2 * message.c - synchronous message handling
5 #include <linux/pci.h> /* for scatterlist macros */
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/nls.h>
14 #include <linux/device.h>
15 #include <linux/scatterlist.h>
16 #include <linux/usb/quirks.h>
17 #include <asm/byteorder.h>
19 #include "hcd.h" /* for usbcore internals */
22 static void cancel_async_set_config(struct usb_device
*udev
);
25 struct completion done
;
29 static void usb_api_blocking_completion(struct urb
*urb
)
31 struct api_context
*ctx
= urb
->context
;
33 ctx
->status
= urb
->status
;
39 * Starts urb and waits for completion or timeout. Note that this call
40 * is NOT interruptible. Many device driver i/o requests should be
41 * interruptible and therefore these drivers should implement their
42 * own interruptible routines.
44 static int usb_start_wait_urb(struct urb
*urb
, int timeout
, int *actual_length
)
46 struct api_context ctx
;
50 init_completion(&ctx
.done
);
52 urb
->actual_length
= 0;
53 retval
= usb_submit_urb(urb
, GFP_NOIO
);
57 expire
= timeout
? msecs_to_jiffies(timeout
) : MAX_SCHEDULE_TIMEOUT
;
58 if (!wait_for_completion_timeout(&ctx
.done
, expire
)) {
60 retval
= (ctx
.status
== -ENOENT
? -ETIMEDOUT
: ctx
.status
);
62 dev_dbg(&urb
->dev
->dev
,
63 "%s timed out on ep%d%s len=%u/%u\n",
65 usb_endpoint_num(&urb
->ep
->desc
),
66 usb_urb_dir_in(urb
) ? "in" : "out",
68 urb
->transfer_buffer_length
);
73 *actual_length
= urb
->actual_length
;
79 /*-------------------------------------------------------------------*/
80 /* returns status (negative) or length (positive) */
81 static int usb_internal_control_msg(struct usb_device
*usb_dev
,
83 struct usb_ctrlrequest
*cmd
,
84 void *data
, int len
, int timeout
)
90 urb
= usb_alloc_urb(0, GFP_NOIO
);
94 usb_fill_control_urb(urb
, usb_dev
, pipe
, (unsigned char *)cmd
, data
,
95 len
, usb_api_blocking_completion
, NULL
);
97 retv
= usb_start_wait_urb(urb
, timeout
, &length
);
105 * usb_control_msg - Builds a control urb, sends it off and waits for completion
106 * @dev: pointer to the usb device to send the message to
107 * @pipe: endpoint "pipe" to send the message to
108 * @request: USB message request value
109 * @requesttype: USB message request type value
110 * @value: USB message value
111 * @index: USB message index value
112 * @data: pointer to the data to send
113 * @size: length in bytes of the data to send
114 * @timeout: time in msecs to wait for the message to complete before timing
115 * out (if 0 the wait is forever)
117 * Context: !in_interrupt ()
119 * This function sends a simple control message to a specified endpoint and
120 * waits for the message to complete, or timeout.
122 * If successful, it returns the number of bytes transferred, otherwise a
123 * negative error number.
125 * Don't use this function from within an interrupt context, like a bottom half
126 * handler. If you need an asynchronous message, or need to send a message
127 * from within interrupt context, use usb_submit_urb().
128 * If a thread in your driver uses this call, make sure your disconnect()
129 * method can wait for it to complete. Since you don't have a handle on the
130 * URB used, you can't cancel the request.
132 int usb_control_msg(struct usb_device
*dev
, unsigned int pipe
, __u8 request
,
133 __u8 requesttype
, __u16 value
, __u16 index
, void *data
,
134 __u16 size
, int timeout
)
136 struct usb_ctrlrequest
*dr
;
139 dr
= kmalloc(sizeof(struct usb_ctrlrequest
), GFP_NOIO
);
143 dr
->bRequestType
= requesttype
;
144 dr
->bRequest
= request
;
145 dr
->wValue
= cpu_to_le16(value
);
146 dr
->wIndex
= cpu_to_le16(index
);
147 dr
->wLength
= cpu_to_le16(size
);
149 /* dbg("usb_control_msg"); */
151 ret
= usb_internal_control_msg(dev
, pipe
, dr
, data
, size
, timeout
);
157 EXPORT_SYMBOL_GPL(usb_control_msg
);
160 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
161 * @usb_dev: pointer to the usb device to send the message to
162 * @pipe: endpoint "pipe" to send the message to
163 * @data: pointer to the data to send
164 * @len: length in bytes of the data to send
165 * @actual_length: pointer to a location to put the actual length transferred
167 * @timeout: time in msecs to wait for the message to complete before
168 * timing out (if 0 the wait is forever)
170 * Context: !in_interrupt ()
172 * This function sends a simple interrupt message to a specified endpoint and
173 * waits for the message to complete, or timeout.
175 * If successful, it returns 0, otherwise a negative error number. The number
176 * of actual bytes transferred will be stored in the actual_length paramater.
178 * Don't use this function from within an interrupt context, like a bottom half
179 * handler. If you need an asynchronous message, or need to send a message
180 * from within interrupt context, use usb_submit_urb() If a thread in your
181 * driver uses this call, make sure your disconnect() method can wait for it to
182 * complete. Since you don't have a handle on the URB used, you can't cancel
185 int usb_interrupt_msg(struct usb_device
*usb_dev
, unsigned int pipe
,
186 void *data
, int len
, int *actual_length
, int timeout
)
188 return usb_bulk_msg(usb_dev
, pipe
, data
, len
, actual_length
, timeout
);
190 EXPORT_SYMBOL_GPL(usb_interrupt_msg
);
193 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
194 * @usb_dev: pointer to the usb device to send the message to
195 * @pipe: endpoint "pipe" to send the message to
196 * @data: pointer to the data to send
197 * @len: length in bytes of the data to send
198 * @actual_length: pointer to a location to put the actual length transferred
200 * @timeout: time in msecs to wait for the message to complete before
201 * timing out (if 0 the wait is forever)
203 * Context: !in_interrupt ()
205 * This function sends a simple bulk message to a specified endpoint
206 * and waits for the message to complete, or timeout.
208 * If successful, it returns 0, otherwise a negative error number. The number
209 * of actual bytes transferred will be stored in the actual_length paramater.
211 * Don't use this function from within an interrupt context, like a bottom half
212 * handler. If you need an asynchronous message, or need to send a message
213 * from within interrupt context, use usb_submit_urb() If a thread in your
214 * driver uses this call, make sure your disconnect() method can wait for it to
215 * complete. Since you don't have a handle on the URB used, you can't cancel
218 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
219 * users are forced to abuse this routine by using it to submit URBs for
220 * interrupt endpoints. We will take the liberty of creating an interrupt URB
221 * (with the default interval) if the target is an interrupt endpoint.
223 int usb_bulk_msg(struct usb_device
*usb_dev
, unsigned int pipe
,
224 void *data
, int len
, int *actual_length
, int timeout
)
227 struct usb_host_endpoint
*ep
;
229 ep
= (usb_pipein(pipe
) ? usb_dev
->ep_in
: usb_dev
->ep_out
)
230 [usb_pipeendpoint(pipe
)];
234 urb
= usb_alloc_urb(0, GFP_KERNEL
);
238 if ((ep
->desc
.bmAttributes
& USB_ENDPOINT_XFERTYPE_MASK
) ==
239 USB_ENDPOINT_XFER_INT
) {
240 pipe
= (pipe
& ~(3 << 30)) | (PIPE_INTERRUPT
<< 30);
241 usb_fill_int_urb(urb
, usb_dev
, pipe
, data
, len
,
242 usb_api_blocking_completion
, NULL
,
245 usb_fill_bulk_urb(urb
, usb_dev
, pipe
, data
, len
,
246 usb_api_blocking_completion
, NULL
);
248 return usb_start_wait_urb(urb
, timeout
, actual_length
);
250 EXPORT_SYMBOL_GPL(usb_bulk_msg
);
252 /*-------------------------------------------------------------------*/
254 static void sg_clean(struct usb_sg_request
*io
)
257 while (io
->entries
--)
258 usb_free_urb(io
->urbs
[io
->entries
]);
262 if (io
->dev
->dev
.dma_mask
!= NULL
)
263 usb_buffer_unmap_sg(io
->dev
, usb_pipein(io
->pipe
),
268 static void sg_complete(struct urb
*urb
)
270 struct usb_sg_request
*io
= urb
->context
;
271 int status
= urb
->status
;
273 spin_lock(&io
->lock
);
275 /* In 2.5 we require hcds' endpoint queues not to progress after fault
276 * reports, until the completion callback (this!) returns. That lets
277 * device driver code (like this routine) unlink queued urbs first,
278 * if it needs to, since the HC won't work on them at all. So it's
279 * not possible for page N+1 to overwrite page N, and so on.
