Staging: strip: delete the driver
[linux/fpc-iii.git] / drivers / usb / host / xhci.c
blob7e4277273908fc6cb31cc596e2e45482b7021ebd
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/irq.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
28 #include "xhci.h"
30 #define DRIVER_AUTHOR "Sarah Sharp"
31 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
33 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
34 static int link_quirk;
35 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
36 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
38 /* TODO: copied from ehci-hcd.c - can this be refactored? */
40 * handshake - spin reading hc until handshake completes or fails
41 * @ptr: address of hc register to be read
42 * @mask: bits to look at in result of read
43 * @done: value of those bits when handshake succeeds
44 * @usec: timeout in microseconds
46 * Returns negative errno, or zero on success
48 * Success happens when the "mask" bits have the specified value (hardware
49 * handshake done). There are two failure modes: "usec" have passed (major
50 * hardware flakeout), or the register reads as all-ones (hardware removed).
52 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
53 u32 mask, u32 done, int usec)
55 u32 result;
57 do {
58 result = xhci_readl(xhci, ptr);
59 if (result == ~(u32)0) /* card removed */
60 return -ENODEV;
61 result &= mask;
62 if (result == done)
63 return 0;
64 udelay(1);
65 usec--;
66 } while (usec > 0);
67 return -ETIMEDOUT;
71 * Disable interrupts and begin the xHCI halting process.
73 void xhci_quiesce(struct xhci_hcd *xhci)
75 u32 halted;
76 u32 cmd;
77 u32 mask;
79 mask = ~(XHCI_IRQS);
80 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
81 if (!halted)
82 mask &= ~CMD_RUN;
84 cmd = xhci_readl(xhci, &xhci->op_regs->command);
85 cmd &= mask;
86 xhci_writel(xhci, cmd, &xhci->op_regs->command);
90 * Force HC into halt state.
92 * Disable any IRQs and clear the run/stop bit.
93 * HC will complete any current and actively pipelined transactions, and
94 * should halt within 16 microframes of the run/stop bit being cleared.
95 * Read HC Halted bit in the status register to see when the HC is finished.
96 * XXX: shouldn't we set HC_STATE_HALT here somewhere?
98 int xhci_halt(struct xhci_hcd *xhci)
100 xhci_dbg(xhci, "// Halt the HC\n");
101 xhci_quiesce(xhci);
103 return handshake(xhci, &xhci->op_regs->status,
104 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
108 * Reset a halted HC, and set the internal HC state to HC_STATE_HALT.
110 * This resets pipelines, timers, counters, state machines, etc.
111 * Transactions will be terminated immediately, and operational registers
112 * will be set to their defaults.
114 int xhci_reset(struct xhci_hcd *xhci)
116 u32 command;
117 u32 state;
119 state = xhci_readl(xhci, &xhci->op_regs->status);
120 if ((state & STS_HALT) == 0) {
121 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
122 return 0;
125 xhci_dbg(xhci, "// Reset the HC\n");
126 command = xhci_readl(xhci, &xhci->op_regs->command);
127 command |= CMD_RESET;
128 xhci_writel(xhci, command, &xhci->op_regs->command);
129 /* XXX: Why does EHCI set this here? Shouldn't other code do this? */
130 xhci_to_hcd(xhci)->state = HC_STATE_HALT;
132 return handshake(xhci, &xhci->op_regs->command, CMD_RESET, 0, 250 * 1000);
136 #if 0
137 /* Set up MSI-X table for entry 0 (may claim other entries later) */
138 static int xhci_setup_msix(struct xhci_hcd *xhci)
140 int ret;
141 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
143 xhci->msix_count = 0;
144 /* XXX: did I do this right? ixgbe does kcalloc for more than one */
145 xhci->msix_entries = kmalloc(sizeof(struct msix_entry), GFP_KERNEL);
146 if (!xhci->msix_entries) {
147 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
148 return -ENOMEM;
150 xhci->msix_entries[0].entry = 0;
152 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
153 if (ret) {
154 xhci_err(xhci, "Failed to enable MSI-X\n");
155 goto free_entries;
159 * Pass the xhci pointer value as the request_irq "cookie".
160 * If more irqs are added, this will need to be unique for each one.
162 ret = request_irq(xhci->msix_entries[0].vector, &xhci_irq, 0,
163 "xHCI", xhci_to_hcd(xhci));
164 if (ret) {
165 xhci_err(xhci, "Failed to allocate MSI-X interrupt\n");
166 goto disable_msix;
168 xhci_dbg(xhci, "Finished setting up MSI-X\n");
169 return 0;
171 disable_msix:
172 pci_disable_msix(pdev);
173 free_entries:
174 kfree(xhci->msix_entries);
175 xhci->msix_entries = NULL;
176 return ret;
179 /* XXX: code duplication; can xhci_setup_msix call this? */
180 /* Free any IRQs and disable MSI-X */
181 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
183 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
184 if (!xhci->msix_entries)
185 return;
187 free_irq(xhci->msix_entries[0].vector, xhci);
188 pci_disable_msix(pdev);
189 kfree(xhci->msix_entries);
190 xhci->msix_entries = NULL;
191 xhci_dbg(xhci, "Finished cleaning up MSI-X\n");
193 #endif
196 * Initialize memory for HCD and xHC (one-time init).
198 * Program the PAGESIZE register, initialize the device context array, create
199 * device contexts (?), set up a command ring segment (or two?), create event
200 * ring (one for now).
202 int xhci_init(struct usb_hcd *hcd)
204 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
205 int retval = 0;
207 xhci_dbg(xhci, "xhci_init\n");
208 spin_lock_init(&xhci->lock);
209 if (link_quirk) {
210 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
211 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
212 } else {
213 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
215 retval = xhci_mem_init(xhci, GFP_KERNEL);
216 xhci_dbg(xhci, "Finished xhci_init\n");
218 return retval;
222 * Called in interrupt context when there might be work
223 * queued on the event ring
225 * xhci->lock must be held by caller.
227 static void xhci_work(struct xhci_hcd *xhci)
229 u32 temp;
230 u64 temp_64;
233 * Clear the op reg interrupt status first,
234 * so we can receive interrupts from other MSI-X interrupters.
235 * Write 1 to clear the interrupt status.
237 temp = xhci_readl(xhci, &xhci->op_regs->status);
238 temp |= STS_EINT;
239 xhci_writel(xhci, temp, &xhci->op_regs->status);
240 /* FIXME when MSI-X is supported and there are multiple vectors */
241 /* Clear the MSI-X event interrupt status */
243 /* Acknowledge the interrupt */
244 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
245 temp |= 0x3;
246 xhci_writel(xhci, temp, &xhci->ir_set->irq_pending);
247 /* Flush posted writes */
248 xhci_readl(xhci, &xhci->ir_set->irq_pending);
250 if (xhci->xhc_state & XHCI_STATE_DYING)
251 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
252 "Shouldn't IRQs be disabled?\n");
253 else
254 /* FIXME this should be a delayed service routine
255 * that clears the EHB.
257 xhci_handle_event(xhci);
259 /* Clear the event handler busy flag (RW1C); the event ring should be empty. */
260 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
261 xhci_write_64(xhci, temp_64 | ERST_EHB, &xhci->ir_set->erst_dequeue);
262 /* Flush posted writes -- FIXME is this necessary? */
263 xhci_readl(xhci, &xhci->ir_set->irq_pending);
266 /*-------------------------------------------------------------------------*/
269 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
270 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
271 * indicators of an event TRB error, but we check the status *first* to be safe.
