Merge tag 'fixes-for-v3.19-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / mm / memory.c
blobca920d1fd314a17c7250d7916bd37403afa96b79
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
72 #include "internal.h"
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92 * and ZONE_HIGHMEM.
94 void * high_memory;
96 EXPORT_SYMBOL(high_memory);
99 * Randomize the address space (stacks, mmaps, brk, etc.).
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
107 #else
109 #endif
111 static int __init disable_randmaps(char *s)
113 randomize_va_space = 0;
114 return 1;
116 __setup("norandmaps", disable_randmaps);
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
121 EXPORT_SYMBOL(zero_pfn);
124 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
126 static int __init init_zero_pfn(void)
128 zero_pfn = page_to_pfn(ZERO_PAGE(0));
129 return 0;
131 core_initcall(init_zero_pfn);
134 #if defined(SPLIT_RSS_COUNTING)
136 void sync_mm_rss(struct mm_struct *mm)
138 int i;
140 for (i = 0; i < NR_MM_COUNTERS; i++) {
141 if (current->rss_stat.count[i]) {
142 add_mm_counter(mm, i, current->rss_stat.count[i]);
143 current->rss_stat.count[i] = 0;
146 current->rss_stat.events = 0;
149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
151 struct task_struct *task = current;
153 if (likely(task->mm == mm))
154 task->rss_stat.count[member] += val;
155 else
156 add_mm_counter(mm, member, val);
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH (64)
163 static void check_sync_rss_stat(struct task_struct *task)
165 if (unlikely(task != current))
166 return;
167 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
168 sync_mm_rss(task->mm);
170 #else /* SPLIT_RSS_COUNTING */
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
175 static void check_sync_rss_stat(struct task_struct *task)
179 #endif /* SPLIT_RSS_COUNTING */
181 #ifdef HAVE_GENERIC_MMU_GATHER
183 static int tlb_next_batch(struct mmu_gather *tlb)
185 struct mmu_gather_batch *batch;
187 batch = tlb->active;
188 if (batch->next) {
189 tlb->active = batch->next;
190 return 1;
193 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
194 return 0;
196 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
197 if (!batch)
198 return 0;
200 tlb->batch_count++;
201 batch->next = NULL;
202 batch->nr = 0;
203 batch->max = MAX_GATHER_BATCH;
205 tlb->active->next = batch;
206 tlb->active = batch;
208 return 1;
211 /* tlb_gather_mmu
212 * Called to initialize an (on-stack) mmu_gather structure for page-table
213 * tear-down from @mm. The @fullmm argument is used when @mm is without
214 * users and we're going to destroy the full address space (exit/execve).
216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
218 tlb->mm = mm;
220 /* Is it from 0 to ~0? */
221 tlb->fullmm = !(start | (end+1));
222 tlb->need_flush_all = 0;
223 tlb->local.next = NULL;
224 tlb->local.nr = 0;
225 tlb->local.max = ARRAY_SIZE(tlb->__pages);
226 tlb->active = &tlb->local;
227 tlb->batch_count = 0;
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 tlb->batch = NULL;
231 #endif
233 __tlb_reset_range(tlb);
236 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
238 tlb_flush(tlb);
239 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
240 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
241 tlb_table_flush(tlb);
242 #endif
243 __tlb_reset_range(tlb);
246 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
248 struct mmu_gather_batch *batch;
250 for (batch = &tlb->local; batch; batch = batch->next) {
251 free_pages_and_swap_cache(batch->pages, batch->nr);
252 batch->nr = 0;
254 tlb->active = &tlb->local;
257 void tlb_flush_mmu(struct mmu_gather *tlb)
259 if (!tlb->end)
260 return;
262 tlb_flush_mmu_tlbonly(tlb);
263 tlb_flush_mmu_free(tlb);
266 /* tlb_finish_mmu
267 * Called at the end of the shootdown operation to free up any resources
268 * that were required.
270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
272 struct mmu_gather_batch *batch, *next;
274 tlb_flush_mmu(tlb);
276 /* keep the page table cache within bounds */
277 check_pgt_cache();
279 for (batch = tlb->local.next; batch; batch = next) {
280 next = batch->next;
281 free_pages((unsigned long)batch, 0);
283 tlb->local.next = NULL;
286 /* __tlb_remove_page
287 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288 * handling the additional races in SMP caused by other CPUs caching valid
289 * mappings in their TLBs. Returns the number of free page slots left.
290 * When out of page slots we must call tlb_flush_mmu().
292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
294 struct mmu_gather_batch *batch;
296 VM_BUG_ON(!tlb->end);
298 batch = tlb->active;
299 batch->pages[batch->nr++] = page;
300 if (batch->nr == batch->max) {
301 if (!tlb_next_batch(tlb))
302 return 0;
303 batch = tlb->active;
305 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
307 return batch->max - batch->nr;
310 #endif /* HAVE_GENERIC_MMU_GATHER */
312 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
315 * See the comment near struct mmu_table_batch.
318 static void tlb_remove_table_smp_sync(void *arg)
320 /* Simply deliver the interrupt */
323 static void tlb_remove_table_one(void *table)
326 * This isn't an RCU grace period and hence the page-tables cannot be
327 * assumed to be actually RCU-freed.
329 * It is however sufficient for software page-table walkers that rely on
330 * IRQ disabling. See the comment near struct mmu_table_batch.
332 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
333 __tlb_remove_table(table);
336 static void tlb_remove_table_rcu(struct rcu_head *head)
338 struct mmu_table_batch *batch;
339 int i;
341 batch = container_of(head, struct mmu_table_batch, rcu);
343 for (i = 0; i < batch->nr; i++)
344 __tlb_remove_table(batch->tables[i]);
346 free_page((unsigned long)batch);
349 void tlb_table_flush(struct mmu_gather *tlb)
351 struct mmu_table_batch **batch = &tlb->batch;
353 if (*batch) {
354 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
355 *batch = NULL;
359 void tlb_remove_table(struct mmu_gather *tlb, void *table)
361 struct mmu_table_batch **batch = &tlb->batch;
364 * When there's less then two users of this mm there cannot be a
365 * concurrent page-table walk.
367 if (atomic_read(&tlb->mm->mm_users) < 2) {
368 __tlb_remove_table(table);
369 return;
372 if (*batch == NULL) {
373 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
374 if (*batch == NULL) {
375 tlb_remove_table_one(table);
376 return;
378 (*batch)->nr = 0;
380 (*batch)->tables[(*batch)->nr++] = table;
381 if ((*batch)->nr == MAX_TABLE_BATCH)
382 tlb_table_flush(tlb);
385 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
388 * Note: this doesn't free the actual pages themselves. That
389 * has been handled earlier when unmapping all the memory regions.
391 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
392 unsigned long addr)
394 pgtable_t token = pmd_pgtable(*pmd);
395 pmd_clear(pmd);
396 pte_free_tlb(tlb, token, addr);
397 atomic_long_dec(&tlb->mm->nr_ptes);
400 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
401 unsigned long addr, unsigned long end,
402 unsigned long floor, unsigned long ceiling)
404 pmd_t *pmd;
405 unsigned long next;
406 unsigned long start;
408 start = addr;
409 pmd = pmd_offset(pud, addr);
410 do {
411 next = pmd_addr_end(addr, end);
412 if (pmd_none_or_clear_bad(pmd))
413 continue;
414 free_pte_range(tlb, pmd, addr);
415 } while (pmd++, addr = next, addr != end);
417 start &= PUD_MASK;
418 if (start < floor)
419 return;
420 if (ceiling) {
421 ceiling &= PUD_MASK;
422 if (!ceiling)
423 return;
425 if (end - 1 > ceiling - 1)
426 return;
428 pmd = pmd_offset(pud, start);
429 pud_clear(pud);
430 pmd_free_tlb(tlb, pmd, start);
433 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
434 unsigned long addr, unsigned long end,
435 unsigned long floor, unsigned long ceiling)
437 pud_t *pud;
438 unsigned long next;
439 unsigned long start;
441 start = addr;
442 pud = pud_offset(pgd, addr);
443 do {
444 next = pud_addr_end(addr, end);
445 if (pud_none_or_clear_bad(pud))
446 continue;
447 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
448 } while (pud++, addr = next, addr != end);
450 start &= PGDIR_MASK;
451 if (start < floor)
452 return;
453 if (ceiling) {
454 ceiling &= PGDIR_MASK;
455 if (!ceiling)
456 return;
458 if (end - 1 > ceiling - 1)
459 return;
461 pud = pud_offset(pgd, start);
462 pgd_clear(pgd);
463 pud_free_tlb(tlb, pud, start);
467 * This function frees user-level page tables of a process.
469 void free_pgd_range(struct mmu_gather *tlb,
470 unsigned long addr, unsigned long end,
471 unsigned long floor, unsigned long ceiling)
473 pgd_t *pgd;
474 unsigned long next;
477 * The next few lines have given us lots of grief...
479 * Why are we testing PMD* at this top level? Because often
480 * there will be no work to do at all, and we'd prefer not to
481 * go all the way down to the bottom just to discover that.
483 * Why all these "- 1"s? Because 0 represents both the bottom
484 * of the address space and the top of it (using -1 for the
485 * top wouldn't help much: the masks would do the wrong thing).
486 * The rule is that addr 0 and floor 0 refer to the bottom of
487 * the address space, but end 0 and ceiling 0 refer to the top
488 * Comparisons need to use "end - 1" and "ceiling - 1" (though
489 * that end 0 case should be mythical).
491 * Wherever addr is brought up or ceiling brought down, we must
492 * be careful to reject "the opposite 0" before it confuses the
493 * subsequent tests. But what about where end is brought down
494 * by PMD_SIZE below? no, end can't go down to 0 there.
496 * Whereas we round start (addr) and ceiling down, by different
497 * masks at different levels, in order to test whether a table
498 * now has no other vmas using it, so can be freed, we don't
499 * bother to round floor or end up - the tests don't need that.
502 addr &= PMD_MASK;
503 if (addr < floor) {
504 addr += PMD_SIZE;
505 if (!addr)
506 return;
508 if (ceiling) {
509 ceiling &= PMD_MASK;
510 if (!ceiling)
511 return;
513 if (end - 1 > ceiling - 1)
514 end -= PMD_SIZE;
515 if (addr > end - 1)
516 return;
518 pgd = pgd_offset(tlb->mm, addr);
519 do {
520 next = pgd_addr_end(addr, end);
521 if (pgd_none_or_clear_bad(pgd))
522 continue;
523 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
524 } while (pgd++, addr = next, addr != end);
527 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
528 unsigned long floor, unsigned long ceiling)
530 while (vma) {
531 struct vm_area_struct *next = vma->vm_next;
532 unsigned long addr = vma->vm_start;
535 * Hide vma from rmap and truncate_pagecache before freeing
536 * pgtables
538 unlink_anon_vmas(vma);
539 unlink_file_vma(vma);
541 if (is_vm_hugetlb_page(vma)) {
542 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
543 floor, next? next->vm_start: ceiling);
544 } else {
546 * Optimization: gather nearby vmas into one call down
548 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
549 && !is_vm_hugetlb_page(next)) {
550 vma = next;
551 next = vma->vm_next;
552 unlink_anon_vmas(vma);
553 unlink_file_vma(vma);
555 free_pgd_range(tlb, addr, vma->vm_end,
556 floor, next? next->vm_start: ceiling);
558 vma = next;
562 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
563 pmd_t *pmd, unsigned long address)
565 spinlock_t *ptl;
566 pgtable_t new = pte_alloc_one(mm, address);
567 int wait_split_huge_page;
568 if (!new)
569 return -ENOMEM;
572 * Ensure all pte setup (eg. pte page lock and page clearing) are
573 * visible before the pte is made visible to other CPUs by being
574 * put into page tables.
576 * The other side of the story is the pointer chasing in the page
577 * table walking code (when walking the page table without locking;
578 * ie. most of the time). Fortunately, these data accesses consist
579 * of a chain of data-dependent loads, meaning most CPUs (alpha
580 * being the notable exception) will already guarantee loads are
581 * seen in-order. See the alpha page table accessors for the
582 * smp_read_barrier_depends() barriers in page table walking code.
584 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
586 ptl = pmd_lock(mm, pmd);
587 wait_split_huge_page = 0;
588 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
589 atomic_long_inc(&mm->nr_ptes);
590 pmd_populate(mm, pmd, new);
591 new = NULL;
592 } else if (unlikely(pmd_trans_splitting(*pmd)))
593 wait_split_huge_page = 1;
594 spin_unlock(ptl);
595 if (new)
596 pte_free(mm, new);
597 if (wait_split_huge_page)
598 wait_split_huge_page(vma->anon_vma, pmd);
599 return 0;
602 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
604 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
605 if (!new)
606 return -ENOMEM;
608 smp_wmb(); /* See comment in __pte_alloc */
610 spin_lock(&init_mm.page_table_lock);
611 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
612 pmd_populate_kernel(&init_mm, pmd, new);
613 new = NULL;
614 } else
615 VM_BUG_ON(pmd_trans_splitting(*pmd));
616 spin_unlock(&init_mm.page_table_lock);
617 if (new)
618 pte_free_kernel(&init_mm, new);
619 return 0;
622 static inline void init_rss_vec(int *rss)
624 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
627 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
629 int i;
631 if (current->mm == mm)
632 sync_mm_rss(mm);
633 for (i = 0; i < NR_MM_COUNTERS; i++)
634 if (rss[i])
635 add_mm_counter(mm, i, rss[i]);
639 * This function is called to print an error when a bad pte
640 * is found. For example, we might have a PFN-mapped pte in
641 * a region that doesn't allow it.