281 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
282 * complete before the HCD can get requests away from hardware,
283 * though never during cleanup after a hard fault.
286 && (io
->status
!= -ECONNRESET
287 || status
!= -ECONNRESET
)
288 && urb
->actual_length
) {
289 dev_err(io
->dev
->bus
->controller
,
290 "dev %s ep%d%s scatterlist error %d/%d\n",
292 usb_endpoint_num(&urb
->ep
->desc
),
293 usb_urb_dir_in(urb
) ? "in" : "out",
298 if (io
->status
== 0 && status
&& status
!= -ECONNRESET
) {
299 int i
, found
, retval
;
303 /* the previous urbs, and this one, completed already.
304 * unlink pending urbs so they won't rx/tx bad data.
305 * careful: unlink can sometimes be synchronous...
307 spin_unlock(&io
->lock
);
308 for (i
= 0, found
= 0; i
< io
->entries
; i
++) {
309 if (!io
->urbs
[i
] || !io
->urbs
[i
]->dev
)
312 retval
= usb_unlink_urb(io
->urbs
[i
]);
313 if (retval
!= -EINPROGRESS
&&
316 dev_err(&io
->dev
->dev
,
317 "%s, unlink --> %d\n",
319 } else if (urb
== io
->urbs
[i
])
322 spin_lock(&io
->lock
);
326 /* on the last completion, signal usb_sg_wait() */
327 io
->bytes
+= urb
->actual_length
;
330 complete(&io
->complete
);
332 spin_unlock(&io
->lock
);
337 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
338 * @io: request block being initialized. until usb_sg_wait() returns,
339 * treat this as a pointer to an opaque block of memory,
340 * @dev: the usb device that will send or receive the data
341 * @pipe: endpoint "pipe" used to transfer the data
342 * @period: polling rate for interrupt endpoints, in frames or
343 * (for high speed endpoints) microframes; ignored for bulk
344 * @sg: scatterlist entries
345 * @nents: how many entries in the scatterlist
346 * @length: how many bytes to send from the scatterlist, or zero to
347 * send every byte identified in the list.
348 * @mem_flags: SLAB_* flags affecting memory allocations in this call
350 * Returns zero for success, else a negative errno value. This initializes a
351 * scatter/gather request, allocating resources such as I/O mappings and urb
352 * memory (except maybe memory used by USB controller drivers).
354 * The request must be issued using usb_sg_wait(), which waits for the I/O to
355 * complete (or to be canceled) and then cleans up all resources allocated by
358 * The request may be canceled with usb_sg_cancel(), either before or after
359 * usb_sg_wait() is called.
361 int usb_sg_init(struct usb_sg_request
*io
, struct usb_device
*dev
,
362 unsigned pipe
, unsigned period
, struct scatterlist
*sg
,
363 int nents
, size_t length
, gfp_t mem_flags
)
370 if (!io
|| !dev
|| !sg
371 || usb_pipecontrol(pipe
)
372 || usb_pipeisoc(pipe
)
376 spin_lock_init(&io
->lock
);
382 /* not all host controllers use DMA (like the mainstream pci ones);
383 * they can use PIO (sl811) or be software over another transport.
385 dma
= (dev
->dev
.dma_mask
!= NULL
);
387 io
->entries
= usb_buffer_map_sg(dev
, usb_pipein(pipe
),
392 /* initialize all the urbs we'll use */
393 if (io
->entries
<= 0)
396 if (dev
->bus
->sg_tablesize
> 0) {
397 io
->urbs
= kmalloc(sizeof *io
->urbs
, mem_flags
);
400 io
->urbs
= kmalloc(io
->entries
* sizeof *io
->urbs
, mem_flags
);
408 urb_flags
|= URB_NO_TRANSFER_DMA_MAP
;
409 if (usb_pipein(pipe
))
410 urb_flags
|= URB_SHORT_NOT_OK
;
413 io
->urbs
[0] = usb_alloc_urb(0, mem_flags
);
419 io
->urbs
[0]->dev
= NULL
;
420 io
->urbs
[0]->pipe
= pipe
;
421 io
->urbs
[0]->interval
= period
;
422 io
->urbs
[0]->transfer_flags
= urb_flags
;
424 io
->urbs
[0]->complete
= sg_complete
;
425 io
->urbs
[0]->context
= io
;
426 /* A length of zero means transfer the whole sg list */
427 io
->urbs
[0]->transfer_buffer_length
= length
;
429 for_each_sg(sg
, sg
, io
->entries
, i
) {
430 io
->urbs
[0]->transfer_buffer_length
+=
434 io
->urbs
[0]->sg
= io
;
435 io
->urbs
[0]->num_sgs
= io
->entries
;
438 urb_flags
|= URB_NO_INTERRUPT
;
439 for_each_sg(sg
, sg
, io
->entries
, i
) {
442 io
->urbs
[i
] = usb_alloc_urb(0, mem_flags
);
448 io
->urbs
[i
]->dev
= NULL
;
449 io
->urbs
[i
]->pipe
= pipe
;
450 io
->urbs
[i
]->interval
= period
;
451 io
->urbs
[i
]->transfer_flags
= urb_flags
;
453 io
->urbs
[i
]->complete
= sg_complete
;
454 io
->urbs
[i
]->context
= io
;
457 * Some systems need to revert to PIO when DMA is temporarily
458 * unavailable. For their sakes, both transfer_buffer and
459 * transfer_dma are set when possible.
461 * Note that if IOMMU coalescing occurred, we cannot
462 * trust sg_page anymore, so check if S/G list shrunk.
464 if (io
->nents
== io
->entries
&& !PageHighMem(sg_page(sg
)))
465 io
->urbs
[i
]->transfer_buffer
= sg_virt(sg
);
467 io
->urbs
[i
]->transfer_buffer
= NULL
;
470 io
->urbs
[i
]->transfer_dma
= sg_dma_address(sg
);
471 len
= sg_dma_len(sg
);
473 /* hc may use _only_ transfer_buffer */
478 len
= min_t(unsigned, len
, length
);
483 io
->urbs
[i
]->transfer_buffer_length
= len
;
485 io
->urbs
[--i
]->transfer_flags
&= ~URB_NO_INTERRUPT
;
488 /* transaction state */
489 io
->count
= io
->entries
;
492 init_completion(&io
->complete
);
499 EXPORT_SYMBOL_GPL(usb_sg_init
);
502 * usb_sg_wait - synchronously execute scatter/gather request
503 * @io: request block handle, as initialized with usb_sg_init().
504 * some fields become accessible when this call returns.
505 * Context: !in_interrupt ()
507 * This function blocks until the specified I/O operation completes. It
508 * leverages the grouping of the related I/O requests to get good transfer
509 * rates, by queueing the requests. At higher speeds, such queuing can
510 * significantly improve USB throughput.
512 * There are three kinds of completion for this function.
513 * (1) success, where io->status is zero. The number of io->bytes
514 * transferred is as requested.
515 * (2) error, where io->status is a negative errno value. The number
516 * of io->bytes transferred before the error is usually less
517 * than requested, and can be nonzero.
518 * (3) cancellation, a type of error with status -ECONNRESET that
519 * is initiated by usb_sg_cancel().
521 * When this function returns, all memory allocated through usb_sg_init() or
522 * this call will have been freed. The request block parameter may still be
523 * passed to usb_sg_cancel(), or it may be freed. It could also be
524 * reinitialized and then reused.
526 * Data Transfer Rates:
528 * Bulk transfers are valid for full or high speed endpoints.
