2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
38 #include <trace/events/kmem.h>
44 * 1. slab_mutex (Global Mutex)
46 * 3. slab_lock(page) (Only on some arches and for debugging)
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
95 * Overloading of page flags that are otherwise used for LRU management.
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
118 static inline int kmem_cache_debug(struct kmem_cache
*s
)
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
127 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache
*s
)
129 #ifdef CONFIG_SLUB_CPU_PARTIAL
130 return !kmem_cache_debug(s
);
137 * Issues still to be resolved:
139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
141 * - Variable sizing of the per node arrays
144 /* Enable to test recovery from slab corruption on boot */
145 #undef SLUB_RESILIENCY_TEST
147 /* Enable to log cmpxchg failures */
148 #undef SLUB_DEBUG_CMPXCHG
151 * Mininum number of partial slabs. These will be left on the partial
152 * lists even if they are empty. kmem_cache_shrink may reclaim them.
154 #define MIN_PARTIAL 5
157 * Maximum number of desirable partial slabs.
158 * The existence of more partial slabs makes kmem_cache_shrink
159 * sort the partial list by the number of objects in use.
161 #define MAX_PARTIAL 10
163 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 SLAB_POISON | SLAB_STORE_USER)
167 * Debugging flags that require metadata to be stored in the slab. These get
168 * disabled when slub_debug=O is used and a cache's min order increases with
171 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
174 #define OO_MASK ((1 << OO_SHIFT) - 1)
175 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
177 /* Internal SLUB flags */
178 #define __OBJECT_POISON 0x80000000UL /* Poison object */
179 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
182 static struct notifier_block slab_notifier
;
186 * Tracking user of a slab.
188 #define TRACK_ADDRS_COUNT 16
190 unsigned long addr
; /* Called from address */
191 #ifdef CONFIG_STACKTRACE
192 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
194 int cpu
; /* Was running on cpu */
195 int pid
; /* Pid context */
196 unsigned long when
; /* When did the operation occur */
199 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
202 static int sysfs_slab_add(struct kmem_cache
*);
203 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
204 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
);
206 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
207 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
209 static inline void memcg_propagate_slab_attrs(struct kmem_cache
*s
) { }
212 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
214 #ifdef CONFIG_SLUB_STATS
216 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 * avoid this_cpu_add()'s irq-disable overhead.
219 raw_cpu_inc(s
->cpu_slab
->stat
[si
]);
223 /********************************************************************
224 * Core slab cache functions
225 *******************************************************************/
227 /* Verify that a pointer has an address that is valid within a slab page */
228 static inline int check_valid_pointer(struct kmem_cache
*s
,
229 struct page
*page
, const void *object
)
236 base
= page_address(page
);
237 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
238 (object
- base
) % s
->size
) {
245 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
247 return *(void **)(object
+ s
->offset
);
250 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
252 prefetch(object
+ s
->offset
);
255 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
259 #ifdef CONFIG_DEBUG_PAGEALLOC
260 probe_kernel_read(&p
, (void **)(object
+ s
->offset
), sizeof(p
));
262 p
= get_freepointer(s
, object
);
267 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
269 *(void **)(object
+ s
->offset
) = fp
;
272 /* Loop over all objects in a slab */
273 #define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
277 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 __p += (__s)->size, __idx++)
281 /* Determine object index from a given position */
282 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
284 return (p
- addr
) / s
->size
;
287 static inline size_t slab_ksize(const struct kmem_cache
*s
)
289 #ifdef CONFIG_SLUB_DEBUG
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
294 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
295 return s
->object_size
;
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
303 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
306 * Else we can use all the padding etc for the allocation
311 static inline int order_objects(int order
, unsigned long size
, int reserved
)
313 return ((PAGE_SIZE
<< order
) - reserved
) / size
;
316 static inline struct kmem_cache_order_objects
oo_make(int order
,
317 unsigned long size
, int reserved
)
319 struct kmem_cache_order_objects x
= {
320 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
326 static inline int oo_order(struct kmem_cache_order_objects x
)
328 return x
.x
>> OO_SHIFT
;
331 static inline int oo_objects(struct kmem_cache_order_objects x
)
333 return x
.x
& OO_MASK
;
337 * Per slab locking using the pagelock
339 static __always_inline
void slab_lock(struct page
*page
)
341 VM_BUG_ON_PAGE(PageTail(page
), page
);
342 bit_spin_lock(PG_locked
, &page
->flags
);
345 static __always_inline
void slab_unlock(struct page
*page
)
347 VM_BUG_ON_PAGE(PageTail(page
), page
);
348 __bit_spin_unlock(PG_locked
, &page
->flags
);
351 static inline void set_page_slub_counters(struct page
*page
, unsigned long counters_new
)
354 tmp
.counters
= counters_new
;
356 * page->counters can cover frozen/inuse/objects as well
357 * as page->_count. If we assign to ->counters directly
358 * we run the risk of losing updates to page->_count, so
359 * be careful and only assign to the fields we need.
361 page
->frozen
= tmp
.frozen
;
362 page
->inuse
= tmp
.inuse
;
363 page
->objects
= tmp
.objects
;
366 /* Interrupts must be disabled (for the fallback code to work right) */
367 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
368 void *freelist_old
, unsigned long counters_old
,
369 void *freelist_new
, unsigned long counters_new
,
372 VM_BUG_ON(!irqs_disabled());
373 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
374 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
375 if (s
->flags
& __CMPXCHG_DOUBLE
) {
376 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
377 freelist_old
, counters_old
,
378 freelist_new
, counters_new
))
384 if (page
->freelist
== freelist_old
&&
385 page
->counters
== counters_old
) {
386 page
->freelist
= freelist_new
;
387 set_page_slub_counters(page
, counters_new
);
395 stat(s
, CMPXCHG_DOUBLE_FAIL
);
397 #ifdef SLUB_DEBUG_CMPXCHG
398 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
404 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
405 void *freelist_old
, unsigned long counters_old
,
406 void *freelist_new
, unsigned long counters_new
,
409 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
410 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
411 if (s
->flags
& __CMPXCHG_DOUBLE
) {
412 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
413 freelist_old
, counters_old
,
414 freelist_new
, counters_new
))
421 local_irq_save(flags
);
423 if (page
->freelist
== freelist_old
&&
424 page
->counters
== counters_old
) {
425 page
->freelist
= freelist_new
;
426 set_page_slub_counters(page
, counters_new
);
428 local_irq_restore(flags
);
432 local_irq_restore(flags
);
436 stat(s
, CMPXCHG_DOUBLE_FAIL
);
438 #ifdef SLUB_DEBUG_CMPXCHG
439 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
445 #ifdef CONFIG_SLUB_DEBUG
447 * Determine a map of object in use on a page.
449 * Node listlock must be held to guarantee that the page does
450 * not vanish from under us.
452 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
455 void *addr
= page_address(page
);
457 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
458 set_bit(slab_index(p
, s
, addr
), map
);
464 #if defined(CONFIG_SLUB_DEBUG_ON)
465 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
466 #elif defined(CONFIG_KASAN)
467 static int slub_debug
= SLAB_STORE_USER
;
469 static int slub_debug
;
472 static char *slub_debug_slabs
;
473 static int disable_higher_order_debug
;
476 * slub is about to manipulate internal object metadata. This memory lies
477 * outside the range of the allocated object, so accessing it would normally
478 * be reported by kasan as a bounds error. metadata_access_enable() is used
479 * to tell kasan that these accesses are OK.
481 static inline void metadata_access_enable(void)
483 kasan_disable_current();
486 static inline void metadata_access_disable(void)
488 kasan_enable_current();
494 static void print_section(char *text
, u8
*addr
, unsigned int length
)
496 metadata_access_enable();
497 print_hex_dump(KERN_ERR
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
499 metadata_access_disable();
502 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
503 enum track_item alloc
)
508 p
= object
+ s
->offset
+ sizeof(void *);
510 p
= object
+ s
->inuse
;
515 static void set_track(struct kmem_cache
*s
, void *object
,
516 enum track_item alloc
, unsigned long addr
)
518 struct track
*p
= get_track(s
, object
, alloc
);
521 #ifdef CONFIG_STACKTRACE
522 struct stack_trace trace
;
525 trace
.nr_entries
= 0;
526 trace
.max_entries
= TRACK_ADDRS_COUNT
;
527 trace
.entries
= p
->addrs
;
529 metadata_access_enable();
530 save_stack_trace(&trace
);
531 metadata_access_disable();
533 /* See rant in lockdep.c */
534 if (trace
.nr_entries
!= 0 &&
535 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
538 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
542 p
->cpu
= smp_processor_id();
543 p
->pid
= current
->pid
;
546 memset(p
, 0, sizeof(struct track
));
549 static void init_tracking(struct kmem_cache
*s
, void *object
)
551 if (!(s
->flags
& SLAB_STORE_USER
))
554 set_track(s
, object
, TRACK_FREE
, 0UL);
555 set_track(s
, object
, TRACK_ALLOC
, 0UL);
558 static void print_track(const char *s
, struct track
*t
)
563 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
564 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
565 #ifdef CONFIG_STACKTRACE
568 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
570 pr_err("\t%pS\n", (void *)t
->addrs
[i
]);
577 static void print_tracking(struct kmem_cache
*s
, void *object
)
579 if (!(s
->flags
& SLAB_STORE_USER
))
582 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
583 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
586 static void print_page_info(struct page
*page
)
588 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
589 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
593 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
595 struct va_format vaf
;
601 pr_err("=============================================================================\n");
602 pr_err("BUG %s (%s): %pV\n", s
->name
, print_tainted(), &vaf
);
603 pr_err("-----------------------------------------------------------------------------\n\n");
605 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
609 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
611 struct va_format vaf
;
617 pr_err("FIX %s: %pV\n", s
->name
, &vaf
);
621 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
623 unsigned int off
; /* Offset of last byte */
624 u8
*addr
= page_address(page
);
626 print_tracking(s
, p
);
628 print_page_info(page
);
630 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
631 p
, p
- addr
, get_freepointer(s
, p
));
634 print_section("Bytes b4 ", p
- 16, 16);
636 print_section("Object ", p
, min_t(unsigned long, s
->object_size
,
638 if (s
->flags
& SLAB_RED_ZONE
)
639 print_section("Redzone ", p
+ s
->object_size
,
640 s
->inuse
- s
->object_size
);
643 off
= s
->offset
+ sizeof(void *);
647 if (s
->flags
& SLAB_STORE_USER
)
648 off
+= 2 * sizeof(struct track
);
651 /* Beginning of the filler is the free pointer */
652 print_section("Padding ", p
+ off
, s
->size
- off
);
657 void object_err(struct kmem_cache
*s
, struct page
*page
,
658 u8
*object
, char *reason
)
660 slab_bug(s
, "%s", reason
);
661 print_trailer(s
, page
, object
);
664 static void slab_err(struct kmem_cache
*s
, struct page
*page
,
665 const char *fmt
, ...)
671 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
673 slab_bug(s
, "%s", buf
);
674 print_page_info(page
);
678 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
682 if (s
->flags
& __OBJECT_POISON
) {
683 memset(p
, POISON_FREE
, s
->object_size
- 1);
684 p
[s
->object_size
- 1] = POISON_END
;
687 if (s
->flags
& SLAB_RED_ZONE
)
688 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
691 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
692 void *from
, void *to
)
694 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
695 memset(from
, data
, to
- from
);
698 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
699 u8
*object
, char *what
,
700 u8
*start
, unsigned int value
, unsigned int bytes
)
705 metadata_access_enable();
706 fault
= memchr_inv(start
, value
, bytes
);
707 metadata_access_disable();
712 while (end
> fault
&& end
[-1] == value
)
715 slab_bug(s
, "%s overwritten", what
);
716 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
717 fault
, end
- 1, fault
[0], value
);
718 print_trailer(s
, page
, object
);
720 restore_bytes(s
, what
, value
, fault
, end
);
728 * Bytes of the object to be managed.
729 * If the freepointer may overlay the object then the free
730 * pointer is the first word of the object.
732 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
735 * object + s->object_size
736 * Padding to reach word boundary. This is also used for Redzoning.
737 * Padding is extended by another word if Redzoning is enabled and
738 * object_size == inuse.
740 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
741 * 0xcc (RED_ACTIVE) for objects in use.
744 * Meta data starts here.
746 * A. Free pointer (if we cannot overwrite object on free)
747 * B. Tracking data for SLAB_STORE_USER
748 * C. Padding to reach required alignment boundary or at mininum
749 * one word if debugging is on to be able to detect writes
750 * before the word boundary.
752 * Padding is done using 0x5a (POISON_INUSE)
755 * Nothing is used beyond s->size.
757 * If slabcaches are merged then the object_size and inuse boundaries are mostly
758 * ignored. And therefore no slab options that rely on these boundaries
759 * may be used with merged slabcaches.
762 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
764 unsigned long off
= s
->inuse
; /* The end of info */
767 /* Freepointer is placed after the object. */
768 off
+= sizeof(void *);
770 if (s
->flags
& SLAB_STORE_USER
)
771 /* We also have user information there */
772 off
+= 2 * sizeof(struct track
);
777 return check_bytes_and_report(s
, page
, p
, "Object padding",
778 p
+ off
, POISON_INUSE
, s
->size
- off
);
781 /* Check the pad bytes at the end of a slab page */
782 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
790 if (!(s
->flags
& SLAB_POISON
))
793 start
= page_address(page
);
794 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
795 end
= start
+ length
;
796 remainder
= length
% s
->size
;
800 metadata_access_enable();
801 fault
= memchr_inv(end
- remainder
, POISON_INUSE
, remainder
);
802 metadata_access_disable();
805 while (end
> fault
&& end
[-1] == POISON_INUSE
)
808 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
809 print_section("Padding ", end
- remainder
, remainder
);
811 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
815 static int check_object(struct kmem_cache
*s
, struct page
*page
,
816 void *object
, u8 val
)
819 u8
*endobject
= object
+ s
->object_size
;
821 if (s
->flags
& SLAB_RED_ZONE
) {
822 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
823 endobject
, val
, s
->inuse
- s
->object_size
))
826 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
827 check_bytes_and_report(s
, page
, p
, "Alignment padding",
828 endobject
, POISON_INUSE
,
829 s
->inuse
- s
->object_size
);
833 if (s
->flags
& SLAB_POISON
) {
834 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
835 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
836 POISON_FREE
, s
->object_size
- 1) ||
837 !check_bytes_and_report(s
, page
, p
, "Poison",
838 p
+ s
->object_size
- 1, POISON_END
, 1)))
841 * check_pad_bytes cleans up on its own.
843 check_pad_bytes(s
, page
, p
);
846 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
848 * Object and freepointer overlap. Cannot check
849 * freepointer while object is allocated.
853 /* Check free pointer validity */
854 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
855 object_err(s
, page
, p
, "Freepointer corrupt");
857 * No choice but to zap it and thus lose the remainder
858 * of the free objects in this slab. May cause
859 * another error because the object count is now wrong.