643 * The calling function must still handle the error.
645 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
646 pte_t pte, struct page *page)
648 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
649 pud_t *pud = pud_offset(pgd, addr);
650 pmd_t *pmd = pmd_offset(pud, addr);
651 struct address_space *mapping;
652 pgoff_t index;
653 static unsigned long resume;
654 static unsigned long nr_shown;
655 static unsigned long nr_unshown;
658 * Allow a burst of 60 reports, then keep quiet for that minute;
659 * or allow a steady drip of one report per second.
661 if (nr_shown == 60) {
662 if (time_before(jiffies, resume)) {
663 nr_unshown++;
664 return;
666 if (nr_unshown) {
667 printk(KERN_ALERT
668 "BUG: Bad page map: %lu messages suppressed\n",
669 nr_unshown);
670 nr_unshown = 0;
672 nr_shown = 0;
674 if (nr_shown++ == 0)
675 resume = jiffies + 60 * HZ;
677 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
678 index = linear_page_index(vma, addr);
680 printk(KERN_ALERT
681 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
682 current->comm,
683 (long long)pte_val(pte), (long long)pmd_val(*pmd));
684 if (page)
685 dump_page(page, "bad pte");
686 printk(KERN_ALERT
687 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
688 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
690 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
692 if (vma->vm_ops)
693 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
694 vma->vm_ops->fault);
695 if (vma->vm_file)
696 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
697 vma->vm_file->f_op->mmap);
698 dump_stack();
699 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
703 * vm_normal_page -- This function gets the "struct page" associated with a pte.
705 * "Special" mappings do not wish to be associated with a "struct page" (either
706 * it doesn't exist, or it exists but they don't want to touch it). In this
707 * case, NULL is returned here. "Normal" mappings do have a struct page.
709 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
710 * pte bit, in which case this function is trivial. Secondly, an architecture
711 * may not have a spare pte bit, which requires a more complicated scheme,
712 * described below.
714 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
715 * special mapping (even if there are underlying and valid "struct pages").
716 * COWed pages of a VM_PFNMAP are always normal.
718 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
719 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
720 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
721 * mapping will always honor the rule
723 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
725 * And for normal mappings this is false.
727 * This restricts such mappings to be a linear translation from virtual address
728 * to pfn. To get around this restriction, we allow arbitrary mappings so long
729 * as the vma is not a COW mapping; in that case, we know that all ptes are
730 * special (because none can have been COWed).
733 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
735 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
736 * page" backing, however the difference is that _all_ pages with a struct
737 * page (that is, those where pfn_valid is true) are refcounted and considered
738 * normal pages by the VM. The disadvantage is that pages are refcounted
739 * (which can be slower and simply not an option for some PFNMAP users). The
740 * advantage is that we don't have to follow the strict linearity rule of
741 * PFNMAP mappings in order to support COWable mappings.
744 #ifdef __HAVE_ARCH_PTE_SPECIAL
745 # define HAVE_PTE_SPECIAL 1
746 #else
747 # define HAVE_PTE_SPECIAL 0
748 #endif
749 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
750 pte_t pte)
752 unsigned long pfn = pte_pfn(pte);
754 if (HAVE_PTE_SPECIAL) {
755 if (likely(!pte_special(pte)))
756 goto check_pfn;
757 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
758 return NULL;
759 if (!is_zero_pfn(pfn))
760 print_bad_pte(vma, addr, pte, NULL);
761 return NULL;
764 /* !HAVE_PTE_SPECIAL case follows: */
766 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
767 if (vma->vm_flags & VM_MIXEDMAP) {
768 if (!pfn_valid(pfn))
769 return NULL;
770 goto out;
771 } else {
772 unsigned long off;
773 off = (addr - vma->vm_start) >> PAGE_SHIFT;
774 if (pfn == vma->vm_pgoff + off)
775 return NULL;
776 if (!is_cow_mapping(vma->vm_flags))
777 return NULL;
781 if (is_zero_pfn(pfn))
782 return NULL;
783 check_pfn:
784 if (unlikely(pfn > highest_memmap_pfn)) {
785 print_bad_pte(vma, addr, pte, NULL);
786 return NULL;
790 * NOTE! We still have PageReserved() pages in the page tables.
791 * eg. VDSO mappings can cause them to exist.
793 out:
794 return pfn_to_page(pfn);
798 * copy one vm_area from one task to the other. Assumes the page tables
799 * already present in the new task to be cleared in the whole range
800 * covered by this vma.
803 static inline unsigned long
804 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
805 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
806 unsigned long addr, int *rss)
808 unsigned long vm_flags = vma->vm_flags;
809 pte_t pte = *src_pte;
810 struct page *page;
812 /* pte contains position in swap or file, so copy. */
813 if (unlikely(!pte_present(pte))) {
814 if (!pte_file(pte)) {
815 swp_entry_t entry = pte_to_swp_entry(pte);
817 if (likely(!non_swap_entry(entry))) {
818 if (swap_duplicate(entry) < 0)
819 return entry.val;
821 /* make sure dst_mm is on swapoff's mmlist. */
822 if (unlikely(list_empty(&dst_mm->mmlist))) {
823 spin_lock(&mmlist_lock);
824 if (list_empty(&dst_mm->mmlist))
825 list_add(&dst_mm->mmlist,
826 &src_mm->mmlist);
827 spin_unlock(&mmlist_lock);
829 rss[MM_SWAPENTS]++;
830 } else if (is_migration_entry(entry)) {
831 page = migration_entry_to_page(entry);
833 if (PageAnon(page))
834 rss[MM_ANONPAGES]++;
835 else
836 rss[MM_FILEPAGES]++;
838 if (is_write_migration_entry(entry) &&
839 is_cow_mapping(vm_flags)) {
841 * COW mappings require pages in both
842 * parent and child to be set to read.
844 make_migration_entry_read(&entry);
845 pte = swp_entry_to_pte(entry);
846 if (pte_swp_soft_dirty(*src_pte))
847 pte = pte_swp_mksoft_dirty(pte);
848 set_pte_at(src_mm, addr, src_pte, pte);
852 goto out_set_pte;
856 * If it's a COW mapping, write protect it both
857 * in the parent and the child
859 if (is_cow_mapping(vm_flags)) {
860 ptep_set_wrprotect(src_mm, addr, src_pte);
861 pte = pte_wrprotect(pte);
865 * If it's a shared mapping, mark it clean in
866 * the child
868 if (vm_flags & VM_SHARED)
869 pte = pte_mkclean(pte);
870 pte = pte_mkold(pte);
872 page = vm_normal_page(vma, addr, pte);
873 if (page) {
874 get_page(page);
875 page_dup_rmap(page);
876 if (PageAnon(page))
877 rss[MM_ANONPAGES]++;
878 else
879 rss[MM_FILEPAGES]++;
882 out_set_pte:
883 set_pte_at(dst_mm, addr, dst_pte, pte);
884 return 0;
887 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
888 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
889 unsigned long addr, unsigned long end)
891 pte_t *orig_src_pte, *orig_dst_pte;
892 pte_t *src_pte, *dst_pte;
893 spinlock_t *src_ptl, *dst_ptl;
894 int progress = 0;
895 int rss[NR_MM_COUNTERS];
896 swp_entry_t entry = (swp_entry_t){0};
898 again:
899 init_rss_vec(rss);
901 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
902 if (!dst_pte)
903 return -ENOMEM;
904 src_pte = pte_offset_map(src_pmd, addr);
905 src_ptl = pte_lockptr(src_mm, src_pmd);
906 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
907 orig_src_pte = src_pte;
908 orig_dst_pte = dst_pte;
909 arch_enter_lazy_mmu_mode();
911 do {
913 * We are holding two locks at this point - either of them
914 * could generate latencies in another task on another CPU.
916 if (progress >= 32) {
917 progress = 0;
918 if (need_resched() ||
919 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
920 break;
922 if (pte_none(*src_pte)) {
923 progress++;
924 continue;
926 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
927 vma, addr, rss);
928 if (entry.val)
929 break;
930 progress += 8;
931 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
933 arch_leave_lazy_mmu_mode();
934 spin_unlock(src_ptl);
935 pte_unmap(orig_src_pte);
936 add_mm_rss_vec(dst_mm, rss);
937 pte_unmap_unlock(orig_dst_pte, dst_ptl);
938 cond_resched();
940 if (entry.val) {
941 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
942 return -ENOMEM;
943 progress = 0;
945 if (addr != end)
946 goto again;
947 return 0;
950 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
951 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
952 unsigned long addr, unsigned long end)
954 pmd_t *src_pmd, *dst_pmd;
955 unsigned long next;
957 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
958 if (!dst_pmd)
959 return -ENOMEM;
960 src_pmd = pmd_offset(src_pud, addr);
961 do {
962 next = pmd_addr_end(addr, end);
963 if (pmd_trans_huge(*src_pmd)) {
964 int err;
965 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
966 err = copy_huge_pmd(dst_mm, src_mm,
967 dst_pmd, src_pmd, addr, vma);
968 if (err == -ENOMEM)
969 return -ENOMEM;
970 if (!err)
971 continue;
972 /* fall through */
974 if (pmd_none_or_clear_bad(src_pmd))
975 continue;
976 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
977 vma, addr, next))
978 return -ENOMEM;
979 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
980 return 0;
983 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
984 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
985 unsigned long addr, unsigned long end)
987 pud_t *src_pud, *dst_pud;
988 unsigned long next;
990 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
991 if (!dst_pud)
992 return -ENOMEM;
993 src_pud = pud_offset(src_pgd, addr);
994 do {
995 next = pud_addr_end(addr, end);
996 if (pud_none_or_clear_bad(src_pud))
997 continue;
998 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
999 vma, addr, next))
1000 return -ENOMEM;
1001 } while (dst_pud++, src_pud++, addr = next, addr != end);
1002 return 0;
1005 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1006 struct vm_area_struct *vma)
1008 pgd_t *src_pgd, *dst_pgd;
1009 unsigned long next;
1010 unsigned long addr = vma->vm_start;
1011 unsigned long end = vma->vm_end;
1012 unsigned long mmun_start; /* For mmu_notifiers */
1013 unsigned long mmun_end; /* For mmu_notifiers */
1014 bool is_cow;
1015 int ret;
1018 * Don't copy ptes where a page fault will fill them correctly.
1019 * Fork becomes much lighter when there are big shared or private
1020 * readonly mappings. The tradeoff is that copy_page_range is more
1021 * efficient than faulting.
1023 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1024 VM_PFNMAP | VM_MIXEDMAP))) {
1025 if (!vma->anon_vma)
1026 return 0;
1029 if (is_vm_hugetlb_page(vma))
1030 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1032 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1034 * We do not free on error cases below as remove_vma
1035 * gets called on error from higher level routine
1037 ret = track_pfn_copy(vma);
1038 if (ret)
1039 return ret;
1043 * We need to invalidate the secondary MMU mappings only when
1044 * there could be a permission downgrade on the ptes of the
1045 * parent mm. And a permission downgrade will only happen if
1046 * is_cow_mapping() returns true.
1048 is_cow = is_cow_mapping(vma->vm_flags);
1049 mmun_start = addr;
1050 mmun_end = end;
1051 if (is_cow)
1052 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1053 mmun_end);
1055 ret = 0;
1056 dst_pgd = pgd_offset(dst_mm, addr);
1057 src_pgd = pgd_offset(src_mm, addr);
1058 do {
1059 next = pgd_addr_end(addr, end);
1060 if (pgd_none_or_clear_bad(src_pgd))
1061 continue;
1062 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1063 vma, addr, next))) {
1064 ret = -ENOMEM;
1065 break;
1067 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1069 if (is_cow)
1070 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1071 return ret;
1074 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1075 struct vm_area_struct *vma, pmd_t *pmd,
1076 unsigned long addr, unsigned long end,
1077 struct zap_details *details)
1079 struct mm_struct *mm = tlb->mm;
1080 int force_flush = 0;
1081 int rss[NR_MM_COUNTERS];
1082 spinlock_t *ptl;
1083 pte_t *start_pte;
1084 pte_t *pte;
1086 again:
1087 init_rss_vec(rss);
1088 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1089 pte = start_pte;
1090 arch_enter_lazy_mmu_mode();
1091 do {
1092 pte_t ptent = *pte;
1093 if (pte_none(ptent)) {
1094 continue;
1097 if (pte_present(ptent)) {
1098 struct page *page;
1100 page = vm_normal_page(vma, addr, ptent);
1101 if (unlikely(details) && page) {
1103 * unmap_shared_mapping_pages() wants to
1104 * invalidate cache without truncating:
1105 * unmap shared but keep private pages.