529 * The best full speed data rate is 19 packets of 64 bytes each
530 * per frame, or 1216 bytes per millisecond.
531 * The best high speed data rate is 13 packets of 512 bytes each
532 * per microframe, or 52 KBytes per millisecond.
534 * The reason to use interrupt transfers through this API would most likely
535 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
536 * could be transferred. That capability is less useful for low or full
537 * speed interrupt endpoints, which allow at most one packet per millisecond,
538 * of at most 8 or 64 bytes (respectively).
540 * It is not necessary to call this function to reserve bandwidth for devices
541 * under an xHCI host controller, as the bandwidth is reserved when the
542 * configuration or interface alt setting is selected.
544 void usb_sg_wait(struct usb_sg_request
*io
)
547 int entries
= io
->entries
;
549 /* queue the urbs. */
550 spin_lock_irq(&io
->lock
);
552 while (i
< entries
&& !io
->status
) {
555 io
->urbs
[i
]->dev
= io
->dev
;
556 retval
= usb_submit_urb(io
->urbs
[i
], GFP_ATOMIC
);
558 /* after we submit, let completions or cancelations fire;
559 * we handshake using io->status.
561 spin_unlock_irq(&io
->lock
);
563 /* maybe we retrying will recover */
564 case -ENXIO
: /* hc didn't queue this one */
567 io
->urbs
[i
]->dev
= NULL
;
572 /* no error? continue immediately.
574 * NOTE: to work better with UHCI (4K I/O buffer may
575 * need 3K of TDs) it may be good to limit how many
576 * URBs are queued at once; N milliseconds?
583 /* fail any uncompleted urbs */
585 io
->urbs
[i
]->dev
= NULL
;
586 io
->urbs
[i
]->status
= retval
;
587 dev_dbg(&io
->dev
->dev
, "%s, submit --> %d\n",
591 spin_lock_irq(&io
->lock
);
592 if (retval
&& (io
->status
== 0 || io
->status
== -ECONNRESET
))
595 io
->count
-= entries
- i
;
597 complete(&io
->complete
);
598 spin_unlock_irq(&io
->lock
);
600 /* OK, yes, this could be packaged as non-blocking.
601 * So could the submit loop above ... but it's easier to
602 * solve neither problem than to solve both!
604 wait_for_completion(&io
->complete
);
608 EXPORT_SYMBOL_GPL(usb_sg_wait
);
611 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
612 * @io: request block, initialized with usb_sg_init()
614 * This stops a request after it has been started by usb_sg_wait().
615 * It can also prevents one initialized by usb_sg_init() from starting,
616 * so that call just frees resources allocated to the request.
618 void usb_sg_cancel(struct usb_sg_request
*io
)
622 spin_lock_irqsave(&io
->lock
, flags
);
624 /* shut everything down, if it didn't already */
628 io
->status
= -ECONNRESET
;
629 spin_unlock(&io
->lock
);
630 for (i
= 0; i
< io
->entries
; i
++) {
633 if (!io
->urbs
[i
]->dev
)
635 retval
= usb_unlink_urb(io
->urbs
[i
]);
636 if (retval
!= -EINPROGRESS
&& retval
!= -EBUSY
)
637 dev_warn(&io
->dev
->dev
, "%s, unlink --> %d\n",
640 spin_lock(&io
->lock
);
642 spin_unlock_irqrestore(&io
->lock
, flags
);
644 EXPORT_SYMBOL_GPL(usb_sg_cancel
);
646 /*-------------------------------------------------------------------*/
649 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
650 * @dev: the device whose descriptor is being retrieved
651 * @type: the descriptor type (USB_DT_*)
652 * @index: the number of the descriptor
653 * @buf: where to put the descriptor
654 * @size: how big is "buf"?
655 * Context: !in_interrupt ()
657 * Gets a USB descriptor. Convenience functions exist to simplify
658 * getting some types of descriptors. Use
659 * usb_get_string() or usb_string() for USB_DT_STRING.
660 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
661 * are part of the device structure.
662 * In addition to a number of USB-standard descriptors, some
663 * devices also use class-specific or vendor-specific descriptors.
665 * This call is synchronous, and may not be used in an interrupt context.
667 * Returns the number of bytes received on success, or else the status code
668 * returned by the underlying usb_control_msg() call.
670 int usb_get_descriptor(struct usb_device
*dev
, unsigned char type
,
671 unsigned char index
, void *buf
, int size
)
676 memset(buf
, 0, size
); /* Make sure we parse really received data */
678 for (i
= 0; i
< 3; ++i
) {
679 /* retry on length 0 or error; some devices are flakey */
680 result
= usb_control_msg(dev
, usb_rcvctrlpipe(dev
, 0),
681 USB_REQ_GET_DESCRIPTOR
, USB_DIR_IN
,
682 (type
<< 8) + index
, 0, buf
, size
,
683 USB_CTRL_GET_TIMEOUT
);
684 if (result
<= 0 && result
!= -ETIMEDOUT
)
686 if (result
> 1 && ((u8
*)buf
)[1] != type
) {
694 EXPORT_SYMBOL_GPL(usb_get_descriptor
);
697 * usb_get_string - gets a string descriptor
698 * @dev: the device whose string descriptor is being retrieved
699 * @langid: code for language chosen (from string descriptor zero)
700 * @index: the number of the descriptor
701 * @buf: where to put the string
702 * @size: how big is "buf"?
703 * Context: !in_interrupt ()
705 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
706 * in little-endian byte order).
707 * The usb_string() function will often be a convenient way to turn
708 * these strings into kernel-printable form.
710 * Strings may be referenced in device, configuration, interface, or other
711 * descriptors, and could also be used in vendor-specific ways.
713 * This call is synchronous, and may not be used in an interrupt context.
715 * Returns the number of bytes received on success, or else the status code
716 * returned by the underlying usb_control_msg() call.
718 static int usb_get_string(struct usb_device
*dev
, unsigned short langid
,
719 unsigned char index
, void *buf
, int size
)
724 for (i
= 0; i
< 3; ++i
) {
725 /* retry on length 0 or stall; some devices are flakey */
726 result
= usb_control_msg(dev
, usb_rcvctrlpipe(dev
, 0),
727 USB_REQ_GET_DESCRIPTOR
, USB_DIR_IN
,
728 (USB_DT_STRING
<< 8) + index
, langid
, buf
, size
,
729 USB_CTRL_GET_TIMEOUT
);
730 if (result
== 0 || result
== -EPIPE
)
732 if (result
> 1 && ((u8
*) buf
)[1] != USB_DT_STRING
) {
741 static void usb_try_string_workarounds(unsigned char *buf
, int *length
)
743 int newlength
, oldlength
= *length
;
745 for (newlength
= 2; newlength
+ 1 < oldlength
; newlength
+= 2)
746 if (!isprint(buf
[newlength
]) || buf
[newlength
+ 1])
755 static int usb_string_sub(struct usb_device
*dev
, unsigned int langid
,
756 unsigned int index
, unsigned char *buf
)
760 /* Try to read the string descriptor by asking for the maximum
761 * possible number of bytes */
762 if (dev
->quirks
& USB_QUIRK_STRING_FETCH_255
)
765 rc
= usb_get_string(dev
, langid
, index
, buf
, 255);
767 /* If that failed try to read the descriptor length, then
768 * ask for just that many bytes */
770 rc
= usb_get_string(dev
, langid
, index
, buf
, 2);
772 rc
= usb_get_string(dev
, langid
, index
, buf
, buf
[0]);
776 if (!buf
[0] && !buf
[1])
777 usb_try_string_workarounds(buf
, &rc
);
779 /* There might be extra junk at the end of the descriptor */
783 rc
= rc
- (rc
& 1); /* force a multiple of two */
787 rc
= (rc
< 0 ? rc
: -EINVAL
);
792 static int usb_get_langid(struct usb_device
*dev
, unsigned char *tbuf
)
796 if (dev
->have_langid
)
799 if (dev
->string_langid
< 0)
802 err
= usb_string_sub(dev
, 0, 0, tbuf
);
804 /* If the string was reported but is malformed, default to english
806 if (err
== -ENODATA
|| (err
> 0 && err
< 4)) {
807 dev
->string_langid
= 0x0409;
808 dev
->have_langid
= 1;
810 "string descriptor 0 malformed (err = %d), "
811 "defaulting to 0x%04x\n",
812 err
, dev
->string_langid
);
816 /* In case of all other errors, we assume the device is not able to
817 * deal with strings at all. Set string_langid to -1 in order to
818 * prevent any string to be retrieved from the device */
820 dev_err(&dev
->dev
, "string descriptor 0 read error: %d\n",
822 dev
->string_langid
= -1;
826 /* always use the first langid listed */
827 dev
->string_langid
= tbuf
[2] | (tbuf
[3] << 8);
828 dev
->have_langid
= 1;
829 dev_dbg(&dev
->dev
, "default language 0x%04x\n",
835 * usb_string - returns UTF-8 version of a string descriptor
836 * @dev: the device whose string descriptor is being retrieved
837 * @index: the number of the descriptor
838 * @buf: where to put the string
839 * @size: how big is "buf"?
