2 * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
4 * MIPS floating point support
5 * Copyright (C) 1994-2000 Algorithmics Ltd.
7 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
8 * Copyright (C) 2000 MIPS Technologies, Inc.
10 * This program is free software; you can distribute it and/or modify it
11 * under the terms of the GNU General Public License (Version 2) as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
23 * A complete emulator for MIPS coprocessor 1 instructions. This is
24 * required for #float(switch) or #float(trap), where it catches all
25 * COP1 instructions via the "CoProcessor Unusable" exception.
27 * More surprisingly it is also required for #float(ieee), to help out
28 * the hardware fpu at the boundaries of the IEEE-754 representation
29 * (denormalised values, infinities, underflow, etc). It is made
30 * quite nasty because emulation of some non-COP1 instructions is
31 * required, e.g. in branch delay slots.
33 * Note if you know that you won't have an fpu, then you'll get much
34 * better performance by compiling with -msoft-float!
36 #include <linux/sched.h>
37 #include <linux/module.h>
38 #include <linux/debugfs.h>
39 #include <linux/perf_event.h>
42 #include <asm/bootinfo.h>
43 #include <asm/processor.h>
44 #include <asm/ptrace.h>
45 #include <asm/signal.h>
46 #include <asm/mipsregs.h>
47 #include <asm/fpu_emulator.h>
49 #include <asm/uaccess.h>
50 #include <asm/branch.h>
54 /* Strap kernel emulator for full MIPS IV emulation */
61 /* Function which emulates a floating point instruction. */
63 static int fpu_emu(struct pt_regs
*, struct mips_fpu_struct
*,
66 #if __mips >= 4 && __mips != 32
67 static int fpux_emu(struct pt_regs
*,
68 struct mips_fpu_struct
*, mips_instruction
, void *__user
*);
71 /* Further private data for which no space exists in mips_fpu_struct */
73 #ifdef CONFIG_DEBUG_FS
74 DEFINE_PER_CPU(struct mips_fpu_emulator_stats
, fpuemustats
);
77 /* Control registers */
79 #define FPCREG_RID 0 /* $0 = revision id */
80 #define FPCREG_CSR 31 /* $31 = csr */
82 /* Determine rounding mode from the RM bits of the FCSR */
83 #define modeindex(v) ((v) & FPU_CSR_RM)
85 /* microMIPS bitfields */
86 #define MM_POOL32A_MINOR_MASK 0x3f
87 #define MM_POOL32A_MINOR_SHIFT 0x6
88 #define MM_MIPS32_COND_FC 0x30
90 /* Convert Mips rounding mode (0..3) to IEEE library modes. */
91 static const unsigned char ieee_rm
[4] = {
92 [FPU_CSR_RN
] = IEEE754_RN
,
93 [FPU_CSR_RZ
] = IEEE754_RZ
,
94 [FPU_CSR_RU
] = IEEE754_RU
,
95 [FPU_CSR_RD
] = IEEE754_RD
,
97 /* Convert IEEE library modes to Mips rounding mode (0..3). */
98 static const unsigned char mips_rm
[4] = {
99 [IEEE754_RN
] = FPU_CSR_RN
,
100 [IEEE754_RZ
] = FPU_CSR_RZ
,
101 [IEEE754_RD
] = FPU_CSR_RD
,
102 [IEEE754_RU
] = FPU_CSR_RU
,
106 /* convert condition code register number to csr bit */
107 static const unsigned int fpucondbit
[8] = {
119 /* (microMIPS) Convert 16-bit register encoding to 32-bit register encoding. */
120 static const unsigned int reg16to32map
[8] = {16, 17, 2, 3, 4, 5, 6, 7};
122 /* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
123 static const int sd_format
[] = {16, 17, 0, 0, 0, 0, 0, 0};
124 static const int sdps_format
[] = {16, 17, 22, 0, 0, 0, 0, 0};
125 static const int dwl_format
[] = {17, 20, 21, 0, 0, 0, 0, 0};
126 static const int swl_format
[] = {16, 20, 21, 0, 0, 0, 0, 0};
129 * This functions translates a 32-bit microMIPS instruction
130 * into a 32-bit MIPS32 instruction. Returns 0 on success
131 * and SIGILL otherwise.
133 static int microMIPS32_to_MIPS32(union mips_instruction
*insn_ptr
)
135 union mips_instruction insn
= *insn_ptr
;
136 union mips_instruction mips32_insn
= insn
;
139 switch (insn
.mm_i_format
.opcode
) {
141 mips32_insn
.mm_i_format
.opcode
= ldc1_op
;
142 mips32_insn
.mm_i_format
.rt
= insn
.mm_i_format
.rs
;
143 mips32_insn
.mm_i_format
.rs
= insn
.mm_i_format
.rt
;
146 mips32_insn
.mm_i_format
.opcode
= lwc1_op
;
147 mips32_insn
.mm_i_format
.rt
= insn
.mm_i_format
.rs
;
148 mips32_insn
.mm_i_format
.rs
= insn
.mm_i_format
.rt
;
151 mips32_insn
.mm_i_format
.opcode
= sdc1_op
;
152 mips32_insn
.mm_i_format
.rt
= insn
.mm_i_format
.rs
;
153 mips32_insn
.mm_i_format
.rs
= insn
.mm_i_format
.rt
;
156 mips32_insn
.mm_i_format
.opcode
= swc1_op
;
157 mips32_insn
.mm_i_format
.rt
= insn
.mm_i_format
.rs
;
158 mips32_insn
.mm_i_format
.rs
= insn
.mm_i_format
.rt
;
161 /* NOTE: offset is << by 1 if in microMIPS mode. */
162 if ((insn
.mm_i_format
.rt
== mm_bc1f_op
) ||
163 (insn
.mm_i_format
.rt
== mm_bc1t_op
)) {
164 mips32_insn
.fb_format
.opcode
= cop1_op
;
165 mips32_insn
.fb_format
.bc
= bc_op
;
166 mips32_insn
.fb_format
.flag
=
167 (insn
.mm_i_format
.rt
== mm_bc1t_op
) ? 1 : 0;
172 switch (insn
.mm_fp0_format
.func
) {
181 op
= insn
.mm_fp0_format
.func
;
182 if (op
== mm_32f_01_op
)
184 else if (op
== mm_32f_11_op
)
186 else if (op
== mm_32f_02_op
)
188 else if (op
== mm_32f_12_op
)
190 else if (op
== mm_32f_41_op
)
192 else if (op
== mm_32f_51_op
)
194 else if (op
== mm_32f_42_op
)
198 mips32_insn
.fp6_format
.opcode
= cop1x_op
;
199 mips32_insn
.fp6_format
.fr
= insn
.mm_fp6_format
.fr
;
200 mips32_insn
.fp6_format
.ft
= insn
.mm_fp6_format
.ft
;
201 mips32_insn
.fp6_format
.fs
= insn
.mm_fp6_format
.fs
;
202 mips32_insn
.fp6_format
.fd
= insn
.mm_fp6_format
.fd
;
203 mips32_insn
.fp6_format
.func
= func
;
206 func
= -1; /* Invalid */
207 op
= insn