273 irqreturn_t xhci_irq(struct usb_hcd *hcd)
275 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
276 u32 temp, temp2;
277 union xhci_trb *trb;
279 spin_lock(&xhci->lock);
280 trb = xhci->event_ring->dequeue;
281 /* Check if the xHC generated the interrupt, or the irq is shared */
282 temp = xhci_readl(xhci, &xhci->op_regs->status);
283 temp2 = xhci_readl(xhci, &xhci->ir_set->irq_pending);
284 if (temp == 0xffffffff && temp2 == 0xffffffff)
285 goto hw_died;
287 if (!(temp & STS_EINT) && !ER_IRQ_PENDING(temp2)) {
288 spin_unlock(&xhci->lock);
289 return IRQ_NONE;
291 xhci_dbg(xhci, "op reg status = %08x\n", temp);
292 xhci_dbg(xhci, "ir set irq_pending = %08x\n", temp2);
293 xhci_dbg(xhci, "Event ring dequeue ptr:\n");
294 xhci_dbg(xhci, "@%llx %08x %08x %08x %08x\n",
295 (unsigned long long)xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, trb),
296 lower_32_bits(trb->link.segment_ptr),
297 upper_32_bits(trb->link.segment_ptr),
298 (unsigned int) trb->link.intr_target,
299 (unsigned int) trb->link.control);
301 if (temp & STS_FATAL) {
302 xhci_warn(xhci, "WARNING: Host System Error\n");
303 xhci_halt(xhci);
304 hw_died:
305 xhci_to_hcd(xhci)->state = HC_STATE_HALT;
306 spin_unlock(&xhci->lock);
307 return -ESHUTDOWN;
310 xhci_work(xhci);
311 spin_unlock(&xhci->lock);
313 return IRQ_HANDLED;
316 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
317 void xhci_event_ring_work(unsigned long arg)
319 unsigned long flags;
320 int temp;
321 u64 temp_64;
322 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
323 int i, j;
325 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
327 spin_lock_irqsave(&xhci->lock, flags);
328 temp = xhci_readl(xhci, &xhci->op_regs->status);
329 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
330 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) {
331 xhci_dbg(xhci, "HW died, polling stopped.\n");
332 spin_unlock_irqrestore(&xhci->lock, flags);
333 return;
336 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
337 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
338 xhci_dbg(xhci, "No-op commands handled = %d\n", xhci->noops_handled);
339 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
340 xhci->error_bitmask = 0;
341 xhci_dbg(xhci, "Event ring:\n");
342 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
343 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
344 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
345 temp_64 &= ~ERST_PTR_MASK;
346 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
347 xhci_dbg(xhci, "Command ring:\n");
348 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
349 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
350 xhci_dbg_cmd_ptrs(xhci);
351 for (i = 0; i < MAX_HC_SLOTS; ++i) {
352 if (!xhci->devs[i])
353 continue;
354 for (j = 0; j < 31; ++j) {
355 struct xhci_ring *ring = xhci->devs[i]->eps[j].ring;
356 if (!ring)
357 continue;
358 xhci_dbg(xhci, "Dev %d endpoint ring %d:\n", i, j);
359 xhci_debug_segment(xhci, ring->deq_seg);
363 if (xhci->noops_submitted != NUM_TEST_NOOPS)
364 if (xhci_setup_one_noop(xhci))
365 xhci_ring_cmd_db(xhci);
366 spin_unlock_irqrestore(&xhci->lock, flags);
368 if (!xhci->zombie)
369 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
370 else
371 xhci_dbg(xhci, "Quit polling the event ring.\n");
373 #endif
376 * Start the HC after it was halted.
378 * This function is called by the USB core when the HC driver is added.
379 * Its opposite is xhci_stop().
381 * xhci_init() must be called once before this function can be called.
382 * Reset the HC, enable device slot contexts, program DCBAAP, and
383 * set command ring pointer and event ring pointer.
385 * Setup MSI-X vectors and enable interrupts.
387 int xhci_run(struct usb_hcd *hcd)
389 u32 temp;
390 u64 temp_64;
391 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
392 void (*doorbell)(struct xhci_hcd *) = NULL;
394 hcd->uses_new_polling = 1;
395 hcd->poll_rh = 0;
397 xhci_dbg(xhci, "xhci_run\n");
398 #if 0 /* FIXME: MSI not setup yet */
399 /* Do this at the very last minute */
400 ret = xhci_setup_msix(xhci);
401 if (!ret)
402 return ret;
404 return -ENOSYS;
405 #endif
406 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
407 init_timer(&xhci->event_ring_timer);
408 xhci->event_ring_timer.data = (unsigned long) xhci;
409 xhci->event_ring_timer.function = xhci_event_ring_work;
410 /* Poll the event ring */
411 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
412 xhci->zombie = 0;
413 xhci_dbg(xhci, "Setting event ring polling timer\n");
414 add_timer(&xhci->event_ring_timer);
415 #endif
417 xhci_dbg(xhci, "Command ring memory map follows:\n");
418 xhci_debug_ring(xhci, xhci->cmd_ring);
419 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
420 xhci_dbg_cmd_ptrs(xhci);
422 xhci_dbg(xhci, "ERST memory map follows:\n");
423 xhci_dbg_erst(xhci, &xhci->erst);
424 xhci_dbg(xhci, "Event ring:\n");
425 xhci_debug_ring(xhci, xhci->event_ring);
426 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
427 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
428 temp_64 &= ~ERST_PTR_MASK;
429 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
431 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
432 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
433 temp &= ~ER_IRQ_INTERVAL_MASK;
434 temp |= (u32) 160;
435 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
437 /* Set the HCD state before we enable the irqs */
438 hcd->state = HC_STATE_RUNNING;
439 temp = xhci_readl(xhci, &xhci->op_regs->command);
440 temp |= (CMD_EIE);
441 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
442 temp);
443 xhci_writel(xhci, temp, &xhci->op_regs->command);
445 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
446 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
447 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
448 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
449 &xhci->ir_set->irq_pending);
450 xhci_print_ir_set(xhci, xhci->ir_set, 0);
452 if (NUM_TEST_NOOPS > 0)
453 doorbell = xhci_setup_one_noop(xhci);
455 temp = xhci_readl(xhci, &xhci->op_regs->command);
456 temp |= (CMD_RUN);
457 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
458 temp);
459 xhci_writel(xhci, temp, &xhci->op_regs->command);
460 /* Flush PCI posted writes */
461 temp = xhci_readl(xhci, &xhci->op_regs->command);
462 xhci_dbg(xhci, "// @%p = 0x%x\n", &xhci->op_regs->command, temp);
463 if (doorbell)
464 (*doorbell)(xhci);
466 xhci_dbg(xhci, "Finished xhci_run\n");
467 return 0;
471 * Stop xHCI driver.
473 * This function is called by the USB core when the HC driver is removed.
474 * Its opposite is xhci_run().
476 * Disable device contexts, disable IRQs, and quiesce the HC.
477 * Reset the HC, finish any completed transactions, and cleanup memory.
