2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
40 #include "blk-cgroup.h"
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug
);
48 DEFINE_IDA(blk_queue_ida
);
51 * For the allocated request tables
53 struct kmem_cache
*request_cachep
= NULL
;
56 * For queue allocation
58 struct kmem_cache
*blk_requestq_cachep
;
61 * Controlling structure to kblockd
63 static struct workqueue_struct
*kblockd_workqueue
;
65 void blk_queue_congestion_threshold(struct request_queue
*q
)
69 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
70 if (nr
> q
->nr_requests
)
72 q
->nr_congestion_on
= nr
;
74 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
77 q
->nr_congestion_off
= nr
;
81 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
84 * Locates the passed device's request queue and returns the address of its
87 * Will return NULL if the request queue cannot be located.
89 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
91 struct backing_dev_info
*ret
= NULL
;
92 struct request_queue
*q
= bdev_get_queue(bdev
);
95 ret
= &q
->backing_dev_info
;
98 EXPORT_SYMBOL(blk_get_backing_dev_info
);
100 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
102 memset(rq
, 0, sizeof(*rq
));
104 INIT_LIST_HEAD(&rq
->queuelist
);
105 INIT_LIST_HEAD(&rq
->timeout_list
);
108 rq
->__sector
= (sector_t
) -1;
109 INIT_HLIST_NODE(&rq
->hash
);
110 RB_CLEAR_NODE(&rq
->rb_node
);
112 rq
->cmd_len
= BLK_MAX_CDB
;
114 rq
->start_time
= jiffies
;
115 set_start_time_ns(rq
);
118 EXPORT_SYMBOL(blk_rq_init
);
120 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
121 unsigned int nbytes
, int error
)
124 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
125 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
128 if (unlikely(rq
->cmd_flags
& REQ_QUIET
))
129 set_bit(BIO_QUIET
, &bio
->bi_flags
);
131 bio_advance(bio
, nbytes
);
133 /* don't actually finish bio if it's part of flush sequence */
134 if (bio
->bi_iter
.bi_size
== 0 && !(rq
->cmd_flags
& REQ_FLUSH_SEQ
))
135 bio_endio(bio
, error
);
138 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
142 printk(KERN_INFO
"%s: dev %s: type=%x, flags=%llx\n", msg
,
143 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
144 (unsigned long long) rq
->cmd_flags
);
146 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
147 (unsigned long long)blk_rq_pos(rq
),
148 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
149 printk(KERN_INFO
" bio %p, biotail %p, buffer %p, len %u\n",
150 rq
->bio
, rq
->biotail
, rq
->buffer
, blk_rq_bytes(rq
));
152 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
153 printk(KERN_INFO
" cdb: ");
154 for (bit
= 0; bit
< BLK_MAX_CDB
; bit
++)
155 printk("%02x ", rq
->cmd
[bit
]);
159 EXPORT_SYMBOL(blk_dump_rq_flags
);
161 static void blk_delay_work(struct work_struct
*work
)
163 struct request_queue
*q
;
165 q
= container_of(work
, struct request_queue
, delay_work
.work
);
166 spin_lock_irq(q
->queue_lock
);
168 spin_unlock_irq(q
->queue_lock
);
172 * blk_delay_queue - restart queueing after defined interval
173 * @q: The &struct request_queue in question
174 * @msecs: Delay in msecs
177 * Sometimes queueing needs to be postponed for a little while, to allow
178 * resources to come back. This function will make sure that queueing is
179 * restarted around the specified time. Queue lock must be held.
181 void blk_delay_queue(struct request_queue
*q
, unsigned long msecs
)
183 if (likely(!blk_queue_dead(q
)))
184 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
,
185 msecs_to_jiffies(msecs
));
187 EXPORT_SYMBOL(blk_delay_queue
);
190 * blk_start_queue - restart a previously stopped queue
191 * @q: The &struct request_queue in question
194 * blk_start_queue() will clear the stop flag on the queue, and call
195 * the request_fn for the queue if it was in a stopped state when
196 * entered. Also see blk_stop_queue(). Queue lock must be held.
198 void blk_start_queue(struct request_queue
*q
)
200 WARN_ON(!irqs_disabled());
202 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
205 EXPORT_SYMBOL(blk_start_queue
);
208 * blk_stop_queue - stop a queue
209 * @q: The &struct request_queue in question
212 * The Linux block layer assumes that a block driver will consume all
213 * entries on the request queue when the request_fn strategy is called.
214 * Often this will not happen, because of hardware limitations (queue
215 * depth settings). If a device driver gets a 'queue full' response,
216 * or if it simply chooses not to queue more I/O at one point, it can
217 * call this function to prevent the request_fn from being called until
218 * the driver has signalled it's ready to go again. This happens by calling
219 * blk_start_queue() to restart queue operations. Queue lock must be held.
221 void blk_stop_queue(struct request_queue
*q
)
223 cancel_delayed_work(&q
->delay_work
);
224 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
226 EXPORT_SYMBOL(blk_stop_queue
);
229 * blk_sync_queue - cancel any pending callbacks on a queue
233 * The block layer may perform asynchronous callback activity
234 * on a queue, such as calling the unplug function after a timeout.
