2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
13 * PowerPC Hashed Page Table functions
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36 #include <linux/context_tracking.h>
38 #include <asm/processor.h>
39 #include <asm/pgtable.h>
41 #include <asm/mmu_context.h>
43 #include <asm/types.h>
44 #include <asm/uaccess.h>
45 #include <asm/machdep.h>
47 #include <asm/tlbflush.h>
51 #include <asm/cacheflush.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
56 #include <asm/code-patching.h>
57 #include <asm/fadump.h>
58 #include <asm/firmware.h>
62 #define DBG(fmt...) udbg_printf(fmt)
68 #define DBG_LOW(fmt...) udbg_printf(fmt)
70 #define DBG_LOW(fmt...)
78 * Note: pte --> Linux PTE
79 * HPTE --> PowerPC Hashed Page Table Entry
82 * htab_initialize is called with the MMU off (of course), but
83 * the kernel has been copied down to zero so it can directly
84 * reference global data. At this point it is very difficult
85 * to print debug info.
90 extern unsigned long dart_tablebase
;
91 #endif /* CONFIG_U3_DART */
93 static unsigned long _SDR1
;
94 struct mmu_psize_def mmu_psize_defs
[MMU_PAGE_COUNT
];
96 struct hash_pte
*htab_address
;
97 unsigned long htab_size_bytes
;
98 unsigned long htab_hash_mask
;
99 EXPORT_SYMBOL_GPL(htab_hash_mask
);
100 int mmu_linear_psize
= MMU_PAGE_4K
;
101 int mmu_virtual_psize
= MMU_PAGE_4K
;
102 int mmu_vmalloc_psize
= MMU_PAGE_4K
;
103 #ifdef CONFIG_SPARSEMEM_VMEMMAP
104 int mmu_vmemmap_psize
= MMU_PAGE_4K
;
106 int mmu_io_psize
= MMU_PAGE_4K
;
107 int mmu_kernel_ssize
= MMU_SEGSIZE_256M
;
108 int mmu_highuser_ssize
= MMU_SEGSIZE_256M
;
109 u16 mmu_slb_size
= 64;
110 EXPORT_SYMBOL_GPL(mmu_slb_size
);
111 #ifdef CONFIG_PPC_64K_PAGES
112 int mmu_ci_restrictions
;
114 #ifdef CONFIG_DEBUG_PAGEALLOC
115 static u8
*linear_map_hash_slots
;
116 static unsigned long linear_map_hash_count
;
117 static DEFINE_SPINLOCK(linear_map_hash_lock
);
118 #endif /* CONFIG_DEBUG_PAGEALLOC */
120 /* There are definitions of page sizes arrays to be used when none
121 * is provided by the firmware.
124 /* Pre-POWER4 CPUs (4k pages only)
126 static struct mmu_psize_def mmu_psize_defaults_old
[] = {
130 .penc
= {[MMU_PAGE_4K
] = 0, [1 ... MMU_PAGE_COUNT
- 1] = -1},
136 /* POWER4, GPUL, POWER5
138 * Support for 16Mb large pages
140 static struct mmu_psize_def mmu_psize_defaults_gp
[] = {
144 .penc
= {[MMU_PAGE_4K
] = 0, [1 ... MMU_PAGE_COUNT
- 1] = -1},
151 .penc
= {[0 ... MMU_PAGE_16M
- 1] = -1, [MMU_PAGE_16M
] = 0,
152 [MMU_PAGE_16M
+ 1 ... MMU_PAGE_COUNT
- 1] = -1 },
158 static unsigned long htab_convert_pte_flags(unsigned long pteflags
)
160 unsigned long rflags
= pteflags
& 0x1fa;
162 /* _PAGE_EXEC -> NOEXEC */
163 if ((pteflags
& _PAGE_EXEC
) == 0)
166 /* PP bits. PAGE_USER is already PP bit 0x2, so we only
167 * need to add in 0x1 if it's a read-only user page
169 if ((pteflags
& _PAGE_USER
) && !((pteflags
& _PAGE_RW
) &&
170 (pteflags
& _PAGE_DIRTY
)))
173 * Always add "C" bit for perf. Memory coherence is always enabled
175 return rflags
| HPTE_R_C
| HPTE_R_M
;
178 int htab_bolt_mapping(unsigned long vstart
, unsigned long vend
,
179 unsigned long pstart
, unsigned long prot
,
180 int psize
, int ssize
)
182 unsigned long vaddr
, paddr
;
183 unsigned int step
, shift
;
186 shift
= mmu_psize_defs
[psize
].shift
;
189 prot
= htab_convert_pte_flags(prot
);
191 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
192 vstart
, vend
, pstart
, prot
, psize
, ssize
);
194 for (vaddr
= vstart
, paddr
= pstart
; vaddr
< vend
;
195 vaddr
+= step
, paddr
+= step
) {
196 unsigned long hash
, hpteg
;
197 unsigned long vsid
= get_kernel_vsid(vaddr
, ssize
);
198 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, ssize
);
199 unsigned long tprot
= prot
;
202 * If we hit a bad address return error.
