platform/x86: intel-vbtn: Report switch events when event wakes device
[linux/fpc-iii.git] / block / blk-merge.c
blob2e042190a4f1c23a9960e833967caa0886097854
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to segment and merge handling
4 */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
11 #include <trace/events/block.h>
13 #include "blk.h"
15 static struct bio *blk_bio_discard_split(struct request_queue *q,
16 struct bio *bio,
17 struct bio_set *bs,
18 unsigned *nsegs)
20 unsigned int max_discard_sectors, granularity;
21 int alignment;
22 sector_t tmp;
23 unsigned split_sectors;
25 *nsegs = 1;
27 /* Zero-sector (unknown) and one-sector granularities are the same. */
28 granularity = max(q->limits.discard_granularity >> 9, 1U);
30 max_discard_sectors = min(q->limits.max_discard_sectors,
31 bio_allowed_max_sectors(q));
32 max_discard_sectors -= max_discard_sectors % granularity;
34 if (unlikely(!max_discard_sectors)) {
35 /* XXX: warn */
36 return NULL;
39 if (bio_sectors(bio) <= max_discard_sectors)
40 return NULL;
42 split_sectors = max_discard_sectors;
45 * If the next starting sector would be misaligned, stop the discard at
46 * the previous aligned sector.
48 alignment = (q->limits.discard_alignment >> 9) % granularity;
50 tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
51 tmp = sector_div(tmp, granularity);
53 if (split_sectors > tmp)
54 split_sectors -= tmp;
56 return bio_split(bio, split_sectors, GFP_NOIO, bs);
59 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
60 struct bio *bio, struct bio_set *bs, unsigned *nsegs)
62 *nsegs = 1;
64 if (!q->limits.max_write_zeroes_sectors)
65 return NULL;
67 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
68 return NULL;
70 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
73 static struct bio *blk_bio_write_same_split(struct request_queue *q,
74 struct bio *bio,
75 struct bio_set *bs,
76 unsigned *nsegs)
78 *nsegs = 1;
80 if (!q->limits.max_write_same_sectors)
81 return NULL;
83 if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
84 return NULL;
86 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
89 static inline unsigned get_max_io_size(struct request_queue *q,
90 struct bio *bio)
92 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
93 unsigned mask = queue_logical_block_size(q) - 1;
95 /* aligned to logical block size */
96 sectors &= ~(mask >> 9);
98 return sectors;
101 static struct bio *blk_bio_segment_split(struct request_queue *q,
102 struct bio *bio,
103 struct bio_set *bs,
104 unsigned *segs)
106 struct bio_vec bv, bvprv, *bvprvp = NULL;
107 struct bvec_iter iter;
108 unsigned seg_size = 0, nsegs = 0, sectors = 0;
109 unsigned front_seg_size = bio->bi_seg_front_size;
110 bool do_split = true;
111 struct bio *new = NULL;
112 const unsigned max_sectors = get_max_io_size(q, bio);
114 bio_for_each_segment(bv, bio, iter) {
116 * If the queue doesn't support SG gaps and adding this
117 * offset would create a gap, disallow it.
119 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
120 goto split;
122 if (sectors + (bv.bv_len >> 9) > max_sectors) {
124 * Consider this a new segment if we're splitting in
125 * the middle of this vector.