479 void xhci_stop(struct usb_hcd *hcd)
481 u32 temp;
482 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
484 spin_lock_irq(&xhci->lock);
485 xhci_halt(xhci);
486 xhci_reset(xhci);
487 spin_unlock_irq(&xhci->lock);
489 #if 0 /* No MSI yet */
490 xhci_cleanup_msix(xhci);
491 #endif
492 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
493 /* Tell the event ring poll function not to reschedule */
494 xhci->zombie = 1;
495 del_timer_sync(&xhci->event_ring_timer);
496 #endif
498 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
499 temp = xhci_readl(xhci, &xhci->op_regs->status);
500 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
501 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
502 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
503 &xhci->ir_set->irq_pending);
504 xhci_print_ir_set(xhci, xhci->ir_set, 0);
506 xhci_dbg(xhci, "cleaning up memory\n");
507 xhci_mem_cleanup(xhci);
508 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
509 xhci_readl(xhci, &xhci->op_regs->status));
513 * Shutdown HC (not bus-specific)
515 * This is called when the machine is rebooting or halting. We assume that the
516 * machine will be powered off, and the HC's internal state will be reset.
517 * Don't bother to free memory.
519 void xhci_shutdown(struct usb_hcd *hcd)
521 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
523 spin_lock_irq(&xhci->lock);
524 xhci_halt(xhci);
525 spin_unlock_irq(&xhci->lock);
527 #if 0
528 xhci_cleanup_msix(xhci);
529 #endif
531 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
532 xhci_readl(xhci, &xhci->op_regs->status));
535 /*-------------------------------------------------------------------------*/
538 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
539 * HCDs. Find the index for an endpoint given its descriptor. Use the return
540 * value to right shift 1 for the bitmask.
542 * Index = (epnum * 2) + direction - 1,
543 * where direction = 0 for OUT, 1 for IN.
544 * For control endpoints, the IN index is used (OUT index is unused), so
545 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
547 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
549 unsigned int index;
550 if (usb_endpoint_xfer_control(desc))
551 index = (unsigned int) (usb_endpoint_num(desc)*2);
552 else
553 index = (unsigned int) (usb_endpoint_num(desc)*2) +
554 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
555 return index;
558 /* Find the flag for this endpoint (for use in the control context). Use the
559 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
560 * bit 1, etc.
562 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
564 return 1 << (xhci_get_endpoint_index(desc) + 1);
567 /* Find the flag for this endpoint (for use in the control context). Use the
568 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
569 * bit 1, etc.
571 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
573 return 1 << (ep_index + 1);
576 /* Compute the last valid endpoint context index. Basically, this is the
577 * endpoint index plus one. For slot contexts with more than valid endpoint,
578 * we find the most significant bit set in the added contexts flags.
579 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
580 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
582 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
584 return fls(added_ctxs) - 1;
587 /* Returns 1 if the arguments are OK;
588 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
590 int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
591 struct usb_host_endpoint *ep, int check_ep, const char *func) {
592 if (!hcd || (check_ep && !ep) || !udev) {
593 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
594 func);
595 return -EINVAL;
597 if (!udev->parent) {
598 printk(KERN_DEBUG "xHCI %s called for root hub\n",
599 func);
600 return 0;
602 if (!udev->slot_id) {
603 printk(KERN_DEBUG "xHCI %s called with unaddressed device\n",
604 func);
605 return -EINVAL;
607 return 1;
610 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
611 struct usb_device *udev, struct xhci_command *command,
612 bool ctx_change, bool must_succeed);
615 * Full speed devices may have a max packet size greater than 8 bytes, but the
616 * USB core doesn't know that until it reads the first 8 bytes of the
617 * descriptor. If the usb_device's max packet size changes after that point,
618 * we need to issue an evaluate context command and wait on it.
620 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
621 unsigned int ep_index, struct urb *urb)
623 struct xhci_container_ctx *in_ctx;
624 struct xhci_container_ctx *out_ctx;
625 struct xhci_input_control_ctx *ctrl_ctx;
626 struct xhci_ep_ctx *ep_ctx;
627 int max_packet_size;
628 int hw_max_packet_size;
629 int ret = 0;
631 out_ctx = xhci->devs[slot_id]->out_ctx;
632 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
633 hw_max_packet_size = MAX_PACKET_DECODED(ep_ctx->ep_info2);
634 max_packet_size = urb->dev->ep0.desc.wMaxPacketSize;
635 if (hw_max_packet_size != max_packet_size) {
636 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
637 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
638 max_packet_size);
639 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
640 hw_max_packet_size);
641 xhci_dbg(xhci, "Issuing evaluate context command.\n");
643 /* Set up the modified control endpoint 0 */
644 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
645 xhci->devs[slot_id]->out_ctx, ep_index);
646 in_ctx = xhci->devs[slot_id]->in_ctx;
647 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
648 ep_ctx->ep_info2 &= ~MAX_PACKET_MASK;
649 ep_ctx->ep_info2 |= MAX_PACKET(max_packet_size);
651 /* Set up the input context flags for the command */
652 /* FIXME: This won't work if a non-default control endpoint
653 * changes max packet sizes.
655 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
656 ctrl_ctx->add_flags = EP0_FLAG;
657 ctrl_ctx->drop_flags = 0;
659 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
660 xhci_dbg_ctx(xhci, in_ctx, ep_index);
661 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
662 xhci_dbg_ctx(xhci, out_ctx, ep_index);
664 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
665 true, false);
667 /* Clean up the input context for later use by bandwidth
668 * functions.
670 ctrl_ctx->add_flags = SLOT_FLAG;
672 return ret;
676 * non-error returns are a promise to giveback() the urb later
677 * we drop ownership so next owner (or urb unlink) can get it
679 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
681 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
682 unsigned long flags;
683 int ret = 0;
684 unsigned int slot_id, ep_index;
687 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, true, __func__) <= 0)
688 return -EINVAL;
690 slot_id = urb->dev->slot_id;
691 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
693 if (!xhci->devs || !xhci->devs[slot_id]) {
694 if (!in_interrupt())
695 dev_warn(&urb->dev->dev, "WARN: urb submitted for dev with no Slot ID\n");
696 ret = -EINVAL;
697 goto exit;
699 if (!test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags)) {
700 if (!in_interrupt())
701 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
702 ret = -ESHUTDOWN;
703 goto exit;
705 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
706 /* Check to see if the max packet size for the default control
707 * endpoint changed during FS device enumeration
709 if (urb->dev->speed == USB_SPEED_FULL) {
710 ret = xhci_check_maxpacket(xhci, slot_id,
711 ep_index, urb);
712 if (ret < 0)
713 return ret;
716 /* We have a spinlock and interrupts disabled, so we must pass
717 * atomic context to this function, which may allocate memory.
719 spin_lock_irqsave(&xhci->lock, flags);
720 if (xhci->xhc_state & XHCI_STATE_DYING)
721 goto dying;
722 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
723 slot_id, ep_index);
724 spin_unlock_irqrestore(&xhci->lock, flags);
725 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
726 spin_lock_irqsave(&xhci->lock, flags);
727 if (xhci->xhc_state & XHCI_STATE_DYING)
728 goto dying;
729 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
730 slot_id, ep_index);
731 spin_unlock_irqrestore(&xhci->lock, flags);
732 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
733 spin_lock_irqsave(&xhci->lock, flags);
734 if (xhci->xhc_state & XHCI_STATE_DYING)
735 goto dying;
736 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
737 slot_id, ep_index);
738 spin_unlock_irqrestore(&xhci->lock, flags);
739 } else {
740 ret = -EINVAL;
742 exit:
743 return ret;
744 dying:
745 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
746 "non-responsive xHCI host.\n",
747 urb->ep->desc.bEndpointAddress, urb);
748 spin_unlock_irqrestore(&xhci->lock, flags);
749 return -ESHUTDOWN;
753 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
754 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
755 * should pick up where it left off in the TD, unless a Set Transfer Ring
756 * Dequeue Pointer is issued.