206 /* Make kernel text executable */
207 if (overlaps_kernel_text(vaddr
, vaddr
+ step
))
210 hash
= hpt_hash(vpn
, shift
, ssize
);
211 hpteg
= ((hash
& htab_hash_mask
) * HPTES_PER_GROUP
);
213 BUG_ON(!ppc_md
.hpte_insert
);
214 ret
= ppc_md
.hpte_insert(hpteg
, vpn
, paddr
, tprot
,
215 HPTE_V_BOLTED
, psize
, psize
, ssize
);
219 #ifdef CONFIG_DEBUG_PAGEALLOC
220 if ((paddr
>> PAGE_SHIFT
) < linear_map_hash_count
)
221 linear_map_hash_slots
[paddr
>> PAGE_SHIFT
] = ret
| 0x80;
222 #endif /* CONFIG_DEBUG_PAGEALLOC */
224 return ret
< 0 ? ret
: 0;
227 #ifdef CONFIG_MEMORY_HOTPLUG
228 static int htab_remove_mapping(unsigned long vstart
, unsigned long vend
,
229 int psize
, int ssize
)
232 unsigned int step
, shift
;
234 shift
= mmu_psize_defs
[psize
].shift
;
237 if (!ppc_md
.hpte_removebolted
) {
238 printk(KERN_WARNING
"Platform doesn't implement "
239 "hpte_removebolted\n");
243 for (vaddr
= vstart
; vaddr
< vend
; vaddr
+= step
)
244 ppc_md
.hpte_removebolted(vaddr
, psize
, ssize
);
248 #endif /* CONFIG_MEMORY_HOTPLUG */
250 static int __init
htab_dt_scan_seg_sizes(unsigned long node
,
251 const char *uname
, int depth
,
254 char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
256 unsigned long size
= 0;
258 /* We are scanning "cpu" nodes only */
259 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
262 prop
= of_get_flat_dt_prop(node
, "ibm,processor-segment-sizes", &size
);
265 for (; size
>= 4; size
-= 4, ++prop
) {
266 if (be32_to_cpu(prop
[0]) == 40) {
267 DBG("1T segment support detected\n");
268 cur_cpu_spec
->mmu_features
|= MMU_FTR_1T_SEGMENT
;
272 cur_cpu_spec
->mmu_features
&= ~MMU_FTR_NO_SLBIE_B
;
276 static void __init
htab_init_seg_sizes(void)
278 of_scan_flat_dt(htab_dt_scan_seg_sizes
, NULL
);
281 static int __init
get_idx_from_shift(unsigned int shift
)
305 static int __init
htab_dt_scan_page_sizes(unsigned long node
,
306 const char *uname
, int depth
,
309 char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
311 unsigned long size
= 0;
313 /* We are scanning "cpu" nodes only */
314 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
317 prop
= of_get_flat_dt_prop(node
, "ibm,segment-page-sizes", &size
);
319 pr_info("Page sizes from device-tree:\n");
321 cur_cpu_spec
->mmu_features
&= ~(MMU_FTR_16M_PAGE
);
323 unsigned int base_shift
= be32_to_cpu(prop
[0]);
324 unsigned int slbenc
= be32_to_cpu(prop
[1]);
325 unsigned int lpnum
= be32_to_cpu(prop
[2]);
326 struct mmu_psize_def
*def
;
329 size
-= 3; prop
+= 3;
330 base_idx
= get_idx_from_shift(base_shift
);
333 * skip the pte encoding also
335 prop
+= lpnum
* 2; size
-= lpnum
* 2;
338 def
= &mmu_psize_defs
[base_idx
];
339 if (base_idx
== MMU_PAGE_16M
)
340 cur_cpu_spec
->mmu_features
|= MMU_FTR_16M_PAGE
;
342 def
->shift
= base_shift
;
343 if (base_shift
<= 23)
346 def
->avpnm
= (1 << (base_shift
- 23)) - 1;
349 * We don't know for sure what's up with tlbiel, so
350 * for now we only set it for 4K and 64K pages
352 if (base_idx
== MMU_PAGE_4K
|| base_idx
== MMU_PAGE_64K
)
357 while (size
> 0 && lpnum
) {
358 unsigned int shift
= be32_to_cpu(prop
[0]);
359 int penc
= be32_to_cpu(prop
[1]);
361 prop
+= 2; size
-= 2;
364 idx
= get_idx_from_shift(shift
);
369 pr_err("Invalid penc for base_shift=%d "
370 "shift=%d\n", base_shift
, shift
);
372 def
->penc
[idx
] = penc
;
373 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
374 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
375 base_shift
, shift
, def
->sllp
,
376 def
->avpnm
, def
->tlbiel
, def
->penc
[idx
]);
384 #ifdef CONFIG_HUGETLB_PAGE
385 /* Scan for 16G memory blocks that have been set aside for huge pages
386 * and reserve those blocks for 16G huge pages.