840 * Context: !in_interrupt ()
842 * This converts the UTF-16LE encoded strings returned by devices, from
843 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
844 * that are more usable in most kernel contexts. Note that this function
845 * chooses strings in the first language supported by the device.
847 * This call is synchronous, and may not be used in an interrupt context.
849 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
851 int usb_string(struct usb_device
*dev
, int index
, char *buf
, size_t size
)
856 if (dev
->state
== USB_STATE_SUSPENDED
)
857 return -EHOSTUNREACH
;
858 if (size
<= 0 || !buf
|| !index
)
861 tbuf
= kmalloc(256, GFP_NOIO
);
865 err
= usb_get_langid(dev
, tbuf
);
869 err
= usb_string_sub(dev
, dev
->string_langid
, index
, tbuf
);
873 size
--; /* leave room for trailing NULL char in output buffer */
874 err
= utf16s_to_utf8s((wchar_t *) &tbuf
[2], (err
- 2) / 2,
875 UTF16_LITTLE_ENDIAN
, buf
, size
);
878 if (tbuf
[1] != USB_DT_STRING
)
880 "wrong descriptor type %02x for string %d (\"%s\")\n",
881 tbuf
[1], index
, buf
);
887 EXPORT_SYMBOL_GPL(usb_string
);
889 /* one UTF-8-encoded 16-bit character has at most three bytes */
890 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
893 * usb_cache_string - read a string descriptor and cache it for later use
894 * @udev: the device whose string descriptor is being read
895 * @index: the descriptor index
897 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
898 * or NULL if the index is 0 or the string could not be read.
900 char *usb_cache_string(struct usb_device
*udev
, int index
)
903 char *smallbuf
= NULL
;
909 buf
= kmalloc(MAX_USB_STRING_SIZE
, GFP_NOIO
);
911 len
= usb_string(udev
, index
, buf
, MAX_USB_STRING_SIZE
);
913 smallbuf
= kmalloc(++len
, GFP_NOIO
);
916 memcpy(smallbuf
, buf
, len
);
924 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
925 * @dev: the device whose device descriptor is being updated
926 * @size: how much of the descriptor to read
927 * Context: !in_interrupt ()
929 * Updates the copy of the device descriptor stored in the device structure,
930 * which dedicates space for this purpose.
932 * Not exported, only for use by the core. If drivers really want to read
933 * the device descriptor directly, they can call usb_get_descriptor() with
934 * type = USB_DT_DEVICE and index = 0.
936 * This call is synchronous, and may not be used in an interrupt context.
938 * Returns the number of bytes received on success, or else the status code
939 * returned by the underlying usb_control_msg() call.
941 int usb_get_device_descriptor(struct usb_device
*dev
, unsigned int size
)
943 struct usb_device_descriptor
*desc
;
946 if (size
> sizeof(*desc
))
948 desc
= kmalloc(sizeof(*desc
), GFP_NOIO
);
952 ret
= usb_get_descriptor(dev
, USB_DT_DEVICE
, 0, desc
, size
);
954 memcpy(&dev
->descriptor
, desc
, size
);
960 * usb_get_status - issues a GET_STATUS call
961 * @dev: the device whose status is being checked
962 * @type: USB_RECIP_*; for device, interface, or endpoint
963 * @target: zero (for device), else interface or endpoint number
964 * @data: pointer to two bytes of bitmap data
965 * Context: !in_interrupt ()
967 * Returns device, interface, or endpoint status. Normally only of
968 * interest to see if the device is self powered, or has enabled the
969 * remote wakeup facility; or whether a bulk or interrupt endpoint
970 * is halted ("stalled").
972 * Bits in these status bitmaps are set using the SET_FEATURE request,
973 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
974 * function should be used to clear halt ("stall") status.
976 * This call is synchronous, and may not be used in an interrupt context.
978 * Returns the number of bytes received on success, or else the status code
979 * returned by the underlying usb_control_msg() call.
981 int usb_get_status(struct usb_device
*dev
, int type
, int target
, void *data
)
984 u16
*status
= kmalloc(sizeof(*status
), GFP_KERNEL
);
989 ret
= usb_control_msg(dev
, usb_rcvctrlpipe(dev
, 0),
990 USB_REQ_GET_STATUS
, USB_DIR_IN
| type
, 0, target
, status
,
991 sizeof(*status
), USB_CTRL_GET_TIMEOUT
);
993 *(u16
*)data
= *status
;
997 EXPORT_SYMBOL_GPL(usb_get_status
);
1000 * usb_clear_halt - tells device to clear endpoint halt/stall condition
1001 * @dev: device whose endpoint is halted
1002 * @pipe: endpoint "pipe" being cleared
1003 * Context: !in_interrupt ()
1005 * This is used to clear halt conditions for bulk and interrupt endpoints,
1006 * as reported by URB completion status. Endpoints that are halted are
1007 * sometimes referred to as being "stalled". Such endpoints are unable
1008 * to transmit or receive data until the halt status is cleared. Any URBs
1009 * queued for such an endpoint should normally be unlinked by the driver
1010 * before clearing the halt condition, as described in sections 5.7.5
1011 * and 5.8.5 of the USB 2.0 spec.
1013 * Note that control and isochronous endpoints don't halt, although control
1014 * endpoints report "protocol stall" (for unsupported requests) using the
1015 * same status code used to report a true stall.
1017 * This call is synchronous, and may not be used in an interrupt context.
1019 * Returns zero on success, or else the status code returned by the
1020 * underlying usb_control_msg() call.
1022 int usb_clear_halt(struct usb_device
*dev
, int pipe
)
1025 int endp
= usb_pipeendpoint(pipe
);
1027 if (usb_pipein(pipe
))
1030 /* we don't care if it wasn't halted first. in fact some devices
1031 * (like some ibmcam model 1 units) seem to expect hosts to make
1032 * this request for iso endpoints, which can't halt!
1034 result
= usb_control_msg(dev
, usb_sndctrlpipe(dev
, 0),
1035 USB_REQ_CLEAR_FEATURE
, USB_RECIP_ENDPOINT
,
1036 USB_ENDPOINT_HALT
, endp
, NULL
, 0,
1037 USB_CTRL_SET_TIMEOUT
);
1039 /* don't un-halt or force to DATA0 except on success */
1043 /* NOTE: seems like Microsoft and Apple don't bother verifying
1044 * the clear "took", so some devices could lock up if you check...
1045 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1047 * NOTE: make sure the logic here doesn't diverge much from
1048 * the copy in usb-storage, for as long as we need two copies.
