platform/x86: intel-vbtn: Report switch events when event wakes device
[linux/fpc-iii.git] / block / blk-mq-sched.c
blobda1de190a3b13ce2b62b3c1c1ec76df9fcf3e39d
1 /*
2 * blk-mq scheduling framework
4 * Copyright (C) 2016 Jens Axboe
5 */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
10 #include <trace/events/block.h>
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-debugfs.h"
15 #include "blk-mq-sched.h"
16 #include "blk-mq-tag.h"
17 #include "blk-wbt.h"
19 void blk_mq_sched_free_hctx_data(struct request_queue *q,
20 void (*exit)(struct blk_mq_hw_ctx *))
22 struct blk_mq_hw_ctx *hctx;
23 int i;
25 queue_for_each_hw_ctx(q, hctx, i) {
26 if (exit && hctx->sched_data)
27 exit(hctx);
28 kfree(hctx->sched_data);
29 hctx->sched_data = NULL;
32 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
34 void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio)
36 struct request_queue *q = rq->q;
37 struct io_context *ioc = rq_ioc(bio);
38 struct io_cq *icq;
40 spin_lock_irq(q->queue_lock);
41 icq = ioc_lookup_icq(ioc, q);
42 spin_unlock_irq(q->queue_lock);
44 if (!icq) {
45 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
46 if (!icq)
47 return;
49 get_io_context(icq->ioc);
50 rq->elv.icq = icq;
54 * Mark a hardware queue as needing a restart. For shared queues, maintain
55 * a count of how many hardware queues are marked for restart.
57 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
59 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
60 return;
62 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
64 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
66 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
68 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
69 return;
70 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
72 blk_mq_run_hw_queue(hctx, true);
76 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
77 * its queue by itself in its completion handler, so we don't need to
78 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
80 static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
82 struct request_queue *q = hctx->queue;
83 struct elevator_queue *e = q->elevator;
84 LIST_HEAD(rq_list);
86 do {
87 struct request *rq;
89 if (e->type->ops.mq.has_work &&
90 !e->type->ops.mq.has_work(hctx))
91 break;
93 if (!blk_mq_get_dispatch_budget(hctx))
94 break;
96 rq = e->type->ops.mq.dispatch_request(hctx);
97 if (!rq) {
98 blk_mq_put_dispatch_budget(hctx);
99 break;
103 * Now this rq owns the budget which has to be released
104 * if this rq won't be queued to driver via .queue_rq()
105 * in blk_mq_dispatch_rq_list().
107 list_add(&rq->queuelist, &rq_list);
108 } while (blk_mq_dispatch_rq_list(q, &rq_list, true));
111 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
112 struct blk_mq_ctx *ctx)
114 unsigned idx = ctx->index_hw;
116 if (++idx == hctx->nr_ctx)
117 idx = 0;
119 return hctx->ctxs[idx];
123 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
124 * its queue by itself in its completion handler, so we don't need to
125 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
127 static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
129 struct request_queue *q = hctx->queue;
130 LIST_HEAD(rq_list);
131 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
133 do {
134 struct request *rq;
136 if (!sbitmap_any_bit_set(&hctx->ctx_map))
137 break;
139 if (!blk_mq_get_dispatch_budget(hctx))
140 break;
142 rq = blk_mq_dequeue_from_ctx(hctx, ctx);
143 if (!rq) {
144 blk_mq_put_dispatch_budget(hctx);
145 break;
149 * Now this rq owns the budget which has to be released
150 * if this rq won't be queued to driver via .queue_rq()
151 * in blk_mq_dispatch_rq_list().
153 list_add(&rq->queuelist, &rq_list);
155 /* round robin for fair dispatch */
156 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
158 } while (blk_mq_dispatch_rq_list(q, &rq_list, true));
160 WRITE_ONCE(hctx->dispatch_from, ctx);
163 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
165 struct request_queue *q = hctx->queue;
166 struct elevator_queue *e = q->elevator;
167 const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
168 LIST_HEAD(rq_list);
170 /* RCU or SRCU read lock is needed before checking quiesced flag */
171 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
172 return;
174 hctx->run++;
177 * If we have previous entries on our dispatch list, grab them first for
178 * more fair dispatch.
180 if (!list_empty_careful(&hctx->dispatch)) {
181 spin_lock(&hctx->lock);
182 if (!list_empty(&hctx->dispatch))
183 list_splice_init(&hctx->dispatch, &rq_list);
184 spin_unlock(&hctx->lock);
188 * Only ask the scheduler for requests, if we didn't have residual
189 * requests from the dispatch list. This is to avoid the case where
190 * we only ever dispatch a fraction of the requests available because
191 * of low device queue depth. Once we pull requests out of the IO
192 * scheduler, we can no longer merge or sort them. So it's best to
193 * leave them there for as long as we can. Mark the hw queue as
194 * needing a restart in that case.
