2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
38 * Attempt to steal a page from a pipe buffer. This should perhaps go into
39 * a vm helper function, it's already simplified quite a bit by the
40 * addition of remove_mapping(). If success is returned, the caller may
41 * attempt to reuse this page for another destination.
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info
*pipe
,
44 struct pipe_buffer
*buf
)
46 struct page
*page
= buf
->page
;
47 struct address_space
*mapping
;
51 mapping
= page_mapping(page
);
53 WARN_ON(!PageUptodate(page
));
56 * At least for ext2 with nobh option, we need to wait on
57 * writeback completing on this page, since we'll remove it
58 * from the pagecache. Otherwise truncate wont wait on the
59 * page, allowing the disk blocks to be reused by someone else
60 * before we actually wrote our data to them. fs corruption
63 wait_on_page_writeback(page
);
65 if (page_has_private(page
) &&
66 !try_to_release_page(page
, GFP_KERNEL
))
70 * If we succeeded in removing the mapping, set LRU flag
73 if (remove_mapping(mapping
, page
)) {
74 buf
->flags
|= PIPE_BUF_FLAG_LRU
;
80 * Raced with truncate or failed to remove page from current
81 * address space, unlock and return failure.
88 static void page_cache_pipe_buf_release(struct pipe_inode_info
*pipe
,
89 struct pipe_buffer
*buf
)
91 page_cache_release(buf
->page
);
92 buf
->flags
&= ~PIPE_BUF_FLAG_LRU
;
96 * Check whether the contents of buf is OK to access. Since the content
97 * is a page cache page, IO may be in flight.
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info
*pipe
,
100 struct pipe_buffer
*buf
)
102 struct page
*page
= buf
->page
;
105 if (!PageUptodate(page
)) {
109 * Page got truncated/unhashed. This will cause a 0-byte
110 * splice, if this is the first page.
112 if (!page
->mapping
) {
118 * Uh oh, read-error from disk.
120 if (!PageUptodate(page
)) {
126 * Page is ok afterall, we are done.
137 const struct pipe_buf_operations page_cache_pipe_buf_ops
= {
139 .confirm
= page_cache_pipe_buf_confirm
,
140 .release
= page_cache_pipe_buf_release
,
141 .steal
= page_cache_pipe_buf_steal
,
142 .get
= generic_pipe_buf_get
,
145 static int user_page_pipe_buf_steal(struct pipe_inode_info
*pipe
,
146 struct pipe_buffer
*buf
)
148 if (!(buf
->flags
& PIPE_BUF_FLAG_GIFT
))
151 buf
->flags
|= PIPE_BUF_FLAG_LRU
;
152 return generic_pipe_buf_steal(pipe
, buf
);
155 static const struct pipe_buf_operations user_page_pipe_buf_ops
= {
157 .confirm
= generic_pipe_buf_confirm
,
158 .release
= page_cache_pipe_buf_release
,
159 .steal
= user_page_pipe_buf_steal
,
160 .get
= generic_pipe_buf_get
,
163 static void wakeup_pipe_readers(struct pipe_inode_info
*pipe
)
166 if (waitqueue_active(&pipe
->wait
))
167 wake_up_interruptible(&pipe
->wait
);
168 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
172 * splice_to_pipe - fill passed data into a pipe
173 * @pipe: pipe to fill
177 * @spd contains a map of pages and len/offset tuples, along with
178 * the struct pipe_buf_operations associated with these pages. This
179 * function will link that data to the pipe.
182 ssize_t
splice_to_pipe(struct pipe_inode_info
*pipe
,
183 struct splice_pipe_desc
*spd
)
185 unsigned int spd_pages
= spd
->nr_pages
;
186 int ret
, do_wakeup
, page_nr
;
195 if (!pipe
->readers
) {
196 send_sig(SIGPIPE
, current
, 0);
202 if (pipe
->nrbufs
< pipe
->buffers
) {
203 int newbuf
= (pipe
->curbuf
+ pipe
->nrbufs
) & (pipe
->buffers
- 1);
204 struct pipe_buffer
*buf
= pipe
->bufs
+ newbuf
;
206 buf
->page
= spd
->pages
[page_nr
];
207 buf
->offset
= spd
->partial
[page_nr
].offset
;
208 buf
->len
= spd
->partial
[page_nr
].len
;
209 buf
->private = spd
->partial
[page_nr
].private;
211 if (spd
->flags
& SPLICE_F_GIFT
)
212 buf
->flags
|= PIPE_BUF_FLAG_GIFT
;
221 if (!--spd
->nr_pages
)
223 if (pipe
->nrbufs
< pipe
->buffers
)
229 if (spd
->flags
& SPLICE_F_NONBLOCK
) {
235 if (signal_pending(current
)) {
243 if (waitqueue_active(&pipe
->wait
))
244 wake_up_interruptible_sync(&pipe
->wait
);
245 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
249 pipe
->waiting_writers
++;
251 pipe
->waiting_writers
--;
257 wakeup_pipe_readers(pipe
);
259 while (page_nr
< spd_pages
)
260 spd
->spd_release(spd
, page_nr
++);
265 void spd_release_page(struct splice_pipe_desc
*spd
, unsigned int i
)
267 page_cache_release(spd
->pages
[i
]);
271 * Check if we need to grow the arrays holding pages and partial page
274 int splice_grow_spd(const struct pipe_inode_info
*pipe
, struct splice_pipe_desc
*spd
)
276 unsigned int buffers
= ACCESS_ONCE(pipe
->buffers
);
278 spd
->nr_pages_max
= buffers
;
279 if (buffers
<= PIPE_DEF_BUFFERS
)
282 spd
->pages
= kmalloc(buffers
* sizeof(struct page
*), GFP_KERNEL
);
283 spd
->partial
= kmalloc(buffers
* sizeof(struct partial_page
), GFP_KERNEL
);
285 if (spd
->pages
&& spd
->partial
)
293 void splice_shrink_spd(struct splice_pipe_desc
*spd
)
295 if (spd
->nr_pages_max
<= PIPE_DEF_BUFFERS
)
303 __generic_file_splice_read(struct file
*in
, loff_t
*ppos
,
304 struct pipe_inode_info
*pipe
, size_t len
,
307 struct address_space
*mapping
= in
->f_mapping
;
308 unsigned int loff
, nr_pages
, req_pages
;
309 struct page
*pages
[PIPE_DEF_BUFFERS
];
310 struct partial_page partial
[PIPE_DEF_BUFFERS
];
312 pgoff_t index
, end_index
;
315 struct splice_pipe_desc spd
= {
318 .nr_pages_max
= PIPE_DEF_BUFFERS
,
320 .ops
= &page_cache_pipe_buf_ops
,
321 .spd_release
= spd_release_page
,
324 if (splice_grow_spd(pipe
, &spd
))
327 index
= *ppos
>> PAGE_CACHE_SHIFT
;
328 loff
= *ppos
& ~PAGE_CACHE_MASK
;
329 req_pages
= (len
+ loff
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
330 nr_pages
= min(req_pages
, spd
.nr_pages_max
);
333 * Lookup the (hopefully) full range of pages we need.