1051 usb_reset_endpoint(dev
, endp
);
1055 EXPORT_SYMBOL_GPL(usb_clear_halt
);
1057 static int create_intf_ep_devs(struct usb_interface
*intf
)
1059 struct usb_device
*udev
= interface_to_usbdev(intf
);
1060 struct usb_host_interface
*alt
= intf
->cur_altsetting
;
1063 if (intf
->ep_devs_created
|| intf
->unregistering
)
1066 for (i
= 0; i
< alt
->desc
.bNumEndpoints
; ++i
)
1067 (void) usb_create_ep_devs(&intf
->dev
, &alt
->endpoint
[i
], udev
);
1068 intf
->ep_devs_created
= 1;
1072 static void remove_intf_ep_devs(struct usb_interface
*intf
)
1074 struct usb_host_interface
*alt
= intf
->cur_altsetting
;
1077 if (!intf
->ep_devs_created
)
1080 for (i
= 0; i
< alt
->desc
.bNumEndpoints
; ++i
)
1081 usb_remove_ep_devs(&alt
->endpoint
[i
]);
1082 intf
->ep_devs_created
= 0;
1086 * usb_disable_endpoint -- Disable an endpoint by address
1087 * @dev: the device whose endpoint is being disabled
1088 * @epaddr: the endpoint's address. Endpoint number for output,
1089 * endpoint number + USB_DIR_IN for input
1090 * @reset_hardware: flag to erase any endpoint state stored in the
1091 * controller hardware
1093 * Disables the endpoint for URB submission and nukes all pending URBs.
1094 * If @reset_hardware is set then also deallocates hcd/hardware state
1097 void usb_disable_endpoint(struct usb_device
*dev
, unsigned int epaddr
,
1098 bool reset_hardware
)
1100 unsigned int epnum
= epaddr
& USB_ENDPOINT_NUMBER_MASK
;
1101 struct usb_host_endpoint
*ep
;
1106 if (usb_endpoint_out(epaddr
)) {
1107 ep
= dev
->ep_out
[epnum
];
1109 dev
->ep_out
[epnum
] = NULL
;
1111 ep
= dev
->ep_in
[epnum
];
1113 dev
->ep_in
[epnum
] = NULL
;
1117 usb_hcd_flush_endpoint(dev
, ep
);
1119 usb_hcd_disable_endpoint(dev
, ep
);
1124 * usb_reset_endpoint - Reset an endpoint's state.
1125 * @dev: the device whose endpoint is to be reset
1126 * @epaddr: the endpoint's address. Endpoint number for output,
1127 * endpoint number + USB_DIR_IN for input
1129 * Resets any host-side endpoint state such as the toggle bit,
1130 * sequence number or current window.
1132 void usb_reset_endpoint(struct usb_device
*dev
, unsigned int epaddr
)
1134 unsigned int epnum
= epaddr
& USB_ENDPOINT_NUMBER_MASK
;
1135 struct usb_host_endpoint
*ep
;
1137 if (usb_endpoint_out(epaddr
))
1138 ep
= dev
->ep_out
[epnum
];
1140 ep
= dev
->ep_in
[epnum
];
1142 usb_hcd_reset_endpoint(dev
, ep
);
1144 EXPORT_SYMBOL_GPL(usb_reset_endpoint
);
1148 * usb_disable_interface -- Disable all endpoints for an interface
1149 * @dev: the device whose interface is being disabled
1150 * @intf: pointer to the interface descriptor
1151 * @reset_hardware: flag to erase any endpoint state stored in the
1152 * controller hardware
1154 * Disables all the endpoints for the interface's current altsetting.
1156 void usb_disable_interface(struct usb_device
*dev
, struct usb_interface
*intf
,
1157 bool reset_hardware
)
1159 struct usb_host_interface
*alt
= intf
->cur_altsetting
;
1162 for (i
= 0; i
< alt
->desc
.bNumEndpoints
; ++i
) {
1163 usb_disable_endpoint(dev
,
1164 alt
->endpoint
[i
].desc
.bEndpointAddress
,
1170 * usb_disable_device - Disable all the endpoints for a USB device
1171 * @dev: the device whose endpoints are being disabled
1172 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1174 * Disables all the device's endpoints, potentially including endpoint 0.
1175 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1176 * pending urbs) and usbcore state for the interfaces, so that usbcore
1177 * must usb_set_configuration() before any interfaces could be used.
1179 void usb_disable_device(struct usb_device
*dev
, int skip_ep0
)
1183 dev_dbg(&dev
->dev
, "%s nuking %s URBs\n", __func__
,
1184 skip_ep0
? "non-ep0" : "all");
1185 for (i
= skip_ep0
; i
< 16; ++i
) {
1186 usb_disable_endpoint(dev
, i
, true);
1187 usb_disable_endpoint(dev
, i
+ USB_DIR_IN
, true);
1190 /* getting rid of interfaces will disconnect
1191 * any drivers bound to them (a key side effect)
1193 if (dev
->actconfig
) {
1194 for (i
= 0; i
< dev
->actconfig
->desc
.bNumInterfaces
; i
++) {
1195 struct usb_interface
*interface
;
1197 /* remove this interface if it has been registered */
1198 interface
= dev
->actconfig
->interface
[i
];
1199 if (!device_is_registered(&interface
->dev
))
1201 dev_dbg(&dev
->dev
, "unregistering interface %s\n",
1202 dev_name(&interface
->dev
));
1203 interface
->unregistering
= 1;
1204 remove_intf_ep_devs(interface
);
1205 device_del(&interface
->dev
);
1208 /* Now that the interfaces are unbound, nobody should
1209 * try to access them.
1211 for (i
= 0; i
< dev
->actconfig
->desc
.bNumInterfaces
; i
++) {
1212 put_device(&dev
->actconfig
->interface
[i
]->dev
);
1213 dev
->actconfig
->interface
[i
] = NULL
;
1215 dev
->actconfig
= NULL
;
1216 if (dev
->state
== USB_STATE_CONFIGURED
)
1217 usb_set_device_state(dev
, USB_STATE_ADDRESS
);
1222 * usb_enable_endpoint - Enable an endpoint for USB communications
1223 * @dev: the device whose interface is being enabled
1225 * @reset_ep: flag to reset the endpoint state
1227 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1228 * For control endpoints, both the input and output sides are handled.
1230 void usb_enable_endpoint(struct usb_device
*dev
, struct usb_host_endpoint
*ep
,
1233 int epnum
= usb_endpoint_num(&ep
->desc
);
1234 int is_out
= usb_endpoint_dir_out(&ep
->desc
);
1235 int is_control
= usb_endpoint_xfer_control(&ep
->desc
);
1238 usb_hcd_reset_endpoint(dev
, ep
);
1239 if (is_out
|| is_control
)
1240 dev
->ep_out
[epnum
] = ep
;
1241 if (!is_out
|| is_control
)
1242 dev
->ep_in
[epnum
] = ep
;
1247 * usb_enable_interface - Enable all the endpoints for an interface
1248 * @dev: the device whose interface is being enabled
1249 * @intf: pointer to the interface descriptor
1250 * @reset_eps: flag to reset the endpoints' state
1252 * Enables all the endpoints for the interface's current altsetting.
1254 void usb_enable_interface(struct usb_device
*dev
,
1255 struct usb_interface
*intf
, bool reset_eps
)
1257 struct usb_host_interface
*alt
= intf
->cur_altsetting
;
1260 for (i
= 0; i
< alt
->desc
.bNumEndpoints
; ++i
)
1261 usb_enable_endpoint(dev
, &alt
->endpoint
[i
], reset_eps
);
1265 * usb_set_interface - Makes a particular alternate setting be current
1266 * @dev: the device whose interface is being updated
1267 * @interface: the interface being updated
1268 * @alternate: the setting being chosen.
1269 * Context: !in_interrupt ()
1271 * This is used to enable data transfers on interfaces that may not
1272 * be enabled by default. Not all devices support such configurability.
1273 * Only the driver bound to an interface may change its setting.
1275 * Within any given configuration, each interface may have several
1276 * alternative settings. These are often used to control levels of
1277 * bandwidth consumption. For example, the default setting for a high
1278 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1279 * while interrupt transfers of up to 3KBytes per microframe are legal.
1280 * Also, isochronous endpoints may never be part of an
1281 * interface's default setting. To access such bandwidth, alternate
1282 * interface settings must be made current.
1284 * Note that in the Linux USB subsystem, bandwidth associated with
1285 * an endpoint in a given alternate setting is not reserved until an URB
1286 * is submitted that needs that bandwidth. Some other operating systems
1287 * allocate bandwidth early, when a configuration is chosen.
1289 * This call is synchronous, and may not be used in an interrupt context.