1107 if (details->check_mapping &&
1108 details->check_mapping != page->mapping)
1109 continue;
1111 * Each page->index must be checked when
1112 * invalidating or truncating nonlinear.
1114 if (details->nonlinear_vma &&
1115 (page->index < details->first_index ||
1116 page->index > details->last_index))
1117 continue;
1119 ptent = ptep_get_and_clear_full(mm, addr, pte,
1120 tlb->fullmm);
1121 tlb_remove_tlb_entry(tlb, pte, addr);
1122 if (unlikely(!page))
1123 continue;
1124 if (unlikely(details) && details->nonlinear_vma
1125 && linear_page_index(details->nonlinear_vma,
1126 addr) != page->index) {
1127 pte_t ptfile = pgoff_to_pte(page->index);
1128 if (pte_soft_dirty(ptent))
1129 ptfile = pte_file_mksoft_dirty(ptfile);
1130 set_pte_at(mm, addr, pte, ptfile);
1132 if (PageAnon(page))
1133 rss[MM_ANONPAGES]--;
1134 else {
1135 if (pte_dirty(ptent)) {
1136 force_flush = 1;
1137 set_page_dirty(page);
1139 if (pte_young(ptent) &&
1140 likely(!(vma->vm_flags & VM_SEQ_READ)))
1141 mark_page_accessed(page);
1142 rss[MM_FILEPAGES]--;
1144 page_remove_rmap(page);
1145 if (unlikely(page_mapcount(page) < 0))
1146 print_bad_pte(vma, addr, ptent, page);
1147 if (unlikely(!__tlb_remove_page(tlb, page))) {
1148 force_flush = 1;
1149 addr += PAGE_SIZE;
1150 break;
1152 continue;
1155 * If details->check_mapping, we leave swap entries;
1156 * if details->nonlinear_vma, we leave file entries.
1158 if (unlikely(details))
1159 continue;
1160 if (pte_file(ptent)) {
1161 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1162 print_bad_pte(vma, addr, ptent, NULL);
1163 } else {
1164 swp_entry_t entry = pte_to_swp_entry(ptent);
1166 if (!non_swap_entry(entry))
1167 rss[MM_SWAPENTS]--;
1168 else if (is_migration_entry(entry)) {
1169 struct page *page;
1171 page = migration_entry_to_page(entry);
1173 if (PageAnon(page))
1174 rss[MM_ANONPAGES]--;
1175 else
1176 rss[MM_FILEPAGES]--;
1178 if (unlikely(!free_swap_and_cache(entry)))
1179 print_bad_pte(vma, addr, ptent, NULL);
1181 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1182 } while (pte++, addr += PAGE_SIZE, addr != end);
1184 add_mm_rss_vec(mm, rss);
1185 arch_leave_lazy_mmu_mode();
1187 /* Do the actual TLB flush before dropping ptl */
1188 if (force_flush)
1189 tlb_flush_mmu_tlbonly(tlb);
1190 pte_unmap_unlock(start_pte, ptl);
1193 * If we forced a TLB flush (either due to running out of
1194 * batch buffers or because we needed to flush dirty TLB
1195 * entries before releasing the ptl), free the batched
1196 * memory too. Restart if we didn't do everything.
1198 if (force_flush) {
1199 force_flush = 0;
1200 tlb_flush_mmu_free(tlb);
1202 if (addr != end)
1203 goto again;
1206 return addr;
1209 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1210 struct vm_area_struct *vma, pud_t *pud,
1211 unsigned long addr, unsigned long end,
1212 struct zap_details *details)
1214 pmd_t *pmd;
1215 unsigned long next;
1217 pmd = pmd_offset(pud, addr);
1218 do {
1219 next = pmd_addr_end(addr, end);
1220 if (pmd_trans_huge(*pmd)) {
1221 if (next - addr != HPAGE_PMD_SIZE) {
1222 #ifdef CONFIG_DEBUG_VM
1223 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1224 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1225 __func__, addr, end,
1226 vma->vm_start,
1227 vma->vm_end);
1228 BUG();
1230 #endif
1231 split_huge_page_pmd(vma, addr, pmd);
1232 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1233 goto next;
1234 /* fall through */
1237 * Here there can be other concurrent MADV_DONTNEED or
1238 * trans huge page faults running, and if the pmd is
1239 * none or trans huge it can change under us. This is
1240 * because MADV_DONTNEED holds the mmap_sem in read
1241 * mode.
1243 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1244 goto next;
1245 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1246 next:
1247 cond_resched();
1248 } while (pmd++, addr = next, addr != end);
1250 return addr;
1253 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1254 struct vm_area_struct *vma, pgd_t *pgd,
1255 unsigned long addr, unsigned long end,
1256 struct zap_details *details)
1258 pud_t *pud;
1259 unsigned long next;
1261 pud = pud_offset(pgd, addr);
1262 do {
1263 next = pud_addr_end(addr, end);
1264 if (pud_none_or_clear_bad(pud))
1265 continue;
1266 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1267 } while (pud++, addr = next, addr != end);
1269 return addr;
1272 static void unmap_page_range(struct mmu_gather *tlb,
1273 struct vm_area_struct *vma,
1274 unsigned long addr, unsigned long end,
1275 struct zap_details *details)
1277 pgd_t *pgd;
1278 unsigned long next;
1280 if (details && !details->check_mapping && !details->nonlinear_vma)
1281 details = NULL;
1283 BUG_ON(addr >= end);
1284 tlb_start_vma(tlb, vma);
1285 pgd = pgd_offset(vma->vm_mm, addr);
1286 do {
1287 next = pgd_addr_end(addr, end);
1288 if (pgd_none_or_clear_bad(pgd))
1289 continue;
1290 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1291 } while (pgd++, addr = next, addr != end);
1292 tlb_end_vma(tlb, vma);
1296 static void unmap_single_vma(struct mmu_gather *tlb,
1297 struct vm_area_struct *vma, unsigned long start_addr,
1298 unsigned long end_addr,
1299 struct zap_details *details)
1301 unsigned long start = max(vma->vm_start, start_addr);
1302 unsigned long end;
1304 if (start >= vma->vm_end)
1305 return;
1306 end = min(vma->vm_end, end_addr);
1307 if (end <= vma->vm_start)
1308 return;
1310 if (vma->vm_file)
1311 uprobe_munmap(vma, start, end);
1313 if (unlikely(vma->vm_flags & VM_PFNMAP))
1314 untrack_pfn(vma, 0, 0);
1316 if (start != end) {
1317 if (unlikely(is_vm_hugetlb_page(vma))) {
1319 * It is undesirable to test vma->vm_file as it
1320 * should be non-null for valid hugetlb area.
1321 * However, vm_file will be NULL in the error
1322 * cleanup path of mmap_region. When
1323 * hugetlbfs ->mmap method fails,
1324 * mmap_region() nullifies vma->vm_file
1325 * before calling this function to clean up.
1326 * Since no pte has actually been setup, it is
1327 * safe to do nothing in this case.
1329 if (vma->vm_file) {
1330 i_mmap_lock_write(vma->vm_file->f_mapping);
1331 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1332 i_mmap_unlock_write(vma->vm_file->f_mapping);
1334 } else
1335 unmap_page_range(tlb, vma, start, end, details);
1340 * unmap_vmas - unmap a range of memory covered by a list of vma's
1341 * @tlb: address of the caller's struct mmu_gather
1342 * @vma: the starting vma
1343 * @start_addr: virtual address at which to start unmapping
1344 * @end_addr: virtual address at which to end unmapping
1346 * Unmap all pages in the vma list.
1348 * Only addresses between `start' and `end' will be unmapped.
1350 * The VMA list must be sorted in ascending virtual address order.
1352 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1353 * range after unmap_vmas() returns. So the only responsibility here is to
1354 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1355 * drops the lock and schedules.
1357 void unmap_vmas(struct mmu_gather *tlb,
1358 struct vm_area_struct *vma, unsigned long start_addr,
1359 unsigned long end_addr)
1361 struct mm_struct *mm = vma->vm_mm;
1363 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1364 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1365 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1366 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1370 * zap_page_range - remove user pages in a given range
1371 * @vma: vm_area_struct holding the applicable pages
1372 * @start: starting address of pages to zap
1373 * @size: number of bytes to zap
1374 * @details: details of nonlinear truncation or shared cache invalidation
1376 * Caller must protect the VMA list
1378 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1379 unsigned long size, struct zap_details *details)
1381 struct mm_struct *mm = vma->vm_mm;
1382 struct mmu_gather tlb;
1383 unsigned long end = start + size;
1385 lru_add_drain();
1386 tlb_gather_mmu(&tlb, mm, start, end);
1387 update_hiwater_rss(mm);
1388 mmu_notifier_invalidate_range_start(mm, start, end);
1389 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1390 unmap_single_vma(&tlb, vma, start, end, details);
1391 mmu_notifier_invalidate_range_end(mm, start, end);
1392 tlb_finish_mmu(&tlb, start, end);
1396 * zap_page_range_single - remove user pages in a given range
1397 * @vma: vm_area_struct holding the applicable pages
1398 * @address: starting address of pages to zap
1399 * @size: number of bytes to zap
1400 * @details: details of nonlinear truncation or shared cache invalidation
1402 * The range must fit into one VMA.
1404 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1405 unsigned long size, struct zap_details *details)
1407 struct mm_struct *mm = vma->vm_mm;
1408 struct mmu_gather tlb;
1409 unsigned long end = address + size;
1411 lru_add_drain();
1412 tlb_gather_mmu(&tlb, mm, address, end);
1413 update_hiwater_rss(mm);
1414 mmu_notifier_invalidate_range_start(mm, address, end);
1415 unmap_single_vma(&tlb, vma, address, end, details);
1416 mmu_notifier_invalidate_range_end(mm, address, end);
1417 tlb_finish_mmu(&tlb, address, end);
1421 * zap_vma_ptes - remove ptes mapping the vma
1422 * @vma: vm_area_struct holding ptes to be zapped
1423 * @address: starting address of pages to zap
1424 * @size: number of bytes to zap
1426 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1428 * The entire address range must be fully contained within the vma.
1430 * Returns 0 if successful.
1432 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1433 unsigned long size)
1435 if (address < vma->vm_start || address + size > vma->vm_end ||
1436 !(vma->vm_flags & VM_PFNMAP))
1437 return -1;
1438 zap_page_range_single(vma, address, size, NULL);
1439 return 0;
1441 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1443 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1444 spinlock_t **ptl)
1446 pgd_t * pgd = pgd_offset(mm, addr);
1447 pud_t * pud = pud_alloc(mm, pgd, addr);
1448 if (pud) {
1449 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1450 if (pmd) {
1451 VM_BUG_ON(pmd_trans_huge(*pmd));
1452 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1455 return NULL;
1459 * This is the old fallback for page remapping.
1461 * For historical reasons, it only allows reserved pages. Only
1462 * old drivers should use this, and they needed to mark their
1463 * pages reserved for the old functions anyway.
1465 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1466 struct page *page, pgprot_t prot)
1468 struct mm_struct *mm = vma->vm_mm;
1469 int retval;
1470 pte_t *pte;
1471 spinlock_t *ptl;
1473 retval = -EINVAL;
1474 if (PageAnon(page))
1475 goto out;
1476 retval = -ENOMEM;
1477 flush_dcache_page(page);
1478 pte = get_locked_pte(mm, addr, &ptl);
1479 if (!pte)
1480 goto out;
1481 retval = -EBUSY;
1482 if (!pte_none(*pte))
1483 goto out_unlock;
1485 /* Ok, finally just insert the thing.. */
1486 get_page(page);
1487 inc_mm_counter_fast(mm, MM_FILEPAGES);
1488 page_add_file_rmap(page);
1489 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1491 retval = 0;
1492 pte_unmap_unlock(pte, ptl);
1493 return retval;
1494 out_unlock:
1495 pte_unmap_unlock(pte, ptl);
1496 out:
1497 return retval;
1501 * vm_insert_page - insert single page into user vma
1502 * @vma: user vma to map to
1503 * @addr: target user address of this page
1504 * @page: source kernel page
1506 * This allows drivers to insert individual pages they've allocated
1507 * into a user vma.
1509 * The page has to be a nice clean _individual_ kernel allocation.
1510 * If you allocate a compound page, you need to have marked it as
1511 * such (__GFP_COMP), or manually just split the page up yourself
1512 * (see split_page()).
1514 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1515 * took an arbitrary page protection parameter. This doesn't allow
1516 * that. Your vma protection will have to be set up correctly, which
1517 * means that if you want a shared writable mapping, you'd better
1518 * ask for a shared writable mapping!
1520 * The page does not need to be reserved.
1522 * Usually this function is called from f_op->mmap() handler
1523 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1524 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1525 * function from other places, for example from page-fault handler.