388 static int __init
htab_dt_scan_hugepage_blocks(unsigned long node
,
389 const char *uname
, int depth
,
391 char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
393 __be32
*page_count_prop
;
394 unsigned int expected_pages
;
395 long unsigned int phys_addr
;
396 long unsigned int block_size
;
398 /* We are scanning "memory" nodes only */
399 if (type
== NULL
|| strcmp(type
, "memory") != 0)
402 /* This property is the log base 2 of the number of virtual pages that
403 * will represent this memory block. */
404 page_count_prop
= of_get_flat_dt_prop(node
, "ibm,expected#pages", NULL
);
405 if (page_count_prop
== NULL
)
407 expected_pages
= (1 << be32_to_cpu(page_count_prop
[0]));
408 addr_prop
= of_get_flat_dt_prop(node
, "reg", NULL
);
409 if (addr_prop
== NULL
)
411 phys_addr
= be64_to_cpu(addr_prop
[0]);
412 block_size
= be64_to_cpu(addr_prop
[1]);
413 if (block_size
!= (16 * GB
))
415 printk(KERN_INFO
"Huge page(16GB) memory: "
416 "addr = 0x%lX size = 0x%lX pages = %d\n",
417 phys_addr
, block_size
, expected_pages
);
418 if (phys_addr
+ (16 * GB
) <= memblock_end_of_DRAM()) {
419 memblock_reserve(phys_addr
, block_size
* expected_pages
);
420 add_gpage(phys_addr
, block_size
, expected_pages
);
424 #endif /* CONFIG_HUGETLB_PAGE */
426 static void mmu_psize_set_default_penc(void)
429 for (bpsize
= 0; bpsize
< MMU_PAGE_COUNT
; bpsize
++)
430 for (apsize
= 0; apsize
< MMU_PAGE_COUNT
; apsize
++)
431 mmu_psize_defs
[bpsize
].penc
[apsize
] = -1;
434 static void __init
htab_init_page_sizes(void)
438 /* se the invalid penc to -1 */
439 mmu_psize_set_default_penc();
441 /* Default to 4K pages only */
442 memcpy(mmu_psize_defs
, mmu_psize_defaults_old
,
443 sizeof(mmu_psize_defaults_old
));
446 * Try to find the available page sizes in the device-tree
448 rc
= of_scan_flat_dt(htab_dt_scan_page_sizes
, NULL
);
449 if (rc
!= 0) /* Found */
453 * Not in the device-tree, let's fallback on known size
454 * list for 16M capable GP & GR
456 if (mmu_has_feature(MMU_FTR_16M_PAGE
))
457 memcpy(mmu_psize_defs
, mmu_psize_defaults_gp
,
458 sizeof(mmu_psize_defaults_gp
));
460 #ifndef CONFIG_DEBUG_PAGEALLOC
462 * Pick a size for the linear mapping. Currently, we only support
463 * 16M, 1M and 4K which is the default
465 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
)
466 mmu_linear_psize
= MMU_PAGE_16M
;
467 else if (mmu_psize_defs
[MMU_PAGE_1M
].shift
)
468 mmu_linear_psize
= MMU_PAGE_1M
;
469 #endif /* CONFIG_DEBUG_PAGEALLOC */
471 #ifdef CONFIG_PPC_64K_PAGES
473 * Pick a size for the ordinary pages. Default is 4K, we support
474 * 64K for user mappings and vmalloc if supported by the processor.
475 * We only use 64k for ioremap if the processor
476 * (and firmware) support cache-inhibited large pages.
477 * If not, we use 4k and set mmu_ci_restrictions so that
478 * hash_page knows to switch processes that use cache-inhibited
479 * mappings to 4k pages.
481 if (mmu_psize_defs
[MMU_PAGE_64K
].shift
) {
482 mmu_virtual_psize
= MMU_PAGE_64K
;
483 mmu_vmalloc_psize
= MMU_PAGE_64K
;
484 if (mmu_linear_psize
== MMU_PAGE_4K
)
485 mmu_linear_psize
= MMU_PAGE_64K
;
486 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE
)) {
488 * Don't use 64k pages for ioremap on pSeries, since
489 * that would stop us accessing the HEA ethernet.
491 if (!machine_is(pseries
))
492 mmu_io_psize
= MMU_PAGE_64K
;
494 mmu_ci_restrictions
= 1;
496 #endif /* CONFIG_PPC_64K_PAGES */
498 #ifdef CONFIG_SPARSEMEM_VMEMMAP
499 /* We try to use 16M pages for vmemmap if that is supported
500 * and we have at least 1G of RAM at boot
502 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
&&
503 memblock_phys_mem_size() >= 0x40000000)
504 mmu_vmemmap_psize
= MMU_PAGE_16M
;
505 else if (mmu_psize_defs
[MMU_PAGE_64K
].shift
)
506 mmu_vmemmap_psize
= MMU_PAGE_64K
;
508 mmu_vmemmap_psize
= MMU_PAGE_4K
;
509 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
511 printk(KERN_DEBUG
"Page orders: linear mapping = %d, "
512 "virtual = %d, io = %d"
513 #ifdef CONFIG_SPARSEMEM_VMEMMAP
517 mmu_psize_defs
[mmu_linear_psize
].shift
,
518 mmu_psize_defs
[mmu_virtual_psize
].shift
,
519 mmu_psize_defs
[mmu_io_psize
].shift
520 #ifdef CONFIG_SPARSEMEM_VMEMMAP
521 ,mmu_psize_defs
[mmu_vmemmap_psize
].shift
525 #ifdef CONFIG_HUGETLB_PAGE
526 /* Reserve 16G huge page memory sections for huge pages */
527 of_scan_flat_dt(htab_dt_scan_hugepage_blocks
, NULL
);
528 #endif /* CONFIG_HUGETLB_PAGE */
531 static int __init
htab_dt_scan_pftsize(unsigned long node
,
532 const char *uname
, int depth
,
535 char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
538 /* We are scanning "cpu" nodes only */
539 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
542 prop
= of_get_flat_dt_prop(node
, "ibm,pft-size", NULL
);
544 /* pft_size[0] is the NUMA CEC cookie */
545 ppc64_pft_size
= be32_to_cpu(prop
[1]);
551 static unsigned long __init
htab_get_table_size(void)
553 unsigned long mem_size
, rnd_mem_size
, pteg_count
, psize
;
555 /* If hash size isn't already provided by the platform, we try to