196 * We want to dispatch from the scheduler if there was nothing
197 * on the dispatch list or we were able to dispatch from the
198 * dispatch list.
200 if (!list_empty(&rq_list)) {
201 blk_mq_sched_mark_restart_hctx(hctx);
202 if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
203 if (has_sched_dispatch)
204 blk_mq_do_dispatch_sched(hctx);
205 else
206 blk_mq_do_dispatch_ctx(hctx);
208 } else if (has_sched_dispatch) {
209 blk_mq_do_dispatch_sched(hctx);
210 } else if (hctx->dispatch_busy) {
211 /* dequeue request one by one from sw queue if queue is busy */
212 blk_mq_do_dispatch_ctx(hctx);
213 } else {
214 blk_mq_flush_busy_ctxs(hctx, &rq_list);
215 blk_mq_dispatch_rq_list(q, &rq_list, false);
219 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
220 struct request **merged_request)
222 struct request *rq;
224 switch (elv_merge(q, &rq, bio)) {
225 case ELEVATOR_BACK_MERGE:
226 if (!blk_mq_sched_allow_merge(q, rq, bio))
227 return false;
228 if (!bio_attempt_back_merge(q, rq, bio))
229 return false;
230 *merged_request = attempt_back_merge(q, rq);
231 if (!*merged_request)
232 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
233 return true;
234 case ELEVATOR_FRONT_MERGE:
235 if (!blk_mq_sched_allow_merge(q, rq, bio))
236 return false;
237 if (!bio_attempt_front_merge(q, rq, bio))
238 return false;
239 *merged_request = attempt_front_merge(q, rq);
240 if (!*merged_request)
241 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
242 return true;
243 case ELEVATOR_DISCARD_MERGE:
244 return bio_attempt_discard_merge(q, rq, bio);
245 default:
246 return false;
249 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
252 * Iterate list of requests and see if we can merge this bio with any
253 * of them.
255 bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
256 struct bio *bio)
258 struct request *rq;
259 int checked = 8;
261 list_for_each_entry_reverse(rq, list, queuelist) {
262 bool merged = false;
264 if (!checked--)
265 break;
267 if (!blk_rq_merge_ok(rq, bio))
268 continue;
270 switch (blk_try_merge(rq, bio)) {
271 case ELEVATOR_BACK_MERGE:
272 if (blk_mq_sched_allow_merge(q, rq, bio))
273 merged = bio_attempt_back_merge(q, rq, bio);
274 break;
275 case ELEVATOR_FRONT_MERGE:
276 if (blk_mq_sched_allow_merge(q, rq, bio))
277 merged = bio_attempt_front_merge(q, rq, bio);
278 break;
279 case ELEVATOR_DISCARD_MERGE:
280 merged = bio_attempt_discard_merge(q, rq, bio);
281 break;
282 default:
283 continue;
286 return merged;
289 return false;
291 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);
294 * Reverse check our software queue for entries that we could potentially
295 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
296 * too much time checking for merges.
298 static bool blk_mq_attempt_merge(struct request_queue *q,
299 struct blk_mq_ctx *ctx, struct bio *bio)
301 lockdep_assert_held(&ctx->lock);
303 if (blk_mq_bio_list_merge(q, &ctx->rq_list, bio)) {
304 ctx->rq_merged++;
305 return true;
308 return false;
311 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
313 struct elevator_queue *e = q->elevator;
314 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
315 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
316 bool ret = false;
318 if (e && e->type->ops.mq.bio_merge) {
319 blk_mq_put_ctx(ctx);
320 return e->type->ops.mq.bio_merge(hctx, bio);
323 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
324 !list_empty_careful(&ctx->rq_list)) {
325 /* default per sw-queue merge */
326 spin_lock(&ctx->lock);
327 ret = blk_mq_attempt_merge(q, ctx, bio);
328 spin_unlock(&ctx->lock);
331 blk_mq_put_ctx(ctx);
332 return ret;
335 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
337 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
339 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
341 void blk_mq_sched_request_inserted(struct request *rq)
343 trace_block_rq_insert(rq->q, rq);
345 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
347 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
348 bool has_sched,
349 struct request *rq)
351 /* dispatch flush rq directly */
352 if (rq->rq_flags & RQF_FLUSH_SEQ) {
353 spin_lock(&hctx->lock);
354 list_add(&rq->queuelist, &hctx->dispatch);
355 spin_unlock(&hctx->lock);
356 return true;
359 if (has_sched)
360 rq->rq_flags |= RQF_SORTED;
362 return false;
365 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
366 bool run_queue, bool async)
368 struct request_queue *q = rq->q;
369 struct elevator_queue *e = q->elevator;
370 struct blk_mq_ctx *ctx = rq->mq_ctx;
371 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
373 /* flush rq in flush machinery need to be dispatched directly */
374 if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
375 blk_insert_flush(rq);
376 goto run;
379 WARN_ON(e && (rq->tag != -1));
381 if (blk_mq_sched_bypass_insert(hctx, !!e, rq))
382 goto run;
384 if (e && e->type->ops.mq.insert_requests) {
385 LIST_HEAD(list);
387 list_add(&rq->queuelist, &list);
388 e->type->ops.mq.insert_requests(hctx, &list, at_head);
389 } else {
390 spin_lock(&ctx->lock);
391 __blk_mq_insert_request(hctx, rq, at_head);
392 spin_unlock(&ctx->lock);
395 run:
396 if (run_queue)
397 blk_mq_run_hw_queue(hctx, async);
400 void blk_mq_sched_insert_requests(struct request_queue *q,
401 struct blk_mq_ctx *ctx,
402 struct list_head *list, bool run_queue_async)
404 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
405 struct elevator_queue *e = hctx->queue->elevator;
407 if (e && e->type->ops.mq.insert_requests)
408 e->type->ops.mq.insert_requests(hctx, list, false);
409 else {
411 * try to issue requests directly if the hw queue isn't
412 * busy in case of 'none' scheduler, and this way may save
413 * us one extra enqueue & dequeue to sw queue.
