drv_data
->run
= QUEUE_STOPPED
;
1425 while (!list_empty(&drv_data
->queue
) && drv_data
->busy
&& limit
--) {
1426 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1428 spin_lock_irqsave(&drv_data
->lock
, flags
);
1431 if (!list_empty(&drv_data
->queue
) || drv_data
->busy
)
1434 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1439 static int destroy_queue(struct driver_data
*drv_data
)
1443 status
= stop_queue(drv_data
);
1444 /* we are unloading the module or failing to load (only two calls
1445 * to this routine), and neither call can handle a return value.
1446 * However, destroy_workqueue calls flush_workqueue, and that will
1447 * block until all work is done. If the reason that stop_queue
1448 * timed out is that the work will never finish, then it does no
1449 * good to call destroy_workqueue, so return anyway. */
1453 destroy_workqueue(drv_data
->workqueue
);
1458 static int __init
pxa2xx_spi_probe(struct platform_device
*pdev
)
1460 struct device
*dev
= &pdev
->dev
;
1461 struct pxa2xx_spi_master
*platform_info
;
1462 struct spi_master
*master
;
1463 struct driver_data
*drv_data
;
1464 struct ssp_device
*ssp
;
1467 platform_info
= dev
->platform_data
;
1469 ssp
= ssp_request(pdev
->id
, pdev
->name
);
1471 dev_err(&pdev
->dev
, "failed to request SSP%d\n", pdev
->id
);
1475 /* Allocate master with space for drv_data and null dma buffer */
1476 master
= spi_alloc_master(dev
, sizeof(struct driver_data
) + 16);
1478 dev_err(&pdev
->dev
, "cannot alloc spi_master\n");
1482 drv_data
= spi_master_get_devdata(master
);
1483 drv_data
->master
= master
;
1484 drv_data
->master_info
= platform_info
;
1485 drv_data
->pdev
= pdev
;
1486 drv_data
->ssp
= ssp
;
1488 /* the spi->mode bits understood by this driver: */
1489 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
1491 master
->bus_num
= pdev
->id
;
1492 master
->num_chipselect
= platform_info
->num_chipselect
;
1493 master
->dma_alignment
= DMA_ALIGNMENT
;
1494 master
->cleanup
= cleanup
;
1495 master
->setup
= setup
;
1496 master
->transfer
= transfer
;
1498 drv_data
->ssp_type
= ssp
->type
;
1499 drv_data
->null_dma_buf
= (u32
*)ALIGN((u32
)(drv_data
+
1500 sizeof(struct driver_data
)), 8);
1502 drv_data
->ioaddr
= ssp
->mmio_base
;
1503 drv_data
->ssdr_physical
= ssp
->phys_base
+ SSDR
;
1504 if (ssp
->type
== PXA25x_SSP
) {
1505 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
;
1506 drv_data
->dma_cr1
= 0;
1507 drv_data
->clear_sr
= SSSR_ROR
;
1508 drv_data
->mask_sr
= SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1510 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
| SSCR1_TINTE
;
1511 drv_data
->dma_cr1
= SSCR1_TSRE
| SSCR1_RSRE
| SSCR1_TINTE
;
1512 drv_data
->clear_sr
= SSSR_ROR
| SSSR_TINT
;
1513 drv_data
->mask_sr
= SSSR_TINT
| SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1516 status
= request_irq(ssp
->irq
, ssp_int
, 0, dev_name(dev
), drv_data
);
1518 dev_err(&pdev
->dev
, "cannot get IRQ %d\n", ssp
->irq
);
1519 goto out_error_master_alloc
;
1522 /* Setup DMA if requested */
1523 drv_data
->tx_channel
= -1;
1524 drv_data
->rx_channel
= -1;
1525 if (platform_info
->enable_dma
) {
1527 /* Get two DMA channels (rx and tx) */
1528 drv_data
->rx_channel
= pxa_request_dma("pxa2xx_spi_ssp_rx",
1532 if (drv_data
->rx_channel
< 0) {
1533 dev_err(dev
, "problem (%d) requesting rx channel\n",
1534 drv_data
->rx_channel
);
1536 goto out_error_irq_alloc
;
1538 drv_data
->tx_channel
= pxa_request_dma("pxa2xx_spi_ssp_tx",
1542 if (drv_data
->tx_channel
< 0) {
1543 dev_err(dev
, "problem (%d) requesting tx channel\n",
1544 drv_data
->tx_channel
);
1546 goto out_error_dma_alloc
;
1549 DRCMR(ssp
->drcmr_rx
) = DRCMR_MAPVLD
| drv_data
->rx_channel
;
1550 DRCMR(ssp
->drcmr_tx
) = DRCMR_MAPVLD
| drv_data
->tx_channel
;
1553 /* Enable SOC clock */
1554 clk_enable(ssp
->clk
);
1556 /* Load default SSP configuration */
1557 write_SSCR0(0, drv_data
->ioaddr
);
1558 write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT
) |
1559 SSCR1_TxTresh(TX_THRESH_DFLT
),
1561 write_SSCR0(SSCR0_SerClkDiv(2)
1563 | SSCR0_DataSize(8),
