2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/irq.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
30 #define DRIVER_AUTHOR "Sarah Sharp"
31 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
33 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
34 static int link_quirk
;
35 module_param(link_quirk
, int, S_IRUGO
| S_IWUSR
);
36 MODULE_PARM_DESC(link_quirk
, "Don't clear the chain bit on a link TRB");
38 /* TODO: copied from ehci-hcd.c - can this be refactored? */
40 * handshake - spin reading hc until handshake completes or fails
41 * @ptr: address of hc register to be read
42 * @mask: bits to look at in result of read
43 * @done: value of those bits when handshake succeeds
44 * @usec: timeout in microseconds
46 * Returns negative errno, or zero on success
48 * Success happens when the "mask" bits have the specified value (hardware
49 * handshake done). There are two failure modes: "usec" have passed (major
50 * hardware flakeout), or the register reads as all-ones (hardware removed).
52 static int handshake(struct xhci_hcd
*xhci
, void __iomem
*ptr
,
53 u32 mask
, u32 done
, int usec
)
58 result
= xhci_readl(xhci
, ptr
);
59 if (result
== ~(u32
)0) /* card removed */
71 * Disable interrupts and begin the xHCI halting process.
73 void xhci_quiesce(struct xhci_hcd
*xhci
)
80 halted
= xhci_readl(xhci
, &xhci
->op_regs
->status
) & STS_HALT
;
84 cmd
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
86 xhci_writel(xhci
, cmd
, &xhci
->op_regs
->command
);
90 * Force HC into halt state.
92 * Disable any IRQs and clear the run/stop bit.
93 * HC will complete any current and actively pipelined transactions, and
94 * should halt within 16 microframes of the run/stop bit being cleared.
95 * Read HC Halted bit in the status register to see when the HC is finished.
96 * XXX: shouldn't we set HC_STATE_HALT here somewhere?
98 int xhci_halt(struct xhci_hcd
*xhci
)
100 xhci_dbg(xhci
, "// Halt the HC\n");
103 return handshake(xhci
, &xhci
->op_regs
->status
,
104 STS_HALT
, STS_HALT
, XHCI_MAX_HALT_USEC
);
108 * Reset a halted HC, and set the internal HC state to HC_STATE_HALT.
110 * This resets pipelines, timers, counters, state machines, etc.
111 * Transactions will be terminated immediately, and operational registers
112 * will be set to their defaults.
114 int xhci_reset(struct xhci_hcd
*xhci
)
119 state
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
120 if ((state
& STS_HALT
) == 0) {
121 xhci_warn(xhci
, "Host controller not halted, aborting reset.\n");
125 xhci_dbg(xhci
, "// Reset the HC\n");
126 command
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
127 command
|= CMD_RESET
;
128 xhci_writel(xhci
, command
, &xhci
->op_regs
->command
);
129 /* XXX: Why does EHCI set this here? Shouldn't other code do this? */
130 xhci_to_hcd(xhci
)->state
= HC_STATE_HALT
;
132 return handshake(xhci
, &xhci
->op_regs
->command
, CMD_RESET
, 0, 250 * 1000);
137 /* Set up MSI-X table for entry 0 (may claim other entries later) */
138 static int xhci_setup_msix(struct xhci_hcd
*xhci
)
141 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
143 xhci
->msix_count
= 0;
144 /* XXX: did I do this right? ixgbe does kcalloc for more than one */
145 xhci
->msix_entries
= kmalloc(sizeof(struct msix_entry
), GFP_KERNEL
);
146 if (!xhci
->msix_entries
) {
147 xhci_err(xhci
, "Failed to allocate MSI-X entries\n");
150 xhci
->msix_entries
[0].entry
= 0;
152 ret
= pci_enable_msix(pdev
, xhci
->msix_entries
, xhci
->msix_count
);
154 xhci_err(xhci
, "Failed to enable MSI-X\n");
159 * Pass the xhci pointer value as the request_irq "cookie".
160 * If more irqs are added, this will need to be unique for each one.
162 ret
= request_irq(xhci
->msix_entries
[0].vector
, &xhci_irq
, 0,
163 "xHCI", xhci_to_hcd(xhci
));
165 xhci_err(xhci
, "Failed to allocate MSI-X interrupt\n");
168 xhci_dbg(xhci
, "Finished setting up MSI-X\n");
172 pci_disable_msix(pdev
);
174 kfree(xhci
->msix_entries
);
175 xhci
->msix_entries
= NULL
;
179 /* XXX: code duplication; can xhci_setup_msix call this? */
180 /* Free any IRQs and disable MSI-X */
181 static void xhci_cleanup_msix(struct xhci_hcd
*xhci
)
183 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
184 if (!xhci
->msix_entries
)
187 free_irq(xhci
->msix_entries
[0].vector
, xhci
);
188 pci_disable_msix(pdev
);
189 kfree(xhci
->msix_entries
);
190 xhci
->msix_entries
= NULL
;
191 xhci_dbg(xhci
, "Finished cleaning up MSI-X\n");
196 * Initialize memory for HCD and xHC (one-time init).
198 * Program the PAGESIZE register, initialize the device context array, create
199 * device contexts (?), set up a command ring segment (or two?), create event
200 * ring (one for now).
202 int xhci_init(struct usb_hcd
*hcd
)
204 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
207 xhci_dbg(xhci
, "xhci_init\n");
208 spin_lock_init(&xhci
->lock
);
210 xhci_dbg(xhci
, "QUIRK: Not clearing Link TRB chain bits.\n");
211 xhci
->quirks
|= XHCI_LINK_TRB_QUIRK
;
213 xhci_dbg(xhci
, "xHCI doesn't need link TRB QUIRK\n");
215 retval
= xhci_mem_init(xhci
, GFP_KERNEL
);
216 xhci_dbg(xhci
, "Finished xhci_init\n");
222 * Called in interrupt context when there might be work
223 * queued on the event ring
225 * xhci->lock must be held by caller.
227 static void xhci_work(struct xhci_hcd
*xhci
)
233 * Clear the op reg interrupt status first,
234 * so we can receive interrupts from other MSI-X interrupters.
235 * Write 1 to clear the interrupt status.
237 temp
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
239 xhci_writel(xhci
, temp
, &xhci
->op_regs
->status
);
240 /* FIXME when MSI-X is supported and there are multiple vectors */
241 /* Clear the MSI-X event interrupt status */
243 /* Acknowledge the interrupt */
244 temp
= xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
246 xhci_writel(xhci
, temp
, &xhci
->ir_set
->irq_pending
);
247 /* Flush posted writes */
248 xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
250 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
251 xhci_dbg(xhci
, "xHCI dying, ignoring interrupt. "
252 "Shouldn't IRQs be disabled?\n");
254 /* FIXME this should be a delayed service routine
255 * that clears the EHB.
257 xhci_handle_event(xhci
);
259 /* Clear the event handler busy flag (RW1C); the event ring should be empty. */
260 temp_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
261 xhci_write_64(xhci
, temp_64
| ERST_EHB
, &xhci
->ir_set
->erst_dequeue
);
262 /* Flush posted writes -- FIXME is this necessary? */
263 xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
266 /*-------------------------------------------------------------------------*/
269 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
270 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
271 * indicators of an event TRB error, but we check the status *first* to be safe.