235 * A block device may call blk_sync_queue to ensure that any
236 * such activity is cancelled, thus allowing it to release resources
237 * that the callbacks might use. The caller must already have made sure
238 * that its ->make_request_fn will not re-add plugging prior to calling
241 * This function does not cancel any asynchronous activity arising
242 * out of elevator or throttling code. That would require elevaotor_exit()
243 * and blkcg_exit_queue() to be called with queue lock initialized.
246 void blk_sync_queue(struct request_queue
*q
)
248 del_timer_sync(&q
->timeout
);
251 struct blk_mq_hw_ctx
*hctx
;
254 queue_for_each_hw_ctx(q
, hctx
, i
)
255 cancel_delayed_work_sync(&hctx
->delayed_work
);
257 cancel_delayed_work_sync(&q
->delay_work
);
260 EXPORT_SYMBOL(blk_sync_queue
);
263 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
264 * @q: The queue to run
267 * Invoke request handling on a queue if there are any pending requests.
268 * May be used to restart request handling after a request has completed.
269 * This variant runs the queue whether or not the queue has been
270 * stopped. Must be called with the queue lock held and interrupts
271 * disabled. See also @blk_run_queue.
273 inline void __blk_run_queue_uncond(struct request_queue
*q
)
275 if (unlikely(blk_queue_dead(q
)))
279 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
280 * the queue lock internally. As a result multiple threads may be
281 * running such a request function concurrently. Keep track of the
282 * number of active request_fn invocations such that blk_drain_queue()
283 * can wait until all these request_fn calls have finished.
285 q
->request_fn_active
++;
287 q
->request_fn_active
--;
291 * __blk_run_queue - run a single device queue
292 * @q: The queue to run
295 * See @blk_run_queue. This variant must be called with the queue lock
296 * held and interrupts disabled.
298 void __blk_run_queue(struct request_queue
*q
)
300 if (unlikely(blk_queue_stopped(q
)))
303 __blk_run_queue_uncond(q
);
305 EXPORT_SYMBOL(__blk_run_queue
);
308 * blk_run_queue_async - run a single device queue in workqueue context
309 * @q: The queue to run
312 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
313 * of us. The caller must hold the queue lock.
315 void blk_run_queue_async(struct request_queue
*q
)
317 if (likely(!blk_queue_stopped(q
) && !blk_queue_dead(q
)))
318 mod_delayed_work(kblockd_workqueue
, &q
->delay_work
, 0);
320 EXPORT_SYMBOL(blk_run_queue_async
);
323 * blk_run_queue - run a single device queue
324 * @q: The queue to run
327 * Invoke request handling on this queue, if it has pending work to do.
328 * May be used to restart queueing when a request has completed.
330 void blk_run_queue(struct request_queue
*q
)
334 spin_lock_irqsave(q
->queue_lock
, flags
);
336 spin_unlock_irqrestore(q
->queue_lock
, flags
);
338 EXPORT_SYMBOL(blk_run_queue
);
340 void blk_put_queue(struct request_queue
*q
)
342 kobject_put(&q
->kobj
);
344 EXPORT_SYMBOL(blk_put_queue
);
347 * __blk_drain_queue - drain requests from request_queue
349 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
351 * Drain requests from @q. If @drain_all is set, all requests are drained.
352 * If not, only ELVPRIV requests are drained. The caller is responsible
353 * for ensuring that no new requests which need to be drained are queued.
355 static void __blk_drain_queue(struct request_queue
*q
, bool drain_all
)
356 __releases(q
->queue_lock
)
357 __acquires(q
->queue_lock
)
361 lockdep_assert_held(q
->queue_lock
);
367 * The caller might be trying to drain @q before its
368 * elevator is initialized.
371 elv_drain_elevator(q
);
373 blkcg_drain_queue(q
);
376 * This function might be called on a queue which failed
377 * driver init after queue creation or is not yet fully
378 * active yet. Some drivers (e.g. fd and loop) get unhappy
379 * in such cases. Kick queue iff dispatch queue has
380 * something on it and @q has request_fn set.
382 if (!list_empty(&q
->queue_head
) && q
->request_fn
)
385 drain
|= q
->nr_rqs_elvpriv
;
386 drain
|= q
->request_fn_active
;
389 * Unfortunately, requests are queued at and tracked from
390 * multiple places and there's no single counter which can
391 * be drained. Check all the queues and counters.
394 drain
|= !list_empty(&q
->queue_head
);
395 for (i
= 0; i
< 2; i
++) {
396 drain
|= q
->nr_rqs
[i
];
397 drain
|= q
->in_flight
[i
];
398 drain
|= !list_empty(&q
->flush_queue
[i
]);
405 spin_unlock_irq(q
->queue_lock
);
409 spin_lock_irq(q
->queue_lock
);
413 * With queue marked dead, any woken up waiter will fail the
414 * allocation path, so the wakeup chaining is lost and we're
415 * left with hung waiters. We need to wake up those waiters.