127 if (nsegs < queue_max_segments(q) &&
128 sectors < max_sectors) {
129 nsegs++;
130 sectors = max_sectors;
132 goto split;
135 if (bvprvp && blk_queue_cluster(q)) {
136 if (seg_size + bv.bv_len > queue_max_segment_size(q))
137 goto new_segment;
138 if (!BIOVEC_PHYS_MERGEABLE(bvprvp, &bv))
139 goto new_segment;
140 if (!BIOVEC_SEG_BOUNDARY(q, bvprvp, &bv))
141 goto new_segment;
143 seg_size += bv.bv_len;
144 bvprv = bv;
145 bvprvp = &bvprv;
146 sectors += bv.bv_len >> 9;
148 continue;
150 new_segment:
151 if (nsegs == queue_max_segments(q))
152 goto split;
154 if (nsegs == 1 && seg_size > front_seg_size)
155 front_seg_size = seg_size;
157 nsegs++;
158 bvprv = bv;
159 bvprvp = &bvprv;
160 seg_size = bv.bv_len;
161 sectors += bv.bv_len >> 9;
165 do_split = false;
166 split:
167 *segs = nsegs;
169 if (do_split) {
170 new = bio_split(bio, sectors, GFP_NOIO, bs);
171 if (new)
172 bio = new;
175 if (nsegs == 1 && seg_size > front_seg_size)
176 front_seg_size = seg_size;
177 bio->bi_seg_front_size = front_seg_size;
178 if (seg_size > bio->bi_seg_back_size)
179 bio->bi_seg_back_size = seg_size;
181 return do_split ? new : NULL;
184 void blk_queue_split(struct request_queue *q, struct bio **bio)
186 struct bio *split, *res;
187 unsigned nsegs;
189 switch (bio_op(*bio)) {
190 case REQ_OP_DISCARD:
191 case REQ_OP_SECURE_ERASE:
192 split = blk_bio_discard_split(q, *bio, &q->bio_split, &nsegs);
193 break;
194 case REQ_OP_WRITE_ZEROES:
195 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, &nsegs);
196 break;
197 case REQ_OP_WRITE_SAME:
198 split = blk_bio_write_same_split(q, *bio, &q->bio_split, &nsegs);
199 break;
200 default:
201 split = blk_bio_segment_split(q, *bio, &q->bio_split, &nsegs);
202 break;
205 /* physical segments can be figured out during splitting */
206 res = split ? split : *bio;
207 res->bi_phys_segments = nsegs;
208 bio_set_flag(res, BIO_SEG_VALID);
210 if (split) {
211 /* there isn't chance to merge the splitted bio */
212 split->bi_opf |= REQ_NOMERGE;
215 * Since we're recursing into make_request here, ensure
216 * that we mark this bio as already having entered the queue.
217 * If not, and the queue is going away, we can get stuck
218 * forever on waiting for the queue reference to drop. But
219 * that will never happen, as we're already holding a
220 * reference to it.
222 bio_set_flag(*bio, BIO_QUEUE_ENTERED);
224 bio_chain(split, *bio);
225 trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
226 generic_make_request(*bio);
227 *bio = split;
230 EXPORT_SYMBOL(blk_queue_split);
232 static unsigned int __blk_recalc_rq_segments(struct request_queue *q,
233 struct bio *bio,
234 bool no_sg_merge)
236 struct bio_vec bv, bvprv = { NULL };
237 int cluster, prev = 0;
238 unsigned int seg_size, nr_phys_segs;
239 struct bio *fbio, *bbio;
240 struct bvec_iter iter;
242 if (!bio)
243 return 0;
245 switch (bio_op(bio)) {
246 case REQ_OP_DISCARD:
247 case REQ_OP_SECURE_ERASE:
248 case REQ_OP_WRITE_ZEROES:
249 return 0;
250 case REQ_OP_WRITE_SAME:
251 return 1;
254 fbio = bio;
255 cluster = blk_queue_cluster(q);
256 seg_size = 0;
257 nr_phys_segs = 0;
258 for_each_bio(bio) {
259 bio_for_each_segment(bv, bio, iter) {
261 * If SG merging is disabled, each bio vector is
262 * a segment
264 if (no_sg_merge)
