2 * arch/alpha/kernel/traps.c
4 * (C) Copyright 1994 Linus Torvalds
8 * This file initializes the trap entry points
11 #include <linux/jiffies.h>
13 #include <linux/sched.h>
14 #include <linux/tty.h>
15 #include <linux/delay.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/kallsyms.h>
19 #include <linux/ratelimit.h>
21 #include <asm/gentrap.h>
22 #include <asm/uaccess.h>
23 #include <asm/unaligned.h>
24 #include <asm/sysinfo.h>
25 #include <asm/hwrpb.h>
26 #include <asm/mmu_context.h>
27 #include <asm/special_insns.h>
31 /* Work-around for some SRMs which mishandle opDEC faults. */
38 __asm__
__volatile__ (
39 /* Load the address of... */
41 /* A stub instruction fault handler. Just add 4 to the
47 /* Install the instruction fault handler. */
49 " call_pal %[wrent]\n"
50 /* With that in place, the fault from the round-to-minf fp
51 insn will arrive either at the "lda 4" insn (bad) or one
52 past that (good). This places the correct fixup in %0. */
54 " cvttq/svm $f31,$f31\n"
56 : [fix
] "=r" (opDEC_fix
)
57 : [rti
] "n" (PAL_rti
), [wrent
] "n" (PAL_wrent
)
58 : "$0", "$1", "$16", "$17", "$22", "$23", "$24", "$25");
61 printk("opDEC fixup enabled.\n");
65 dik_show_regs(struct pt_regs
*regs
, unsigned long *r9_15
)
67 printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx %s\n",
68 regs
->pc
, regs
->r26
, regs
->ps
, print_tainted());
69 printk("pc is at %pSR\n", (void *)regs
->pc
);
70 printk("ra is at %pSR\n", (void *)regs
->r26
);
71 printk("v0 = %016lx t0 = %016lx t1 = %016lx\n",
72 regs
->r0
, regs
->r1
, regs
->r2
);
73 printk("t2 = %016lx t3 = %016lx t4 = %016lx\n",
74 regs
->r3
, regs
->r4
, regs
->r5
);
75 printk("t5 = %016lx t6 = %016lx t7 = %016lx\n",
76 regs
->r6
, regs
->r7
, regs
->r8
);
79 printk("s0 = %016lx s1 = %016lx s2 = %016lx\n",
80 r9_15
[9], r9_15
[10], r9_15
[11]);
81 printk("s3 = %016lx s4 = %016lx s5 = %016lx\n",
82 r9_15
[12], r9_15
[13], r9_15
[14]);
83 printk("s6 = %016lx\n", r9_15
[15]);
86 printk("a0 = %016lx a1 = %016lx a2 = %016lx\n",
87 regs
->r16
, regs
->r17
, regs
->r18
);
88 printk("a3 = %016lx a4 = %016lx a5 = %016lx\n",
89 regs
->r19
, regs
->r20
, regs
->r21
);
90 printk("t8 = %016lx t9 = %016lx t10= %016lx\n",
91 regs
->r22
, regs
->r23
, regs
->r24
);
92 printk("t11= %016lx pv = %016lx at = %016lx\n",
93 regs
->r25
, regs
->r27
, regs
->r28
);
94 printk("gp = %016lx sp = %p\n", regs
->gp
, regs
+1);
101 static char * ireg_name
[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
102 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6",
103 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
104 "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"};
108 dik_show_code(unsigned int *pc
)
113 for (i
= -6; i
< 2; i
++) {
115 if (__get_user(insn
, (unsigned int __user
*)pc
+ i
))
117 printk("%c%08x%c", i
? ' ' : '<', insn
, i
? ' ' : '>');
123 dik_show_trace(unsigned long *sp
)
127 while (0x1ff8 & (unsigned long) sp
) {
128 extern char _stext
[], _etext
[];
129 unsigned long tmp
= *sp
;
131 if (tmp
< (unsigned long) &_stext
)
133 if (tmp
>= (unsigned long) &_etext
)
135 printk("[<%lx>] %pSR\n", tmp
, (void *)tmp
);
144 static int kstack_depth_to_print
= 24;
146 void show_stack(struct task_struct
*task
, unsigned long *sp
)
148 unsigned long *stack
;
152 * debugging aid: "show_stack(NULL);" prints the
153 * back trace for this cpu.