1527 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1528 struct page *page)
1530 if (addr < vma->vm_start || addr >= vma->vm_end)
1531 return -EFAULT;
1532 if (!page_count(page))
1533 return -EINVAL;
1534 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1535 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1536 BUG_ON(vma->vm_flags & VM_PFNMAP);
1537 vma->vm_flags |= VM_MIXEDMAP;
1539 return insert_page(vma, addr, page, vma->vm_page_prot);
1541 EXPORT_SYMBOL(vm_insert_page);
1543 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1544 unsigned long pfn, pgprot_t prot)
1546 struct mm_struct *mm = vma->vm_mm;
1547 int retval;
1548 pte_t *pte, entry;
1549 spinlock_t *ptl;
1551 retval = -ENOMEM;
1552 pte = get_locked_pte(mm, addr, &ptl);
1553 if (!pte)
1554 goto out;
1555 retval = -EBUSY;
1556 if (!pte_none(*pte))
1557 goto out_unlock;
1559 /* Ok, finally just insert the thing.. */
1560 entry = pte_mkspecial(pfn_pte(pfn, prot));
1561 set_pte_at(mm, addr, pte, entry);
1562 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1564 retval = 0;
1565 out_unlock:
1566 pte_unmap_unlock(pte, ptl);
1567 out:
1568 return retval;
1572 * vm_insert_pfn - insert single pfn into user vma
1573 * @vma: user vma to map to
1574 * @addr: target user address of this page
1575 * @pfn: source kernel pfn
1577 * Similar to vm_insert_page, this allows drivers to insert individual pages
1578 * they've allocated into a user vma. Same comments apply.
1580 * This function should only be called from a vm_ops->fault handler, and
1581 * in that case the handler should return NULL.
1583 * vma cannot be a COW mapping.
1585 * As this is called only for pages that do not currently exist, we
1586 * do not need to flush old virtual caches or the TLB.
1588 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1589 unsigned long pfn)
1591 int ret;
1592 pgprot_t pgprot = vma->vm_page_prot;
1594 * Technically, architectures with pte_special can avoid all these
1595 * restrictions (same for remap_pfn_range). However we would like
1596 * consistency in testing and feature parity among all, so we should
1597 * try to keep these invariants in place for everybody.
1599 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1600 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1601 (VM_PFNMAP|VM_MIXEDMAP));
1602 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1603 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1605 if (addr < vma->vm_start || addr >= vma->vm_end)
1606 return -EFAULT;
1607 if (track_pfn_insert(vma, &pgprot, pfn))
1608 return -EINVAL;
1610 ret = insert_pfn(vma, addr, pfn, pgprot);
1612 return ret;
1614 EXPORT_SYMBOL(vm_insert_pfn);
1616 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1617 unsigned long pfn)
1619 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1621 if (addr < vma->vm_start || addr >= vma->vm_end)
1622 return -EFAULT;
1625 * If we don't have pte special, then we have to use the pfn_valid()
1626 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1627 * refcount the page if pfn_valid is true (hence insert_page rather
1628 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1629 * without pte special, it would there be refcounted as a normal page.
1631 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1632 struct page *page;
1634 page = pfn_to_page(pfn);
1635 return insert_page(vma, addr, page, vma->vm_page_prot);
1637 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1639 EXPORT_SYMBOL(vm_insert_mixed);
1642 * maps a range of physical memory into the requested pages. the old
1643 * mappings are removed. any references to nonexistent pages results
1644 * in null mappings (currently treated as "copy-on-access")
1646 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1647 unsigned long addr, unsigned long end,
1648 unsigned long pfn, pgprot_t prot)
1650 pte_t *pte;
1651 spinlock_t *ptl;
1653 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1654 if (!pte)
1655 return -ENOMEM;
1656 arch_enter_lazy_mmu_mode();
1657 do {
1658 BUG_ON(!pte_none(*pte));
1659 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1660 pfn++;
1661 } while (pte++, addr += PAGE_SIZE, addr != end);
1662 arch_leave_lazy_mmu_mode();
1663 pte_unmap_unlock(pte - 1, ptl);
1664 return 0;
1667 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1668 unsigned long addr, unsigned long end,
1669 unsigned long pfn, pgprot_t prot)
1671 pmd_t *pmd;
1672 unsigned long next;
1674 pfn -= addr >> PAGE_SHIFT;
1675 pmd = pmd_alloc(mm, pud, addr);
1676 if (!pmd)
1677 return -ENOMEM;
1678 VM_BUG_ON(pmd_trans_huge(*pmd));
1679 do {
1680 next = pmd_addr_end(addr, end);
1681 if (remap_pte_range(mm, pmd, addr, next,
1682 pfn + (addr >> PAGE_SHIFT), prot))
1683 return -ENOMEM;
1684 } while (pmd++, addr = next, addr != end);
1685 return 0;
1688 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1689 unsigned long addr, unsigned long end,
1690 unsigned long pfn, pgprot_t prot)
1692 pud_t *pud;
1693 unsigned long next;
1695 pfn -= addr >> PAGE_SHIFT;
1696 pud = pud_alloc(mm, pgd, addr);
1697 if (!pud)
1698 return -ENOMEM;
1699 do {
1700 next = pud_addr_end(addr, end);
1701 if (remap_pmd_range(mm, pud, addr, next,
1702 pfn + (addr >> PAGE_SHIFT), prot))
1703 return -ENOMEM;
1704 } while (pud++, addr = next, addr != end);
1705 return 0;
1709 * remap_pfn_range - remap kernel memory to userspace
1710 * @vma: user vma to map to
1711 * @addr: target user address to start at
1712 * @pfn: physical address of kernel memory
1713 * @size: size of map area
1714 * @prot: page protection flags for this mapping
1716 * Note: this is only safe if the mm semaphore is held when called.
1718 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1719 unsigned long pfn, unsigned long size, pgprot_t prot)
1721 pgd_t *pgd;
1722 unsigned long next;
1723 unsigned long end = addr + PAGE_ALIGN(size);
1724 struct mm_struct *mm = vma->vm_mm;
1725 int err;
1728 * Physically remapped pages are special. Tell the
1729 * rest of the world about it:
1730 * VM_IO tells people not to look at these pages
1731 * (accesses can have side effects).
1732 * VM_PFNMAP tells the core MM that the base pages are just
1733 * raw PFN mappings, and do not have a "struct page" associated
1734 * with them.
1735 * VM_DONTEXPAND
1736 * Disable vma merging and expanding with mremap().
1737 * VM_DONTDUMP
1738 * Omit vma from core dump, even when VM_IO turned off.
1740 * There's a horrible special case to handle copy-on-write
1741 * behaviour that some programs depend on. We mark the "original"
1742 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1743 * See vm_normal_page() for details.
1745 if (is_cow_mapping(vma->vm_flags)) {
1746 if (addr != vma->vm_start || end != vma->vm_end)
1747 return -EINVAL;
1748 vma->vm_pgoff = pfn;
1751 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1752 if (err)
1753 return -EINVAL;
1755 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1757 BUG_ON(addr >= end);
1758 pfn -= addr >> PAGE_SHIFT;
1759 pgd = pgd_offset(mm, addr);
1760 flush_cache_range(vma, addr, end);
1761 do {
1762 next = pgd_addr_end(addr, end);
1763 err = remap_pud_range(mm, pgd, addr, next,
1764 pfn + (addr >> PAGE_SHIFT), prot);
1765 if (err)
1766 break;
1767 } while (pgd++, addr = next, addr != end);
1769 if (err)
1770 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1772 return err;
1774 EXPORT_SYMBOL(remap_pfn_range);
1777 * vm_iomap_memory - remap memory to userspace
1778 * @vma: user vma to map to
1779 * @start: start of area
1780 * @len: size of area
1782 * This is a simplified io_remap_pfn_range() for common driver use. The
1783 * driver just needs to give us the physical memory range to be mapped,
1784 * we'll figure out the rest from the vma information.
1786 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1787 * whatever write-combining details or similar.
1789 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1791 unsigned long vm_len, pfn, pages;
1793 /* Check that the physical memory area passed in looks valid */
1794 if (start + len < start)
1795 return -EINVAL;
1797 * You *really* shouldn't map things that aren't page-aligned,
1798 * but we've historically allowed it because IO memory might
1799 * just have smaller alignment.
1801 len += start & ~PAGE_MASK;
1802 pfn = start >> PAGE_SHIFT;
1803 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1804 if (pfn + pages < pfn)
1805 return -EINVAL;
1807 /* We start the mapping 'vm_pgoff' pages into the area */
1808 if (vma->vm_pgoff > pages)
1809 return -EINVAL;
1810 pfn += vma->vm_pgoff;
1811 pages -= vma->vm_pgoff;
1813 /* Can we fit all of the mapping? */
1814 vm_len = vma->vm_end - vma->vm_start;
1815 if (vm_len >> PAGE_SHIFT > pages)
1816 return -EINVAL;
1818 /* Ok, let it rip */
1819 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1821 EXPORT_SYMBOL(vm_iomap_memory);
1823 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1824 unsigned long addr, unsigned long end,
1825 pte_fn_t fn, void *data)
1827 pte_t *pte;
1828 int err;
1829 pgtable_t token;
1830 spinlock_t *uninitialized_var(ptl);
1832 pte = (mm == &init_mm) ?
1833 pte_alloc_kernel(pmd, addr) :
1834 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1835 if (!pte)
1836 return -ENOMEM;
1838 BUG_ON(pmd_huge(*pmd));
1840 arch_enter_lazy_mmu_mode();
1842 token = pmd_pgtable(*pmd);
1844 do {
1845 err = fn(pte++, token, addr, data);
1846 if (err)
1847 break;
1848 } while (addr += PAGE_SIZE, addr != end);
1850 arch_leave_lazy_mmu_mode();
1852 if (mm != &init_mm)
1853 pte_unmap_unlock(pte-1, ptl);
1854 return err;
1857 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1858 unsigned long addr, unsigned long end,
1859 pte_fn_t fn, void *data)
1861 pmd_t *pmd;
1862 unsigned long next;
1863 int err;
1865 BUG_ON(pud_huge(*pud));
1867 pmd = pmd_alloc(mm, pud, addr);
1868 if (!pmd)
1869 return -ENOMEM;
1870 do {
1871 next = pmd_addr_end(addr, end);
1872 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1873 if (err)
1874 break;
1875 } while (pmd++, addr = next, addr != end);
1876 return err;
1879 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1880 unsigned long addr, unsigned long end,
1881 pte_fn_t fn, void *data)
1883 pud_t *pud;
1884 unsigned long next;
1885 int err;
1887 pud = pud_alloc(mm, pgd, addr);
1888 if (!pud)
1889 return -ENOMEM;
1890 do {
1891 next = pud_addr_end(addr, end);
1892 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1893 if (err)
1894 break;
1895 } while (pud++, addr = next, addr != end);
1896 return err;
1900 * Scan a region of virtual memory, filling in page tables as necessary
1901 * and calling a provided function on each leaf page table.
1903 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1904 unsigned long size, pte_fn_t fn, void *data)
1906 pgd_t *pgd;
1907 unsigned long next;
1908 unsigned long end = addr + size;
1909 int err;
1911 BUG_ON(addr >= end);
1912 pgd = pgd_offset(mm, addr);
1913 do {
1914 next = pgd_addr_end(addr, end);
1915 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1916 if (err)
1917 break;
1918 } while (pgd++, addr = next, addr != end);
1920 return err;
1922 EXPORT_SYMBOL_GPL(apply_to_page_range);
1925 * handle_pte_fault chooses page fault handler according to an entry
1926 * which was read non-atomically. Before making any commitment, on
1927 * those architectures or configurations (e.g. i386 with PAE) which
1928 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
1929 * must check under lock before unmapping the pte and proceeding
1930 * (but do_wp_page is only called after already making such a check;
1931 * and do_anonymous_page can safely check later on).
1933 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1934 pte_t *page_table, pte_t orig_pte)
1936 int same = 1;
1937 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1938 if (sizeof(pte_t) > sizeof(unsigned long)) {
1939 spinlock_t *ptl = pte_lockptr(mm, pmd);
1940 spin_lock(ptl);
1941 same = pte_same(*page_table, orig_pte);
1942 spin_unlock(ptl);
1944 #endif
1945 pte_unmap(page_table);
1946 return same;
1949 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1951 debug_dma_assert_idle(src);
1954 * If the source page was a PFN mapping, we don't have
1955 * a "struct page" for it. We do a best-effort copy by
1956 * just copying from the original user address. If that
1957 * fails, we just zero-fill it. Live with it.
1959 if (unlikely(!src)) {
1960 void *kaddr = kmap_atomic(dst);
1961 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1964 * This really shouldn't fail, because the page is there
1965 * in the page tables. But it might just be unreadable,
1966 * in which case we just give up and fill the result with
1967 * zeroes.
1969 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1970 clear_page(kaddr);
1971 kunmap_atomic(kaddr);
1972 flush_dcache_page(dst);
1973 } else
1974 copy_user_highpage(dst, src, va, vma);
1978 * Notify the address space that the page is about to become writable so that
1979 * it can prohibit this or wait for the page to get into an appropriate state.
1981 * We do this without the lock held, so that it can sleep if it needs to.