265 goto new_segment;
267 if (prev && cluster) {
268 if (seg_size + bv.bv_len
269 > queue_max_segment_size(q))
270 goto new_segment;
271 if (!BIOVEC_PHYS_MERGEABLE(&bvprv, &bv))
272 goto new_segment;
273 if (!BIOVEC_SEG_BOUNDARY(q, &bvprv, &bv))
274 goto new_segment;
276 seg_size += bv.bv_len;
277 bvprv = bv;
278 continue;
280 new_segment:
281 if (nr_phys_segs == 1 && seg_size >
282 fbio->bi_seg_front_size)
283 fbio->bi_seg_front_size = seg_size;
285 nr_phys_segs++;
286 bvprv = bv;
287 prev = 1;
288 seg_size = bv.bv_len;
290 bbio = bio;
293 if (nr_phys_segs == 1 && seg_size > fbio->bi_seg_front_size)
294 fbio->bi_seg_front_size = seg_size;
295 if (seg_size > bbio->bi_seg_back_size)
296 bbio->bi_seg_back_size = seg_size;
298 return nr_phys_segs;
301 void blk_recalc_rq_segments(struct request *rq)
303 bool no_sg_merge = !!test_bit(QUEUE_FLAG_NO_SG_MERGE,
304 &rq->q->queue_flags);
306 rq->nr_phys_segments = __blk_recalc_rq_segments(rq->q, rq->bio,
307 no_sg_merge);
310 void blk_recount_segments(struct request_queue *q, struct bio *bio)
312 unsigned short seg_cnt;
314 /* estimate segment number by bi_vcnt for non-cloned bio */
315 if (bio_flagged(bio, BIO_CLONED))
316 seg_cnt = bio_segments(bio);
317 else
318 seg_cnt = bio->bi_vcnt;
320 if (test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags) &&
321 (seg_cnt < queue_max_segments(q)))
322 bio->bi_phys_segments = seg_cnt;
323 else {
324 struct bio *nxt = bio->bi_next;
326 bio->bi_next = NULL;
327 bio->bi_phys_segments = __blk_recalc_rq_segments(q, bio, false);
328 bio->bi_next = nxt;
331 bio_set_flag(bio, BIO_SEG_VALID);
333 EXPORT_SYMBOL(blk_recount_segments);
335 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
336 struct bio *nxt)
338 struct bio_vec end_bv = { NULL }, nxt_bv;
340 if (!blk_queue_cluster(q))
341 return 0;
343 if (bio->bi_seg_back_size + nxt->bi_seg_front_size >
344 queue_max_segment_size(q))
345 return 0;
347 if (!bio_has_data(bio))
348 return 1;
350 bio_get_last_bvec(bio, &end_bv);
351 bio_get_first_bvec(nxt, &nxt_bv);
353 if (!BIOVEC_PHYS_MERGEABLE(&end_bv, &nxt_bv))
354 return 0;
357 * bio and nxt are contiguous in memory; check if the queue allows
358 * these two to be merged into one
360 if (BIOVEC_SEG_BOUNDARY(q, &end_bv, &nxt_bv))
361 return 1;
363 return 0;
366 static inline void
367 __blk_segment_map_sg(struct request_queue *q, struct bio_vec *bvec,
368 struct scatterlist *sglist, struct bio_vec *bvprv,
369 struct scatterlist **sg, int *nsegs, int *cluster)
372 int nbytes = bvec->bv_len;
374 if (*sg && *cluster) {
375 if ((*sg)->length + nbytes > queue_max_segment_size(q))
376 goto new_segment;
378 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
379 goto new_segment;
380 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
381 goto new_segment;
383 (*sg)->length += nbytes;
384 } else {
385 new_segment:
386 if (!*sg)
387 *sg = sglist;
388 else {
390 * If the driver previously mapped a shorter
391 * list, we could see a termination bit
392 * prematurely unless it fully inits the sg
393 * table on each mapping. We KNOW that there
394 * must be more entries here or the driver
395 * would be buggy, so force clear the
396 * termination bit to avoid doing a full
397 * sg_init_table() in drivers for each command.