861 set_freepointer(s
, p
, NULL
);
867 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
871 VM_BUG_ON(!irqs_disabled());
873 if (!PageSlab(page
)) {
874 slab_err(s
, page
, "Not a valid slab page");
878 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
879 if (page
->objects
> maxobj
) {
880 slab_err(s
, page
, "objects %u > max %u",
881 page
->objects
, maxobj
);
884 if (page
->inuse
> page
->objects
) {
885 slab_err(s
, page
, "inuse %u > max %u",
886 page
->inuse
, page
->objects
);
889 /* Slab_pad_check fixes things up after itself */
890 slab_pad_check(s
, page
);
895 * Determine if a certain object on a page is on the freelist. Must hold the
896 * slab lock to guarantee that the chains are in a consistent state.
898 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
906 while (fp
&& nr
<= page
->objects
) {
909 if (!check_valid_pointer(s
, page
, fp
)) {
911 object_err(s
, page
, object
,
912 "Freechain corrupt");
913 set_freepointer(s
, object
, NULL
);
915 slab_err(s
, page
, "Freepointer corrupt");
916 page
->freelist
= NULL
;
917 page
->inuse
= page
->objects
;
918 slab_fix(s
, "Freelist cleared");
924 fp
= get_freepointer(s
, object
);
928 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
929 if (max_objects
> MAX_OBJS_PER_PAGE
)
930 max_objects
= MAX_OBJS_PER_PAGE
;
932 if (page
->objects
!= max_objects
) {
933 slab_err(s
, page
, "Wrong number of objects. Found %d but "
934 "should be %d", page
->objects
, max_objects
);
935 page
->objects
= max_objects
;
936 slab_fix(s
, "Number of objects adjusted.");
938 if (page
->inuse
!= page
->objects
- nr
) {
939 slab_err(s
, page
, "Wrong object count. Counter is %d but "
940 "counted were %d", page
->inuse
, page
->objects
- nr
);
941 page
->inuse
= page
->objects
- nr
;
942 slab_fix(s
, "Object count adjusted.");
944 return search
== NULL
;
947 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
950 if (s
->flags
& SLAB_TRACE
) {
951 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
953 alloc
? "alloc" : "free",
958 print_section("Object ", (void *)object
,
966 * Tracking of fully allocated slabs for debugging purposes.
968 static void add_full(struct kmem_cache
*s
,
969 struct kmem_cache_node
*n
, struct page
*page
)
971 if (!(s
->flags
& SLAB_STORE_USER
))
974 lockdep_assert_held(&n
->list_lock
);
975 list_add(&page
->lru
, &n
->full
);
978 static void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
, struct page
*page
)
980 if (!(s
->flags
& SLAB_STORE_USER
))
983 lockdep_assert_held(&n
->list_lock
);
984 list_del(&page
->lru
);
987 /* Tracking of the number of slabs for debugging purposes */
988 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
990 struct kmem_cache_node
*n
= get_node(s
, node
);
992 return atomic_long_read(&n
->nr_slabs
);
995 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
997 return atomic_long_read(&n
->nr_slabs
);
1000 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1002 struct kmem_cache_node
*n
= get_node(s
, node
);
1005 * May be called early in order to allocate a slab for the
1006 * kmem_cache_node structure. Solve the chicken-egg
1007 * dilemma by deferring the increment of the count during
1008 * bootstrap (see early_kmem_cache_node_alloc).
1011 atomic_long_inc(&n
->nr_slabs
);
1012 atomic_long_add(objects
, &n
->total_objects
);
1015 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1017 struct kmem_cache_node
*n
= get_node(s
, node
);
1019 atomic_long_dec(&n
->nr_slabs
);
1020 atomic_long_sub(objects
, &n
->total_objects
);
1023 /* Object debug checks for alloc/free paths */
1024 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1027 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1030 init_object(s
, object
, SLUB_RED_INACTIVE
);
1031 init_tracking(s
, object
);
1034 static noinline
int alloc_debug_processing(struct kmem_cache
*s
,
1036 void *object
, unsigned long addr
)
1038 if (!check_slab(s
, page
))
1041 if (!check_valid_pointer(s
, page
, object
)) {
1042 object_err(s
, page
, object
, "Freelist Pointer check fails");
1046 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1049 /* Success perform special debug activities for allocs */
1050 if (s
->flags
& SLAB_STORE_USER
)
1051 set_track(s
, object
, TRACK_ALLOC
, addr
);
1052 trace(s
, page
, object
, 1);
1053 init_object(s
, object
, SLUB_RED_ACTIVE
);
1057 if (PageSlab(page
)) {
1059 * If this is a slab page then lets do the best we can
1060 * to avoid issues in the future. Marking all objects
1061 * as used avoids touching the remaining objects.
1063 slab_fix(s
, "Marking all objects used");
1064 page
->inuse
= page
->objects
;
1065 page
->freelist
= NULL
;
1070 /* Supports checking bulk free of a constructed freelist */
1071 static noinline
struct kmem_cache_node
*free_debug_processing(
1072 struct kmem_cache
*s
, struct page
*page
,
1073 void *head
, void *tail
, int bulk_cnt
,
1074 unsigned long addr
, unsigned long *flags
)
1076 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1077 void *object
= head
;
1080 spin_lock_irqsave(&n
->list_lock
, *flags
);
1083 if (!check_slab(s
, page
))
1089 if (!check_valid_pointer(s
, page
, object
)) {
1090 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1094 if (on_freelist(s
, page
, object
)) {
1095 object_err(s
, page
, object
, "Object already free");
1099 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1102 if (unlikely(s
!= page
->slab_cache
)) {
1103 if (!PageSlab(page
)) {
1104 slab_err(s
, page
, "Attempt to free object(0x%p) "
1105 "outside of slab", object
);
1106 } else if (!page
->slab_cache
) {
1107 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1111 object_err(s
, page
, object
,
1112 "page slab pointer corrupt.");
1116 if (s
->flags
& SLAB_STORE_USER
)
1117 set_track(s
, object
, TRACK_FREE
, addr
);
1118 trace(s
, page
, object
, 0);
1119 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1120 init_object(s
, object
, SLUB_RED_INACTIVE
);
1122 /* Reached end of constructed freelist yet? */
1123 if (object
!= tail
) {
1124 object
= get_freepointer(s
, object
);
1128 if (cnt
!= bulk_cnt
)
1129 slab_err(s
, page
, "Bulk freelist count(%d) invalid(%d)\n",
1134 * Keep node_lock to preserve integrity
1135 * until the object is actually freed
1141 spin_unlock_irqrestore(&n
->list_lock
, *flags
);
1142 slab_fix(s
, "Object at 0x%p not freed", object
);
1146 static int __init
setup_slub_debug(char *str
)
1148 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1149 if (*str
++ != '=' || !*str
)
1151 * No options specified. Switch on full debugging.
1157 * No options but restriction on slabs. This means full
1158 * debugging for slabs matching a pattern.
1165 * Switch off all debugging measures.
1170 * Determine which debug features should be switched on
1172 for (; *str
&& *str
!= ','; str
++) {
1173 switch (tolower(*str
)) {
1175 slub_debug
|= SLAB_DEBUG_FREE
;
1178 slub_debug
|= SLAB_RED_ZONE
;
1181 slub_debug
|= SLAB_POISON
;
1184 slub_debug
|= SLAB_STORE_USER
;
1187 slub_debug
|= SLAB_TRACE
;
1190 slub_debug
|= SLAB_FAILSLAB
;
1194 * Avoid enabling debugging on caches if its minimum
1195 * order would increase as a result.
1197 disable_higher_order_debug
= 1;
1200 pr_err("slub_debug option '%c' unknown. skipped\n",
1207 slub_debug_slabs
= str
+ 1;
1212 __setup("slub_debug", setup_slub_debug
);
1214 unsigned long kmem_cache_flags(unsigned long object_size
,
1215 unsigned long flags
, const char *name
,
1216 void (*ctor
)(void *))
1219 * Enable debugging if selected on the kernel commandline.
1221 if (slub_debug
&& (!slub_debug_slabs
|| (name
&&
1222 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)))))
1223 flags
|= slub_debug
;
1227 #else /* !CONFIG_SLUB_DEBUG */
1228 static inline void setup_object_debug(struct kmem_cache
*s
,
1229 struct page
*page
, void *object
) {}
1231 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1232 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1234 static inline struct kmem_cache_node
*free_debug_processing(
1235 struct kmem_cache
*s
, struct page
*page
,
1236 void *head
, void *tail
, int bulk_cnt
,
1237 unsigned long addr
, unsigned long *flags
) { return NULL
; }
1239 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1241 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1242 void *object
, u8 val
) { return 1; }
1243 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1244 struct page
*page
) {}
1245 static inline void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1246 struct page
*page
) {}
1247 unsigned long kmem_cache_flags(unsigned long object_size
,
1248 unsigned long flags
, const char *name
,
1249 void (*ctor
)(void *))
1253 #define slub_debug 0
1255 #define disable_higher_order_debug 0
1257 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1259 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1261 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1263 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1266 #endif /* CONFIG_SLUB_DEBUG */
1269 * Hooks for other subsystems that check memory allocations. In a typical
1270 * production configuration these hooks all should produce no code at all.
1272 static inline void kmalloc_large_node_hook(void *ptr
, size_t size
, gfp_t flags
)
1274 kmemleak_alloc(ptr
, size
, 1, flags
);
1275 kasan_kmalloc_large(ptr
, size
);
1278 static inline void kfree_hook(const void *x
)
1281 kasan_kfree_large(x
);
1284 static inline struct kmem_cache
*slab_pre_alloc_hook(struct kmem_cache
*s
,
1287 flags
&= gfp_allowed_mask
;
1288 lockdep_trace_alloc(flags
);
1289 might_sleep_if(gfpflags_allow_blocking(flags
));
1291 if (should_failslab(s
->object_size
, flags
, s
->flags
))
1294 return memcg_kmem_get_cache(s
, flags
);
1297 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
,
1298 size_t size
, void **p
)
1302 flags
&= gfp_allowed_mask
;
1303 for (i
= 0; i
< size
; i
++) {
1304 void *object
= p
[i
];
1306 kmemcheck_slab_alloc(s
, flags
, object
, slab_ksize(s
));
1307 kmemleak_alloc_recursive(object
, s
->object_size
, 1,
1309 kasan_slab_alloc(s
, object
);
1311 memcg_kmem_put_cache(s
);
1314 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
)
1316 kmemleak_free_recursive(x
, s
->flags
);
1319 * Trouble is that we may no longer disable interrupts in the fast path
1320 * So in order to make the debug calls that expect irqs to be
1321 * disabled we need to disable interrupts temporarily.
1323 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1325 unsigned long flags
;
1327 local_irq_save(flags
);
1328 kmemcheck_slab_free(s
, x
, s
->object_size
);
1329 debug_check_no_locks_freed(x
, s
->object_size
);
1330 local_irq_restore(flags
);
1333 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1334 debug_check_no_obj_freed(x
, s
->object_size
);
1336 kasan_slab_free(s
, x
);
1339 static inline void slab_free_freelist_hook(struct kmem_cache
*s
,
1340 void *head
, void *tail
)
1343 * Compiler cannot detect this function can be removed if slab_free_hook()
1344 * evaluates to nothing. Thus, catch all relevant config debug options here.
1346 #if defined(CONFIG_KMEMCHECK) || \
1347 defined(CONFIG_LOCKDEP) || \
1348 defined(CONFIG_DEBUG_KMEMLEAK) || \
1349 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1350 defined(CONFIG_KASAN)
1352 void *object
= head
;
1353 void *tail_obj
= tail
? : head
;
1356 slab_free_hook(s
, object
);
1357 } while ((object
!= tail_obj
) &&
1358 (object
= get_freepointer(s
, object
)));
1362 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1365 setup_object_debug(s
, page
, object
);
1366 if (unlikely(s
->ctor
)) {
1367 kasan_unpoison_object_data(s
, object
);
1369 kasan_poison_object_data(s
, object
);
1374 * Slab allocation and freeing
1376 static inline struct page
*alloc_slab_page(struct kmem_cache
*s
,
1377 gfp_t flags
, int node
, struct kmem_cache_order_objects oo
)
1380 int order
= oo_order(oo
);
1382 flags
|= __GFP_NOTRACK
;
1384 if (node
== NUMA_NO_NODE
)
1385 page
= alloc_pages(flags
, order
);
1387 page
= __alloc_pages_node(node
, flags
, order
);
1389 if (page
&& memcg_charge_slab(page
, flags
, order
, s
)) {
1390 __free_pages(page
, order
);
1397 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1400 struct kmem_cache_order_objects oo
= s
->oo
;
1405 flags
&= gfp_allowed_mask
;
1407 if (gfpflags_allow_blocking(flags
))
1410 flags
|= s
->allocflags
;
1413 * Let the initial higher-order allocation fail under memory pressure
1414 * so we fall-back to the minimum order allocation.
1416 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1417 if ((alloc_gfp
& __GFP_DIRECT_RECLAIM
) && oo_order(oo
) > oo_order(s
->min
))
1418 alloc_gfp
= (alloc_gfp
| __GFP_NOMEMALLOC
) & ~__GFP_DIRECT_RECLAIM
;
1420 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1421 if (unlikely(!page
)) {
1425 * Allocation may have failed due to fragmentation.
1426 * Try a lower order alloc if possible
1428 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1429 if (unlikely(!page
))
1431 stat(s
, ORDER_FALLBACK
);
1434 if (kmemcheck_enabled
&&
1435 !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1436 int pages
= 1 << oo_order(oo
);
1438 kmemcheck_alloc_shadow(page
, oo_order(oo
), alloc_gfp
, node
);
1441 * Objects from caches that have a constructor don't get
1442 * cleared when they're allocated, so we need to do it here.
