2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Synthesize TLB refill handlers at runtime.
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
14 * ... and the days got worse and worse and now you see
15 * I've gone completly out of my mind.
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
21 * (Condolences to Napoleon XIV)
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/cache.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu-type.h>
33 #include <asm/pgtable.h>
36 #include <asm/setup.h>
39 * TLB load/store/modify handlers.
41 * Only the fastpath gets synthesized at runtime, the slowpath for
42 * do_page_fault remains normal asm.
44 extern void tlb_do_page_fault_0(void);
45 extern void tlb_do_page_fault_1(void);
47 struct work_registers
{
56 } ____cacheline_aligned_in_smp
;
58 static struct tlb_reg_save handler_reg_save
[NR_CPUS
];
60 static inline int r45k_bvahwbug(void)
62 /* XXX: We should probe for the presence of this bug, but we don't. */
66 static inline int r4k_250MHZhwbug(void)
68 /* XXX: We should probe for the presence of this bug, but we don't. */
72 static inline int __maybe_unused
bcm1250_m3_war(void)
74 return BCM1250_M3_WAR
;
77 static inline int __maybe_unused
r10000_llsc_war(void)
79 return R10000_LLSC_WAR
;
82 static int use_bbit_insns(void)
84 switch (current_cpu_type()) {
85 case CPU_CAVIUM_OCTEON
:
86 case CPU_CAVIUM_OCTEON_PLUS
:
87 case CPU_CAVIUM_OCTEON2
:
88 case CPU_CAVIUM_OCTEON3
:
95 static int use_lwx_insns(void)
97 switch (current_cpu_type()) {
98 case CPU_CAVIUM_OCTEON2
:
99 case CPU_CAVIUM_OCTEON3
:
105 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
106 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
107 static bool scratchpad_available(void)
111 static int scratchpad_offset(int i
)
114 * CVMSEG starts at address -32768 and extends for
115 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
117 i
+= 1; /* Kernel use starts at the top and works down. */
118 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE
* 128 - (8 * i
) - 32768;
121 static bool scratchpad_available(void)
125 static int scratchpad_offset(int i
)
128 /* Really unreachable, but evidently some GCC want this. */
133 * Found by experiment: At least some revisions of the 4kc throw under
134 * some circumstances a machine check exception, triggered by invalid
135 * values in the index register. Delaying the tlbp instruction until
136 * after the next branch, plus adding an additional nop in front of
137 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
138 * why; it's not an issue caused by the core RTL.
141 static int m4kc_tlbp_war(void)
143 return (current_cpu_data
.processor_id
& 0xffff00) ==
144 (PRID_COMP_MIPS
| PRID_IMP_4KC
);
147 /* Handle labels (which must be positive integers). */
149 label_second_part
= 1,
154 label_split
= label_tlbw_hazard_0
+ 8,
155 label_tlbl_goaround1
,
156 label_tlbl_goaround2
,
160 label_smp_pgtable_change
,
161 label_r3000_write_probe_fail
,
162 label_large_segbits_fault
,
163 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
164 label_tlb_huge_update
,
168 UASM_L_LA(_second_part
)
171 UASM_L_LA(_vmalloc_done
)
172 /* _tlbw_hazard_x is handled differently. */
174 UASM_L_LA(_tlbl_goaround1
)
175 UASM_L_LA(_tlbl_goaround2
)
176 UASM_L_LA(_nopage_tlbl
)
177 UASM_L_LA(_nopage_tlbs
)
178 UASM_L_LA(_nopage_tlbm
)
179 UASM_L_LA(_smp_pgtable_change
)
180 UASM_L_LA(_r3000_write_probe_fail
)
181 UASM_L_LA(_large_segbits_fault
)
182 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
183 UASM_L_LA(_tlb_huge_update
)
186 static int hazard_instance
;
188 static void uasm_bgezl_hazard(u32
**p
, struct uasm_reloc
**r
, int instance
)
192 uasm_il_bgezl(p
, r
, 0, label_tlbw_hazard_0
+ instance
);
199 static void uasm_bgezl_label(struct uasm_label
**l
, u32
**p
, int instance
)
203 uasm_build_label(l
, *p
, label_tlbw_hazard_0
+ instance
);
211 * pgtable bits are assigned dynamically depending on processor feature
212 * and statically based on kernel configuration. This spits out the actual
213 * values the kernel is using. Required to make sense from disassembled
214 * TLB exception handlers.
216 static void output_pgtable_bits_defines(void)
218 #define pr_define(fmt, ...) \
219 pr_debug("#define " fmt, ##__VA_ARGS__)
221 pr_debug("#include <asm/asm.h>\n");
222 pr_debug("#include <asm/regdef.h>\n");
225 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT
);
226 pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT
);
227 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT
);
228 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT
);
229 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT
);
230 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
231 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT
);
232 pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT
);
235 #ifdef _PAGE_NO_EXEC_SHIFT
236 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT
);
238 #ifdef _PAGE_NO_READ_SHIFT
239 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT
);
242 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT
);
243 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT
);
244 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT
);
245 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT
);
249 static inline void dump_handler(const char *symbol
, const u32
*handler
, int count
)
253 pr_debug("LEAF(%s)\n", symbol
);
255 pr_debug("\t.set push\n");
256 pr_debug("\t.set noreorder\n");
258 for (i
= 0; i
< count
; i
++)
259 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler
[i
], &handler
[i
]);
261 pr_debug("\t.set\tpop\n");
263 pr_debug("\tEND(%s)\n", symbol
);
266 /* The only general purpose registers allowed in TLB handlers. */
270 /* Some CP0 registers */
271 #define C0_INDEX 0, 0
272 #define C0_ENTRYLO0 2, 0
273 #define C0_TCBIND 2, 2
274 #define C0_ENTRYLO1 3, 0
275 #define C0_CONTEXT 4, 0
276 #define C0_PAGEMASK 5, 0
277 #define C0_BADVADDR 8, 0
278 #define C0_ENTRYHI 10, 0
280 #define C0_XCONTEXT 20, 0
283 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
285 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
288 /* The worst case length of the handler is around 18 instructions for
289 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
290 * Maximum space available is 32 instructions for R3000 and 64
291 * instructions for R4000.
293 * We deliberately chose a buffer size of 128, so we won't scribble
294 * over anything important on overflow before we panic.
296 static u32 tlb_handler
[128];
298 /* simply assume worst case size for labels and relocs */
299 static struct uasm_label labels
[128];
300 static struct uasm_reloc relocs
[128];
302 static int check_for_high_segbits
;
304 static unsigned int kscratch_used_mask
;
306 static inline int __maybe_unused
c0_kscratch(void)
308 switch (current_cpu_type()) {
317 static int allocate_kscratch(void)
320 unsigned int a
= cpu_data
[0].kscratch_mask
& ~kscratch_used_mask
;
327 r
--; /* make it zero based */
329 kscratch_used_mask
|= (1 << r
);
334 static int scratch_reg
;
336 enum vmalloc64_mode
{not_refill
, refill_scratch
, refill_noscratch
};
338 static struct work_registers
build_get_work_registers(u32
**p
)
340 struct work_registers r
;
342 if (scratch_reg
>= 0) {
343 /* Save in CPU local C0_KScratch? */
344 UASM_i_MTC0(p
, 1, c0_kscratch(), scratch_reg
);
351 if (num_possible_cpus() > 1) {
352 /* Get smp_processor_id */
353 UASM_i_CPUID_MFC0(p
, K0
, SMP_CPUID_REG
);
354 UASM_i_SRL_SAFE(p
, K0
, K0
, SMP_CPUID_REGSHIFT
);
356 /* handler_reg_save index in K0 */
357 UASM_i_SLL(p
, K0
, K0
, ilog2(sizeof(struct tlb_reg_save
)));
359 UASM_i_LA(p
, K1
, (long)&handler_reg_save
);
360 UASM_i_ADDU(p
, K0
, K0
, K1
);
362 UASM_i_LA(p
, K0
, (long)&handler_reg_save
);
364 /* K0 now points to save area, save $1 and $2 */
365 UASM_i_SW(p
, 1, offsetof(struct tlb_reg_save
, a
), K0
);
366 UASM_i_SW(p
, 2, offsetof(struct tlb_reg_save
, b
), K0
);
374 static void build_restore_work_registers(u32
**p
)
376 if (scratch_reg
>= 0) {
377 UASM_i_MFC0(p
, 1, c0_kscratch(), scratch_reg
);
380 /* K0 already points to save area, restore $1 and $2 */
381 UASM_i_LW(p
, 1, offsetof(struct tlb_reg_save
, a
), K0
);
382 UASM_i_LW(p
, 2, offsetof(struct tlb_reg_save
, b
), K0
);
385 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
388 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
389 * we cannot do r3000 under these circumstances.
391 * Declare pgd_current here instead of including mmu_context.h to avoid type
392 * conflicts for tlbmiss_handler_setup_pgd
394 extern unsigned long pgd_current
[];
397 * The R3000 TLB handler is simple.
399 static void build_r3000_tlb_refill_handler(void)
401 long pgdc
= (long)pgd_current
;
404 memset(tlb_handler
, 0, sizeof(tlb_handler
));
407 uasm_i_mfc0(&p
, K0
, C0_BADVADDR
);
408 uasm_i_lui(&p
, K1
, uasm_rel_hi(pgdc
)); /* cp0 delay */
409 uasm_i_lw(&p
, K1
, uasm_rel_lo(pgdc
), K1
);
410 uasm_i_srl(&p
, K0
, K0
, 22); /* load delay */
411 uasm_i_sll(&p
, K0
, K0
, 2);
412 uasm_i_addu(&p
, K1
, K1
, K0
);
413 uasm_i_mfc0(&p
, K0
, C0_CONTEXT
);
414 uasm_i_lw(&p
, K1
, 0, K1
); /* cp0 delay */
415 uasm_i_andi(&p
, K0
, K0
, 0xffc); /* load delay */
416 uasm_i_addu(&p
, K1
, K1
, K0
);
417 uasm_i_lw(&p
, K0
, 0, K1
);
418 uasm_i_nop(&p
); /* load delay */
419 uasm_i_mtc0(&p
, K0
, C0_ENTRYLO0
);
420 uasm_i_mfc0(&p
, K1
, C0_EPC
); /* cp0 delay */
421 uasm_i_tlbwr(&p
); /* cp0 delay */
423 uasm_i_rfe(&p
); /* branch delay */
425 if (p
> tlb_handler
+ 32)
426 panic("TLB refill handler space exceeded");
428 pr_debug("Wrote TLB refill handler (%u instructions).\n",
429 (unsigned int)(p
- tlb_handler
));
431 memcpy((void *)ebase
, tlb_handler
, 0x80);
433 dump_handler("r3000_tlb_refill", (u32
*)ebase
, 32);
435 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
438 * The R4000 TLB handler is much more complicated. We have two
439 * consecutive handler areas with 32 instructions space each.