399 sg_unmark_end(*sg);
400 *sg = sg_next(*sg);
403 sg_set_page(*sg, bvec->bv_page, nbytes, bvec->bv_offset);
404 (*nsegs)++;
406 *bvprv = *bvec;
409 static inline int __blk_bvec_map_sg(struct request_queue *q, struct bio_vec bv,
410 struct scatterlist *sglist, struct scatterlist **sg)
412 *sg = sglist;
413 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
414 return 1;
417 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
418 struct scatterlist *sglist,
419 struct scatterlist **sg)
421 struct bio_vec bvec, bvprv = { NULL };
422 struct bvec_iter iter;
423 int cluster = blk_queue_cluster(q), nsegs = 0;
425 for_each_bio(bio)
426 bio_for_each_segment(bvec, bio, iter)
427 __blk_segment_map_sg(q, &bvec, sglist, &bvprv, sg,
428 &nsegs, &cluster);
430 return nsegs;
434 * map a request to scatterlist, return number of sg entries setup. Caller
435 * must make sure sg can hold rq->nr_phys_segments entries
437 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
438 struct scatterlist *sglist)
440 struct scatterlist *sg = NULL;
441 int nsegs = 0;
443 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
444 nsegs = __blk_bvec_map_sg(q, rq->special_vec, sglist, &sg);
445 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
446 nsegs = __blk_bvec_map_sg(q, bio_iovec(rq->bio), sglist, &sg);
447 else if (rq->bio)
448 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg);
450 if (unlikely(rq->rq_flags & RQF_COPY_USER) &&
451 (blk_rq_bytes(rq) & q->dma_pad_mask)) {
452 unsigned int pad_len =
453 (q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
455 sg->length += pad_len;
456 rq->extra_len += pad_len;
459 if (q->dma_drain_size && q->dma_drain_needed(rq)) {
460 if (op_is_write(req_op(rq)))
461 memset(q->dma_drain_buffer, 0, q->dma_drain_size);
463 sg_unmark_end(sg);
464 sg = sg_next(sg);
465 sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
466 q->dma_drain_size,
467 ((unsigned long)q->dma_drain_buffer) &
468 (PAGE_SIZE - 1));
469 nsegs++;
470 rq->extra_len += q->dma_drain_size;
473 if (sg)
474 sg_mark_end(sg);
477 * Something must have been wrong if the figured number of
478 * segment is bigger than number of req's physical segments
480 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
482 return nsegs;
484 EXPORT_SYMBOL(blk_rq_map_sg);
486 static inline int ll_new_hw_segment(struct request_queue *q,
487 struct request *req,
488 struct bio *bio)
490 int nr_phys_segs = bio_phys_segments(q, bio);
492 if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(q))
493 goto no_merge;
495 if (blk_integrity_merge_bio(q, req, bio) == false)
496 goto no_merge;
499 * This will form the start of a new hw segment. Bump both
500 * counters.
502 req->nr_phys_segments += nr_phys_segs;
503 return 1;
505 no_merge:
506 req_set_nomerge(q, req);
507 return 0;
510 int ll_back_merge_fn(struct request_queue *q, struct request *req,
511 struct bio *bio)
513 if (req_gap_back_merge(req, bio))
514 return 0;
515 if (blk_integrity_rq(req) &&
516 integrity_req_gap_back_merge(req, bio))
517 return 0;
518 if (blk_rq_sectors(req) + bio_sectors(bio) >
519 blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
520 req_set_nomerge(q, req);
521 return 0;
523 if (!bio_flagged(req->biotail, BIO_SEG_VALID))
524 blk_recount_segments(q, req->biotail);
525 if (!bio_flagged(bio, BIO_SEG_VALID))
526 blk_recount_segments(q, bio);
528 return ll_new_hw_segment(q, req, bio);
531 int ll_front_merge_fn(struct request_queue *q, struct request *req,
532 struct bio *bio)
535 if (req_gap_front_merge(req, bio))
536 return 0;
537 if (blk_integrity_rq(req) &&
538 integrity_req_gap_front_merge(req, bio))
539 return 0;
540 if (blk_rq_sectors(req) + bio_sectors(bio) >
541 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
542 req_set_nomerge(q, req);
543 return 0;
545 if (!bio_flagged(bio, BIO_SEG_VALID))
546 blk_recount_segments(q, bio);
547 if (!bio_flagged(req->bio, BIO_SEG_VALID))
548 blk_recount_segments(q, req->bio);
550 return ll_new_hw_segment(q, req, bio);
554 * blk-mq uses req->special to carry normal driver per-request payload, it
555 * does not indicate a prepared command that we cannot merge with.