418 struct request_list
*rl
;
420 blk_queue_for_each_rl(rl
, q
)
421 for (i
= 0; i
< ARRAY_SIZE(rl
->wait
); i
++)
422 wake_up_all(&rl
->wait
[i
]);
427 * blk_queue_bypass_start - enter queue bypass mode
428 * @q: queue of interest
430 * In bypass mode, only the dispatch FIFO queue of @q is used. This
431 * function makes @q enter bypass mode and drains all requests which were
432 * throttled or issued before. On return, it's guaranteed that no request
433 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
434 * inside queue or RCU read lock.
436 void blk_queue_bypass_start(struct request_queue
*q
)
440 spin_lock_irq(q
->queue_lock
);
441 drain
= !q
->bypass_depth
++;
442 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
443 spin_unlock_irq(q
->queue_lock
);
446 spin_lock_irq(q
->queue_lock
);
447 __blk_drain_queue(q
, false);
448 spin_unlock_irq(q
->queue_lock
);
450 /* ensure blk_queue_bypass() is %true inside RCU read lock */
454 EXPORT_SYMBOL_GPL(blk_queue_bypass_start
);
457 * blk_queue_bypass_end - leave queue bypass mode
458 * @q: queue of interest
460 * Leave bypass mode and restore the normal queueing behavior.
462 void blk_queue_bypass_end(struct request_queue
*q
)
464 spin_lock_irq(q
->queue_lock
);
465 if (!--q
->bypass_depth
)
466 queue_flag_clear(QUEUE_FLAG_BYPASS
, q
);
467 WARN_ON_ONCE(q
->bypass_depth
< 0);
468 spin_unlock_irq(q
->queue_lock
);
470 EXPORT_SYMBOL_GPL(blk_queue_bypass_end
);
473 * blk_cleanup_queue - shutdown a request queue
474 * @q: request queue to shutdown
476 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
477 * put it. All future requests will be failed immediately with -ENODEV.
479 void blk_cleanup_queue(struct request_queue
*q
)
481 spinlock_t
*lock
= q
->queue_lock
;
483 /* mark @q DYING, no new request or merges will be allowed afterwards */
484 mutex_lock(&q
->sysfs_lock
);
485 queue_flag_set_unlocked(QUEUE_FLAG_DYING
, q
);
489 * A dying queue is permanently in bypass mode till released. Note
490 * that, unlike blk_queue_bypass_start(), we aren't performing
491 * synchronize_rcu() after entering bypass mode to avoid the delay
492 * as some drivers create and destroy a lot of queues while
493 * probing. This is still safe because blk_release_queue() will be
494 * called only after the queue refcnt drops to zero and nothing,
495 * RCU or not, would be traversing the queue by then.
498 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
500 queue_flag_set(QUEUE_FLAG_NOMERGES
, q
);
501 queue_flag_set(QUEUE_FLAG_NOXMERGES
, q
);
502 queue_flag_set(QUEUE_FLAG_DYING
, q
);
503 spin_unlock_irq(lock
);
504 mutex_unlock(&q
->sysfs_lock
);
507 * Drain all requests queued before DYING marking. Set DEAD flag to
508 * prevent that q->request_fn() gets invoked after draining finished.
511 blk_mq_drain_queue(q
);
515 __blk_drain_queue(q
, true);
517 queue_flag_set(QUEUE_FLAG_DEAD
, q
);
518 spin_unlock_irq(lock
);
520 /* @q won't process any more request, flush async actions */
521 del_timer_sync(&q
->backing_dev_info
.laptop_mode_wb_timer
);
525 if (q
->queue_lock
!= &q
->__queue_lock
)
526 q
->queue_lock
= &q
->__queue_lock
;
527 spin_unlock_irq(lock
);
529 /* @q is and will stay empty, shutdown and put */
532 EXPORT_SYMBOL(blk_cleanup_queue
);
534 int blk_init_rl(struct request_list
*rl
, struct request_queue
*q
,
537 if (unlikely(rl
->rq_pool
))
541 rl
->count
[BLK_RW_SYNC
] = rl
->count
[BLK_RW_ASYNC
] = 0;
542 rl
->starved
[BLK_RW_SYNC
] = rl
->starved
[BLK_RW_ASYNC
] = 0;
543 init_waitqueue_head(&rl
->wait
[BLK_RW_SYNC
]);
544 init_waitqueue_head(&rl
->wait
[BLK_RW_ASYNC
]);
546 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
547 mempool_free_slab
, request_cachep
,
555 void blk_exit_rl(struct request_list
*rl
)
558 mempool_destroy(rl
->rq_pool
);
561 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
563 return blk_alloc_queue_node(gfp_mask
, NUMA_NO_NODE
);
565 EXPORT_SYMBOL(blk_alloc_queue
);
567 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
569 struct request_queue
*q
;
572 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
573 gfp_mask
| __GFP_ZERO
, node_id
);
577 if (percpu_counter_init(&q
->mq_usage_counter
, 0))
580 q
->id
= ida_simple_get(&blk_queue_ida
, 0, 0, gfp_mask
);
584 q
->backing_dev_info
.ra_pages
=
585 (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
586 q
->backing_dev_info
.state
= 0;
587 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
588 q
->backing_dev_info
.name
= "block";
591 err
= bdi_init(&q
->backing_dev_info
);
595 setup_timer(&q
->backing_dev_info
.laptop_mode_wb_timer
,
596 laptop_mode_timer_fn
, (unsigned long) q
);
597 setup_timer(&q
->timeout
, blk_rq_timed_out_timer
, (unsigned long) q
);
598 INIT_LIST_HEAD(&q
->queue_head
);
599 INIT_LIST_HEAD(&q
->timeout_list
);
600 INIT_LIST_HEAD(&q
->icq_list
);
601 #ifdef CONFIG_BLK_CGROUP
602 INIT_LIST_HEAD(&q
->blkg_list
);
604 INIT_LIST_HEAD(&q
->flush_queue
[0]);
605 INIT_LIST_HEAD(&q
->flush_queue
[1]);
606 INIT_LIST_HEAD(&q
->flush_data_in_flight
);
607 INIT_DELAYED_WORK(&q
->delay_work
, blk_delay_work
);
609 kobject_init(&q
->kobj
, &blk_queue_ktype
);
611 mutex_init(&q
->sysfs_lock
);
612 spin_lock_init(&q
->__queue_lock
);
615 * By default initialize queue_lock to internal lock and driver can
616 * override it later if need be.