156 sp
=(unsigned long*)&sp
;
159 for(i
=0; i
< kstack_depth_to_print
; i
++) {
160 if (((long) stack
& (THREAD_SIZE
-1)) == 0)
162 if (i
&& ((i
% 4) == 0))
164 printk("%016lx ", *stack
++);
171 die_if_kernel(char * str
, struct pt_regs
*regs
, long err
, unsigned long *r9_15
)
176 printk("CPU %d ", hard_smp_processor_id());
178 printk("%s(%d): %s %ld\n", current
->comm
, task_pid_nr(current
), str
, err
);
179 dik_show_regs(regs
, r9_15
);
180 add_taint(TAINT_DIE
, LOCKDEP_NOW_UNRELIABLE
);
181 dik_show_trace((unsigned long *)(regs
+1));
182 dik_show_code((unsigned int *)regs
->pc
);
184 if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL
)) {
185 printk("die_if_kernel recursion detected.\n");
192 #ifndef CONFIG_MATHEMU
193 static long dummy_emul(void) { return 0; }
194 long (*alpha_fp_emul_imprecise
)(struct pt_regs
*regs
, unsigned long writemask
)
195 = (void *)dummy_emul
;
196 long (*alpha_fp_emul
) (unsigned long pc
)
197 = (void *)dummy_emul
;
199 long alpha_fp_emul_imprecise(struct pt_regs
*regs
, unsigned long writemask
);
200 long alpha_fp_emul (unsigned long pc
);
204 do_entArith(unsigned long summary
, unsigned long write_mask
,
205 struct pt_regs
*regs
)
207 long si_code
= FPE_FLTINV
;
211 /* Software-completion summary bit is set, so try to
212 emulate the instruction. If the processor supports
213 precise exceptions, we don't have to search. */
214 if (!amask(AMASK_PRECISE_TRAP
))
215 si_code
= alpha_fp_emul(regs
->pc
- 4);
217 si_code
= alpha_fp_emul_imprecise(regs
, write_mask
);
221 die_if_kernel("Arithmetic fault", regs
, 0, NULL
);
223 info
.si_signo
= SIGFPE
;
225 info
.si_code
= si_code
;
226 info
.si_addr
= (void __user
*) regs
->pc
;
227 send_sig_info(SIGFPE
, &info
, current
);
231 do_entIF(unsigned long type
, struct pt_regs
*regs
)
236 if ((regs
->ps
& ~IPL_MAX
) == 0) {
238 const unsigned int *data
239 = (const unsigned int *) regs
->pc
;
240 printk("Kernel bug at %s:%d\n",
241 (const char *)(data
[1] | (long)data
[2] << 32),
244 #ifdef CONFIG_ALPHA_WTINT
246 /* If CALL_PAL WTINT is totally unsupported by the
247 PALcode, e.g. MILO, "emulate" it by overwriting
250 = (unsigned int *) regs
->pc
- 1;
251 if (*pinsn
== PAL_wtint
) {
252 *pinsn
= 0x47e01400; /* mov 0,$0 */
258 #endif /* ALPHA_WTINT */
259 die_if_kernel((type
== 1 ? "Kernel Bug" : "Instruction fault"),
264 case 0: /* breakpoint */
265 info
.si_signo
= SIGTRAP
;
267 info
.si_code
= TRAP_BRKPT
;
269 info
.si_addr
= (void __user
*) regs
->pc
;
271 if (ptrace_cancel_bpt(current
)) {
272 regs
->pc
-= 4; /* make pc point to former bpt */
275 send_sig_info(SIGTRAP
, &info
, current
);
278 case 1: /* bugcheck */
279 info
.si_signo
= SIGTRAP
;
281 info
.si_code
= __SI_FAULT
;
282 info
.si_addr
= (void __user
*) regs
->pc
;
284 send_sig_info(SIGTRAP
, &info
, current
);
287 case 2: /* gentrap */
288 info
.si_addr
= (void __user
*) regs
->pc
;
289 info
.si_trapno
= regs
->r16
;
290 switch ((long) regs
->r16
) {
347 info
.si_signo
= signo
;
350 info
.si_addr
= (void __user
*) regs
->pc
;
351 send_sig_info(signo
, &info
, current
);