.mm_fp5_format
.op
& 0x7;
208 if (op
== mm_ldxc1_op
)
210 else if (op
== mm_sdxc1_op
)
212 else if (op
== mm_lwxc1_op
)
214 else if (op
== mm_swxc1_op
)
218 mips32_insn
.r_format
.opcode
= cop1x_op
;
219 mips32_insn
.r_format
.rs
=
220 insn
.mm_fp5_format
.base
;
221 mips32_insn
.r_format
.rt
=
222 insn
.mm_fp5_format
.index
;
223 mips32_insn
.r_format
.rd
= 0;
224 mips32_insn
.r_format
.re
= insn
.mm_fp5_format
.fd
;
225 mips32_insn
.r_format
.func
= func
;
230 op
= -1; /* Invalid */
231 if (insn
.mm_fp2_format
.op
== mm_fmovt_op
)
233 else if (insn
.mm_fp2_format
.op
== mm_fmovf_op
)
236 mips32_insn
.fp0_format
.opcode
= cop1_op
;
237 mips32_insn
.fp0_format
.fmt
=
238 sdps_format
[insn
.mm_fp2_format
.fmt
];
239 mips32_insn
.fp0_format
.ft
=
240 (insn
.mm_fp2_format
.cc
<<2) + op
;
241 mips32_insn
.fp0_format
.fs
=
242 insn
.mm_fp2_format
.fs
;
243 mips32_insn
.fp0_format
.fd
=
244 insn
.mm_fp2_format
.fd
;
245 mips32_insn
.fp0_format
.func
= fmovc_op
;
250 func
= -1; /* Invalid */
251 if (insn
.mm_fp0_format
.op
== mm_fadd_op
)
253 else if (insn
.mm_fp0_format
.op
== mm_fsub_op
)
255 else if (insn
.mm_fp0_format
.op
== mm_fmul_op
)
257 else if (insn
.mm_fp0_format
.op
== mm_fdiv_op
)
260 mips32_insn
.fp0_format
.opcode
= cop1_op
;
261 mips32_insn
.fp0_format
.fmt
=
262 sdps_format
[insn
.mm_fp0_format
.fmt
];
263 mips32_insn
.fp0_format
.ft
=
264 insn
.mm_fp0_format
.ft
;
265 mips32_insn
.fp0_format
.fs
=
266 insn
.mm_fp0_format
.fs
;
267 mips32_insn
.fp0_format
.fd
=
268 insn
.mm_fp0_format
.fd
;
269 mips32_insn
.fp0_format
.func
= func
;
274 func
= -1; /* Invalid */
275 if (insn
.mm_fp0_format
.op
== mm_fmovn_op
)
277 else if (insn
.mm_fp0_format
.op
== mm_fmovz_op
)
280 mips32_insn
.fp0_format
.opcode
= cop1_op
;
281 mips32_insn
.fp0_format
.fmt
=
282 sdps_format
[insn
.mm_fp0_format
.fmt
];
283 mips32_insn
.fp0_format
.ft
=
284 insn
.mm_fp0_format
.ft
;
285 mips32_insn
.fp0_format
.fs
=
286 insn
.mm_fp0_format
.fs
;
287 mips32_insn
.fp0_format
.fd
=
288 insn
.mm_fp0_format
.fd
;
289 mips32_insn
.fp0_format
.func
= func
;
293 case mm_32f_73_op
: /* POOL32FXF */
294 switch (insn
.mm_fp1_format
.op
) {
299 if ((insn
.mm_fp1_format
.op
& 0x7f) ==
304 mips32_insn
.r_format
.opcode
= spec_op
;
305 mips32_insn
.r_format
.rs
= insn
.mm_fp4_format
.fs
;
306 mips32_insn
.r_format
.rt
=
307 (insn
.mm_fp4_format
.cc
<< 2) + op
;
308 mips32_insn
.r_format
.rd
= insn
.mm_fp4_format
.rt
;
309 mips32_insn
.r_format
.re
= 0;
310 mips32_insn
.r_format
.func
= movc_op
;
316 if ((insn
.mm_fp1_format
.op
& 0x7f) ==
319 fmt
= swl_format
[insn
.mm_fp3_format
.fmt
];
322 fmt
= dwl_format
[insn
.mm_fp3_format
.fmt
];
324 mips32_insn
.fp0_format
.opcode
= cop1_op
;
325 mips32_insn
.fp0_format
.fmt
= fmt
;
326 mips32_insn
.fp0_format
.ft
= 0;
327 mips32_insn
.fp0_format
.fs
=
328 insn
.mm_fp3_format
.fs
;
329 mips32_insn
.fp0_format
.fd
=
330 insn
.mm_fp3_format
.rt
;
331 mips32_insn
.fp0_format
.func
= func
;
339 if ((insn
.mm_fp1_format
.op
& 0x7f) ==
342 else if ((insn
.mm_fp1_format
.op
& 0x7f) ==
347 mips32_insn
.fp0_format
.opcode
= cop1_op
;
348 mips32_insn
.fp0_format
.fmt
=
349 sdps_format
[insn
.mm_fp3_format
.fmt
];
350 mips32_insn
.fp0_format
.ft
= 0;
351 mips32_insn
.fp0_format
.fs
=
352 insn
.mm_fp3_format
.fs
;
353 mips32_insn
.fp0_format
.fd
=
354 insn
.mm_fp3_format
.rt
;
355 mips32_insn
.fp0_format
.func
= func
;
367 if (insn
.mm_fp1_format
.op
== mm_ffloorl_op
)
369 else if (insn
.mm_fp1_format
.op
== mm_ffloorw_op
)
371 else if (insn
.mm_fp1_format
.op
== mm_fceill_op
)
373 else if (insn
.mm_fp1_format
.op
== mm_fceilw_op
)
375 else if (insn
.mm_fp1_format
.op
== mm_ftruncl_op
)
377 else if (insn
.mm_fp1_format
.op
== mm_ftruncw_op
)
379 else if (insn
.mm_fp1_format
.op
== mm_froundl_op
)
381 else if (insn
.mm_fp1_format
.op
== mm_froundw_op
)
383 else if (insn
.mm_fp1_format
.op
== mm_fcvtl_op
)
387 mips32_insn
.fp0_format
.opcode
= cop1_op
;
388 mips32_insn
.fp0_format
.fmt
=
389 sd_format
[insn
.mm_fp1_format
.fmt
];
390 mips32_insn
.fp0_format
.ft
= 0;
391 mips32_insn
.fp0_format
.fs
=
392 insn
.mm_fp1_format
.fs
;
393 mips32_insn
.fp0_format
.fd
=
394 insn
.mm_fp1_format
.rt
;
395 mips32_insn
.fp0_format
.func
= func
;
400 if (insn
.mm_fp1_format
.op
== mm_frsqrt_op
)
402 else if (insn
.mm_fp1_format
.op
== mm_fsqrt_op
)
406 mips32_insn
.fp0_format
.opcode
= cop1_op
;
407 mips32_insn
.fp0_format
.fmt
=
408 sdps_format
[insn
.mm_fp1_format
.fmt
];
409 mips32_insn
.fp0_format
.ft
= 0;
410 mips32_insn
.fp0_format
.fs
=
411 insn
.mm_fp1_format
.fs
;
412 mips32_insn
.fp0_format
.fd
=
413 insn
.mm_fp1_format
.rt
;
414 mips32_insn
.fp0_format
.func
= func
;
422 if (insn
.mm_fp1_format
.op
== mm_mfc1_op
)
424 else if (insn
.mm_fp1_format
.op
== mm_mtc1_op
)
426 else if (insn
.mm_fp1_format
.op
== mm_cfc1_op
)
428 else if (insn
.mm_fp1_format
.op
== mm_ctc1_op
)
430 else if (insn
.mm_fp1_format
.op
== mm_mfhc1_op
)
434 mips32_insn
.fp1_format
.opcode
= cop1_op
;
435 mips32_insn
.fp1_format
.op
= op
;
436 mips32_insn
.fp1_format
.rt
=
437 insn
.mm_fp1_format
.rt
;
438 mips32_insn
.fp1_format
.fs
=
439 insn
.mm_fp1_format
.fs
;
440 mips32_insn
.fp1_format
.fd
= 0;
441 mips32_insn
.fp1_format
.func
= 0;
447 case mm_32f_74_op
: /* c.cond.fmt */
448 mips32_insn
.fp0_format
.opcode
= cop1_op
;
449 mips32_insn
.fp0_format
.fmt
=
450 sdps_format
[insn
.mm_fp4_format
.fmt
];
451 mips32_insn
.fp0_format
.ft
= insn