440 * Since they aren't used at the same time, we can overflow in the
441 * other one.To keep things simple, we first assume linear space,
442 * then we relocate it to the final handler layout as needed.
444 static u32 final_handler
[64];
449 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
450 * 2. A timing hazard exists for the TLBP instruction.
452 * stalling_instruction
455 * The JTLB is being read for the TLBP throughout the stall generated by the
456 * previous instruction. This is not really correct as the stalling instruction
457 * can modify the address used to access the JTLB. The failure symptom is that
458 * the TLBP instruction will use an address created for the stalling instruction
459 * and not the address held in C0_ENHI and thus report the wrong results.
461 * The software work-around is to not allow the instruction preceding the TLBP
462 * to stall - make it an NOP or some other instruction guaranteed not to stall.
464 * Errata 2 will not be fixed. This errata is also on the R5000.
466 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
468 static void __maybe_unused
build_tlb_probe_entry(u32
**p
)
470 switch (current_cpu_type()) {
471 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
487 * Write random or indexed TLB entry, and care about the hazards from
488 * the preceding mtc0 and for the following eret.
490 enum tlb_write_entry
{ tlb_random
, tlb_indexed
};
492 static void build_tlb_write_entry(u32
**p
, struct uasm_label
**l
,
493 struct uasm_reloc
**r
,
494 enum tlb_write_entry wmode
)
496 void(*tlbw
)(u32
**) = NULL
;
499 case tlb_random
: tlbw
= uasm_i_tlbwr
; break;
500 case tlb_indexed
: tlbw
= uasm_i_tlbwi
; break;
503 if (cpu_has_mips_r2
) {
505 * The architecture spec says an ehb is required here,
506 * but a number of cores do not have the hazard and
507 * using an ehb causes an expensive pipeline stall.
509 switch (current_cpu_type()) {
523 switch (current_cpu_type()) {
531 * This branch uses up a mtc0 hazard nop slot and saves
532 * two nops after the tlbw instruction.
534 uasm_bgezl_hazard(p
, r
, hazard_instance
);
536 uasm_bgezl_label(l
, p
, hazard_instance
);
550 uasm_i_nop(p
); /* QED specifies 2 nops hazard */
551 uasm_i_nop(p
); /* QED specifies 2 nops hazard */
623 panic("No TLB refill handler yet (CPU type: %d)",
624 current_cpu_data
.cputype
);
629 static __maybe_unused
void build_convert_pte_to_entrylo(u32
**p
,
633 UASM_i_ROTR(p
, reg
, reg
, ilog2(_PAGE_GLOBAL
));
635 #ifdef CONFIG_64BIT_PHYS_ADDR
636 uasm_i_dsrl_safe(p
, reg
, reg
, ilog2(_PAGE_GLOBAL
));
638 UASM_i_SRL(p
, reg
, reg
, ilog2(_PAGE_GLOBAL
));
643 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
645 static void build_restore_pagemask(u32
**p
, struct uasm_reloc
**r
,
646 unsigned int tmp
, enum label_id lid
,
649 if (restore_scratch
) {
650 /* Reset default page size */
651 if (PM_DEFAULT_MASK
>> 16) {
652 uasm_i_lui(p
, tmp
, PM_DEFAULT_MASK
>> 16);
653 uasm_i_ori(p
, tmp
, tmp
, PM_DEFAULT_MASK
& 0xffff);
654 uasm_i_mtc0(p
, tmp
, C0_PAGEMASK
);
655 uasm_il_b(p
, r
, lid
);
656 } else if (PM_DEFAULT_MASK
) {
657 uasm_i_ori(p
, tmp
, 0, PM_DEFAULT_MASK
);
658 uasm_i_mtc0(p
, tmp
, C0_PAGEMASK
);
659 uasm_il_b(p
, r
, lid
);
661 uasm_i_mtc0(p
, 0, C0_PAGEMASK
);
662 uasm_il_b(p
, r
, lid
);
664 if (scratch_reg
>= 0)
665 UASM_i_MFC0(p
, 1, c0_kscratch(), scratch_reg
);
667 UASM_i_LW(p
, 1, scratchpad_offset(0), 0);
669 /* Reset default page size */
670 if (PM_DEFAULT_MASK
>> 16) {
671 uasm_i_lui(p
, tmp
, PM_DEFAULT_MASK
>> 16);
672 uasm_i_ori(p
, tmp
, tmp
, PM_DEFAULT_MASK
& 0xffff);
673 uasm_il_b(p
, r
, lid
);
674 uasm_i_mtc0(p
, tmp
, C0_PAGEMASK
);
675 } else if (PM_DEFAULT_MASK
) {
676 uasm_i_ori(p
, tmp
, 0, PM_DEFAULT_MASK
);
677 uasm_il_b(p
, r
, lid
);
678 uasm_i_mtc0(p
, tmp
, C0_PAGEMASK
);
680 uasm_il_b(p
, r
, lid
);
681 uasm_i_mtc0(p
, 0, C0_PAGEMASK
);
686 static void build_huge_tlb_write_entry(u32
**p
, struct uasm_label
**l
,
687 struct uasm_reloc
**r
,
689 enum tlb_write_entry wmode
,
692 /* Set huge page tlb entry size */
693 uasm_i_lui(p
, tmp
, PM_HUGE_MASK
>> 16);
694 uasm_i_ori(p
, tmp
, tmp
, PM_HUGE_MASK
& 0xffff);
695 uasm_i_mtc0(p
, tmp
, C0_PAGEMASK
);
697 build_tlb_write_entry(p
, l
, r
, wmode
);
699 build_restore_pagemask(p
, r
, tmp
, label_leave
, restore_scratch
);
703 * Check if Huge PTE is present, if so then jump to LABEL.
706 build_is_huge_pte(u32
**p
, struct uasm_reloc
**r
, unsigned int tmp
,
707 unsigned int pmd
, int lid
)
709 UASM_i_LW(p
, tmp
, 0, pmd
);
710 if (use_bbit_insns()) {
711 uasm_il_bbit1(p
, r
, tmp
, ilog2(_PAGE_HUGE
), lid
);
713 uasm_i_andi(p
, tmp
, tmp
, _PAGE_HUGE
);
714 uasm_il_bnez(p
, r
, tmp
, lid
);
718 static void build_huge_update_entries(u32
**p
, unsigned int pte
,
724 * A huge PTE describes an area the size of the
725 * configured huge page size. This is twice the
726 * of the large TLB entry size we intend to use.
727 * A TLB entry half the size of the configured
728 * huge page size is configured into entrylo0
729 * and entrylo1 to cover the contiguous huge PTE
732 small_sequence
= (HPAGE_SIZE
>> 7) < 0x10000;
734 /* We can clobber tmp. It isn't used after this.*/
736 uasm_i_lui(p
, tmp
, HPAGE_SIZE
>> (7 + 16));
738 build_convert_pte_to_entrylo(p
, pte
);
739 UASM_i_MTC0(p
, pte
, C0_ENTRYLO0
); /* load it */
740 /* convert to entrylo1 */
742 UASM_i_ADDIU(p
, pte
, pte
, HPAGE_SIZE
>> 7);
744 UASM_i_ADDU(p
, pte
, pte
, tmp
);
746 UASM_i_MTC0(p
, pte
, C0_ENTRYLO1
); /* load it */
749 static void build_huge_handler_tail(u32
**p
, struct uasm_reloc
**r
,
750 struct uasm_label
**l
,
755 UASM_i_SC(p
, pte
, 0, ptr
);
756 uasm_il_beqz(p
, r
, pte
, label_tlb_huge_update
);
757 UASM_i_LW(p
, pte
, 0, ptr
); /* Needed because SC killed our PTE */
759 UASM_i_SW(p
, pte
, 0, ptr
);
761 build_huge_update_entries(p
, pte
, ptr
);
762 build_huge_tlb_write_entry(p
, l
, r
, pte
, tlb_indexed
, 0);
764 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
768 * TMP and PTR are scratch.
769 * TMP will be clobbered, PTR will hold the pmd entry.
772 build_get_pmde64(u32
**p
, struct uasm_label
**l
, struct uasm_reloc
**r
,
773 unsigned int tmp
, unsigned int ptr
)
775 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
776 long pgdc
= (long)pgd_current
;
779 * The vmalloc handling is not in the hotpath.
781 uasm_i_dmfc0(p
, tmp
, C0_BADVADDR
);
783 if (check_for_high_segbits
) {
785 * The kernel currently implicitely assumes that the
786 * MIPS SEGBITS parameter for the processor is
787 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
788 * allocate virtual addresses outside the maximum
789 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
790 * that doesn't prevent user code from accessing the
791 * higher xuseg addresses. Here, we make sure that
792 * everything but the lower xuseg addresses goes down
793 * the module_alloc/vmalloc path.
795 uasm_i_dsrl_safe(p
, ptr
, tmp
, PGDIR_SHIFT
+ PGD_ORDER
+ PAGE_SHIFT
- 3);
796 uasm_il_bnez(p
, r
, ptr
, label_vmalloc
);
798 uasm_il_bltz(p
, r
, tmp
, label_vmalloc
);
800 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
803 /* pgd is in pgd_reg */
804 UASM_i_MFC0(p
, ptr
, c0_kscratch(), pgd_reg
);
806 #if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
808 * &pgd << 11 stored in CONTEXT [23..63].