355 if (implver() == IMPLVER_EV4
) {
358 /* The some versions of SRM do not handle
359 the opDEC properly - they return the PC of the
360 opDEC fault, not the instruction after as the
361 Alpha architecture requires. Here we fix it up.
362 We do this by intentionally causing an opDEC
363 fault during the boot sequence and testing if
364 we get the correct PC. If not, we set a flag
365 to correct it every time through. */
366 regs
->pc
+= opDEC_fix
;
368 /* EV4 does not implement anything except normal
369 rounding. Everything else will come here as
370 an illegal instruction. Emulate them. */
371 si_code
= alpha_fp_emul(regs
->pc
- 4);
375 info
.si_signo
= SIGFPE
;
377 info
.si_code
= si_code
;
378 info
.si_addr
= (void __user
*) regs
->pc
;
379 send_sig_info(SIGFPE
, &info
, current
);
385 case 3: /* FEN fault */
386 /* Irritating users can call PAL_clrfen to disable the
387 FPU for the process. The kernel will then trap in
388 do_switch_stack and undo_switch_stack when we try
389 to save and restore the FP registers.
391 Given that GCC by default generates code that uses the
392 FP registers, PAL_clrfen is not useful except for DoS
393 attacks. So turn the bleeding FPU back on and be done
395 current_thread_info()->pcb
.flags
|= 1;
396 __reload_thread(¤t_thread_info()->pcb
);
400 default: /* unexpected instruction-fault type */
404 info
.si_signo
= SIGILL
;
406 info
.si_code
= ILL_ILLOPC
;
407 info
.si_addr
= (void __user
*) regs
->pc
;
408 send_sig_info(SIGILL
, &info
, current
);
411 /* There is an ifdef in the PALcode in MILO that enables a
412 "kernel debugging entry point" as an unprivileged call_pal.
414 We don't want to have anything to do with it, but unfortunately
415 several versions of MILO included in distributions have it enabled,
416 and if we don't put something on the entry point we'll oops. */
419 do_entDbg(struct pt_regs
*regs
)
423 die_if_kernel("Instruction fault", regs
, 0, NULL
);
425 info
.si_signo
= SIGILL
;
427 info
.si_code
= ILL_ILLOPC
;
428 info
.si_addr
= (void __user
*) regs
->pc
;
429 force_sig_info(SIGILL
, &info
, current
);
434 * entUna has a different register layout to be reasonably simple. It
435 * needs access to all the integer registers (the kernel doesn't use
436 * fp-regs), and it needs to have them in order for simpler access.
438 * Due to the non-standard register layout (and because we don't want
439 * to handle floating-point regs), user-mode unaligned accesses are
440 * handled separately by do_entUnaUser below.
442 * Oh, btw, we don't handle the "gp" register correctly, but if we fault
443 * on a gp-register unaligned load/store, something is _very_ wrong
444 * in the kernel anyway..