.mm_fp4_format
.rt
;
452 mips32_insn
.fp0_format
.fs
= insn
.mm_fp4_format
.fs
;
453 mips32_insn
.fp0_format
.fd
= insn
.mm_fp4_format
.cc
<< 2;
454 mips32_insn
.fp0_format
.func
=
455 insn
.mm_fp4_format
.cond
| MM_MIPS32_COND_FC
;
465 *insn_ptr
= mips32_insn
;
469 int mm_isBranchInstr(struct pt_regs
*regs
, struct mm_decoded_insn dec_insn
,
470 unsigned long *contpc
)
472 union mips_instruction insn
= (union mips_instruction
)dec_insn
.insn
;
480 switch (insn
.mm_i_format
.opcode
) {
482 if ((insn
.mm_i_format
.simmediate
& MM_POOL32A_MINOR_MASK
) ==
484 switch (insn
.mm_i_format
.simmediate
>>
485 MM_POOL32A_MINOR_SHIFT
) {
490 if (insn
.mm_i_format
.rt
!= 0) /* Not mm_jr */
491 regs
->regs
[insn
.mm_i_format
.rt
] =
494 dec_insn
.next_pc_inc
;
495 *contpc
= regs
->regs
[insn
.mm_i_format
.rs
];
501 switch (insn
.mm_i_format
.rt
) {
504 regs
->regs
[31] = regs
->cp0_epc
+
506 dec_insn
.next_pc_inc
;
509 if ((long)regs
->regs
[insn
.mm_i_format
.rs
] < 0)
510 *contpc
= regs
->cp0_epc
+
512 (insn
.mm_i_format
.simmediate
<< 1);
514 *contpc
= regs
->cp0_epc
+
516 dec_insn
.next_pc_inc
;
520 regs
->regs
[31] = regs
->cp0_epc
+
522 dec_insn
.next_pc_inc
;
525 if ((long)regs
->regs
[insn
.mm_i_format
.rs
] >= 0)
526 *contpc
= regs
->cp0_epc
+
528 (insn
.mm_i_format
.simmediate
<< 1);
530 *contpc
= regs
->cp0_epc
+
532 dec_insn
.next_pc_inc
;
535 if ((long)regs
->regs
[insn
.mm_i_format
.rs
] <= 0)
536 *contpc
= regs
->cp0_epc
+
538 (insn
.mm_i_format
.simmediate
<< 1);
540 *contpc
= regs
->cp0_epc
+
542 dec_insn
.next_pc_inc
;
545 if ((long)regs
->regs
[insn
.mm_i_format
.rs
] <= 0)
546 *contpc
= regs
->cp0_epc
+
548 (insn
.mm_i_format
.simmediate
<< 1);
550 *contpc
= regs
->cp0_epc
+
552 dec_insn
.next_pc_inc
;
562 asm volatile("cfc1\t%0,$31" : "=r" (fcr31
));
564 fcr31
= current
->thread
.fpu
.fcr31
;
570 bit
= (insn
.mm_i_format
.rs
>> 2);
573 if (fcr31
& (1 << bit
))
574 *contpc
= regs
->cp0_epc
+
576 (insn
.mm_i_format
.simmediate
<< 1);
578 *contpc
= regs
->cp0_epc
+
579 dec_insn
.pc_inc
+ dec_insn
.next_pc_inc
;
584 switch (insn
.mm_i_format
.rt
) {
587 regs
->regs
[31] = regs
->cp0_epc
+
588 dec_insn
.pc_inc
+ dec_insn
.next_pc_inc
;
591 *contpc
= regs
->regs
[insn
.mm_i_format
.rs
];
596 if ((long)regs
->regs
[reg16to32map
[insn
.mm_b1_format
.rs
]] == 0)
597 *contpc
= regs
->cp0_epc
+
599 (insn
.mm_b1_format
.simmediate
<< 1);
601 *contpc
= regs
->cp0_epc
+
602 dec_insn
.pc_inc
+ dec_insn
.next_pc_inc
;
605 if ((long)regs
->regs
[reg16to32map
[insn
.mm_b1_format
.rs
]] != 0)
606 *contpc
= regs
->cp0_epc
+
608 (insn
.mm_b1_format
.simmediate
<< 1);
610 *contpc
= regs
->cp0_epc
+
611 dec_insn
.pc_inc
+ dec_insn
.next_pc_inc
;
614 *contpc
= regs
->cp0_epc
+ dec_insn
.pc_inc
+
615 (insn
.mm_b0_format
.simmediate
<< 1);
618 if (regs
->regs
[insn
.mm_i_format
.rs
] ==
619 regs
->regs
[insn
.mm_i_format
.rt
])
620 *contpc
= regs
->cp0_epc
+
622 (insn
.mm_i_format
.simmediate
<< 1);
624 *contpc
= regs
->cp0_epc
+
626 dec_insn
.next_pc_inc
;
629 if (regs
->regs
[insn
.mm_i_format
.rs
] !=
630 regs
->regs
[insn
.mm_i_format
.rt
])
631 *contpc
= regs
->cp0_epc
+
633 (insn
.mm_i_format
.simmediate
<< 1);
635 *contpc
= regs
->cp0_epc
+
636 dec_insn
.pc_inc
+ dec_insn
.next_pc_inc
;
639 regs
->regs
[31] = regs
->cp0_epc
+
640 dec_insn
.pc_inc
+ dec_insn
.next_pc_inc
;
641 *contpc
= regs
->cp0_epc
+ dec_insn
.pc_inc
;
644 *contpc
|= (insn
.j_format
.target
<< 2);
648 regs
->regs
[31] = regs
->cp0_epc
+
649 dec_insn
.pc_inc
+ dec_insn
.next_pc_inc
;
652 *contpc
= regs
->cp0_epc
+ dec_insn
.pc_inc
;
655 *contpc
|= (insn
.j_format
.target
<< 1);
656 set_isa16_mode(*contpc
);
663 * Redundant with logic already in kernel/branch.c,
664 * embedded in compute_return_epc. At some point,
665 * a single subroutine should be used across both
668 static int isBranchInstr(struct pt_regs
*regs
, struct mm_decoded_insn dec_insn
,
669 unsigned long *contpc
)
671 union mips_instruction insn
= (union mips_instruction
)dec_insn
.insn
;
673 unsigned int bit
= 0;
675 switch (insn
.i_format
.opcode
) {
677 switch (insn
.r_format
.func
) {
679 regs
->regs
[insn
.r_format
.rd
] =
680 regs
->cp0_epc
+ dec_insn
.pc_inc
+
681 dec_insn
.next_pc_inc
;
684 *contpc
= regs
->regs
[insn
.r_format
.rs
];
689 switch (insn
.i_format
.rt
) {
692 regs
->regs
[31] = regs
->cp0_epc
+
694 dec_insn
.next_pc_inc
;
698 if ((long)regs
->regs
[insn
.i_format
.rs
] < 0)
699 *contpc
= regs
->cp0_epc
+
701 (insn
.i_format
.simmediate
<< 2);
703 *contpc
= regs
->cp0_epc
+
705 dec_insn
.next_pc_inc
;
709 regs
->regs
[31] = regs
->cp0_epc
+
711 dec_insn
.next_pc_inc
;
715 if ((long)regs
->regs
[insn
.i_format
.rs
] >= 0)
716 *contpc
= regs
->cp0_epc
+
718 (insn
.i_format
.simmediate
<< 2);
720 *contpc
= regs
->cp0_epc
+
722 dec_insn
.next_pc_inc
;
729 regs
->regs
[31] = regs
->cp0_epc
+
731 dec_insn
.next_pc_inc
;
734 *contpc
= regs
->cp0_epc
+ dec_insn
.pc_inc
;
737 *contpc
|= (insn
.j_format
.target
<< 2);
738 /* Set microMIPS mode bit: XOR for jalx. */
743 if (regs
->regs
[insn
.i_format
.rs
] ==
744 regs
->regs
[insn
.i_format
.rt
])
745 *contpc
= regs
->cp0_epc
+
747 (insn
.i_format
.simmediate
<< 2);
749 *contpc
= regs
->cp0_epc
+
751 dec_insn
.next_pc_inc
;
755 if (regs
->regs
[insn
.i_format
.rs
] !=
756 regs
->regs
[insn
.i_format
.rt
])
757 *contpc
= regs
->cp0_epc
+
759 (insn
.i_format
.simmediate
<< 2);
761 *contpc
= regs
->cp0_epc
+
763 dec_insn
.next_pc_inc
;