618 q
->queue_lock
= &q
->__queue_lock
;
621 * A queue starts its life with bypass turned on to avoid
622 * unnecessary bypass on/off overhead and nasty surprises during
623 * init. The initial bypass will be finished when the queue is
624 * registered by blk_register_queue().
627 __set_bit(QUEUE_FLAG_BYPASS
, &q
->queue_flags
);
629 init_waitqueue_head(&q
->mq_freeze_wq
);
631 if (blkcg_init_queue(q
))
637 bdi_destroy(&q
->backing_dev_info
);
639 ida_simple_remove(&blk_queue_ida
, q
->id
);
641 percpu_counter_destroy(&q
->mq_usage_counter
);
643 kmem_cache_free(blk_requestq_cachep
, q
);
646 EXPORT_SYMBOL(blk_alloc_queue_node
);
649 * blk_init_queue - prepare a request queue for use with a block device
650 * @rfn: The function to be called to process requests that have been
651 * placed on the queue.
652 * @lock: Request queue spin lock
655 * If a block device wishes to use the standard request handling procedures,
656 * which sorts requests and coalesces adjacent requests, then it must
657 * call blk_init_queue(). The function @rfn will be called when there
658 * are requests on the queue that need to be processed. If the device
659 * supports plugging, then @rfn may not be called immediately when requests
660 * are available on the queue, but may be called at some time later instead.
661 * Plugged queues are generally unplugged when a buffer belonging to one
662 * of the requests on the queue is needed, or due to memory pressure.
664 * @rfn is not required, or even expected, to remove all requests off the
665 * queue, but only as many as it can handle at a time. If it does leave
666 * requests on the queue, it is responsible for arranging that the requests
667 * get dealt with eventually.
669 * The queue spin lock must be held while manipulating the requests on the
670 * request queue; this lock will be taken also from interrupt context, so irq
671 * disabling is needed for it.
673 * Function returns a pointer to the initialized request queue, or %NULL if
677 * blk_init_queue() must be paired with a blk_cleanup_queue() call
678 * when the block device is deactivated (such as at module unload).
681 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
683 return blk_init_queue_node(rfn
, lock
, NUMA_NO_NODE
);
685 EXPORT_SYMBOL(blk_init_queue
);
687 struct request_queue
*
688 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
690 struct request_queue
*uninit_q
, *q
;
692 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
696 q
= blk_init_allocated_queue(uninit_q
, rfn
, lock
);
698 blk_cleanup_queue(uninit_q
);
702 EXPORT_SYMBOL(blk_init_queue_node
);
704 struct request_queue
*
705 blk_init_allocated_queue(struct request_queue
*q
, request_fn_proc
*rfn
,
711 if (blk_init_rl(&q
->root_rl
, q
, GFP_KERNEL
))
715 q
->prep_rq_fn
= NULL
;
716 q
->unprep_rq_fn
= NULL
;
717 q
->queue_flags
|= QUEUE_FLAG_DEFAULT
;
719 /* Override internal queue lock with supplied lock pointer */
721 q
->queue_lock
= lock
;
724 * This also sets hw/phys segments, boundary and size
726 blk_queue_make_request(q
, blk_queue_bio
);
728 q
->sg_reserved_size
= INT_MAX
;
730 /* Protect q->elevator from elevator_change */
731 mutex_lock(&q
->sysfs_lock
);
734 if (elevator_init(q
, NULL
)) {
735 mutex_unlock(&q
->sysfs_lock
);
739 mutex_unlock(&q
->sysfs_lock
);
743 EXPORT_SYMBOL(blk_init_allocated_queue
);
745 bool blk_get_queue(struct request_queue
*q
)
747 if (likely(!blk_queue_dying(q
))) {
754 EXPORT_SYMBOL(blk_get_queue
);
756 static inline void blk_free_request(struct request_list
*rl
, struct request
*rq
)
758 if (rq
->cmd_flags
& REQ_ELVPRIV
) {
759 elv_put_request(rl
->q
, rq
);
761 put_io_context(rq
->elv
.icq
->ioc
);
764 mempool_free(rq
, rl
->rq_pool
);
768 * ioc_batching returns true if the ioc is a valid batching request and
769 * should be given priority access to a request.