810 UASM_i_MFC0(p
, ptr
, C0_CONTEXT
);
812 /* Clear lower 23 bits of context. */
813 uasm_i_dins(p
, ptr
, 0, 0, 23);
815 /* 1 0 1 0 1 << 6 xkphys cached */
816 uasm_i_ori(p
, ptr
, ptr
, 0x540);
817 uasm_i_drotr(p
, ptr
, ptr
, 11);
818 #elif defined(CONFIG_SMP)
819 UASM_i_CPUID_MFC0(p
, ptr
, SMP_CPUID_REG
);
820 uasm_i_dsrl_safe(p
, ptr
, ptr
, SMP_CPUID_PTRSHIFT
);
821 UASM_i_LA_mostly(p
, tmp
, pgdc
);
822 uasm_i_daddu(p
, ptr
, ptr
, tmp
);
823 uasm_i_dmfc0(p
, tmp
, C0_BADVADDR
);
824 uasm_i_ld(p
, ptr
, uasm_rel_lo(pgdc
), ptr
);
826 UASM_i_LA_mostly(p
, ptr
, pgdc
);
827 uasm_i_ld(p
, ptr
, uasm_rel_lo(pgdc
), ptr
);
831 uasm_l_vmalloc_done(l
, *p
);
833 /* get pgd offset in bytes */
834 uasm_i_dsrl_safe(p
, tmp
, tmp
, PGDIR_SHIFT
- 3);
836 uasm_i_andi(p
, tmp
, tmp
, (PTRS_PER_PGD
- 1)<<3);
837 uasm_i_daddu(p
, ptr
, ptr
, tmp
); /* add in pgd offset */
838 #ifndef __PAGETABLE_PMD_FOLDED
839 uasm_i_dmfc0(p
, tmp
, C0_BADVADDR
); /* get faulting address */
840 uasm_i_ld(p
, ptr
, 0, ptr
); /* get pmd pointer */
841 uasm_i_dsrl_safe(p
, tmp
, tmp
, PMD_SHIFT
-3); /* get pmd offset in bytes */
842 uasm_i_andi(p
, tmp
, tmp
, (PTRS_PER_PMD
- 1)<<3);
843 uasm_i_daddu(p
, ptr
, ptr
, tmp
); /* add in pmd offset */
848 * BVADDR is the faulting address, PTR is scratch.
849 * PTR will hold the pgd for vmalloc.
852 build_get_pgd_vmalloc64(u32
**p
, struct uasm_label
**l
, struct uasm_reloc
**r
,
853 unsigned int bvaddr
, unsigned int ptr
,
854 enum vmalloc64_mode mode
)
856 long swpd
= (long)swapper_pg_dir
;
857 int single_insn_swpd
;
858 int did_vmalloc_branch
= 0;
860 single_insn_swpd
= uasm_in_compat_space_p(swpd
) && !uasm_rel_lo(swpd
);
862 uasm_l_vmalloc(l
, *p
);
864 if (mode
!= not_refill
&& check_for_high_segbits
) {
865 if (single_insn_swpd
) {
866 uasm_il_bltz(p
, r
, bvaddr
, label_vmalloc_done
);
867 uasm_i_lui(p
, ptr
, uasm_rel_hi(swpd
));
868 did_vmalloc_branch
= 1;
871 uasm_il_bgez(p
, r
, bvaddr
, label_large_segbits_fault
);
874 if (!did_vmalloc_branch
) {
875 if (uasm_in_compat_space_p(swpd
) && !uasm_rel_lo(swpd
)) {
876 uasm_il_b(p
, r
, label_vmalloc_done
);
877 uasm_i_lui(p
, ptr
, uasm_rel_hi(swpd
));
879 UASM_i_LA_mostly(p
, ptr
, swpd
);
880 uasm_il_b(p
, r
, label_vmalloc_done
);
881 if (uasm_in_compat_space_p(swpd
))
882 uasm_i_addiu(p
, ptr
, ptr
, uasm_rel_lo(swpd
));
884 uasm_i_daddiu(p
, ptr
, ptr
, uasm_rel_lo(swpd
));
887 if (mode
!= not_refill
&& check_for_high_segbits
) {
888 uasm_l_large_segbits_fault(l
, *p
);
890 * We get here if we are an xsseg address, or if we are
891 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
893 * Ignoring xsseg (assume disabled so would generate
894 * (address errors?), the only remaining possibility
895 * is the upper xuseg addresses. On processors with
896 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
897 * addresses would have taken an address error. We try
898 * to mimic that here by taking a load/istream page
901 UASM_i_LA(p
, ptr
, (unsigned long)tlb_do_page_fault_0
);
904 if (mode
== refill_scratch
) {
905 if (scratch_reg
>= 0)
906 UASM_i_MFC0(p
, 1, c0_kscratch(), scratch_reg
);
908 UASM_i_LW(p
, 1, scratchpad_offset(0), 0);
915 #else /* !CONFIG_64BIT */
918 * TMP and PTR are scratch.
919 * TMP will be clobbered, PTR will hold the pgd entry.
921 static void __maybe_unused
922 build_get_pgde32(u32
**p
, unsigned int tmp
, unsigned int ptr
)
925 /* pgd is in pgd_reg */
926 uasm_i_mfc0(p
, ptr
, c0_kscratch(), pgd_reg
);
927 uasm_i_mfc0(p
, tmp
, C0_BADVADDR
); /* get faulting address */
929 long pgdc
= (long)pgd_current
;
931 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
933 uasm_i_mfc0(p
, ptr
, SMP_CPUID_REG
);
934 UASM_i_LA_mostly(p
, tmp
, pgdc
);
935 uasm_i_srl(p
, ptr
, ptr
, SMP_CPUID_PTRSHIFT
);
936 uasm_i_addu(p
, ptr
, tmp
, ptr
);
938 UASM_i_LA_mostly(p
, ptr
, pgdc
);
940 uasm_i_mfc0(p
, tmp
, C0_BADVADDR
); /* get faulting address */
941 uasm_i_lw(p
, ptr
, uasm_rel_lo(pgdc
), ptr
);
943 uasm_i_srl(p
, tmp
, tmp
, PGDIR_SHIFT
); /* get pgd only bits */
944 uasm_i_sll(p
, tmp
, tmp
, PGD_T_LOG2
);
945 uasm_i_addu(p
, ptr
, ptr
, tmp
); /* add in pgd offset */
948 #endif /* !CONFIG_64BIT */
950 static void build_adjust_context(u32
**p
, unsigned int ctx
)
952 unsigned int shift
= 4 - (PTE_T_LOG2
+ 1) + PAGE_SHIFT
- 12;
953 unsigned int mask
= (PTRS_PER_PTE
/ 2 - 1) << (PTE_T_LOG2
+ 1);
955 switch (current_cpu_type()) {
972 UASM_i_SRL(p
, ctx
, ctx
, shift
);
973 uasm_i_andi(p
, ctx
, ctx
, mask
);
976 static void build_get_ptep(u32
**p
, unsigned int tmp
, unsigned int ptr
)
979 * Bug workaround for the Nevada. It seems as if under certain
980 * circumstances the move from cp0_context might produce a
981 * bogus result when the mfc0 instruction and its consumer are
982 * in a different cacheline or a load instruction, probably any
983 * memory reference, is between them.
985 switch (current_cpu_type()) {
987 UASM_i_LW(p
, ptr
, 0, ptr
);
988 GET_CONTEXT(p
, tmp
); /* get context reg */
992 GET_CONTEXT(p
, tmp
); /* get context reg */
993 UASM_i_LW(p
, ptr
, 0, ptr
);
997 build_adjust_context(p
, tmp
);
998 UASM_i_ADDU(p
, ptr
, ptr
, tmp
); /* add in offset */
1001 static void build_update_entries(u32
**p
, unsigned int tmp
, unsigned int ptep
)
1004 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1005 * Kernel is a special case. Only a few CPUs use it.