758 * The TRBs that make up the buffers for the canceled URB will be "removed" from
759 * the ring. Since the ring is a contiguous structure, they can't be physically
760 * removed. Instead, there are two options:
762 * 1) If the HC is in the middle of processing the URB to be canceled, we
763 * simply move the ring's dequeue pointer past those TRBs using the Set
764 * Transfer Ring Dequeue Pointer command. This will be the common case,
765 * when drivers timeout on the last submitted URB and attempt to cancel.
767 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
768 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
769 * HC will need to invalidate the any TRBs it has cached after the stop
770 * endpoint command, as noted in the xHCI 0.95 errata.
772 * 3) The TD may have completed by the time the Stop Endpoint Command
773 * completes, so software needs to handle that case too.
775 * This function should protect against the TD enqueueing code ringing the
776 * doorbell while this code is waiting for a Stop Endpoint command to complete.
777 * It also needs to account for multiple cancellations on happening at the same
778 * time for the same endpoint.
780 * Note that this function can be called in any context, or so says
781 * usb_hcd_unlink_urb()
783 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
785 unsigned long flags;
786 int ret;
787 u32 temp;
788 struct xhci_hcd *xhci;
789 struct xhci_td *td;
790 unsigned int ep_index;
791 struct xhci_ring *ep_ring;
792 struct xhci_virt_ep *ep;
794 xhci = hcd_to_xhci(hcd);
795 spin_lock_irqsave(&xhci->lock, flags);
796 /* Make sure the URB hasn't completed or been unlinked already */
797 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
798 if (ret || !urb->hcpriv)
799 goto done;
800 temp = xhci_readl(xhci, &xhci->op_regs->status);
801 if (temp == 0xffffffff) {
802 xhci_dbg(xhci, "HW died, freeing TD.\n");
803 td = (struct xhci_td *) urb->hcpriv;
805 usb_hcd_unlink_urb_from_ep(hcd, urb);
806 spin_unlock_irqrestore(&xhci->lock, flags);
807 usb_hcd_giveback_urb(xhci_to_hcd(xhci), urb, -ESHUTDOWN);
808 kfree(td);
809 return ret;
811 if (xhci->xhc_state & XHCI_STATE_DYING) {
812 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
813 "non-responsive xHCI host.\n",
814 urb->ep->desc.bEndpointAddress, urb);
815 /* Let the stop endpoint command watchdog timer (which set this
816 * state) finish cleaning up the endpoint TD lists. We must
817 * have caught it in the middle of dropping a lock and giving
818 * back an URB.
820 goto done;
823 xhci_dbg(xhci, "Cancel URB %p\n", urb);
824 xhci_dbg(xhci, "Event ring:\n");
825 xhci_debug_ring(xhci, xhci->event_ring);
826 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
827 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
828 ep_ring = ep->ring;
829 xhci_dbg(xhci, "Endpoint ring:\n");
830 xhci_debug_ring(xhci, ep_ring);
831 td = (struct xhci_td *) urb->hcpriv;
833 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
834 /* Queue a stop endpoint command, but only if this is
835 * the first cancellation to be handled.
837 if (!(ep->ep_state & EP_HALT_PENDING)) {
838 ep->ep_state |= EP_HALT_PENDING;
839 ep->stop_cmds_pending++;
840 ep->stop_cmd_timer.expires = jiffies +
841 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
842 add_timer(&ep->stop_cmd_timer);
843 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index);
844 xhci_ring_cmd_db(xhci);
846 done:
847 spin_unlock_irqrestore(&xhci->lock, flags);
848 return ret;
851 /* Drop an endpoint from a new bandwidth configuration for this device.
852 * Only one call to this function is allowed per endpoint before
853 * check_bandwidth() or reset_bandwidth() must be called.
854 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
855 * add the endpoint to the schedule with possibly new parameters denoted by a
856 * different endpoint descriptor in usb_host_endpoint.
857 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
858 * not allowed.
860 * The USB core will not allow URBs to be queued to an endpoint that is being
861 * disabled, so there's no need for mutual exclusion to protect
862 * the xhci->devs[slot_id] structure.
864 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
865 struct usb_host_endpoint *ep)
867 struct xhci_hcd *xhci;
868 struct xhci_container_ctx *in_ctx, *out_ctx;
869 struct xhci_input_control_ctx *ctrl_ctx;
870 struct xhci_slot_ctx *slot_ctx;
871 unsigned int last_ctx;
872 unsigned int ep_index;
873 struct xhci_ep_ctx *ep_ctx;
874 u32 drop_flag;
875 u32 new_add_flags, new_drop_flags, new_slot_info;
876 int ret;
878 ret = xhci_check_args(hcd, udev, ep, 1, __func__);
879 if (ret <= 0)
880 return ret;
881 xhci = hcd_to_xhci(hcd);
882 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
884 drop_flag = xhci_get_endpoint_flag(&ep->desc);
885 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
886 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
887 __func__, drop_flag);
888 return 0;
891 if (!xhci->devs || !xhci->devs[udev->slot_id]) {
892 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
893 __func__);
894 return -EINVAL;
897 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
898 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
899 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
900 ep_index = xhci_get_endpoint_index(&ep->desc);
901 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
902 /* If the HC already knows the endpoint is disabled,
903 * or the HCD has noted it is disabled, ignore this request
905 if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED ||
906 ctrl_ctx->drop_flags & xhci_get_endpoint_flag(&ep->desc)) {
907 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
908 __func__, ep);
909 return 0;
912 ctrl_ctx->drop_flags |= drop_flag;
913 new_drop_flags = ctrl_ctx->drop_flags;
915 ctrl_ctx->add_flags &= ~drop_flag;
916 new_add_flags = ctrl_ctx->add_flags;
918 last_ctx = xhci_last_valid_endpoint(ctrl_ctx->add_flags);
919 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
920 /* Update the last valid endpoint context, if we deleted the last one */
921 if ((slot_ctx->dev_info & LAST_CTX_MASK) > LAST_CTX(last_ctx)) {
922 slot_ctx->dev_info &= ~LAST_CTX_MASK;
923 slot_ctx->dev_info |= LAST_CTX(last_ctx);
925 new_slot_info = slot_ctx->dev_info;
927 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
929 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
930 (unsigned int) ep->desc.bEndpointAddress,
931 udev->slot_id,
932 (unsigned int) new_drop_flags,
933 (unsigned int) new_add_flags,
934 (unsigned int) new_slot_info);
935 return 0;
938 /* Add an endpoint to a new possible bandwidth configuration for this device.
939 * Only one call to this function is allowed per endpoint before
940 * check_bandwidth() or reset_bandwidth() must be called.
941 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
942 * add the endpoint to the schedule with possibly new parameters denoted by a
943 * different endpoint descriptor in usb_host_endpoint.
944 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
945 * not allowed.