1983 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1984 unsigned long address)
1986 struct vm_fault vmf;
1987 int ret;
1989 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1990 vmf.pgoff = page->index;
1991 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1992 vmf.page = page;
1994 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1995 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1996 return ret;
1997 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1998 lock_page(page);
1999 if (!page->mapping) {
2000 unlock_page(page);
2001 return 0; /* retry */
2003 ret |= VM_FAULT_LOCKED;
2004 } else
2005 VM_BUG_ON_PAGE(!PageLocked(page), page);
2006 return ret;
2010 * This routine handles present pages, when users try to write
2011 * to a shared page. It is done by copying the page to a new address
2012 * and decrementing the shared-page counter for the old page.
2014 * Note that this routine assumes that the protection checks have been
2015 * done by the caller (the low-level page fault routine in most cases).
2016 * Thus we can safely just mark it writable once we've done any necessary
2017 * COW.
2019 * We also mark the page dirty at this point even though the page will
2020 * change only once the write actually happens. This avoids a few races,
2021 * and potentially makes it more efficient.
2023 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2024 * but allow concurrent faults), with pte both mapped and locked.
2025 * We return with mmap_sem still held, but pte unmapped and unlocked.
2027 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2028 unsigned long address, pte_t *page_table, pmd_t *pmd,
2029 spinlock_t *ptl, pte_t orig_pte)
2030 __releases(ptl)
2032 struct page *old_page, *new_page = NULL;
2033 pte_t entry;
2034 int ret = 0;
2035 int page_mkwrite = 0;
2036 struct page *dirty_page = NULL;
2037 unsigned long mmun_start = 0; /* For mmu_notifiers */
2038 unsigned long mmun_end = 0; /* For mmu_notifiers */
2039 struct mem_cgroup *memcg;
2041 old_page = vm_normal_page(vma, address, orig_pte);
2042 if (!old_page) {
2044 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2045 * VM_PFNMAP VMA.
2047 * We should not cow pages in a shared writeable mapping.
2048 * Just mark the pages writable as we can't do any dirty
2049 * accounting on raw pfn maps.
2051 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2052 (VM_WRITE|VM_SHARED))
2053 goto reuse;
2054 goto gotten;
2058 * Take out anonymous pages first, anonymous shared vmas are
2059 * not dirty accountable.
2061 if (PageAnon(old_page) && !PageKsm(old_page)) {
2062 if (!trylock_page(old_page)) {
2063 page_cache_get(old_page);
2064 pte_unmap_unlock(page_table, ptl);
2065 lock_page(old_page);
2066 page_table = pte_offset_map_lock(mm, pmd, address,
2067 &ptl);
2068 if (!pte_same(*page_table, orig_pte)) {
2069 unlock_page(old_page);
2070 goto unlock;
2072 page_cache_release(old_page);
2074 if (reuse_swap_page(old_page)) {
2076 * The page is all ours. Move it to our anon_vma so
2077 * the rmap code will not search our parent or siblings.
2078 * Protected against the rmap code by the page lock.
2080 page_move_anon_rmap(old_page, vma, address);
2081 unlock_page(old_page);
2082 goto reuse;
2084 unlock_page(old_page);
2085 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2086 (VM_WRITE|VM_SHARED))) {
2088 * Only catch write-faults on shared writable pages,
2089 * read-only shared pages can get COWed by
2090 * get_user_pages(.write=1, .force=1).
2092 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2093 int tmp;
2094 page_cache_get(old_page);
2095 pte_unmap_unlock(page_table, ptl);
2096 tmp = do_page_mkwrite(vma, old_page, address);
2097 if (unlikely(!tmp || (tmp &
2098 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2099 page_cache_release(old_page);
2100 return tmp;
2103 * Since we dropped the lock we need to revalidate
2104 * the PTE as someone else may have changed it. If
2105 * they did, we just return, as we can count on the
2106 * MMU to tell us if they didn't also make it writable.
2108 page_table = pte_offset_map_lock(mm, pmd, address,
2109 &ptl);
2110 if (!pte_same(*page_table, orig_pte)) {
2111 unlock_page(old_page);
2112 goto unlock;
2115 page_mkwrite = 1;
2117 dirty_page = old_page;
2118 get_page(dirty_page);
2120 reuse:
2122 * Clear the pages cpupid information as the existing
2123 * information potentially belongs to a now completely
2124 * unrelated process.
2126 if (old_page)
2127 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2129 flush_cache_page(vma, address, pte_pfn(orig_pte));
2130 entry = pte_mkyoung(orig_pte);
2131 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2132 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2133 update_mmu_cache(vma, address, page_table);
2134 pte_unmap_unlock(page_table, ptl);
2135 ret |= VM_FAULT_WRITE;
2137 if (!dirty_page)
2138 return ret;
2141 * Yes, Virginia, this is actually required to prevent a race
2142 * with clear_page_dirty_for_io() from clearing the page dirty
2143 * bit after it clear all dirty ptes, but before a racing
2144 * do_wp_page installs a dirty pte.
2146 * do_shared_fault is protected similarly.
2148 if (!page_mkwrite) {
2149 wait_on_page_locked(dirty_page);
2150 set_page_dirty_balance(dirty_page);
2151 /* file_update_time outside page_lock */
2152 if (vma->vm_file)
2153 file_update_time(vma->vm_file);
2155 put_page(dirty_page);
2156 if (page_mkwrite) {
2157 struct address_space *mapping = dirty_page->mapping;
2159 set_page_dirty(dirty_page);
2160 unlock_page(dirty_page);
2161 page_cache_release(dirty_page);
2162 if (mapping) {
2164 * Some device drivers do not set page.mapping
2165 * but still dirty their pages
2167 balance_dirty_pages_ratelimited(mapping);
2171 return ret;
2175 * Ok, we need to copy. Oh, well..
2177 page_cache_get(old_page);
2178 gotten:
2179 pte_unmap_unlock(page_table, ptl);
2181 if (unlikely(anon_vma_prepare(vma)))
2182 goto oom;
2184 if (is_zero_pfn(pte_pfn(orig_pte))) {
2185 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2186 if (!new_page)
2187 goto oom;
2188 } else {
2189 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2190 if (!new_page)
2191 goto oom;
2192 cow_user_page(new_page, old_page, address, vma);
2194 __SetPageUptodate(new_page);
2196 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2197 goto oom_free_new;
2199 mmun_start = address & PAGE_MASK;
2200 mmun_end = mmun_start + PAGE_SIZE;
2201 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2204 * Re-check the pte - we dropped the lock
2206 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2207 if (likely(pte_same(*page_table, orig_pte))) {
2208 if (old_page) {
2209 if (!PageAnon(old_page)) {
2210 dec_mm_counter_fast(mm, MM_FILEPAGES);
2211 inc_mm_counter_fast(mm, MM_ANONPAGES);
2213 } else
2214 inc_mm_counter_fast(mm, MM_ANONPAGES);
2215 flush_cache_page(vma, address, pte_pfn(orig_pte));
2216 entry = mk_pte(new_page, vma->vm_page_prot);
2217 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2219 * Clear the pte entry and flush it first, before updating the
2220 * pte with the new entry. This will avoid a race condition
2221 * seen in the presence of one thread doing SMC and another
2222 * thread doing COW.
2224 ptep_clear_flush_notify(vma, address, page_table);
2225 page_add_new_anon_rmap(new_page, vma, address);
2226 mem_cgroup_commit_charge(new_page, memcg, false);
2227 lru_cache_add_active_or_unevictable(new_page, vma);
2229 * We call the notify macro here because, when using secondary
2230 * mmu page tables (such as kvm shadow page tables), we want the
2231 * new page to be mapped directly into the secondary page table.
2233 set_pte_at_notify(mm, address, page_table, entry);
2234 update_mmu_cache(vma, address, page_table);
2235 if (old_page) {
2237 * Only after switching the pte to the new page may
2238 * we remove the mapcount here. Otherwise another
2239 * process may come and find the rmap count decremented
2240 * before the pte is switched to the new page, and
2241 * "reuse" the old page writing into it while our pte
2242 * here still points into it and can be read by other
2243 * threads.
2245 * The critical issue is to order this
2246 * page_remove_rmap with the ptp_clear_flush above.
2247 * Those stores are ordered by (if nothing else,)
2248 * the barrier present in the atomic_add_negative
2249 * in page_remove_rmap.
2251 * Then the TLB flush in ptep_clear_flush ensures that
2252 * no process can access the old page before the
2253 * decremented mapcount is visible. And the old page
2254 * cannot be reused until after the decremented
2255 * mapcount is visible. So transitively, TLBs to
2256 * old page will be flushed before it can be reused.
2258 page_remove_rmap(old_page);
2261 /* Free the old page.. */
2262 new_page = old_page;
2263 ret |= VM_FAULT_WRITE;
2264 } else
2265 mem_cgroup_cancel_charge(new_page, memcg);
2267 if (new_page)
2268 page_cache_release(new_page);
2269 unlock:
2270 pte_unmap_unlock(page_table, ptl);
2271 if (mmun_end > mmun_start)
2272 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2273 if (old_page) {
2275 * Don't let another task, with possibly unlocked vma,
2276 * keep the mlocked page.
2278 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2279 lock_page(old_page); /* LRU manipulation */
2280 munlock_vma_page(old_page);
2281 unlock_page(old_page);
2283 page_cache_release(old_page);
2285 return ret;
2286 oom_free_new:
2287 page_cache_release(new_page);
2288 oom:
2289 if (old_page)
2290 page_cache_release(old_page);
2291 return VM_FAULT_OOM;
2294 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2295 unsigned long start_addr, unsigned long end_addr,
2296 struct zap_details *details)
2298 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2301 static inline void unmap_mapping_range_tree(struct rb_root *root,
2302 struct zap_details *details)
2304 struct vm_area_struct *vma;
2305 pgoff_t vba, vea, zba, zea;
2307 vma_interval_tree_foreach(vma, root,
2308 details->first_index, details->last_index) {
2310 vba = vma->vm_pgoff;
2311 vea = vba + vma_pages(vma) - 1;
2312 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2313 zba = details->first_index;
2314 if (zba < vba)
2315 zba = vba;
2316 zea = details->last_index;
2317 if (zea > vea)
2318 zea = vea;
2320 unmap_mapping_range_vma(vma,
2321 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2322 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2323 details);
2327 static inline void unmap_mapping_range_list(struct list_head *head,
2328 struct zap_details *details)
2330 struct vm_area_struct *vma;
2333 * In nonlinear VMAs there is no correspondence between virtual address
2334 * offset and file offset. So we must perform an exhaustive search
2335 * across *all* the pages in each nonlinear VMA, not just the pages
2336 * whose virtual address lies outside the file truncation point.
2338 list_for_each_entry(vma, head, shared.nonlinear) {
2339 details->nonlinear_vma = vma;
2340 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2345 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2346 * @mapping: the address space containing mmaps to be unmapped.
2347 * @holebegin: byte in first page to unmap, relative to the start of
2348 * the underlying file. This will be rounded down to a PAGE_SIZE
2349 * boundary. Note that this is different from truncate_pagecache(), which
2350 * must keep the partial page. In contrast, we must get rid of
2351 * partial pages.
2352 * @holelen: size of prospective hole in bytes. This will be rounded
2353 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2354 * end of the file.
2355 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2356 * but 0 when invalidating pagecache, don't throw away private data.
2358 void unmap_mapping_range(struct address_space *mapping,
2359 loff_t const holebegin, loff_t const holelen, int even_cows)
2361 struct zap_details details;
2362 pgoff_t hba = holebegin >> PAGE_SHIFT;
2363 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2365 /* Check for overflow. */
2366 if (sizeof(holelen) > sizeof(hlen)) {
2367 long long holeend =
2368 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2369 if (holeend & ~(long long)ULONG_MAX)
2370 hlen = ULONG_MAX - hba + 1;
2373 details.check_mapping = even_cows? NULL: mapping;
2374 details.nonlinear_vma = NULL;
2375 details.first_index = hba;
2376 details.last_index = hba + hlen - 1;
2377 if (details.last_index < details.first_index)
2378 details.last_index = ULONG_MAX;
2381 i_mmap_lock_write(mapping);
2382 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2383 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2384 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2385 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2386 i_mmap_unlock_write(mapping);
2388 EXPORT_SYMBOL(unmap_mapping_range);
2391 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2392 * but allow concurrent faults), and pte mapped but not yet locked.
2393 * We return with pte unmapped and unlocked.
2395 * We return with the mmap_sem locked or unlocked in the same cases
2396 * as does filemap_fault().
2398 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2399 unsigned long address, pte_t *page_table, pmd_t *pmd,
2400 unsigned int flags, pte_t orig_pte)
2402 spinlock_t *ptl;
2403 struct page *page, *swapcache;
2404 struct mem_cgroup *memcg;
2405 swp_entry_t entry;
2406 pte_t pte;
2407 int locked;
2408 int exclusive = 0;
2409 int ret = 0;
2411 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2412 goto out;
2414 entry = pte_to_swp_entry(orig_pte);
2415 if (unlikely(non_swap_entry(entry))) {
2416 if (is_migration_entry(entry)) {
2417 migration_entry_wait(mm, pmd, address);
2418 } else if (is_hwpoison_entry(entry)) {
2419 ret = VM_FAULT_HWPOISON;
2420 } else {
2421 print_bad_pte(vma, address, orig_pte, NULL);
2422 ret = VM_FAULT_SIGBUS;
2424 goto out;
2426 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2427 page = lookup_swap_cache(entry);
2428 if (!page) {
2429 page = swapin_readahead(entry,
2430 GFP_HIGHUSER_MOVABLE, vma, address);
2431 if (!page) {
2433 * Back out if somebody else faulted in this pte
2434 * while we released the pte lock.