767 if ((long)regs
->regs
[insn
.i_format
.rs
] <= 0)
768 *contpc
= regs
->cp0_epc
+
770 (insn
.i_format
.simmediate
<< 2);
772 *contpc
= regs
->cp0_epc
+
774 dec_insn
.next_pc_inc
;
778 if ((long)regs
->regs
[insn
.i_format
.rs
] > 0)
779 *contpc
= regs
->cp0_epc
+
781 (insn
.i_format
.simmediate
<< 2);
783 *contpc
= regs
->cp0_epc
+
785 dec_insn
.next_pc_inc
;
787 #ifdef CONFIG_CPU_CAVIUM_OCTEON
788 case lwc2_op
: /* This is bbit0 on Octeon */
789 if ((regs
->regs
[insn
.i_format
.rs
] & (1ull<<insn
.i_format
.rt
)) == 0)
790 *contpc
= regs
->cp0_epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
792 *contpc
= regs
->cp0_epc
+ 8;
794 case ldc2_op
: /* This is bbit032 on Octeon */
795 if ((regs
->regs
[insn
.i_format
.rs
] & (1ull<<(insn
.i_format
.rt
+ 32))) == 0)
796 *contpc
= regs
->cp0_epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
798 *contpc
= regs
->cp0_epc
+ 8;
800 case swc2_op
: /* This is bbit1 on Octeon */
801 if (regs
->regs
[insn
.i_format
.rs
] & (1ull<<insn
.i_format
.rt
))
802 *contpc
= regs
->cp0_epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
804 *contpc
= regs
->cp0_epc
+ 8;
806 case sdc2_op
: /* This is bbit132 on Octeon */
807 if (regs
->regs
[insn
.i_format
.rs
] & (1ull<<(insn
.i_format
.rt
+ 32)))
808 *contpc
= regs
->cp0_epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
810 *contpc
= regs
->cp0_epc
+ 8;
817 if (insn
.i_format
.rs
== bc_op
) {
820 asm volatile("cfc1\t%0,$31" : "=r" (fcr31
));
822 fcr31
= current
->thread
.fpu
.fcr31
;
825 bit
= (insn
.i_format
.rt
>> 2);
828 switch (insn
.i_format
.rt
& 3) {
831 if (~fcr31
& (1 << bit
))
832 *contpc
= regs
->cp0_epc
+
834 (insn
.i_format
.simmediate
<< 2);
836 *contpc
= regs
->cp0_epc
+
838 dec_insn
.next_pc_inc
;
842 if (fcr31
& (1 << bit
))
843 *contpc
= regs
->cp0_epc
+
845 (insn
.i_format
.simmediate
<< 2);
847 *contpc
= regs
->cp0_epc
+
849 dec_insn
.next_pc_inc
;
859 * In the Linux kernel, we support selection of FPR format on the
860 * basis of the Status.FR bit. If an FPU is not present, the FR bit
861 * is hardwired to zero, which would imply a 32-bit FPU even for
862 * 64-bit CPUs so we rather look at TIF_32BIT_FPREGS.
863 * FPU emu is slow and bulky and optimizing this function offers fairly
864 * sizeable benefits so we try to be clever and make this function return
865 * a constant whenever possible, that is on 64-bit kernels without O32
866 * compatibility enabled and on 32-bit without 64-bit FPU support.
868 static inline int cop1_64bit(struct pt_regs
*xcp
)
870 #if defined(CONFIG_64BIT) && !defined(CONFIG_MIPS32_O32)
872 #elif defined(CONFIG_32BIT) && !defined(CONFIG_MIPS_O32_FP64_SUPPORT)
875 return !test_thread_flag(TIF_32BIT_FPREGS
);
879 #define SIFROMREG(si, x) ((si) = cop1_64bit(xcp) || !(x & 1) ? \
880 (int)ctx->fpr[x] : (int)(ctx->fpr[x & ~1] >> 32))
882 #define SITOREG(si, x) (ctx->fpr[x & ~(cop1_64bit(xcp) == 0)] = \
883 cop1_64bit(xcp) || !(x & 1) ? \
884 ctx->fpr[x & ~1] >> 32 << 32 | (u32)(si) : \
885 ctx->fpr[x & ~1] << 32 >> 32 | (u64)(si) << 32)
887 #define SIFROMHREG(si, x) ((si) = (int)(ctx->fpr[x] >> 32))
888 #define SITOHREG(si, x) (ctx->fpr[x] = \
889 ctx->fpr[x] << 32 >> 32 | (u64)(si) << 32)
891 #define DIFROMREG(di, x) ((di) = ctx->fpr[x & ~(cop1_64bit(xcp) == 0)])
892 #define DITOREG(di, x) (ctx->fpr[x & ~(cop1_64bit(xcp) == 0)] = (di))
894 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
895 #define SPTOREG(sp, x) SITOREG((sp).bits, x)
896 #define DPFROMREG(dp, x) DIFROMREG((dp).bits, x)
897 #define DPTOREG(dp, x) DITOREG((dp).bits, x)
900 * Emulate the single floating point instruction pointed at by EPC.
901 * Two instructions if the instruction is in a branch delay slot.
904 static int cop1Emulate(struct pt_regs
*xcp
, struct mips_fpu_struct
*ctx
,
905 struct mm_decoded_insn dec_insn
, void *__user
*fault_addr
)
908 unsigned long contpc
= xcp
->cp0_epc
+ dec_insn
.pc_inc
;
912 /* XXX NEC Vr54xx bug workaround */
913 if (xcp
->cp0_cause
& CAUSEF_BD
) {
914 if (dec_insn
.micro_mips_mode
) {
915 if (!mm_isBranchInstr(xcp
, dec_insn
, &contpc
))
916 xcp
->cp0_cause
&= ~CAUSEF_BD
;
918 if (!isBranchInstr(xcp
, dec_insn
, &contpc
))
919 xcp
->cp0_cause
&= ~CAUSEF_BD
;
923 if (xcp
->cp0_cause
& CAUSEF_BD
) {
925 * The instruction to be emulated is in a branch delay slot
926 * which means that we have to emulate the branch instruction
927 * BEFORE we do the cop1 instruction.
929 * This branch could be a COP1 branch, but in that case we
930 * would have had a trap for that instruction, and would not
931 * come through this route.
933 * Linux MIPS branch emulator operates on context, updating the
936 ir
= dec_insn
.next_insn
; /* process delay slot instr */
937 pc_inc
= dec_insn
.next_pc_inc
;
939 ir
= dec_insn
.insn
; /* process current instr */
940 pc_inc
= dec_insn
.pc_inc
;
944 * Since microMIPS FPU instructios are a subset of MIPS32 FPU
945 * instructions, we want to convert microMIPS FPU instructions
946 * into MIPS32 instructions so that we could reuse all of the
947 * FPU emulation code.
949 * NOTE: We cannot do this for branch instructions since they
950 * are not a subset. Example: Cannot emulate a 16-bit
951 * aligned target address with a MIPS32 instruction.
953 if (dec_insn
.micro_mips_mode
) {
955 * If next instruction is a 16-bit instruction, then it
956 * it cannot be a FPU instruction. This could happen
957 * since we can be called for non-FPU instructions.