556 * retrieve it from the device-tree. If it's not there neither, we
557 * calculate it now based on the total RAM size
559 if (ppc64_pft_size
== 0)
560 of_scan_flat_dt(htab_dt_scan_pftsize
, NULL
);
562 return 1UL << ppc64_pft_size
;
564 /* round mem_size up to next power of 2 */
565 mem_size
= memblock_phys_mem_size();
566 rnd_mem_size
= 1UL << __ilog2(mem_size
);
567 if (rnd_mem_size
< mem_size
)
571 psize
= mmu_psize_defs
[mmu_virtual_psize
].shift
;
572 pteg_count
= max(rnd_mem_size
>> (psize
+ 1), 1UL << 11);
574 return pteg_count
<< 7;
577 #ifdef CONFIG_MEMORY_HOTPLUG
578 int create_section_mapping(unsigned long start
, unsigned long end
)
580 return htab_bolt_mapping(start
, end
, __pa(start
),
581 pgprot_val(PAGE_KERNEL
), mmu_linear_psize
,
585 int remove_section_mapping(unsigned long start
, unsigned long end
)
587 return htab_remove_mapping(start
, end
, mmu_linear_psize
,
590 #endif /* CONFIG_MEMORY_HOTPLUG */
592 #define FUNCTION_TEXT(A) ((*(unsigned long *)(A)))
594 static void __init
htab_finish_init(void)
596 extern unsigned int *htab_call_hpte_insert1
;
597 extern unsigned int *htab_call_hpte_insert2
;
598 extern unsigned int *htab_call_hpte_remove
;
599 extern unsigned int *htab_call_hpte_updatepp
;
601 #ifdef CONFIG_PPC_HAS_HASH_64K
602 extern unsigned int *ht64_call_hpte_insert1
;
603 extern unsigned int *ht64_call_hpte_insert2
;
604 extern unsigned int *ht64_call_hpte_remove
;
605 extern unsigned int *ht64_call_hpte_updatepp
;
607 patch_branch(ht64_call_hpte_insert1
,
608 FUNCTION_TEXT(ppc_md
.hpte_insert
),
610 patch_branch(ht64_call_hpte_insert2
,
611 FUNCTION_TEXT(ppc_md
.hpte_insert
),
613 patch_branch(ht64_call_hpte_remove
,
614 FUNCTION_TEXT(ppc_md
.hpte_remove
),
616 patch_branch(ht64_call_hpte_updatepp
,
617 FUNCTION_TEXT(ppc_md
.hpte_updatepp
),
620 #endif /* CONFIG_PPC_HAS_HASH_64K */
622 patch_branch(htab_call_hpte_insert1
,
623 FUNCTION_TEXT(ppc_md
.hpte_insert
),
625 patch_branch(htab_call_hpte_insert2
,
626 FUNCTION_TEXT(ppc_md
.hpte_insert
),
628 patch_branch(htab_call_hpte_remove
,
629 FUNCTION_TEXT(ppc_md
.hpte_remove
),
631 patch_branch(htab_call_hpte_updatepp
,
632 FUNCTION_TEXT(ppc_md
.hpte_updatepp
),
636 static void __init
htab_initialize(void)
639 unsigned long pteg_count
;
641 unsigned long base
= 0, size
= 0, limit
;
642 struct memblock_region
*reg
;
644 DBG(" -> htab_initialize()\n");
646 /* Initialize segment sizes */
647 htab_init_seg_sizes();
649 /* Initialize page sizes */
650 htab_init_page_sizes();
652 if (mmu_has_feature(MMU_FTR_1T_SEGMENT
)) {
653 mmu_kernel_ssize
= MMU_SEGSIZE_1T
;
654 mmu_highuser_ssize
= MMU_SEGSIZE_1T
;
655 printk(KERN_INFO
"Using 1TB segments\n");
659 * Calculate the required size of the htab. We want the number of
660 * PTEGs to equal one half the number of real pages.
662 htab_size_bytes
= htab_get_table_size();
663 pteg_count
= htab_size_bytes
>> 7;
665 htab_hash_mask
= pteg_count
- 1;
667 if (firmware_has_feature(FW_FEATURE_LPAR
)) {
668 /* Using a hypervisor which owns the htab */
671 #ifdef CONFIG_FA_DUMP
673 * If firmware assisted dump is active firmware preserves
674 * the contents of htab along with entire partition memory.
675 * Clear the htab if firmware assisted dump is active so
676 * that we dont end up using old mappings.
678 if (is_fadump_active() && ppc_md
.hpte_clear_all
)
679 ppc_md
.hpte_clear_all();
682 /* Find storage for the HPT. Must be contiguous in
683 * the absolute address space. On cell we want it to be
684 * in the first 2 Gig so we can use it for IOMMU hacks.
686 if (machine_is(cell
))
689 limit
= MEMBLOCK_ALLOC_ANYWHERE
;
691 table
= memblock_alloc_base(htab_size_bytes
, htab_size_bytes
, limit
);
693 DBG("Hash table allocated at %lx, size: %lx\n", table
,
696 htab_address
= __va(table
);
698 /* htab absolute addr + encoded htabsize */
699 _SDR1
= table
+ __ilog2(pteg_count
) - 11;
701 /* Initialize the HPT with no entries */
702 memset((void *)table
, 0, htab_size_bytes
);
705 mtspr(SPRN_SDR1
, _SDR1
);
708 prot
= pgprot_val(PAGE_KERNEL
);
710 #ifdef CONFIG_DEBUG_PAGEALLOC
711 linear_map_hash_count
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
712 linear_map_hash_slots
= __va(memblock_alloc_base(linear_map_hash_count
,
714 memset(linear_map_hash_slots
, 0, linear_map_hash_count
);
715 #endif /* CONFIG_DEBUG_PAGEALLOC */
717 /* On U3 based machines, we need to reserve the DART area and
718 * _NOT_ map it to avoid cache paradoxes as it's remapped non
722 /* create bolted the linear mapping in the hash table */
723 for_each_memblock(memory
, reg
) {
724 base
= (unsigned long)__va(reg
->base
);
727 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
730 #ifdef CONFIG_U3_DART
731 /* Do not map the DART space. Fortunately, it will be aligned
732 * in such a way that it will not cross two memblock regions and
733 * will fit within a single 16Mb page.
734 * The DART space is assumed to be a full 16Mb region even if
735 * we only use 2Mb of that space. We will use more of it later
736 * for AGP GART. We have to use a full 16Mb large page.