1007 #ifdef CONFIG_64BIT_PHYS_ADDR
1008 if (cpu_has_64bits
) {
1009 uasm_i_ld(p
, tmp
, 0, ptep
); /* get even pte */
1010 uasm_i_ld(p
, ptep
, sizeof(pte_t
), ptep
); /* get odd pte */
1012 UASM_i_ROTR(p
, tmp
, tmp
, ilog2(_PAGE_GLOBAL
));
1013 UASM_i_MTC0(p
, tmp
, C0_ENTRYLO0
); /* load it */
1014 UASM_i_ROTR(p
, ptep
, ptep
, ilog2(_PAGE_GLOBAL
));
1016 uasm_i_dsrl_safe(p
, tmp
, tmp
, ilog2(_PAGE_GLOBAL
)); /* convert to entrylo0 */
1017 UASM_i_MTC0(p
, tmp
, C0_ENTRYLO0
); /* load it */
1018 uasm_i_dsrl_safe(p
, ptep
, ptep
, ilog2(_PAGE_GLOBAL
)); /* convert to entrylo1 */
1020 UASM_i_MTC0(p
, ptep
, C0_ENTRYLO1
); /* load it */
1022 int pte_off_even
= sizeof(pte_t
) / 2;
1023 int pte_off_odd
= pte_off_even
+ sizeof(pte_t
);
1025 /* The pte entries are pre-shifted */
1026 uasm_i_lw(p
, tmp
, pte_off_even
, ptep
); /* get even pte */
1027 UASM_i_MTC0(p
, tmp
, C0_ENTRYLO0
); /* load it */
1028 uasm_i_lw(p
, ptep
, pte_off_odd
, ptep
); /* get odd pte */
1029 UASM_i_MTC0(p
, ptep
, C0_ENTRYLO1
); /* load it */
1032 UASM_i_LW(p
, tmp
, 0, ptep
); /* get even pte */
1033 UASM_i_LW(p
, ptep
, sizeof(pte_t
), ptep
); /* get odd pte */
1034 if (r45k_bvahwbug())
1035 build_tlb_probe_entry(p
);
1037 UASM_i_ROTR(p
, tmp
, tmp
, ilog2(_PAGE_GLOBAL
));
1038 if (r4k_250MHZhwbug())
1039 UASM_i_MTC0(p
, 0, C0_ENTRYLO0
);
1040 UASM_i_MTC0(p
, tmp
, C0_ENTRYLO0
); /* load it */
1041 UASM_i_ROTR(p
, ptep
, ptep
, ilog2(_PAGE_GLOBAL
));
1043 UASM_i_SRL(p
, tmp
, tmp
, ilog2(_PAGE_GLOBAL
)); /* convert to entrylo0 */
1044 if (r4k_250MHZhwbug())
1045 UASM_i_MTC0(p
, 0, C0_ENTRYLO0
);
1046 UASM_i_MTC0(p
, tmp
, C0_ENTRYLO0
); /* load it */
1047 UASM_i_SRL(p
, ptep
, ptep
, ilog2(_PAGE_GLOBAL
)); /* convert to entrylo1 */
1048 if (r45k_bvahwbug())
1049 uasm_i_mfc0(p
, tmp
, C0_INDEX
);
1051 if (r4k_250MHZhwbug())
1052 UASM_i_MTC0(p
, 0, C0_ENTRYLO1
);
1053 UASM_i_MTC0(p
, ptep
, C0_ENTRYLO1
); /* load it */
1057 struct mips_huge_tlb_info
{
1059 int restore_scratch
;
1062 static struct mips_huge_tlb_info
1063 build_fast_tlb_refill_handler (u32
**p
, struct uasm_label
**l
,
1064 struct uasm_reloc
**r
, unsigned int tmp
,
1065 unsigned int ptr
, int c0_scratch_reg
)
1067 struct mips_huge_tlb_info rv
;
1068 unsigned int even
, odd
;
1069 int vmalloc_branch_delay_filled
= 0;
1070 const int scratch
= 1; /* Our extra working register */
1072 rv
.huge_pte
= scratch
;
1073 rv
.restore_scratch
= 0;
1075 if (check_for_high_segbits
) {
1076 UASM_i_MFC0(p
, tmp
, C0_BADVADDR
);
1079 UASM_i_MFC0(p
, ptr
, c0_kscratch(), pgd_reg
);
1081 UASM_i_MFC0(p
, ptr
, C0_CONTEXT
);
1083 if (c0_scratch_reg
>= 0)
1084 UASM_i_MTC0(p
, scratch
, c0_kscratch(), c0_scratch_reg
);
1086 UASM_i_SW(p
, scratch
, scratchpad_offset(0), 0);
1088 uasm_i_dsrl_safe(p
, scratch
, tmp
,
1089 PGDIR_SHIFT
+ PGD_ORDER
+ PAGE_SHIFT
- 3);
1090 uasm_il_bnez(p
, r
, scratch
, label_vmalloc
);
1092 if (pgd_reg
== -1) {
1093 vmalloc_branch_delay_filled
= 1;
1094 /* Clear lower 23 bits of context. */
1095 uasm_i_dins(p
, ptr
, 0, 0, 23);
1099 UASM_i_MFC0(p
, ptr
, c0_kscratch(), pgd_reg
);
1101 UASM_i_MFC0(p
, ptr
, C0_CONTEXT
);
1103 UASM_i_MFC0(p
, tmp
, C0_BADVADDR
);
1105 if (c0_scratch_reg
>= 0)
1106 UASM_i_MTC0(p
, scratch
, c0_kscratch(), c0_scratch_reg
);
1108 UASM_i_SW(p
, scratch
, scratchpad_offset(0), 0);
1111 /* Clear lower 23 bits of context. */
1112 uasm_i_dins(p
, ptr
, 0, 0, 23);
1114 uasm_il_bltz(p
, r
, tmp
, label_vmalloc
);
1117 if (pgd_reg
== -1) {
1118 vmalloc_branch_delay_filled
= 1;
1119 /* 1 0 1 0 1 << 6 xkphys cached */
1120 uasm_i_ori(p
, ptr
, ptr
, 0x540);
1121 uasm_i_drotr(p
, ptr
, ptr
, 11);
1124 #ifdef __PAGETABLE_PMD_FOLDED
1125 #define LOC_PTEP scratch
1127 #define LOC_PTEP ptr
1130 if (!vmalloc_branch_delay_filled
)
1131 /* get pgd offset in bytes */
1132 uasm_i_dsrl_safe(p
, scratch
, tmp
, PGDIR_SHIFT
- 3);
1134 uasm_l_vmalloc_done(l
, *p
);
1138 * fall-through case = badvaddr *pgd_current
1139 * vmalloc case = badvaddr swapper_pg_dir
1142 if (vmalloc_branch_delay_filled
)
1143 /* get pgd offset in bytes */
1144 uasm_i_dsrl_safe(p
, scratch
, tmp
, PGDIR_SHIFT
- 3);
1146 #ifdef __PAGETABLE_PMD_FOLDED
1147 GET_CONTEXT(p
, tmp
); /* get context reg */
1149 uasm_i_andi(p
, scratch
, scratch
, (PTRS_PER_PGD
- 1) << 3);
1151 if (use_lwx_insns()) {
1152 UASM_i_LWX(p
, LOC_PTEP
, scratch
, ptr
);
1154 uasm_i_daddu(p
, ptr
, ptr
, scratch
); /* add in pgd offset */
1155 uasm_i_ld(p
, LOC_PTEP
, 0, ptr
); /* get pmd pointer */
1158 #ifndef __PAGETABLE_PMD_FOLDED
1159 /* get pmd offset in bytes */
1160 uasm_i_dsrl_safe(p
, scratch
, tmp
, PMD_SHIFT
- 3);
1161 uasm_i_andi(p
, scratch
, scratch
, (PTRS_PER_PMD
- 1) << 3);
1162 GET_CONTEXT(p
, tmp
); /* get context reg */
1164 if (use_lwx_insns()) {
1165 UASM_i_LWX(p
, scratch
, scratch
, ptr
);
1167 uasm_i_daddu(p
, ptr
, ptr
, scratch
); /* add in pmd offset */
1168 UASM_i_LW(p
, scratch
, 0, ptr
);
1171 /* Adjust the context during the load latency. */
1172 build_adjust_context(p
, tmp
);
1174 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1175 uasm_il_bbit1(p
, r
, scratch
, ilog2(_PAGE_HUGE
), label_tlb_huge_update
);
1177 * The in the LWX case we don't want to do the load in the
1178 * delay slot. It cannot issue in the same cycle and may be
1179 * speculative and unneeded.
1181 if (use_lwx_insns())
1183 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1186 /* build_update_entries */
1187 if (use_lwx_insns()) {
1190 UASM_i_LWX(p
, even
, scratch
, tmp
);
1191 UASM_i_ADDIU(p
, tmp
, tmp
, sizeof(pte_t
));
1192 UASM_i_LWX(p
, odd
, scratch
, tmp
);
1194 UASM_i_ADDU(p
, ptr
, scratch
, tmp
); /* add in offset */
1197 UASM_i_LW(p
, even
, 0, ptr
); /* get even pte */
1198 UASM_i_LW(p
, odd
, sizeof(pte_t
), ptr
); /* get odd pte */
1201 uasm_i_drotr(p
, even
, even
, ilog2(_PAGE_GLOBAL
));
1202 UASM_i_MTC0(p
, even
, C0_ENTRYLO0
); /* load it */
1203 uasm_i_drotr(p
, odd
, odd
, ilog2(_PAGE_GLOBAL
));
1205 uasm_i_dsrl_safe(p
, even
, even
, ilog2(_PAGE_GLOBAL
));
1206 UASM_i_MTC0(p
, even
, C0_ENTRYLO0
); /* load it */
1207 uasm_i_dsrl_safe(p
, odd
, odd
, ilog2(_PAGE_GLOBAL
));
1209 UASM_i_MTC0(p
, odd
, C0_ENTRYLO1
); /* load it */
1211 if (c0_scratch_reg
>= 0) {
1212 UASM_i_MFC0(p
, scratch
, c0_kscratch(), c0_scratch_reg
);
1213 build_tlb_write_entry(p
, l
, r
, tlb_random
);
1214 uasm_l_leave(l
, *p
);
1215 rv
.restore_scratch
= 1;
1216 } else if (PAGE_SHIFT
== 14 || PAGE_SHIFT
== 13) {
1217 build_tlb_write_entry(p
, l
, r
, tlb_random
);
1218 uasm_l_leave(l
, *p
);
1219 UASM_i_LW(p
, scratch
, scratchpad_offset(0), 0);
1221 UASM_i_LW(p
, scratch
, scratchpad_offset(0), 0);
1222 build_tlb_write_entry(p
, l
, r
, tlb_random
);
1223 uasm_l_leave(l
, *p
);
1224 rv
.restore_scratch
= 1;
1227 uasm_i_eret(p
); /* return from trap */
1233 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1234 * because EXL == 0. If we wrap, we can also use the 32 instruction
1235 * slots before the XTLB refill exception handler which belong to the
1236 * unused TLB refill exception.