273 irqreturn_t
xhci_irq(struct usb_hcd
*hcd
)
275 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
279 spin_lock(&xhci
->lock
);
280 trb
= xhci
->event_ring
->dequeue
;
281 /* Check if the xHC generated the interrupt, or the irq is shared */
282 temp
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
283 temp2
= xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
284 if (temp
== 0xffffffff && temp2
== 0xffffffff)
287 if (!(temp
& STS_EINT
) && !ER_IRQ_PENDING(temp2
)) {
288 spin_unlock(&xhci
->lock
);
291 xhci_dbg(xhci
, "op reg status = %08x\n", temp
);
292 xhci_dbg(xhci
, "ir set irq_pending = %08x\n", temp2
);
293 xhci_dbg(xhci
, "Event ring dequeue ptr:\n");
294 xhci_dbg(xhci
, "@%llx %08x %08x %08x %08x\n",
295 (unsigned long long)xhci_trb_virt_to_dma(xhci
->event_ring
->deq_seg
, trb
),
296 lower_32_bits(trb
->link
.segment_ptr
),
297 upper_32_bits(trb
->link
.segment_ptr
),
298 (unsigned int) trb
->link
.intr_target
,
299 (unsigned int) trb
->link
.control
);
301 if (temp
& STS_FATAL
) {
302 xhci_warn(xhci
, "WARNING: Host System Error\n");
305 xhci_to_hcd(xhci
)->state
= HC_STATE_HALT
;
306 spin_unlock(&xhci
->lock
);
311 spin_unlock(&xhci
->lock
);
316 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
317 void xhci_event_ring_work(unsigned long arg
)
322 struct xhci_hcd
*xhci
= (struct xhci_hcd
*) arg
;
325 xhci_dbg(xhci
, "Poll event ring: %lu\n", jiffies
);
327 spin_lock_irqsave(&xhci
->lock
, flags
);
328 temp
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
329 xhci_dbg(xhci
, "op reg status = 0x%x\n", temp
);
330 if (temp
== 0xffffffff || (xhci
->xhc_state
& XHCI_STATE_DYING
)) {
331 xhci_dbg(xhci
, "HW died, polling stopped.\n");
332 spin_unlock_irqrestore(&xhci
->lock
, flags
);
336 temp
= xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
337 xhci_dbg(xhci
, "ir_set 0 pending = 0x%x\n", temp
);
338 xhci_dbg(xhci
, "No-op commands handled = %d\n", xhci
->noops_handled
);
339 xhci_dbg(xhci
, "HC error bitmask = 0x%x\n", xhci
->error_bitmask
);
340 xhci
->error_bitmask
= 0;
341 xhci_dbg(xhci
, "Event ring:\n");
342 xhci_debug_segment(xhci
, xhci
->event_ring
->deq_seg
);
343 xhci_dbg_ring_ptrs(xhci
, xhci
->event_ring
);
344 temp_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
345 temp_64
&= ~ERST_PTR_MASK
;
346 xhci_dbg(xhci
, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64
);
347 xhci_dbg(xhci
, "Command ring:\n");
348 xhci_debug_segment(xhci
, xhci
->cmd_ring
->deq_seg
);
349 xhci_dbg_ring_ptrs(xhci
, xhci
->cmd_ring
);
350 xhci_dbg_cmd_ptrs(xhci
);
351 for (i
= 0; i
< MAX_HC_SLOTS
; ++i
) {
354 for (j
= 0; j
< 31; ++j
) {
355 struct xhci_ring
*ring
= xhci
->devs
[i
]->eps
[j
].ring
;
358 xhci_dbg(xhci
, "Dev %d endpoint ring %d:\n", i
, j
);
359 xhci_debug_segment(xhci
, ring
->deq_seg
);
363 if (xhci
->noops_submitted
!= NUM_TEST_NOOPS
)
364 if (xhci_setup_one_noop(xhci
))
365 xhci_ring_cmd_db(xhci
);
366 spin_unlock_irqrestore(&xhci
->lock
, flags
);
369 mod_timer(&xhci
->event_ring_timer
, jiffies
+ POLL_TIMEOUT
* HZ
);
371 xhci_dbg(xhci
, "Quit polling the event ring.\n");
376 * Start the HC after it was halted.
378 * This function is called by the USB core when the HC driver is added.
379 * Its opposite is xhci_stop().
381 * xhci_init() must be called once before this function can be called.
382 * Reset the HC, enable device slot contexts, program DCBAAP, and
383 * set command ring pointer and event ring pointer.
385 * Setup MSI-X vectors and enable interrupts.
387 int xhci_run(struct usb_hcd
*hcd
)
391 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
392 void (*doorbell
)(struct xhci_hcd
*) = NULL
;
394 hcd
->uses_new_polling
= 1;
397 xhci_dbg(xhci
, "xhci_run\n");
398 #if 0 /* FIXME: MSI not setup yet */
399 /* Do this at the very last minute */
400 ret
= xhci_setup_msix(xhci
);
406 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
407 init_timer(&xhci
->event_ring_timer
);
408 xhci
->event_ring_timer
.data
= (unsigned long) xhci
;
409 xhci
->event_ring_timer
.function
= xhci_event_ring_work
;
410 /* Poll the event ring */
411 xhci
->event_ring_timer
.expires
= jiffies
+ POLL_TIMEOUT
* HZ
;
413 xhci_dbg(xhci
, "Setting event ring polling timer\n");
414 add_timer(&xhci
->event_ring_timer
);
417 xhci_dbg(xhci
, "Command ring memory map follows:\n");
418 xhci_debug_ring(xhci
, xhci
->cmd_ring
);
419 xhci_dbg_ring_ptrs(xhci
, xhci
->cmd_ring
);
420 xhci_dbg_cmd_ptrs(xhci
);
422 xhci_dbg(xhci
, "ERST memory map follows:\n");
423 xhci_dbg_erst(xhci
, &xhci
->erst
);
424 xhci_dbg(xhci
, "Event ring:\n");
425 xhci_debug_ring(xhci
, xhci
->event_ring
);
426 xhci_dbg_ring_ptrs(xhci
, xhci
->event_ring
);
427 temp_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
428 temp_64
&= ~ERST_PTR_MASK
;
429 xhci_dbg(xhci
, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64
);
431 xhci_dbg(xhci
, "// Set the interrupt modulation register\n");
432 temp
= xhci_readl(xhci
, &xhci
->ir_set
->irq_control
);
433 temp
&= ~ER_IRQ_INTERVAL_MASK
;
435 xhci_writel(xhci
, temp
, &xhci
->ir_set
->irq_control
);
437 /* Set the HCD state before we enable the irqs */
438 hcd
->state
= HC_STATE_RUNNING
;
439 temp
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
441 xhci_dbg(xhci
, "// Enable interrupts, cmd = 0x%x.\n",
443 xhci_writel(xhci
, temp
, &xhci
->op_regs
->command
);
445 temp
= xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
446 xhci_dbg(xhci
, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
447 xhci
->ir_set
, (unsigned int) ER_IRQ_ENABLE(temp
));
448 xhci_writel(xhci
, ER_IRQ_ENABLE(temp
),
449 &xhci
->ir_set
->irq_pending
);
450 xhci_print_ir_set(xhci
, xhci
->ir_set
, 0);
452 if (NUM_TEST_NOOPS
> 0)
453 doorbell
= xhci_setup_one_noop(xhci
);
455 temp
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
457 xhci_dbg(xhci
, "// Turn on HC, cmd = 0x%x.\n",
459 xhci_writel(xhci
, temp
, &xhci
->op_regs
->command
);
460 /* Flush PCI posted writes */
461 temp
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
462 xhci_dbg(xhci
, "// @%p = 0x%x\n", &xhci
->op_regs
->command
, temp
);
466 xhci_dbg(xhci
, "Finished xhci_run\n");
473 * This function is called by the USB core when the HC driver is removed.
474 * Its opposite is xhci_run().
476 * Disable device contexts, disable IRQs, and quiesce the HC.
477 * Reset the HC, finish any completed transactions, and cleanup memory.
479 void xhci_stop(struct usb_hcd
*hcd
)
482 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
484 spin_lock_irq(&xhci
->lock
);
487 spin_unlock_irq(&xhci
->lock
);
489 #if 0 /* No MSI yet */
490 xhci_cleanup_msix(xhci
);
492 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
493 /* Tell the event ring poll function not to reschedule */
495 del_timer_sync(&xhci
->event_ring_timer
);
498 xhci_dbg(xhci
, "// Disabling event ring interrupts\n");
499 temp
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
500 xhci_writel(xhci
, temp
& ~STS_EINT
, &xhci
->op_regs
->status
);
501 temp
= xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
502 xhci_writel(xhci
, ER_IRQ_DISABLE(temp
),
503 &xhci
->ir_set
->irq_pending
);
504 xhci_print_ir_set(xhci
, xhci
->ir_set
, 0);
506 xhci_dbg(xhci
, "cleaning up memory\n");
507 xhci_mem_cleanup(xhci
);
508 xhci_dbg(xhci
, "xhci_stop completed - status = %x\n",
509 xhci_readl(xhci
, &xhci
->op_regs
->status
));
513 * Shutdown HC (not bus-specific)
515 * This is called when the machine is rebooting or halting. We assume that the
516 * machine will be powered off, and the HC's internal state will be reset.
517 * Don't bother to free memory.
519 void xhci_shutdown(struct usb_hcd
*hcd
)
521 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
523 spin_lock_irq(&xhci
->lock
);
525 spin_unlock_irq(&xhci
->lock
);
528 xhci_cleanup_msix(xhci
);
531 xhci_dbg(xhci
, "xhci_shutdown completed - status = %x\n",
532 xhci_readl(xhci
, &xhci
->op_regs
->status
));
535 /*-------------------------------------------------------------------------*/
538 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
539 * HCDs. Find the index for an endpoint given its descriptor. Use the return
540 * value to right shift 1 for the bitmask.
542 * Index = (epnum * 2) + direction - 1,
543 * where direction = 0 for OUT, 1 for IN.