771 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
777 * Make sure the process is able to allocate at least 1 request
778 * even if the batch times out, otherwise we could theoretically
781 return ioc
->nr_batch_requests
== q
->nr_batching
||
782 (ioc
->nr_batch_requests
> 0
783 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
787 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
788 * will cause the process to be a "batcher" on all queues in the system. This
789 * is the behaviour we want though - once it gets a wakeup it should be given
792 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
794 if (!ioc
|| ioc_batching(q
, ioc
))
797 ioc
->nr_batch_requests
= q
->nr_batching
;
798 ioc
->last_waited
= jiffies
;
801 static void __freed_request(struct request_list
*rl
, int sync
)
803 struct request_queue
*q
= rl
->q
;
806 * bdi isn't aware of blkcg yet. As all async IOs end up root
807 * blkcg anyway, just use root blkcg state.
809 if (rl
== &q
->root_rl
&&
810 rl
->count
[sync
] < queue_congestion_off_threshold(q
))
811 blk_clear_queue_congested(q
, sync
);
813 if (rl
->count
[sync
] + 1 <= q
->nr_requests
) {
814 if (waitqueue_active(&rl
->wait
[sync
]))
815 wake_up(&rl
->wait
[sync
]);
817 blk_clear_rl_full(rl
, sync
);
822 * A request has just been released. Account for it, update the full and
823 * congestion status, wake up any waiters. Called under q->queue_lock.
825 static void freed_request(struct request_list
*rl
, unsigned int flags
)
827 struct request_queue
*q
= rl
->q
;
828 int sync
= rw_is_sync(flags
);
832 if (flags
& REQ_ELVPRIV
)
835 __freed_request(rl
, sync
);
837 if (unlikely(rl
->starved
[sync
^ 1]))
838 __freed_request(rl
, sync
^ 1);
842 * Determine if elevator data should be initialized when allocating the
843 * request associated with @bio.
845 static bool blk_rq_should_init_elevator(struct bio
*bio
)
851 * Flush requests do not use the elevator so skip initialization.
852 * This allows a request to share the flush and elevator data.
854 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
))
861 * rq_ioc - determine io_context for request allocation
862 * @bio: request being allocated is for this bio (can be %NULL)
864 * Determine io_context to use for request allocation for @bio. May return
865 * %NULL if %current->io_context doesn't exist.
867 static struct io_context
*rq_ioc(struct bio
*bio
)
869 #ifdef CONFIG_BLK_CGROUP
870 if (bio
&& bio
->bi_ioc
)
873 return current
->io_context
;
877 * __get_request - get a free request
878 * @rl: request list to allocate from
879 * @rw_flags: RW and SYNC flags
880 * @bio: bio to allocate request for (can be %NULL)
881 * @gfp_mask: allocation mask
883 * Get a free request from @q. This function may fail under memory
884 * pressure or if @q is dead.
886 * Must be callled with @q->queue_lock held and,
887 * Returns %NULL on failure, with @q->queue_lock held.
888 * Returns !%NULL on success, with @q->queue_lock *not held*.
890 static struct request
*__get_request(struct request_list
*rl
, int rw_flags
,
891 struct bio
*bio
, gfp_t gfp_mask
)
893 struct request_queue
*q
= rl
->q
;
895 struct elevator_type
*et
= q
->elevator
->type
;
896 struct io_context
*ioc
= rq_ioc(bio
);
897 struct io_cq
*icq
= NULL
;
898 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
901 if (unlikely(blk_queue_dying(q
)))
904 may_queue
= elv_may_queue(q
, rw_flags
);
905 if (may_queue
== ELV_MQUEUE_NO
)
908 if (rl
->count
[is_sync
]+1 >= queue_congestion_on_threshold(q
)) {
909 if (rl
->count
[is_sync
]+1 >= q
->nr_requests
) {
911 * The queue will fill after this allocation, so set
912 * it as full, and mark this process as "batching".
913 * This process will be allowed to complete a batch of
914 * requests, others will be blocked.
916 if (!blk_rl_full(rl
, is_sync
)) {
917 ioc_set_batching(q
, ioc
);
918 blk_set_rl_full(rl
, is_sync
);
920 if (may_queue
!= ELV_MQUEUE_MUST
921 && !ioc_batching(q
, ioc
)) {
923 * The queue is full and the allocating
924 * process is not a "batcher", and not
925 * exempted by the IO scheduler
932 * bdi isn't aware of blkcg yet. As all async IOs end up
933 * root blkcg anyway, just use root blkcg state.