1238 #define MIPS64_REFILL_INSNS 32
1240 static void build_r4000_tlb_refill_handler(void)
1242 u32
*p
= tlb_handler
;
1243 struct uasm_label
*l
= labels
;
1244 struct uasm_reloc
*r
= relocs
;
1246 unsigned int final_len
;
1247 struct mips_huge_tlb_info htlb_info __maybe_unused
;
1248 enum vmalloc64_mode vmalloc_mode __maybe_unused
;
1250 memset(tlb_handler
, 0, sizeof(tlb_handler
));
1251 memset(labels
, 0, sizeof(labels
));
1252 memset(relocs
, 0, sizeof(relocs
));
1253 memset(final_handler
, 0, sizeof(final_handler
));
1255 if ((scratch_reg
>= 0 || scratchpad_available()) && use_bbit_insns()) {
1256 htlb_info
= build_fast_tlb_refill_handler(&p
, &l
, &r
, K0
, K1
,
1258 vmalloc_mode
= refill_scratch
;
1260 htlb_info
.huge_pte
= K0
;
1261 htlb_info
.restore_scratch
= 0;
1262 vmalloc_mode
= refill_noscratch
;
1264 * create the plain linear handler
1266 if (bcm1250_m3_war()) {
1267 unsigned int segbits
= 44;
1269 uasm_i_dmfc0(&p
, K0
, C0_BADVADDR
);
1270 uasm_i_dmfc0(&p
, K1
, C0_ENTRYHI
);
1271 uasm_i_xor(&p
, K0
, K0
, K1
);
1272 uasm_i_dsrl_safe(&p
, K1
, K0
, 62);
1273 uasm_i_dsrl_safe(&p
, K0
, K0
, 12 + 1);
1274 uasm_i_dsll_safe(&p
, K0
, K0
, 64 + 12 + 1 - segbits
);
1275 uasm_i_or(&p
, K0
, K0
, K1
);
1276 uasm_il_bnez(&p
, &r
, K0
, label_leave
);
1277 /* No need for uasm_i_nop */
1281 build_get_pmde64(&p
, &l
, &r
, K0
, K1
); /* get pmd in K1 */
1283 build_get_pgde32(&p
, K0
, K1
); /* get pgd in K1 */
1286 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1287 build_is_huge_pte(&p
, &r
, K0
, K1
, label_tlb_huge_update
);
1290 build_get_ptep(&p
, K0
, K1
);
1291 build_update_entries(&p
, K0
, K1
);
1292 build_tlb_write_entry(&p
, &l
, &r
, tlb_random
);
1293 uasm_l_leave(&l
, p
);
1294 uasm_i_eret(&p
); /* return from trap */
1296 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1297 uasm_l_tlb_huge_update(&l
, p
);
1298 build_huge_update_entries(&p
, htlb_info
.huge_pte
, K1
);
1299 build_huge_tlb_write_entry(&p
, &l
, &r
, K0
, tlb_random
,
1300 htlb_info
.restore_scratch
);
1304 build_get_pgd_vmalloc64(&p
, &l
, &r
, K0
, K1
, vmalloc_mode
);
1308 * Overflow check: For the 64bit handler, we need at least one
1309 * free instruction slot for the wrap-around branch. In worst
1310 * case, if the intended insertion point is a delay slot, we
1311 * need three, with the second nop'ed and the third being
1314 switch (boot_cpu_type()) {
1316 if (sizeof(long) == 4) {
1318 /* Loongson2 ebase is different than r4k, we have more space */
1319 if ((p
- tlb_handler
) > 64)
1320 panic("TLB refill handler space exceeded");
1322 * Now fold the handler in the TLB refill handler space.
1325 /* Simplest case, just copy the handler. */
1326 uasm_copy_handler(relocs
, labels
, tlb_handler
, p
, f
);
1327 final_len
= p
- tlb_handler
;
1330 if (((p
- tlb_handler
) > (MIPS64_REFILL_INSNS
* 2) - 1)
1331 || (((p
- tlb_handler
) > (MIPS64_REFILL_INSNS
* 2) - 3)
1332 && uasm_insn_has_bdelay(relocs
,
1333 tlb_handler
+ MIPS64_REFILL_INSNS
- 3)))
1334 panic("TLB refill handler space exceeded");
1336 * Now fold the handler in the TLB refill handler space.
1338 f
= final_handler
+ MIPS64_REFILL_INSNS
;
1339 if ((p
- tlb_handler
) <= MIPS64_REFILL_INSNS
) {
1340 /* Just copy the handler. */
1341 uasm_copy_handler(relocs
, labels
, tlb_handler
, p
, f
);
1342 final_len
= p
- tlb_handler
;
1344 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1345 const enum label_id ls
= label_tlb_huge_update
;
1347 const enum label_id ls
= label_vmalloc
;
1353 for (i
= 0; i
< ARRAY_SIZE(labels
) && labels
[i
].lab
!= ls
; i
++)
1355 BUG_ON(i
== ARRAY_SIZE(labels
));
1356 split
= labels
[i
].addr
;
1359 * See if we have overflown one way or the other.
1361 if (split
> tlb_handler
+ MIPS64_REFILL_INSNS
||
1362 split
< p
- MIPS64_REFILL_INSNS
)
1367 * Split two instructions before the end. One
1368 * for the branch and one for the instruction
1369 * in the delay slot.
1371 split
= tlb_handler
+ MIPS64_REFILL_INSNS
- 2;
1374 * If the branch would fall in a delay slot,
1375 * we must back up an additional instruction
1376 * so that it is no longer in a delay slot.
1378 if (uasm_insn_has_bdelay(relocs
, split
- 1))
1381 /* Copy first part of the handler. */
1382 uasm_copy_handler(relocs
, labels
, tlb_handler
, split
, f
);
1383 f
+= split
- tlb_handler
;
1386 /* Insert branch. */
1387 uasm_l_split(&l
, final_handler
);
1388 uasm_il_b(&f
, &r
, label_split
);
1389 if (uasm_insn_has_bdelay(relocs
, split
))
1392 uasm_copy_handler(relocs
, labels
,
1393 split
, split
+ 1, f
);
1394 uasm_move_labels(labels
, f
, f
+ 1, -1);
1400 /* Copy the rest of the handler. */
1401 uasm_copy_handler(relocs
, labels
, split
, p
, final_handler
);
1402 final_len
= (f
- (final_handler
+ MIPS64_REFILL_INSNS
)) +
1409 uasm_resolve_relocs(relocs
, labels
);
1410 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1413 memcpy((void *)ebase
, final_handler
, 0x100);
1415 dump_handler("r4000_tlb_refill", (u32
*)ebase
, 64);
1418 extern u32 handle_tlbl
[], handle_tlbl_end
[];
1419 extern u32 handle_tlbs
[], handle_tlbs_end
[];
1420 extern u32 handle_tlbm
[], handle_tlbm_end
[];
1421 extern u32 tlbmiss_handler_setup_pgd
[], tlbmiss_handler_setup_pgd_end
[];
1423 static void build_setup_pgd(void)
1426 const int __maybe_unused a1
= 5;
1427 const int __maybe_unused a2
= 6;
1428 u32
*p
= tlbmiss_handler_setup_pgd
;
1429 const int tlbmiss_handler_setup_pgd_size
=
1430 tlbmiss_handler_setup_pgd_end
- tlbmiss_handler_setup_pgd
;
1431 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1432 long pgdc
= (long)pgd_current
;
1435 memset(tlbmiss_handler_setup_pgd
, 0, tlbmiss_handler_setup_pgd_size
*
1436 sizeof(tlbmiss_handler_setup_pgd
[0]));
1437 memset(labels
, 0, sizeof(labels
));
1438 memset(relocs
, 0, sizeof(relocs
));
1439 pgd_reg
= allocate_kscratch();
1440 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1441 if (pgd_reg
== -1) {
1442 struct uasm_label
*l
= labels
;
1443 struct uasm_reloc
*r
= relocs
;
1445 /* PGD << 11 in c0_Context */
1447 * If it is a ckseg0 address, convert to a physical
1448 * address. Shifting right by 29 and adding 4 will
1449 * result in zero for these addresses.
1452 UASM_i_SRA(&p
, a1
, a0
, 29);
1453 UASM_i_ADDIU(&p
, a1
, a1
, 4);
1454 uasm_il_bnez(&p
, &r
, a1
, label_tlbl_goaround1
);
1456 uasm_i_dinsm(&p
, a0
, 0, 29, 64 - 29);
1457 uasm_l_tlbl_goaround1(&l
, p
);
1458 UASM_i_SLL(&p
, a0
, a0
, 11);
1460 UASM_i_MTC0(&p
, a0
, C0_CONTEXT
);
1462 /* PGD in c0_KScratch */
1464 UASM_i_MTC0(&p
, a0
, c0_kscratch(), pgd_reg
);
1468 /* Save PGD to pgd_current[smp_processor_id()] */
1469 UASM_i_CPUID_MFC0(&p
, a1
, SMP_CPUID_REG
);
1470 UASM_i_SRL_SAFE(&p
, a1
, a1
, SMP_CPUID_PTRSHIFT
);
1471 UASM_i_LA_mostly(&p
, a2
, pgdc
);
1472 UASM_i_ADDU(&p
, a2
, a2
, a1
);
1473 UASM_i_SW(&p
, a0
, uasm_rel_lo(pgdc
), a2
);
1475 UASM_i_LA_mostly(&p
, a2
, pgdc
);
1476 UASM_i_SW(&p
, a0
, uasm_rel_lo(pgdc
), a2
);
1480 /* if pgd_reg is allocated, save PGD also to scratch register */
1482 UASM_i_MTC0(&p
, a0
, c0_kscratch(), pgd_reg
);
1486 if (p
>= tlbmiss_handler_setup_pgd_end
)
1487 panic("tlbmiss_handler_setup_pgd space exceeded");
1489 uasm_resolve_relocs(relocs
, labels
);
1490 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1491 (unsigned int)(p
- tlbmiss_handler_setup_pgd
));
1493 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd
,
1494 tlbmiss_handler_setup_pgd_size
);
1498 iPTE_LW(u32
**p
, unsigned int pte
, unsigned int ptr
)
1501 # ifdef CONFIG_64BIT_PHYS_ADDR
1503 uasm_i_lld(p
, pte
, 0, ptr
);
1506 UASM_i_LL(p
, pte
, 0, ptr
);
1508 # ifdef CONFIG_64BIT_PHYS_ADDR
1510 uasm_i_ld(p
, pte
, 0, ptr
);
1513 UASM_i_LW(p
, pte
, 0, ptr
);
1518 iPTE_SW(u32
**p
, struct uasm_reloc
**r
, unsigned int pte
, unsigned int ptr
,
1521 #ifdef CONFIG_64BIT_PHYS_ADDR
1522 unsigned int hwmode
= mode
& (_PAGE_VALID
| _PAGE_DIRTY
);
1525 uasm_i_ori(p
, pte
, pte
, mode
);
1527 # ifdef CONFIG_64BIT_PHYS_ADDR
1529 uasm_i_scd(p
, pte
, 0, ptr
);
1532 UASM_i_SC(p
, pte
, 0, ptr
);
1534 if (r10000_llsc_war())
1535 uasm_il_beqzl(p
, r
, pte
, label_smp_pgtable_change
);
1537 uasm_il_beqz(p
, r
, pte
, label_smp_pgtable_change
);
1539 # ifdef CONFIG_64BIT_PHYS_ADDR
1540 if (!cpu_has_64bits
) {
1541 /* no uasm_i_nop needed */
1542 uasm_i_ll(p
, pte
, sizeof(pte_t
) / 2, ptr
);
1543 uasm_i_ori(p
, pte
, pte
, hwmode
);
1544 uasm_i_sc(p
, pte
, sizeof(pte_t
) / 2, ptr
);
1545 uasm_il_beqz(p
, r
, pte
, label_smp_pgtable_change
);
1546 /* no uasm_i_nop needed */
1547 uasm_i_lw(p
, pte
, 0, ptr
);
1554 # ifdef CONFIG_64BIT_PHYS_ADDR
1556 uasm_i_sd(p
, pte
, 0, ptr
);
1559 UASM_i_SW(p
, pte
, 0, ptr
);
1561 # ifdef CONFIG_64BIT_PHYS_ADDR
1562 if (!cpu_has_64bits
) {
1563 uasm_i_lw(p
, pte
, sizeof(pte_t
) / 2, ptr
);
1564 uasm_i_ori(p
, pte
, pte
, hwmode
);
1565 uasm_i_sw(p
, pte
, sizeof(pte_t
) / 2, ptr
);
1566 uasm_i_lw(p
, pte
, 0, ptr
);
1573 * Check if PTE is present, if not then jump to LABEL. PTR points to
1574 * the page table where this PTE is located, PTE will be re-loaded
1575 * with it's original value.