335 spd
.nr_pages
= find_get_pages_contig(mapping
, index
, nr_pages
, spd
.pages
);
336 index
+= spd
.nr_pages
;
339 * If find_get_pages_contig() returned fewer pages than we needed,
340 * readahead/allocate the rest and fill in the holes.
342 if (spd
.nr_pages
< nr_pages
)
343 page_cache_sync_readahead(mapping
, &in
->f_ra
, in
,
344 index
, req_pages
- spd
.nr_pages
);
347 while (spd
.nr_pages
< nr_pages
) {
349 * Page could be there, find_get_pages_contig() breaks on
352 page
= find_get_page(mapping
, index
);
355 * page didn't exist, allocate one.
357 page
= page_cache_alloc_cold(mapping
);
361 error
= add_to_page_cache_lru(page
, mapping
, index
,
363 if (unlikely(error
)) {
364 page_cache_release(page
);
365 if (error
== -EEXIST
)
370 * add_to_page_cache() locks the page, unlock it
371 * to avoid convoluting the logic below even more.
376 spd
.pages
[spd
.nr_pages
++] = page
;
381 * Now loop over the map and see if we need to start IO on any
382 * pages, fill in the partial map, etc.
384 index
= *ppos
>> PAGE_CACHE_SHIFT
;
385 nr_pages
= spd
.nr_pages
;
387 for (page_nr
= 0; page_nr
< nr_pages
; page_nr
++) {
388 unsigned int this_len
;
394 * this_len is the max we'll use from this page
396 this_len
= min_t(unsigned long, len
, PAGE_CACHE_SIZE
- loff
);
397 page
= spd
.pages
[page_nr
];
399 if (PageReadahead(page
))
400 page_cache_async_readahead(mapping
, &in
->f_ra
, in
,
401 page
, index
, req_pages
- page_nr
);
404 * If the page isn't uptodate, we may need to start io on it
406 if (!PageUptodate(page
)) {
410 * Page was truncated, or invalidated by the
411 * filesystem. Redo the find/create, but this time the
412 * page is kept locked, so there's no chance of another
413 * race with truncate/invalidate.
415 if (!page
->mapping
) {
417 page
= find_or_create_page(mapping
, index
,
418 mapping_gfp_mask(mapping
));
424 page_cache_release(spd
.pages
[page_nr
]);
425 spd
.pages
[page_nr
] = page
;
428 * page was already under io and is now done, great
430 if (PageUptodate(page
)) {
436 * need to read in the page
438 error
= mapping
->a_ops
->readpage(in
, page
);
439 if (unlikely(error
)) {
441 * We really should re-lookup the page here,
442 * but it complicates things a lot. Instead
443 * lets just do what we already stored, and
444 * we'll get it the next time we are called.
446 if (error
== AOP_TRUNCATED_PAGE
)
454 * i_size must be checked after PageUptodate.
456 isize
= i_size_read(mapping
->host
);
457 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
458 if (unlikely(!isize
|| index
> end_index
))
462 * if this is the last page, see if we need to shrink
463 * the length and stop
465 if (end_index
== index
) {
469 * max good bytes in this page
471 plen
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
476 * force quit after adding this page
478 this_len
= min(this_len
, plen
- loff
);
482 spd
.partial
[page_nr
].offset
= loff
;
483 spd
.partial
[page_nr
].len
= this_len
;
491 * Release any pages at the end, if we quit early. 'page_nr' is how far
492 * we got, 'nr_pages' is how many pages are in the map.