1445 kmemcheck_mark_uninitialized_pages(page
, pages
);
1447 kmemcheck_mark_unallocated_pages(page
, pages
);
1450 page
->objects
= oo_objects(oo
);
1452 order
= compound_order(page
);
1453 page
->slab_cache
= s
;
1454 __SetPageSlab(page
);
1455 if (page_is_pfmemalloc(page
))
1456 SetPageSlabPfmemalloc(page
);
1458 start
= page_address(page
);
1460 if (unlikely(s
->flags
& SLAB_POISON
))
1461 memset(start
, POISON_INUSE
, PAGE_SIZE
<< order
);
1463 kasan_poison_slab(page
);
1465 for_each_object_idx(p
, idx
, s
, start
, page
->objects
) {
1466 setup_object(s
, page
, p
);
1467 if (likely(idx
< page
->objects
))
1468 set_freepointer(s
, p
, p
+ s
->size
);
1470 set_freepointer(s
, p
, NULL
);
1473 page
->freelist
= start
;
1474 page
->inuse
= page
->objects
;
1478 if (gfpflags_allow_blocking(flags
))
1479 local_irq_disable();
1483 mod_zone_page_state(page_zone(page
),
1484 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1485 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1488 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1493 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1495 if (unlikely(flags
& GFP_SLAB_BUG_MASK
)) {
1496 pr_emerg("gfp: %u\n", flags
& GFP_SLAB_BUG_MASK
);
1500 return allocate_slab(s
,
1501 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1504 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1506 int order
= compound_order(page
);
1507 int pages
= 1 << order
;
1509 if (kmem_cache_debug(s
)) {
1512 slab_pad_check(s
, page
);
1513 for_each_object(p
, s
, page_address(page
),
1515 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1518 kmemcheck_free_shadow(page
, compound_order(page
));
1520 mod_zone_page_state(page_zone(page
),
1521 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1522 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1525 __ClearPageSlabPfmemalloc(page
);
1526 __ClearPageSlab(page
);
1528 page_mapcount_reset(page
);
1529 if (current
->reclaim_state
)
1530 current
->reclaim_state
->reclaimed_slab
+= pages
;
1531 __free_kmem_pages(page
, order
);
1534 #define need_reserve_slab_rcu \
1535 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1537 static void rcu_free_slab(struct rcu_head
*h
)
1541 if (need_reserve_slab_rcu
)
1542 page
= virt_to_head_page(h
);
1544 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1546 __free_slab(page
->slab_cache
, page
);
1549 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1551 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1552 struct rcu_head
*head
;
1554 if (need_reserve_slab_rcu
) {
1555 int order
= compound_order(page
);
1556 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1558 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1559 head
= page_address(page
) + offset
;
1561 head
= &page
->rcu_head
;
1564 call_rcu(head
, rcu_free_slab
);
1566 __free_slab(s
, page
);
1569 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1571 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1576 * Management of partially allocated slabs.
1579 __add_partial(struct kmem_cache_node
*n
, struct page
*page
, int tail
)
1582 if (tail
== DEACTIVATE_TO_TAIL
)
1583 list_add_tail(&page
->lru
, &n
->partial
);
1585 list_add(&page
->lru
, &n
->partial
);
1588 static inline void add_partial(struct kmem_cache_node
*n
,
1589 struct page
*page
, int tail
)
1591 lockdep_assert_held(&n
->list_lock
);
1592 __add_partial(n
, page
, tail
);
1596 __remove_partial(struct kmem_cache_node
*n
, struct page
*page
)
1598 list_del(&page
->lru
);
1602 static inline void remove_partial(struct kmem_cache_node
*n
,
1605 lockdep_assert_held(&n
->list_lock
);
1606 __remove_partial(n
, page
);
1610 * Remove slab from the partial list, freeze it and
1611 * return the pointer to the freelist.
1613 * Returns a list of objects or NULL if it fails.
1615 static inline void *acquire_slab(struct kmem_cache
*s
,
1616 struct kmem_cache_node
*n
, struct page
*page
,
1617 int mode
, int *objects
)
1620 unsigned long counters
;
1623 lockdep_assert_held(&n
->list_lock
);
1626 * Zap the freelist and set the frozen bit.
1627 * The old freelist is the list of objects for the
1628 * per cpu allocation list.
1630 freelist
= page
->freelist
;
1631 counters
= page
->counters
;
1632 new.counters
= counters
;
1633 *objects
= new.objects
- new.inuse
;
1635 new.inuse
= page
->objects
;
1636 new.freelist
= NULL
;
1638 new.freelist
= freelist
;
1641 VM_BUG_ON(new.frozen
);
1644 if (!__cmpxchg_double_slab(s
, page
,
1646 new.freelist
, new.counters
,
1650 remove_partial(n
, page
);
1655 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1656 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
);
1659 * Try to allocate a partial slab from a specific node.
1661 static void *get_partial_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1662 struct kmem_cache_cpu
*c
, gfp_t flags
)
1664 struct page
*page
, *page2
;
1665 void *object
= NULL
;
1670 * Racy check. If we mistakenly see no partial slabs then we
1671 * just allocate an empty slab. If we mistakenly try to get a
1672 * partial slab and there is none available then get_partials()
1675 if (!n
|| !n
->nr_partial
)
1678 spin_lock(&n
->list_lock
);
1679 list_for_each_entry_safe(page
, page2
, &n
->partial
, lru
) {
1682 if (!pfmemalloc_match(page
, flags
))
1685 t
= acquire_slab(s
, n
, page
, object
== NULL
, &objects
);
1689 available
+= objects
;
1692 stat(s
, ALLOC_FROM_PARTIAL
);
1695 put_cpu_partial(s
, page
, 0);
1696 stat(s
, CPU_PARTIAL_NODE
);
1698 if (!kmem_cache_has_cpu_partial(s
)
1699 || available
> s
->cpu_partial
/ 2)
1703 spin_unlock(&n
->list_lock
);
1708 * Get a page from somewhere. Search in increasing NUMA distances.
1710 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1711 struct kmem_cache_cpu
*c
)
1714 struct zonelist
*zonelist
;
1717 enum zone_type high_zoneidx
= gfp_zone(flags
);
1719 unsigned int cpuset_mems_cookie
;
1722 * The defrag ratio allows a configuration of the tradeoffs between
1723 * inter node defragmentation and node local allocations. A lower
1724 * defrag_ratio increases the tendency to do local allocations
1725 * instead of attempting to obtain partial slabs from other nodes.
1727 * If the defrag_ratio is set to 0 then kmalloc() always
1728 * returns node local objects. If the ratio is higher then kmalloc()
1729 * may return off node objects because partial slabs are obtained
1730 * from other nodes and filled up.
1732 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1733 * defrag_ratio = 1000) then every (well almost) allocation will
1734 * first attempt to defrag slab caches on other nodes. This means
1735 * scanning over all nodes to look for partial slabs which may be
1736 * expensive if we do it every time we are trying to find a slab
1737 * with available objects.
1739 if (!s
->remote_node_defrag_ratio
||
1740 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1744 cpuset_mems_cookie
= read_mems_allowed_begin();
1745 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
1746 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1747 struct kmem_cache_node
*n
;
1749 n
= get_node(s
, zone_to_nid(zone
));
1751 if (n
&& cpuset_zone_allowed(zone
, flags
) &&
1752 n
->nr_partial
> s
->min_partial
) {
1753 object
= get_partial_node(s
, n
, c
, flags
);
1756 * Don't check read_mems_allowed_retry()
1757 * here - if mems_allowed was updated in
1758 * parallel, that was a harmless race
1759 * between allocation and the cpuset
1766 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
1772 * Get a partial page, lock it and return it.
1774 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1775 struct kmem_cache_cpu
*c
)
1778 int searchnode
= node
;
1780 if (node
== NUMA_NO_NODE
)
1781 searchnode
= numa_mem_id();
1782 else if (!node_present_pages(node
))
1783 searchnode
= node_to_mem_node(node
);
1785 object
= get_partial_node(s
, get_node(s
, searchnode
), c
, flags
);
1786 if (object
|| node
!= NUMA_NO_NODE
)
1789 return get_any_partial(s
, flags
, c
);
1792 #ifdef CONFIG_PREEMPT
1794 * Calculate the next globally unique transaction for disambiguiation
1795 * during cmpxchg. The transactions start with the cpu number and are then
1796 * incremented by CONFIG_NR_CPUS.
1798 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1801 * No preemption supported therefore also no need to check for
1807 static inline unsigned long next_tid(unsigned long tid
)
1809 return tid
+ TID_STEP
;
1812 static inline unsigned int tid_to_cpu(unsigned long tid
)
1814 return tid
% TID_STEP
;
1817 static inline unsigned long tid_to_event(unsigned long tid
)
1819 return tid
/ TID_STEP
;
1822 static inline unsigned int init_tid(int cpu
)
1827 static inline void note_cmpxchg_failure(const char *n
,
1828 const struct kmem_cache
*s
, unsigned long tid
)
1830 #ifdef SLUB_DEBUG_CMPXCHG
1831 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1833 pr_info("%s %s: cmpxchg redo ", n
, s
->name
);
1835 #ifdef CONFIG_PREEMPT
1836 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
1837 pr_warn("due to cpu change %d -> %d\n",
1838 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
1841 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
1842 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1843 tid_to_event(tid
), tid_to_event(actual_tid
));
1845 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1846 actual_tid
, tid
, next_tid(tid
));
1848 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
1851 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
1855 for_each_possible_cpu(cpu
)
1856 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
1860 * Remove the cpu slab
1862 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
,
1865 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
1866 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1868 enum slab_modes l
= M_NONE
, m
= M_NONE
;
1870 int tail
= DEACTIVATE_TO_HEAD
;
1874 if (page
->freelist
) {
1875 stat(s
, DEACTIVATE_REMOTE_FREES
);
1876 tail
= DEACTIVATE_TO_TAIL
;
1880 * Stage one: Free all available per cpu objects back
1881 * to the page freelist while it is still frozen. Leave the
1884 * There is no need to take the list->lock because the page
1887 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
1889 unsigned long counters
;
1892 prior
= page
->freelist
;
1893 counters
= page
->counters
;
1894 set_freepointer(s
, freelist
, prior
);
1895 new.counters
= counters
;
1897 VM_BUG_ON(!new.frozen
);
1899 } while (!__cmpxchg_double_slab(s
, page
,
1901 freelist
, new.counters
,
1902 "drain percpu freelist"));
1904 freelist
= nextfree
;
1908 * Stage two: Ensure that the page is unfrozen while the
1909 * list presence reflects the actual number of objects
1912 * We setup the list membership and then perform a cmpxchg
1913 * with the count. If there is a mismatch then the page
1914 * is not unfrozen but the page is on the wrong list.
1916 * Then we restart the process which may have to remove
1917 * the page from the list that we just put it on again
1918 * because the number of objects in the slab may have
1923 old
.freelist
= page
->freelist
;
1924 old
.counters
= page
->counters
;
1925 VM_BUG_ON(!old
.frozen
);
1927 /* Determine target state of the slab */
1928 new.counters
= old
.counters
;
1931 set_freepointer(s
, freelist
, old
.freelist
);
1932 new.freelist
= freelist
;
1934 new.freelist
= old
.freelist
;
1938 if (!new.inuse
&& n
->nr_partial
>= s
->min_partial
)
1940 else if (new.freelist
) {
1945 * Taking the spinlock removes the possiblity
1946 * that acquire_slab() will see a slab page that
1949 spin_lock(&n
->list_lock
);
1953 if (kmem_cache_debug(s
) && !lock
) {
1956 * This also ensures that the scanning of full
1957 * slabs from diagnostic functions will not see
1960 spin_lock(&n
->list_lock
);
1968 remove_partial(n
, page
);
1970 else if (l
== M_FULL
)
1972 remove_full(s
, n
, page
);
1974 if (m
== M_PARTIAL
) {
1976 add_partial(n
, page
, tail
);
1979 } else if (m
== M_FULL
) {
1981 stat(s
, DEACTIVATE_FULL
);
1982 add_full(s
, n
, page
);
1988 if (!__cmpxchg_double_slab(s
, page
,
1989 old
.freelist
, old
.counters
,
1990 new.freelist
, new.counters
,
1995 spin_unlock(&n
->list_lock
);
1998 stat(s
, DEACTIVATE_EMPTY
);
1999 discard_slab(s
, page
);
2005 * Unfreeze all the cpu partial slabs.
2007 * This function must be called with interrupts disabled
2008 * for the cpu using c (or some other guarantee must be there
2009 * to guarantee no concurrent accesses).
2011 static void unfreeze_partials(struct kmem_cache
*s
,
2012 struct kmem_cache_cpu
*c
)
2014 #ifdef CONFIG_SLUB_CPU_PARTIAL
2015 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
2016 struct page
*page
, *discard_page
= NULL
;
2018 while ((page
= c
->partial
)) {
2022 c
->partial
= page
->next
;
2024 n2
= get_node(s
, page_to_nid(page
));
2027 spin_unlock(&n
->list_lock
);
2030 spin_lock(&n
->list_lock
);
2035 old
.freelist
= page
->freelist
;
2036 old
.counters
= page
->counters
;
2037 VM_BUG_ON(!old
.frozen
);
2039 new.counters
= old
.counters
;
2040 new.freelist
= old
.freelist
;
2044 } while (!__cmpxchg_double_slab(s
, page
,
2045 old
.freelist
, old
.counters
,
2046 new.freelist
, new.counters
,
2047 "unfreezing slab"));
2049 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
)) {
2050 page
->next
= discard_page
;
2051 discard_page
= page
;
2053 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2054 stat(s
, FREE_ADD_PARTIAL
);
2059 spin_unlock(&n
->list_lock
);
2061 while (discard_page
) {
2062 page
= discard_page
;
2063 discard_page
= discard_page
->next
;
2065 stat(s
, DEACTIVATE_EMPTY
);
2066 discard_slab(s
, page
);
2073 * Put a page that was just frozen (in __slab_free) into a partial page
2074 * slot if available. This is done without interrupts disabled and without
2075 * preemption disabled. The cmpxchg is racy and may put the partial page
2076 * onto a random cpus partial slot.
2078 * If we did not find a slot then simply move all the partials to the
2079 * per node partial list.
2081 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
2083 #ifdef CONFIG_SLUB_CPU_PARTIAL
2084 struct page
*oldpage
;
2092 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
2095 pobjects
= oldpage
->pobjects
;
2096 pages
= oldpage
->pages
;
2097 if (drain
&& pobjects
> s
->cpu_partial
) {
2098 unsigned long flags
;
2100 * partial array is full. Move the existing
2101 * set to the per node partial list.
2103 local_irq_save(flags
);
2104 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2105 local_irq_restore(flags
);
2109 stat(s
, CPU_PARTIAL_DRAIN
);
2114 pobjects
+= page
->objects
- page
->inuse
;
2116 page
->pages
= pages
;
2117 page
->pobjects
= pobjects
;
2118 page
->next
= oldpage
;
2120 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
)
2122 if (unlikely(!s
->cpu_partial
)) {
2123 unsigned long flags
;
2125 local_irq_save(flags
);
2126 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2127 local_irq_restore(flags
);
2133 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
2135 stat(s
, CPUSLAB_FLUSH
);
2136 deactivate_slab(s
, c
->page
, c
->freelist
);
2138 c
->tid
= next_tid(c
->tid
);
2146 * Called from IPI handler with interrupts disabled.
2148 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2150 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2156 unfreeze_partials(s
, c
);
2160 static void flush_cpu_slab(void *d
)
2162 struct kmem_cache
*s
= d
;
2164 __flush_cpu_slab(s
, smp_processor_id());
2167 static bool has_cpu_slab(int cpu
, void *info
)
2169 struct kmem_cache
*s
= info
;
2170 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2172 return c
->page
|| c
->partial
;
2175 static void flush_all(struct kmem_cache
*s
)
2177 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1, GFP_ATOMIC
);
2181 * Check if the objects in a per cpu structure fit numa
2182 * locality expectations.