947 * The USB core will not allow URBs to be queued to an endpoint until the
948 * configuration or alt setting is installed in the device, so there's no need
949 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
951 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
952 struct usb_host_endpoint *ep)
954 struct xhci_hcd *xhci;
955 struct xhci_container_ctx *in_ctx, *out_ctx;
956 unsigned int ep_index;
957 struct xhci_ep_ctx *ep_ctx;
958 struct xhci_slot_ctx *slot_ctx;
959 struct xhci_input_control_ctx *ctrl_ctx;
960 u32 added_ctxs;
961 unsigned int last_ctx;
962 u32 new_add_flags, new_drop_flags, new_slot_info;
963 int ret = 0;
965 ret = xhci_check_args(hcd, udev, ep, 1, __func__);
966 if (ret <= 0) {
967 /* So we won't queue a reset ep command for a root hub */
968 ep->hcpriv = NULL;
969 return ret;
971 xhci = hcd_to_xhci(hcd);
973 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
974 last_ctx = xhci_last_valid_endpoint(added_ctxs);
975 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
976 /* FIXME when we have to issue an evaluate endpoint command to
977 * deal with ep0 max packet size changing once we get the
978 * descriptors
980 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
981 __func__, added_ctxs);
982 return 0;
985 if (!xhci->devs || !xhci->devs[udev->slot_id]) {
986 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
987 __func__);
988 return -EINVAL;
991 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
992 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
993 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
994 ep_index = xhci_get_endpoint_index(&ep->desc);
995 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
996 /* If the HCD has already noted the endpoint is enabled,
997 * ignore this request.
999 if (ctrl_ctx->add_flags & xhci_get_endpoint_flag(&ep->desc)) {
1000 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1001 __func__, ep);
1002 return 0;
1006 * Configuration and alternate setting changes must be done in
1007 * process context, not interrupt context (or so documenation
1008 * for usb_set_interface() and usb_set_configuration() claim).
1010 if (xhci_endpoint_init(xhci, xhci->devs[udev->slot_id],
1011 udev, ep, GFP_NOIO) < 0) {
1012 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1013 __func__, ep->desc.bEndpointAddress);
1014 return -ENOMEM;
1017 ctrl_ctx->add_flags |= added_ctxs;
1018 new_add_flags = ctrl_ctx->add_flags;
1020 /* If xhci_endpoint_disable() was called for this endpoint, but the
1021 * xHC hasn't been notified yet through the check_bandwidth() call,
1022 * this re-adds a new state for the endpoint from the new endpoint
1023 * descriptors. We must drop and re-add this endpoint, so we leave the
1024 * drop flags alone.
1026 new_drop_flags = ctrl_ctx->drop_flags;
1028 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1029 /* Update the last valid endpoint context, if we just added one past */
1030 if ((slot_ctx->dev_info & LAST_CTX_MASK) < LAST_CTX(last_ctx)) {
1031 slot_ctx->dev_info &= ~LAST_CTX_MASK;
1032 slot_ctx->dev_info |= LAST_CTX(last_ctx);
1034 new_slot_info = slot_ctx->dev_info;
1036 /* Store the usb_device pointer for later use */
1037 ep->hcpriv = udev;
1039 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1040 (unsigned int) ep->desc.bEndpointAddress,
1041 udev->slot_id,
1042 (unsigned int) new_drop_flags,
1043 (unsigned int) new_add_flags,
1044 (unsigned int) new_slot_info);
1045 return 0;
1048 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1050 struct xhci_input_control_ctx *ctrl_ctx;
1051 struct xhci_ep_ctx *ep_ctx;
1052 struct xhci_slot_ctx *slot_ctx;
1053 int i;
1055 /* When a device's add flag and drop flag are zero, any subsequent
1056 * configure endpoint command will leave that endpoint's state
1057 * untouched. Make sure we don't leave any old state in the input
1058 * endpoint contexts.
1060 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1061 ctrl_ctx->drop_flags = 0;
1062 ctrl_ctx->add_flags = 0;
1063 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1064 slot_ctx->dev_info &= ~LAST_CTX_MASK;
1065 /* Endpoint 0 is always valid */
1066 slot_ctx->dev_info |= LAST_CTX(1);
1067 for (i = 1; i < 31; ++i) {
1068 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1069 ep_ctx->ep_info = 0;
1070 ep_ctx->ep_info2 = 0;
1071 ep_ctx->deq = 0;
1072 ep_ctx->tx_info = 0;
1076 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1077 struct usb_device *udev, int *cmd_status)
1079 int ret;
1081 switch (*cmd_status) {
1082 case COMP_ENOMEM:
1083 dev_warn(&udev->dev, "Not enough host controller resources "
1084 "for new device state.\n");
1085 ret = -ENOMEM;
1086 /* FIXME: can we allocate more resources for the HC? */
1087 break;
1088 case COMP_BW_ERR:
1089 dev_warn(&udev->dev, "Not enough bandwidth "
1090 "for new device state.\n");
1091 ret = -ENOSPC;
1092 /* FIXME: can we go back to the old state? */
1093 break;
1094 case COMP_TRB_ERR:
1095 /* the HCD set up something wrong */
1096 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1097 "add flag = 1, "
1098 "and endpoint is not disabled.\n");
1099 ret = -EINVAL;
1100 break;
1101 case COMP_SUCCESS:
1102 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1103 ret = 0;
1104 break;
1105 default:
1106 xhci_err(xhci, "ERROR: unexpected command completion "
1107 "code 0x%x.\n", *cmd_status);
1108 ret = -EINVAL;
1109 break;
1111 return ret;
1114 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1115 struct usb_device *udev, int *cmd_status)
1117 int ret;
1118 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1120 switch (*cmd_status) {
1121 case COMP_EINVAL:
1122 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1123 "context command.\n");
1124 ret = -EINVAL;
1125 break;
1126 case COMP_EBADSLT:
1127 dev_warn(&udev->dev, "WARN: slot not enabled for"
1128 "evaluate context command.\n");
1129 case COMP_CTX_STATE:
1130 dev_warn(&udev->dev, "WARN: invalid context state for "
1131 "evaluate context command.\n");
1132 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1133 ret = -EINVAL;
1134 break;
1135 case COMP_SUCCESS:
1136 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1137 ret = 0;
1138 break;
1139 default:
1140 xhci_err(xhci, "ERROR: unexpected command completion "
1141 "code 0x%x.\n", *cmd_status);
1142 ret = -EINVAL;
1143 break;
1145 return ret;
1148 /* Issue a configure endpoint command or evaluate context command
1149 * and wait for it to finish.
1151 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1152 struct usb_device *udev,
1153 struct xhci_command *command,
1154 bool ctx_change, bool must_succeed)
1156 int ret;
1157 int timeleft;
1158 unsigned long flags;
1159 struct xhci_container_ctx *in_ctx;
1160 struct completion *cmd_completion;
1161 int *cmd_status;
1162 struct xhci_virt_device *virt_dev;
1164 spin_lock_irqsave(&xhci->lock, flags);
1165 virt_dev = xhci->devs[udev->slot_id];
1166 if (command) {
1167 in_ctx = command->in_ctx;
1168 cmd_completion = command->completion;
1169 cmd_status = &command->status;
1170 command->command_trb = xhci->cmd_ring->enqueue;
1171 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
1172 } else {
1173 in_ctx = virt_dev->in_ctx;
1174 cmd_completion = &virt_dev->cmd_completion;
1175 cmd_status = &virt_dev->cmd_status;
1177 init_completion(cmd_completion);
1179 if (!ctx_change)
1180 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
1181 udev->slot_id, must_succeed);
1182 else
1183 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
1184 udev->slot_id);
1185 if (ret < 0) {
1186 if (command)
1187 list_del(&command->cmd_list);
1188 spin_unlock_irqrestore(&xhci->lock, flags);
1189 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
1190 return -ENOMEM;
1192 xhci_ring_cmd_db(xhci);
1193 spin_unlock_irqrestore(&xhci->lock, flags);
1195 /* Wait for the configure endpoint command to complete */
1196 timeleft = wait_for_completion_interruptible_timeout(
1197 cmd_completion,
1198 USB_CTRL_SET_TIMEOUT);
1199 if (timeleft <= 0) {
1200 xhci_warn(xhci, "%s while waiting for %s command\n",
1201 timeleft == 0 ? "Timeout" : "Signal",
1202 ctx_change == 0 ?