2436 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2437 if (likely(pte_same(*page_table, orig_pte)))
2438 ret = VM_FAULT_OOM;
2439 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2440 goto unlock;
2443 /* Had to read the page from swap area: Major fault */
2444 ret = VM_FAULT_MAJOR;
2445 count_vm_event(PGMAJFAULT);
2446 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2447 } else if (PageHWPoison(page)) {
2449 * hwpoisoned dirty swapcache pages are kept for killing
2450 * owner processes (which may be unknown at hwpoison time)
2452 ret = VM_FAULT_HWPOISON;
2453 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2454 swapcache = page;
2455 goto out_release;
2458 swapcache = page;
2459 locked = lock_page_or_retry(page, mm, flags);
2461 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2462 if (!locked) {
2463 ret |= VM_FAULT_RETRY;
2464 goto out_release;
2468 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2469 * release the swapcache from under us. The page pin, and pte_same
2470 * test below, are not enough to exclude that. Even if it is still
2471 * swapcache, we need to check that the page's swap has not changed.
2473 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2474 goto out_page;
2476 page = ksm_might_need_to_copy(page, vma, address);
2477 if (unlikely(!page)) {
2478 ret = VM_FAULT_OOM;
2479 page = swapcache;
2480 goto out_page;
2483 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2484 ret = VM_FAULT_OOM;
2485 goto out_page;
2489 * Back out if somebody else already faulted in this pte.
2491 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2492 if (unlikely(!pte_same(*page_table, orig_pte)))
2493 goto out_nomap;
2495 if (unlikely(!PageUptodate(page))) {
2496 ret = VM_FAULT_SIGBUS;
2497 goto out_nomap;
2501 * The page isn't present yet, go ahead with the fault.
2503 * Be careful about the sequence of operations here.
2504 * To get its accounting right, reuse_swap_page() must be called
2505 * while the page is counted on swap but not yet in mapcount i.e.
2506 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2507 * must be called after the swap_free(), or it will never succeed.
2510 inc_mm_counter_fast(mm, MM_ANONPAGES);
2511 dec_mm_counter_fast(mm, MM_SWAPENTS);
2512 pte = mk_pte(page, vma->vm_page_prot);
2513 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2514 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2515 flags &= ~FAULT_FLAG_WRITE;
2516 ret |= VM_FAULT_WRITE;
2517 exclusive = 1;
2519 flush_icache_page(vma, page);
2520 if (pte_swp_soft_dirty(orig_pte))
2521 pte = pte_mksoft_dirty(pte);
2522 set_pte_at(mm, address, page_table, pte);
2523 if (page == swapcache) {
2524 do_page_add_anon_rmap(page, vma, address, exclusive);
2525 mem_cgroup_commit_charge(page, memcg, true);
2526 } else { /* ksm created a completely new copy */
2527 page_add_new_anon_rmap(page, vma, address);
2528 mem_cgroup_commit_charge(page, memcg, false);
2529 lru_cache_add_active_or_unevictable(page, vma);
2532 swap_free(entry);
2533 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2534 try_to_free_swap(page);
2535 unlock_page(page);
2536 if (page != swapcache) {
2538 * Hold the lock to avoid the swap entry to be reused
2539 * until we take the PT lock for the pte_same() check
2540 * (to avoid false positives from pte_same). For
2541 * further safety release the lock after the swap_free
2542 * so that the swap count won't change under a
2543 * parallel locked swapcache.
2545 unlock_page(swapcache);
2546 page_cache_release(swapcache);
2549 if (flags & FAULT_FLAG_WRITE) {
2550 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2551 if (ret & VM_FAULT_ERROR)
2552 ret &= VM_FAULT_ERROR;
2553 goto out;
2556 /* No need to invalidate - it was non-present before */
2557 update_mmu_cache(vma, address, page_table);
2558 unlock:
2559 pte_unmap_unlock(page_table, ptl);
2560 out:
2561 return ret;
2562 out_nomap:
2563 mem_cgroup_cancel_charge(page, memcg);
2564 pte_unmap_unlock(page_table, ptl);
2565 out_page:
2566 unlock_page(page);
2567 out_release:
2568 page_cache_release(page);
2569 if (page != swapcache) {
2570 unlock_page(swapcache);
2571 page_cache_release(swapcache);
2573 return ret;
2577 * This is like a special single-page "expand_{down|up}wards()",
2578 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2579 * doesn't hit another vma.
2581 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2583 address &= PAGE_MASK;
2584 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2585 struct vm_area_struct *prev = vma->vm_prev;
2588 * Is there a mapping abutting this one below?
2590 * That's only ok if it's the same stack mapping
2591 * that has gotten split..
2593 if (prev && prev->vm_end == address)
2594 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2596 expand_downwards(vma, address - PAGE_SIZE);
2598 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2599 struct vm_area_struct *next = vma->vm_next;
2601 /* As VM_GROWSDOWN but s/below/above/ */
2602 if (next && next->vm_start == address + PAGE_SIZE)
2603 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2605 expand_upwards(vma, address + PAGE_SIZE);
2607 return 0;
2611 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2612 * but allow concurrent faults), and pte mapped but not yet locked.
2613 * We return with mmap_sem still held, but pte unmapped and unlocked.
2615 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2616 unsigned long address, pte_t *page_table, pmd_t *pmd,
2617 unsigned int flags)
2619 struct mem_cgroup *memcg;
2620 struct page *page;
2621 spinlock_t *ptl;
2622 pte_t entry;
2624 pte_unmap(page_table);
2626 /* Check if we need to add a guard page to the stack */
2627 if (check_stack_guard_page(vma, address) < 0)
2628 return VM_FAULT_SIGBUS;
2630 /* Use the zero-page for reads */
2631 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2632 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2633 vma->vm_page_prot));
2634 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2635 if (!pte_none(*page_table))
2636 goto unlock;
2637 goto setpte;
2640 /* Allocate our own private page. */
2641 if (unlikely(anon_vma_prepare(vma)))
2642 goto oom;
2643 page = alloc_zeroed_user_highpage_movable(vma, address);
2644 if (!page)
2645 goto oom;
2647 * The memory barrier inside __SetPageUptodate makes sure that
2648 * preceeding stores to the page contents become visible before
2649 * the set_pte_at() write.
2651 __SetPageUptodate(page);
2653 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2654 goto oom_free_page;
2656 entry = mk_pte(page, vma->vm_page_prot);
2657 if (vma->vm_flags & VM_WRITE)
2658 entry = pte_mkwrite(pte_mkdirty(entry));
2660 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2661 if (!pte_none(*page_table))
2662 goto release;
2664 inc_mm_counter_fast(mm, MM_ANONPAGES);
2665 page_add_new_anon_rmap(page, vma, address);
2666 mem_cgroup_commit_charge(page, memcg, false);
2667 lru_cache_add_active_or_unevictable(page, vma);
2668 setpte:
2669 set_pte_at(mm, address, page_table, entry);
2671 /* No need to invalidate - it was non-present before */
2672 update_mmu_cache(vma, address, page_table);
2673 unlock:
2674 pte_unmap_unlock(page_table, ptl);
2675 return 0;
2676 release:
2677 mem_cgroup_cancel_charge(page, memcg);
2678 page_cache_release(page);
2679 goto unlock;
2680 oom_free_page:
2681 page_cache_release(page);
2682 oom:
2683 return VM_FAULT_OOM;
2687 * The mmap_sem must have been held on entry, and may have been
2688 * released depending on flags and vma->vm_ops->fault() return value.
2689 * See filemap_fault() and __lock_page_retry().
2691 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2692 pgoff_t pgoff, unsigned int flags, struct page **page)
2694 struct vm_fault vmf;
2695 int ret;
2697 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2698 vmf.pgoff = pgoff;
2699 vmf.flags = flags;
2700 vmf.page = NULL;
2702 ret = vma->vm_ops->fault(vma, &vmf);
2703 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2704 return ret;
2706 if (unlikely(PageHWPoison(vmf.page))) {
2707 if (ret & VM_FAULT_LOCKED)
2708 unlock_page(vmf.page);
2709 page_cache_release(vmf.page);
2710 return VM_FAULT_HWPOISON;
2713 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2714 lock_page(vmf.page);
2715 else
2716 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2718 *page = vmf.page;
2719 return ret;
2723 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2725 * @vma: virtual memory area
2726 * @address: user virtual address
2727 * @page: page to map
2728 * @pte: pointer to target page table entry
2729 * @write: true, if new entry is writable
2730 * @anon: true, if it's anonymous page
2732 * Caller must hold page table lock relevant for @pte.
2734 * Target users are page handler itself and implementations of
2735 * vm_ops->map_pages.
2737 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2738 struct page *page, pte_t *pte, bool write, bool anon)
2740 pte_t entry;
2742 flush_icache_page(vma, page);
2743 entry = mk_pte(page, vma->vm_page_prot);
2744 if (write)
2745 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2746 else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
2747 entry = pte_mksoft_dirty(entry);
2748 if (anon) {
2749 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2750 page_add_new_anon_rmap(page, vma, address);
2751 } else {
2752 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2753 page_add_file_rmap(page);
2755 set_pte_at(vma->vm_mm, address, pte, entry);
2757 /* no need to invalidate: a not-present page won't be cached */
2758 update_mmu_cache(vma, address, pte);
2761 static unsigned long fault_around_bytes __read_mostly =
2762 rounddown_pow_of_two(65536);
2764 #ifdef CONFIG_DEBUG_FS
2765 static int fault_around_bytes_get(void *data, u64 *val)
2767 *val = fault_around_bytes;
2768 return 0;
2772 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2773 * rounded down to nearest page order. It's what do_fault_around() expects to
2774 * see.
2776 static int fault_around_bytes_set(void *data, u64 val)
2778 if (val / PAGE_SIZE > PTRS_PER_PTE)
2779 return -EINVAL;
2780 if (val > PAGE_SIZE)
2781 fault_around_bytes = rounddown_pow_of_two(val);
2782 else
2783 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2784 return 0;
2786 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2787 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2789 static int __init fault_around_debugfs(void)
2791 void *ret;
2793 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2794 &fault_around_bytes_fops);
2795 if (!ret)
2796 pr_warn("Failed to create fault_around_bytes in debugfs");
2797 return 0;
2799 late_initcall(fault_around_debugfs);
2800 #endif
2803 * do_fault_around() tries to map few pages around the fault address. The hope
2804 * is that the pages will be needed soon and this will lower the number of
2805 * faults to handle.
2807 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2808 * not ready to be mapped: not up-to-date, locked, etc.
2810 * This function is called with the page table lock taken. In the split ptlock
2811 * case the page table lock only protects only those entries which belong to
2812 * the page table corresponding to the fault address.
2814 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2815 * only once.
2817 * fault_around_pages() defines how many pages we'll try to map.
2818 * do_fault_around() expects it to return a power of two less than or equal to
2819 * PTRS_PER_PTE.
2821 * The virtual address of the area that we map is naturally aligned to the
2822 * fault_around_pages() value (and therefore to page order). This way it's
2823 * easier to guarantee that we don't cross page table boundaries.
2825 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2826 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2828 unsigned long start_addr, nr_pages, mask;
2829 pgoff_t max_pgoff;
2830 struct vm_fault vmf;
2831 int off;
2833 nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2834 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2836 start_addr = max(address & mask, vma->vm_start);
2837 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2838 pte -= off;
2839 pgoff -= off;
2842 * max_pgoff is either end of page table or end of vma
2843 * or fault_around_pages() from pgoff, depending what is nearest.
2845 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2846 PTRS_PER_PTE - 1;
2847 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2848 pgoff + nr_pages - 1);
2850 /* Check if it makes any sense to call ->map_pages */
2851 while (!pte_none(*pte)) {
2852 if (++pgoff > max_pgoff)
2853 return;
2854 start_addr += PAGE_SIZE;
2855 if (start_addr >= vma->vm_end)
2856 return;
2857 pte++;
2860 vmf.virtual_address = (void __user *) start_addr;
2861 vmf.pte = pte;
2862 vmf.pgoff = pgoff;
2863 vmf.max_pgoff = max_pgoff;
2864 vmf.flags = flags;
2865 vma->vm_ops->map_pages(vma, &vmf);
2868 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2869 unsigned long address, pmd_t *pmd,
2870 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2872 struct page *fault_page;
2873 spinlock_t *ptl;
2874 pte_t *pte;
2875 int ret = 0;
2878 * Let's call ->map_pages() first and use ->fault() as fallback
2879 * if page by the offset is not ready to be mapped (cold cache or
2880 * something).