2184 static inline int node_match(struct page
*page
, int node
)
2187 if (!page
|| (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
))
2193 #ifdef CONFIG_SLUB_DEBUG
2194 static int count_free(struct page
*page
)
2196 return page
->objects
- page
->inuse
;
2199 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2201 return atomic_long_read(&n
->total_objects
);
2203 #endif /* CONFIG_SLUB_DEBUG */
2205 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2206 static unsigned long count_partial(struct kmem_cache_node
*n
,
2207 int (*get_count
)(struct page
*))
2209 unsigned long flags
;
2210 unsigned long x
= 0;
2213 spin_lock_irqsave(&n
->list_lock
, flags
);
2214 list_for_each_entry(page
, &n
->partial
, lru
)
2215 x
+= get_count(page
);
2216 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2219 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2221 static noinline
void
2222 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2224 #ifdef CONFIG_SLUB_DEBUG
2225 static DEFINE_RATELIMIT_STATE(slub_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
2226 DEFAULT_RATELIMIT_BURST
);
2228 struct kmem_cache_node
*n
;
2230 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slub_oom_rs
))
2233 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2235 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2236 s
->name
, s
->object_size
, s
->size
, oo_order(s
->oo
),
2239 if (oo_order(s
->min
) > get_order(s
->object_size
))
2240 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2243 for_each_kmem_cache_node(s
, node
, n
) {
2244 unsigned long nr_slabs
;
2245 unsigned long nr_objs
;
2246 unsigned long nr_free
;
2248 nr_free
= count_partial(n
, count_free
);
2249 nr_slabs
= node_nr_slabs(n
);
2250 nr_objs
= node_nr_objs(n
);
2252 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2253 node
, nr_slabs
, nr_objs
, nr_free
);
2258 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2259 int node
, struct kmem_cache_cpu
**pc
)
2262 struct kmem_cache_cpu
*c
= *pc
;
2265 freelist
= get_partial(s
, flags
, node
, c
);
2270 page
= new_slab(s
, flags
, node
);
2272 c
= raw_cpu_ptr(s
->cpu_slab
);
2277 * No other reference to the page yet so we can
2278 * muck around with it freely without cmpxchg
2280 freelist
= page
->freelist
;
2281 page
->freelist
= NULL
;
2283 stat(s
, ALLOC_SLAB
);
2292 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2294 if (unlikely(PageSlabPfmemalloc(page
)))
2295 return gfp_pfmemalloc_allowed(gfpflags
);
2301 * Check the page->freelist of a page and either transfer the freelist to the
2302 * per cpu freelist or deactivate the page.
2304 * The page is still frozen if the return value is not NULL.
2306 * If this function returns NULL then the page has been unfrozen.
2308 * This function must be called with interrupt disabled.
2310 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2313 unsigned long counters
;
2317 freelist
= page
->freelist
;
2318 counters
= page
->counters
;
2320 new.counters
= counters
;
2321 VM_BUG_ON(!new.frozen
);
2323 new.inuse
= page
->objects
;
2324 new.frozen
= freelist
!= NULL
;
2326 } while (!__cmpxchg_double_slab(s
, page
,
2335 * Slow path. The lockless freelist is empty or we need to perform
2338 * Processing is still very fast if new objects have been freed to the
2339 * regular freelist. In that case we simply take over the regular freelist
2340 * as the lockless freelist and zap the regular freelist.
2342 * If that is not working then we fall back to the partial lists. We take the
2343 * first element of the freelist as the object to allocate now and move the
2344 * rest of the freelist to the lockless freelist.
2346 * And if we were unable to get a new slab from the partial slab lists then
2347 * we need to allocate a new slab. This is the slowest path since it involves
2348 * a call to the page allocator and the setup of a new slab.
2350 * Version of __slab_alloc to use when we know that interrupts are
2351 * already disabled (which is the case for bulk allocation).
2353 static void *___slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2354 unsigned long addr
, struct kmem_cache_cpu
*c
)
2364 if (unlikely(!node_match(page
, node
))) {
2365 int searchnode
= node
;
2367 if (node
!= NUMA_NO_NODE
&& !node_present_pages(node
))
2368 searchnode
= node_to_mem_node(node
);
2370 if (unlikely(!node_match(page
, searchnode
))) {
2371 stat(s
, ALLOC_NODE_MISMATCH
);
2372 deactivate_slab(s
, page
, c
->freelist
);
2380 * By rights, we should be searching for a slab page that was
2381 * PFMEMALLOC but right now, we are losing the pfmemalloc
2382 * information when the page leaves the per-cpu allocator
2384 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2385 deactivate_slab(s
, page
, c
->freelist
);
2391 /* must check again c->freelist in case of cpu migration or IRQ */
2392 freelist
= c
->freelist
;
2396 freelist
= get_freelist(s
, page
);
2400 stat(s
, DEACTIVATE_BYPASS
);
2404 stat(s
, ALLOC_REFILL
);
2408 * freelist is pointing to the list of objects to be used.
2409 * page is pointing to the page from which the objects are obtained.
2410 * That page must be frozen for per cpu allocations to work.
2412 VM_BUG_ON(!c
->page
->frozen
);
2413 c
->freelist
= get_freepointer(s
, freelist
);
2414 c
->tid
= next_tid(c
->tid
);
2420 page
= c
->page
= c
->partial
;
2421 c
->partial
= page
->next
;
2422 stat(s
, CPU_PARTIAL_ALLOC
);
2427 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2429 if (unlikely(!freelist
)) {
2430 slab_out_of_memory(s
, gfpflags
, node
);
2435 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2438 /* Only entered in the debug case */
2439 if (kmem_cache_debug(s
) &&
2440 !alloc_debug_processing(s
, page
, freelist
, addr
))
2441 goto new_slab
; /* Slab failed checks. Next slab needed */
2443 deactivate_slab(s
, page
, get_freepointer(s
, freelist
));
2450 * Another one that disabled interrupt and compensates for possible
2451 * cpu changes by refetching the per cpu area pointer.
2453 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2454 unsigned long addr
, struct kmem_cache_cpu
*c
)
2457 unsigned long flags
;
2459 local_irq_save(flags
);
2460 #ifdef CONFIG_PREEMPT
2462 * We may have been preempted and rescheduled on a different
2463 * cpu before disabling interrupts. Need to reload cpu area
2466 c
= this_cpu_ptr(s
->cpu_slab
);
2469 p
= ___slab_alloc(s
, gfpflags
, node
, addr
, c
);
2470 local_irq_restore(flags
);
2475 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2476 * have the fastpath folded into their functions. So no function call
2477 * overhead for requests that can be satisfied on the fastpath.
2479 * The fastpath works by first checking if the lockless freelist can be used.
2480 * If not then __slab_alloc is called for slow processing.
2482 * Otherwise we can simply pick the next object from the lockless free list.
2484 static __always_inline
void *slab_alloc_node(struct kmem_cache
*s
,
2485 gfp_t gfpflags
, int node
, unsigned long addr
)
2488 struct kmem_cache_cpu
*c
;
2492 s
= slab_pre_alloc_hook(s
, gfpflags
);
2497 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2498 * enabled. We may switch back and forth between cpus while
2499 * reading from one cpu area. That does not matter as long
2500 * as we end up on the original cpu again when doing the cmpxchg.
2502 * We should guarantee that tid and kmem_cache are retrieved on
2503 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2504 * to check if it is matched or not.
2507 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2508 c
= raw_cpu_ptr(s
->cpu_slab
);
2509 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2510 unlikely(tid
!= READ_ONCE(c
->tid
)));
2513 * Irqless object alloc/free algorithm used here depends on sequence
2514 * of fetching cpu_slab's data. tid should be fetched before anything
2515 * on c to guarantee that object and page associated with previous tid
2516 * won't be used with current tid. If we fetch tid first, object and
2517 * page could be one associated with next tid and our alloc/free
2518 * request will be failed. In this case, we will retry. So, no problem.
2523 * The transaction ids are globally unique per cpu and per operation on
2524 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2525 * occurs on the right processor and that there was no operation on the
2526 * linked list in between.
2529 object
= c
->freelist
;
2531 if (unlikely(!object
|| !node_match(page
, node
))) {
2532 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2533 stat(s
, ALLOC_SLOWPATH
);
2535 void *next_object
= get_freepointer_safe(s
, object
);
2538 * The cmpxchg will only match if there was no additional
2539 * operation and if we are on the right processor.
2541 * The cmpxchg does the following atomically (without lock
2543 * 1. Relocate first pointer to the current per cpu area.
2544 * 2. Verify that tid and freelist have not been changed
2545 * 3. If they were not changed replace tid and freelist
2547 * Since this is without lock semantics the protection is only
2548 * against code executing on this cpu *not* from access by
2551 if (unlikely(!this_cpu_cmpxchg_double(
2552 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2554 next_object
, next_tid(tid
)))) {
2556 note_cmpxchg_failure("slab_alloc", s
, tid
);
2559 prefetch_freepointer(s
, next_object
);
2560 stat(s
, ALLOC_FASTPATH
);
2563 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2564 memset(object
, 0, s
->object_size
);
2566 slab_post_alloc_hook(s
, gfpflags
, 1, &object
);
2571 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2572 gfp_t gfpflags
, unsigned long addr
)
2574 return slab_alloc_node(s
, gfpflags
, NUMA_NO_NODE
, addr
);
2577 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2579 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2581 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
,
2586 EXPORT_SYMBOL(kmem_cache_alloc
);
2588 #ifdef CONFIG_TRACING
2589 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2591 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2592 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2593 kasan_kmalloc(s
, ret
, size
);
2596 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2600 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2602 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2604 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2605 s
->object_size
, s
->size
, gfpflags
, node
);
2609 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2611 #ifdef CONFIG_TRACING
2612 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2614 int node
, size_t size
)
2616 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2618 trace_kmalloc_node(_RET_IP_
, ret
,
2619 size
, s
->size
, gfpflags
, node
);
2621 kasan_kmalloc(s
, ret
, size
);
2624 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2629 * Slow path handling. This may still be called frequently since objects
2630 * have a longer lifetime than the cpu slabs in most processing loads.
2632 * So we still attempt to reduce cache line usage. Just take the slab
2633 * lock and free the item. If there is no additional partial page
2634 * handling required then we can return immediately.
2636 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2637 void *head
, void *tail
, int cnt
,
2644 unsigned long counters
;
2645 struct kmem_cache_node
*n
= NULL
;
2646 unsigned long uninitialized_var(flags
);
2648 stat(s
, FREE_SLOWPATH
);
2650 if (kmem_cache_debug(s
) &&
2651 !(n
= free_debug_processing(s
, page
, head
, tail
, cnt
,
2657 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2660 prior
= page
->freelist
;
2661 counters
= page
->counters
;
2662 set_freepointer(s
, tail
, prior
);
2663 new.counters
= counters
;
2664 was_frozen
= new.frozen
;
2666 if ((!new.inuse
|| !prior
) && !was_frozen
) {
2668 if (kmem_cache_has_cpu_partial(s
) && !prior
) {
2671 * Slab was on no list before and will be
2673 * We can defer the list move and instead
2678 } else { /* Needs to be taken off a list */
2680 n
= get_node(s
, page_to_nid(page
));
2682 * Speculatively acquire the list_lock.
2683 * If the cmpxchg does not succeed then we may
2684 * drop the list_lock without any processing.
2686 * Otherwise the list_lock will synchronize with
2687 * other processors updating the list of slabs.
2689 spin_lock_irqsave(&n
->list_lock
, flags
);
2694 } while (!cmpxchg_double_slab(s
, page
,
2702 * If we just froze the page then put it onto the
2703 * per cpu partial list.
2705 if (new.frozen
&& !was_frozen
) {
2706 put_cpu_partial(s
, page
, 1);
2707 stat(s
, CPU_PARTIAL_FREE
);
2710 * The list lock was not taken therefore no list
2711 * activity can be necessary.
2714 stat(s
, FREE_FROZEN
);
2718 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
))
2722 * Objects left in the slab. If it was not on the partial list before
2725 if (!kmem_cache_has_cpu_partial(s
) && unlikely(!prior
)) {
2726 if (kmem_cache_debug(s
))
2727 remove_full(s
, n
, page
);
2728 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2729 stat(s
, FREE_ADD_PARTIAL
);
2731 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2737 * Slab on the partial list.
2739 remove_partial(n
, page
);
2740 stat(s
, FREE_REMOVE_PARTIAL
);
2742 /* Slab must be on the full list */
2743 remove_full(s
, n
, page
);
2746 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2748 discard_slab(s
, page
);
2752 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2753 * can perform fastpath freeing without additional function calls.
2755 * The fastpath is only possible if we are freeing to the current cpu slab
2756 * of this processor. This typically the case if we have just allocated
2759 * If fastpath is not possible then fall back to __slab_free where we deal
2760 * with all sorts of special processing.
2762 * Bulk free of a freelist with several objects (all pointing to the
2763 * same page) possible by specifying head and tail ptr, plus objects
2764 * count (cnt). Bulk free indicated by tail pointer being set.
2766 static __always_inline
void slab_free(struct kmem_cache
*s
, struct page
*page
,
2767 void *head
, void *tail
, int cnt
,
2770 void *tail_obj
= tail
? : head
;
2771 struct kmem_cache_cpu
*c
;
2774 slab_free_freelist_hook(s
, head
, tail
);
2778 * Determine the currently cpus per cpu slab.
2779 * The cpu may change afterward. However that does not matter since
2780 * data is retrieved via this pointer. If we are on the same cpu
2781 * during the cmpxchg then the free will succeed.
2784 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2785 c
= raw_cpu_ptr(s
->cpu_slab
);
2786 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2787 unlikely(tid
!= READ_ONCE(c
->tid
)));
2789 /* Same with comment on barrier() in slab_alloc_node() */
2792 if (likely(page
== c
->page
)) {
2793 set_freepointer(s
, tail_obj
, c
->freelist
);
2795 if (unlikely(!this_cpu_cmpxchg_double(
2796 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2798 head
, next_tid(tid
)))) {
2800 note_cmpxchg_failure("slab_free", s
, tid
);
2803 stat(s
, FREE_FASTPATH
);
2805 __slab_free(s
, page
, head
, tail_obj
, cnt
, addr
);
2809 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
2811 s
= cache_from_obj(s
, x
);
2814 slab_free(s
, virt_to_head_page(x
), x
, NULL
, 1, _RET_IP_
);
2815 trace_kmem_cache_free(_RET_IP_
, x
);
2817 EXPORT_SYMBOL(kmem_cache_free
);
2819 struct detached_freelist
{
2827 * This function progressively scans the array with free objects (with
2828 * a limited look ahead) and extract objects belonging to the same
2829 * page. It builds a detached freelist directly within the given
2830 * page/objects. This can happen without any need for
2831 * synchronization, because the objects are owned by running process.