738 DBG("DART base: %lx\n", dart_tablebase
);
740 if (dart_tablebase
!= 0 && dart_tablebase
>= base
741 && dart_tablebase
< (base
+ size
)) {
742 unsigned long dart_table_end
= dart_tablebase
+ 16 * MB
;
743 if (base
!= dart_tablebase
)
744 BUG_ON(htab_bolt_mapping(base
, dart_tablebase
,
748 if ((base
+ size
) > dart_table_end
)
749 BUG_ON(htab_bolt_mapping(dart_tablebase
+16*MB
,
751 __pa(dart_table_end
),
757 #endif /* CONFIG_U3_DART */
758 BUG_ON(htab_bolt_mapping(base
, base
+ size
, __pa(base
),
759 prot
, mmu_linear_psize
, mmu_kernel_ssize
));
761 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE
);
764 * If we have a memory_limit and we've allocated TCEs then we need to
765 * explicitly map the TCE area at the top of RAM. We also cope with the
766 * case that the TCEs start below memory_limit.
767 * tce_alloc_start/end are 16MB aligned so the mapping should work
768 * for either 4K or 16MB pages.
770 if (tce_alloc_start
) {
771 tce_alloc_start
= (unsigned long)__va(tce_alloc_start
);
772 tce_alloc_end
= (unsigned long)__va(tce_alloc_end
);
774 if (base
+ size
>= tce_alloc_start
)
775 tce_alloc_start
= base
+ size
+ 1;
777 BUG_ON(htab_bolt_mapping(tce_alloc_start
, tce_alloc_end
,
778 __pa(tce_alloc_start
), prot
,
779 mmu_linear_psize
, mmu_kernel_ssize
));
784 DBG(" <- htab_initialize()\n");
789 void __init
early_init_mmu(void)
791 /* Setup initial STAB address in the PACA */
792 get_paca()->stab_real
= __pa((u64
)&initial_stab
);
793 get_paca()->stab_addr
= (u64
)&initial_stab
;
795 /* Initialize the MMU Hash table and create the linear mapping
796 * of memory. Has to be done before stab/slb initialization as
797 * this is currently where the page size encoding is obtained
801 /* Initialize stab / SLB management */
802 if (mmu_has_feature(MMU_FTR_SLB
))
805 stab_initialize(get_paca()->stab_real
);
809 void early_init_mmu_secondary(void)
811 /* Initialize hash table for that CPU */
812 if (!firmware_has_feature(FW_FEATURE_LPAR
))
813 mtspr(SPRN_SDR1
, _SDR1
);
815 /* Initialize STAB/SLB. We use a virtual address as it works
816 * in real mode on pSeries.
818 if (mmu_has_feature(MMU_FTR_SLB
))
821 stab_initialize(get_paca()->stab_addr
);
823 #endif /* CONFIG_SMP */
826 * Called by asm hashtable.S for doing lazy icache flush
828 unsigned int hash_page_do_lazy_icache(unsigned int pp
, pte_t pte
, int trap
)
832 if (!pfn_valid(pte_pfn(pte
)))
835 page
= pte_page(pte
);
838 if (!test_bit(PG_arch_1
, &page
->flags
) && !PageReserved(page
)) {
840 flush_dcache_icache_page(page
);
841 set_bit(PG_arch_1
, &page
->flags
);
848 #ifdef CONFIG_PPC_MM_SLICES
849 unsigned int get_paca_psize(unsigned long addr
)
852 unsigned char *hpsizes
;
853 unsigned long index
, mask_index
;
855 if (addr
< SLICE_LOW_TOP
) {
856 lpsizes
= get_paca()->context
.low_slices_psize
;
857 index
= GET_LOW_SLICE_INDEX(addr
);
858 return (lpsizes
>> (index
* 4)) & 0xF;
860 hpsizes
= get_paca()->context
.high_slices_psize
;
861 index
= GET_HIGH_SLICE_INDEX(addr
);
862 mask_index
= index
& 0x1;
863 return (hpsizes
[index
>> 1] >> (mask_index
* 4)) & 0xF;
867 unsigned int get_paca_psize(unsigned long addr
)
869 return get_paca()->context
.user_psize
;
874 * Demote a segment to using 4k pages.
875 * For now this makes the whole process use 4k pages.
877 #ifdef CONFIG_PPC_64K_PAGES
878 void demote_segment_4k(struct mm_struct
*mm
, unsigned long addr
)
880 if (get_slice_psize(mm
, addr
) == MMU_PAGE_4K
)
882 slice_set_range_psize(mm
, addr
, 1, MMU_PAGE_4K
);
883 #ifdef CONFIG_SPU_BASE
884 spu_flush_all_slbs(mm
);
886 if (get_paca_psize(addr
) != MMU_PAGE_4K
) {
887 get_paca()->context
= mm
->context
;
888 slb_flush_and_rebolt();
891 #endif /* CONFIG_PPC_64K_PAGES */
893 #ifdef CONFIG_PPC_SUBPAGE_PROT
895 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
896 * Userspace sets the subpage permissions using the subpage_prot system call.