960 (microMIPS32_to_MIPS32((union mips_instruction
*)&ir
)
966 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
, 1, xcp
, 0);
967 MIPS_FPU_EMU_INC_STATS(emulated
);
968 switch (MIPSInst_OPCODE(ir
)) {
970 u64 __user
*va
= (u64 __user
*) (xcp
->regs
[MIPSInst_RS(ir
)] +
974 MIPS_FPU_EMU_INC_STATS(loads
);
976 if (!access_ok(VERIFY_READ
, va
, sizeof(u64
))) {
977 MIPS_FPU_EMU_INC_STATS(errors
);
981 if (__get_user(val
, va
)) {
982 MIPS_FPU_EMU_INC_STATS(errors
);
986 DITOREG(val
, MIPSInst_RT(ir
));
991 u64 __user
*va
= (u64 __user
*) (xcp
->regs
[MIPSInst_RS(ir
)] +
995 MIPS_FPU_EMU_INC_STATS(stores
);
996 DIFROMREG(val
, MIPSInst_RT(ir
));
997 if (!access_ok(VERIFY_WRITE
, va
, sizeof(u64
))) {
998 MIPS_FPU_EMU_INC_STATS(errors
);
1002 if (__put_user(val
, va
)) {
1003 MIPS_FPU_EMU_INC_STATS(errors
);
1011 u32 __user
*va
= (u32 __user
*) (xcp
->regs
[MIPSInst_RS(ir
)] +
1015 MIPS_FPU_EMU_INC_STATS(loads
);
1016 if (!access_ok(VERIFY_READ
, va
, sizeof(u32
))) {
1017 MIPS_FPU_EMU_INC_STATS(errors
);
1021 if (__get_user(val
, va
)) {
1022 MIPS_FPU_EMU_INC_STATS(errors
);
1026 SITOREG(val
, MIPSInst_RT(ir
));
1031 u32 __user
*va
= (u32 __user
*) (xcp
->regs
[MIPSInst_RS(ir
)] +
1035 MIPS_FPU_EMU_INC_STATS(stores
);
1036 SIFROMREG(val
, MIPSInst_RT(ir
));
1037 if (!access_ok(VERIFY_WRITE
, va
, sizeof(u32
))) {
1038 MIPS_FPU_EMU_INC_STATS(errors
);
1042 if (__put_user(val
, va
)) {
1043 MIPS_FPU_EMU_INC_STATS(errors
);
1051 switch (MIPSInst_RS(ir
)) {
1053 #if defined(__mips64)
1055 /* copregister fs -> gpr[rt] */
1056 if (MIPSInst_RT(ir
) != 0) {
1057 DIFROMREG(xcp
->regs
[MIPSInst_RT(ir
)],
1063 /* copregister fs <- rt */
1064 DITOREG(xcp
->regs
[MIPSInst_RT(ir
)], MIPSInst_RD(ir
));
1069 if (!cpu_has_mips_r2
)
1072 /* copregister rd -> gpr[rt] */
1073 if (MIPSInst_RT(ir
) != 0) {
1074 SIFROMHREG(xcp
->regs
[MIPSInst_RT(ir
)],
1080 if (!cpu_has_mips_r2
)
1083 /* copregister rd <- gpr[rt] */
1084 SITOHREG(xcp
->regs
[MIPSInst_RT(ir
)], MIPSInst_RD(ir
));
1088 /* copregister rd -> gpr[rt] */
1089 if (MIPSInst_RT(ir
) != 0) {
1090 SIFROMREG(xcp
->regs
[MIPSInst_RT(ir
)],
1096 /* copregister rd <- rt */
1097 SITOREG(xcp
->regs
[MIPSInst_RT(ir
)], MIPSInst_RD(ir
));
1101 /* cop control register rd -> gpr[rt] */
1104 if (MIPSInst_RD(ir
) == FPCREG_CSR
) {
1106 value
= (value
& ~FPU_CSR_RM
) |
1107 mips_rm
[modeindex(value
)];
1109 printk("%p gpr[%d]<-csr=%08x\n",
1110 (void *) (xcp
->cp0_epc
),
1111 MIPSInst_RT(ir
), value
);
1114 else if (MIPSInst_RD(ir
) == FPCREG_RID
)
1118 if (MIPSInst_RT(ir
))
1119 xcp
->regs
[MIPSInst_RT(ir
)] = value
;
1124 /* copregister rd <- rt */
1127 if (MIPSInst_RT(ir
) == 0)
1130 value
= xcp
->regs
[MIPSInst_RT(ir
)];
1132 /* we only have one writable control reg
1134 if (MIPSInst_RD(ir
) == FPCREG_CSR
) {
1136 printk("%p gpr[%d]->csr=%08x\n",
1137 (void *) (xcp
->cp0_epc
),
1138 MIPSInst_RT(ir
), value
);
1142 * Don't write reserved bits,
1143 * and convert to ieee library modes
1145 ctx
->fcr31
= (value
&
1146 ~(FPU_CSR_RSVD
| FPU_CSR_RM
)) |
1147 ieee_rm
[modeindex(value
)];
1149 if ((ctx
->fcr31
>> 5) & ctx
->fcr31
& FPU_CSR_ALL_E
) {
1158 if (xcp
->cp0_cause
& CAUSEF_BD
)
1162 cond
= ctx
->fcr31
& fpucondbit
[MIPSInst_RT(ir
) >> 2];
1164 cond
= ctx
->fcr31
& FPU_CSR_COND
;
1166 switch (MIPSInst_RT(ir
) & 3) {
1177 /* thats an illegal instruction */
1181 xcp
->cp0_cause
|= CAUSEF_BD
;
1183 /* branch taken: emulate dslot
1186 xcp
->cp0_epc
+= dec_insn
.pc_inc
;
1188 contpc
= MIPSInst_SIMM(ir
);
1189 ir
= dec_insn
.next_insn
;
1190 if (dec_insn
.micro_mips_mode
) {
1191 contpc
= (xcp
->cp0_epc
+ (contpc
<< 1));
1193 /* If 16-bit instruction, not FPU. */
1194 if ((dec_insn
.next_pc_inc
== 2) ||
1195 (microMIPS32_to_MIPS32((union mips_instruction
*)&ir
) == SIGILL
)) {
1198 * Since this instruction will
1199 * be put on the stack with
1200 * 32-bit words, get around
1201 * this problem by putting a
1202 * NOP16 as the second one.
1204 if (dec_insn
.next_pc_inc
== 2)
1205 ir
= (ir
& (~0xffff)) | MM_NOP16
;
1208 * Single step the non-CP1
1209 * instruction in the dslot.
1211 return mips_dsemul(xcp
, ir
, contpc
);
1214 contpc
= (xcp
->cp0_epc
+ (contpc
<< 2));
1216 switch (MIPSInst_OPCODE(ir
)) {
1219 #if (__mips >= 2 || defined(__mips64))
1224 #if __mips >= 4 && __mips != 32
1227 /* its one of ours */
1231 if (MIPSInst_FUNC(ir
) == movc_op
)
1238 * Single step the non-cp1
1239 * instruction in the dslot
1241 return mips_dsemul(xcp
, ir
, contpc
);
1244 /* branch not taken */
1247 * branch likely nullifies
1248 * dslot if not taken
1250 xcp
->cp0_epc
+= dec_insn
.pc_inc
;
1251 contpc
+= dec_insn
.pc_inc
;
1253 * else continue & execute
1254 * dslot as normal insn
1262 if (!(MIPSInst_RS(ir
) & 0x10))
1267 /* a real fpu computation instruction */
1268 if ((sig
= fpu_emu(xcp
, ctx
, ir
)))
1274 #if __mips >= 4 && __mips != 32
1276 int sig
= fpux_emu(xcp
, ctx
, ir
, fault_addr
);
1285 if (MIPSInst_FUNC(ir
) != movc_op
)
1287 cond
= fpucondbit
[MIPSInst_RT(ir
) >> 2];
1288 if (((ctx
->fcr31
& cond
) != 0) == ((MIPSInst_RT(ir
) & 1) != 0))
1289 xcp
->regs
[MIPSInst_RD(ir
)] =
1290 xcp
->regs
[MIPSInst_RS(ir
)];
1300 xcp
->cp0_epc
= contpc
;
1301 xcp
->cp0_cause
&= ~CAUSEF_BD
;