544 * For control endpoints, the IN index is used (OUT index is unused), so
545 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
547 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor
*desc
)
550 if (usb_endpoint_xfer_control(desc
))
551 index
= (unsigned int) (usb_endpoint_num(desc
)*2);
553 index
= (unsigned int) (usb_endpoint_num(desc
)*2) +
554 (usb_endpoint_dir_in(desc
) ? 1 : 0) - 1;
558 /* Find the flag for this endpoint (for use in the control context). Use the
559 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
562 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor
*desc
)
564 return 1 << (xhci_get_endpoint_index(desc
) + 1);
567 /* Find the flag for this endpoint (for use in the control context). Use the
568 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
571 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index
)
573 return 1 << (ep_index
+ 1);
576 /* Compute the last valid endpoint context index. Basically, this is the
577 * endpoint index plus one. For slot contexts with more than valid endpoint,
578 * we find the most significant bit set in the added contexts flags.
579 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
580 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
582 unsigned int xhci_last_valid_endpoint(u32 added_ctxs
)
584 return fls(added_ctxs
) - 1;
587 /* Returns 1 if the arguments are OK;
588 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
590 int xhci_check_args(struct usb_hcd
*hcd
, struct usb_device
*udev
,
591 struct usb_host_endpoint
*ep
, int check_ep
, const char *func
) {
592 if (!hcd
|| (check_ep
&& !ep
) || !udev
) {
593 printk(KERN_DEBUG
"xHCI %s called with invalid args\n",
598 printk(KERN_DEBUG
"xHCI %s called for root hub\n",
602 if (!udev
->slot_id
) {
603 printk(KERN_DEBUG
"xHCI %s called with unaddressed device\n",
610 static int xhci_configure_endpoint(struct xhci_hcd
*xhci
,
611 struct usb_device
*udev
, struct xhci_command
*command
,
612 bool ctx_change
, bool must_succeed
);
615 * Full speed devices may have a max packet size greater than 8 bytes, but the
616 * USB core doesn't know that until it reads the first 8 bytes of the
617 * descriptor. If the usb_device's max packet size changes after that point,
618 * we need to issue an evaluate context command and wait on it.
620 static int xhci_check_maxpacket(struct xhci_hcd
*xhci
, unsigned int slot_id
,
621 unsigned int ep_index
, struct urb
*urb
)
623 struct xhci_container_ctx
*in_ctx
;
624 struct xhci_container_ctx
*out_ctx
;
625 struct xhci_input_control_ctx
*ctrl_ctx
;
626 struct xhci_ep_ctx
*ep_ctx
;
628 int hw_max_packet_size
;
631 out_ctx
= xhci
->devs
[slot_id
]->out_ctx
;
632 ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
633 hw_max_packet_size
= MAX_PACKET_DECODED(ep_ctx
->ep_info2
);
634 max_packet_size
= urb
->dev
->ep0
.desc
.wMaxPacketSize
;
635 if (hw_max_packet_size
!= max_packet_size
) {
636 xhci_dbg(xhci
, "Max Packet Size for ep 0 changed.\n");
637 xhci_dbg(xhci
, "Max packet size in usb_device = %d\n",
639 xhci_dbg(xhci
, "Max packet size in xHCI HW = %d\n",
641 xhci_dbg(xhci
, "Issuing evaluate context command.\n");
643 /* Set up the modified control endpoint 0 */
644 xhci_endpoint_copy(xhci
, xhci
->devs
[slot_id
]->in_ctx
,
645 xhci
->devs
[slot_id
]->out_ctx
, ep_index
);
646 in_ctx
= xhci
->devs
[slot_id
]->in_ctx
;
647 ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, ep_index
);
648 ep_ctx
->ep_info2
&= ~MAX_PACKET_MASK
;
649 ep_ctx
->ep_info2
|= MAX_PACKET(max_packet_size
);
651 /* Set up the input context flags for the command */
652 /* FIXME: This won't work if a non-default control endpoint
653 * changes max packet sizes.
655 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
656 ctrl_ctx
->add_flags
= EP0_FLAG
;
657 ctrl_ctx
->drop_flags
= 0;
659 xhci_dbg(xhci
, "Slot %d input context\n", slot_id
);
660 xhci_dbg_ctx(xhci
, in_ctx
, ep_index
);
661 xhci_dbg(xhci
, "Slot %d output context\n", slot_id
);
662 xhci_dbg_ctx(xhci
, out_ctx
, ep_index
);
664 ret
= xhci_configure_endpoint(xhci
, urb
->dev
, NULL
,
667 /* Clean up the input context for later use by bandwidth
670 ctrl_ctx
->add_flags
= SLOT_FLAG
;
676 * non-error returns are a promise to giveback() the urb later
677 * we drop ownership so next owner (or urb unlink) can get it
679 int xhci_urb_enqueue(struct usb_hcd
*hcd
, struct urb
*urb
, gfp_t mem_flags
)
681 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
684 unsigned int slot_id
, ep_index
;
687 if (!urb
|| xhci_check_args(hcd
, urb
->dev
, urb
->ep
, true, __func__
) <= 0)
690 slot_id
= urb
->dev
->slot_id
;
691 ep_index
= xhci_get_endpoint_index(&urb
->ep
->desc
);
693 if (!xhci
->devs
|| !xhci
->devs
[slot_id
]) {
695 dev_warn(&urb
->dev
->dev
, "WARN: urb submitted for dev with no Slot ID\n");
699 if (!test_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
)) {
701 xhci_dbg(xhci
, "urb submitted during PCI suspend\n");
705 if (usb_endpoint_xfer_control(&urb
->ep
->desc
)) {
706 /* Check to see if the max packet size for the default control
707 * endpoint changed during FS device enumeration
709 if (urb
->dev
->speed
== USB_SPEED_FULL
) {
710 ret
= xhci_check_maxpacket(xhci
, slot_id
,
716 /* We have a spinlock and interrupts disabled, so we must pass
717 * atomic context to this function, which may allocate memory.
719 spin_lock_irqsave(&xhci
->lock
, flags
);
720 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
722 ret
= xhci_queue_ctrl_tx(xhci
, GFP_ATOMIC
, urb
,
724 spin_unlock_irqrestore(&xhci
->lock
, flags
);
725 } else if (usb_endpoint_xfer_bulk(&urb
->ep
->desc
)) {
726 spin_lock_irqsave(&xhci
->lock
, flags
);
727 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
729 ret
= xhci_queue_bulk_tx(xhci
, GFP_ATOMIC
, urb
,
731 spin_unlock_irqrestore(&xhci
->lock
, flags
);
732 } else if (usb_endpoint_xfer_int(&urb
->ep
->desc
)) {
733 spin_lock_irqsave(&xhci
->lock
, flags
);
734 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
736 ret
= xhci_queue_intr_tx(xhci
, GFP_ATOMIC
, urb
,
738 spin_unlock_irqrestore(&xhci
->lock
, flags
);
745 xhci_dbg(xhci
, "Ep 0x%x: URB %p submitted for "
746 "non-responsive xHCI host.\n",
747 urb
->ep
->desc
.bEndpointAddress
, urb
);
748 spin_unlock_irqrestore(&xhci
->lock
, flags
);
753 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
754 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
755 * should pick up where it left off in the TD, unless a Set Transfer Ring
756 * Dequeue Pointer is issued.
758 * The TRBs that make up the buffers for the canceled URB will be "removed" from
759 * the ring. Since the ring is a contiguous structure, they can't be physically
760 * removed. Instead, there are two options:
762 * 1) If the HC is in the middle of processing the URB to be canceled, we
763 * simply move the ring's dequeue pointer past those TRBs using the Set
764 * Transfer Ring Dequeue Pointer command. This will be the common case,
765 * when drivers timeout on the last submitted URB and attempt to cancel.
767 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
768 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
769 * HC will need to invalidate the any TRBs it has cached after the stop
770 * endpoint command, as noted in the xHCI 0.95 errata.
772 * 3) The TD may have completed by the time the Stop Endpoint Command
773 * completes, so software needs to handle that case too.
775 * This function should protect against the TD enqueueing code ringing the
776 * doorbell while this code is waiting for a Stop Endpoint command to complete.
777 * It also needs to account for multiple cancellations on happening at the same
778 * time for the same endpoint.