494 while (page_nr
< nr_pages
)
495 page_cache_release(spd
.pages
[page_nr
++]);
496 in
->f_ra
.prev_pos
= (loff_t
)index
<< PAGE_CACHE_SHIFT
;
499 error
= splice_to_pipe(pipe
, &spd
);
501 splice_shrink_spd(&spd
);
506 * generic_file_splice_read - splice data from file to a pipe
507 * @in: file to splice from
508 * @ppos: position in @in
509 * @pipe: pipe to splice to
510 * @len: number of bytes to splice
511 * @flags: splice modifier flags
514 * Will read pages from given file and fill them into a pipe. Can be
515 * used as long as the address_space operations for the source implements
519 ssize_t
generic_file_splice_read(struct file
*in
, loff_t
*ppos
,
520 struct pipe_inode_info
*pipe
, size_t len
,
526 if (IS_DAX(in
->f_mapping
->host
))
527 return default_file_splice_read(in
, ppos
, pipe
, len
, flags
);
529 isize
= i_size_read(in
->f_mapping
->host
);
530 if (unlikely(*ppos
>= isize
))
533 left
= isize
- *ppos
;
534 if (unlikely(left
< len
))
537 ret
= __generic_file_splice_read(in
, ppos
, pipe
, len
, flags
);
545 EXPORT_SYMBOL(generic_file_splice_read
);
547 static const struct pipe_buf_operations default_pipe_buf_ops
= {
549 .confirm
= generic_pipe_buf_confirm
,
550 .release
= generic_pipe_buf_release
,
551 .steal
= generic_pipe_buf_steal
,
552 .get
= generic_pipe_buf_get
,
555 static int generic_pipe_buf_nosteal(struct pipe_inode_info
*pipe
,
556 struct pipe_buffer
*buf
)
561 /* Pipe buffer operations for a socket and similar. */
562 const struct pipe_buf_operations nosteal_pipe_buf_ops
= {
564 .confirm
= generic_pipe_buf_confirm
,
565 .release
= generic_pipe_buf_release
,
566 .steal
= generic_pipe_buf_nosteal
,
567 .get
= generic_pipe_buf_get
,
569 EXPORT_SYMBOL(nosteal_pipe_buf_ops
);
571 static ssize_t
kernel_readv(struct file
*file
, const struct iovec
*vec
,
572 unsigned long vlen
, loff_t offset
)
580 /* The cast to a user pointer is valid due to the set_fs() */
581 res
= vfs_readv(file
, (const struct iovec __user
*)vec
, vlen
, &pos
);
587 ssize_t
kernel_write(struct file
*file
, const char *buf
, size_t count
,
595 /* The cast to a user pointer is valid due to the set_fs() */
596 res
= vfs_write(file
, (__force
const char __user
*)buf
, count
, &pos
);
601 EXPORT_SYMBOL(kernel_write
);
603 ssize_t
default_file_splice_read(struct file
*in
, loff_t
*ppos
,
604 struct pipe_inode_info
*pipe
, size_t len
,
607 unsigned int nr_pages
;
608 unsigned int nr_freed
;
610 struct page
*pages
[PIPE_DEF_BUFFERS
];
611 struct partial_page partial
[PIPE_DEF_BUFFERS
];
612 struct iovec
*vec
, __vec
[PIPE_DEF_BUFFERS
];
617 struct splice_pipe_desc spd
= {
620 .nr_pages_max
= PIPE_DEF_BUFFERS
,
622 .ops
= &default_pipe_buf_ops
,
623 .spd_release
= spd_release_page
,
626 if (splice_grow_spd(pipe
, &spd
))
631 if (spd
.nr_pages_max
> PIPE_DEF_BUFFERS
) {
632 vec
= kmalloc(spd
.nr_pages_max
* sizeof(struct iovec
), GFP_KERNEL
);
637 offset
= *ppos
& ~PAGE_CACHE_MASK
;
638 nr_pages
= (len
+ offset
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
640 for (i
= 0; i
< nr_pages
&& i
< spd
.nr_pages_max
&& len
; i
++) {
643 page
= alloc_page(GFP_USER
);
648 this_len
= min_t(size_t, len
, PAGE_CACHE_SIZE
- offset
);
649 vec
[i
].iov_base
= (void __user
*) page_address(page
);
650 vec
[i
].iov_len
= this_len
;
657 res
= kernel_readv(in
, vec
, spd
.nr_pages
, *ppos
);
668 for (i
= 0; i
< spd
.nr_pages
; i
++) {
669 this_len
= min_t(size_t, vec
[i
].iov_len
, res
);
670 spd
.partial
[i
].offset
= 0;
671 spd
.partial
[i
].len
= this_len
;
673 __free_page(spd
.pages
[i
]);
679 spd
.nr_pages
-= nr_freed
;
681 res
= splice_to_pipe(pipe
, &spd
);
688 splice_shrink_spd(&spd
);
692 for (i
= 0; i
< spd
.nr_pages
; i
++)
693 __free_page(spd
.pages
[i
]);
698 EXPORT_SYMBOL(default_file_splice_read
);
701 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
702 * using sendpage(). Return the number of bytes sent.
704 static int pipe_to_sendpage(struct pipe_inode_info
*pipe
,
705 struct pipe_buffer
*buf
, struct splice_desc
*sd
)
707 struct file
*file
= sd
->u
.file
;
708 loff_t pos
= sd
->pos
;
711 if (!likely(file
->f_op
->sendpage
))
714 more
= (sd
->flags
& SPLICE_F_MORE
) ? MSG_MORE
: 0;
716 if (sd
->len
< sd
->total_len
&& pipe
->nrbufs
> 1)
717 more
|= MSG_SENDPAGE_NOTLAST
;
719 return file
->f_op
->sendpage(file
, buf
->page
, buf
->offset
,
720 sd
->len
, &pos
, more
);
723 static void wakeup_pipe_writers(struct pipe_inode_info
*pipe
)
726 if (waitqueue_active(&pipe
->wait
))
727 wake_up_interruptible(&pipe
->wait
);
728 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
732 * splice_from_pipe_feed - feed available data from a pipe to a file
733 * @pipe: pipe to splice from
734 * @sd: information to @actor
735 * @actor: handler that splices the data
738 * This function loops over the pipe and calls @actor to do the
739 * actual moving of a single struct pipe_buffer to the desired
740 * destination. It returns when there's no more buffers left in
741 * the pipe or if the requested number of bytes (@sd->total_len)
742 * have been copied. It returns a positive number (one) if the
743 * pipe needs to be filled with more data, zero if the required
744 * number of bytes have been copied and -errno on error.