1203 "configure endpoint" :
1204 "evaluate context");
1205 /* FIXME cancel the configure endpoint command */
1206 return -ETIME;
1209 if (!ctx_change)
1210 return xhci_configure_endpoint_result(xhci, udev, cmd_status);
1211 return xhci_evaluate_context_result(xhci, udev, cmd_status);
1214 /* Called after one or more calls to xhci_add_endpoint() or
1215 * xhci_drop_endpoint(). If this call fails, the USB core is expected
1216 * to call xhci_reset_bandwidth().
1218 * Since we are in the middle of changing either configuration or
1219 * installing a new alt setting, the USB core won't allow URBs to be
1220 * enqueued for any endpoint on the old config or interface. Nothing
1221 * else should be touching the xhci->devs[slot_id] structure, so we
1222 * don't need to take the xhci->lock for manipulating that.
1224 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1226 int i;
1227 int ret = 0;
1228 struct xhci_hcd *xhci;
1229 struct xhci_virt_device *virt_dev;
1230 struct xhci_input_control_ctx *ctrl_ctx;
1231 struct xhci_slot_ctx *slot_ctx;
1233 ret = xhci_check_args(hcd, udev, NULL, 0, __func__);
1234 if (ret <= 0)
1235 return ret;
1236 xhci = hcd_to_xhci(hcd);
1238 if (!udev->slot_id || !xhci->devs || !xhci->devs[udev->slot_id]) {
1239 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
1240 __func__);
1241 return -EINVAL;
1243 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1244 virt_dev = xhci->devs[udev->slot_id];
1246 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
1247 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1248 ctrl_ctx->add_flags |= SLOT_FLAG;
1249 ctrl_ctx->add_flags &= ~EP0_FLAG;
1250 ctrl_ctx->drop_flags &= ~SLOT_FLAG;
1251 ctrl_ctx->drop_flags &= ~EP0_FLAG;
1252 xhci_dbg(xhci, "New Input Control Context:\n");
1253 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1254 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
1255 LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
1257 ret = xhci_configure_endpoint(xhci, udev, NULL,
1258 false, false);
1259 if (ret) {
1260 /* Callee should call reset_bandwidth() */
1261 return ret;
1264 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
1265 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
1266 LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
1268 xhci_zero_in_ctx(xhci, virt_dev);
1269 /* Install new rings and free or cache any old rings */
1270 for (i = 1; i < 31; ++i) {
1271 if (!virt_dev->eps[i].new_ring)
1272 continue;
1273 /* Only cache or free the old ring if it exists.
1274 * It may not if this is the first add of an endpoint.
1276 if (virt_dev->eps[i].ring) {
1277 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1279 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
1280 virt_dev->eps[i].new_ring = NULL;
1283 return ret;
1286 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1288 struct xhci_hcd *xhci;
1289 struct xhci_virt_device *virt_dev;
1290 int i, ret;
1292 ret = xhci_check_args(hcd, udev, NULL, 0, __func__);
1293 if (ret <= 0)
1294 return;
1295 xhci = hcd_to_xhci(hcd);
1297 if (!xhci->devs || !xhci->devs[udev->slot_id]) {
1298 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
1299 __func__);
1300 return;
1302 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1303 virt_dev = xhci->devs[udev->slot_id];
1304 /* Free any rings allocated for added endpoints */
1305 for (i = 0; i < 31; ++i) {
1306 if (virt_dev->eps[i].new_ring) {
1307 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
1308 virt_dev->eps[i].new_ring = NULL;
1311 xhci_zero_in_ctx(xhci, virt_dev);
1314 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
1315 struct xhci_container_ctx *in_ctx,
1316 struct xhci_container_ctx *out_ctx,
1317 u32 add_flags, u32 drop_flags)
1319 struct xhci_input_control_ctx *ctrl_ctx;
1320 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1321 ctrl_ctx->add_flags = add_flags;
1322 ctrl_ctx->drop_flags = drop_flags;
1323 xhci_slot_copy(xhci, in_ctx, out_ctx);
1324 ctrl_ctx->add_flags |= SLOT_FLAG;
1326 xhci_dbg(xhci, "Input Context:\n");
1327 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
1330 void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
1331 unsigned int slot_id, unsigned int ep_index,
1332 struct xhci_dequeue_state *deq_state)
1334 struct xhci_container_ctx *in_ctx;
1335 struct xhci_ep_ctx *ep_ctx;
1336 u32 added_ctxs;
1337 dma_addr_t addr;
1339 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1340 xhci->devs[slot_id]->out_ctx, ep_index);
1341 in_ctx = xhci->devs[slot_id]->in_ctx;
1342 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1343 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
1344 deq_state->new_deq_ptr);
1345 if (addr == 0) {
1346 xhci_warn(xhci, "WARN Cannot submit config ep after "
1347 "reset ep command\n");
1348 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
1349 deq_state->new_deq_seg,
1350 deq_state->new_deq_ptr);
1351 return;
1353 ep_ctx->deq = addr | deq_state->new_cycle_state;
1355 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
1356 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
1357 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
1360 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
1361 struct usb_device *udev, unsigned int ep_index)
1363 struct xhci_dequeue_state deq_state;
1364 struct xhci_virt_ep *ep;
1366 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
1367 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
1368 /* We need to move the HW's dequeue pointer past this TD,
1369 * or it will attempt to resend it on the next doorbell ring.
1371 xhci_find_new_dequeue_state(xhci, udev->slot_id,
1372 ep_index, ep->stopped_td,
1373 &deq_state);
1375 /* HW with the reset endpoint quirk will use the saved dequeue state to
1376 * issue a configure endpoint command later.
1378 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
1379 xhci_dbg(xhci, "Queueing new dequeue state\n");
1380 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
1381 ep_index, &deq_state);
1382 } else {
1383 /* Better hope no one uses the input context between now and the
1384 * reset endpoint completion!
1386 xhci_dbg(xhci, "Setting up input context for "
1387 "configure endpoint command\n");
1388 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
1389 ep_index, &deq_state);
1393 /* Deal with stalled endpoints. The core should have sent the control message
1394 * to clear the halt condition. However, we need to make the xHCI hardware
1395 * reset its sequence number, since a device will expect a sequence number of
1396 * zero after the halt condition is cleared.
1397 * Context: in_interrupt
1399 void xhci_endpoint_reset(struct usb_hcd *hcd,
1400 struct usb_host_endpoint *ep)
1402 struct xhci_hcd *xhci;
1403 struct usb_device *udev;
1404 unsigned int ep_index;
1405 unsigned long flags;
1406 int ret;
1407 struct xhci_virt_ep *virt_ep;
1409 xhci = hcd_to_xhci(hcd);
1410 udev = (struct usb_device *) ep->hcpriv;
1411 /* Called with a root hub endpoint (or an endpoint that wasn't added
1412 * with xhci_add_endpoint()
1414 if (!ep->hcpriv)
1415 return;
1416 ep_index = xhci_get_endpoint_index(&ep->desc);
1417 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
1418 if (!virt_ep->stopped_td) {
1419 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
1420 ep->desc.bEndpointAddress);
1421 return;
1423 if (usb_endpoint_xfer_control(&ep->desc)) {
1424 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
1425 return;
1428 xhci_dbg(xhci, "Queueing reset endpoint command\n");
1429 spin_lock_irqsave(&xhci->lock, flags);
1430 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
1432 * Can't change the ring dequeue pointer until it's transitioned to the
1433 * stopped state, which is only upon a successful reset endpoint
1434 * command. Better hope that last command worked!