780 * Note that this function can be called in any context, or so says
781 * usb_hcd_unlink_urb()
783 int xhci_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
788 struct xhci_hcd
*xhci
;
790 unsigned int ep_index
;
791 struct xhci_ring
*ep_ring
;
792 struct xhci_virt_ep
*ep
;
794 xhci
= hcd_to_xhci(hcd
);
795 spin_lock_irqsave(&xhci
->lock
, flags
);
796 /* Make sure the URB hasn't completed or been unlinked already */
797 ret
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
798 if (ret
|| !urb
->hcpriv
)
800 temp
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
801 if (temp
== 0xffffffff) {
802 xhci_dbg(xhci
, "HW died, freeing TD.\n");
803 td
= (struct xhci_td
*) urb
->hcpriv
;
805 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
806 spin_unlock_irqrestore(&xhci
->lock
, flags
);
807 usb_hcd_giveback_urb(xhci_to_hcd(xhci
), urb
, -ESHUTDOWN
);
811 if (xhci
->xhc_state
& XHCI_STATE_DYING
) {
812 xhci_dbg(xhci
, "Ep 0x%x: URB %p to be canceled on "
813 "non-responsive xHCI host.\n",
814 urb
->ep
->desc
.bEndpointAddress
, urb
);
815 /* Let the stop endpoint command watchdog timer (which set this
816 * state) finish cleaning up the endpoint TD lists. We must
817 * have caught it in the middle of dropping a lock and giving
823 xhci_dbg(xhci
, "Cancel URB %p\n", urb
);
824 xhci_dbg(xhci
, "Event ring:\n");
825 xhci_debug_ring(xhci
, xhci
->event_ring
);
826 ep_index
= xhci_get_endpoint_index(&urb
->ep
->desc
);
827 ep
= &xhci
->devs
[urb
->dev
->slot_id
]->eps
[ep_index
];
829 xhci_dbg(xhci
, "Endpoint ring:\n");
830 xhci_debug_ring(xhci
, ep_ring
);
831 td
= (struct xhci_td
*) urb
->hcpriv
;
833 list_add_tail(&td
->cancelled_td_list
, &ep
->cancelled_td_list
);
834 /* Queue a stop endpoint command, but only if this is
835 * the first cancellation to be handled.
837 if (!(ep
->ep_state
& EP_HALT_PENDING
)) {
838 ep
->ep_state
|= EP_HALT_PENDING
;
839 ep
->stop_cmds_pending
++;
840 ep
->stop_cmd_timer
.expires
= jiffies
+
841 XHCI_STOP_EP_CMD_TIMEOUT
* HZ
;
842 add_timer(&ep
->stop_cmd_timer
);
843 xhci_queue_stop_endpoint(xhci
, urb
->dev
->slot_id
, ep_index
);
844 xhci_ring_cmd_db(xhci
);
847 spin_unlock_irqrestore(&xhci
->lock
, flags
);
851 /* Drop an endpoint from a new bandwidth configuration for this device.
852 * Only one call to this function is allowed per endpoint before
853 * check_bandwidth() or reset_bandwidth() must be called.
854 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
855 * add the endpoint to the schedule with possibly new parameters denoted by a
856 * different endpoint descriptor in usb_host_endpoint.
857 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
860 * The USB core will not allow URBs to be queued to an endpoint that is being
861 * disabled, so there's no need for mutual exclusion to protect
862 * the xhci->devs[slot_id] structure.
864 int xhci_drop_endpoint(struct usb_hcd
*hcd
, struct usb_device
*udev
,
865 struct usb_host_endpoint
*ep
)
867 struct xhci_hcd
*xhci
;
868 struct xhci_container_ctx
*in_ctx
, *out_ctx
;
869 struct xhci_input_control_ctx
*ctrl_ctx
;
870 struct xhci_slot_ctx
*slot_ctx
;
871 unsigned int last_ctx
;
872 unsigned int ep_index
;
873 struct xhci_ep_ctx
*ep_ctx
;
875 u32 new_add_flags
, new_drop_flags
, new_slot_info
;
878 ret
= xhci_check_args(hcd
, udev
, ep
, 1, __func__
);
881 xhci
= hcd_to_xhci(hcd
);
882 xhci_dbg(xhci
, "%s called for udev %p\n", __func__
, udev
);
884 drop_flag
= xhci_get_endpoint_flag(&ep
->desc
);
885 if (drop_flag
== SLOT_FLAG
|| drop_flag
== EP0_FLAG
) {
886 xhci_dbg(xhci
, "xHCI %s - can't drop slot or ep 0 %#x\n",
887 __func__
, drop_flag
);
891 if (!xhci
->devs
|| !xhci
->devs
[udev
->slot_id
]) {
892 xhci_warn(xhci
, "xHCI %s called with unaddressed device\n",
897 in_ctx
= xhci
->devs
[udev
->slot_id
]->in_ctx
;
898 out_ctx
= xhci
->devs
[udev
->slot_id
]->out_ctx
;
899 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
900 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
901 ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
902 /* If the HC already knows the endpoint is disabled,
903 * or the HCD has noted it is disabled, ignore this request
905 if ((ep_ctx
->ep_info
& EP_STATE_MASK
) == EP_STATE_DISABLED
||
906 ctrl_ctx
->drop_flags
& xhci_get_endpoint_flag(&ep
->desc
)) {
907 xhci_warn(xhci
, "xHCI %s called with disabled ep %p\n",
912 ctrl_ctx
->drop_flags
|= drop_flag
;
913 new_drop_flags
= ctrl_ctx
->drop_flags
;
915 ctrl_ctx
->add_flags
&= ~drop_flag
;
916 new_add_flags
= ctrl_ctx
->add_flags
;
918 last_ctx
= xhci_last_valid_endpoint(ctrl_ctx
->add_flags
);
919 slot_ctx
= xhci_get_slot_ctx(xhci
, in_ctx
);
920 /* Update the last valid endpoint context, if we deleted the last one */
921 if ((slot_ctx
->dev_info
& LAST_CTX_MASK
) > LAST_CTX(last_ctx
)) {
922 slot_ctx
->dev_info
&= ~LAST_CTX_MASK
;
923 slot_ctx
->dev_info
|= LAST_CTX(last_ctx
);
925 new_slot_info
= slot_ctx
->dev_info
;
927 xhci_endpoint_zero(xhci
, xhci
->devs
[udev
->slot_id
], ep
);
929 xhci_dbg(xhci
, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
930 (unsigned int) ep
->desc
.bEndpointAddress
,
932 (unsigned int) new_drop_flags
,
933 (unsigned int) new_add_flags
,
934 (unsigned int) new_slot_info
);
938 /* Add an endpoint to a new possible bandwidth configuration for this device.
939 * Only one call to this function is allowed per endpoint before
940 * check_bandwidth() or reset_bandwidth() must be called.
941 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
942 * add the endpoint to the schedule with possibly new parameters denoted by a
943 * different endpoint descriptor in usb_host_endpoint.
944 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
947 * The USB core will not allow URBs to be queued to an endpoint until the
948 * configuration or alt setting is installed in the device, so there's no need
949 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
951 int xhci_add_endpoint(struct usb_hcd
*hcd
, struct usb_device
*udev
,
952 struct usb_host_endpoint
*ep
)
954 struct xhci_hcd
*xhci
;
955 struct xhci_container_ctx
*in_ctx
, *out_ctx
;
956 unsigned int ep_index
;
957 struct xhci_ep_ctx
*ep_ctx
;
958 struct xhci_slot_ctx
*slot_ctx
;
959 struct xhci_input_control_ctx
*ctrl_ctx
;
961 unsigned int last_ctx
;
962 u32 new_add_flags
, new_drop_flags
, new_slot_info
;
965 ret
= xhci_check_args(hcd
, udev
, ep
, 1, __func__
);
967 /* So we won't queue a reset ep command for a root hub */
971 xhci
= hcd_to_xhci(hcd
);
973 added_ctxs
= xhci_get_endpoint_flag(&ep
->desc
);
974 last_ctx
= xhci_last_valid_endpoint(added_ctxs
);
975 if (added_ctxs
== SLOT_FLAG
|| added_ctxs
== EP0_FLAG
) {
976 /* FIXME when we have to issue an evaluate endpoint command to
977 * deal with ep0 max packet size changing once we get the
980 xhci_dbg(xhci
, "xHCI %s - can't add slot or ep 0 %#x\n",
981 __func__
, added_ctxs
);
985 if (!xhci
->devs
|| !xhci
->devs
[udev
->slot_id
]) {
986 xhci_warn(xhci
, "xHCI %s called with unaddressed device\n",
991 in_ctx
= xhci
->devs
[udev
->slot_id
]->in_ctx
;
992 out_ctx
= xhci
->devs
[udev
->slot_id
]->out_ctx
;
993 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
994 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
995 ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
996 /* If the HCD has already noted the endpoint is enabled,
997 * ignore this request.
999 if (ctrl_ctx
->add_flags
& xhci_get_endpoint_flag(&ep
->desc
)) {
1000 xhci_warn(xhci
, "xHCI %s called with enabled ep %p\n",
1006 * Configuration and alternate setting changes must be done in
1007 * process context, not interrupt context (or so documenation
1008 * for usb_set_interface() and usb_set_configuration() claim).