1578 build_pte_present(u32
**p
, struct uasm_reloc
**r
,
1579 int pte
, int ptr
, int scratch
, enum label_id lid
)
1581 int t
= scratch
>= 0 ? scratch
: pte
;
1584 if (use_bbit_insns()) {
1585 uasm_il_bbit0(p
, r
, pte
, ilog2(_PAGE_PRESENT
), lid
);
1588 uasm_i_andi(p
, t
, pte
, _PAGE_PRESENT
);
1589 uasm_il_beqz(p
, r
, t
, lid
);
1591 /* You lose the SMP race :-(*/
1592 iPTE_LW(p
, pte
, ptr
);
1595 uasm_i_andi(p
, t
, pte
, _PAGE_PRESENT
| _PAGE_READ
);
1596 uasm_i_xori(p
, t
, t
, _PAGE_PRESENT
| _PAGE_READ
);
1597 uasm_il_bnez(p
, r
, t
, lid
);
1599 /* You lose the SMP race :-(*/
1600 iPTE_LW(p
, pte
, ptr
);
1604 /* Make PTE valid, store result in PTR. */
1606 build_make_valid(u32
**p
, struct uasm_reloc
**r
, unsigned int pte
,
1609 unsigned int mode
= _PAGE_VALID
| _PAGE_ACCESSED
;
1611 iPTE_SW(p
, r
, pte
, ptr
, mode
);
1615 * Check if PTE can be written to, if not branch to LABEL. Regardless
1616 * restore PTE with value from PTR when done.
1619 build_pte_writable(u32
**p
, struct uasm_reloc
**r
,
1620 unsigned int pte
, unsigned int ptr
, int scratch
,
1623 int t
= scratch
>= 0 ? scratch
: pte
;
1625 uasm_i_andi(p
, t
, pte
, _PAGE_PRESENT
| _PAGE_WRITE
);
1626 uasm_i_xori(p
, t
, t
, _PAGE_PRESENT
| _PAGE_WRITE
);
1627 uasm_il_bnez(p
, r
, t
, lid
);
1629 /* You lose the SMP race :-(*/
1630 iPTE_LW(p
, pte
, ptr
);
1635 /* Make PTE writable, update software status bits as well, then store
1639 build_make_write(u32
**p
, struct uasm_reloc
**r
, unsigned int pte
,
1642 unsigned int mode
= (_PAGE_ACCESSED
| _PAGE_MODIFIED
| _PAGE_VALID
1645 iPTE_SW(p
, r
, pte
, ptr
, mode
);
1649 * Check if PTE can be modified, if not branch to LABEL. Regardless
1650 * restore PTE with value from PTR when done.
1653 build_pte_modifiable(u32
**p
, struct uasm_reloc
**r
,
1654 unsigned int pte
, unsigned int ptr
, int scratch
,
1657 if (use_bbit_insns()) {
1658 uasm_il_bbit0(p
, r
, pte
, ilog2(_PAGE_WRITE
), lid
);
1661 int t
= scratch
>= 0 ? scratch
: pte
;
1662 uasm_i_andi(p
, t
, pte
, _PAGE_WRITE
);
1663 uasm_il_beqz(p
, r
, t
, lid
);
1665 /* You lose the SMP race :-(*/
1666 iPTE_LW(p
, pte
, ptr
);
1670 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1674 * R3000 style TLB load/store/modify handlers.
1678 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1682 build_r3000_pte_reload_tlbwi(u32
**p
, unsigned int pte
, unsigned int tmp
)
1684 uasm_i_mtc0(p
, pte
, C0_ENTRYLO0
); /* cp0 delay */
1685 uasm_i_mfc0(p
, tmp
, C0_EPC
); /* cp0 delay */
1688 uasm_i_rfe(p
); /* branch delay */
1692 * This places the pte into ENTRYLO0 and writes it with tlbwi
1693 * or tlbwr as appropriate. This is because the index register
1694 * may have the probe fail bit set as a result of a trap on a
1695 * kseg2 access, i.e. without refill. Then it returns.
1698 build_r3000_tlb_reload_write(u32
**p
, struct uasm_label
**l
,
1699 struct uasm_reloc
**r
, unsigned int pte
,
1702 uasm_i_mfc0(p
, tmp
, C0_INDEX
);
1703 uasm_i_mtc0(p
, pte
, C0_ENTRYLO0
); /* cp0 delay */
1704 uasm_il_bltz(p
, r
, tmp
, label_r3000_write_probe_fail
); /* cp0 delay */
1705 uasm_i_mfc0(p
, tmp
, C0_EPC
); /* branch delay */
1706 uasm_i_tlbwi(p
); /* cp0 delay */
1708 uasm_i_rfe(p
); /* branch delay */
1709 uasm_l_r3000_write_probe_fail(l
, *p
);
1710 uasm_i_tlbwr(p
); /* cp0 delay */
1712 uasm_i_rfe(p
); /* branch delay */
1716 build_r3000_tlbchange_handler_head(u32
**p
, unsigned int pte
,
1719 long pgdc
= (long)pgd_current
;
1721 uasm_i_mfc0(p
, pte
, C0_BADVADDR
);
1722 uasm_i_lui(p
, ptr
, uasm_rel_hi(pgdc
)); /* cp0 delay */
1723 uasm_i_lw(p
, ptr
, uasm_rel_lo(pgdc
), ptr
);
1724 uasm_i_srl(p
, pte
, pte
, 22); /* load delay */
1725 uasm_i_sll(p
, pte
, pte
, 2);
1726 uasm_i_addu(p
, ptr
, ptr
, pte
);
1727 uasm_i_mfc0(p
, pte
, C0_CONTEXT
);
1728 uasm_i_lw(p
, ptr
, 0, ptr
); /* cp0 delay */
1729 uasm_i_andi(p
, pte
, pte
, 0xffc); /* load delay */
1730 uasm_i_addu(p
, ptr
, ptr
, pte
);
1731 uasm_i_lw(p
, pte
, 0, ptr
);
1732 uasm_i_tlbp(p
); /* load delay */
1735 static void build_r3000_tlb_load_handler(void)
1737 u32
*p
= handle_tlbl
;
1738 const int handle_tlbl_size
= handle_tlbl_end
- handle_tlbl
;
1739 struct uasm_label
*l
= labels
;
1740 struct uasm_reloc
*r
= relocs
;
1742 memset(handle_tlbl
, 0, handle_tlbl_size
* sizeof(handle_tlbl
[0]));
1743 memset(labels
, 0, sizeof(labels
));
1744 memset(relocs
, 0, sizeof(relocs
));
1746 build_r3000_tlbchange_handler_head(&p
, K0
, K1
);
1747 build_pte_present(&p
, &r
, K0
, K1
, -1, label_nopage_tlbl
);
1748 uasm_i_nop(&p
); /* load delay */
1749 build_make_valid(&p
, &r
, K0
, K1
);
1750 build_r3000_tlb_reload_write(&p
, &l
, &r
, K0
, K1
);
1752 uasm_l_nopage_tlbl(&l
, p
);
1753 uasm_i_j(&p
, (unsigned long)tlb_do_page_fault_0
& 0x0fffffff);
1756 if (p
>= handle_tlbl_end
)
1757 panic("TLB load handler fastpath space exceeded");
1759 uasm_resolve_relocs(relocs
, labels
);
1760 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1761 (unsigned int)(p
- handle_tlbl
));
1763 dump_handler("r3000_tlb_load", handle_tlbl
, handle_tlbl_size
);
1766 static void build_r3000_tlb_store_handler(void)
1768 u32
*p
= handle_tlbs
;
1769 const int handle_tlbs_size
= handle_tlbs_end
- handle_tlbs
;
1770 struct uasm_label
*l
= labels
;
1771 struct uasm_reloc
*r
= relocs
;
1773 memset(handle_tlbs
, 0, handle_tlbs_size
* sizeof(handle_tlbs
[0]));
1774 memset(labels
, 0, sizeof(labels
));
1775 memset(relocs
, 0, sizeof(relocs
));
1777 build_r3000_tlbchange_handler_head(&p
, K0
, K1
);
1778 build_pte_writable(&p
, &r
, K0
, K1
, -1, label_nopage_tlbs
);
1779 uasm_i_nop(&p
); /* load delay */
1780 build_make_write(&p
, &r
, K0
, K1
);
1781 build_r3000_tlb_reload_write(&p
, &l
, &r
, K0
, K1
);
1783 uasm_l_nopage_tlbs(&l
, p
);
1784 uasm_i_j(&p
, (unsigned long)tlb_do_page_fault_1
& 0x0fffffff);
1787 if (p
>= handle_tlbs_end
)
1788 panic("TLB store handler fastpath space exceeded");
1790 uasm_resolve_relocs(relocs
, labels
);
1791 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1792 (unsigned int)(p
- handle_tlbs
));
1794 dump_handler("r3000_tlb_store", handle_tlbs
, handle_tlbs_size
);
1797 static void build_r3000_tlb_modify_handler(void)
1799 u32
*p
= handle_tlbm
;
1800 const int handle_tlbm_size
= handle_tlbm_end
- handle_tlbm
;
1801 struct uasm_label
*l
= labels
;
1802 struct uasm_reloc
*r
= relocs
;
1804 memset(handle_tlbm
, 0, handle_tlbm_size
* sizeof(handle_tlbm
[0]));
1805 memset(labels
, 0, sizeof(labels
));
1806 memset(relocs
, 0, sizeof(relocs
));
1808 build_r3000_tlbchange_handler_head(&p
, K0
, K1
);
1809 build_pte_modifiable(&p
, &r
, K0
, K1
, -1, label_nopage_tlbm
);
1810 uasm_i_nop(&p
); /* load delay */
1811 build_make_write(&p
, &r
, K0
, K1
);
1812 build_r3000_pte_reload_tlbwi(&p
, K0
, K1
);
1814 uasm_l_nopage_tlbm(&l
, p
);
1815 uasm_i_j(&p
, (unsigned long)tlb_do_page_fault_1
& 0x0fffffff);
1818 if (p
>= handle_tlbm_end
)
1819 panic("TLB modify handler fastpath space exceeded");
1821 uasm_resolve_relocs(relocs
, labels
);
1822 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1823 (unsigned int)(p
- handle_tlbm
));
1825 dump_handler("r3000_tlb_modify", handle_tlbm
, handle_tlbm_size
);
1827 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1830 * R4000 style TLB load/store/modify handlers.