557 static bool req_no_special_merge(struct request *req)
559 struct request_queue *q = req->q;
561 return !q->mq_ops && req->special;
564 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
565 struct request *next)
567 unsigned short segments = blk_rq_nr_discard_segments(req);
569 if (segments >= queue_max_discard_segments(q))
570 goto no_merge;
571 if (blk_rq_sectors(req) + bio_sectors(next->bio) >
572 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
573 goto no_merge;
575 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
576 return true;
577 no_merge:
578 req_set_nomerge(q, req);
579 return false;
582 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
583 struct request *next)
585 int total_phys_segments;
586 unsigned int seg_size =
587 req->biotail->bi_seg_back_size + next->bio->bi_seg_front_size;
590 * First check if the either of the requests are re-queued
591 * requests. Can't merge them if they are.
593 if (req_no_special_merge(req) || req_no_special_merge(next))
594 return 0;
596 if (req_gap_back_merge(req, next->bio))
597 return 0;
600 * Will it become too large?
602 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
603 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
604 return 0;
606 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
607 if (blk_phys_contig_segment(q, req->biotail, next->bio)) {
608 if (req->nr_phys_segments == 1)
609 req->bio->bi_seg_front_size = seg_size;
610 if (next->nr_phys_segments == 1)
611 next->biotail->bi_seg_back_size = seg_size;
612 total_phys_segments--;
615 if (total_phys_segments > queue_max_segments(q))
616 return 0;
618 if (blk_integrity_merge_rq(q, req, next) == false)
619 return 0;
621 /* Merge is OK... */
622 req->nr_phys_segments = total_phys_segments;
623 return 1;
627 * blk_rq_set_mixed_merge - mark a request as mixed merge
628 * @rq: request to mark as mixed merge
630 * Description:
631 * @rq is about to be mixed merged. Make sure the attributes
632 * which can be mixed are set in each bio and mark @rq as mixed
633 * merged.
635 void blk_rq_set_mixed_merge(struct request *rq)
637 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
638 struct bio *bio;
640 if (rq->rq_flags & RQF_MIXED_MERGE)
641 return;
644 * @rq will no longer represent mixable attributes for all the
645 * contained bios. It will just track those of the first one.
646 * Distributes the attributs to each bio.
648 for (bio = rq->bio; bio; bio = bio->bi_next) {
649 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
650 (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
651 bio->bi_opf |= ff;
653 rq->rq_flags |= RQF_MIXED_MERGE;
656 static void blk_account_io_merge(struct request *req)
658 if (blk_do_io_stat(req)) {
659 struct hd_struct *part;
660 int cpu;
662 cpu = part_stat_lock();
663 part = req->part;
665 part_round_stats(req->q, cpu, part);
666 part_dec_in_flight(req->q, part, rq_data_dir(req));
668 hd_struct_put(part);
669 part_stat_unlock();
674 * For non-mq, this has to be called with the request spinlock acquired.
675 * For mq with scheduling, the appropriate queue wide lock should be held.
677 static struct request *attempt_merge(struct request_queue *q,
678 struct request *req, struct request *next)
680 if (!q->mq_ops)
681 lockdep_assert_held(q->queue_lock);
683 if (!rq_mergeable(req) || !rq_mergeable(next))
684 return NULL;
686 if (req_op(req) != req_op(next))
687 return NULL;
690 * not contiguous
692 if (blk_rq_pos(req) + blk_rq_sectors(req) != blk_rq_pos(next))
693 return NULL;
695 if (rq_data_dir(req) != rq_data_dir(next)
696 || req->rq_disk != next->rq_disk
697 || req_no_special_merge(next))
698 return NULL;
700 if (req_op(req) == REQ_OP_WRITE_SAME &&
701 !blk_write_same_mergeable(req->bio, next->bio))
702 return NULL;
705 * Don't allow merge of different write hints, or for a hint with
706 * non-hint IO.