1010 if (xhci_endpoint_init(xhci
, xhci
->devs
[udev
->slot_id
],
1011 udev
, ep
, GFP_NOIO
) < 0) {
1012 dev_dbg(&udev
->dev
, "%s - could not initialize ep %#x\n",
1013 __func__
, ep
->desc
.bEndpointAddress
);
1017 ctrl_ctx
->add_flags
|= added_ctxs
;
1018 new_add_flags
= ctrl_ctx
->add_flags
;
1020 /* If xhci_endpoint_disable() was called for this endpoint, but the
1021 * xHC hasn't been notified yet through the check_bandwidth() call,
1022 * this re-adds a new state for the endpoint from the new endpoint
1023 * descriptors. We must drop and re-add this endpoint, so we leave the
1026 new_drop_flags
= ctrl_ctx
->drop_flags
;
1028 slot_ctx
= xhci_get_slot_ctx(xhci
, in_ctx
);
1029 /* Update the last valid endpoint context, if we just added one past */
1030 if ((slot_ctx
->dev_info
& LAST_CTX_MASK
) < LAST_CTX(last_ctx
)) {
1031 slot_ctx
->dev_info
&= ~LAST_CTX_MASK
;
1032 slot_ctx
->dev_info
|= LAST_CTX(last_ctx
);
1034 new_slot_info
= slot_ctx
->dev_info
;
1036 /* Store the usb_device pointer for later use */
1039 xhci_dbg(xhci
, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1040 (unsigned int) ep
->desc
.bEndpointAddress
,
1042 (unsigned int) new_drop_flags
,
1043 (unsigned int) new_add_flags
,
1044 (unsigned int) new_slot_info
);
1048 static void xhci_zero_in_ctx(struct xhci_hcd
*xhci
, struct xhci_virt_device
*virt_dev
)
1050 struct xhci_input_control_ctx
*ctrl_ctx
;
1051 struct xhci_ep_ctx
*ep_ctx
;
1052 struct xhci_slot_ctx
*slot_ctx
;
1055 /* When a device's add flag and drop flag are zero, any subsequent
1056 * configure endpoint command will leave that endpoint's state
1057 * untouched. Make sure we don't leave any old state in the input
1058 * endpoint contexts.
1060 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, virt_dev
->in_ctx
);
1061 ctrl_ctx
->drop_flags
= 0;
1062 ctrl_ctx
->add_flags
= 0;
1063 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->in_ctx
);
1064 slot_ctx
->dev_info
&= ~LAST_CTX_MASK
;
1065 /* Endpoint 0 is always valid */
1066 slot_ctx
->dev_info
|= LAST_CTX(1);
1067 for (i
= 1; i
< 31; ++i
) {
1068 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, i
);
1069 ep_ctx
->ep_info
= 0;
1070 ep_ctx
->ep_info2
= 0;
1072 ep_ctx
->tx_info
= 0;
1076 static int xhci_configure_endpoint_result(struct xhci_hcd
*xhci
,
1077 struct usb_device
*udev
, int *cmd_status
)
1081 switch (*cmd_status
) {
1083 dev_warn(&udev
->dev
, "Not enough host controller resources "
1084 "for new device state.\n");
1086 /* FIXME: can we allocate more resources for the HC? */
1089 dev_warn(&udev
->dev
, "Not enough bandwidth "
1090 "for new device state.\n");
1092 /* FIXME: can we go back to the old state? */
1095 /* the HCD set up something wrong */
1096 dev_warn(&udev
->dev
, "ERROR: Endpoint drop flag = 0, "
1098 "and endpoint is not disabled.\n");
1102 dev_dbg(&udev
->dev
, "Successful Endpoint Configure command\n");
1106 xhci_err(xhci
, "ERROR: unexpected command completion "
1107 "code 0x%x.\n", *cmd_status
);
1114 static int xhci_evaluate_context_result(struct xhci_hcd
*xhci
,
1115 struct usb_device
*udev
, int *cmd_status
)
1118 struct xhci_virt_device
*virt_dev
= xhci
->devs
[udev
->slot_id
];
1120 switch (*cmd_status
) {
1122 dev_warn(&udev
->dev
, "WARN: xHCI driver setup invalid evaluate "
1123 "context command.\n");
1127 dev_warn(&udev
->dev
, "WARN: slot not enabled for"
1128 "evaluate context command.\n");
1129 case COMP_CTX_STATE
:
1130 dev_warn(&udev
->dev
, "WARN: invalid context state for "
1131 "evaluate context command.\n");
1132 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, 1);
1136 dev_dbg(&udev
->dev
, "Successful evaluate context command\n");
1140 xhci_err(xhci
, "ERROR: unexpected command completion "
1141 "code 0x%x.\n", *cmd_status
);
1148 /* Issue a configure endpoint command or evaluate context command
1149 * and wait for it to finish.
1151 static int xhci_configure_endpoint(struct xhci_hcd
*xhci
,
1152 struct usb_device
*udev
,
1153 struct xhci_command
*command
,
1154 bool ctx_change
, bool must_succeed
)
1158 unsigned long flags
;
1159 struct xhci_container_ctx
*in_ctx
;
1160 struct completion
*cmd_completion
;
1162 struct xhci_virt_device
*virt_dev
;
1164 spin_lock_irqsave(&xhci
->lock
, flags
);
1165 virt_dev
= xhci
->devs
[udev
->slot_id
];
1167 in_ctx
= command
->in_ctx
;
1168 cmd_completion
= command
->completion
;
1169 cmd_status
= &command
->status
;
1170 command
->command_trb
= xhci
->cmd_ring
->enqueue
;
1171 list_add_tail(&command
->cmd_list
, &virt_dev
->cmd_list
);
1173 in_ctx
= virt_dev
->in_ctx
;
1174 cmd_completion
= &virt_dev
->cmd_completion
;
1175 cmd_status
= &virt_dev
->cmd_status
;
1177 init_completion(cmd_completion
);
1180 ret
= xhci_queue_configure_endpoint(xhci
, in_ctx
->dma
,
1181 udev
->slot_id
, must_succeed
);
1183 ret
= xhci_queue_evaluate_context(xhci
, in_ctx
->dma
,
1187 list_del(&command
->cmd_list
);
1188 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1189 xhci_dbg(xhci
, "FIXME allocate a new ring segment\n");
1192 xhci_ring_cmd_db(xhci
);
1193 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1195 /* Wait for the configure endpoint command to complete */
1196 timeleft
= wait_for_completion_interruptible_timeout(
1198 USB_CTRL_SET_TIMEOUT
);
1199 if (timeleft
<= 0) {
1200 xhci_warn(xhci
, "%s while waiting for %s command\n",
1201 timeleft
== 0 ? "Timeout" : "Signal",
1203 "configure endpoint" :
1204 "evaluate context");
1205 /* FIXME cancel the configure endpoint command */
1210 return xhci_configure_endpoint_result(xhci
, udev
, cmd_status
);
1211 return xhci_evaluate_context_result(xhci
, udev
, cmd_status
);
1214 /* Called after one or more calls to xhci_add_endpoint() or
1215 * xhci_drop_endpoint(). If this call fails, the USB core is expected
1216 * to call xhci_reset_bandwidth().
1218 * Since we are in the middle of changing either configuration or
1219 * installing a new alt setting, the USB core won't allow URBs to be
1220 * enqueued for any endpoint on the old config or interface. Nothing
1221 * else should be touching the xhci->devs[slot_id] structure, so we
1222 * don't need to take the xhci->lock for manipulating that.