1307 * Conversion table from MIPS compare ops 48-63
1308 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
1310 static const unsigned char cmptab
[8] = {
1311 0, /* cmp_0 (sig) cmp_sf */
1312 IEEE754_CUN
, /* cmp_un (sig) cmp_ngle */
1313 IEEE754_CEQ
, /* cmp_eq (sig) cmp_seq */
1314 IEEE754_CEQ
| IEEE754_CUN
, /* cmp_ueq (sig) cmp_ngl */
1315 IEEE754_CLT
, /* cmp_olt (sig) cmp_lt */
1316 IEEE754_CLT
| IEEE754_CUN
, /* cmp_ult (sig) cmp_nge */
1317 IEEE754_CLT
| IEEE754_CEQ
, /* cmp_ole (sig) cmp_le */
1318 IEEE754_CLT
| IEEE754_CEQ
| IEEE754_CUN
, /* cmp_ule (sig) cmp_ngt */
1322 #if __mips >= 4 && __mips != 32
1325 * Additional MIPS4 instructions
1328 #define DEF3OP(name, p, f1, f2, f3) \
1329 static ieee754##p fpemu_##p##_##name(ieee754##p r, ieee754##p s, \
1332 struct _ieee754_csr ieee754_csr_save; \
1334 ieee754_csr_save = ieee754_csr; \
1336 ieee754_csr_save.cx |= ieee754_csr.cx; \
1337 ieee754_csr_save.sx |= ieee754_csr.sx; \
1339 ieee754_csr.cx |= ieee754_csr_save.cx; \
1340 ieee754_csr.sx |= ieee754_csr_save.sx; \
1344 static ieee754dp
fpemu_dp_recip(ieee754dp d
)
1346 return ieee754dp_div(ieee754dp_one(0), d
);
1349 static ieee754dp
fpemu_dp_rsqrt(ieee754dp d
)
1351 return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d
));
1354 static ieee754sp
fpemu_sp_recip(ieee754sp s
)
1356 return ieee754sp_div(ieee754sp_one(0), s
);
1359 static ieee754sp
fpemu_sp_rsqrt(ieee754sp s
)
1361 return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s
));
1364 DEF3OP(madd
, sp
, ieee754sp_mul
, ieee754sp_add
, );
1365 DEF3OP(msub
, sp
, ieee754sp_mul
, ieee754sp_sub
, );
1366 DEF3OP(nmadd
, sp
, ieee754sp_mul
, ieee754sp_add
, ieee754sp_neg
);
1367 DEF3OP(nmsub
, sp
, ieee754sp_mul
, ieee754sp_sub
, ieee754sp_neg
);
1368 DEF3OP(madd
, dp
, ieee754dp_mul
, ieee754dp_add
, );
1369 DEF3OP(msub
, dp
, ieee754dp_mul
, ieee754dp_sub
, );
1370 DEF3OP(nmadd
, dp
, ieee754dp_mul
, ieee754dp_add
, ieee754dp_neg
);
1371 DEF3OP(nmsub
, dp
, ieee754dp_mul
, ieee754dp_sub
, ieee754dp_neg
);
1373 static int fpux_emu(struct pt_regs
*xcp
, struct mips_fpu_struct
*ctx
,
1374 mips_instruction ir
, void *__user
*fault_addr
)
1376 unsigned rcsr
= 0; /* resulting csr */
1378 MIPS_FPU_EMU_INC_STATS(cp1xops
);
1380 switch (MIPSInst_FMA_FFMT(ir
)) {
1381 case s_fmt
:{ /* 0 */
1383 ieee754sp(*handler
) (ieee754sp
, ieee754sp
, ieee754sp
);
1384 ieee754sp fd
, fr
, fs
, ft
;
1388 switch (MIPSInst_FUNC(ir
)) {
1390 va
= (void __user
*) (xcp
->regs
[MIPSInst_FR(ir
)] +
1391 xcp
->regs
[MIPSInst_FT(ir
)]);
1393 MIPS_FPU_EMU_INC_STATS(loads
);
1394 if (!access_ok(VERIFY_READ
, va
, sizeof(u32
))) {
1395 MIPS_FPU_EMU_INC_STATS(errors
);
1399 if (__get_user(val
, va
)) {
1400 MIPS_FPU_EMU_INC_STATS(errors
);
1404 SITOREG(val
, MIPSInst_FD(ir
));
1408 va
= (void __user
*) (xcp
->regs
[MIPSInst_FR(ir
)] +
1409 xcp
->regs
[MIPSInst_FT(ir
)]);
1411 MIPS_FPU_EMU_INC_STATS(stores
);
1413 SIFROMREG(val
, MIPSInst_FS(ir
));
1414 if (!access_ok(VERIFY_WRITE
, va
, sizeof(u32
))) {
1415 MIPS_FPU_EMU_INC_STATS(errors
);
1419 if (put_user(val
, va
)) {
1420 MIPS_FPU_EMU_INC_STATS(errors
);
1427 handler
= fpemu_sp_madd
;
1430 handler
= fpemu_sp_msub
;
1433 handler
= fpemu_sp_nmadd
;
1436 handler
= fpemu_sp_nmsub
;
1440 SPFROMREG(fr
, MIPSInst_FR(ir
));
1441 SPFROMREG(fs
, MIPSInst_FS(ir
));
1442 SPFROMREG(ft
, MIPSInst_FT(ir
));
1443 fd
= (*handler
) (fr
, fs
, ft
);
1444 SPTOREG(fd
, MIPSInst_FD(ir
));
1447 if (ieee754_cxtest(IEEE754_INEXACT
))
1448 rcsr
|= FPU_CSR_INE_X
| FPU_CSR_INE_S
;
1449 if (ieee754_cxtest(IEEE754_UNDERFLOW
))
1450 rcsr
|= FPU_CSR_UDF_X
| FPU_CSR_UDF_S
;
1451 if (ieee754_cxtest(IEEE754_OVERFLOW
))
1452 rcsr
|= FPU_CSR_OVF_X
| FPU_CSR_OVF_S
;
1453 if (ieee754_cxtest(IEEE754_INVALID_OPERATION
))
1454 rcsr
|= FPU_CSR_INV_X
| FPU_CSR_INV_S
;
1456 ctx
->fcr31
= (ctx
->fcr31
& ~FPU_CSR_ALL_X
) | rcsr
;
1457 if ((ctx
->fcr31
>> 5) & ctx
->fcr31
& FPU_CSR_ALL_E
) {
1458 /*printk ("SIGFPE: fpu csr = %08x\n",
1471 case d_fmt
:{ /* 1 */
1472 ieee754dp(*handler
) (ieee754dp
, ieee754dp
, ieee754dp
);
1473 ieee754dp fd
, fr
, fs
, ft
;
1477 switch (MIPSInst_FUNC(ir
)) {
1479 va
= (void __user
*) (xcp
->regs
[MIPSInst_FR(ir
)] +
1480 xcp
->regs
[MIPSInst_FT(ir
)]);
1482 MIPS_FPU_EMU_INC_STATS(loads
);
1483 if (!access_ok(VERIFY_READ
, va
, sizeof(u64
))) {
1484 MIPS_FPU_EMU_INC_STATS(errors
);
1488 if (__get_user(val
, va
)) {
1489 MIPS_FPU_EMU_INC_STATS(errors
);
1493 DITOREG(val
, MIPSInst_FD(ir
));
1497 va
= (void __user
*) (xcp
->regs
[MIPSInst_FR(ir
)] +
1498 xcp
->regs
[MIPSInst_FT(ir
)]);
1500 MIPS_FPU_EMU_INC_STATS(stores
);
1501 DIFROMREG(val
, MIPSInst_FS(ir
));
1502 if (!access_ok(VERIFY_WRITE
, va
, sizeof(u64
))) {
1503 MIPS_FPU_EMU_INC_STATS(errors
);
1507 if (__put_user(val
, va
)) {
1508 MIPS_FPU_EMU_INC_STATS(errors
);
1515 handler
= fpemu_dp_madd
;
1518 handler
= fpemu_dp_msub
;
1521 handler
= fpemu_dp_nmadd
;
1524 handler
= fpemu_dp_nmsub
;
1528 DPFROMREG(fr
, MIPSInst_FR(ir
));
1529 DPFROMREG(fs
, MIPSInst_FS(ir
));
1530 DPFROMREG(ft
, MIPSInst_FT(ir
));
1531 fd
= (*handler
) (fr
, fs
, ft
);
1532 DPTOREG(fd
, MIPSInst_FD(ir
));
1542 if (MIPSInst_FUNC(ir
) != pfetch_op
) {
1545 /* ignore prefx operation */
1559 * Emulate a single COP1 arithmetic instruction.