2832 * The freelist is build up as a single linked list in the objects.
2833 * The idea is, that this detached freelist can then be bulk
2834 * transferred to the real freelist(s), but only requiring a single
2835 * synchronization primitive. Look ahead in the array is limited due
2836 * to performance reasons.
2838 static int build_detached_freelist(struct kmem_cache
*s
, size_t size
,
2839 void **p
, struct detached_freelist
*df
)
2841 size_t first_skipped_index
= 0;
2845 /* Always re-init detached_freelist */
2850 } while (!object
&& size
);
2855 /* Start new detached freelist */
2856 set_freepointer(s
, object
, NULL
);
2857 df
->page
= virt_to_head_page(object
);
2859 df
->freelist
= object
;
2860 p
[size
] = NULL
; /* mark object processed */
2866 continue; /* Skip processed objects */
2868 /* df->page is always set at this point */
2869 if (df
->page
== virt_to_head_page(object
)) {
2870 /* Opportunity build freelist */
2871 set_freepointer(s
, object
, df
->freelist
);
2872 df
->freelist
= object
;
2874 p
[size
] = NULL
; /* mark object processed */
2879 /* Limit look ahead search */
2883 if (!first_skipped_index
)
2884 first_skipped_index
= size
+ 1;
2887 return first_skipped_index
;
2891 /* Note that interrupts must be enabled when calling this function. */
2892 void kmem_cache_free_bulk(struct kmem_cache
*orig_s
, size_t size
, void **p
)
2898 struct detached_freelist df
;
2899 struct kmem_cache
*s
;
2901 /* Support for memcg */
2902 s
= cache_from_obj(orig_s
, p
[size
- 1]);
2904 size
= build_detached_freelist(s
, size
, p
, &df
);
2905 if (unlikely(!df
.page
))
2908 slab_free(s
, df
.page
, df
.freelist
, df
.tail
, df
.cnt
, _RET_IP_
);
2909 } while (likely(size
));
2911 EXPORT_SYMBOL(kmem_cache_free_bulk
);
2913 /* Note that interrupts must be enabled when calling this function. */
2914 int kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t size
,
2917 struct kmem_cache_cpu
*c
;
2920 /* memcg and kmem_cache debug support */
2921 s
= slab_pre_alloc_hook(s
, flags
);
2925 * Drain objects in the per cpu slab, while disabling local
2926 * IRQs, which protects against PREEMPT and interrupts
2927 * handlers invoking normal fastpath.
2929 local_irq_disable();
2930 c
= this_cpu_ptr(s
->cpu_slab
);
2932 for (i
= 0; i
< size
; i
++) {
2933 void *object
= c
->freelist
;
2935 if (unlikely(!object
)) {
2937 * Invoking slow path likely have side-effect
2938 * of re-populating per CPU c->freelist
2940 p
[i
] = ___slab_alloc(s
, flags
, NUMA_NO_NODE
,
2942 if (unlikely(!p
[i
]))
2945 c
= this_cpu_ptr(s
->cpu_slab
);
2946 continue; /* goto for-loop */
2948 c
->freelist
= get_freepointer(s
, object
);
2951 c
->tid
= next_tid(c
->tid
);
2954 /* Clear memory outside IRQ disabled fastpath loop */
2955 if (unlikely(flags
& __GFP_ZERO
)) {
2958 for (j
= 0; j
< i
; j
++)
2959 memset(p
[j
], 0, s
->object_size
);
2962 /* memcg and kmem_cache debug support */
2963 slab_post_alloc_hook(s
, flags
, size
, p
);
2967 slab_post_alloc_hook(s
, flags
, i
, p
);
2968 __kmem_cache_free_bulk(s
, i
, p
);
2971 EXPORT_SYMBOL(kmem_cache_alloc_bulk
);
2975 * Object placement in a slab is made very easy because we always start at
2976 * offset 0. If we tune the size of the object to the alignment then we can
2977 * get the required alignment by putting one properly sized object after
2980 * Notice that the allocation order determines the sizes of the per cpu
2981 * caches. Each processor has always one slab available for allocations.
2982 * Increasing the allocation order reduces the number of times that slabs
2983 * must be moved on and off the partial lists and is therefore a factor in
2988 * Mininum / Maximum order of slab pages. This influences locking overhead
2989 * and slab fragmentation. A higher order reduces the number of partial slabs
2990 * and increases the number of allocations possible without having to
2991 * take the list_lock.
2993 static int slub_min_order
;
2994 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
2995 static int slub_min_objects
;
2998 * Calculate the order of allocation given an slab object size.
3000 * The order of allocation has significant impact on performance and other
3001 * system components. Generally order 0 allocations should be preferred since
3002 * order 0 does not cause fragmentation in the page allocator. Larger objects
3003 * be problematic to put into order 0 slabs because there may be too much
3004 * unused space left. We go to a higher order if more than 1/16th of the slab
3007 * In order to reach satisfactory performance we must ensure that a minimum
3008 * number of objects is in one slab. Otherwise we may generate too much
3009 * activity on the partial lists which requires taking the list_lock. This is
3010 * less a concern for large slabs though which are rarely used.
3012 * slub_max_order specifies the order where we begin to stop considering the
3013 * number of objects in a slab as critical. If we reach slub_max_order then
3014 * we try to keep the page order as low as possible. So we accept more waste
3015 * of space in favor of a small page order.
3017 * Higher order allocations also allow the placement of more objects in a
3018 * slab and thereby reduce object handling overhead. If the user has
3019 * requested a higher mininum order then we start with that one instead of
3020 * the smallest order which will fit the object.
3022 static inline int slab_order(int size
, int min_objects
,
3023 int max_order
, int fract_leftover
, int reserved
)
3027 int min_order
= slub_min_order
;
3029 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
3030 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
3032 for (order
= max(min_order
, get_order(min_objects
* size
+ reserved
));
3033 order
<= max_order
; order
++) {
3035 unsigned long slab_size
= PAGE_SIZE
<< order
;
3037 rem
= (slab_size
- reserved
) % size
;
3039 if (rem
<= slab_size
/ fract_leftover
)
3046 static inline int calculate_order(int size
, int reserved
)
3054 * Attempt to find best configuration for a slab. This
3055 * works by first attempting to generate a layout with
3056 * the best configuration and backing off gradually.
3058 * First we increase the acceptable waste in a slab. Then
3059 * we reduce the minimum objects required in a slab.
3061 min_objects
= slub_min_objects
;
3063 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
3064 max_objects
= order_objects(slub_max_order
, size
, reserved
);
3065 min_objects
= min(min_objects
, max_objects
);
3067 while (min_objects
> 1) {
3069 while (fraction
>= 4) {
3070 order
= slab_order(size
, min_objects
,
3071 slub_max_order
, fraction
, reserved
);
3072 if (order
<= slub_max_order
)
3080 * We were unable to place multiple objects in a slab. Now
3081 * lets see if we can place a single object there.
3083 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
3084 if (order
<= slub_max_order
)
3088 * Doh this slab cannot be placed using slub_max_order.
3090 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
3091 if (order
< MAX_ORDER
)
3097 init_kmem_cache_node(struct kmem_cache_node
*n
)
3100 spin_lock_init(&n
->list_lock
);
3101 INIT_LIST_HEAD(&n
->partial
);
3102 #ifdef CONFIG_SLUB_DEBUG
3103 atomic_long_set(&n
->nr_slabs
, 0);
3104 atomic_long_set(&n
->total_objects
, 0);
3105 INIT_LIST_HEAD(&n
->full
);
3109 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
3111 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
3112 KMALLOC_SHIFT_HIGH
* sizeof(struct kmem_cache_cpu
));
3115 * Must align to double word boundary for the double cmpxchg
3116 * instructions to work; see __pcpu_double_call_return_bool().
3118 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
3119 2 * sizeof(void *));
3124 init_kmem_cache_cpus(s
);
3129 static struct kmem_cache
*kmem_cache_node
;
3132 * No kmalloc_node yet so do it by hand. We know that this is the first
3133 * slab on the node for this slabcache. There are no concurrent accesses
3136 * Note that this function only works on the kmem_cache_node
3137 * when allocating for the kmem_cache_node. This is used for bootstrapping
3138 * memory on a fresh node that has no slab structures yet.
3140 static void early_kmem_cache_node_alloc(int node
)
3143 struct kmem_cache_node
*n
;
3145 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
3147 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
3150 if (page_to_nid(page
) != node
) {
3151 pr_err("SLUB: Unable to allocate memory from node %d\n", node
);
3152 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3157 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
3160 kmem_cache_node
->node
[node
] = n
;
3161 #ifdef CONFIG_SLUB_DEBUG
3162 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
3163 init_tracking(kmem_cache_node
, n
);
3165 kasan_kmalloc(kmem_cache_node
, n
, sizeof(struct kmem_cache_node
));
3166 init_kmem_cache_node(n
);
3167 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
3170 * No locks need to be taken here as it has just been
3171 * initialized and there is no concurrent access.
3173 __add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
3176 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
3179 struct kmem_cache_node
*n
;
3181 for_each_kmem_cache_node(s
, node
, n
) {
3182 kmem_cache_free(kmem_cache_node
, n
);
3183 s
->node
[node
] = NULL
;
3187 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
3191 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3192 struct kmem_cache_node
*n
;
3194 if (slab_state
== DOWN
) {
3195 early_kmem_cache_node_alloc(node
);
3198 n
= kmem_cache_alloc_node(kmem_cache_node
,
3202 free_kmem_cache_nodes(s
);
3207 init_kmem_cache_node(n
);
3212 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
3214 if (min
< MIN_PARTIAL
)
3216 else if (min
> MAX_PARTIAL
)
3218 s
->min_partial
= min
;
3222 * calculate_sizes() determines the order and the distribution of data within
3225 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
3227 unsigned long flags
= s
->flags
;
3228 unsigned long size
= s
->object_size
;
3232 * Round up object size to the next word boundary. We can only
3233 * place the free pointer at word boundaries and this determines
3234 * the possible location of the free pointer.
3236 size
= ALIGN(size
, sizeof(void *));
3238 #ifdef CONFIG_SLUB_DEBUG
3240 * Determine if we can poison the object itself. If the user of
3241 * the slab may touch the object after free or before allocation
3242 * then we should never poison the object itself.
3244 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
3246 s
->flags
|= __OBJECT_POISON
;
3248 s
->flags
&= ~__OBJECT_POISON
;
3252 * If we are Redzoning then check if there is some space between the
3253 * end of the object and the free pointer. If not then add an
3254 * additional word to have some bytes to store Redzone information.
3256 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
3257 size
+= sizeof(void *);
3261 * With that we have determined the number of bytes in actual use
3262 * by the object. This is the potential offset to the free pointer.
3266 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
3269 * Relocate free pointer after the object if it is not
3270 * permitted to overwrite the first word of the object on
3273 * This is the case if we do RCU, have a constructor or
3274 * destructor or are poisoning the objects.
3277 size
+= sizeof(void *);
3280 #ifdef CONFIG_SLUB_DEBUG
3281 if (flags
& SLAB_STORE_USER
)
3283 * Need to store information about allocs and frees after
3286 size
+= 2 * sizeof(struct track
);
3288 if (flags
& SLAB_RED_ZONE
)
3290 * Add some empty padding so that we can catch
3291 * overwrites from earlier objects rather than let
3292 * tracking information or the free pointer be
3293 * corrupted if a user writes before the start
3296 size
+= sizeof(void *);
3300 * SLUB stores one object immediately after another beginning from
3301 * offset 0. In order to align the objects we have to simply size
3302 * each object to conform to the alignment.
3304 size
= ALIGN(size
, s
->align
);
3306 if (forced_order
>= 0)
3307 order
= forced_order
;
3309 order
= calculate_order(size
, s
->reserved
);
3316 s
->allocflags
|= __GFP_COMP
;
3318 if (s
->flags
& SLAB_CACHE_DMA
)
3319 s
->allocflags
|= GFP_DMA
;
3321 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3322 s
->allocflags
|= __GFP_RECLAIMABLE
;
3325 * Determine the number of objects per slab
3327 s
->oo
= oo_make(order
, size
, s
->reserved
);
3328 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
3329 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
3332 return !!oo_objects(s
->oo
);
3335 static int kmem_cache_open(struct kmem_cache
*s
, unsigned long flags
)
3337 s
->flags
= kmem_cache_flags(s
->size
, flags
, s
->name
, s
->ctor
);
3340 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_DESTROY_BY_RCU
))
3341 s
->reserved
= sizeof(struct rcu_head
);
3343 if (!calculate_sizes(s
, -1))
3345 if (disable_higher_order_debug
) {
3347 * Disable debugging flags that store metadata if the min slab
3350 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3351 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3353 if (!calculate_sizes(s
, -1))
3358 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3359 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3360 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_DEBUG_FLAGS
) == 0)
3361 /* Enable fast mode */
3362 s
->flags
|= __CMPXCHG_DOUBLE
;
3366 * The larger the object size is, the more pages we want on the partial
3367 * list to avoid pounding the page allocator excessively.
3369 set_min_partial(s
, ilog2(s
->size
) / 2);
3372 * cpu_partial determined the maximum number of objects kept in the
3373 * per cpu partial lists of a processor.
3375 * Per cpu partial lists mainly contain slabs that just have one
3376 * object freed. If they are used for allocation then they can be
3377 * filled up again with minimal effort. The slab will never hit the
3378 * per node partial lists and therefore no locking will be required.
3380 * This setting also determines
3382 * A) The number of objects from per cpu partial slabs dumped to the
3383 * per node list when we reach the limit.
3384 * B) The number of objects in cpu partial slabs to extract from the
3385 * per node list when we run out of per cpu objects. We only fetch
3386 * 50% to keep some capacity around for frees.
3388 if (!kmem_cache_has_cpu_partial(s
))
3390 else if (s
->size
>= PAGE_SIZE
)
3392 else if (s
->size
>= 1024)
3394 else if (s
->size
>= 256)
3395 s
->cpu_partial
= 13;
3397 s
->cpu_partial
= 30;
3400 s
->remote_node_defrag_ratio
= 1000;
3402 if (!init_kmem_cache_nodes(s
))
3405 if (alloc_kmem_cache_cpus(s
))
3408 free_kmem_cache_nodes(s
);
3410 if (flags
& SLAB_PANIC
)
3411 panic("Cannot create slab %s size=%lu realsize=%u "
3412 "order=%u offset=%u flags=%lx\n",
3413 s
->name
, (unsigned long)s
->size
, s
->size
,
3414 oo_order(s
->oo
), s
->offset
, flags
);
3418 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3421 #ifdef CONFIG_SLUB_DEBUG
3422 void *addr
= page_address(page
);
3424 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
3425 sizeof(long), GFP_ATOMIC
);
3428 slab_err(s
, page
, text
, s
->name
);
3431 get_map(s
, page
, map
);
3432 for_each_object(p
, s
, addr
, page
->objects
) {
3434 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3435 pr_err("INFO: Object 0x%p @offset=%tu\n", p
, p
- addr
);
3436 print_tracking(s
, p
);
3445 * Attempt to free all partial slabs on a node.