746 * This, together with splice_from_pipe_{begin,end,next}, may be
747 * used to implement the functionality of __splice_from_pipe() when
748 * locking is required around copying the pipe buffers to the
751 static int splice_from_pipe_feed(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
,
756 while (pipe
->nrbufs
) {
757 struct pipe_buffer
*buf
= pipe
->bufs
+ pipe
->curbuf
;
758 const struct pipe_buf_operations
*ops
= buf
->ops
;
761 if (sd
->len
> sd
->total_len
)
762 sd
->len
= sd
->total_len
;
764 ret
= buf
->ops
->confirm(pipe
, buf
);
771 ret
= actor(pipe
, buf
, sd
);
778 sd
->num_spliced
+= ret
;
781 sd
->total_len
-= ret
;
785 ops
->release(pipe
, buf
);
786 pipe
->curbuf
= (pipe
->curbuf
+ 1) & (pipe
->buffers
- 1);
789 sd
->need_wakeup
= true;
800 * splice_from_pipe_next - wait for some data to splice from
801 * @pipe: pipe to splice from
802 * @sd: information about the splice operation
805 * This function will wait for some data and return a positive
806 * value (one) if pipe buffers are available. It will return zero
807 * or -errno if no more data needs to be spliced.
809 static int splice_from_pipe_next(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
)
811 while (!pipe
->nrbufs
) {
815 if (!pipe
->waiting_writers
&& sd
->num_spliced
)
818 if (sd
->flags
& SPLICE_F_NONBLOCK
)
821 if (signal_pending(current
))
824 if (sd
->need_wakeup
) {
825 wakeup_pipe_writers(pipe
);
826 sd
->need_wakeup
= false;
836 * splice_from_pipe_begin - start splicing from pipe
837 * @sd: information about the splice operation
840 * This function should be called before a loop containing
841 * splice_from_pipe_next() and splice_from_pipe_feed() to
842 * initialize the necessary fields of @sd.
844 static void splice_from_pipe_begin(struct splice_desc
*sd
)
847 sd
->need_wakeup
= false;
851 * splice_from_pipe_end - finish splicing from pipe
852 * @pipe: pipe to splice from
853 * @sd: information about the splice operation
856 * This function will wake up pipe writers if necessary. It should
857 * be called after a loop containing splice_from_pipe_next() and
858 * splice_from_pipe_feed().
860 static void splice_from_pipe_end(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
)
863 wakeup_pipe_writers(pipe
);
867 * __splice_from_pipe - splice data from a pipe to given actor
868 * @pipe: pipe to splice from
869 * @sd: information to @actor
870 * @actor: handler that splices the data
873 * This function does little more than loop over the pipe and call
874 * @actor to do the actual moving of a single struct pipe_buffer to
875 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
879 ssize_t
__splice_from_pipe(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
,
884 splice_from_pipe_begin(sd
);
886 ret
= splice_from_pipe_next(pipe
, sd
);
888 ret
= splice_from_pipe_feed(pipe
, sd
, actor
);
890 splice_from_pipe_end(pipe
, sd
);
892 return sd
->num_spliced
? sd
->num_spliced
: ret
;
894 EXPORT_SYMBOL(__splice_from_pipe
);
897 * splice_from_pipe - splice data from a pipe to a file
898 * @pipe: pipe to splice from
899 * @out: file to splice to
900 * @ppos: position in @out
901 * @len: how many bytes to splice
902 * @flags: splice modifier flags
903 * @actor: handler that splices the data
906 * See __splice_from_pipe. This function locks the pipe inode,
907 * otherwise it's identical to __splice_from_pipe().
910 ssize_t
splice_from_pipe(struct pipe_inode_info
*pipe
, struct file
*out
,
911 loff_t
*ppos
, size_t len
, unsigned int flags
,
915 struct splice_desc sd
= {
923 ret
= __splice_from_pipe(pipe
, &sd
, actor
);
930 * iter_file_splice_write - splice data from a pipe to a file
932 * @out: file to write to
933 * @ppos: position in @out
934 * @len: number of bytes to splice
935 * @flags: splice modifier flags
938 * Will either move or copy pages (determined by @flags options) from
939 * the given pipe inode to the given file.
940 * This one is ->write_iter-based.
944 iter_file_splice_write(struct pipe_inode_info
*pipe
, struct file
*out
,
945 loff_t
*ppos
, size_t len
, unsigned int flags
)
947 struct splice_desc sd
= {
953 int nbufs
= pipe
->buffers
;
954 struct bio_vec
*array
= kcalloc(nbufs
, sizeof(struct bio_vec
),
958 if (unlikely(!array
))
963 splice_from_pipe_begin(&sd
);
964 while (sd
.total_len
) {
965 struct iov_iter from
;
969 ret
= splice_from_pipe_next(pipe
, &sd
);
973 if (unlikely(nbufs
< pipe
->buffers
)) {
975 nbufs
= pipe
->buffers
;
976 array
= kcalloc(nbufs
, sizeof(struct bio_vec
),
984 /* build the vector */
986 for (n
= 0, idx
= pipe
->curbuf
; left
&& n
< pipe
->nrbufs
; n
++, idx
++) {
987 struct pipe_buffer
*buf
= pipe
->bufs
+ idx
;
988 size_t this_len
= buf
->len
;
993 if (idx
== pipe
->buffers
- 1)
996 ret
= buf
->ops
->confirm(pipe
, buf
);
1003 array
[n
].bv_page
= buf
->page
;
1004 array
[n
].bv_len
= this_len
;
1005 array
[n
].bv_offset
= buf
->offset
;
1009 iov_iter_bvec(&from
, ITER_BVEC
| WRITE
, array
, n
,
1010 sd
.total_len
- left
);
1011 ret
= vfs_iter_write(out
, &from
, &sd
.pos
);
1015 sd
.num_spliced
+= ret
;
1016 sd
.total_len
-= ret
;
1019 /* dismiss the fully eaten buffers, adjust the partial one */
1021 struct pipe_buffer
*buf
= pipe
->bufs
+ pipe
->curbuf
;
1022 if (ret
>= buf
->len
) {
1023 const struct pipe_buf_operations
*ops
= buf
->ops
;
1027 ops
->release(pipe
, buf
);
1028 pipe
->curbuf
= (pipe
->curbuf
+ 1) & (pipe
->buffers
- 1);
1031 sd
.need_wakeup
= true;
1041 splice_from_pipe_end(pipe
, &sd
);
1046 ret
= sd
.num_spliced
;
1051 EXPORT_SYMBOL(iter_file_splice_write
);
1053 static int write_pipe_buf(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
1054 struct splice_desc
*sd
)
1058 loff_t tmp
= sd
->pos
;
1060 data
= kmap(buf
->page
);
1061 ret
= __kernel_write(sd
->u
.file
, data
+ buf
->offset
, sd
->len
, &tmp
);
1067 static ssize_t
default_file_splice_write(struct pipe_inode_info
*pipe
,
1068 struct file
*out
, loff_t
*ppos
,
1069 size_t len
, unsigned int flags
)
1073 ret
= splice_from_pipe(pipe
, out
, ppos
, len
, flags
, write_pipe_buf
);
1081 * generic_splice_sendpage - splice data from a pipe to a socket
1082 * @pipe: pipe to splice from
1083 * @out: socket to write to
1084 * @ppos: position in @out
1085 * @len: number of bytes to splice
1086 * @flags: splice modifier flags
1089 * Will send @len bytes from the pipe to a network socket. No data copying
1093 ssize_t
generic_splice_sendpage(struct pipe_inode_info
*pipe
, struct file
*out
,
1094 loff_t
*ppos
, size_t len
, unsigned int flags
)
1096 return splice_from_pipe(pipe
, out
, ppos
, len
, flags
, pipe_to_sendpage
);
1099 EXPORT_SYMBOL(generic_splice_sendpage
);
1102 * Attempt to initiate a splice from pipe to file.