1561 static int fpu_emu(struct pt_regs
*xcp
, struct mips_fpu_struct
*ctx
,
1562 mips_instruction ir
)
1564 int rfmt
; /* resulting format */
1565 unsigned rcsr
= 0; /* resulting csr */
1574 } rv
; /* resulting value */
1576 MIPS_FPU_EMU_INC_STATS(cp1ops
);
1577 switch (rfmt
= (MIPSInst_FFMT(ir
) & 0xf)) {
1578 case s_fmt
:{ /* 0 */
1580 ieee754sp(*b
) (ieee754sp
, ieee754sp
);
1581 ieee754sp(*u
) (ieee754sp
);
1584 switch (MIPSInst_FUNC(ir
)) {
1587 handler
.b
= ieee754sp_add
;
1590 handler
.b
= ieee754sp_sub
;
1593 handler
.b
= ieee754sp_mul
;
1596 handler
.b
= ieee754sp_div
;
1600 #if __mips >= 2 || defined(__mips64)
1602 handler
.u
= ieee754sp_sqrt
;
1605 #if __mips >= 4 && __mips != 32
1607 handler
.u
= fpemu_sp_rsqrt
;
1610 handler
.u
= fpemu_sp_recip
;
1615 cond
= fpucondbit
[MIPSInst_FT(ir
) >> 2];
1616 if (((ctx
->fcr31
& cond
) != 0) !=
1617 ((MIPSInst_FT(ir
) & 1) != 0))
1619 SPFROMREG(rv
.s
, MIPSInst_FS(ir
));
1622 if (xcp
->regs
[MIPSInst_FT(ir
)] != 0)
1624 SPFROMREG(rv
.s
, MIPSInst_FS(ir
));
1627 if (xcp
->regs
[MIPSInst_FT(ir
)] == 0)
1629 SPFROMREG(rv
.s
, MIPSInst_FS(ir
));
1633 handler
.u
= ieee754sp_abs
;
1636 handler
.u
= ieee754sp_neg
;
1640 SPFROMREG(rv
.s
, MIPSInst_FS(ir
));
1643 /* binary op on handler */
1648 SPFROMREG(fs
, MIPSInst_FS(ir
));
1649 SPFROMREG(ft
, MIPSInst_FT(ir
));
1651 rv
.s
= (*handler
.b
) (fs
, ft
);
1658 SPFROMREG(fs
, MIPSInst_FS(ir
));
1659 rv
.s
= (*handler
.u
) (fs
);
1663 if (ieee754_cxtest(IEEE754_INEXACT
))
1664 rcsr
|= FPU_CSR_INE_X
| FPU_CSR_INE_S
;
1665 if (ieee754_cxtest(IEEE754_UNDERFLOW
))
1666 rcsr
|= FPU_CSR_UDF_X
| FPU_CSR_UDF_S
;
1667 if (ieee754_cxtest(IEEE754_OVERFLOW
))
1668 rcsr
|= FPU_CSR_OVF_X
| FPU_CSR_OVF_S
;
1669 if (ieee754_cxtest(IEEE754_ZERO_DIVIDE
))
1670 rcsr
|= FPU_CSR_DIV_X
| FPU_CSR_DIV_S
;
1671 if (ieee754_cxtest(IEEE754_INVALID_OPERATION
))
1672 rcsr
|= FPU_CSR_INV_X
| FPU_CSR_INV_S
;
1675 /* unary conv ops */
1677 return SIGILL
; /* not defined */
1681 SPFROMREG(fs
, MIPSInst_FS(ir
));
1682 rv
.d
= ieee754dp_fsp(fs
);
1689 SPFROMREG(fs
, MIPSInst_FS(ir
));
1690 rv
.w
= ieee754sp_tint(fs
);
1695 #if __mips >= 2 || defined(__mips64)
1700 unsigned int oldrm
= ieee754_csr
.rm
;
1703 SPFROMREG(fs
, MIPSInst_FS(ir
));
1704 ieee754_csr
.rm
= ieee_rm
[modeindex(MIPSInst_FUNC(ir
))];
1705 rv
.w
= ieee754sp_tint(fs
);
1706 ieee754_csr
.rm
= oldrm
;
1710 #endif /* __mips >= 2 */
1712 #if defined(__mips64)
1716 SPFROMREG(fs
, MIPSInst_FS(ir
));
1717 rv
.l
= ieee754sp_tlong(fs
);
1726 unsigned int oldrm
= ieee754_csr
.rm
;
1729 SPFROMREG(fs
, MIPSInst_FS(ir
));
1730 ieee754_csr
.rm
= ieee_rm
[modeindex(MIPSInst_FUNC(ir
))];
1731 rv
.l
= ieee754sp_tlong(fs
);
1732 ieee754_csr
.rm
= oldrm
;
1736 #endif /* defined(__mips64) */
1739 if (MIPSInst_FUNC(ir
) >= fcmp_op
) {
1740 unsigned cmpop
= MIPSInst_FUNC(ir
) - fcmp_op
;
1743 SPFROMREG(fs
, MIPSInst_FS(ir
));
1744 SPFROMREG(ft
, MIPSInst_FT(ir
));
1745 rv
.w
= ieee754sp_cmp(fs
, ft
,
1746 cmptab
[cmpop
& 0x7], cmpop
& 0x8);
1748 if ((cmpop
& 0x8) && ieee754_cxtest
1749 (IEEE754_INVALID_OPERATION
))
1750 rcsr
= FPU_CSR_INV_X
| FPU_CSR_INV_S
;
1765 ieee754dp(*b
) (ieee754dp
, ieee754dp
);
1766 ieee754dp(*u
) (ieee754dp
);
1769 switch (MIPSInst_FUNC(ir
)) {
1772 handler
.b
= ieee754dp_add
;
1775 handler
.b
= ieee754dp_sub
;
1778 handler
.b
= ieee754dp_mul
;
1781 handler
.b
= ieee754dp_div
;
1785 #if __mips >= 2 || defined(__mips64)
1787 handler
.u
= ieee754dp_sqrt
;
1790 #if __mips >= 4 && __mips != 32
1792 handler
.u
= fpemu_dp_rsqrt
;
1795 handler
.u
= fpemu_dp_recip
;
1800 cond
= fpucondbit
[MIPSInst_FT(ir
) >> 2];
1801 if (((ctx
->fcr31
& cond
) != 0) !=
1802 ((MIPSInst_FT(ir
) & 1) != 0))
1804 DPFROMREG(rv
.d
, MIPSInst_FS(ir
));
1807 if (xcp
->regs
[MIPSInst_FT(ir
)] != 0)
1809 DPFROMREG(rv
.d
, MIPSInst_FS(ir
));
1812 if (xcp
->regs
[MIPSInst_FT(ir
)] == 0)
1814 DPFROMREG(rv
.d
, MIPSInst_FS(ir
));
1818 handler
.u
= ieee754dp_abs
;
1822 handler
.u
= ieee754dp_neg
;
1827 DPFROMREG(rv
.d
, MIPSInst_FS(ir
));
1830 /* binary op on handler */
1834 DPFROMREG(fs
, MIPSInst_FS(ir
));
1835 DPFROMREG(ft
, MIPSInst_FT(ir
));
1837 rv
.d
= (*handler
.b
) (fs
, ft
);
1843 DPFROMREG(fs
, MIPSInst_FS(ir
));
1844 rv
.d
= (*handler
.u
) (fs
);
1848 /* unary conv ops */
1852 DPFROMREG(fs
, MIPSInst_FS(ir
));
1853 rv
.s
= ieee754sp_fdp(fs
);
1858 return SIGILL
; /* not defined */
1863 DPFROMREG(fs
, MIPSInst_FS(ir
));
1864 rv
.w
= ieee754dp_tint(fs
); /* wrong */
1869 #if __mips >= 2 || defined(__mips64)
1874 unsigned int oldrm
= ieee754_csr
.rm
;
1877 DPFROMREG(fs
, MIPSInst_FS(ir
));
1878 ieee754_csr
.rm
= ieee_rm
[modeindex(MIPSInst_FUNC(ir
))];
1879 rv
.w
= ieee754dp_tint(fs
);
1880 ieee754_csr
.rm
= oldrm
;
1886 #if defined(__mips64)
1890 DPFROMREG(fs
, MIPSInst_FS(ir
));
1891 rv
.l
= ieee754dp_tlong(fs
);
1900 unsigned int oldrm
= ieee754_csr
.rm
;
1903 DPFROMREG(fs
, MIPSInst_FS(ir
));
1904 ieee754_csr
.rm
= ieee_rm
[modeindex(MIPSInst_FUNC(ir
))];
1905 rv
.l
= ieee754dp_tlong(fs
);
1906 ieee754_csr
.rm
= oldrm
;
1910 #endif /* __mips >= 3 */
1913 if (MIPSInst_FUNC(ir
) >= fcmp_op
) {
1914 unsigned cmpop
= MIPSInst_FUNC(ir
) - fcmp_op
;
1917 DPFROMREG(fs
, MIPSInst_FS(ir
));
1918 DPFROMREG(ft
, MIPSInst_FT(ir
));
1919 rv
.w
= ieee754dp_cmp(fs
, ft
,
1920 cmptab
[cmpop
& 0x7], cmpop
& 0x8);
1925 (IEEE754_INVALID_OPERATION
))
1926 rcsr
= FPU_CSR_INV_X
| FPU_CSR_INV_S
;
1942 switch (MIPSInst_FUNC(ir
)) {
1944 /* convert word to single precision real */
1945 SPFROMREG(fs
, MIPSInst_FS(ir
));
1946 rv
.s
= ieee754sp_fint(fs
.bits
);
1950 /* convert word to double precision real */
1951 SPFROMREG(fs
, MIPSInst_FS(ir
));
1952 rv
.d
= ieee754dp_fint(fs
.bits
);
1961 #if defined(__mips64)
1963 switch (MIPSInst_FUNC(ir
)) {
1965 /* convert long to single precision real */
1966 rv
.s
= ieee754sp_flong(ctx
->fpr
[MIPSInst_FS(ir
)]);
1970 /* convert long to double precision real */
1971 rv
.d
= ieee754dp_flong(ctx
->fpr
[MIPSInst_FS(ir
)]);
1986 * Update the fpu CSR register for this operation.