3446 * This is called from kmem_cache_close(). We must be the last thread
3447 * using the cache and therefore we do not need to lock anymore.
3449 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3451 struct page
*page
, *h
;
3453 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
3455 __remove_partial(n
, page
);
3456 discard_slab(s
, page
);
3458 list_slab_objects(s
, page
,
3459 "Objects remaining in %s on kmem_cache_close()");
3465 * Release all resources used by a slab cache.
3467 static inline int kmem_cache_close(struct kmem_cache
*s
)
3470 struct kmem_cache_node
*n
;
3473 /* Attempt to free all objects */
3474 for_each_kmem_cache_node(s
, node
, n
) {
3476 if (n
->nr_partial
|| slabs_node(s
, node
))
3479 free_percpu(s
->cpu_slab
);
3480 free_kmem_cache_nodes(s
);
3484 int __kmem_cache_shutdown(struct kmem_cache
*s
)
3486 return kmem_cache_close(s
);
3489 /********************************************************************
3491 *******************************************************************/
3493 static int __init
setup_slub_min_order(char *str
)
3495 get_option(&str
, &slub_min_order
);
3500 __setup("slub_min_order=", setup_slub_min_order
);
3502 static int __init
setup_slub_max_order(char *str
)
3504 get_option(&str
, &slub_max_order
);
3505 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
3510 __setup("slub_max_order=", setup_slub_max_order
);
3512 static int __init
setup_slub_min_objects(char *str
)
3514 get_option(&str
, &slub_min_objects
);
3519 __setup("slub_min_objects=", setup_slub_min_objects
);
3521 void *__kmalloc(size_t size
, gfp_t flags
)
3523 struct kmem_cache
*s
;
3526 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3527 return kmalloc_large(size
, flags
);
3529 s
= kmalloc_slab(size
, flags
);
3531 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3534 ret
= slab_alloc(s
, flags
, _RET_IP_
);
3536 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3538 kasan_kmalloc(s
, ret
, size
);
3542 EXPORT_SYMBOL(__kmalloc
);
3545 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3550 flags
|= __GFP_COMP
| __GFP_NOTRACK
;
3551 page
= alloc_kmem_pages_node(node
, flags
, get_order(size
));
3553 ptr
= page_address(page
);
3555 kmalloc_large_node_hook(ptr
, size
, flags
);
3559 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3561 struct kmem_cache
*s
;
3564 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3565 ret
= kmalloc_large_node(size
, flags
, node
);
3567 trace_kmalloc_node(_RET_IP_
, ret
,
3568 size
, PAGE_SIZE
<< get_order(size
),
3574 s
= kmalloc_slab(size
, flags
);
3576 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3579 ret
= slab_alloc_node(s
, flags
, node
, _RET_IP_
);
3581 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3583 kasan_kmalloc(s
, ret
, size
);
3587 EXPORT_SYMBOL(__kmalloc_node
);
3590 static size_t __ksize(const void *object
)
3594 if (unlikely(object
== ZERO_SIZE_PTR
))
3597 page
= virt_to_head_page(object
);
3599 if (unlikely(!PageSlab(page
))) {
3600 WARN_ON(!PageCompound(page
));
3601 return PAGE_SIZE
<< compound_order(page
);
3604 return slab_ksize(page
->slab_cache
);
3607 size_t ksize(const void *object
)
3609 size_t size
= __ksize(object
);
3610 /* We assume that ksize callers could use whole allocated area,
3611 so we need unpoison this area. */
3612 kasan_krealloc(object
, size
);
3615 EXPORT_SYMBOL(ksize
);
3617 void kfree(const void *x
)
3620 void *object
= (void *)x
;
3622 trace_kfree(_RET_IP_
, x
);
3624 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3627 page
= virt_to_head_page(x
);
3628 if (unlikely(!PageSlab(page
))) {
3629 BUG_ON(!PageCompound(page
));
3631 __free_kmem_pages(page
, compound_order(page
));
3634 slab_free(page
->slab_cache
, page
, object
, NULL
, 1, _RET_IP_
);
3636 EXPORT_SYMBOL(kfree
);
3638 #define SHRINK_PROMOTE_MAX 32
3641 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3642 * up most to the head of the partial lists. New allocations will then
3643 * fill those up and thus they can be removed from the partial lists.
3645 * The slabs with the least items are placed last. This results in them
3646 * being allocated from last increasing the chance that the last objects
3647 * are freed in them.
3649 int __kmem_cache_shrink(struct kmem_cache
*s
, bool deactivate
)
3653 struct kmem_cache_node
*n
;
3656 struct list_head discard
;
3657 struct list_head promote
[SHRINK_PROMOTE_MAX
];
3658 unsigned long flags
;
3663 * Disable empty slabs caching. Used to avoid pinning offline
3664 * memory cgroups by kmem pages that can be freed.
3670 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3671 * so we have to make sure the change is visible.
3673 kick_all_cpus_sync();
3677 for_each_kmem_cache_node(s
, node
, n
) {
3678 INIT_LIST_HEAD(&discard
);
3679 for (i
= 0; i
< SHRINK_PROMOTE_MAX
; i
++)
3680 INIT_LIST_HEAD(promote
+ i
);
3682 spin_lock_irqsave(&n
->list_lock
, flags
);
3685 * Build lists of slabs to discard or promote.
3687 * Note that concurrent frees may occur while we hold the
3688 * list_lock. page->inuse here is the upper limit.
3690 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3691 int free
= page
->objects
- page
->inuse
;
3693 /* Do not reread page->inuse */
3696 /* We do not keep full slabs on the list */
3699 if (free
== page
->objects
) {
3700 list_move(&page
->lru
, &discard
);
3702 } else if (free
<= SHRINK_PROMOTE_MAX
)
3703 list_move(&page
->lru
, promote
+ free
- 1);
3707 * Promote the slabs filled up most to the head of the
3710 for (i
= SHRINK_PROMOTE_MAX
- 1; i
>= 0; i
--)
3711 list_splice(promote
+ i
, &n
->partial
);
3713 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3715 /* Release empty slabs */
3716 list_for_each_entry_safe(page
, t
, &discard
, lru
)
3717 discard_slab(s
, page
);
3719 if (slabs_node(s
, node
))
3726 static int slab_mem_going_offline_callback(void *arg
)
3728 struct kmem_cache
*s
;
3730 mutex_lock(&slab_mutex
);
3731 list_for_each_entry(s
, &slab_caches
, list
)
3732 __kmem_cache_shrink(s
, false);
3733 mutex_unlock(&slab_mutex
);
3738 static void slab_mem_offline_callback(void *arg
)
3740 struct kmem_cache_node
*n
;
3741 struct kmem_cache
*s
;
3742 struct memory_notify
*marg
= arg
;
3745 offline_node
= marg
->status_change_nid_normal
;
3748 * If the node still has available memory. we need kmem_cache_node
3751 if (offline_node
< 0)
3754 mutex_lock(&slab_mutex
);
3755 list_for_each_entry(s
, &slab_caches
, list
) {
3756 n
= get_node(s
, offline_node
);
3759 * if n->nr_slabs > 0, slabs still exist on the node
3760 * that is going down. We were unable to free them,
3761 * and offline_pages() function shouldn't call this
3762 * callback. So, we must fail.
3764 BUG_ON(slabs_node(s
, offline_node
));
3766 s
->node
[offline_node
] = NULL
;
3767 kmem_cache_free(kmem_cache_node
, n
);
3770 mutex_unlock(&slab_mutex
);
3773 static int slab_mem_going_online_callback(void *arg
)
3775 struct kmem_cache_node
*n
;
3776 struct kmem_cache
*s
;
3777 struct memory_notify
*marg
= arg
;
3778 int nid
= marg
->status_change_nid_normal
;
3782 * If the node's memory is already available, then kmem_cache_node is
3783 * already created. Nothing to do.
3789 * We are bringing a node online. No memory is available yet. We must
3790 * allocate a kmem_cache_node structure in order to bring the node
3793 mutex_lock(&slab_mutex
);
3794 list_for_each_entry(s
, &slab_caches
, list
) {
3796 * XXX: kmem_cache_alloc_node will fallback to other nodes
3797 * since memory is not yet available from the node that
3800 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
3805 init_kmem_cache_node(n
);
3809 mutex_unlock(&slab_mutex
);
3813 static int slab_memory_callback(struct notifier_block
*self
,
3814 unsigned long action
, void *arg
)
3819 case MEM_GOING_ONLINE
:
3820 ret
= slab_mem_going_online_callback(arg
);
3822 case MEM_GOING_OFFLINE
:
3823 ret
= slab_mem_going_offline_callback(arg
);
3826 case MEM_CANCEL_ONLINE
:
3827 slab_mem_offline_callback(arg
);
3830 case MEM_CANCEL_OFFLINE
:
3834 ret
= notifier_from_errno(ret
);
3840 static struct notifier_block slab_memory_callback_nb
= {
3841 .notifier_call
= slab_memory_callback
,
3842 .priority
= SLAB_CALLBACK_PRI
,
3845 /********************************************************************
3846 * Basic setup of slabs
3847 *******************************************************************/
3850 * Used for early kmem_cache structures that were allocated using
3851 * the page allocator. Allocate them properly then fix up the pointers
3852 * that may be pointing to the wrong kmem_cache structure.
3855 static struct kmem_cache
* __init
bootstrap(struct kmem_cache
*static_cache
)
3858 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
3859 struct kmem_cache_node
*n
;
3861 memcpy(s
, static_cache
, kmem_cache
->object_size
);
3864 * This runs very early, and only the boot processor is supposed to be
3865 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3868 __flush_cpu_slab(s
, smp_processor_id());
3869 for_each_kmem_cache_node(s
, node
, n
) {
3872 list_for_each_entry(p
, &n
->partial
, lru
)
3875 #ifdef CONFIG_SLUB_DEBUG
3876 list_for_each_entry(p
, &n
->full
, lru
)
3880 slab_init_memcg_params(s
);
3881 list_add(&s
->list
, &slab_caches
);
3885 void __init
kmem_cache_init(void)
3887 static __initdata
struct kmem_cache boot_kmem_cache
,
3888 boot_kmem_cache_node
;
3890 if (debug_guardpage_minorder())
3893 kmem_cache_node
= &boot_kmem_cache_node
;
3894 kmem_cache
= &boot_kmem_cache
;
3896 create_boot_cache(kmem_cache_node
, "kmem_cache_node",
3897 sizeof(struct kmem_cache_node
), SLAB_HWCACHE_ALIGN
);
3899 register_hotmemory_notifier(&slab_memory_callback_nb
);
3901 /* Able to allocate the per node structures */
3902 slab_state
= PARTIAL
;
3904 create_boot_cache(kmem_cache
, "kmem_cache",
3905 offsetof(struct kmem_cache
, node
) +
3906 nr_node_ids
* sizeof(struct kmem_cache_node
*),
3907 SLAB_HWCACHE_ALIGN
);
3909 kmem_cache
= bootstrap(&boot_kmem_cache
);
3912 * Allocate kmem_cache_node properly from the kmem_cache slab.
3913 * kmem_cache_node is separately allocated so no need to
3914 * update any list pointers.
3916 kmem_cache_node
= bootstrap(&boot_kmem_cache_node
);
3918 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3919 setup_kmalloc_cache_index_table();
3920 create_kmalloc_caches(0);
3923 register_cpu_notifier(&slab_notifier
);
3926 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3928 slub_min_order
, slub_max_order
, slub_min_objects
,
3929 nr_cpu_ids
, nr_node_ids
);
3932 void __init
kmem_cache_init_late(void)
3937 __kmem_cache_alias(const char *name
, size_t size
, size_t align
,
3938 unsigned long flags
, void (*ctor
)(void *))
3940 struct kmem_cache
*s
, *c
;
3942 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3947 * Adjust the object sizes so that we clear
3948 * the complete object on kzalloc.
3950 s
->object_size
= max(s
->object_size
, (int)size
);
3951 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3953 for_each_memcg_cache(c
, s
) {
3954 c
->object_size
= s
->object_size
;
3955 c
->inuse
= max_t(int, c
->inuse
,
3956 ALIGN(size
, sizeof(void *)));
3959 if (sysfs_slab_alias(s
, name
)) {
3968 int __kmem_cache_create(struct kmem_cache
*s
, unsigned long flags
)
3972 err
= kmem_cache_open(s
, flags
);
3976 /* Mutex is not taken during early boot */
3977 if (slab_state
<= UP
)
3980 memcg_propagate_slab_attrs(s
);
3981 err
= sysfs_slab_add(s
);
3983 kmem_cache_close(s
);
3990 * Use the cpu notifier to insure that the cpu slabs are flushed when
3993 static int slab_cpuup_callback(struct notifier_block
*nfb
,
3994 unsigned long action
, void *hcpu
)
3996 long cpu
= (long)hcpu
;
3997 struct kmem_cache
*s
;
3998 unsigned long flags
;
4001 case CPU_UP_CANCELED
:
4002 case CPU_UP_CANCELED_FROZEN
:
4004 case CPU_DEAD_FROZEN
:
4005 mutex_lock(&slab_mutex
);
4006 list_for_each_entry(s
, &slab_caches
, list
) {
4007 local_irq_save(flags
);
4008 __flush_cpu_slab(s
, cpu
);
4009 local_irq_restore(flags
);
4011 mutex_unlock(&slab_mutex
);
4019 static struct notifier_block slab_notifier
= {
4020 .notifier_call
= slab_cpuup_callback
4025 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
4027 struct kmem_cache
*s
;
4030 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
4031 return kmalloc_large(size
, gfpflags
);
4033 s
= kmalloc_slab(size
, gfpflags
);
4035 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4038 ret
= slab_alloc(s
, gfpflags
, caller
);
4040 /* Honor the call site pointer we received. */
4041 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
4047 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
4048 int node
, unsigned long caller
)
4050 struct kmem_cache
*s
;
4053 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
4054 ret
= kmalloc_large_node(size
, gfpflags
, node
);
4056 trace_kmalloc_node(caller
, ret
,
4057 size
, PAGE_SIZE
<< get_order(size
),
4063 s
= kmalloc_slab(size
, gfpflags
);
4065 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4068 ret
= slab_alloc_node(s
, gfpflags
, node
, caller
);
4070 /* Honor the call site pointer we received. */
4071 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
4078 static int count_inuse(struct page
*page
)
4083 static int count_total(struct page
*page
)
4085 return page
->objects
;
4089 #ifdef CONFIG_SLUB_DEBUG
4090 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
4094 void *addr
= page_address(page
);
4096 if (!check_slab(s
, page
) ||
4097 !on_freelist(s
, page
, NULL
))
4100 /* Now we know that a valid freelist exists */
4101 bitmap_zero(map
, page
->objects
);
4103 get_map(s
, page
, map
);
4104 for_each_object(p
, s
, addr
, page
->objects
) {
4105 if (test_bit(slab_index(p
, s
, addr
), map
))
4106 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
4110 for_each_object(p
, s
, addr
, page
->objects
)
4111 if (!test_bit(slab_index(p
, s
, addr
), map
))
4112 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
4117 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
4121 validate_slab(s
, page
, map
);
4125 static int validate_slab_node(struct kmem_cache
*s
,
4126 struct kmem_cache_node
*n
, unsigned long *map
)
4128 unsigned long count
= 0;
4130 unsigned long flags
;
4132 spin_lock_irqsave(&n
->list_lock
, flags
);
4134 list_for_each_entry(page
, &n
->partial
, lru
) {
4135 validate_slab_slab(s
, page
, map
);
4138 if (count
!= n
->nr_partial
)
4139 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4140 s
->name
, count
, n
->nr_partial
);
4142 if (!(s
->flags
& SLAB_STORE_USER
))
4145 list_for_each_entry(page
, &n
->full
, lru
) {
4146 validate_slab_slab(s
, page
, map
);
4149 if (count
!= atomic_long_read(&n
->nr_slabs
))
4150 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4151 s
->name
, count
, atomic_long_read(&n
->nr_slabs
));
4154 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4158 static long validate_slab_cache(struct kmem_cache
*s
)
4161 unsigned long count
= 0;
4162 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4163 sizeof(unsigned long), GFP_KERNEL
);
4164 struct kmem_cache_node
*n
;
4170 for_each_kmem_cache_node(s
, node
, n
)
4171 count
+= validate_slab_node(s
, n
, map
);
4176 * Generate lists of code addresses where slabcache objects are allocated
4181 unsigned long count
;
4188 DECLARE_BITMAP(cpus
, NR_CPUS
);
4194 unsigned long count
;
4195 struct location
*loc
;
4198 static void free_loc_track(struct loc_track
*t
)
4201 free_pages((unsigned long)t
->loc
,
4202 get_order(sizeof(struct location
) * t
->max
));
4205 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4210 order
= get_order(sizeof(struct location
) * max
);
4212 l
= (void *)__get_free_pages(flags
, order
);
4217 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4225 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4226 const struct track
*track
)
4228 long start
, end
, pos
;
4230 unsigned long caddr
;
4231 unsigned long age
= jiffies
- track
->when
;
4237 pos
= start
+ (end
- start
+ 1) / 2;
4240 * There is nothing at "end". If we end up there
4241 * we need to add something to before end.