935 if (rl
== &q
->root_rl
)
936 blk_set_queue_congested(q
, is_sync
);
940 * Only allow batching queuers to allocate up to 50% over the defined
941 * limit of requests, otherwise we could have thousands of requests
942 * allocated with any setting of ->nr_requests
944 if (rl
->count
[is_sync
] >= (3 * q
->nr_requests
/ 2))
947 q
->nr_rqs
[is_sync
]++;
948 rl
->count
[is_sync
]++;
949 rl
->starved
[is_sync
] = 0;
952 * Decide whether the new request will be managed by elevator. If
953 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
954 * prevent the current elevator from being destroyed until the new
955 * request is freed. This guarantees icq's won't be destroyed and
956 * makes creating new ones safe.
958 * Also, lookup icq while holding queue_lock. If it doesn't exist,
959 * it will be created after releasing queue_lock.
961 if (blk_rq_should_init_elevator(bio
) && !blk_queue_bypass(q
)) {
962 rw_flags
|= REQ_ELVPRIV
;
964 if (et
->icq_cache
&& ioc
)
965 icq
= ioc_lookup_icq(ioc
, q
);
968 if (blk_queue_io_stat(q
))
969 rw_flags
|= REQ_IO_STAT
;
970 spin_unlock_irq(q
->queue_lock
);
972 /* allocate and init request */
973 rq
= mempool_alloc(rl
->rq_pool
, gfp_mask
);
978 blk_rq_set_rl(rq
, rl
);
979 rq
->cmd_flags
= rw_flags
| REQ_ALLOCED
;
982 if (rw_flags
& REQ_ELVPRIV
) {
983 if (unlikely(et
->icq_cache
&& !icq
)) {
985 icq
= ioc_create_icq(ioc
, q
, gfp_mask
);
991 if (unlikely(elv_set_request(q
, rq
, bio
, gfp_mask
)))
994 /* @rq->elv.icq holds io_context until @rq is freed */
996 get_io_context(icq
->ioc
);
1000 * ioc may be NULL here, and ioc_batching will be false. That's
1001 * OK, if the queue is under the request limit then requests need
1002 * not count toward the nr_batch_requests limit. There will always
1003 * be some limit enforced by BLK_BATCH_TIME.
1005 if (ioc_batching(q
, ioc
))
1006 ioc
->nr_batch_requests
--;
1008 trace_block_getrq(q
, bio
, rw_flags
& 1);
1013 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1014 * and may fail indefinitely under memory pressure and thus
1015 * shouldn't stall IO. Treat this request as !elvpriv. This will
1016 * disturb iosched and blkcg but weird is bettern than dead.
1018 printk_ratelimited(KERN_WARNING
"%s: request aux data allocation failed, iosched may be disturbed\n",
1019 dev_name(q
->backing_dev_info
.dev
));
1021 rq
->cmd_flags
&= ~REQ_ELVPRIV
;
1024 spin_lock_irq(q
->queue_lock
);
1025 q
->nr_rqs_elvpriv
--;
1026 spin_unlock_irq(q
->queue_lock
);
1031 * Allocation failed presumably due to memory. Undo anything we
1032 * might have messed up.
1034 * Allocating task should really be put onto the front of the wait
1035 * queue, but this is pretty rare.
1037 spin_lock_irq(q
->queue_lock
);
1038 freed_request(rl
, rw_flags
);
1041 * in the very unlikely event that allocation failed and no
1042 * requests for this direction was pending, mark us starved so that
1043 * freeing of a request in the other direction will notice
1044 * us. another possible fix would be to split the rq mempool into
1048 if (unlikely(rl
->count
[is_sync
] == 0))
1049 rl
->starved
[is_sync
] = 1;
1054 * get_request - get a free request
1055 * @q: request_queue to allocate request from
1056 * @rw_flags: RW and SYNC flags
1057 * @bio: bio to allocate request for (can be %NULL)
1058 * @gfp_mask: allocation mask
1060 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1061 * function keeps retrying under memory pressure and fails iff @q is dead.
1063 * Must be callled with @q->queue_lock held and,
1064 * Returns %NULL on failure, with @q->queue_lock held.
1065 * Returns !%NULL on success, with @q->queue_lock *not held*.
1067 static struct request
*get_request(struct request_queue
*q
, int rw_flags
,
1068 struct bio
*bio
, gfp_t gfp_mask
)
1070 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
1072 struct request_list
*rl
;
1075 rl
= blk_get_rl(q
, bio
); /* transferred to @rq on success */
1077 rq
= __get_request(rl
, rw_flags
, bio
, gfp_mask
);
1081 if (!(gfp_mask
& __GFP_WAIT
) || unlikely(blk_queue_dying(q
))) {
1086 /* wait on @rl and retry */
1087 prepare_to_wait_exclusive(&rl
->wait
[is_sync
], &wait
,
1088 TASK_UNINTERRUPTIBLE
);
1090 trace_block_sleeprq(q
, bio
, rw_flags
& 1);
1092 spin_unlock_irq(q
->queue_lock
);
1096 * After sleeping, we become a "batching" process and will be able
1097 * to allocate at least one request, and up to a big batch of them
1098 * for a small period time. See ioc_batching, ioc_set_batching
1100 ioc_set_batching(q
, current
->io_context
);
1102 spin_lock_irq(q
->queue_lock
);
1103 finish_wait(&rl
->wait
[is_sync
], &wait
);
1108 static struct request
*blk_old_get_request(struct request_queue
*q
, int rw
,
1113 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
1115 /* create ioc upfront */
1116 create_io_context(gfp_mask
, q
->node
);
1118 spin_lock_irq(q
->queue_lock
);
1119 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
1121 spin_unlock_irq(q
->queue_lock
);
1122 /* q->queue_lock is unlocked at this point */
1127 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
1130 return blk_mq_alloc_request(q
, rw
, gfp_mask
, false);
1132 return blk_old_get_request(q
, rw
, gfp_mask
);
1134 EXPORT_SYMBOL(blk_get_request
);
1137 * blk_make_request - given a bio, allocate a corresponding struct request.