447 unsigned long regs
[32];
448 unsigned long ps
, pc
, gp
, a0
, a1
, a2
;
451 struct unaligned_stat
{
452 unsigned long count
, va
, pc
;
456 /* Macro for exception fixup code to access integer registers. */
457 #define una_reg(r) (_regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)])
461 do_entUna(void * va
, unsigned long opcode
, unsigned long reg
,
462 struct allregs
*regs
)
464 long error
, tmp1
, tmp2
, tmp3
, tmp4
;
465 unsigned long pc
= regs
->pc
- 4;
466 unsigned long *_regs
= regs
->regs
;
467 const struct exception_table_entry
*fixup
;
469 unaligned
[0].count
++;
470 unaligned
[0].va
= (unsigned long) va
;
471 unaligned
[0].pc
= pc
;
473 /* We don't want to use the generic get/put unaligned macros as
474 we want to trap exceptions. Only if we actually get an
475 exception will we decide whether we should have caught it. */
478 case 0x0c: /* ldwu */
479 __asm__
__volatile__(
480 "1: ldq_u %1,0(%3)\n"
481 "2: ldq_u %2,1(%3)\n"
485 ".section __ex_table,\"a\"\n"
487 " lda %1,3b-1b(%0)\n"
489 " lda %2,3b-2b(%0)\n"
491 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
)
495 una_reg(reg
) = tmp1
|tmp2
;
499 __asm__
__volatile__(
500 "1: ldq_u %1,0(%3)\n"
501 "2: ldq_u %2,3(%3)\n"
505 ".section __ex_table,\"a\"\n"
507 " lda %1,3b-1b(%0)\n"
509 " lda %2,3b-2b(%0)\n"
511 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
)
515 una_reg(reg
) = (int)(tmp1
|tmp2
);
519 __asm__
__volatile__(
520 "1: ldq_u %1,0(%3)\n"
521 "2: ldq_u %2,7(%3)\n"
525 ".section __ex_table,\"a\"\n"
527 " lda %1,3b-1b(%0)\n"
529 " lda %2,3b-2b(%0)\n"
531 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
)
535 una_reg(reg
) = tmp1
|tmp2
;
538 /* Note that the store sequences do not indicate that they change
539 memory because it _should_ be affecting nothing in this context.
540 (Otherwise we have other, much larger, problems.) */
542 __asm__
__volatile__(
543 "1: ldq_u %2,1(%5)\n"
544 "2: ldq_u %1,0(%5)\n"
551 "3: stq_u %2,1(%5)\n"
552 "4: stq_u %1,0(%5)\n"
554 ".section __ex_table,\"a\"\n"
556 " lda %2,5b-1b(%0)\n"
558 " lda %1,5b-2b(%0)\n"
560 " lda $31,5b-3b(%0)\n"
562 " lda $31,5b-4b(%0)\n"
564 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
),
565 "=&r"(tmp3
), "=&r"(tmp4
)
566 : "r"(va
), "r"(una_reg(reg
)), "0"(0));
572 __asm__
__volatile__(
573 "1: ldq_u %2,3(%5)\n"
574 "2: ldq_u %1,0(%5)\n"
581 "3: stq_u %2,3(%5)\n"
582 "4: stq_u %1,0(%5)\n"
584 ".section __ex_table,\"a\"\n"
586 " lda %2,5b-1b(%0)\n"
588 " lda %1,5b-2b(%0)\n"
590 " lda $31,5b-3b(%0)\n"
592 " lda $31,5b-4b(%0)\n"
594 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
),
595 "=&r"(tmp3
), "=&r"(tmp4
)
596 : "r"(va
), "r"(una_reg(reg
)), "0"(0));
602 __asm__
__volatile__(
603 "1: ldq_u %2,7(%5)\n"
604 "2: ldq_u %1,0(%5)\n"
611 "3: stq_u %2,7(%5)\n"
612 "4: stq_u %1,0(%5)\n"
614 ".section __ex_table,\"a\"\n\t"
616 " lda %2,5b-1b(%0)\n"
618 " lda %1,5b-2b(%0)\n"
620 " lda $31,5b-3b(%0)\n"
622 " lda $31,5b-4b(%0)\n"
624 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
),
625 "=&r"(tmp3
), "=&r"(tmp4
)
626 : "r"(va
), "r"(una_reg(reg
)), "0"(0));
632 printk("Bad unaligned kernel access at %016lx: %p %lx %lu\n",
633 pc
, va
, opcode
, reg
);
637 /* Ok, we caught the exception, but we don't want it. Is there
638 someone to pass it along to? */
639 if ((fixup
= search_exception_tables(pc
)) != 0) {
641 newpc
= fixup_exception(una_reg
, fixup
, pc
);
643 printk("Forwarding unaligned exception at %lx (%lx)\n",
651 * Yikes! No one to forward the exception to.
652 * Since the registers are in a weird format, dump them ourselves.