4246 caddr
= t
->loc
[pos
].addr
;
4247 if (track
->addr
== caddr
) {
4253 if (age
< l
->min_time
)
4255 if (age
> l
->max_time
)
4258 if (track
->pid
< l
->min_pid
)
4259 l
->min_pid
= track
->pid
;
4260 if (track
->pid
> l
->max_pid
)
4261 l
->max_pid
= track
->pid
;
4263 cpumask_set_cpu(track
->cpu
,
4264 to_cpumask(l
->cpus
));
4266 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4270 if (track
->addr
< caddr
)
4277 * Not found. Insert new tracking element.
4279 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4285 (t
->count
- pos
) * sizeof(struct location
));
4288 l
->addr
= track
->addr
;
4292 l
->min_pid
= track
->pid
;
4293 l
->max_pid
= track
->pid
;
4294 cpumask_clear(to_cpumask(l
->cpus
));
4295 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4296 nodes_clear(l
->nodes
);
4297 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4301 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4302 struct page
*page
, enum track_item alloc
,
4305 void *addr
= page_address(page
);
4308 bitmap_zero(map
, page
->objects
);
4309 get_map(s
, page
, map
);
4311 for_each_object(p
, s
, addr
, page
->objects
)
4312 if (!test_bit(slab_index(p
, s
, addr
), map
))
4313 add_location(t
, s
, get_track(s
, p
, alloc
));
4316 static int list_locations(struct kmem_cache
*s
, char *buf
,
4317 enum track_item alloc
)
4321 struct loc_track t
= { 0, 0, NULL
};
4323 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4324 sizeof(unsigned long), GFP_KERNEL
);
4325 struct kmem_cache_node
*n
;
4327 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4330 return sprintf(buf
, "Out of memory\n");
4332 /* Push back cpu slabs */
4335 for_each_kmem_cache_node(s
, node
, n
) {
4336 unsigned long flags
;
4339 if (!atomic_long_read(&n
->nr_slabs
))
4342 spin_lock_irqsave(&n
->list_lock
, flags
);
4343 list_for_each_entry(page
, &n
->partial
, lru
)
4344 process_slab(&t
, s
, page
, alloc
, map
);
4345 list_for_each_entry(page
, &n
->full
, lru
)
4346 process_slab(&t
, s
, page
, alloc
, map
);
4347 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4350 for (i
= 0; i
< t
.count
; i
++) {
4351 struct location
*l
= &t
.loc
[i
];
4353 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4355 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4358 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4360 len
+= sprintf(buf
+ len
, "<not-available>");
4362 if (l
->sum_time
!= l
->min_time
) {
4363 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4365 (long)div_u64(l
->sum_time
, l
->count
),
4368 len
+= sprintf(buf
+ len
, " age=%ld",
4371 if (l
->min_pid
!= l
->max_pid
)
4372 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4373 l
->min_pid
, l
->max_pid
);
4375 len
+= sprintf(buf
+ len
, " pid=%ld",
4378 if (num_online_cpus() > 1 &&
4379 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4380 len
< PAGE_SIZE
- 60)
4381 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4383 cpumask_pr_args(to_cpumask(l
->cpus
)));
4385 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4386 len
< PAGE_SIZE
- 60)
4387 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4389 nodemask_pr_args(&l
->nodes
));
4391 len
+= sprintf(buf
+ len
, "\n");
4397 len
+= sprintf(buf
, "No data\n");
4402 #ifdef SLUB_RESILIENCY_TEST
4403 static void __init
resiliency_test(void)
4407 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || KMALLOC_SHIFT_HIGH
< 10);
4409 pr_err("SLUB resiliency testing\n");
4410 pr_err("-----------------------\n");
4411 pr_err("A. Corruption after allocation\n");
4413 p
= kzalloc(16, GFP_KERNEL
);
4415 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4418 validate_slab_cache(kmalloc_caches
[4]);
4420 /* Hmmm... The next two are dangerous */
4421 p
= kzalloc(32, GFP_KERNEL
);
4422 p
[32 + sizeof(void *)] = 0x34;
4423 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4425 pr_err("If allocated object is overwritten then not detectable\n\n");
4427 validate_slab_cache(kmalloc_caches
[5]);
4428 p
= kzalloc(64, GFP_KERNEL
);
4429 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4431 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4433 pr_err("If allocated object is overwritten then not detectable\n\n");
4434 validate_slab_cache(kmalloc_caches
[6]);
4436 pr_err("\nB. Corruption after free\n");
4437 p
= kzalloc(128, GFP_KERNEL
);
4440 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4441 validate_slab_cache(kmalloc_caches
[7]);
4443 p
= kzalloc(256, GFP_KERNEL
);
4446 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p
);
4447 validate_slab_cache(kmalloc_caches
[8]);
4449 p
= kzalloc(512, GFP_KERNEL
);
4452 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4453 validate_slab_cache(kmalloc_caches
[9]);
4457 static void resiliency_test(void) {};
4462 enum slab_stat_type
{
4463 SL_ALL
, /* All slabs */
4464 SL_PARTIAL
, /* Only partially allocated slabs */
4465 SL_CPU
, /* Only slabs used for cpu caches */
4466 SL_OBJECTS
, /* Determine allocated objects not slabs */
4467 SL_TOTAL
/* Determine object capacity not slabs */
4470 #define SO_ALL (1 << SL_ALL)
4471 #define SO_PARTIAL (1 << SL_PARTIAL)
4472 #define SO_CPU (1 << SL_CPU)
4473 #define SO_OBJECTS (1 << SL_OBJECTS)
4474 #define SO_TOTAL (1 << SL_TOTAL)
4476 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4477 char *buf
, unsigned long flags
)
4479 unsigned long total
= 0;
4482 unsigned long *nodes
;
4484 nodes
= kzalloc(sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
4488 if (flags
& SO_CPU
) {
4491 for_each_possible_cpu(cpu
) {
4492 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
,
4497 page
= READ_ONCE(c
->page
);
4501 node
= page_to_nid(page
);
4502 if (flags
& SO_TOTAL
)
4504 else if (flags
& SO_OBJECTS
)
4512 page
= READ_ONCE(c
->partial
);
4514 node
= page_to_nid(page
);
4515 if (flags
& SO_TOTAL
)
4517 else if (flags
& SO_OBJECTS
)
4528 #ifdef CONFIG_SLUB_DEBUG
4529 if (flags
& SO_ALL
) {
4530 struct kmem_cache_node
*n
;
4532 for_each_kmem_cache_node(s
, node
, n
) {
4534 if (flags
& SO_TOTAL
)
4535 x
= atomic_long_read(&n
->total_objects
);
4536 else if (flags
& SO_OBJECTS
)
4537 x
= atomic_long_read(&n
->total_objects
) -
4538 count_partial(n
, count_free
);
4540 x
= atomic_long_read(&n
->nr_slabs
);
4547 if (flags
& SO_PARTIAL
) {
4548 struct kmem_cache_node
*n
;
4550 for_each_kmem_cache_node(s
, node
, n
) {
4551 if (flags
& SO_TOTAL
)
4552 x
= count_partial(n
, count_total
);
4553 else if (flags
& SO_OBJECTS
)
4554 x
= count_partial(n
, count_inuse
);
4561 x
= sprintf(buf
, "%lu", total
);
4563 for (node
= 0; node
< nr_node_ids
; node
++)
4565 x
+= sprintf(buf
+ x
, " N%d=%lu",
4570 return x
+ sprintf(buf
+ x
, "\n");
4573 #ifdef CONFIG_SLUB_DEBUG
4574 static int any_slab_objects(struct kmem_cache
*s
)
4577 struct kmem_cache_node
*n
;
4579 for_each_kmem_cache_node(s
, node
, n
)
4580 if (atomic_long_read(&n
->total_objects
))
4587 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4588 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4590 struct slab_attribute
{
4591 struct attribute attr
;
4592 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4593 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4596 #define SLAB_ATTR_RO(_name) \
4597 static struct slab_attribute _name##_attr = \
4598 __ATTR(_name, 0400, _name##_show, NULL)
4600 #define SLAB_ATTR(_name) \
4601 static struct slab_attribute _name##_attr = \
4602 __ATTR(_name, 0600, _name##_show, _name##_store)
4604 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4606 return sprintf(buf
, "%d\n", s
->size
);
4608 SLAB_ATTR_RO(slab_size
);
4610 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4612 return sprintf(buf
, "%d\n", s
->align
);
4614 SLAB_ATTR_RO(align
);
4616 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4618 return sprintf(buf
, "%d\n", s
->object_size
);
4620 SLAB_ATTR_RO(object_size
);
4622 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4624 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4626 SLAB_ATTR_RO(objs_per_slab
);
4628 static ssize_t
order_store(struct kmem_cache
*s
,
4629 const char *buf
, size_t length
)
4631 unsigned long order
;
4634 err
= kstrtoul(buf
, 10, &order
);
4638 if (order
> slub_max_order
|| order
< slub_min_order
)
4641 calculate_sizes(s
, order
);
4645 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4647 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4651 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4653 return sprintf(buf
, "%lu\n", s
->min_partial
);
4656 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4662 err
= kstrtoul(buf
, 10, &min
);
4666 set_min_partial(s
, min
);
4669 SLAB_ATTR(min_partial
);
4671 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4673 return sprintf(buf
, "%u\n", s
->cpu_partial
);
4676 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
4679 unsigned long objects
;
4682 err
= kstrtoul(buf
, 10, &objects
);
4685 if (objects
&& !kmem_cache_has_cpu_partial(s
))
4688 s
->cpu_partial
= objects
;
4692 SLAB_ATTR(cpu_partial
);
4694 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4698 return sprintf(buf
, "%pS\n", s
->ctor
);
4702 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4704 return sprintf(buf
, "%d\n", s
->refcount
< 0 ? 0 : s
->refcount
- 1);
4706 SLAB_ATTR_RO(aliases
);
4708 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4710 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4712 SLAB_ATTR_RO(partial
);
4714 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4716 return show_slab_objects(s
, buf
, SO_CPU
);
4718 SLAB_ATTR_RO(cpu_slabs
);
4720 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4722 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4724 SLAB_ATTR_RO(objects
);
4726 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4728 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4730 SLAB_ATTR_RO(objects_partial
);
4732 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4739 for_each_online_cpu(cpu
) {
4740 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
)->partial
;
4743 pages
+= page
->pages
;
4744 objects
+= page
->pobjects
;
4748 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
4751 for_each_online_cpu(cpu
) {
4752 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
) ->partial
;
4754 if (page
&& len
< PAGE_SIZE
- 20)
4755 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
4756 page
->pobjects
, page
->pages
);
4759 return len
+ sprintf(buf
+ len
, "\n");
4761 SLAB_ATTR_RO(slabs_cpu_partial
);
4763 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4765 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4768 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4769 const char *buf
, size_t length
)
4771 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4773 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4776 SLAB_ATTR(reclaim_account
);
4778 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4780 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4782 SLAB_ATTR_RO(hwcache_align
);
4784 #ifdef CONFIG_ZONE_DMA
4785 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4787 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4789 SLAB_ATTR_RO(cache_dma
);
4792 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4794 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4796 SLAB_ATTR_RO(destroy_by_rcu
);
4798 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
4800 return sprintf(buf
, "%d\n", s
->reserved
);
4802 SLAB_ATTR_RO(reserved
);
4804 #ifdef CONFIG_SLUB_DEBUG
4805 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
4807 return show_slab_objects(s
, buf
, SO_ALL
);
4809 SLAB_ATTR_RO(slabs
);
4811 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
4813 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
4815 SLAB_ATTR_RO(total_objects
);
4817 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
4819 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
4822 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
4823 const char *buf
, size_t length
)
4825 s
->flags
&= ~SLAB_DEBUG_FREE
;
4826 if (buf
[0] == '1') {
4827 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4828 s
->flags
|= SLAB_DEBUG_FREE
;
4832 SLAB_ATTR(sanity_checks
);
4834 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4836 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4839 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4843 * Tracing a merged cache is going to give confusing results
4844 * as well as cause other issues like converting a mergeable
4845 * cache into an umergeable one.