898 * Result is 0: full permissions, _PAGE_RW: read-only,
899 * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
901 static int subpage_protection(struct mm_struct
*mm
, unsigned long ea
)
903 struct subpage_prot_table
*spt
= &mm
->context
.spt
;
907 if (ea
>= spt
->maxaddr
)
909 if (ea
< 0x100000000UL
) {
910 /* addresses below 4GB use spt->low_prot */
911 sbpm
= spt
->low_prot
;
913 sbpm
= spt
->protptrs
[ea
>> SBP_L3_SHIFT
];
917 sbpp
= sbpm
[(ea
>> SBP_L2_SHIFT
) & (SBP_L2_COUNT
- 1)];
920 spp
= sbpp
[(ea
>> PAGE_SHIFT
) & (SBP_L1_COUNT
- 1)];
922 /* extract 2-bit bitfield for this 4k subpage */
923 spp
>>= 30 - 2 * ((ea
>> 12) & 0xf);
925 /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
926 spp
= ((spp
& 2) ? _PAGE_USER
: 0) | ((spp
& 1) ? _PAGE_RW
: 0);
930 #else /* CONFIG_PPC_SUBPAGE_PROT */
931 static inline int subpage_protection(struct mm_struct
*mm
, unsigned long ea
)
937 void hash_failure_debug(unsigned long ea
, unsigned long access
,
938 unsigned long vsid
, unsigned long trap
,
939 int ssize
, int psize
, int lpsize
, unsigned long pte
)
941 if (!printk_ratelimit())
943 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
944 ea
, access
, current
->comm
);
945 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
946 trap
, vsid
, ssize
, psize
, lpsize
, pte
);
951 * 1 - normal page fault
952 * -1 - critical hash insertion error
953 * -2 - access not permitted by subpage protection mechanism
955 int hash_page(unsigned long ea
, unsigned long access
, unsigned long trap
)
957 enum ctx_state prev_state
= exception_enter();
960 struct mm_struct
*mm
;
963 const struct cpumask
*tmp
;
964 int rc
, user_region
= 0, local
= 0;
967 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
970 /* Get region & vsid */
971 switch (REGION_ID(ea
)) {
976 DBG_LOW(" user region with no mm !\n");
980 psize
= get_slice_psize(mm
, ea
);
981 ssize
= user_segment_size(ea
);
982 vsid
= get_vsid(mm
->context
.id
, ea
, ssize
);
984 case VMALLOC_REGION_ID
:
986 vsid
= get_kernel_vsid(ea
, mmu_kernel_ssize
);
987 if (ea
< VMALLOC_END
)
988 psize
= mmu_vmalloc_psize
;
990 psize
= mmu_io_psize
;
991 ssize
= mmu_kernel_ssize
;
995 * Send the problem up to do_page_fault
1000 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm
, mm
->pgd
, vsid
);
1004 DBG_LOW("Bad address!\n");
1010 if (pgdir
== NULL
) {
1015 /* Check CPU locality */
1016 tmp
= cpumask_of(smp_processor_id());
1017 if (user_region
&& cpumask_equal(mm_cpumask(mm
), tmp
))
1020 #ifndef CONFIG_PPC_64K_PAGES
1021 /* If we use 4K pages and our psize is not 4K, then we might
1022 * be hitting a special driver mapping, and need to align the
1023 * address before we fetch the PTE.
1025 * It could also be a hugepage mapping, in which case this is
1026 * not necessary, but it's not harmful, either.
1028 if (psize
!= MMU_PAGE_4K
)
1029 ea
&= ~((1ul << mmu_psize_defs
[psize
].shift
) - 1);
1030 #endif /* CONFIG_PPC_64K_PAGES */
1032 /* Get PTE and page size from page tables */
1033 ptep
= find_linux_pte_or_hugepte(pgdir
, ea
, &hugeshift
);
1034 if (ptep
== NULL
|| !pte_present(*ptep
)) {
1035 DBG_LOW(" no PTE !\n");
1040 /* Add _PAGE_PRESENT to the required access perm */
1041 access
|= _PAGE_PRESENT
;
1043 /* Pre-check access permissions (will be re-checked atomically
1044 * in __hash_page_XX but this pre-check is a fast path
1046 if (access
& ~pte_val(*ptep
)) {
1047 DBG_LOW(" no access !\n");
1053 if (pmd_trans_huge(*(pmd_t
*)ptep
))
1054 rc
= __hash_page_thp(ea
, access
, vsid
, (pmd_t
*)ptep
,
1055 trap
, local
, ssize
, psize
);
1056 #ifdef CONFIG_HUGETLB_PAGE
1058 rc
= __hash_page_huge(ea
, access
, vsid
, ptep
, trap
,
1059 local
, ssize
, hugeshift
, psize
);
1063 * if we have hugeshift, and is not transhuge with
1064 * hugetlb disabled, something is really wrong.
1073 #ifndef CONFIG_PPC_64K_PAGES
1074 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep
));
1076 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep
),
1077 pte_val(*(ptep
+ PTRS_PER_PTE
)));
1079 /* Do actual hashing */
1080 #ifdef CONFIG_PPC_64K_PAGES
1081 /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1082 if ((pte_val(*ptep
) & _PAGE_4K_PFN
) && psize
== MMU_PAGE_64K
) {
1083 demote_segment_4k(mm
, ea
);
1084 psize
= MMU_PAGE_4K
;
1087 /* If this PTE is non-cacheable and we have restrictions on
1088 * using non cacheable large pages, then we switch to 4k
1090 if (mmu_ci_restrictions
&& psize
== MMU_PAGE_64K
&&
1091 (pte_val(*ptep
) & _PAGE_NO_CACHE
)) {
1093 demote_segment_4k(mm
, ea
);
1094 psize
= MMU_PAGE_4K
;
1095 } else if (ea
< VMALLOC_END
) {
1097 * some driver did a non-cacheable mapping
1098 * in vmalloc space, so switch vmalloc
1101 printk(KERN_ALERT
"Reducing vmalloc segment "
1102 "to 4kB pages because of "
1103 "non-cacheable mapping\n");
1104 psize