1290 * Also, drivers must not change altsettings while urbs are scheduled for
1291 * endpoints in that interface; all such urbs must first be completed
1292 * (perhaps forced by unlinking).
1294 * Returns zero on success, or else the status code returned by the
1295 * underlying usb_control_msg() call.
1297 int usb_set_interface(struct usb_device
*dev
, int interface
, int alternate
)
1299 struct usb_interface
*iface
;
1300 struct usb_host_interface
*alt
;
1301 struct usb_hcd
*hcd
= bus_to_hcd(dev
->bus
);
1304 unsigned int epaddr
;
1307 if (dev
->state
== USB_STATE_SUSPENDED
)
1308 return -EHOSTUNREACH
;
1310 iface
= usb_ifnum_to_if(dev
, interface
);
1312 dev_dbg(&dev
->dev
, "selecting invalid interface %d\n",
1317 alt
= usb_altnum_to_altsetting(iface
, alternate
);
1319 dev_warn(&dev
->dev
, "selecting invalid altsetting %d\n",
1324 /* Make sure we have enough bandwidth for this alternate interface.
1325 * Remove the current alt setting and add the new alt setting.
1327 mutex_lock(&hcd
->bandwidth_mutex
);
1328 ret
= usb_hcd_alloc_bandwidth(dev
, NULL
, iface
->cur_altsetting
, alt
);
1330 dev_info(&dev
->dev
, "Not enough bandwidth for altsetting %d\n",
1332 mutex_unlock(&hcd
->bandwidth_mutex
);
1336 if (dev
->quirks
& USB_QUIRK_NO_SET_INTF
)
1339 ret
= usb_control_msg(dev
, usb_sndctrlpipe(dev
, 0),
1340 USB_REQ_SET_INTERFACE
, USB_RECIP_INTERFACE
,
1341 alternate
, interface
, NULL
, 0, 5000);
1343 /* 9.4.10 says devices don't need this and are free to STALL the
1344 * request if the interface only has one alternate setting.
1346 if (ret
== -EPIPE
&& iface
->num_altsetting
== 1) {
1348 "manual set_interface for iface %d, alt %d\n",
1349 interface
, alternate
);
1351 } else if (ret
< 0) {
1352 /* Re-instate the old alt setting */
1353 usb_hcd_alloc_bandwidth(dev
, NULL
, alt
, iface
->cur_altsetting
);
1354 mutex_unlock(&hcd
->bandwidth_mutex
);
1357 mutex_unlock(&hcd
->bandwidth_mutex
);
1359 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1360 * when they implement async or easily-killable versions of this or
1361 * other "should-be-internal" functions (like clear_halt).
1362 * should hcd+usbcore postprocess control requests?
1365 /* prevent submissions using previous endpoint settings */
1366 if (iface
->cur_altsetting
!= alt
) {
1367 remove_intf_ep_devs(iface
);
1368 usb_remove_sysfs_intf_files(iface
);
1370 usb_disable_interface(dev
, iface
, true);
1372 iface
->cur_altsetting
= alt
;
1374 /* If the interface only has one altsetting and the device didn't
1375 * accept the request, we attempt to carry out the equivalent action
1376 * by manually clearing the HALT feature for each endpoint in the
1382 for (i
= 0; i
< alt
->desc
.bNumEndpoints
; i
++) {
1383 epaddr
= alt
->endpoint
[i
].desc
.bEndpointAddress
;
1384 pipe
= __create_pipe(dev
,
1385 USB_ENDPOINT_NUMBER_MASK
& epaddr
) |
1386 (usb_endpoint_out(epaddr
) ?
1387 USB_DIR_OUT
: USB_DIR_IN
);
1389 usb_clear_halt(dev
, pipe
);
1393 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1396 * Despite EP0 is always present in all interfaces/AS, the list of
1397 * endpoints from the descriptor does not contain EP0. Due to its
1398 * omnipresence one might expect EP0 being considered "affected" by
1399 * any SetInterface request and hence assume toggles need to be reset.
1400 * However, EP0 toggles are re-synced for every individual transfer
1401 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1402 * (Likewise, EP0 never "halts" on well designed devices.)
1404 usb_enable_interface(dev
, iface
, true);
1405 if (device_is_registered(&iface
->dev
)) {
1406 usb_create_sysfs_intf_files(iface
);
1407 create_intf_ep_devs(iface
);
1411 EXPORT_SYMBOL_GPL(usb_set_interface
);
1414 * usb_reset_configuration - lightweight device reset
1415 * @dev: the device whose configuration is being reset
1417 * This issues a standard SET_CONFIGURATION request to the device using
1418 * the current configuration. The effect is to reset most USB-related
1419 * state in the device, including interface altsettings (reset to zero),
1420 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1421 * endpoints). Other usbcore state is unchanged, including bindings of
1422 * usb device drivers to interfaces.
1424 * Because this affects multiple interfaces, avoid using this with composite
1425 * (multi-interface) devices. Instead, the driver for each interface may
1426 * use usb_set_interface() on the interfaces it claims. Be careful though;
1427 * some devices don't support the SET_INTERFACE request, and others won't
1428 * reset all the interface state (notably endpoint state). Resetting the whole
1429 * configuration would affect other drivers' interfaces.
1431 * The caller must own the device lock.
1433 * Returns zero on success, else a negative error code.
1435 int usb_reset_configuration(struct usb_device
*dev
)
1438 struct usb_host_config
*config
;
1439 struct usb_hcd
*hcd
= bus_to_hcd(dev
->bus
);
1441 if (dev
->state
== USB_STATE_SUSPENDED
)
1442 return -EHOSTUNREACH
;
1444 /* caller must have locked the device and must own
1445 * the usb bus readlock (so driver bindings are stable);
1446 * calls during probe() are fine
1449 for (i
= 1; i
< 16; ++i
) {
1450 usb_disable_endpoint(dev
, i
, true);
1451 usb_disable_endpoint(dev
, i
+ USB_DIR_IN
, true);
1454 config
= dev
->actconfig
;
1456 mutex_lock(&hcd
->bandwidth_mutex
);
1457 /* Make sure we have enough bandwidth for each alternate setting 0 */
1458 for (i
= 0; i
< config
->desc
.bNumInterfaces
; i
++) {
1459 struct usb_interface
*intf
= config
->interface
[i
];
1460 struct usb_host_interface
*alt
;
1462 alt
= usb_altnum_to_altsetting(intf
, 0);
1464 alt
= &intf
->altsetting
[0];
1465 if (alt
!= intf
->cur_altsetting
)
1466 retval
= usb_hcd_alloc_bandwidth(dev
, NULL
,
1467 intf
->cur_altsetting
, alt
);
1471 /* If not, reinstate the old alternate settings */
1474 for (i
--; i
>= 0; i
--) {
1475 struct usb_interface
*intf
= config
->interface
[i
];
1476 struct usb_host_interface
*alt
;
1478 alt
= usb_altnum_to_altsetting(intf
, 0);
1480 alt
= &intf
->altsetting
[0];
1481 if (alt
!= intf
->cur_altsetting
)
1482 usb_hcd_alloc_bandwidth(dev
, NULL
,
1483 alt
, intf
->cur_altsetting
);
1485 mutex_unlock(&hcd
->bandwidth_mutex
);
1488 retval
= usb_control_msg(dev
, usb_sndctrlpipe(dev
, 0),
1489 USB_REQ_SET_CONFIGURATION
, 0,
1490 config
->desc
.bConfigurationValue
, 0,
1491 NULL
, 0, USB_CTRL_SET_TIMEOUT
);
1493 goto reset_old_alts
;
1494 mutex_unlock(&hcd
->bandwidth_mutex
);
1496 /* re-init hc/hcd interface/endpoint state */
1497 for (i
= 0; i
< config
->desc
.bNumInterfaces
; i
++) {
1498 struct usb_interface
*intf
= config
->interface
[i
];
1499 struct usb_host_interface
*alt
;
1501 alt
= usb_altnum_to_altsetting(intf
, 0);
1503 /* No altsetting 0? We'll assume the first altsetting.
1504 * We could use a GetInterface call, but if a device is
1505 * so non-compliant that it doesn't have altsetting 0
1506 * then I wouldn't trust its reply anyway.