1436 if (!ret) {
1437 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
1438 kfree(virt_ep->stopped_td);
1439 xhci_ring_cmd_db(xhci);
1441 spin_unlock_irqrestore(&xhci->lock, flags);
1443 if (ret)
1444 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
1448 * This submits a Reset Device Command, which will set the device state to 0,
1449 * set the device address to 0, and disable all the endpoints except the default
1450 * control endpoint. The USB core should come back and call
1451 * xhci_address_device(), and then re-set up the configuration. If this is
1452 * called because of a usb_reset_and_verify_device(), then the old alternate
1453 * settings will be re-installed through the normal bandwidth allocation
1454 * functions.
1456 * Wait for the Reset Device command to finish. Remove all structures
1457 * associated with the endpoints that were disabled. Clear the input device
1458 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
1460 int xhci_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
1462 int ret, i;
1463 unsigned long flags;
1464 struct xhci_hcd *xhci;
1465 unsigned int slot_id;
1466 struct xhci_virt_device *virt_dev;
1467 struct xhci_command *reset_device_cmd;
1468 int timeleft;
1469 int last_freed_endpoint;
1471 ret = xhci_check_args(hcd, udev, NULL, 0, __func__);
1472 if (ret <= 0)
1473 return ret;
1474 xhci = hcd_to_xhci(hcd);
1475 slot_id = udev->slot_id;
1476 virt_dev = xhci->devs[slot_id];
1477 if (!virt_dev) {
1478 xhci_dbg(xhci, "%s called with invalid slot ID %u\n",
1479 __func__, slot_id);
1480 return -EINVAL;
1483 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
1484 /* Allocate the command structure that holds the struct completion.
1485 * Assume we're in process context, since the normal device reset
1486 * process has to wait for the device anyway. Storage devices are
1487 * reset as part of error handling, so use GFP_NOIO instead of
1488 * GFP_KERNEL.
1490 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
1491 if (!reset_device_cmd) {
1492 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
1493 return -ENOMEM;
1496 /* Attempt to submit the Reset Device command to the command ring */
1497 spin_lock_irqsave(&xhci->lock, flags);
1498 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
1499 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
1500 ret = xhci_queue_reset_device(xhci, slot_id);
1501 if (ret) {
1502 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
1503 list_del(&reset_device_cmd->cmd_list);
1504 spin_unlock_irqrestore(&xhci->lock, flags);
1505 goto command_cleanup;
1507 xhci_ring_cmd_db(xhci);
1508 spin_unlock_irqrestore(&xhci->lock, flags);
1510 /* Wait for the Reset Device command to finish */
1511 timeleft = wait_for_completion_interruptible_timeout(
1512 reset_device_cmd->completion,
1513 USB_CTRL_SET_TIMEOUT);
1514 if (timeleft <= 0) {
1515 xhci_warn(xhci, "%s while waiting for reset device command\n",
1516 timeleft == 0 ? "Timeout" : "Signal");
1517 spin_lock_irqsave(&xhci->lock, flags);
1518 /* The timeout might have raced with the event ring handler, so
1519 * only delete from the list if the item isn't poisoned.
1521 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
1522 list_del(&reset_device_cmd->cmd_list);
1523 spin_unlock_irqrestore(&xhci->lock, flags);
1524 ret = -ETIME;
1525 goto command_cleanup;
1528 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
1529 * unless we tried to reset a slot ID that wasn't enabled,
1530 * or the device wasn't in the addressed or configured state.
1532 ret = reset_device_cmd->status;
1533 switch (ret) {
1534 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
1535 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
1536 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
1537 slot_id,
1538 xhci_get_slot_state(xhci, virt_dev->out_ctx));
1539 xhci_info(xhci, "Not freeing device rings.\n");
1540 /* Don't treat this as an error. May change my mind later. */
1541 ret = 0;
1542 goto command_cleanup;
1543 case COMP_SUCCESS:
1544 xhci_dbg(xhci, "Successful reset device command.\n");
1545 break;
1546 default:
1547 if (xhci_is_vendor_info_code(xhci, ret))
1548 break;
1549 xhci_warn(xhci, "Unknown completion code %u for "
1550 "reset device command.\n", ret);
1551 ret = -EINVAL;
1552 goto command_cleanup;
1555 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
1556 last_freed_endpoint = 1;
1557 for (i = 1; i < 31; ++i) {
1558 if (!virt_dev->eps[i].ring)
1559 continue;
1560 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1561 last_freed_endpoint = i;
1563 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
1564 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
1565 ret = 0;
1567 command_cleanup:
1568 xhci_free_command(xhci, reset_device_cmd);
1569 return ret;
1573 * At this point, the struct usb_device is about to go away, the device has
1574 * disconnected, and all traffic has been stopped and the endpoints have been
1575 * disabled. Free any HC data structures associated with that device.
1577 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
1579 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1580 struct xhci_virt_device *virt_dev;
1581 unsigned long flags;
1582 u32 state;
1583 int i;
1585 if (udev->slot_id == 0)
1586 return;
1587 virt_dev = xhci->devs[udev->slot_id];
1588 if (!virt_dev)
1589 return;
1591 /* Stop any wayward timer functions (which may grab the lock) */
1592 for (i = 0; i < 31; ++i) {
1593 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
1594 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
1597 spin_lock_irqsave(&xhci->lock, flags);
1598 /* Don't disable the slot if the host controller is dead. */
1599 state = xhci_readl(xhci, &xhci->op_regs->status);
1600 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) {
1601 xhci_free_virt_device(xhci, udev->slot_id);
1602 spin_unlock_irqrestore(&xhci->lock, flags);
1603 return;
1606 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
1607 spin_unlock_irqrestore(&xhci->lock, flags);
1608 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
1609 return;
1611 xhci_ring_cmd_db(xhci);
1612 spin_unlock_irqrestore(&xhci->lock, flags);
1614 * Event command completion handler will free any data structures
1615 * associated with the slot. XXX Can free sleep?
1620 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
1621 * timed out, or allocating memory failed. Returns 1 on success.
1623 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
1625 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1626 unsigned long flags;
1627 int timeleft;
1628 int ret;
1630 spin_lock_irqsave(&xhci->lock, flags);
1631 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
1632 if (ret) {
1633 spin_unlock_irqrestore(&xhci->lock, flags);
1634 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
1635 return 0;
1637 xhci_ring_cmd_db(xhci);
1638 spin_unlock_irqrestore(&xhci->lock, flags);
1640 /* XXX: how much time for xHC slot assignment? */
1641 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
1642 USB_CTRL_SET_TIMEOUT);
1643 if (timeleft <= 0) {
1644 xhci_warn(xhci, "%s while waiting for a slot\n",
1645 timeleft == 0 ? "Timeout" : "Signal");
1646 /* FIXME cancel the enable slot request */
1647 return 0;
1650 if (!xhci->slot_id) {
1651 xhci_err(xhci, "Error while assigning device slot ID\n");
1652 return 0;
1654 /* xhci_alloc_virt_device() does not touch rings; no need to lock */
1655 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_KERNEL)) {
1656 /* Disable slot, if we can do it without mem alloc */
1657 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
1658 spin_lock_irqsave(&xhci->lock, flags);
1659 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
1660 xhci_ring_cmd_db(xhci);
1661 spin_unlock_irqrestore(&xhci->lock, flags);
1662 return 0;
1664 udev->slot_id = xhci->slot_id;
1665 /* Is this a LS or FS device under a HS hub? */
1666 /* Hub or peripherial? */
1667 return 1;
1671 * Issue an Address Device command (which will issue a SetAddress request to
1672 * the device).