= mmu_vmalloc_psize
= MMU_PAGE_4K
;
1105 #ifdef CONFIG_SPU_BASE
1106 spu_flush_all_slbs(mm
);
1111 if (psize
!= get_paca_psize(ea
)) {
1112 get_paca()->context
= mm
->context
;
1113 slb_flush_and_rebolt();
1115 } else if (get_paca()->vmalloc_sllp
!=
1116 mmu_psize_defs
[mmu_vmalloc_psize
].sllp
) {
1117 get_paca()->vmalloc_sllp
=
1118 mmu_psize_defs
[mmu_vmalloc_psize
].sllp
;
1119 slb_vmalloc_update();
1121 #endif /* CONFIG_PPC_64K_PAGES */
1123 #ifdef CONFIG_PPC_HAS_HASH_64K
1124 if (psize
== MMU_PAGE_64K
)
1125 rc
= __hash_page_64K(ea
, access
, vsid
, ptep
, trap
, local
, ssize
);
1127 #endif /* CONFIG_PPC_HAS_HASH_64K */
1129 int spp
= subpage_protection(mm
, ea
);
1133 rc
= __hash_page_4K(ea
, access
, vsid
, ptep
, trap
,
1137 /* Dump some info in case of hash insertion failure, they should
1138 * never happen so it is really useful to know if/when they do
1141 hash_failure_debug(ea
, access
, vsid
, trap
, ssize
, psize
,
1142 psize
, pte_val(*ptep
));
1143 #ifndef CONFIG_PPC_64K_PAGES
1144 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep
));
1146 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep
),
1147 pte_val(*(ptep
+ PTRS_PER_PTE
)));
1149 DBG_LOW(" -> rc=%d\n", rc
);
1152 exception_exit(prev_state
);
1155 EXPORT_SYMBOL_GPL(hash_page
);
1157 void hash_preload(struct mm_struct
*mm
, unsigned long ea
,
1158 unsigned long access
, unsigned long trap
)
1164 unsigned long flags
;
1165 int rc
, ssize
, local
= 0;
1167 BUG_ON(REGION_ID(ea
) != USER_REGION_ID
);
1169 #ifdef CONFIG_PPC_MM_SLICES
1170 /* We only prefault standard pages for now */
1171 if (unlikely(get_slice_psize(mm
, ea
) != mm
->context
.user_psize
))
1175 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1176 " trap=%lx\n", mm
, mm
->pgd
, ea
, access
, trap
);
1178 /* Get Linux PTE if available */
1184 ssize
= user_segment_size(ea
);
1185 vsid
= get_vsid(mm
->context
.id
, ea
, ssize
);
1189 * Hash doesn't like irqs. Walking linux page table with irq disabled
1190 * saves us from holding multiple locks.
1192 local_irq_save(flags
);
1195 * THP pages use update_mmu_cache_pmd. We don't do
1196 * hash preload there. Hence can ignore THP here
1198 ptep
= find_linux_pte_or_hugepte(pgdir
, ea
, &hugepage_shift
);
1202 WARN_ON(hugepage_shift
);
1203 #ifdef CONFIG_PPC_64K_PAGES
1204 /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1205 * a 64K kernel), then we don't preload, hash_page() will take
1206 * care of it once we actually try to access the page.
1207 * That way we don't have to duplicate all of the logic for segment
1208 * page size demotion here
1210 if (pte_val(*ptep
) & (_PAGE_4K_PFN
| _PAGE_NO_CACHE
))
1212 #endif /* CONFIG_PPC_64K_PAGES */
1214 /* Is that local to this CPU ? */
1215 if (cpumask_equal(mm_cpumask(mm
), cpumask_of(smp_processor_id())))
1219 #ifdef CONFIG_PPC_HAS_HASH_64K
1220 if (mm
->context
.user_psize
== MMU_PAGE_64K
)
1221 rc
= __hash_page_64K(ea
, access
, vsid
, ptep
, trap
, local
, ssize
);
1223 #endif /* CONFIG_PPC_HAS_HASH_64K */
1224 rc
= __hash_page_4K(ea
, access
, vsid
, ptep
, trap
, local
, ssize
,
1225 subpage_protection(mm
, ea
));
1227 /* Dump some info in case of hash insertion failure, they should
1228 * never happen so it is really useful to know if/when they do
1231 hash_failure_debug(ea
, access
, vsid
, trap
, ssize
,
1232 mm
->context
.user_psize
,
1233 mm
->context
.user_psize
,
1236 local_irq_restore(flags
);
1239 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1240 * do not forget to update the assembly call site !
1242 void flush_hash_page(unsigned long vpn
, real_pte_t pte
, int psize
, int ssize
,
1245 unsigned long hash
, index
, shift
, hidx
, slot
;
1247 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn
);
1248 pte_iterate_hashed_subpages(pte
, psize
, vpn
, index
, shift
) {
1249 hash
= hpt_hash(vpn
, shift
, ssize
);
1250 hidx
= __rpte_to_hidx(pte
, index
);
1251 if (hidx
& _PTEIDX_SECONDARY
)
1253 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1254 slot
+= hidx
& _PTEIDX_GROUP_IX
;
1255 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index
, slot
, hidx
);
1257 * We use same base page size and actual psize, because we don't
1258 * use these functions for hugepage
1260 ppc_md
.hpte_invalidate(slot
, vpn
, psize
, psize
, ssize
, local
);
1261 } pte_iterate_hashed_end();
1263 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1264 /* Transactions are not aborted by tlbiel, only tlbie.
1265 * Without, syncing a page back to a block device w/ PIO could pick up
1266 * transactional data (bad!) so we force an abort here. Before the
1267 * sync the page will be made read-only, which will flush_hash_page.
1268 * BIG ISSUE here: if the kernel uses a page from userspace without
1269 * unmapping it first, it may see the speculated version.