1509 alt
= &intf
->altsetting
[0];
1511 if (alt
!= intf
->cur_altsetting
) {
1512 remove_intf_ep_devs(intf
);
1513 usb_remove_sysfs_intf_files(intf
);
1515 intf
->cur_altsetting
= alt
;
1516 usb_enable_interface(dev
, intf
, true);
1517 if (device_is_registered(&intf
->dev
)) {
1518 usb_create_sysfs_intf_files(intf
);
1519 create_intf_ep_devs(intf
);
1524 EXPORT_SYMBOL_GPL(usb_reset_configuration
);
1526 static void usb_release_interface(struct device
*dev
)
1528 struct usb_interface
*intf
= to_usb_interface(dev
);
1529 struct usb_interface_cache
*intfc
=
1530 altsetting_to_usb_interface_cache(intf
->altsetting
);
1532 kref_put(&intfc
->ref
, usb_release_interface_cache
);
1536 #ifdef CONFIG_HOTPLUG
1537 static int usb_if_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
1539 struct usb_device
*usb_dev
;
1540 struct usb_interface
*intf
;
1541 struct usb_host_interface
*alt
;
1543 intf
= to_usb_interface(dev
);
1544 usb_dev
= interface_to_usbdev(intf
);
1545 alt
= intf
->cur_altsetting
;
1547 if (add_uevent_var(env
, "INTERFACE=%d/%d/%d",
1548 alt
->desc
.bInterfaceClass
,
1549 alt
->desc
.bInterfaceSubClass
,
1550 alt
->desc
.bInterfaceProtocol
))
1553 if (add_uevent_var(env
,
1555 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1556 le16_to_cpu(usb_dev
->descriptor
.idVendor
),
1557 le16_to_cpu(usb_dev
->descriptor
.idProduct
),
1558 le16_to_cpu(usb_dev
->descriptor
.bcdDevice
),
1559 usb_dev
->descriptor
.bDeviceClass
,
1560 usb_dev
->descriptor
.bDeviceSubClass
,
1561 usb_dev
->descriptor
.bDeviceProtocol
,
1562 alt
->desc
.bInterfaceClass
,
1563 alt
->desc
.bInterfaceSubClass
,
1564 alt
->desc
.bInterfaceProtocol
))
1572 static int usb_if_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
1576 #endif /* CONFIG_HOTPLUG */
1578 struct device_type usb_if_device_type
= {
1579 .name
= "usb_interface",
1580 .release
= usb_release_interface
,
1581 .uevent
= usb_if_uevent
,
1584 static struct usb_interface_assoc_descriptor
*find_iad(struct usb_device
*dev
,
1585 struct usb_host_config
*config
,
1588 struct usb_interface_assoc_descriptor
*retval
= NULL
;
1589 struct usb_interface_assoc_descriptor
*intf_assoc
;
1594 for (i
= 0; (i
< USB_MAXIADS
&& config
->intf_assoc
[i
]); i
++) {
1595 intf_assoc
= config
->intf_assoc
[i
];
1596 if (intf_assoc
->bInterfaceCount
== 0)
1599 first_intf
= intf_assoc
->bFirstInterface
;
1600 last_intf
= first_intf
+ (intf_assoc
->bInterfaceCount
- 1);
1601 if (inum
>= first_intf
&& inum
<= last_intf
) {
1603 retval
= intf_assoc
;
1605 dev_err(&dev
->dev
, "Interface #%d referenced"
1606 " by multiple IADs\n", inum
);
1615 * Internal function to queue a device reset
1617 * This is initialized into the workstruct in 'struct
1618 * usb_device->reset_ws' that is launched by
1619 * message.c:usb_set_configuration() when initializing each 'struct
1622 * It is safe to get the USB device without reference counts because
1623 * the life cycle of @iface is bound to the life cycle of @udev. Then,
1624 * this function will be ran only if @iface is alive (and before
1625 * freeing it any scheduled instances of it will have been cancelled).
1627 * We need to set a flag (usb_dev->reset_running) because when we call
1628 * the reset, the interfaces might be unbound. The current interface
1629 * cannot try to remove the queued work as it would cause a deadlock
1630 * (you cannot remove your work from within your executing
1631 * workqueue). This flag lets it know, so that
1632 * usb_cancel_queued_reset() doesn't try to do it.
1634 * See usb_queue_reset_device() for more details
1636 static void __usb_queue_reset_device(struct work_struct
*ws
)
1639 struct usb_interface
*iface
=
1640 container_of(ws
, struct usb_interface
, reset_ws
);
1641 struct usb_device
*udev
= interface_to_usbdev(iface
);
1643 rc
= usb_lock_device_for_reset(udev
, iface
);
1645 iface
->reset_running
= 1;
1646 usb_reset_device(udev
);
1647 iface
->reset_running
= 0;
1648 usb_unlock_device(udev
);
1654 * usb_set_configuration - Makes a particular device setting be current
1655 * @dev: the device whose configuration is being updated
1656 * @configuration: the configuration being chosen.
1657 * Context: !in_interrupt(), caller owns the device lock
1659 * This is used to enable non-default device modes. Not all devices
1660 * use this kind of configurability; many devices only have one
1663 * @configuration is the value of the configuration to be installed.
1664 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1665 * must be non-zero; a value of zero indicates that the device in
1666 * unconfigured. However some devices erroneously use 0 as one of their
1667 * configuration values. To help manage such devices, this routine will
1668 * accept @configuration = -1 as indicating the device should be put in
1669 * an unconfigured state.
1671 * USB device configurations may affect Linux interoperability,
1672 * power consumption and the functionality available. For example,
1673 * the default configuration is limited to using 100mA of bus power,
1674 * so that when certain device functionality requires more power,
1675 * and the device is bus powered, that functionality should be in some
1676 * non-default device configuration. Other device modes may also be
1677 * reflected as configuration options, such as whether two ISDN
1678 * channels are available independently; and choosing between open
1679 * standard device protocols (like CDC) or proprietary ones.
1681 * Note that a non-authorized device (dev->authorized == 0) will only
1682 * be put in unconfigured mode.
1684 * Note that USB has an additional level of device configurability,
1685 * associated with interfaces. That configurability is accessed using
1686 * usb_set_interface().
1688 * This call is synchronous. The calling context must be able to sleep,
1689 * must own the device lock, and must not hold the driver model's USB
1690 * bus mutex; usb interface driver probe() methods cannot use this routine.
1692 * Returns zero on success, or else the status code returned by the
1693 * underlying call that failed. On successful completion, each interface
1694 * in the original device configuration has been destroyed, and each one
1695 * in the new configuration has been probed by all relevant usb device
1696 * drivers currently known to the kernel.
1698 int usb_set_configuration(struct usb_device
*dev
, int configuration
)
1701 struct usb_host_config
*cp
= NULL
;
1702 struct usb_interface
**new_interfaces
= NULL
;
1703 struct usb_hcd
*hcd
= bus_to_hcd(dev
->bus
);
1706 if (dev
->authorized
== 0 || configuration
== -1)
1709 for (i
= 0; i
< dev
->descriptor
.bNumConfigurations
; i
++) {
1710 if (dev
->config
[i
].desc
.bConfigurationValue
==
1712 cp
= &dev
->config
[i
];
1717 if ((!cp
&& configuration
!= 0))
1720 /* The USB spec says configuration 0 means unconfigured.
1721 * But if a device includes a configuration numbered 0,
1722 * we will accept it as a correctly configured state.
1723 * Use -1 if you really want to unconfigure the device.