415 if (!hctx->dispatch_busy && !e && !run_queue_async) {
416 blk_mq_try_issue_list_directly(hctx, list);
417 if (list_empty(list))
418 return;
420 blk_mq_insert_requests(hctx, ctx, list);
423 blk_mq_run_hw_queue(hctx, run_queue_async);
426 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
427 struct blk_mq_hw_ctx *hctx,
428 unsigned int hctx_idx)
430 if (hctx->sched_tags) {
431 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
432 blk_mq_free_rq_map(hctx->sched_tags);
433 hctx->sched_tags = NULL;
437 static int blk_mq_sched_alloc_tags(struct request_queue *q,
438 struct blk_mq_hw_ctx *hctx,
439 unsigned int hctx_idx)
441 struct blk_mq_tag_set *set = q->tag_set;
442 int ret;
444 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
445 set->reserved_tags);
446 if (!hctx->sched_tags)
447 return -ENOMEM;
449 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
450 if (ret)
451 blk_mq_sched_free_tags(set, hctx, hctx_idx);
453 return ret;
456 static void blk_mq_sched_tags_teardown(struct request_queue *q)
458 struct blk_mq_tag_set *set = q->tag_set;
459 struct blk_mq_hw_ctx *hctx;
460 int i;
462 queue_for_each_hw_ctx(q, hctx, i)
463 blk_mq_sched_free_tags(set, hctx, i);
466 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
468 struct blk_mq_hw_ctx *hctx;
469 struct elevator_queue *eq;
470 unsigned int i;
471 int ret;
473 if (!e) {
474 q->elevator = NULL;
475 q->nr_requests = q->tag_set->queue_depth;
476 return 0;
480 * Default to double of smaller one between hw queue_depth and 128,
481 * since we don't split into sync/async like the old code did.
482 * Additionally, this is a per-hw queue depth.
484 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
485 BLKDEV_MAX_RQ);
487 queue_for_each_hw_ctx(q, hctx, i) {
488 ret = blk_mq_sched_alloc_tags(q, hctx, i);
489 if (ret)
490 goto err;
493 ret = e->ops.mq.init_sched(q, e);
494 if (ret)
495 goto err;
497 blk_mq_debugfs_register_sched(q);
499 queue_for_each_hw_ctx(q, hctx, i) {
500 if (e->ops.mq.init_hctx) {
501 ret = e->ops.mq.init_hctx(hctx, i);
502 if (ret) {
503 eq = q->elevator;
504 blk_mq_exit_sched(q, eq);
505 kobject_put(&eq->kobj);
506 return ret;
509 blk_mq_debugfs_register_sched_hctx(q, hctx);
512 return 0;
514 err:
515 blk_mq_sched_tags_teardown(q);
516 q->elevator = NULL;
517 return ret;
520 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
522 struct blk_mq_hw_ctx *hctx;
523 unsigned int i;
525 queue_for_each_hw_ctx(q, hctx, i) {
526 blk_mq_debugfs_unregister_sched_hctx(hctx);
527 if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
528 e->type->ops.mq.exit_hctx(hctx, i);
529 hctx->sched_data = NULL;
532 blk_mq_debugfs_unregister_sched(q);
533 if (e->type->ops.mq.exit_sched)
534 e->type->ops.mq.exit_sched(e);
535 blk_mq_sched_tags_teardown(q);
536 q->elevator = NULL;