655 printk("%s(%d): unhandled unaligned exception\n",
656 current
->comm
, task_pid_nr(current
));
658 printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx\n",
659 pc
, una_reg(26), regs
->ps
);
660 printk("r0 = %016lx r1 = %016lx r2 = %016lx\n",
661 una_reg(0), una_reg(1), una_reg(2));
662 printk("r3 = %016lx r4 = %016lx r5 = %016lx\n",
663 una_reg(3), una_reg(4), una_reg(5));
664 printk("r6 = %016lx r7 = %016lx r8 = %016lx\n",
665 una_reg(6), una_reg(7), una_reg(8));
666 printk("r9 = %016lx r10= %016lx r11= %016lx\n",
667 una_reg(9), una_reg(10), una_reg(11));
668 printk("r12= %016lx r13= %016lx r14= %016lx\n",
669 una_reg(12), una_reg(13), una_reg(14));
670 printk("r15= %016lx\n", una_reg(15));
671 printk("r16= %016lx r17= %016lx r18= %016lx\n",
672 una_reg(16), una_reg(17), una_reg(18));
673 printk("r19= %016lx r20= %016lx r21= %016lx\n",
674 una_reg(19), una_reg(20), una_reg(21));
675 printk("r22= %016lx r23= %016lx r24= %016lx\n",
676 una_reg(22), una_reg(23), una_reg(24));
677 printk("r25= %016lx r27= %016lx r28= %016lx\n",
678 una_reg(25), una_reg(27), una_reg(28));
679 printk("gp = %016lx sp = %p\n", regs
->gp
, regs
+1);
681 dik_show_code((unsigned int *)pc
);
682 dik_show_trace((unsigned long *)(regs
+1));
684 if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL
)) {
685 printk("die_if_kernel recursion detected.\n");
693 * Convert an s-floating point value in memory format to the
694 * corresponding value in register format. The exponent
695 * needs to be remapped to preserve non-finite values
696 * (infinities, not-a-numbers, denormals).
698 static inline unsigned long
699 s_mem_to_reg (unsigned long s_mem
)
701 unsigned long frac
= (s_mem
>> 0) & 0x7fffff;
702 unsigned long sign
= (s_mem
>> 31) & 0x1;
703 unsigned long exp_msb
= (s_mem
>> 30) & 0x1;
704 unsigned long exp_low
= (s_mem
>> 23) & 0x7f;
707 exp
= (exp_msb
<< 10) | exp_low
; /* common case */
709 if (exp_low
== 0x7f) {
713 if (exp_low
== 0x00) {
719 return (sign
<< 63) | (exp
<< 52) | (frac
<< 29);
723 * Convert an s-floating point value in register format to the
724 * corresponding value in memory format.
726 static inline unsigned long
727 s_reg_to_mem (unsigned long s_reg
)
729 return ((s_reg
>> 62) << 30) | ((s_reg
<< 5) >> 34);
733 * Handle user-level unaligned fault. Handling user-level unaligned
734 * faults is *extremely* slow and produces nasty messages. A user
735 * program *should* fix unaligned faults ASAP.
737 * Notice that we have (almost) the regular kernel stack layout here,
738 * so finding the appropriate registers is a little more difficult
739 * than in the kernel case.
741 * Finally, we handle regular integer load/stores only. In
742 * particular, load-linked/store-conditionally and floating point
743 * load/stores are not supported. The former make no sense with
744 * unaligned faults (they are guaranteed to fail) and I don't think
745 * the latter will occur in any decent program.
747 * Sigh. We *do* have to handle some FP operations, because GCC will
748 * uses them as temporary storage for integer memory to memory copies.
749 * However, we need to deal with stt/ldt and sts/lds only.