1832 static struct work_registers
1833 build_r4000_tlbchange_handler_head(u32
**p
, struct uasm_label
**l
,
1834 struct uasm_reloc
**r
)
1836 struct work_registers wr
= build_get_work_registers(p
);
1839 build_get_pmde64(p
, l
, r
, wr
.r1
, wr
.r2
); /* get pmd in ptr */
1841 build_get_pgde32(p
, wr
.r1
, wr
.r2
); /* get pgd in ptr */
1844 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1846 * For huge tlb entries, pmd doesn't contain an address but
1847 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1848 * see if we need to jump to huge tlb processing.
1850 build_is_huge_pte(p
, r
, wr
.r1
, wr
.r2
, label_tlb_huge_update
);
1853 UASM_i_MFC0(p
, wr
.r1
, C0_BADVADDR
);
1854 UASM_i_LW(p
, wr
.r2
, 0, wr
.r2
);
1855 UASM_i_SRL(p
, wr
.r1
, wr
.r1
, PAGE_SHIFT
+ PTE_ORDER
- PTE_T_LOG2
);
1856 uasm_i_andi(p
, wr
.r1
, wr
.r1
, (PTRS_PER_PTE
- 1) << PTE_T_LOG2
);
1857 UASM_i_ADDU(p
, wr
.r2
, wr
.r2
, wr
.r1
);
1860 uasm_l_smp_pgtable_change(l
, *p
);
1862 iPTE_LW(p
, wr
.r1
, wr
.r2
); /* get even pte */
1863 if (!m4kc_tlbp_war())
1864 build_tlb_probe_entry(p
);
1869 build_r4000_tlbchange_handler_tail(u32
**p
, struct uasm_label
**l
,
1870 struct uasm_reloc
**r
, unsigned int tmp
,
1873 uasm_i_ori(p
, ptr
, ptr
, sizeof(pte_t
));
1874 uasm_i_xori(p
, ptr
, ptr
, sizeof(pte_t
));
1875 build_update_entries(p
, tmp
, ptr
);
1876 build_tlb_write_entry(p
, l
, r
, tlb_indexed
);
1877 uasm_l_leave(l
, *p
);
1878 build_restore_work_registers(p
);
1879 uasm_i_eret(p
); /* return from trap */
1882 build_get_pgd_vmalloc64(p
, l
, r
, tmp
, ptr
, not_refill
);
1886 static void build_r4000_tlb_load_handler(void)
1888 u32
*p
= handle_tlbl
;
1889 const int handle_tlbl_size
= handle_tlbl_end
- handle_tlbl
;
1890 struct uasm_label
*l
= labels
;
1891 struct uasm_reloc
*r
= relocs
;
1892 struct work_registers wr
;
1894 memset(handle_tlbl
, 0, handle_tlbl_size
* sizeof(handle_tlbl
[0]));
1895 memset(labels
, 0, sizeof(labels
));
1896 memset(relocs
, 0, sizeof(relocs
));
1898 if (bcm1250_m3_war()) {
1899 unsigned int segbits
= 44;
1901 uasm_i_dmfc0(&p
, K0
, C0_BADVADDR
);
1902 uasm_i_dmfc0(&p
, K1
, C0_ENTRYHI
);
1903 uasm_i_xor(&p
, K0
, K0
, K1
);
1904 uasm_i_dsrl_safe(&p
, K1
, K0
, 62);
1905 uasm_i_dsrl_safe(&p
, K0
, K0
, 12 + 1);
1906 uasm_i_dsll_safe(&p
, K0
, K0
, 64 + 12 + 1 - segbits
);
1907 uasm_i_or(&p
, K0
, K0
, K1
);
1908 uasm_il_bnez(&p
, &r
, K0
, label_leave
);
1909 /* No need for uasm_i_nop */
1912 wr
= build_r4000_tlbchange_handler_head(&p
, &l
, &r
);
1913 build_pte_present(&p
, &r
, wr
.r1
, wr
.r2
, wr
.r3
, label_nopage_tlbl
);
1914 if (m4kc_tlbp_war())
1915 build_tlb_probe_entry(&p
);
1919 * If the page is not _PAGE_VALID, RI or XI could not
1920 * have triggered it. Skip the expensive test..
1922 if (use_bbit_insns()) {
1923 uasm_il_bbit0(&p
, &r
, wr
.r1
, ilog2(_PAGE_VALID
),
1924 label_tlbl_goaround1
);
1926 uasm_i_andi(&p
, wr
.r3
, wr
.r1
, _PAGE_VALID
);
1927 uasm_il_beqz(&p
, &r
, wr
.r3
, label_tlbl_goaround1
);
1933 switch (current_cpu_type()) {
1935 if (cpu_has_mips_r2
) {
1938 case CPU_CAVIUM_OCTEON
:
1939 case CPU_CAVIUM_OCTEON_PLUS
:
1940 case CPU_CAVIUM_OCTEON2
:
1945 /* Examine entrylo 0 or 1 based on ptr. */
1946 if (use_bbit_insns()) {
1947 uasm_i_bbit0(&p
, wr
.r2
, ilog2(sizeof(pte_t
)), 8);
1949 uasm_i_andi(&p
, wr
.r3
, wr
.r2
, sizeof(pte_t
));
1950 uasm_i_beqz(&p
, wr
.r3
, 8);
1952 /* load it in the delay slot*/
1953 UASM_i_MFC0(&p
, wr
.r3
, C0_ENTRYLO0
);
1954 /* load it if ptr is odd */
1955 UASM_i_MFC0(&p
, wr
.r3
, C0_ENTRYLO1
);
1957 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1958 * XI must have triggered it.
1960 if (use_bbit_insns()) {
1961 uasm_il_bbit1(&p
, &r
, wr
.r3
, 1, label_nopage_tlbl
);
1963 uasm_l_tlbl_goaround1(&l
, p
);
1965 uasm_i_andi(&p
, wr
.r3
, wr
.r3
, 2);
1966 uasm_il_bnez(&p
, &r
, wr
.r3
, label_nopage_tlbl
);
1969 uasm_l_tlbl_goaround1(&l
, p
);
1971 build_make_valid(&p
, &r
, wr
.r1
, wr
.r2
);
1972 build_r4000_tlbchange_handler_tail(&p
, &l
, &r
, wr
.r1
, wr
.r2
);
1974 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1976 * This is the entry point when build_r4000_tlbchange_handler_head
1977 * spots a huge page.
1979 uasm_l_tlb_huge_update(&l
, p
);
1980 iPTE_LW(&p
, wr
.r1
, wr
.r2
);
1981 build_pte_present(&p
, &r
, wr
.r1
, wr
.r2
, wr
.r3
, label_nopage_tlbl
);
1982 build_tlb_probe_entry(&p
);
1986 * If the page is not _PAGE_VALID, RI or XI could not
1987 * have triggered it. Skip the expensive test..
1989 if (use_bbit_insns()) {
1990 uasm_il_bbit0(&p
, &r
, wr
.r1
, ilog2(_PAGE_VALID
),
1991 label_tlbl_goaround2
);
1993 uasm_i_andi(&p
, wr
.r3
, wr
.r1
, _PAGE_VALID
);
1994 uasm_il_beqz(&p
, &r
, wr
.r3
, label_tlbl_goaround2
);
2000 switch (current_cpu_type()) {
2002 if (cpu_has_mips_r2
) {
2005 case CPU_CAVIUM_OCTEON
:
2006 case CPU_CAVIUM_OCTEON_PLUS
:
2007 case CPU_CAVIUM_OCTEON2
:
2012 /* Examine entrylo 0 or 1 based on ptr. */
2013 if (use_bbit_insns()) {
2014 uasm_i_bbit0(&p
, wr
.r2
, ilog2(sizeof(pte_t
)), 8);
2016 uasm_i_andi(&p
, wr
.r3
, wr
.r2
, sizeof(pte_t
));
2017 uasm_i_beqz(&p
, wr
.r3
, 8);
2019 /* load it in the delay slot*/
2020 UASM_i_MFC0(&p
, wr
.r3
, C0_ENTRYLO0
);
2021 /* load it if ptr is odd */
2022 UASM_i_MFC0(&p
, wr
.r3
, C0_ENTRYLO1
);
2024 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2025 * XI must have triggered it.