1104 static long do_splice_from(struct pipe_inode_info
*pipe
, struct file
*out
,
1105 loff_t
*ppos
, size_t len
, unsigned int flags
)
1107 ssize_t (*splice_write
)(struct pipe_inode_info
*, struct file
*,
1108 loff_t
*, size_t, unsigned int);
1110 if (out
->f_op
->splice_write
)
1111 splice_write
= out
->f_op
->splice_write
;
1113 splice_write
= default_file_splice_write
;
1115 return splice_write(pipe
, out
, ppos
, len
, flags
);
1119 * Attempt to initiate a splice from a file to a pipe.
1121 static long do_splice_to(struct file
*in
, loff_t
*ppos
,
1122 struct pipe_inode_info
*pipe
, size_t len
,
1125 ssize_t (*splice_read
)(struct file
*, loff_t
*,
1126 struct pipe_inode_info
*, size_t, unsigned int);
1129 if (unlikely(!(in
->f_mode
& FMODE_READ
)))
1132 ret
= rw_verify_area(READ
, in
, ppos
, len
);
1133 if (unlikely(ret
< 0))
1136 if (in
->f_op
->splice_read
)
1137 splice_read
= in
->f_op
->splice_read
;
1139 splice_read
= default_file_splice_read
;
1141 return splice_read(in
, ppos
, pipe
, len
, flags
);
1145 * splice_direct_to_actor - splices data directly between two non-pipes
1146 * @in: file to splice from
1147 * @sd: actor information on where to splice to
1148 * @actor: handles the data splicing
1151 * This is a special case helper to splice directly between two
1152 * points, without requiring an explicit pipe. Internally an allocated
1153 * pipe is cached in the process, and reused during the lifetime of
1157 ssize_t
splice_direct_to_actor(struct file
*in
, struct splice_desc
*sd
,
1158 splice_direct_actor
*actor
)
1160 struct pipe_inode_info
*pipe
;
1167 * We require the input being a regular file, as we don't want to
1168 * randomly drop data for eg socket -> socket splicing. Use the
1169 * piped splicing for that!
1171 i_mode
= file_inode(in
)->i_mode
;
1172 if (unlikely(!S_ISREG(i_mode
) && !S_ISBLK(i_mode
)))
1176 * neither in nor out is a pipe, setup an internal pipe attached to
1177 * 'out' and transfer the wanted data from 'in' to 'out' through that
1179 pipe
= current
->splice_pipe
;
1180 if (unlikely(!pipe
)) {
1181 pipe
= alloc_pipe_info();
1186 * We don't have an immediate reader, but we'll read the stuff
1187 * out of the pipe right after the splice_to_pipe(). So set
1188 * PIPE_READERS appropriately.
1192 current
->splice_pipe
= pipe
;
1200 len
= sd
->total_len
;
1204 * Don't block on output, we have to drain the direct pipe.
1206 sd
->flags
&= ~SPLICE_F_NONBLOCK
;
1210 loff_t pos
= sd
->pos
, prev_pos
= pos
;
1212 ret
= do_splice_to(in
, &pos
, pipe
, len
, flags
);
1213 if (unlikely(ret
<= 0))
1217 sd
->total_len
= read_len
;
1220 * NOTE: nonblocking mode only applies to the input. We
1221 * must not do the output in nonblocking mode as then we
1222 * could get stuck data in the internal pipe:
1224 ret
= actor(pipe
, sd
);
1225 if (unlikely(ret
<= 0)) {
1234 if (ret
< read_len
) {
1235 sd
->pos
= prev_pos
+ ret
;
1241 pipe
->nrbufs
= pipe
->curbuf
= 0;
1247 * If we did an incomplete transfer we must release
1248 * the pipe buffers in question:
1250 for (i
= 0; i
< pipe
->buffers
; i
++) {
1251 struct pipe_buffer
*buf
= pipe
->bufs
+ i
;
1254 buf
->ops
->release(pipe
, buf
);
1264 EXPORT_SYMBOL(splice_direct_to_actor
);
1266 static int direct_splice_actor(struct pipe_inode_info
*pipe
,
1267 struct splice_desc
*sd
)
1269 struct file
*file
= sd
->u
.file
;
1271 return do_splice_from(pipe
, file
, sd
->opos
, sd
->total_len
,
1276 * do_splice_direct - splices data directly between two files
1277 * @in: file to splice from
1278 * @ppos: input file offset
1279 * @out: file to splice to
1280 * @opos: output file offset
1281 * @len: number of bytes to splice
1282 * @flags: splice modifier flags
1285 * For use by do_sendfile(). splice can easily emulate sendfile, but
1286 * doing it in the application would incur an extra system call
1287 * (splice in + splice out, as compared to just sendfile()). So this helper
1288 * can splice directly through a process-private pipe.