752 #define OP_INT_MASK ( 1L << 0x28 | 1L << 0x2c /* ldl stl */ \
753 | 1L << 0x29 | 1L << 0x2d /* ldq stq */ \
754 | 1L << 0x0c | 1L << 0x0d /* ldwu stw */ \
755 | 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */
757 #define OP_WRITE_MASK ( 1L << 0x26 | 1L << 0x27 /* sts stt */ \
758 | 1L << 0x2c | 1L << 0x2d /* stl stq */ \
759 | 1L << 0x0d | 1L << 0x0e ) /* stw stb */
761 #define R(x) ((size_t) &((struct pt_regs *)0)->x)
763 static int unauser_reg_offsets
[32] = {
764 R(r0
), R(r1
), R(r2
), R(r3
), R(r4
), R(r5
), R(r6
), R(r7
), R(r8
),
765 /* r9 ... r15 are stored in front of regs. */
766 -56, -48, -40, -32, -24, -16, -8,
767 R(r16
), R(r17
), R(r18
),
768 R(r19
), R(r20
), R(r21
), R(r22
), R(r23
), R(r24
), R(r25
), R(r26
),
769 R(r27
), R(r28
), R(gp
),
776 do_entUnaUser(void __user
* va
, unsigned long opcode
,
777 unsigned long reg
, struct pt_regs
*regs
)
779 static DEFINE_RATELIMIT_STATE(ratelimit
, 5 * HZ
, 5);
781 unsigned long tmp1
, tmp2
, tmp3
, tmp4
;
782 unsigned long fake_reg
, *reg_addr
= &fake_reg
;
786 /* Check the UAC bits to decide what the user wants us to do
787 with the unaliged access. */
789 if (!(current_thread_info()->status
& TS_UAC_NOPRINT
)) {
790 if (__ratelimit(&ratelimit
)) {
791 printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n",
792 current
->comm
, task_pid_nr(current
),
793 regs
->pc
- 4, va
, opcode
, reg
);
796 if ((current_thread_info()->status
& TS_UAC_SIGBUS
))
798 /* Not sure why you'd want to use this, but... */
799 if ((current_thread_info()->status
& TS_UAC_NOFIX
))
802 /* Don't bother reading ds in the access check since we already
803 know that this came from the user. Also rely on the fact that
804 the page at TASK_SIZE is unmapped and so can't be touched anyway. */
805 if (!__access_ok((unsigned long)va
, 0, USER_DS
))
808 ++unaligned
[1].count
;
809 unaligned
[1].va
= (unsigned long)va
;
810 unaligned
[1].pc
= regs
->pc
- 4;
812 if ((1L << opcode
) & OP_INT_MASK
) {
813 /* it's an integer load/store */
815 reg_addr
= (unsigned long *)
816 ((char *)regs
+ unauser_reg_offsets
[reg
]);
817 } else if (reg
== 30) {
818 /* usp in PAL regs */
821 /* zero "register" */
826 /* We don't want to use the generic get/put unaligned macros as
827 we want to trap exceptions. Only if we actually get an
828 exception will we decide whether we should have caught it. */
831 case 0x0c: /* ldwu */
832 __asm__
__volatile__(
833 "1: ldq_u %1,0(%3)\n"
834 "2: ldq_u %2,1(%3)\n"
838 ".section __ex_table,\"a\"\n"
840 " lda %1,3b-1b(%0)\n"
842 " lda %2,3b-2b(%0)\n"
844 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
)
848 *reg_addr
= tmp1
|tmp2
;
852 __asm__
__volatile__(
853 "1: ldq_u %1,0(%3)\n"
854 "2: ldq_u %2,3(%3)\n"
858 ".section __ex_table,\"a\"\n"
860 " lda %1,3b-1b(%0)\n"
862 " lda %2,3b-2b(%0)\n"
864 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
)
868 alpha_write_fp_reg(reg
, s_mem_to_reg((int)(tmp1
|tmp2
)));
872 __asm__
__volatile__(
873 "1: ldq_u %1,0(%3)\n"
874 "2: ldq_u %2,7(%3)\n"
878 ".section __ex_table,\"a\"\n"
880 " lda %1,3b-1b(%0)\n"
882 " lda %2,3b-2b(%0)\n"
884 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
)
888 alpha_write_fp_reg(reg
, tmp1
|tmp2
);
892 __asm__
__volatile__(
893 "1: ldq_u %1,0(%3)\n"
894 "2: ldq_u %2,3(%3)\n"
898 ".section __ex_table,\"a\"\n"
900 " lda %1,3b-1b(%0)\n"
902 " lda %2,3b-2b(%0)\n"
904 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
)
908 *reg_addr
= (int)(tmp1
|tmp2
);
912 __asm__
__volatile__(
913 "1: ldq_u %1,0(%3)\n"
914 "2: ldq_u %2,7(%3)\n"
918 ".section __ex_table,\"a\"\n"
920 " lda %1,3b-1b(%0)\n"
922 " lda %2,3b-2b(%0)\n"
924 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
)
928 *reg_addr
= tmp1
|tmp2
;
931 /* Note that the store sequences do not indicate that they change
932 memory because it _should_ be affecting nothing in this context.