1987 * If an exception is required, generate a tidy SIGFPE exception,
1988 * without updating the result register.
1989 * Note: cause exception bits do not accumulate, they are rewritten
1990 * for each op; only the flag/sticky bits accumulate.
1992 ctx
->fcr31
= (ctx
->fcr31
& ~FPU_CSR_ALL_X
) | rcsr
;
1993 if ((ctx
->fcr31
>> 5) & ctx
->fcr31
& FPU_CSR_ALL_E
) {
1994 /*printk ("SIGFPE: fpu csr = %08x\n",ctx->fcr31); */
1999 * Now we can safely write the result back to the register file.
2004 cond
= fpucondbit
[MIPSInst_FD(ir
) >> 2];
2006 cond
= FPU_CSR_COND
;
2011 ctx
->fcr31
&= ~cond
;
2015 DPTOREG(rv
.d
, MIPSInst_FD(ir
));
2018 SPTOREG(rv
.s
, MIPSInst_FD(ir
));
2021 SITOREG(rv
.w
, MIPSInst_FD(ir
));
2023 #if defined(__mips64)
2025 DITOREG(rv
.l
, MIPSInst_FD(ir
));
2035 int fpu_emulator_cop1Handler(struct pt_regs
*xcp
, struct mips_fpu_struct
*ctx
,
2036 int has_fpu
, void *__user
*fault_addr
)
2038 unsigned long oldepc
, prevepc
;
2039 struct mm_decoded_insn dec_insn
;
2044 oldepc
= xcp
->cp0_epc
;
2046 prevepc
= xcp
->cp0_epc
;
2048 if (get_isa16_mode(prevepc
) && cpu_has_mmips
) {
2050 * Get next 2 microMIPS instructions and convert them
2051 * into 32-bit instructions.
2053 if ((get_user(instr
[0], (u16 __user
*)msk_isa16_mode(xcp
->cp0_epc
))) ||
2054 (get_user(instr
[1], (u16 __user
*)msk_isa16_mode(xcp
->cp0_epc
+ 2))) ||
2055 (get_user(instr
[2], (u16 __user
*)msk_isa16_mode(xcp
->cp0_epc
+ 4))) ||
2056 (get_user(instr
[3], (u16 __user
*)msk_isa16_mode(xcp
->cp0_epc
+ 6)))) {
2057 MIPS_FPU_EMU_INC_STATS(errors
);
2062 /* Get first instruction. */
2063 if (mm_insn_16bit(*instr_ptr
)) {
2064 /* Duplicate the half-word. */
2065 dec_insn
.insn
= (*instr_ptr
<< 16) |
2067 /* 16-bit instruction. */
2068 dec_insn
.pc_inc
= 2;
2071 dec_insn
.insn
= (*instr_ptr
<< 16) |
2073 /* 32-bit instruction. */
2074 dec_insn
.pc_inc
= 4;
2077 /* Get second instruction. */
2078 if (mm_insn_16bit(*instr_ptr
)) {
2079 /* Duplicate the half-word. */
2080 dec_insn
.next_insn
= (*instr_ptr
<< 16) |
2082 /* 16-bit instruction. */
2083 dec_insn
.next_pc_inc
= 2;
2085 dec_insn
.next_insn
= (*instr_ptr
<< 16) |
2087 /* 32-bit instruction. */
2088 dec_insn
.next_pc_inc
= 4;
2090 dec_insn
.micro_mips_mode
= 1;
2092 if ((get_user(dec_insn
.insn
,
2093 (mips_instruction __user
*) xcp
->cp0_epc
)) ||
2094 (get_user(dec_insn
.next_insn
,
2095 (mips_instruction __user
*)(xcp
->cp0_epc
+4)))) {
2096 MIPS_FPU_EMU_INC_STATS(errors
);
2099 dec_insn
.pc_inc
= 4;
2100 dec_insn
.next_pc_inc
= 4;
2101 dec_insn
.micro_mips_mode
= 0;
2104 if ((dec_insn
.insn
== 0) ||
2105 ((dec_insn
.pc_inc
== 2) &&
2106 ((dec_insn
.insn
& 0xffff) == MM_NOP16
)))
2107 xcp
->cp0_epc
+= dec_insn
.pc_inc
; /* Skip NOPs */
2110 * The 'ieee754_csr' is an alias of
2111 * ctx->fcr31. No need to copy ctx->fcr31 to
2112 * ieee754_csr. But ieee754_csr.rm is ieee
2113 * library modes. (not mips rounding mode)
2115 /* convert to ieee library modes */
2116 ieee754_csr
.rm
= ieee_rm
[ieee754_csr
.rm
];
2117 sig
= cop1Emulate(xcp
, ctx
, dec_insn
, fault_addr
);
2118 /* revert to mips rounding mode */
2119 ieee754_csr
.rm
= mips_rm
[ieee754_csr
.rm
];
2128 } while (xcp
->cp0_epc
> prevepc
);
2130 /* SIGILL indicates a non-fpu instruction */
2131 if (sig
== SIGILL
&& xcp
->cp0_epc
!= oldepc
)
2132 /* but if epc has advanced, then ignore it */
2138 #ifdef CONFIG_DEBUG_FS
2140 static int fpuemu_stat_get(void *data
, u64
*val
)
2143 unsigned long sum
= 0;
2144 for_each_online_cpu(cpu
) {
2145 struct mips_fpu_emulator_stats
*ps
;
2147 ps
= &per_cpu(fpuemustats
, cpu
);
2148 pv
= (void *)ps
+ (unsigned long)data
;
2149 sum
+= local_read(pv
);
2154 DEFINE_SIMPLE_ATTRIBUTE(fops_fpuemu_stat
, fpuemu_stat_get
, NULL
, "%llu\n");
2156 extern struct dentry
*mips_debugfs_dir
;
2157 static int __init
debugfs_fpuemu(void)
2159 struct dentry
*d
, *dir
;
2161 if (!mips_debugfs_dir
)
2163 dir
= debugfs_create_dir("fpuemustats", mips_debugfs_dir
);
2167 #define FPU_STAT_CREATE(M) \
2169 d = debugfs_create_file(#M , S_IRUGO, dir, \
2170 (void *)offsetof(struct mips_fpu_emulator_stats, M), \
2171 &fops_fpuemu_stat); \
2176 FPU_STAT_CREATE(emulated
);
2177 FPU_STAT_CREATE(loads
);
2178 FPU_STAT_CREATE(stores
);
2179 FPU_STAT_CREATE(cp1ops
);
2180 FPU_STAT_CREATE(cp1xops
);
2181 FPU_STAT_CREATE(errors
);
2185 __initcall(debugfs_fpuemu
);