1291 long do_splice_direct(struct file
*in
, loff_t
*ppos
, struct file
*out
,
1292 loff_t
*opos
, size_t len
, unsigned int flags
)
1294 struct splice_desc sd
= {
1304 if (unlikely(!(out
->f_mode
& FMODE_WRITE
)))
1307 if (unlikely(out
->f_flags
& O_APPEND
))
1310 ret
= rw_verify_area(WRITE
, out
, opos
, len
);
1311 if (unlikely(ret
< 0))
1314 ret
= splice_direct_to_actor(in
, &sd
, direct_splice_actor
);
1320 EXPORT_SYMBOL(do_splice_direct
);
1322 static int splice_pipe_to_pipe(struct pipe_inode_info
*ipipe
,
1323 struct pipe_inode_info
*opipe
,
1324 size_t len
, unsigned int flags
);
1327 * Determine where to splice to/from.
1329 static long do_splice(struct file
*in
, loff_t __user
*off_in
,
1330 struct file
*out
, loff_t __user
*off_out
,
1331 size_t len
, unsigned int flags
)
1333 struct pipe_inode_info
*ipipe
;
1334 struct pipe_inode_info
*opipe
;
1338 ipipe
= get_pipe_info(in
);
1339 opipe
= get_pipe_info(out
);
1341 if (ipipe
&& opipe
) {
1342 if (off_in
|| off_out
)
1345 if (!(in
->f_mode
& FMODE_READ
))
1348 if (!(out
->f_mode
& FMODE_WRITE
))
1351 /* Splicing to self would be fun, but... */
1355 return splice_pipe_to_pipe(ipipe
, opipe
, len
, flags
);
1362 if (!(out
->f_mode
& FMODE_PWRITE
))
1364 if (copy_from_user(&offset
, off_out
, sizeof(loff_t
)))
1367 offset
= out
->f_pos
;
1370 if (unlikely(!(out
->f_mode
& FMODE_WRITE
)))
1373 if (unlikely(out
->f_flags
& O_APPEND
))
1376 ret
= rw_verify_area(WRITE
, out
, &offset
, len
);
1377 if (unlikely(ret
< 0))
1380 file_start_write(out
);
1381 ret
= do_splice_from(ipipe
, out
, &offset
, len
, flags
);
1382 file_end_write(out
);
1385 out
->f_pos
= offset
;
1386 else if (copy_to_user(off_out
, &offset
, sizeof(loff_t
)))
1396 if (!(in
->f_mode
& FMODE_PREAD
))
1398 if (copy_from_user(&offset
, off_in
, sizeof(loff_t
)))
1404 ret
= do_splice_to(in
, &offset
, opipe
, len
, flags
);
1408 else if (copy_to_user(off_in
, &offset
, sizeof(loff_t
)))
1418 * Map an iov into an array of pages and offset/length tupples. With the
1419 * partial_page structure, we can map several non-contiguous ranges into
1420 * our ones pages[] map instead of splitting that operation into pieces.
1421 * Could easily be exported as a generic helper for other users, in which
1422 * case one would probably want to add a 'max_nr_pages' parameter as well.
1424 static int get_iovec_page_array(const struct iovec __user
*iov
,
1425 unsigned int nr_vecs
, struct page
**pages
,
1426 struct partial_page
*partial
, bool aligned
,
1427 unsigned int pipe_buffers
)
1429 int buffers
= 0, error
= 0;
1432 unsigned long off
, npages
;
1439 if (copy_from_user(&entry
, iov
, sizeof(entry
)))
1442 base
= entry
.iov_base
;
1443 len
= entry
.iov_len
;
1446 * Sanity check this iovec. 0 read succeeds.
1452 if (!access_ok(VERIFY_READ
, base
, len
))
1456 * Get this base offset and number of pages, then map
1457 * in the user pages.
1459 off
= (unsigned long) base
& ~PAGE_MASK
;
1462 * If asked for alignment, the offset must be zero and the
1463 * length a multiple of the PAGE_SIZE.
1466 if (aligned
&& (off
|| len
& ~PAGE_MASK
))
1469 npages
= (off
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1470 if (npages
> pipe_buffers
- buffers
)
1471 npages
= pipe_buffers
- buffers
;
1473 error
= get_user_pages_fast((unsigned long)base
, npages
,
1474 0, &pages
[buffers
]);
1476 if (unlikely(error
<= 0))
1480 * Fill this contiguous range into the partial page map.
1482 for (i
= 0; i
< error
; i
++) {
1483 const int plen
= min_t(size_t, len
, PAGE_SIZE
- off
);
1485 partial
[buffers
].offset
= off
;
1486 partial
[buffers
].len
= plen
;
1494 * We didn't complete this iov, stop here since it probably
1495 * means we have to move some of this into a pipe to
1496 * be able to continue.
1502 * Don't continue if we mapped fewer pages than we asked for,
1503 * or if we mapped the max number of pages that we have
1506 if (error
< npages
|| buffers
== pipe_buffers
)
1519 static int pipe_to_user(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
1520 struct splice_desc
*sd
)
1522 int n
= copy_page_to_iter(buf
->page
, buf
->offset
, sd
->len
, sd
->u
.data
);
1523 return n
== sd
->len
? n
: -EFAULT
;
1527 * For lack of a better implementation, implement vmsplice() to userspace
1528 * as a simple copy of the pipes pages to the user iov.