4847 if (s
->refcount
> 1)
4850 s
->flags
&= ~SLAB_TRACE
;
4851 if (buf
[0] == '1') {
4852 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4853 s
->flags
|= SLAB_TRACE
;
4859 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4861 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4864 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4865 const char *buf
, size_t length
)
4867 if (any_slab_objects(s
))
4870 s
->flags
&= ~SLAB_RED_ZONE
;
4871 if (buf
[0] == '1') {
4872 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4873 s
->flags
|= SLAB_RED_ZONE
;
4875 calculate_sizes(s
, -1);
4878 SLAB_ATTR(red_zone
);
4880 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4882 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4885 static ssize_t
poison_store(struct kmem_cache
*s
,
4886 const char *buf
, size_t length
)
4888 if (any_slab_objects(s
))
4891 s
->flags
&= ~SLAB_POISON
;
4892 if (buf
[0] == '1') {
4893 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4894 s
->flags
|= SLAB_POISON
;
4896 calculate_sizes(s
, -1);
4901 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4903 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4906 static ssize_t
store_user_store(struct kmem_cache
*s
,
4907 const char *buf
, size_t length
)
4909 if (any_slab_objects(s
))
4912 s
->flags
&= ~SLAB_STORE_USER
;
4913 if (buf
[0] == '1') {
4914 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4915 s
->flags
|= SLAB_STORE_USER
;
4917 calculate_sizes(s
, -1);
4920 SLAB_ATTR(store_user
);
4922 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4927 static ssize_t
validate_store(struct kmem_cache
*s
,
4928 const char *buf
, size_t length
)
4932 if (buf
[0] == '1') {
4933 ret
= validate_slab_cache(s
);
4939 SLAB_ATTR(validate
);
4941 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4943 if (!(s
->flags
& SLAB_STORE_USER
))
4945 return list_locations(s
, buf
, TRACK_ALLOC
);
4947 SLAB_ATTR_RO(alloc_calls
);
4949 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4951 if (!(s
->flags
& SLAB_STORE_USER
))
4953 return list_locations(s
, buf
, TRACK_FREE
);
4955 SLAB_ATTR_RO(free_calls
);
4956 #endif /* CONFIG_SLUB_DEBUG */
4958 #ifdef CONFIG_FAILSLAB
4959 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
4961 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
4964 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
4967 if (s
->refcount
> 1)
4970 s
->flags
&= ~SLAB_FAILSLAB
;
4972 s
->flags
|= SLAB_FAILSLAB
;
4975 SLAB_ATTR(failslab
);
4978 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4983 static ssize_t
shrink_store(struct kmem_cache
*s
,
4984 const char *buf
, size_t length
)
4987 kmem_cache_shrink(s
);
4995 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4997 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
5000 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
5001 const char *buf
, size_t length
)
5003 unsigned long ratio
;
5006 err
= kstrtoul(buf
, 10, &ratio
);
5011 s
->remote_node_defrag_ratio
= ratio
* 10;
5015 SLAB_ATTR(remote_node_defrag_ratio
);
5018 #ifdef CONFIG_SLUB_STATS
5019 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
5021 unsigned long sum
= 0;
5024 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
5029 for_each_online_cpu(cpu
) {
5030 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
5036 len
= sprintf(buf
, "%lu", sum
);
5039 for_each_online_cpu(cpu
) {
5040 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
5041 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
5045 return len
+ sprintf(buf
+ len
, "\n");
5048 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
5052 for_each_online_cpu(cpu
)
5053 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
5056 #define STAT_ATTR(si, text) \
5057 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5059 return show_stat(s, buf, si); \
5061 static ssize_t text##_store(struct kmem_cache *s, \
5062 const char *buf, size_t length) \
5064 if (buf[0] != '0') \
5066 clear_stat(s, si); \
5071 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5072 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
5073 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
5074 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
5075 STAT_ATTR(FREE_FROZEN
, free_frozen
);
5076 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
5077 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
5078 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
5079 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
5080 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
5081 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
5082 STAT_ATTR(FREE_SLAB
, free_slab
);
5083 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
5084 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
5085 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
5086 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
5087 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
5088 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
5089 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
5090 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
5091 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
5092 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
5093 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
5094 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
5095 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
5096 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
5099 static struct attribute
*slab_attrs
[] = {
5100 &slab_size_attr
.attr
,
5101 &object_size_attr
.attr
,
5102 &objs_per_slab_attr
.attr
,
5104 &min_partial_attr
.attr
,
5105 &cpu_partial_attr
.attr
,
5107 &objects_partial_attr
.attr
,
5109 &cpu_slabs_attr
.attr
,
5113 &hwcache_align_attr
.attr
,
5114 &reclaim_account_attr
.attr
,
5115 &destroy_by_rcu_attr
.attr
,
5117 &reserved_attr
.attr
,
5118 &slabs_cpu_partial_attr
.attr
,
5119 #ifdef CONFIG_SLUB_DEBUG
5120 &total_objects_attr
.attr
,
5122 &sanity_checks_attr
.attr
,
5124 &red_zone_attr
.attr
,
5126 &store_user_attr
.attr
,
5127 &validate_attr
.attr
,
5128 &alloc_calls_attr
.attr
,
5129 &free_calls_attr
.attr
,
5131 #ifdef CONFIG_ZONE_DMA
5132 &cache_dma_attr
.attr
,
5135 &remote_node_defrag_ratio_attr
.attr
,
5137 #ifdef CONFIG_SLUB_STATS
5138 &alloc_fastpath_attr
.attr
,
5139 &alloc_slowpath_attr
.attr
,
5140 &free_fastpath_attr
.attr
,
5141 &free_slowpath_attr
.attr
,
5142 &free_frozen_attr
.attr
,
5143 &free_add_partial_attr
.attr
,
5144 &free_remove_partial_attr
.attr
,
5145 &alloc_from_partial_attr
.attr
,
5146 &alloc_slab_attr
.attr
,
5147 &alloc_refill_attr
.attr
,
5148 &alloc_node_mismatch_attr
.attr
,
5149 &free_slab_attr
.attr
,
5150 &cpuslab_flush_attr
.attr
,
5151 &deactivate_full_attr
.attr
,
5152 &deactivate_empty_attr
.attr
,
5153 &deactivate_to_head_attr
.attr
,
5154 &deactivate_to_tail_attr
.attr
,
5155 &deactivate_remote_frees_attr
.attr
,
5156 &deactivate_bypass_attr
.attr
,
5157 &order_fallback_attr
.attr
,
5158 &cmpxchg_double_fail_attr
.attr
,
5159 &cmpxchg_double_cpu_fail_attr
.attr
,
5160 &cpu_partial_alloc_attr
.attr
,
5161 &cpu_partial_free_attr
.attr
,
5162 &cpu_partial_node_attr
.attr
,
5163 &cpu_partial_drain_attr
.attr
,
5165 #ifdef CONFIG_FAILSLAB
5166 &failslab_attr
.attr
,
5172 static struct attribute_group slab_attr_group
= {
5173 .attrs
= slab_attrs
,
5176 static ssize_t
slab_attr_show(struct kobject
*kobj
,
5177 struct attribute
*attr
,
5180 struct slab_attribute
*attribute
;
5181 struct kmem_cache
*s
;
5184 attribute
= to_slab_attr(attr
);
5187 if (!attribute
->show
)
5190 err
= attribute
->show(s
, buf
);
5195 static ssize_t
slab_attr_store(struct kobject
*kobj
,
5196 struct attribute
*attr
,
5197 const char *buf
, size_t len
)
5199 struct slab_attribute
*attribute
;
5200 struct kmem_cache
*s
;
5203 attribute
= to_slab_attr(attr
);
5206 if (!attribute
->store
)
5209 err
= attribute
->store(s
, buf
, len
);
5211 if (slab_state
>= FULL
&& err
>= 0 && is_root_cache(s
)) {
5212 struct kmem_cache
*c
;
5214 mutex_lock(&slab_mutex
);
5215 if (s
->max_attr_size
< len
)
5216 s
->max_attr_size
= len
;
5219 * This is a best effort propagation, so this function's return
5220 * value will be determined by the parent cache only. This is
5221 * basically because not all attributes will have a well
5222 * defined semantics for rollbacks - most of the actions will
5223 * have permanent effects.
5225 * Returning the error value of any of the children that fail
5226 * is not 100 % defined, in the sense that users seeing the
5227 * error code won't be able to know anything about the state of
5230 * Only returning the error code for the parent cache at least
5231 * has well defined semantics. The cache being written to
5232 * directly either failed or succeeded, in which case we loop
5233 * through the descendants with best-effort propagation.
5235 for_each_memcg_cache(c
, s
)
5236 attribute
->store(c
, buf
, len
);
5237 mutex_unlock(&slab_mutex
);
5243 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
)
5247 char *buffer
= NULL
;
5248 struct kmem_cache
*root_cache
;
5250 if (is_root_cache(s
))
5253 root_cache
= s
->memcg_params
.root_cache
;
5256 * This mean this cache had no attribute written. Therefore, no point
5257 * in copying default values around
5259 if (!root_cache
->max_attr_size
)
5262 for (i
= 0; i
< ARRAY_SIZE(slab_attrs
); i
++) {
5265 struct slab_attribute
*attr
= to_slab_attr(slab_attrs
[i
]);
5267 if (!attr
|| !attr
->store
|| !attr
->show
)
5271 * It is really bad that we have to allocate here, so we will
5272 * do it only as a fallback. If we actually allocate, though,
5273 * we can just use the allocated buffer until the end.
5275 * Most of the slub attributes will tend to be very small in
5276 * size, but sysfs allows buffers up to a page, so they can
5277 * theoretically happen.
5281 else if (root_cache
->max_attr_size
< ARRAY_SIZE(mbuf
))
5284 buffer
= (char *) get_zeroed_page(GFP_KERNEL
);
5285 if (WARN_ON(!buffer
))
5290 attr
->show(root_cache
, buf
);
5291 attr
->store(s
, buf
, strlen(buf
));
5295 free_page((unsigned long)buffer
);
5299 static void kmem_cache_release(struct kobject
*k
)
5301 slab_kmem_cache_release(to_slab(k
));
5304 static const struct sysfs_ops slab_sysfs_ops
= {
5305 .show
= slab_attr_show
,
5306 .store
= slab_attr_store
,
5309 static struct kobj_type slab_ktype
= {
5310 .sysfs_ops
= &slab_sysfs_ops
,
5311 .release
= kmem_cache_release
,
5314 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5316 struct kobj_type
*ktype
= get_ktype(kobj
);
5318 if (ktype
== &slab_ktype
)
5323 static const struct kset_uevent_ops slab_uevent_ops
= {
5324 .filter
= uevent_filter
,
5327 static struct kset
*slab_kset
;
5329 static inline struct kset
*cache_kset(struct kmem_cache
*s
)
5332 if (!is_root_cache(s
))
5333 return s
->memcg_params
.root_cache
->memcg_kset
;
5338 #define ID_STR_LENGTH 64
5340 /* Create a unique string id for a slab cache:
5342 * Format :[flags-]size
5344 static char *create_unique_id(struct kmem_cache
*s
)
5346 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5353 * First flags affecting slabcache operations. We will only
5354 * get here for aliasable slabs so we do not need to support
5355 * too many flags. The flags here must cover all flags that
5356 * are matched during merging to guarantee that the id is
5359 if (s
->flags
& SLAB_CACHE_DMA
)
5361 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5363 if (s
->flags
& SLAB_DEBUG_FREE
)
5365 if (!(s
->flags
& SLAB_NOTRACK
))
5367 if (s
->flags
& SLAB_ACCOUNT
)
5371 p
+= sprintf(p
, "%07d", s
->size
);
5373 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5377 static int sysfs_slab_add(struct kmem_cache
*s
)
5381 int unmergeable
= slab_unmergeable(s
);
5385 * Slabcache can never be merged so we can use the name proper.
5386 * This is typically the case for debug situations. In that
5387 * case we can catch duplicate names easily.
5389 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5393 * Create a unique name for the slab as a target
5396 name
= create_unique_id(s
);
5399 s
->kobj
.kset
= cache_kset(s
);
5400 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, "%s", name
);
5404 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5409 if (is_root_cache(s
)) {
5410 s
->memcg_kset
= kset_create_and_add("cgroup", NULL
, &s
->kobj
);
5411 if (!s
->memcg_kset
) {
5418 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5420 /* Setup first alias */
5421 sysfs_slab_alias(s
, s
->name
);
5428 kobject_del(&s
->kobj
);
5432 void sysfs_slab_remove(struct kmem_cache
*s
)
5434 if (slab_state
< FULL
)
5436 * Sysfs has not been setup yet so no need to remove the
5442 kset_unregister(s
->memcg_kset
);
5444 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5445 kobject_del(&s
->kobj
);
5446 kobject_put(&s
->kobj
);
5450 * Need to buffer aliases during bootup until sysfs becomes
5451 * available lest we lose that information.
5453 struct saved_alias
{
5454 struct kmem_cache
*s
;
5456 struct saved_alias
*next
;
5459 static struct saved_alias
*alias_list
;
5461 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5463 struct saved_alias
*al
;
5465 if (slab_state
== FULL
) {
5467 * If we have a leftover link then remove it.
5469 sysfs_remove_link(&slab_kset
->kobj
, name
);
5470 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5473 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5479 al
->next
= alias_list
;
5484 static int __init
slab_sysfs_init(void)
5486 struct kmem_cache
*s
;
5489 mutex_lock(&slab_mutex
);
5491 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5493 mutex_unlock(&slab_mutex
);
5494 pr_err("Cannot register slab subsystem.\n");
5500 list_for_each_entry(s
, &slab_caches
, list
) {
5501 err
= sysfs_slab_add(s
);
5503 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5507 while (alias_list
) {
5508 struct saved_alias
*al
= alias_list
;
5510 alias_list
= alias_list
->next
;
5511 err
= sysfs_slab_alias(al
->s
, al
->name
);
5513 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5518 mutex_unlock(&slab_mutex
);
5523 __initcall(slab_sysfs_init
);
5524 #endif /* CONFIG_SYSFS */
5527 * The /proc/slabinfo ABI
5529 #ifdef CONFIG_SLABINFO
5530 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
)
5532 unsigned long nr_slabs
= 0;
5533 unsigned long nr_objs
= 0;
5534 unsigned long nr_free
= 0;
5536 struct kmem_cache_node
*n
;
5538 for_each_kmem_cache_node(s
, node
, n
) {
5539 nr_slabs
+= node_nr_slabs(n
);
5540 nr_objs
+= node_nr_objs(n
);
5541 nr_free
+= count_partial(n
, count_free
);
5544 sinfo
->active_objs
= nr_objs
- nr_free
;
5545 sinfo
->num_objs
= nr_objs
;
5546 sinfo
->active_slabs
= nr_slabs
;
5547 sinfo
->num_slabs
= nr_slabs
;
5548 sinfo
->objects_per_slab
= oo_objects(s
->oo
);
5549 sinfo
->cache_order
= oo_order(s
->oo
);
5552 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
)
5556 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
5557 size_t count
, loff_t
*ppos
)
5561 #endif /* CONFIG_SLABINFO */