2882 if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) &&
2883 fault_around_bytes >> PAGE_SHIFT > 1) {
2884 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2885 do_fault_around(vma, address, pte, pgoff, flags);
2886 if (!pte_same(*pte, orig_pte))
2887 goto unlock_out;
2888 pte_unmap_unlock(pte, ptl);
2891 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2892 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2893 return ret;
2895 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2896 if (unlikely(!pte_same(*pte, orig_pte))) {
2897 pte_unmap_unlock(pte, ptl);
2898 unlock_page(fault_page);
2899 page_cache_release(fault_page);
2900 return ret;
2902 do_set_pte(vma, address, fault_page, pte, false, false);
2903 unlock_page(fault_page);
2904 unlock_out:
2905 pte_unmap_unlock(pte, ptl);
2906 return ret;
2909 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2910 unsigned long address, pmd_t *pmd,
2911 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2913 struct page *fault_page, *new_page;
2914 struct mem_cgroup *memcg;
2915 spinlock_t *ptl;
2916 pte_t *pte;
2917 int ret;
2919 if (unlikely(anon_vma_prepare(vma)))
2920 return VM_FAULT_OOM;
2922 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2923 if (!new_page)
2924 return VM_FAULT_OOM;
2926 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2927 page_cache_release(new_page);
2928 return VM_FAULT_OOM;
2931 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2932 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2933 goto uncharge_out;
2935 copy_user_highpage(new_page, fault_page, address, vma);
2936 __SetPageUptodate(new_page);
2938 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2939 if (unlikely(!pte_same(*pte, orig_pte))) {
2940 pte_unmap_unlock(pte, ptl);
2941 unlock_page(fault_page);
2942 page_cache_release(fault_page);
2943 goto uncharge_out;
2945 do_set_pte(vma, address, new_page, pte, true, true);
2946 mem_cgroup_commit_charge(new_page, memcg, false);
2947 lru_cache_add_active_or_unevictable(new_page, vma);
2948 pte_unmap_unlock(pte, ptl);
2949 unlock_page(fault_page);
2950 page_cache_release(fault_page);
2951 return ret;
2952 uncharge_out:
2953 mem_cgroup_cancel_charge(new_page, memcg);
2954 page_cache_release(new_page);
2955 return ret;
2958 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2959 unsigned long address, pmd_t *pmd,
2960 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2962 struct page *fault_page;
2963 struct address_space *mapping;
2964 spinlock_t *ptl;
2965 pte_t *pte;
2966 int dirtied = 0;
2967 int ret, tmp;
2969 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2970 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2971 return ret;
2974 * Check if the backing address space wants to know that the page is
2975 * about to become writable
2977 if (vma->vm_ops->page_mkwrite) {
2978 unlock_page(fault_page);
2979 tmp = do_page_mkwrite(vma, fault_page, address);
2980 if (unlikely(!tmp ||
2981 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2982 page_cache_release(fault_page);
2983 return tmp;
2987 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2988 if (unlikely(!pte_same(*pte, orig_pte))) {
2989 pte_unmap_unlock(pte, ptl);
2990 unlock_page(fault_page);
2991 page_cache_release(fault_page);
2992 return ret;
2994 do_set_pte(vma, address, fault_page, pte, true, false);
2995 pte_unmap_unlock(pte, ptl);
2997 if (set_page_dirty(fault_page))
2998 dirtied = 1;
3000 * Take a local copy of the address_space - page.mapping may be zeroed
3001 * by truncate after unlock_page(). The address_space itself remains
3002 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3003 * release semantics to prevent the compiler from undoing this copying.
3005 mapping = fault_page->mapping;
3006 unlock_page(fault_page);
3007 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3009 * Some device drivers do not set page.mapping but still
3010 * dirty their pages
3012 balance_dirty_pages_ratelimited(mapping);
3015 /* file_update_time outside page_lock */
3016 if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3017 file_update_time(vma->vm_file);
3019 return ret;
3023 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3024 * but allow concurrent faults).
3025 * The mmap_sem may have been released depending on flags and our
3026 * return value. See filemap_fault() and __lock_page_or_retry().
3028 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3029 unsigned long address, pte_t *page_table, pmd_t *pmd,
3030 unsigned int flags, pte_t orig_pte)
3032 pgoff_t pgoff = (((address & PAGE_MASK)
3033 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3035 pte_unmap(page_table);
3036 if (!(flags & FAULT_FLAG_WRITE))
3037 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3038 orig_pte);
3039 if (!(vma->vm_flags & VM_SHARED))
3040 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3041 orig_pte);
3042 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3046 * Fault of a previously existing named mapping. Repopulate the pte
3047 * from the encoded file_pte if possible. This enables swappable
3048 * nonlinear vmas.
3050 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3051 * but allow concurrent faults), and pte mapped but not yet locked.
3052 * We return with pte unmapped and unlocked.
3053 * The mmap_sem may have been released depending on flags and our
3054 * return value. See filemap_fault() and __lock_page_or_retry().
3056 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3057 unsigned long address, pte_t *page_table, pmd_t *pmd,
3058 unsigned int flags, pte_t orig_pte)
3060 pgoff_t pgoff;
3062 flags |= FAULT_FLAG_NONLINEAR;
3064 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3065 return 0;
3067 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3069 * Page table corrupted: show pte and kill process.
3071 print_bad_pte(vma, address, orig_pte, NULL);
3072 return VM_FAULT_SIGBUS;
3075 pgoff = pte_to_pgoff(orig_pte);
3076 if (!(flags & FAULT_FLAG_WRITE))
3077 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3078 orig_pte);
3079 if (!(vma->vm_flags & VM_SHARED))
3080 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3081 orig_pte);
3082 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3085 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3086 unsigned long addr, int page_nid,
3087 int *flags)
3089 get_page(page);
3091 count_vm_numa_event(NUMA_HINT_FAULTS);
3092 if (page_nid == numa_node_id()) {
3093 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3094 *flags |= TNF_FAULT_LOCAL;
3097 return mpol_misplaced(page, vma, addr);
3100 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3101 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3103 struct page *page = NULL;
3104 spinlock_t *ptl;
3105 int page_nid = -1;
3106 int last_cpupid;
3107 int target_nid;
3108 bool migrated = false;
3109 int flags = 0;
3112 * The "pte" at this point cannot be used safely without
3113 * validation through pte_unmap_same(). It's of NUMA type but
3114 * the pfn may be screwed if the read is non atomic.
3116 * ptep_modify_prot_start is not called as this is clearing
3117 * the _PAGE_NUMA bit and it is not really expected that there
3118 * would be concurrent hardware modifications to the PTE.
3120 ptl = pte_lockptr(mm, pmd);
3121 spin_lock(ptl);
3122 if (unlikely(!pte_same(*ptep, pte))) {
3123 pte_unmap_unlock(ptep, ptl);
3124 goto out;
3127 pte = pte_mknonnuma(pte);
3128 set_pte_at(mm, addr, ptep, pte);
3129 update_mmu_cache(vma, addr, ptep);
3131 page = vm_normal_page(vma, addr, pte);
3132 if (!page) {
3133 pte_unmap_unlock(ptep, ptl);
3134 return 0;
3136 BUG_ON(is_zero_pfn(page_to_pfn(page)));
3139 * Avoid grouping on DSO/COW pages in specific and RO pages
3140 * in general, RO pages shouldn't hurt as much anyway since
3141 * they can be in shared cache state.
3143 if (!pte_write(pte))
3144 flags |= TNF_NO_GROUP;
3147 * Flag if the page is shared between multiple address spaces. This
3148 * is later used when determining whether to group tasks together
3150 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3151 flags |= TNF_SHARED;
3153 last_cpupid = page_cpupid_last(page);
3154 page_nid = page_to_nid(page);
3155 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3156 pte_unmap_unlock(ptep, ptl);
3157 if (target_nid == -1) {
3158 put_page(page);
3159 goto out;
3162 /* Migrate to the requested node */
3163 migrated = migrate_misplaced_page(page, vma, target_nid);
3164 if (migrated) {
3165 page_nid = target_nid;
3166 flags |= TNF_MIGRATED;
3169 out:
3170 if (page_nid != -1)
3171 task_numa_fault(last_cpupid, page_nid, 1, flags);
3172 return 0;
3176 * These routines also need to handle stuff like marking pages dirty
3177 * and/or accessed for architectures that don't do it in hardware (most
3178 * RISC architectures). The early dirtying is also good on the i386.
3180 * There is also a hook called "update_mmu_cache()" that architectures
3181 * with external mmu caches can use to update those (ie the Sparc or
3182 * PowerPC hashed page tables that act as extended TLBs).
3184 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3185 * but allow concurrent faults), and pte mapped but not yet locked.
3186 * We return with pte unmapped and unlocked.
3188 * The mmap_sem may have been released depending on flags and our
3189 * return value. See filemap_fault() and __lock_page_or_retry().
3191 static int handle_pte_fault(struct mm_struct *mm,
3192 struct vm_area_struct *vma, unsigned long address,
3193 pte_t *pte, pmd_t *pmd, unsigned int flags)
3195 pte_t entry;
3196 spinlock_t *ptl;
3199 * some architectures can have larger ptes than wordsize,
3200 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3201 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3202 * The code below just needs a consistent view for the ifs and
3203 * we later double check anyway with the ptl lock held. So here
3204 * a barrier will do.
3206 entry = *pte;
3207 barrier();
3208 if (!pte_present(entry)) {
3209 if (pte_none(entry)) {
3210 if (vma->vm_ops) {
3211 if (likely(vma->vm_ops->fault))
3212 return do_linear_fault(mm, vma, address,
3213 pte, pmd, flags, entry);
3215 return do_anonymous_page(mm, vma, address,
3216 pte, pmd, flags);
3218 if (pte_file(entry))
3219 return do_nonlinear_fault(mm, vma, address,
3220 pte, pmd, flags, entry);
3221 return do_swap_page(mm, vma, address,
3222 pte, pmd, flags, entry);
3225 if (pte_numa(entry))
3226 return do_numa_page(mm, vma, address, entry, pte, pmd);
3228 ptl = pte_lockptr(mm, pmd);
3229 spin_lock(ptl);
3230 if (unlikely(!pte_same(*pte, entry)))
3231 goto unlock;
3232 if (flags & FAULT_FLAG_WRITE) {
3233 if (!pte_write(entry))
3234 return do_wp_page(mm, vma, address,
3235 pte, pmd, ptl, entry);
3236 entry = pte_mkdirty(entry);
3238 entry = pte_mkyoung(entry);
3239 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3240 update_mmu_cache(vma, address, pte);
3241 } else {
3243 * This is needed only for protection faults but the arch code
3244 * is not yet telling us if this is a protection fault or not.
3245 * This still avoids useless tlb flushes for .text page faults
3246 * with threads.
3248 if (flags & FAULT_FLAG_WRITE)
3249 flush_tlb_fix_spurious_fault(vma, address);
3251 unlock:
3252 pte_unmap_unlock(pte, ptl);
3253 return 0;
3257 * By the time we get here, we already hold the mm semaphore
3259 * The mmap_sem may have been released depending on flags and our
3260 * return value. See filemap_fault() and __lock_page_or_retry().
3262 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3263 unsigned long address, unsigned int flags)
3265 pgd_t *pgd;
3266 pud_t *pud;
3267 pmd_t *pmd;
3268 pte_t *pte;
3270 if (unlikely(is_vm_hugetlb_page(vma)))
3271 return hugetlb_fault(mm, vma, address, flags);
3273 pgd = pgd_offset(mm, address);
3274 pud = pud_alloc(mm, pgd, address);
3275 if (!pud)
3276 return VM_FAULT_OOM;
3277 pmd = pmd_alloc(mm, pud, address);
3278 if (!pmd)
3279 return VM_FAULT_OOM;
3280 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3281 int ret = VM_FAULT_FALLBACK;
3282 if (!vma->vm_ops)
3283 ret = do_huge_pmd_anonymous_page(mm, vma, address,
3284 pmd, flags);
3285 if (!(ret & VM_FAULT_FALLBACK))
3286 return ret;
3287 } else {
3288 pmd_t orig_pmd = *pmd;
3289 int ret;
3291 barrier();
3292 if (pmd_trans_huge(orig_pmd)) {
3293 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3296 * If the pmd is splitting, return and retry the
3297 * the fault. Alternative: wait until the split
3298 * is done, and goto retry.
3300 if (pmd_trans_splitting(orig_pmd))
3301 return 0;
3303 if (pmd_numa(orig_pmd))
3304 return do_huge_pmd_numa_page(mm, vma, address,
3305 orig_pmd, pmd);
3307 if (dirty && !pmd_write(orig_pmd)) {
3308 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3309 orig_pmd);
3310 if (!(ret & VM_FAULT_FALLBACK))
3311 return ret;
3312 } else {
3313 huge_pmd_set_accessed(mm, vma, address, pmd,
3314 orig_pmd, dirty);
3315 return 0;
3321 * Use __pte_alloc instead of pte_alloc_map, because we can't
3322 * run pte_offset_map on the pmd, if an huge pmd could
3323 * materialize from under us from a different thread.