2027 if (use_bbit_insns()) {
2028 uasm_il_bbit0(&p
, &r
, wr
.r3
, 1, label_tlbl_goaround2
);
2030 uasm_i_andi(&p
, wr
.r3
, wr
.r3
, 2);
2031 uasm_il_beqz(&p
, &r
, wr
.r3
, label_tlbl_goaround2
);
2033 if (PM_DEFAULT_MASK
== 0)
2036 * We clobbered C0_PAGEMASK, restore it. On the other branch
2037 * it is restored in build_huge_tlb_write_entry.
2039 build_restore_pagemask(&p
, &r
, wr
.r3
, label_nopage_tlbl
, 0);
2041 uasm_l_tlbl_goaround2(&l
, p
);
2043 uasm_i_ori(&p
, wr
.r1
, wr
.r1
, (_PAGE_ACCESSED
| _PAGE_VALID
));
2044 build_huge_handler_tail(&p
, &r
, &l
, wr
.r1
, wr
.r2
);
2047 uasm_l_nopage_tlbl(&l
, p
);
2048 build_restore_work_registers(&p
);
2049 #ifdef CONFIG_CPU_MICROMIPS
2050 if ((unsigned long)tlb_do_page_fault_0
& 1) {
2051 uasm_i_lui(&p
, K0
, uasm_rel_hi((long)tlb_do_page_fault_0
));
2052 uasm_i_addiu(&p
, K0
, K0
, uasm_rel_lo((long)tlb_do_page_fault_0
));
2056 uasm_i_j(&p
, (unsigned long)tlb_do_page_fault_0
& 0x0fffffff);
2059 if (p
>= handle_tlbl_end
)
2060 panic("TLB load handler fastpath space exceeded");
2062 uasm_resolve_relocs(relocs
, labels
);
2063 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2064 (unsigned int)(p
- handle_tlbl
));
2066 dump_handler("r4000_tlb_load", handle_tlbl
, handle_tlbl_size
);
2069 static void build_r4000_tlb_store_handler(void)
2071 u32
*p
= handle_tlbs
;
2072 const int handle_tlbs_size
= handle_tlbs_end
- handle_tlbs
;
2073 struct uasm_label
*l
= labels
;
2074 struct uasm_reloc
*r
= relocs
;
2075 struct work_registers wr
;
2077 memset(handle_tlbs
, 0, handle_tlbs_size
* sizeof(handle_tlbs
[0]));
2078 memset(labels
, 0, sizeof(labels
));
2079 memset(relocs
, 0, sizeof(relocs
));
2081 wr
= build_r4000_tlbchange_handler_head(&p
, &l
, &r
);
2082 build_pte_writable(&p
, &r
, wr
.r1
, wr
.r2
, wr
.r3
, label_nopage_tlbs
);
2083 if (m4kc_tlbp_war())
2084 build_tlb_probe_entry(&p
);
2085 build_make_write(&p
, &r
, wr
.r1
, wr
.r2
);
2086 build_r4000_tlbchange_handler_tail(&p
, &l
, &r
, wr
.r1
, wr
.r2
);
2088 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2090 * This is the entry point when
2091 * build_r4000_tlbchange_handler_head spots a huge page.
2093 uasm_l_tlb_huge_update(&l
, p
);
2094 iPTE_LW(&p
, wr
.r1
, wr
.r2
);
2095 build_pte_writable(&p
, &r
, wr
.r1
, wr
.r2
, wr
.r3
, label_nopage_tlbs
);
2096 build_tlb_probe_entry(&p
);
2097 uasm_i_ori(&p
, wr
.r1
, wr
.r1
,
2098 _PAGE_ACCESSED
| _PAGE_MODIFIED
| _PAGE_VALID
| _PAGE_DIRTY
);
2099 build_huge_handler_tail(&p
, &r
, &l
, wr
.r1
, wr
.r2
);
2102 uasm_l_nopage_tlbs(&l
, p
);
2103 build_restore_work_registers(&p
);
2104 #ifdef CONFIG_CPU_MICROMIPS
2105 if ((unsigned long)tlb_do_page_fault_1
& 1) {
2106 uasm_i_lui(&p
, K0
, uasm_rel_hi((long)tlb_do_page_fault_1
));
2107 uasm_i_addiu(&p
, K0
, K0
, uasm_rel_lo((long)tlb_do_page_fault_1
));
2111 uasm_i_j(&p
, (unsigned long)tlb_do_page_fault_1
& 0x0fffffff);
2114 if (p
>= handle_tlbs_end
)
2115 panic("TLB store handler fastpath space exceeded");
2117 uasm_resolve_relocs(relocs
, labels
);
2118 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2119 (unsigned int)(p
- handle_tlbs
));
2121 dump_handler("r4000_tlb_store", handle_tlbs
, handle_tlbs_size
);
2124 static void build_r4000_tlb_modify_handler(void)
2126 u32
*p
= handle_tlbm
;
2127 const int handle_tlbm_size
= handle_tlbm_end
- handle_tlbm
;
2128 struct uasm_label
*l
= labels
;
2129 struct uasm_reloc
*r
= relocs
;
2130 struct work_registers wr
;
2132 memset(handle_tlbm
, 0, handle_tlbm_size
* sizeof(handle_tlbm
[0]));
2133 memset(labels
, 0, sizeof(labels
));
2134 memset(relocs
, 0, sizeof(relocs
));
2136 wr
= build_r4000_tlbchange_handler_head(&p
, &l
, &r
);
2137 build_pte_modifiable(&p
, &r
, wr
.r1
, wr
.r2
, wr
.r3
, label_nopage_tlbm
);
2138 if (m4kc_tlbp_war())
2139 build_tlb_probe_entry(&p
);
2140 /* Present and writable bits set, set accessed and dirty bits. */
2141 build_make_write(&p
, &r
, wr
.r1
, wr
.r2
);
2142 build_r4000_tlbchange_handler_tail(&p
, &l
, &r
, wr
.r1
, wr
.r2
);
2144 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2146 * This is the entry point when
2147 * build_r4000_tlbchange_handler_head spots a huge page.
2149 uasm_l_tlb_huge_update(&l
, p
);
2150 iPTE_LW(&p
, wr
.r1
, wr
.r2
);
2151 build_pte_modifiable(&p
, &r
, wr
.r1
, wr
.r2
, wr
.r3
, label_nopage_tlbm
);
2152 build_tlb_probe_entry(&p
);
2153 uasm_i_ori(&p
, wr
.r1
, wr
.r1
,
2154 _PAGE_ACCESSED
| _PAGE_MODIFIED
| _PAGE_VALID
| _PAGE_DIRTY
);
2155 build_huge_handler_tail(&p
, &r
, &l
, wr
.r1
, wr
.r2
);
2158 uasm_l_nopage_tlbm(&l
, p
);
2159 build_restore_work_registers(&p
);
2160 #ifdef CONFIG_CPU_MICROMIPS
2161 if ((unsigned long)tlb_do_page_fault_1
& 1) {
2162 uasm_i_lui(&p
, K0
, uasm_rel_hi((long)tlb_do_page_fault_1
));
2163 uasm_i_addiu(&p
, K0
, K0
, uasm_rel_lo((long)tlb_do_page_fault_1
));
2167 uasm_i_j(&p
, (unsigned long)tlb_do_page_fault_1
& 0x0fffffff);
2170 if (p
>= handle_tlbm_end
)
2171 panic("TLB modify handler fastpath space exceeded");
2173 uasm_resolve_relocs(relocs
, labels
);
2174 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2175 (unsigned int)(p
- handle_tlbm
));
2177 dump_handler("r4000_tlb_modify", handle_tlbm
, handle_tlbm_size
);
2180 static void flush_tlb_handlers(void)
2182 local_flush_icache_range((unsigned long)handle_tlbl
,
2183 (unsigned long)handle_tlbl_end
);
2184 local_flush_icache_range((unsigned long)handle_tlbs
,
2185 (unsigned long)handle_tlbs_end
);
2186 local_flush_icache_range((unsigned long)handle_tlbm
,
2187 (unsigned long)handle_tlbm_end
);
2188 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd
,
2189 (unsigned long)tlbmiss_handler_setup_pgd_end
);
2192 void build_tlb_refill_handler(void)
2195 * The refill handler is generated per-CPU, multi-node systems
2196 * may have local storage for it. The other handlers are only
2199 static int run_once
= 0;
2201 output_pgtable_bits_defines();
2204 check_for_high_segbits
= current_cpu_data
.vmbits
> (PGDIR_SHIFT
+ PGD_ORDER
+ PAGE_SHIFT
- 3);
2207 switch (current_cpu_type()) {
2215 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2216 if (cpu_has_local_ebase
)
2217 build_r3000_tlb_refill_handler();
2219 if (!cpu_has_local_ebase
)
2220 build_r3000_tlb_refill_handler();
2222 build_r3000_tlb_load_handler();
2223 build_r3000_tlb_store_handler();
2224 build_r3000_tlb_modify_handler();
2225 flush_tlb_handlers();
2229 panic("No R3000 TLB refill handler");
2235 panic("No R6000 TLB refill handler yet");
2239 panic("No R8000 TLB refill handler yet");
2244 scratch_reg
= allocate_kscratch();
2246 build_r4000_tlb_load_handler();
2247 build_r4000_tlb_store_handler();
2248 build_r4000_tlb_modify_handler();
2249 if (!cpu_has_local_ebase
)
2250 build_r4000_tlb_refill_handler();
2251 flush_tlb_handlers();
2254 if (cpu_has_local_ebase
)
2255 build_r4000_tlb_refill_handler();