1530 static long vmsplice_to_user(struct file
*file
, const struct iovec __user
*uiov
,
1531 unsigned long nr_segs
, unsigned int flags
)
1533 struct pipe_inode_info
*pipe
;
1534 struct splice_desc sd
;
1536 struct iovec iovstack
[UIO_FASTIOV
];
1537 struct iovec
*iov
= iovstack
;
1538 struct iov_iter iter
;
1540 pipe
= get_pipe_info(file
);
1544 ret
= import_iovec(READ
, uiov
, nr_segs
,
1545 ARRAY_SIZE(iovstack
), &iov
, &iter
);
1549 sd
.total_len
= iov_iter_count(&iter
);
1557 ret
= __splice_from_pipe(pipe
, &sd
, pipe_to_user
);
1566 * vmsplice splices a user address range into a pipe. It can be thought of
1567 * as splice-from-memory, where the regular splice is splice-from-file (or
1568 * to file). In both cases the output is a pipe, naturally.
1570 static long vmsplice_to_pipe(struct file
*file
, const struct iovec __user
*iov
,
1571 unsigned long nr_segs
, unsigned int flags
)
1573 struct pipe_inode_info
*pipe
;
1574 struct page
*pages
[PIPE_DEF_BUFFERS
];
1575 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1576 struct splice_pipe_desc spd
= {
1579 .nr_pages_max
= PIPE_DEF_BUFFERS
,
1581 .ops
= &user_page_pipe_buf_ops
,
1582 .spd_release
= spd_release_page
,
1586 pipe
= get_pipe_info(file
);
1590 if (splice_grow_spd(pipe
, &spd
))
1593 spd
.nr_pages
= get_iovec_page_array(iov
, nr_segs
, spd
.pages
,
1596 if (spd
.nr_pages
<= 0)
1599 ret
= splice_to_pipe(pipe
, &spd
);
1601 splice_shrink_spd(&spd
);
1606 * Note that vmsplice only really supports true splicing _from_ user memory
1607 * to a pipe, not the other way around. Splicing from user memory is a simple
1608 * operation that can be supported without any funky alignment restrictions
1609 * or nasty vm tricks. We simply map in the user memory and fill them into
1610 * a pipe. The reverse isn't quite as easy, though. There are two possible
1611 * solutions for that:
1613 * - memcpy() the data internally, at which point we might as well just
1614 * do a regular read() on the buffer anyway.
1615 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1616 * has restriction limitations on both ends of the pipe).
1618 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1621 SYSCALL_DEFINE4(vmsplice
, int, fd
, const struct iovec __user
*, iov
,
1622 unsigned long, nr_segs
, unsigned int, flags
)
1627 if (unlikely(nr_segs
> UIO_MAXIOV
))
1629 else if (unlikely(!nr_segs
))
1635 if (f
.file
->f_mode
& FMODE_WRITE
)
1636 error
= vmsplice_to_pipe(f
.file
, iov
, nr_segs
, flags
);
1637 else if (f
.file
->f_mode
& FMODE_READ
)
1638 error
= vmsplice_to_user(f
.file
, iov
, nr_segs
, flags
);
1646 #ifdef CONFIG_COMPAT
1647 COMPAT_SYSCALL_DEFINE4(vmsplice
, int, fd
, const struct compat_iovec __user
*, iov32
,
1648 unsigned int, nr_segs
, unsigned int, flags
)
1651 struct iovec __user
*iov
;
1652 if (nr_segs
> UIO_MAXIOV
)
1654 iov
= compat_alloc_user_space(nr_segs
* sizeof(struct iovec
));
1655 for (i
= 0; i
< nr_segs
; i
++) {
1656 struct compat_iovec v
;
1657 if (get_user(v
.iov_base
, &iov32
[i
].iov_base
) ||
1658 get_user(v
.iov_len
, &iov32
[i
].iov_len
) ||
1659 put_user(compat_ptr(v
.iov_base
), &iov
[i
].iov_base
) ||
1660 put_user(v
.iov_len
, &iov
[i
].iov_len
))
1663 return sys_vmsplice(fd
, iov
, nr_segs
, flags
);
1667 SYSCALL_DEFINE6(splice
, int, fd_in
, loff_t __user
*, off_in
,
1668 int, fd_out
, loff_t __user
*, off_out
,
1669 size_t, len
, unsigned int, flags
)
1680 if (in
.file
->f_mode
& FMODE_READ
) {
1681 out
= fdget(fd_out
);
1683 if (out
.file
->f_mode
& FMODE_WRITE
)
1684 error
= do_splice(in
.file
, off_in
,
1696 * Make sure there's data to read. Wait for input if we can, otherwise
1697 * return an appropriate error.
1699 static int ipipe_prep(struct pipe_inode_info
*pipe
, unsigned int flags
)
1704 * Check ->nrbufs without the inode lock first. This function
1705 * is speculative anyways, so missing one is ok.
1713 while (!pipe
->nrbufs
) {
1714 if (signal_pending(current
)) {
1720 if (!pipe
->waiting_writers
) {
1721 if (flags
& SPLICE_F_NONBLOCK
) {
1734 * Make sure there's writeable room. Wait for room if we can, otherwise
1735 * return an appropriate error.
1737 static int opipe_prep(struct pipe_inode_info
*pipe
, unsigned int flags
)
1742 * Check ->nrbufs without the inode lock first. This function
1743 * is speculative anyways, so missing one is ok.
1745 if (pipe
->nrbufs
< pipe
->buffers
)
1751 while (pipe
->nrbufs
>= pipe
->buffers
) {
1752 if (!pipe
->readers
) {
1753 send_sig(SIGPIPE
, current
, 0);
1757 if (flags
& SPLICE_F_NONBLOCK
) {
1761 if (signal_pending(current
)) {
1765 pipe
->waiting_writers
++;
1767 pipe
->waiting_writers
--;
1775 * Splice contents of ipipe to opipe.