1673 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
1674 * we should only issue and wait on one address command at the same time.
1676 * We add one to the device address issued by the hardware because the USB core
1677 * uses address 1 for the root hubs (even though they're not really devices).
1679 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
1681 unsigned long flags;
1682 int timeleft;
1683 struct xhci_virt_device *virt_dev;
1684 int ret = 0;
1685 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1686 struct xhci_slot_ctx *slot_ctx;
1687 struct xhci_input_control_ctx *ctrl_ctx;
1688 u64 temp_64;
1690 if (!udev->slot_id) {
1691 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
1692 return -EINVAL;
1695 virt_dev = xhci->devs[udev->slot_id];
1697 /* If this is a Set Address to an unconfigured device, setup ep 0 */
1698 if (!udev->config)
1699 xhci_setup_addressable_virt_dev(xhci, udev);
1700 /* Otherwise, assume the core has the device configured how it wants */
1701 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
1702 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
1704 spin_lock_irqsave(&xhci->lock, flags);
1705 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
1706 udev->slot_id);
1707 if (ret) {
1708 spin_unlock_irqrestore(&xhci->lock, flags);
1709 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
1710 return ret;
1712 xhci_ring_cmd_db(xhci);
1713 spin_unlock_irqrestore(&xhci->lock, flags);
1715 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
1716 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
1717 USB_CTRL_SET_TIMEOUT);
1718 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
1719 * the SetAddress() "recovery interval" required by USB and aborting the
1720 * command on a timeout.
1722 if (timeleft <= 0) {
1723 xhci_warn(xhci, "%s while waiting for a slot\n",
1724 timeleft == 0 ? "Timeout" : "Signal");
1725 /* FIXME cancel the address device command */
1726 return -ETIME;
1729 switch (virt_dev->cmd_status) {
1730 case COMP_CTX_STATE:
1731 case COMP_EBADSLT:
1732 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
1733 udev->slot_id);
1734 ret = -EINVAL;
1735 break;
1736 case COMP_TX_ERR:
1737 dev_warn(&udev->dev, "Device not responding to set address.\n");
1738 ret = -EPROTO;
1739 break;
1740 case COMP_SUCCESS:
1741 xhci_dbg(xhci, "Successful Address Device command\n");
1742 break;
1743 default:
1744 xhci_err(xhci, "ERROR: unexpected command completion "
1745 "code 0x%x.\n", virt_dev->cmd_status);
1746 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
1747 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
1748 ret = -EINVAL;
1749 break;
1751 if (ret) {
1752 return ret;
1754 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
1755 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
1756 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
1757 udev->slot_id,
1758 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
1759 (unsigned long long)
1760 xhci->dcbaa->dev_context_ptrs[udev->slot_id]);
1761 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
1762 (unsigned long long)virt_dev->out_ctx->dma);
1763 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
1764 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
1765 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
1766 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
1768 * USB core uses address 1 for the roothubs, so we add one to the
1769 * address given back to us by the HC.
1771 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
1772 udev->devnum = (slot_ctx->dev_state & DEV_ADDR_MASK) + 1;
1773 /* Zero the input context control for later use */
1774 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1775 ctrl_ctx->add_flags = 0;
1776 ctrl_ctx->drop_flags = 0;
1778 xhci_dbg(xhci, "Device address = %d\n", udev->devnum);
1779 /* XXX Meh, not sure if anyone else but choose_address uses this. */
1780 set_bit(udev->devnum, udev->bus->devmap.devicemap);
1782 return 0;
1785 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
1786 * internal data structures for the device.
1788 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
1789 struct usb_tt *tt, gfp_t mem_flags)
1791 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1792 struct xhci_virt_device *vdev;
1793 struct xhci_command *config_cmd;
1794 struct xhci_input_control_ctx *ctrl_ctx;
1795 struct xhci_slot_ctx *slot_ctx;
1796 unsigned long flags;
1797 unsigned think_time;
1798 int ret;
1800 /* Ignore root hubs */
1801 if (!hdev->parent)
1802 return 0;
1804 vdev = xhci->devs[hdev->slot_id];
1805 if (!vdev) {
1806 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
1807 return -EINVAL;
1809 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
1810 if (!config_cmd) {
1811 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
1812 return -ENOMEM;
1815 spin_lock_irqsave(&xhci->lock, flags);
1816 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
1817 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
1818 ctrl_ctx->add_flags |= SLOT_FLAG;
1819 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
1820 slot_ctx->dev_info |= DEV_HUB;
1821 if (tt->multi)
1822 slot_ctx->dev_info |= DEV_MTT;
1823 if (xhci->hci_version > 0x95) {
1824 xhci_dbg(xhci, "xHCI version %x needs hub "
1825 "TT think time and number of ports\n",
1826 (unsigned int) xhci->hci_version);
1827 slot_ctx->dev_info2 |= XHCI_MAX_PORTS(hdev->maxchild);
1828 /* Set TT think time - convert from ns to FS bit times.
1829 * 0 = 8 FS bit times, 1 = 16 FS bit times,
1830 * 2 = 24 FS bit times, 3 = 32 FS bit times.
1832 think_time = tt->think_time;
1833 if (think_time != 0)
1834 think_time = (think_time / 666) - 1;
1835 slot_ctx->tt_info |= TT_THINK_TIME(think_time);
1836 } else {
1837 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
1838 "TT think time or number of ports\n",
1839 (unsigned int) xhci->hci_version);
1841 slot_ctx->dev_state = 0;
1842 spin_unlock_irqrestore(&xhci->lock, flags);
1844 xhci_dbg(xhci, "Set up %s for hub device.\n",
1845 (xhci->hci_version > 0x95) ?
1846 "configure endpoint" : "evaluate context");
1847 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
1848 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
1850 /* Issue and wait for the configure endpoint or
1851 * evaluate context command.
1853 if (xhci->hci_version > 0x95)
1854 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
1855 false, false);
1856 else
1857 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
1858 true, false);
1860 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
1861 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
1863 xhci_free_command(xhci, config_cmd);
1864 return ret;
1867 int xhci_get_frame(struct usb_hcd *hcd)
1869 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1870 /* EHCI mods by the periodic size. Why? */
1871 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
1874 MODULE_DESCRIPTION(DRIVER_DESC);
1875 MODULE_AUTHOR(DRIVER_AUTHOR);
1876 MODULE_LICENSE("GPL");
1878 static int __init xhci_hcd_init(void)
1880 #ifdef CONFIG_PCI
1881 int retval = 0;
1883 retval = xhci_register_pci();
1885 if (retval < 0) {
1886 printk(KERN_DEBUG "Problem registering PCI driver.");
1887 return retval;
1889 #endif
1891 * Check the compiler generated sizes of structures that must be laid
1892 * out in specific ways for hardware access.
1894 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
1895 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
1896 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
1897 /* xhci_device_control has eight fields, and also
1898 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
1900 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
1901 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
1902 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
1903 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
1904 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
1905 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
1906 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
1907 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
1908 return 0;
1910 module_init(xhci_hcd_init);
1912 static void __exit xhci_hcd_cleanup(void)
1914 #ifdef CONFIG_PCI
1915 xhci_unregister_pci();
1916 #endif
1918 module_exit(xhci_hcd_cleanup);