933 (Otherwise we have other, much larger, problems.) */
935 __asm__
__volatile__(
936 "1: ldq_u %2,1(%5)\n"
937 "2: ldq_u %1,0(%5)\n"
944 "3: stq_u %2,1(%5)\n"
945 "4: stq_u %1,0(%5)\n"
947 ".section __ex_table,\"a\"\n"
949 " lda %2,5b-1b(%0)\n"
951 " lda %1,5b-2b(%0)\n"
953 " lda $31,5b-3b(%0)\n"
955 " lda $31,5b-4b(%0)\n"
957 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
),
958 "=&r"(tmp3
), "=&r"(tmp4
)
959 : "r"(va
), "r"(*reg_addr
), "0"(0));
965 fake_reg
= s_reg_to_mem(alpha_read_fp_reg(reg
));
969 __asm__
__volatile__(
970 "1: ldq_u %2,3(%5)\n"
971 "2: ldq_u %1,0(%5)\n"
978 "3: stq_u %2,3(%5)\n"
979 "4: stq_u %1,0(%5)\n"
981 ".section __ex_table,\"a\"\n"
983 " lda %2,5b-1b(%0)\n"
985 " lda %1,5b-2b(%0)\n"
987 " lda $31,5b-3b(%0)\n"
989 " lda $31,5b-4b(%0)\n"
991 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
),
992 "=&r"(tmp3
), "=&r"(tmp4
)
993 : "r"(va
), "r"(*reg_addr
), "0"(0));
999 fake_reg
= alpha_read_fp_reg(reg
);
1002 case 0x2d: /* stq */
1003 __asm__
__volatile__(
1004 "1: ldq_u %2,7(%5)\n"
1005 "2: ldq_u %1,0(%5)\n"
1012 "3: stq_u %2,7(%5)\n"
1013 "4: stq_u %1,0(%5)\n"
1015 ".section __ex_table,\"a\"\n\t"
1017 " lda %2,5b-1b(%0)\n"
1019 " lda %1,5b-2b(%0)\n"
1021 " lda $31,5b-3b(%0)\n"
1023 " lda $31,5b-4b(%0)\n"
1025 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
),
1026 "=&r"(tmp3
), "=&r"(tmp4
)
1027 : "r"(va
), "r"(*reg_addr
), "0"(0));
1033 /* What instruction were you trying to use, exactly? */
1037 /* Only integer loads should get here; everyone else returns early. */
1043 regs
->pc
-= 4; /* make pc point to faulting insn */
1044 info
.si_signo
= SIGSEGV
;
1047 /* We need to replicate some of the logic in mm/fault.c,
1048 since we don't have access to the fault code in the
1049 exception handling return path. */
1050 if (!__access_ok((unsigned long)va
, 0, USER_DS
))
1051 info
.si_code
= SEGV_ACCERR
;
1053 struct mm_struct
*mm
= current
->mm
;
1054 down_read(&mm
->mmap_sem
);
1055 if (find_vma(mm
, (unsigned long)va
))
1056 info
.si_code
= SEGV_ACCERR
;
1058 info
.si_code
= SEGV_MAPERR
;
1059 up_read(&mm
->mmap_sem
);
1062 send_sig_info(SIGSEGV
, &info
, current
);
1067 info
.si_signo
= SIGBUS
;
1069 info
.si_code
= BUS_ADRALN
;
1071 send_sig_info(SIGBUS
, &info
, current
);
1078 /* Tell PAL-code what global pointer we want in the kernel. */
1079 register unsigned long gptr
__asm__("$29");
1082 /* Hack for Multia (UDB) and JENSEN: some of their SRMs have
1083 a bug in the handling of the opDEC fault. Fix it up if so. */
1084 if (implver() == IMPLVER_EV4
)