3325 if (unlikely(pmd_none(*pmd)) &&
3326 unlikely(__pte_alloc(mm, vma, pmd, address)))
3327 return VM_FAULT_OOM;
3328 /* if an huge pmd materialized from under us just retry later */
3329 if (unlikely(pmd_trans_huge(*pmd)))
3330 return 0;
3332 * A regular pmd is established and it can't morph into a huge pmd
3333 * from under us anymore at this point because we hold the mmap_sem
3334 * read mode and khugepaged takes it in write mode. So now it's
3335 * safe to run pte_offset_map().
3337 pte = pte_offset_map(pmd, address);
3339 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3343 * By the time we get here, we already hold the mm semaphore
3345 * The mmap_sem may have been released depending on flags and our
3346 * return value. See filemap_fault() and __lock_page_or_retry().
3348 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3349 unsigned long address, unsigned int flags)
3351 int ret;
3353 __set_current_state(TASK_RUNNING);
3355 count_vm_event(PGFAULT);
3356 mem_cgroup_count_vm_event(mm, PGFAULT);
3358 /* do counter updates before entering really critical section. */
3359 check_sync_rss_stat(current);
3362 * Enable the memcg OOM handling for faults triggered in user
3363 * space. Kernel faults are handled more gracefully.
3365 if (flags & FAULT_FLAG_USER)
3366 mem_cgroup_oom_enable();
3368 ret = __handle_mm_fault(mm, vma, address, flags);
3370 if (flags & FAULT_FLAG_USER) {
3371 mem_cgroup_oom_disable();
3373 * The task may have entered a memcg OOM situation but
3374 * if the allocation error was handled gracefully (no
3375 * VM_FAULT_OOM), there is no need to kill anything.
3376 * Just clean up the OOM state peacefully.
3378 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3379 mem_cgroup_oom_synchronize(false);
3382 return ret;
3384 EXPORT_SYMBOL_GPL(handle_mm_fault);
3386 #ifndef __PAGETABLE_PUD_FOLDED
3388 * Allocate page upper directory.
3389 * We've already handled the fast-path in-line.
3391 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3393 pud_t *new = pud_alloc_one(mm, address);
3394 if (!new)
3395 return -ENOMEM;
3397 smp_wmb(); /* See comment in __pte_alloc */
3399 spin_lock(&mm->page_table_lock);
3400 if (pgd_present(*pgd)) /* Another has populated it */
3401 pud_free(mm, new);
3402 else
3403 pgd_populate(mm, pgd, new);
3404 spin_unlock(&mm->page_table_lock);
3405 return 0;
3407 #endif /* __PAGETABLE_PUD_FOLDED */
3409 #ifndef __PAGETABLE_PMD_FOLDED
3411 * Allocate page middle directory.
3412 * We've already handled the fast-path in-line.
3414 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3416 pmd_t *new = pmd_alloc_one(mm, address);
3417 if (!new)
3418 return -ENOMEM;
3420 smp_wmb(); /* See comment in __pte_alloc */
3422 spin_lock(&mm->page_table_lock);
3423 #ifndef __ARCH_HAS_4LEVEL_HACK
3424 if (pud_present(*pud)) /* Another has populated it */
3425 pmd_free(mm, new);
3426 else
3427 pud_populate(mm, pud, new);
3428 #else
3429 if (pgd_present(*pud)) /* Another has populated it */
3430 pmd_free(mm, new);
3431 else
3432 pgd_populate(mm, pud, new);
3433 #endif /* __ARCH_HAS_4LEVEL_HACK */
3434 spin_unlock(&mm->page_table_lock);
3435 return 0;
3437 #endif /* __PAGETABLE_PMD_FOLDED */
3439 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3440 pte_t **ptepp, spinlock_t **ptlp)
3442 pgd_t *pgd;
3443 pud_t *pud;
3444 pmd_t *pmd;
3445 pte_t *ptep;
3447 pgd = pgd_offset(mm, address);
3448 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3449 goto out;
3451 pud = pud_offset(pgd, address);
3452 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3453 goto out;
3455 pmd = pmd_offset(pud, address);
3456 VM_BUG_ON(pmd_trans_huge(*pmd));
3457 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3458 goto out;
3460 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3461 if (pmd_huge(*pmd))
3462 goto out;
3464 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3465 if (!ptep)
3466 goto out;
3467 if (!pte_present(*ptep))
3468 goto unlock;
3469 *ptepp = ptep;
3470 return 0;
3471 unlock:
3472 pte_unmap_unlock(ptep, *ptlp);
3473 out:
3474 return -EINVAL;
3477 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3478 pte_t **ptepp, spinlock_t **ptlp)
3480 int res;
3482 /* (void) is needed to make gcc happy */
3483 (void) __cond_lock(*ptlp,
3484 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3485 return res;
3489 * follow_pfn - look up PFN at a user virtual address
3490 * @vma: memory mapping
3491 * @address: user virtual address
3492 * @pfn: location to store found PFN
3494 * Only IO mappings and raw PFN mappings are allowed.
3496 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3498 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3499 unsigned long *pfn)
3501 int ret = -EINVAL;
3502 spinlock_t *ptl;
3503 pte_t *ptep;
3505 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3506 return ret;
3508 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3509 if (ret)
3510 return ret;
3511 *pfn = pte_pfn(*ptep);
3512 pte_unmap_unlock(ptep, ptl);
3513 return 0;
3515 EXPORT_SYMBOL(follow_pfn);
3517 #ifdef CONFIG_HAVE_IOREMAP_PROT
3518 int follow_phys(struct vm_area_struct *vma,
3519 unsigned long address, unsigned int flags,
3520 unsigned long *prot, resource_size_t *phys)
3522 int ret = -EINVAL;
3523 pte_t *ptep, pte;
3524 spinlock_t *ptl;
3526 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3527 goto out;
3529 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3530 goto out;
3531 pte = *ptep;
3533 if ((flags & FOLL_WRITE) && !pte_write(pte))
3534 goto unlock;
3536 *prot = pgprot_val(pte_pgprot(pte));
3537 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3539 ret = 0;
3540 unlock:
3541 pte_unmap_unlock(ptep, ptl);
3542 out:
3543 return ret;
3546 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3547 void *buf, int len, int write)
3549 resource_size_t phys_addr;
3550 unsigned long prot = 0;
3551 void __iomem *maddr;
3552 int offset = addr & (PAGE_SIZE-1);
3554 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3555 return -EINVAL;
3557 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3558 if (write)
3559 memcpy_toio(maddr + offset, buf, len);
3560 else
3561 memcpy_fromio(buf, maddr + offset, len);
3562 iounmap(maddr);
3564 return len;
3566 EXPORT_SYMBOL_GPL(generic_access_phys);
3567 #endif
3570 * Access another process' address space as given in mm. If non-NULL, use the
3571 * given task for page fault accounting.
3573 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3574 unsigned long addr, void *buf, int len, int write)
3576 struct vm_area_struct *vma;
3577 void *old_buf = buf;
3579 down_read(&mm->mmap_sem);
3580 /* ignore errors, just check how much was successfully transferred */
3581 while (len) {
3582 int bytes, ret, offset;
3583 void *maddr;
3584 struct page *page = NULL;
3586 ret = get_user_pages(tsk, mm, addr, 1,
3587 write, 1, &page, &vma);
3588 if (ret <= 0) {
3589 #ifndef CONFIG_HAVE_IOREMAP_PROT
3590 break;
3591 #else
3593 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3594 * we can access using slightly different code.
3596 vma = find_vma(mm, addr);
3597 if (!vma || vma->vm_start > addr)
3598 break;
3599 if (vma->vm_ops && vma->vm_ops->access)
3600 ret = vma->vm_ops->access(vma, addr, buf,
3601 len, write);
3602 if (ret <= 0)
3603 break;
3604 bytes = ret;
3605 #endif
3606 } else {
3607 bytes = len;
3608 offset = addr & (PAGE_SIZE-1);
3609 if (bytes > PAGE_SIZE-offset)
3610 bytes = PAGE_SIZE-offset;
3612 maddr = kmap(page);
3613 if (write) {
3614 copy_to_user_page(vma, page, addr,
3615 maddr + offset, buf, bytes);
3616 set_page_dirty_lock(page);
3617 } else {
3618 copy_from_user_page(vma, page, addr,
3619 buf, maddr + offset, bytes);
3621 kunmap(page);
3622 page_cache_release(page);
3624 len -= bytes;
3625 buf += bytes;
3626 addr += bytes;
3628 up_read(&mm->mmap_sem);
3630 return buf - old_buf;
3634 * access_remote_vm - access another process' address space
3635 * @mm: the mm_struct of the target address space
3636 * @addr: start address to access
3637 * @buf: source or destination buffer
3638 * @len: number of bytes to transfer
3639 * @write: whether the access is a write
3641 * The caller must hold a reference on @mm.
3643 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3644 void *buf, int len, int write)
3646 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3650 * Access another process' address space.
3651 * Source/target buffer must be kernel space,
3652 * Do not walk the page table directly, use get_user_pages
3654 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3655 void *buf, int len, int write)
3657 struct mm_struct *mm;
3658 int ret;
3660 mm = get_task_mm(tsk);
3661 if (!mm)
3662 return 0;
3664 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3665 mmput(mm);
3667 return ret;
3671 * Print the name of a VMA.
3673 void print_vma_addr(char *prefix, unsigned long ip)
3675 struct mm_struct *mm = current->mm;
3676 struct vm_area_struct *vma;
3679 * Do not print if we are in atomic
3680 * contexts (in exception stacks, etc.):
3682 if (preempt_count())
3683 return;
3685 down_read(&mm->mmap_sem);
3686 vma = find_vma(mm, ip);
3687 if (vma && vma->vm_file) {
3688 struct file *f = vma->vm_file;
3689 char *buf = (char *)__get_free_page(GFP_KERNEL);
3690 if (buf) {
3691 char *p;
3693 p = d_path(&f->f_path, buf, PAGE_SIZE);
3694 if (IS_ERR(p))
3695 p = "?";
3696 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3697 vma->vm_start,
3698 vma->vm_end - vma->vm_start);
3699 free_page((unsigned long)buf);
3702 up_read(&mm->mmap_sem);
3705 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3706 void might_fault(void)
3709 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3710 * holding the mmap_sem, this is safe because kernel memory doesn't
3711 * get paged out, therefore we'll never actually fault, and the
3712 * below annotations will generate false positives.
3714 if (segment_eq(get_fs(), KERNEL_DS))
3715 return;
3718 * it would be nicer only to annotate paths which are not under
3719 * pagefault_disable, however that requires a larger audit and
3720 * providing helpers like get_user_atomic.
3722 if (in_atomic())
3723 return;
3725 __might_sleep(__FILE__, __LINE__, 0);
3727 if (current->mm)
3728 might_lock_read(&current->mm->mmap_sem);
3730 EXPORT_SYMBOL(might_fault);
3731 #endif
3733 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3734 static void clear_gigantic_page(struct page *page,
3735 unsigned long addr,
3736 unsigned int pages_per_huge_page)
3738 int i;
3739 struct page *p = page;
3741 might_sleep();
3742 for (i = 0; i < pages_per_huge_page;
3743 i++, p = mem_map_next(p, page, i)) {
3744 cond_resched();
3745 clear_user_highpage(p, addr + i * PAGE_SIZE);
3748 void clear_huge_page(struct page *page,
3749 unsigned long addr, unsigned int pages_per_huge_page)
3751 int i;
3753 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3754 clear_gigantic_page(page, addr, pages_per_huge_page);
3755 return;
3758 might_sleep();
3759 for (i = 0; i < pages_per_huge_page; i++) {
3760 cond_resched();
3761 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3765 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3766 unsigned long addr,
3767 struct vm_area_struct *vma,
3768 unsigned int pages_per_huge_page)
3770 int i;
3771 struct page *dst_base = dst;
3772 struct page *src_base = src;
3774 for (i = 0; i < pages_per_huge_page; ) {
3775 cond_resched();
3776 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3778 i++;
3779 dst = mem_map_next(dst, dst_base, i);
3780 src = mem_map_next(src, src_base, i);
3784 void copy_user_huge_page(struct page *dst, struct page *src,
3785 unsigned long addr, struct vm_area_struct *vma,
3786 unsigned int pages_per_huge_page)
3788 int i;
3790 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3791 copy_user_gigantic_page(dst, src, addr, vma,
3792 pages_per_huge_page);
3793 return;
3796 might_sleep();
3797 for (i = 0; i < pages_per_huge_page; i++) {
3798 cond_resched();
3799 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3802 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3804 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3806 static struct kmem_cache *page_ptl_cachep;
3808 void __init ptlock_cache_init(void)
3810 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3811 SLAB_PANIC, NULL);
3814 bool ptlock_alloc(struct page *page)
3816 spinlock_t *ptl;
3818 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3819 if (!ptl)
3820 return false;
3821 page->ptl = ptl;
3822 return true;
3825 void ptlock_free(struct page *page)
3827 kmem_cache_free(page_ptl_cachep, page->ptl);
3829 #endif