1224 int xhci_check_bandwidth(struct usb_hcd
*hcd
, struct usb_device
*udev
)
1228 struct xhci_hcd
*xhci
;
1229 struct xhci_virt_device
*virt_dev
;
1230 struct xhci_input_control_ctx
*ctrl_ctx
;
1231 struct xhci_slot_ctx
*slot_ctx
;
1233 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, __func__
);
1236 xhci
= hcd_to_xhci(hcd
);
1238 if (!udev
->slot_id
|| !xhci
->devs
|| !xhci
->devs
[udev
->slot_id
]) {
1239 xhci_warn(xhci
, "xHCI %s called with unaddressed device\n",
1243 xhci_dbg(xhci
, "%s called for udev %p\n", __func__
, udev
);
1244 virt_dev
= xhci
->devs
[udev
->slot_id
];
1246 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
1247 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, virt_dev
->in_ctx
);
1248 ctrl_ctx
->add_flags
|= SLOT_FLAG
;
1249 ctrl_ctx
->add_flags
&= ~EP0_FLAG
;
1250 ctrl_ctx
->drop_flags
&= ~SLOT_FLAG
;
1251 ctrl_ctx
->drop_flags
&= ~EP0_FLAG
;
1252 xhci_dbg(xhci
, "New Input Control Context:\n");
1253 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->in_ctx
);
1254 xhci_dbg_ctx(xhci
, virt_dev
->in_ctx
,
1255 LAST_CTX_TO_EP_NUM(slot_ctx
->dev_info
));
1257 ret
= xhci_configure_endpoint(xhci
, udev
, NULL
,
1260 /* Callee should call reset_bandwidth() */
1264 xhci_dbg(xhci
, "Output context after successful config ep cmd:\n");
1265 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
,
1266 LAST_CTX_TO_EP_NUM(slot_ctx
->dev_info
));
1268 xhci_zero_in_ctx(xhci
, virt_dev
);
1269 /* Install new rings and free or cache any old rings */
1270 for (i
= 1; i
< 31; ++i
) {
1271 if (!virt_dev
->eps
[i
].new_ring
)
1273 /* Only cache or free the old ring if it exists.
1274 * It may not if this is the first add of an endpoint.
1276 if (virt_dev
->eps
[i
].ring
) {
1277 xhci_free_or_cache_endpoint_ring(xhci
, virt_dev
, i
);
1279 virt_dev
->eps
[i
].ring
= virt_dev
->eps
[i
].new_ring
;
1280 virt_dev
->eps
[i
].new_ring
= NULL
;
1286 void xhci_reset_bandwidth(struct usb_hcd
*hcd
, struct usb_device
*udev
)
1288 struct xhci_hcd
*xhci
;
1289 struct xhci_virt_device
*virt_dev
;
1292 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, __func__
);
1295 xhci
= hcd_to_xhci(hcd
);
1297 if (!xhci
->devs
|| !xhci
->devs
[udev
->slot_id
]) {
1298 xhci_warn(xhci
, "xHCI %s called with unaddressed device\n",
1302 xhci_dbg(xhci
, "%s called for udev %p\n", __func__
, udev
);
1303 virt_dev
= xhci
->devs
[udev
->slot_id
];
1304 /* Free any rings allocated for added endpoints */
1305 for (i
= 0; i
< 31; ++i
) {
1306 if (virt_dev
->eps
[i
].new_ring
) {
1307 xhci_ring_free(xhci
, virt_dev
->eps
[i
].new_ring
);
1308 virt_dev
->eps
[i
].new_ring
= NULL
;
1311 xhci_zero_in_ctx(xhci
, virt_dev
);
1314 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd
*xhci
,
1315 struct xhci_container_ctx
*in_ctx
,
1316 struct xhci_container_ctx
*out_ctx
,
1317 u32 add_flags
, u32 drop_flags
)
1319 struct xhci_input_control_ctx
*ctrl_ctx
;
1320 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
1321 ctrl_ctx
->add_flags
= add_flags
;
1322 ctrl_ctx
->drop_flags
= drop_flags
;
1323 xhci_slot_copy(xhci
, in_ctx
, out_ctx
);
1324 ctrl_ctx
->add_flags
|= SLOT_FLAG
;
1326 xhci_dbg(xhci
, "Input Context:\n");
1327 xhci_dbg_ctx(xhci
, in_ctx
, xhci_last_valid_endpoint(add_flags
));
1330 void xhci_setup_input_ctx_for_quirk(struct xhci_hcd
*xhci
,
1331 unsigned int slot_id
, unsigned int ep_index
,
1332 struct xhci_dequeue_state
*deq_state
)
1334 struct xhci_container_ctx
*in_ctx
;
1335 struct xhci_ep_ctx
*ep_ctx
;
1339 xhci_endpoint_copy(xhci
, xhci
->devs
[slot_id
]->in_ctx
,
1340 xhci
->devs
[slot_id
]->out_ctx
, ep_index
);
1341 in_ctx
= xhci
->devs
[slot_id
]->in_ctx
;
1342 ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, ep_index
);
1343 addr
= xhci_trb_virt_to_dma(deq_state
->new_deq_seg
,
1344 deq_state
->new_deq_ptr
);
1346 xhci_warn(xhci
, "WARN Cannot submit config ep after "
1347 "reset ep command\n");
1348 xhci_warn(xhci
, "WARN deq seg = %p, deq ptr = %p\n",
1349 deq_state
->new_deq_seg
,
1350 deq_state
->new_deq_ptr
);
1353 ep_ctx
->deq
= addr
| deq_state
->new_cycle_state
;
1355 added_ctxs
= xhci_get_endpoint_flag_from_index(ep_index
);
1356 xhci_setup_input_ctx_for_config_ep(xhci
, xhci
->devs
[slot_id
]->in_ctx
,
1357 xhci
->devs
[slot_id
]->out_ctx
, added_ctxs
, added_ctxs
);
1360 void xhci_cleanup_stalled_ring(struct xhci_hcd
*xhci
,
1361 struct usb_device
*udev
, unsigned int ep_index
)
1363 struct xhci_dequeue_state deq_state
;
1364 struct xhci_virt_ep
*ep
;
1366 xhci_dbg(xhci
, "Cleaning up stalled endpoint ring\n");
1367 ep
= &xhci
->devs
[udev
->slot_id
]->eps
[ep_index
];
1368 /* We need to move the HW's dequeue pointer past this TD,
1369 * or it will attempt to resend it on the next doorbell ring.
1371 xhci_find_new_dequeue_state(xhci
, udev
->slot_id
,
1372 ep_index
, ep
->stopped_td
,
1375 /* HW with the reset endpoint quirk will use the saved dequeue state to
1376 * issue a configure endpoint command later.
1378 if (!(xhci
->quirks
& XHCI_RESET_EP_QUIRK
)) {
1379 xhci_dbg(xhci
, "Queueing new dequeue state\n");
1380 xhci_queue_new_dequeue_state(xhci
, udev
->slot_id
,
1381 ep_index
, &deq_state
);
1383 /* Better hope no one uses the input context between now and the
1384 * reset endpoint completion!
1386 xhci_dbg(xhci
, "Setting up input context for "
1387 "configure endpoint command\n");
1388 xhci_setup_input_ctx_for_quirk(xhci
, udev
->slot_id
,
1389 ep_index
, &deq_state
);
1393 /* Deal with stalled endpoints. The core should have sent the control message
1394 * to clear the halt condition. However, we need to make the xHCI hardware
1395 * reset its sequence number, since a device will expect a sequence number of
1396 * zero after the halt condition is cleared.
1397 * Context: in_interrupt
1399 void xhci_endpoint_reset(struct usb_hcd
*hcd
,
1400 struct usb_host_endpoint
*ep
)
1402 struct xhci_hcd
*xhci
;
1403 struct usb_device
*udev
;
1404 unsigned int ep_index
;
1405 unsigned long flags
;
1407 struct xhci_virt_ep
*virt_ep
;
1409 xhci
= hcd_to_xhci(hcd
);
1410 udev
= (struct usb_device
*) ep
->hcpriv
;
1411 /* Called with a root hub endpoint (or an endpoint that wasn't added
1412 * with xhci_add_endpoint()
1416 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1417 virt_ep
= &xhci
->devs
[udev
->slot_id
]->eps
[ep_index
];
1418 if (!virt_ep
->stopped_td
) {
1419 xhci_dbg(xhci
, "Endpoint 0x%x not halted, refusing to reset.\n",
1420 ep
->desc
.bEndpointAddress
);
1423 if (usb_endpoint_xfer_control(&ep
->desc
)) {
1424 xhci_dbg(xhci
, "Control endpoint stall already handled.\n");
1428 xhci_dbg(xhci
, "Queueing reset endpoint command\n");
1429 spin_lock_irqsave(&xhci
->lock
, flags
);
1430 ret
= xhci_queue_reset_ep(xhci
, udev
->slot_id
, ep_index
);
1432 * Can't change the ring dequeue pointer until it's transitioned to the
1433 * stopped state, which is only upon a successful reset endpoint
1434 * command. Better hope that last command worked!