1271 if (local
&& cpu_has_feature(CPU_FTR_TM
) &&
1272 current
->thread
.regs
&&
1273 MSR_TM_ACTIVE(current
->thread
.regs
->msr
)) {
1275 tm_abort(TM_CAUSE_TLBI
);
1280 void flush_hash_range(unsigned long number
, int local
)
1282 if (ppc_md
.flush_hash_range
)
1283 ppc_md
.flush_hash_range(number
, local
);
1286 struct ppc64_tlb_batch
*batch
=
1287 &__get_cpu_var(ppc64_tlb_batch
);
1289 for (i
= 0; i
< number
; i
++)
1290 flush_hash_page(batch
->vpn
[i
], batch
->pte
[i
],
1291 batch
->psize
, batch
->ssize
, local
);
1296 * low_hash_fault is called when we the low level hash code failed
1297 * to instert a PTE due to an hypervisor error
1299 void low_hash_fault(struct pt_regs
*regs
, unsigned long address
, int rc
)
1301 enum ctx_state prev_state
= exception_enter();
1303 if (user_mode(regs
)) {
1304 #ifdef CONFIG_PPC_SUBPAGE_PROT
1306 _exception(SIGSEGV
, regs
, SEGV_ACCERR
, address
);
1309 _exception(SIGBUS
, regs
, BUS_ADRERR
, address
);
1311 bad_page_fault(regs
, address
, SIGBUS
);
1313 exception_exit(prev_state
);
1316 long hpte_insert_repeating(unsigned long hash
, unsigned long vpn
,
1317 unsigned long pa
, unsigned long rflags
,
1318 unsigned long vflags
, int psize
, int ssize
)
1320 unsigned long hpte_group
;
1324 hpte_group
= ((hash
& htab_hash_mask
) *
1325 HPTES_PER_GROUP
) & ~0x7UL
;
1327 /* Insert into the hash table, primary slot */
1328 slot
= ppc_md
.hpte_insert(hpte_group
, vpn
, pa
, rflags
, vflags
,
1329 psize
, psize
, ssize
);
1331 /* Primary is full, try the secondary */
1332 if (unlikely(slot
== -1)) {
1333 hpte_group
= ((~hash
& htab_hash_mask
) *
1334 HPTES_PER_GROUP
) & ~0x7UL
;
1335 slot
= ppc_md
.hpte_insert(hpte_group
, vpn
, pa
, rflags
,
1336 vflags
| HPTE_V_SECONDARY
,
1337 psize
, psize
, ssize
);
1340 hpte_group
= ((hash
& htab_hash_mask
) *
1341 HPTES_PER_GROUP
)&~0x7UL
;
1343 ppc_md
.hpte_remove(hpte_group
);
1351 #ifdef CONFIG_DEBUG_PAGEALLOC
1352 static void kernel_map_linear_page(unsigned long vaddr
, unsigned long lmi
)
1355 unsigned long vsid
= get_kernel_vsid(vaddr
, mmu_kernel_ssize
);
1356 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, mmu_kernel_ssize
);
1357 unsigned long mode
= htab_convert_pte_flags(PAGE_KERNEL
);
1360 hash
= hpt_hash(vpn
, PAGE_SHIFT
, mmu_kernel_ssize
);
1362 /* Don't create HPTE entries for bad address */
1366 ret
= hpte_insert_repeating(hash
, vpn
, __pa(vaddr
), mode
,
1368 mmu_linear_psize
, mmu_kernel_ssize
);
1371 spin_lock(&linear_map_hash_lock
);
1372 BUG_ON(linear_map_hash_slots
[lmi
] & 0x80);
1373 linear_map_hash_slots
[lmi
] = ret
| 0x80;
1374 spin_unlock(&linear_map_hash_lock
);
1377 static void kernel_unmap_linear_page(unsigned long vaddr
, unsigned long lmi
)
1379 unsigned long hash
, hidx
, slot
;
1380 unsigned long vsid
= get_kernel_vsid(vaddr
, mmu_kernel_ssize
);
1381 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, mmu_kernel_ssize
);
1383 hash
= hpt_hash(vpn
, PAGE_SHIFT
, mmu_kernel_ssize
);
1384 spin_lock(&linear_map_hash_lock
);
1385 BUG_ON(!(linear_map_hash_slots
[lmi
] & 0x80));
1386 hidx
= linear_map_hash_slots
[lmi
] & 0x7f;
1387 linear_map_hash_slots
[lmi
] = 0;
1388 spin_unlock(&linear_map_hash_lock
);
1389 if (hidx
& _PTEIDX_SECONDARY
)
1391 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1392 slot
+= hidx
& _PTEIDX_GROUP_IX
;
1393 ppc_md
.hpte_invalidate(slot
, vpn
, mmu_linear_psize
, mmu_linear_psize
,
1394 mmu_kernel_ssize
, 0);
1397 void kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1399 unsigned long flags
, vaddr
, lmi
;
1402 local_irq_save(flags
);
1403 for (i
= 0; i
< numpages
; i
++, page
++) {
1404 vaddr
= (unsigned long)page_address(page
);
1405 lmi
= __pa(vaddr
) >> PAGE_SHIFT
;
1406 if (lmi
>= linear_map_hash_count
)
1409 kernel_map_linear_page(vaddr
, lmi
);
1411 kernel_unmap_linear_page(vaddr
, lmi
);
1413 local_irq_restore(flags
);
1415 #endif /* CONFIG_DEBUG_PAGEALLOC */
1417 void setup_initial_memory_limit(phys_addr_t first_memblock_base
,
1418 phys_addr_t first_memblock_size
)
1420 /* We don't currently support the first MEMBLOCK not mapping 0
1421 * physical on those processors
1423 BUG_ON(first_memblock_base
!= 0);
1425 /* On LPAR systems, the first entry is our RMA region,
1426 * non-LPAR 64-bit hash MMU systems don't have a limitation
1427 * on real mode access, but using the first entry works well
1428 * enough. We also clamp it to 1G to avoid some funky things
1429 * such as RTAS bugs etc...
1431 ppc64_rma_size
= min_t(u64
, first_memblock_size
, 0x40000000);
1433 /* Finally limit subsequent allocations */
1434 memblock_set_current_limit(ppc64_rma_size
);