708 if (req->write_hint != next->write_hint)
709 return NULL;
712 * If we are allowed to merge, then append bio list
713 * from next to rq and release next. merge_requests_fn
714 * will have updated segment counts, update sector
715 * counts here. Handle DISCARDs separately, as they
716 * have separate settings.
718 if (req_op(req) == REQ_OP_DISCARD) {
719 if (!req_attempt_discard_merge(q, req, next))
720 return NULL;
721 } else if (!ll_merge_requests_fn(q, req, next))
722 return NULL;
725 * If failfast settings disagree or any of the two is already
726 * a mixed merge, mark both as mixed before proceeding. This
727 * makes sure that all involved bios have mixable attributes
728 * set properly.
730 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
731 (req->cmd_flags & REQ_FAILFAST_MASK) !=
732 (next->cmd_flags & REQ_FAILFAST_MASK)) {
733 blk_rq_set_mixed_merge(req);
734 blk_rq_set_mixed_merge(next);
738 * At this point we have either done a back merge or front merge. We
739 * need the smaller start_time_ns of the merged requests to be the
740 * current request for accounting purposes.
742 if (next->start_time_ns < req->start_time_ns)
743 req->start_time_ns = next->start_time_ns;
745 req->biotail->bi_next = next->bio;
746 req->biotail = next->biotail;
748 req->__data_len += blk_rq_bytes(next);
750 if (req_op(req) != REQ_OP_DISCARD)
751 elv_merge_requests(q, req, next);
754 * 'next' is going away, so update stats accordingly
756 blk_account_io_merge(next);
758 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
759 if (blk_rq_cpu_valid(next))
760 req->cpu = next->cpu;
763 * ownership of bio passed from next to req, return 'next' for
764 * the caller to free
766 next->bio = NULL;
767 return next;
770 struct request *attempt_back_merge(struct request_queue *q, struct request *rq)
772 struct request *next = elv_latter_request(q, rq);
774 if (next)
775 return attempt_merge(q, rq, next);
777 return NULL;
780 struct request *attempt_front_merge(struct request_queue *q, struct request *rq)
782 struct request *prev = elv_former_request(q, rq);
784 if (prev)
785 return attempt_merge(q, prev, rq);
787 return NULL;
790 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
791 struct request *next)
793 struct elevator_queue *e = q->elevator;
794 struct request *free;
796 if (!e->uses_mq && e->type->ops.sq.elevator_allow_rq_merge_fn)
797 if (!e->type->ops.sq.elevator_allow_rq_merge_fn(q, rq, next))
798 return 0;
800 free = attempt_merge(q, rq, next);
801 if (free) {
802 __blk_put_request(q, free);
803 return 1;
806 return 0;
809 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
811 if (!rq_mergeable(rq) || !bio_mergeable(bio))
812 return false;
814 if (req_op(rq) != bio_op(bio))
815 return false;
817 /* different data direction or already started, don't merge */
818 if (bio_data_dir(bio) != rq_data_dir(rq))
819 return false;
821 /* must be same device and not a special request */
822 if (rq->rq_disk != bio->bi_disk || req_no_special_merge(rq))
823 return false;
825 /* only merge integrity protected bio into ditto rq */
826 if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
827 return false;
829 /* must be using the same buffer */
830 if (req_op(rq) == REQ_OP_WRITE_SAME &&
831 !blk_write_same_mergeable(rq->bio, bio))
832 return false;
835 * Don't allow merge of different write hints, or for a hint with
836 * non-hint IO.
838 if (rq->write_hint != bio->bi_write_hint)
839 return false;
841 return true;
844 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
846 if (req_op(rq) == REQ_OP_DISCARD &&
847 queue_max_discard_segments(rq->q) > 1)
848 return ELEVATOR_DISCARD_MERGE;
849 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
850 return ELEVATOR_BACK_MERGE;
851 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
852 return ELEVATOR_FRONT_MERGE;
853 return ELEVATOR_NO_MERGE;