1437 xhci_cleanup_stalled_ring(xhci
, udev
, ep_index
);
1438 kfree(virt_ep
->stopped_td
);
1439 xhci_ring_cmd_db(xhci
);
1441 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1444 xhci_warn(xhci
, "FIXME allocate a new ring segment\n");
1448 * This submits a Reset Device Command, which will set the device state to 0,
1449 * set the device address to 0, and disable all the endpoints except the default
1450 * control endpoint. The USB core should come back and call
1451 * xhci_address_device(), and then re-set up the configuration. If this is
1452 * called because of a usb_reset_and_verify_device(), then the old alternate
1453 * settings will be re-installed through the normal bandwidth allocation
1456 * Wait for the Reset Device command to finish. Remove all structures
1457 * associated with the endpoints that were disabled. Clear the input device
1458 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
1460 int xhci_reset_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
1463 unsigned long flags
;
1464 struct xhci_hcd
*xhci
;
1465 unsigned int slot_id
;
1466 struct xhci_virt_device
*virt_dev
;
1467 struct xhci_command
*reset_device_cmd
;
1469 int last_freed_endpoint
;
1471 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, __func__
);
1474 xhci
= hcd_to_xhci(hcd
);
1475 slot_id
= udev
->slot_id
;
1476 virt_dev
= xhci
->devs
[slot_id
];
1478 xhci_dbg(xhci
, "%s called with invalid slot ID %u\n",
1483 xhci_dbg(xhci
, "Resetting device with slot ID %u\n", slot_id
);
1484 /* Allocate the command structure that holds the struct completion.
1485 * Assume we're in process context, since the normal device reset
1486 * process has to wait for the device anyway. Storage devices are
1487 * reset as part of error handling, so use GFP_NOIO instead of
1490 reset_device_cmd
= xhci_alloc_command(xhci
, false, true, GFP_NOIO
);
1491 if (!reset_device_cmd
) {
1492 xhci_dbg(xhci
, "Couldn't allocate command structure.\n");
1496 /* Attempt to submit the Reset Device command to the command ring */
1497 spin_lock_irqsave(&xhci
->lock
, flags
);
1498 reset_device_cmd
->command_trb
= xhci
->cmd_ring
->enqueue
;
1499 list_add_tail(&reset_device_cmd
->cmd_list
, &virt_dev
->cmd_list
);
1500 ret
= xhci_queue_reset_device(xhci
, slot_id
);
1502 xhci_dbg(xhci
, "FIXME: allocate a command ring segment\n");
1503 list_del(&reset_device_cmd
->cmd_list
);
1504 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1505 goto command_cleanup
;
1507 xhci_ring_cmd_db(xhci
);
1508 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1510 /* Wait for the Reset Device command to finish */
1511 timeleft
= wait_for_completion_interruptible_timeout(
1512 reset_device_cmd
->completion
,
1513 USB_CTRL_SET_TIMEOUT
);
1514 if (timeleft
<= 0) {
1515 xhci_warn(xhci
, "%s while waiting for reset device command\n",
1516 timeleft
== 0 ? "Timeout" : "Signal");
1517 spin_lock_irqsave(&xhci
->lock
, flags
);
1518 /* The timeout might have raced with the event ring handler, so
1519 * only delete from the list if the item isn't poisoned.
1521 if (reset_device_cmd
->cmd_list
.next
!= LIST_POISON1
)
1522 list_del(&reset_device_cmd
->cmd_list
);
1523 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1525 goto command_cleanup
;
1528 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
1529 * unless we tried to reset a slot ID that wasn't enabled,
1530 * or the device wasn't in the addressed or configured state.
1532 ret
= reset_device_cmd
->status
;
1534 case COMP_EBADSLT
: /* 0.95 completion code for bad slot ID */
1535 case COMP_CTX_STATE
: /* 0.96 completion code for same thing */
1536 xhci_info(xhci
, "Can't reset device (slot ID %u) in %s state\n",
1538 xhci_get_slot_state(xhci
, virt_dev
->out_ctx
));
1539 xhci_info(xhci
, "Not freeing device rings.\n");
1540 /* Don't treat this as an error. May change my mind later. */
1542 goto command_cleanup
;
1544 xhci_dbg(xhci
, "Successful reset device command.\n");
1547 if (xhci_is_vendor_info_code(xhci
, ret
))
1549 xhci_warn(xhci
, "Unknown completion code %u for "
1550 "reset device command.\n", ret
);
1552 goto command_cleanup
;
1555 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
1556 last_freed_endpoint
= 1;
1557 for (i
= 1; i
< 31; ++i
) {
1558 if (!virt_dev
->eps
[i
].ring
)
1560 xhci_free_or_cache_endpoint_ring(xhci
, virt_dev
, i
);
1561 last_freed_endpoint
= i
;
1563 xhci_dbg(xhci
, "Output context after successful reset device cmd:\n");
1564 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, last_freed_endpoint
);
1568 xhci_free_command(xhci
, reset_device_cmd
);
1573 * At this point, the struct usb_device is about to go away, the device has
1574 * disconnected, and all traffic has been stopped and the endpoints have been
1575 * disabled. Free any HC data structures associated with that device.
1577 void xhci_free_dev(struct usb_hcd
*hcd
, struct usb_device
*udev
)
1579 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
1580 struct xhci_virt_device
*virt_dev
;
1581 unsigned long flags
;
1585 if (udev
->slot_id
== 0)
1587 virt_dev
= xhci
->devs
[udev
->slot_id
];
1591 /* Stop any wayward timer functions (which may grab the lock) */
1592 for (i
= 0; i
< 31; ++i
) {
1593 virt_dev
->eps
[i
].ep_state
&= ~EP_HALT_PENDING
;
1594 del_timer_sync(&virt_dev
->eps
[i
].stop_cmd_timer
);
1597 spin_lock_irqsave(&xhci
->lock
, flags
);
1598 /* Don't disable the slot if the host controller is dead. */
1599 state
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
1600 if (state
== 0xffffffff || (xhci
->xhc_state
& XHCI_STATE_DYING
)) {
1601 xhci_free_virt_device(xhci
, udev
->slot_id
);
1602 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1606 if (xhci_queue_slot_control(xhci
, TRB_DISABLE_SLOT
, udev
->slot_id
)) {
1607 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1608 xhci_dbg(xhci
, "FIXME: allocate a command ring segment\n");
1611 xhci_ring_cmd_db(xhci
);
1612 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1614 * Event command completion handler will free any data structures
1615 * associated with the slot. XXX Can free sleep?
1620 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
1621 * timed out, or allocating memory failed. Returns 1 on success.
1623 int xhci_alloc_dev(struct usb_hcd
*hcd
, struct usb_device
*udev
)
1625 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
1626 unsigned long flags
;
1630 spin_lock_irqsave(&xhci
->lock
, flags
);
1631 ret
= xhci_queue_slot_control(xhci
, TRB_ENABLE_SLOT
, 0);
1633 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1634 xhci_dbg(xhci
, "FIXME: allocate a command ring segment\n");
1637 xhci_ring_cmd_db(xhci
);
1638 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1640 /* XXX: how much time for xHC slot assignment? */
1641 timeleft
= wait_for_completion_interruptible_timeout(&xhci
->addr_dev
,
1642 USB_CTRL_SET_TIMEOUT
);
1643 if (timeleft
<= 0) {
1644 xhci_warn(xhci
, "%s while waiting for a slot\n",
1645 timeleft
== 0 ? "Timeout" : "Signal");
1646 /* FIXME cancel the enable slot request */
1650 if (!xhci
->slot_id
) {
1651 xhci_err(xhci
, "Error while assigning device slot ID\n");
1654 /* xhci_alloc_virt_device() does not touch rings; no need to lock */
1655 if (!xhci_alloc_virt_device(xhci
, xhci
->slot_id
, udev
, GFP_KERNEL
)) {
1656 /* Disable slot, if we can do it without mem alloc */
1657 xhci_warn(xhci
, "Could not allocate xHCI USB device data structures\n");
1658 spin_lock_irqsave(&xhci
->lock
, flags
);
1659 if (!xhci_queue_slot_control(xhci
, TRB_DISABLE_SLOT
, udev
->slot_id
))
1660 xhci_ring_cmd_db(xhci
);
1661 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1664 udev
->slot_id
= xhci
->slot_id
;
1665 /* Is this a LS or FS device under a HS hub? */
1666 /* Hub or peripherial? */
1671 * Issue an Address Device command (which will issue a SetAddress request to
1673 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
1674 * we should only issue and wait on one address command at the same time.
1676 * We add one to the device address issued by the hardware because the USB core
1677 * uses address 1 for the root hubs (even though they're not really devices).