1565 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1566 write_SSTO(0, drv_data
->ioaddr
);
1567 write_SSPSP(0, drv_data
->ioaddr
);
1569 /* Initial and start queue */
1570 status
= init_queue(drv_data
);
1572 dev_err(&pdev
->dev
, "problem initializing queue\n");
1573 goto out_error_clock_enabled
;
1575 status
= start_queue(drv_data
);
1577 dev_err(&pdev
->dev
, "problem starting queue\n");
1578 goto out_error_clock_enabled
;
1581 /* Register with the SPI framework */
1582 platform_set_drvdata(pdev
, drv_data
);
1583 status
= spi_register_master(master
);
1585 dev_err(&pdev
->dev
, "problem registering spi master\n");
1586 goto out_error_queue_alloc
;
1591 out_error_queue_alloc
:
1592 destroy_queue(drv_data
);
1594 out_error_clock_enabled
:
1595 clk_disable(ssp
->clk
);
1597 out_error_dma_alloc
:
1598 if (drv_data
->tx_channel
!= -1)
1599 pxa_free_dma(drv_data
->tx_channel
);
1600 if (drv_data
->rx_channel
!= -1)
1601 pxa_free_dma(drv_data
->rx_channel
);
1603 out_error_irq_alloc
:
1604 free_irq(ssp
->irq
, drv_data
);
1606 out_error_master_alloc
:
1607 spi_master_put(master
);
1612 static int pxa2xx_spi_remove(struct platform_device
*pdev
)
1614 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1615 struct ssp_device
*ssp
;
1620 ssp
= drv_data
->ssp
;
1622 /* Remove the queue */
1623 status
= destroy_queue(drv_data
);
1625 /* the kernel does not check the return status of this
1626 * this routine (mod->exit, within the kernel). Therefore
1627 * nothing is gained by returning from here, the module is
1628 * going away regardless, and we should not leave any more
1629 * resources allocated than necessary. We cannot free the
1630 * message memory in drv_data->queue, but we can release the
1631 * resources below. I think the kernel should honor -EBUSY
1633 dev_err(&pdev
->dev
, "pxa2xx_spi_remove: workqueue will not "
1634 "complete, message memory not freed\n");
1636 /* Disable the SSP at the peripheral and SOC level */
1637 write_SSCR0(0, drv_data
->ioaddr
);
1638 clk_disable(ssp
->clk
);
1641 if (drv_data
->master_info
->enable_dma
) {
1642 DRCMR(ssp
->drcmr_rx
) = 0;
1643 DRCMR(ssp
->drcmr_tx
) = 0;
1644 pxa_free_dma(drv_data
->tx_channel
);
1645 pxa_free_dma(drv_data
->rx_channel
);
1649 free_irq(ssp
->irq
, drv_data
);
1654 /* Disconnect from the SPI framework */
1655 spi_unregister_master(drv_data
->master
);
1657 /* Prevent double remove */
1658 platform_set_drvdata(pdev
, NULL
);
1663 static void pxa2xx_spi_shutdown(struct platform_device
*pdev
)
1667 if ((status
= pxa2xx_spi_remove(pdev
)) != 0)
1668 dev_err(&pdev
->dev
, "shutdown failed with %d\n", status
);
1672 static int pxa2xx_spi_suspend(struct device
*dev
)
1674 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1675 struct ssp_device
*ssp
= drv_data
->ssp
;
1678 status
= stop_queue(drv_data
);
1681 write_SSCR0(0, drv_data
->ioaddr
);
1682 clk_disable(ssp
->clk
);
1687 static int pxa2xx_spi_resume(struct device
*dev
)
1689 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1690 struct ssp_device
*ssp
= drv_data
->ssp
;
1693 if (drv_data
->rx_channel
!= -1)
1694 DRCMR(drv_data
->ssp
->drcmr_rx
) =
1695 DRCMR_MAPVLD
| drv_data
->rx_channel
;
1696 if (drv_data
->tx_channel
!= -1)
1697 DRCMR(drv_data
->ssp
->drcmr_tx
) =
1698 DRCMR_MAPVLD
| drv_data
->tx_channel
;
1700 /* Enable the SSP clock */
1701 clk_enable(ssp
->clk
);
1703 /* Start the queue running */
1704 status
= start_queue(drv_data
);
1706 dev_err(dev
, "problem starting queue (%d)\n", status
);
1713 static const struct dev_pm_ops pxa2xx_spi_pm_ops
= {
1714 .suspend
= pxa2xx_spi_suspend
,
1715 .resume
= pxa2xx_spi_resume
,
1719 static struct platform_driver driver
= {
1721 .name
= "pxa2xx-spi",
1722 .owner
= THIS_MODULE
,
1724 .pm
= &pxa2xx_spi_pm_ops
,
1727 .remove
= pxa2xx_spi_remove
,
1728 .shutdown
= pxa2xx_spi_shutdown
,
1731 static int __init
pxa2xx_spi_init(void)
1733 return platform_driver_probe(&driver
, pxa2xx_spi_probe
);
1735 subsys_initcall(pxa2xx_spi_init
);
1737 static void __exit
pxa2xx_spi_exit(void)
1739 platform_driver_unregister(&driver
);
1741 module_exit(pxa2xx_spi_exit
);