1138 * @q: target request queue
1139 * @bio: The bio describing the memory mappings that will be submitted for IO.
1140 * It may be a chained-bio properly constructed by block/bio layer.
1141 * @gfp_mask: gfp flags to be used for memory allocation
1143 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1144 * type commands. Where the struct request needs to be farther initialized by
1145 * the caller. It is passed a &struct bio, which describes the memory info of
1148 * The caller of blk_make_request must make sure that bi_io_vec
1149 * are set to describe the memory buffers. That bio_data_dir() will return
1150 * the needed direction of the request. (And all bio's in the passed bio-chain
1151 * are properly set accordingly)
1153 * If called under none-sleepable conditions, mapped bio buffers must not
1154 * need bouncing, by calling the appropriate masked or flagged allocator,
1155 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1158 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1159 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1160 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1161 * completion of a bio that hasn't been submitted yet, thus resulting in a
1162 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1163 * of bio_alloc(), as that avoids the mempool deadlock.
1164 * If possible a big IO should be split into smaller parts when allocation
1165 * fails. Partial allocation should not be an error, or you risk a live-lock.
1167 struct request
*blk_make_request(struct request_queue
*q
, struct bio
*bio
,
1170 struct request
*rq
= blk_get_request(q
, bio_data_dir(bio
), gfp_mask
);
1173 return ERR_PTR(-ENOMEM
);
1176 struct bio
*bounce_bio
= bio
;
1179 blk_queue_bounce(q
, &bounce_bio
);
1180 ret
= blk_rq_append_bio(q
, rq
, bounce_bio
);
1181 if (unlikely(ret
)) {
1182 blk_put_request(rq
);
1183 return ERR_PTR(ret
);
1189 EXPORT_SYMBOL(blk_make_request
);
1192 * blk_requeue_request - put a request back on queue
1193 * @q: request queue where request should be inserted
1194 * @rq: request to be inserted
1197 * Drivers often keep queueing requests until the hardware cannot accept
1198 * more, when that condition happens we need to put the request back
1199 * on the queue. Must be called with queue lock held.
1201 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
1203 blk_delete_timer(rq
);
1204 blk_clear_rq_complete(rq
);
1205 trace_block_rq_requeue(q
, rq
);
1207 if (blk_rq_tagged(rq
))
1208 blk_queue_end_tag(q
, rq
);
1210 BUG_ON(blk_queued_rq(rq
));
1212 elv_requeue_request(q
, rq
);
1214 EXPORT_SYMBOL(blk_requeue_request
);
1216 static void add_acct_request(struct request_queue
*q
, struct request
*rq
,
1219 blk_account_io_start(rq
, true);
1220 __elv_add_request(q
, rq
, where
);
1223 static void part_round_stats_single(int cpu
, struct hd_struct
*part
,
1226 if (now
== part
->stamp
)
1229 if (part_in_flight(part
)) {
1230 __part_stat_add(cpu
, part
, time_in_queue
,
1231 part_in_flight(part
) * (now
- part
->stamp
));
1232 __part_stat_add(cpu
, part
, io_ticks
, (now
- part
->stamp
));
1238 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1239 * @cpu: cpu number for stats access
1240 * @part: target partition
1242 * The average IO queue length and utilisation statistics are maintained
1243 * by observing the current state of the queue length and the amount of
1244 * time it has been in this state for.
1246 * Normally, that accounting is done on IO completion, but that can result
1247 * in more than a second's worth of IO being accounted for within any one
1248 * second, leading to >100% utilisation. To deal with that, we call this
1249 * function to do a round-off before returning the results when reading
1250 * /proc/diskstats. This accounts immediately for all queue usage up to
1251 * the current jiffies and restarts the counters again.