1725 if (cp
&& configuration
== 0)
1726 dev_warn(&dev
->dev
, "config 0 descriptor??\n");
1728 /* Allocate memory for new interfaces before doing anything else,
1729 * so that if we run out then nothing will have changed. */
1732 nintf
= cp
->desc
.bNumInterfaces
;
1733 new_interfaces
= kmalloc(nintf
* sizeof(*new_interfaces
),
1735 if (!new_interfaces
) {
1736 dev_err(&dev
->dev
, "Out of memory\n");
1740 for (; n
< nintf
; ++n
) {
1741 new_interfaces
[n
] = kzalloc(
1742 sizeof(struct usb_interface
),
1744 if (!new_interfaces
[n
]) {
1745 dev_err(&dev
->dev
, "Out of memory\n");
1749 kfree(new_interfaces
[n
]);
1750 kfree(new_interfaces
);
1755 i
= dev
->bus_mA
- cp
->desc
.bMaxPower
* 2;
1757 dev_warn(&dev
->dev
, "new config #%d exceeds power "
1762 /* Wake up the device so we can send it the Set-Config request */
1763 ret
= usb_autoresume_device(dev
);
1765 goto free_interfaces
;
1767 /* Make sure we have bandwidth (and available HCD resources) for this
1768 * configuration. Remove endpoints from the schedule if we're dropping
1769 * this configuration to set configuration 0. After this point, the
1770 * host controller will not allow submissions to dropped endpoints. If
1771 * this call fails, the device state is unchanged.
1773 mutex_lock(&hcd
->bandwidth_mutex
);
1774 ret
= usb_hcd_alloc_bandwidth(dev
, cp
, NULL
, NULL
);
1776 usb_autosuspend_device(dev
);
1777 mutex_unlock(&hcd
->bandwidth_mutex
);
1778 goto free_interfaces
;
1781 /* if it's already configured, clear out old state first.
1782 * getting rid of old interfaces means unbinding their drivers.
1784 if (dev
->state
!= USB_STATE_ADDRESS
)
1785 usb_disable_device(dev
, 1); /* Skip ep0 */
1787 /* Get rid of pending async Set-Config requests for this device */
1788 cancel_async_set_config(dev
);
1790 ret
= usb_control_msg(dev
, usb_sndctrlpipe(dev
, 0),
1791 USB_REQ_SET_CONFIGURATION
, 0, configuration
, 0,
1792 NULL
, 0, USB_CTRL_SET_TIMEOUT
);
1794 /* All the old state is gone, so what else can we do?
1795 * The device is probably useless now anyway.
1800 dev
->actconfig
= cp
;
1802 usb_set_device_state(dev
, USB_STATE_ADDRESS
);
1803 usb_hcd_alloc_bandwidth(dev
, NULL
, NULL
, NULL
);
1804 usb_autosuspend_device(dev
);
1805 mutex_unlock(&hcd
->bandwidth_mutex
);
1806 goto free_interfaces
;
1808 mutex_unlock(&hcd
->bandwidth_mutex
);
1809 usb_set_device_state(dev
, USB_STATE_CONFIGURED
);
1811 /* Initialize the new interface structures and the
1812 * hc/hcd/usbcore interface/endpoint state.
1814 for (i
= 0; i
< nintf
; ++i
) {
1815 struct usb_interface_cache
*intfc
;
1816 struct usb_interface
*intf
;
1817 struct usb_host_interface
*alt
;
1819 cp
->interface
[i
] = intf
= new_interfaces
[i
];
1820 intfc
= cp
->intf_cache
[i
];
1821 intf
->altsetting
= intfc
->altsetting
;
1822 intf
->num_altsetting
= intfc
->num_altsetting
;
1823 intf
->intf_assoc
= find_iad(dev
, cp
, i
);
1824 kref_get(&intfc
->ref
);
1826 alt
= usb_altnum_to_altsetting(intf
, 0);
1828 /* No altsetting 0? We'll assume the first altsetting.
1829 * We could use a GetInterface call, but if a device is
1830 * so non-compliant that it doesn't have altsetting 0
1831 * then I wouldn't trust its reply anyway.
1834 alt
= &intf
->altsetting
[0];
1836 intf
->cur_altsetting
= alt
;
1837 usb_enable_interface(dev
, intf
, true);
1838 intf
->dev
.parent
= &dev
->dev
;
1839 intf
->dev
.driver
= NULL
;
1840 intf
->dev
.bus
= &usb_bus_type
;
1841 intf
->dev
.type
= &usb_if_device_type
;
1842 intf
->dev
.groups
= usb_interface_groups
;
1843 intf
->dev
.dma_mask
= dev
->dev
.dma_mask
;
1844 INIT_WORK(&intf
->reset_ws
, __usb_queue_reset_device
);
1845 device_initialize(&intf
->dev
);
1846 dev_set_name(&intf
->dev
, "%d-%s:%d.%d",
1847 dev
->bus
->busnum
, dev
->devpath
,
1848 configuration
, alt
->desc
.bInterfaceNumber
);
1850 kfree(new_interfaces
);
1852 if (cp
->string
== NULL
&&
1853 !(dev
->quirks
& USB_QUIRK_CONFIG_INTF_STRINGS
))
1854 cp
->string
= usb_cache_string(dev
, cp
->desc
.iConfiguration
);
1856 /* Now that all the interfaces are set up, register them
1857 * to trigger binding of drivers to interfaces. probe()
1858 * routines may install different altsettings and may
1859 * claim() any interfaces not yet bound. Many class drivers
1860 * need that: CDC, audio, video, etc.
1862 for (i
= 0; i
< nintf
; ++i
) {
1863 struct usb_interface
*intf
= cp
->interface
[i
];
1866 "adding %s (config #%d, interface %d)\n",
1867 dev_name(&intf
->dev
), configuration
,
1868 intf
->cur_altsetting
->desc
.bInterfaceNumber
);
1869 device_enable_async_suspend(&intf
->dev
);
1870 ret
= device_add(&intf
->dev
);
1872 dev_err(&dev
->dev
, "device_add(%s) --> %d\n",
1873 dev_name(&intf
->dev
), ret
);
1876 create_intf_ep_devs(intf
);
1879 usb_autosuspend_device(dev
);
1883 static LIST_HEAD(set_config_list
);
1884 static DEFINE_SPINLOCK(set_config_lock
);
1886 struct set_config_request
{
1887 struct usb_device
*udev
;
1889 struct work_struct work
;
1890 struct list_head node
;
1893 /* Worker routine for usb_driver_set_configuration() */
1894 static void driver_set_config_work(struct work_struct
*work
)
1896 struct set_config_request
*req
=
1897 container_of(work
, struct set_config_request
, work
);
1898 struct usb_device
*udev
= req
->udev
;
1900 usb_lock_device(udev
);
1901 spin_lock(&set_config_lock
);
1902 list_del(&req
->node
);
1903 spin_unlock(&set_config_lock
);
1905 if (req
->config
>= -1) /* Is req still valid? */
1906 usb_set_configuration(udev
, req
->config
);
1907 usb_unlock_device(udev
);
1912 /* Cancel pending Set-Config requests for a device whose configuration
1915 static void cancel_async_set_config(struct usb_device
*udev
)
1917 struct set_config_request
*req
;
1919 spin_lock(&set_config_lock
);
1920 list_for_each_entry(req
, &set_config_list
, node
) {
1921 if (req
->udev
== udev
)
1922 req
->config
= -999; /* Mark as cancelled */
1924 spin_unlock(&set_config_lock
);
1928 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1929 * @udev: the device whose configuration is being updated
1930 * @config: the configuration being chosen.
1931 * Context: In process context, must be able to sleep
1933 * Device interface drivers are not allowed to change device configurations.
1934 * This is because changing configurations will destroy the interface the
1935 * driver is bound to and create new ones; it would be like a floppy-disk
1936 * driver telling the computer to replace the floppy-disk drive with a
1939 * Still, in certain specialized circumstances the need may arise. This
1940 * routine gets around the normal restrictions by using a work thread to
1941 * submit the change-config request.
1943 * Returns 0 if the request was successfully queued, error code otherwise.
1944 * The caller has no way to know whether the queued request will eventually
1947 int usb_driver_set_configuration(struct usb_device
*udev
, int config
)
1949 struct set_config_request
*req
;
1951 req
= kmalloc(sizeof(*req
), GFP_KERNEL
);
1955 req
->config
= config
;
1956 INIT_WORK(&req
->work
, driver_set_config_work
);
1958 spin_lock(&set_config_lock
);
1959 list_add(&req
->node
, &set_config_list
);
1960 spin_unlock(&set_config_lock
);
1963 schedule_work(&req
->work
);
1966 EXPORT_SYMBOL_GPL(usb_driver_set_configuration
);