1777 static int splice_pipe_to_pipe(struct pipe_inode_info
*ipipe
,
1778 struct pipe_inode_info
*opipe
,
1779 size_t len
, unsigned int flags
)
1781 struct pipe_buffer
*ibuf
, *obuf
;
1783 bool input_wakeup
= false;
1787 ret
= ipipe_prep(ipipe
, flags
);
1791 ret
= opipe_prep(opipe
, flags
);
1796 * Potential ABBA deadlock, work around it by ordering lock
1797 * grabbing by pipe info address. Otherwise two different processes
1798 * could deadlock (one doing tee from A -> B, the other from B -> A).
1800 pipe_double_lock(ipipe
, opipe
);
1803 if (!opipe
->readers
) {
1804 send_sig(SIGPIPE
, current
, 0);
1810 if (!ipipe
->nrbufs
&& !ipipe
->writers
)
1814 * Cannot make any progress, because either the input
1815 * pipe is empty or the output pipe is full.
1817 if (!ipipe
->nrbufs
|| opipe
->nrbufs
>= opipe
->buffers
) {
1818 /* Already processed some buffers, break */
1822 if (flags
& SPLICE_F_NONBLOCK
) {
1828 * We raced with another reader/writer and haven't
1829 * managed to process any buffers. A zero return
1830 * value means EOF, so retry instead.
1837 ibuf
= ipipe
->bufs
+ ipipe
->curbuf
;
1838 nbuf
= (opipe
->curbuf
+ opipe
->nrbufs
) & (opipe
->buffers
- 1);
1839 obuf
= opipe
->bufs
+ nbuf
;
1841 if (len
>= ibuf
->len
) {
1843 * Simply move the whole buffer from ipipe to opipe
1848 ipipe
->curbuf
= (ipipe
->curbuf
+ 1) & (ipipe
->buffers
- 1);
1850 input_wakeup
= true;
1853 * Get a reference to this pipe buffer,
1854 * so we can copy the contents over.
1856 ibuf
->ops
->get(ipipe
, ibuf
);
1860 * Don't inherit the gift flag, we need to
1861 * prevent multiple steals of this page.
1863 obuf
->flags
&= ~PIPE_BUF_FLAG_GIFT
;
1867 ibuf
->offset
+= obuf
->len
;
1868 ibuf
->len
-= obuf
->len
;
1878 * If we put data in the output pipe, wakeup any potential readers.
1881 wakeup_pipe_readers(opipe
);
1884 wakeup_pipe_writers(ipipe
);
1890 * Link contents of ipipe to opipe.
1892 static int link_pipe(struct pipe_inode_info
*ipipe
,
1893 struct pipe_inode_info
*opipe
,
1894 size_t len
, unsigned int flags
)
1896 struct pipe_buffer
*ibuf
, *obuf
;
1897 int ret
= 0, i
= 0, nbuf
;
1900 * Potential ABBA deadlock, work around it by ordering lock
1901 * grabbing by pipe info address. Otherwise two different processes
1902 * could deadlock (one doing tee from A -> B, the other from B -> A).
1904 pipe_double_lock(ipipe
, opipe
);
1907 if (!opipe
->readers
) {
1908 send_sig(SIGPIPE
, current
, 0);
1915 * If we have iterated all input buffers or ran out of
1916 * output room, break.
1918 if (i
>= ipipe
->nrbufs
|| opipe
->nrbufs
>= opipe
->buffers
)
1921 ibuf
= ipipe
->bufs
+ ((ipipe
->curbuf
+ i
) & (ipipe
->buffers
-1));
1922 nbuf
= (opipe
->curbuf
+ opipe
->nrbufs
) & (opipe
->buffers
- 1);
1925 * Get a reference to this pipe buffer,
1926 * so we can copy the contents over.
1928 ibuf
->ops
->get(ipipe
, ibuf
);
1930 obuf
= opipe
->bufs
+ nbuf
;
1934 * Don't inherit the gift flag, we need to
1935 * prevent multiple steals of this page.
1937 obuf
->flags
&= ~PIPE_BUF_FLAG_GIFT
;
1939 if (obuf
->len
> len
)
1949 * return EAGAIN if we have the potential of some data in the
1950 * future, otherwise just return 0
1952 if (!ret
&& ipipe
->waiting_writers
&& (flags
& SPLICE_F_NONBLOCK
))
1959 * If we put data in the output pipe, wakeup any potential readers.
1962 wakeup_pipe_readers(opipe
);
1968 * This is a tee(1) implementation that works on pipes. It doesn't copy
1969 * any data, it simply references the 'in' pages on the 'out' pipe.
1970 * The 'flags' used are the SPLICE_F_* variants, currently the only
1971 * applicable one is SPLICE_F_NONBLOCK.
1973 static long do_tee(struct file
*in
, struct file
*out
, size_t len
,
1976 struct pipe_inode_info
*ipipe
= get_pipe_info(in
);
1977 struct pipe_inode_info
*opipe
= get_pipe_info(out
);
1981 * Duplicate the contents of ipipe to opipe without actually
1984 if (ipipe
&& opipe
&& ipipe
!= opipe
) {
1986 * Keep going, unless we encounter an error. The ipipe/opipe
1987 * ordering doesn't really matter.
1989 ret
= ipipe_prep(ipipe
, flags
);
1991 ret
= opipe_prep(opipe
, flags
);
1993 ret
= link_pipe(ipipe
, opipe
, len
, flags
);
2000 SYSCALL_DEFINE4(tee
, int, fdin
, int, fdout
, size_t, len
, unsigned int, flags
)
2011 if (in
.file
->f_mode
& FMODE_READ
) {
2012 struct fd out
= fdget(fdout
);
2014 if (out
.file
->f_mode
& FMODE_WRITE
)
2015 error
= do_tee(in
.file
, out
.file
,