1679 int xhci_address_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
1681 unsigned long flags
;
1683 struct xhci_virt_device
*virt_dev
;
1685 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
1686 struct xhci_slot_ctx
*slot_ctx
;
1687 struct xhci_input_control_ctx
*ctrl_ctx
;
1690 if (!udev
->slot_id
) {
1691 xhci_dbg(xhci
, "Bad Slot ID %d\n", udev
->slot_id
);
1695 virt_dev
= xhci
->devs
[udev
->slot_id
];
1697 /* If this is a Set Address to an unconfigured device, setup ep 0 */
1699 xhci_setup_addressable_virt_dev(xhci
, udev
);
1700 /* Otherwise, assume the core has the device configured how it wants */
1701 xhci_dbg(xhci
, "Slot ID %d Input Context:\n", udev
->slot_id
);
1702 xhci_dbg_ctx(xhci
, virt_dev
->in_ctx
, 2);
1704 spin_lock_irqsave(&xhci
->lock
, flags
);
1705 ret
= xhci_queue_address_device(xhci
, virt_dev
->in_ctx
->dma
,
1708 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1709 xhci_dbg(xhci
, "FIXME: allocate a command ring segment\n");
1712 xhci_ring_cmd_db(xhci
);
1713 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1715 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
1716 timeleft
= wait_for_completion_interruptible_timeout(&xhci
->addr_dev
,
1717 USB_CTRL_SET_TIMEOUT
);
1718 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
1719 * the SetAddress() "recovery interval" required by USB and aborting the
1720 * command on a timeout.
1722 if (timeleft
<= 0) {
1723 xhci_warn(xhci
, "%s while waiting for a slot\n",
1724 timeleft
== 0 ? "Timeout" : "Signal");
1725 /* FIXME cancel the address device command */
1729 switch (virt_dev
->cmd_status
) {
1730 case COMP_CTX_STATE
:
1732 xhci_err(xhci
, "Setup ERROR: address device command for slot %d.\n",
1737 dev_warn(&udev
->dev
, "Device not responding to set address.\n");
1741 xhci_dbg(xhci
, "Successful Address Device command\n");
1744 xhci_err(xhci
, "ERROR: unexpected command completion "
1745 "code 0x%x.\n", virt_dev
->cmd_status
);
1746 xhci_dbg(xhci
, "Slot ID %d Output Context:\n", udev
->slot_id
);
1747 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, 2);
1754 temp_64
= xhci_read_64(xhci
, &xhci
->op_regs
->dcbaa_ptr
);
1755 xhci_dbg(xhci
, "Op regs DCBAA ptr = %#016llx\n", temp_64
);
1756 xhci_dbg(xhci
, "Slot ID %d dcbaa entry @%p = %#016llx\n",
1758 &xhci
->dcbaa
->dev_context_ptrs
[udev
->slot_id
],
1759 (unsigned long long)
1760 xhci
->dcbaa
->dev_context_ptrs
[udev
->slot_id
]);
1761 xhci_dbg(xhci
, "Output Context DMA address = %#08llx\n",
1762 (unsigned long long)virt_dev
->out_ctx
->dma
);
1763 xhci_dbg(xhci
, "Slot ID %d Input Context:\n", udev
->slot_id
);
1764 xhci_dbg_ctx(xhci
, virt_dev
->in_ctx
, 2);
1765 xhci_dbg(xhci
, "Slot ID %d Output Context:\n", udev
->slot_id
);
1766 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, 2);
1768 * USB core uses address 1 for the roothubs, so we add one to the
1769 * address given back to us by the HC.
1771 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->out_ctx
);
1772 udev
->devnum
= (slot_ctx
->dev_state
& DEV_ADDR_MASK
) + 1;
1773 /* Zero the input context control for later use */
1774 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, virt_dev
->in_ctx
);
1775 ctrl_ctx
->add_flags
= 0;
1776 ctrl_ctx
->drop_flags
= 0;
1778 xhci_dbg(xhci
, "Device address = %d\n", udev
->devnum
);
1779 /* XXX Meh, not sure if anyone else but choose_address uses this. */
1780 set_bit(udev
->devnum
, udev
->bus
->devmap
.devicemap
);
1785 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
1786 * internal data structures for the device.
1788 int xhci_update_hub_device(struct usb_hcd
*hcd
, struct usb_device
*hdev
,
1789 struct usb_tt
*tt
, gfp_t mem_flags
)
1791 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
1792 struct xhci_virt_device
*vdev
;
1793 struct xhci_command
*config_cmd
;
1794 struct xhci_input_control_ctx
*ctrl_ctx
;
1795 struct xhci_slot_ctx
*slot_ctx
;
1796 unsigned long flags
;
1797 unsigned think_time
;
1800 /* Ignore root hubs */
1804 vdev
= xhci
->devs
[hdev
->slot_id
];
1806 xhci_warn(xhci
, "Cannot update hub desc for unknown device.\n");
1809 config_cmd
= xhci_alloc_command(xhci
, true, true, mem_flags
);
1811 xhci_dbg(xhci
, "Could not allocate xHCI command structure.\n");
1815 spin_lock_irqsave(&xhci
->lock
, flags
);
1816 xhci_slot_copy(xhci
, config_cmd
->in_ctx
, vdev
->out_ctx
);
1817 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, config_cmd
->in_ctx
);
1818 ctrl_ctx
->add_flags
|= SLOT_FLAG
;
1819 slot_ctx
= xhci_get_slot_ctx(xhci
, config_cmd
->in_ctx
);
1820 slot_ctx
->dev_info
|= DEV_HUB
;
1822 slot_ctx
->dev_info
|= DEV_MTT
;
1823 if (xhci
->hci_version
> 0x95) {
1824 xhci_dbg(xhci
, "xHCI version %x needs hub "
1825 "TT think time and number of ports\n",
1826 (unsigned int) xhci
->hci_version
);
1827 slot_ctx
->dev_info2
|= XHCI_MAX_PORTS(hdev
->maxchild
);
1828 /* Set TT think time - convert from ns to FS bit times.
1829 * 0 = 8 FS bit times, 1 = 16 FS bit times,
1830 * 2 = 24 FS bit times, 3 = 32 FS bit times.
1832 think_time
= tt
->think_time
;
1833 if (think_time
!= 0)
1834 think_time
= (think_time
/ 666) - 1;
1835 slot_ctx
->tt_info
|= TT_THINK_TIME(think_time
);
1837 xhci_dbg(xhci
, "xHCI version %x doesn't need hub "
1838 "TT think time or number of ports\n",
1839 (unsigned int) xhci
->hci_version
);
1841 slot_ctx
->dev_state
= 0;
1842 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1844 xhci_dbg(xhci
, "Set up %s for hub device.\n",
1845 (xhci
->hci_version
> 0x95) ?
1846 "configure endpoint" : "evaluate context");
1847 xhci_dbg(xhci
, "Slot %u Input Context:\n", hdev
->slot_id
);
1848 xhci_dbg_ctx(xhci
, config_cmd
->in_ctx
, 0);
1850 /* Issue and wait for the configure endpoint or
1851 * evaluate context command.
1853 if (xhci
->hci_version
> 0x95)
1854 ret
= xhci_configure_endpoint(xhci
, hdev
, config_cmd
,
1857 ret
= xhci_configure_endpoint(xhci
, hdev
, config_cmd
,
1860 xhci_dbg(xhci
, "Slot %u Output Context:\n", hdev
->slot_id
);
1861 xhci_dbg_ctx(xhci
, vdev
->out_ctx
, 0);
1863 xhci_free_command(xhci
, config_cmd
);
1867 int xhci_get_frame(struct usb_hcd
*hcd
)
1869 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
1870 /* EHCI mods by the periodic size. Why? */
1871 return xhci_readl(xhci
, &xhci
->run_regs
->microframe_index
) >> 3;
1874 MODULE_DESCRIPTION(DRIVER_DESC
);
1875 MODULE_AUTHOR(DRIVER_AUTHOR
);
1876 MODULE_LICENSE("GPL");
1878 static int __init
xhci_hcd_init(void)
1883 retval
= xhci_register_pci();
1886 printk(KERN_DEBUG
"Problem registering PCI driver.");
1891 * Check the compiler generated sizes of structures that must be laid
1892 * out in specific ways for hardware access.
1894 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array
) != 256*32/8);
1895 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx
) != 8*32/8);
1896 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx
) != 8*32/8);
1897 /* xhci_device_control has eight fields, and also
1898 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
1900 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx
) != 4*32/8);
1901 BUILD_BUG_ON(sizeof(union xhci_trb
) != 4*32/8);
1902 BUILD_BUG_ON(sizeof(struct xhci_erst_entry
) != 4*32/8);
1903 BUILD_BUG_ON(sizeof(struct xhci_cap_regs
) != 7*32/8);
1904 BUILD_BUG_ON(sizeof(struct xhci_intr_reg
) != 8*32/8);
1905 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
1906 BUILD_BUG_ON(sizeof(struct xhci_run_regs
) != (8+8*128)*32/8);
1907 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array
) != 256*32/8);
1910 module_init(xhci_hcd_init
);
1912 static void __exit
xhci_hcd_cleanup(void)
1915 xhci_unregister_pci();
1918 module_exit(xhci_hcd_cleanup
);