1253 void part_round_stats(int cpu
, struct hd_struct
*part
)
1255 unsigned long now
= jiffies
;
1258 part_round_stats_single(cpu
, &part_to_disk(part
)->part0
, now
);
1259 part_round_stats_single(cpu
, part
, now
);
1261 EXPORT_SYMBOL_GPL(part_round_stats
);
1263 #ifdef CONFIG_PM_RUNTIME
1264 static void blk_pm_put_request(struct request
*rq
)
1266 if (rq
->q
->dev
&& !(rq
->cmd_flags
& REQ_PM
) && !--rq
->q
->nr_pending
)
1267 pm_runtime_mark_last_busy(rq
->q
->dev
);
1270 static inline void blk_pm_put_request(struct request
*rq
) {}
1274 * queue lock must be held
1276 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1281 blk_pm_put_request(req
);
1283 elv_completed_request(q
, req
);
1285 /* this is a bio leak */
1286 WARN_ON(req
->bio
!= NULL
);
1289 * Request may not have originated from ll_rw_blk. if not,
1290 * it didn't come out of our reserved rq pools
1292 if (req
->cmd_flags
& REQ_ALLOCED
) {
1293 unsigned int flags
= req
->cmd_flags
;
1294 struct request_list
*rl
= blk_rq_rl(req
);
1296 BUG_ON(!list_empty(&req
->queuelist
));
1297 BUG_ON(!hlist_unhashed(&req
->hash
));
1299 blk_free_request(rl
, req
);
1300 freed_request(rl
, flags
);
1304 EXPORT_SYMBOL_GPL(__blk_put_request
);
1306 void blk_put_request(struct request
*req
)
1308 struct request_queue
*q
= req
->q
;
1311 blk_mq_free_request(req
);
1313 unsigned long flags
;
1315 spin_lock_irqsave(q
->queue_lock
, flags
);
1316 __blk_put_request(q
, req
);
1317 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1320 EXPORT_SYMBOL(blk_put_request
);
1323 * blk_add_request_payload - add a payload to a request
1324 * @rq: request to update
1325 * @page: page backing the payload
1326 * @len: length of the payload.
1328 * This allows to later add a payload to an already submitted request by
1329 * a block driver. The driver needs to take care of freeing the payload
1332 * Note that this is a quite horrible hack and nothing but handling of
1333 * discard requests should ever use it.
1335 void blk_add_request_payload(struct request
*rq
, struct page
*page
,
1338 struct bio
*bio
= rq
->bio
;
1340 bio
->bi_io_vec
->bv_page
= page
;
1341 bio
->bi_io_vec
->bv_offset
= 0;
1342 bio
->bi_io_vec
->bv_len
= len
;
1344 bio
->bi_iter
.bi_size
= len
;
1346 bio
->bi_phys_segments
= 1;
1348 rq
->__data_len
= rq
->resid_len
= len
;
1349 rq
->nr_phys_segments
= 1;
1350 rq
->buffer
= bio_data(bio
);
1352 EXPORT_SYMBOL_GPL(blk_add_request_payload
);
1354 bool bio_attempt_back_merge(struct request_queue
*q
, struct request
*req
,
1357 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1359 if (!ll_back_merge_fn(q
, req
, bio
))
1362 trace_block_bio_backmerge(q
, req
, bio
);
1364 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1365 blk_rq_set_mixed_merge(req
);
1367 req
->biotail
->bi_next
= bio
;
1369 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1370 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1372 blk_account_io_start(req
, false);
1376 bool bio_attempt_front_merge(struct request_queue
*q
, struct request
*req
,
1379 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1381 if (!ll_front_merge_fn(q
, req
, bio
))
1384 trace_block_bio_frontmerge(q
, req
, bio
);
1386 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1387 blk_rq_set_mixed_merge(req
);
1389 bio
->bi_next
= req
->bio
;
1393 * may not be valid. if the low level driver said
1394 * it didn't need a bounce buffer then it better
1395 * not touch req->buffer either...
1397 req
->buffer
= bio_data(bio
);
1398 req
->__sector
= bio
->bi_iter
.bi_sector
;
1399 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1400 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1402 blk_account_io_start(req
, false);
1407 * blk_attempt_plug_merge - try to merge with %current's plugged list
1408 * @q: request_queue new bio is being queued at
1409 * @bio: new bio being queued
1410 * @request_count: out parameter for number of traversed plugged requests
1412 * Determine whether @bio being queued on @q can be merged with a request
1413 * on %current's plugged list. Returns %true if merge was successful,
1416 * Plugging coalesces IOs from the same issuer for the same purpose without
1417 * going through @q->queue_lock. As such it's more of an issuing mechanism
1418 * than scheduling, and the request, while may have elvpriv data, is not
1419 * added on the elevator at this point. In addition, we don't have
1420 * reliable access to the elevator outside queue lock. Only check basic
1421 * merging parameters without querying the elevator.
1423 bool blk_attempt_plug_merge(struct request_queue
*q
, struct bio
*bio
,
1424 unsigned int *request_count
)
1426 struct blk_plug
*plug
;
1429 struct list_head
*plug_list
;
1431 if (blk_queue_nomerges(q
))
1434 plug
= current
->plug
;
1440 plug_list
= &plug
->mq_list
;
1442 plug_list
= &plug
->list
;
1444 list_for_each_entry_reverse(rq
, plug_list
, queuelist
) {
1450 if (rq
->q
!= q
|| !blk_rq_merge_ok(rq
, bio
))
1453 el_ret
= blk_try_merge(rq
, bio
);
1454 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1455 ret
= bio_attempt_back_merge(q
, rq
, bio
);
1458 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1459 ret
= bio_attempt_front_merge(q
, rq
, bio
);
1468 void init_request_from_bio(struct request
*req
, struct bio
*bio
)
1470 req
->cmd_type
= REQ_TYPE_FS
;
1472 req
->cmd_flags
|= bio
->bi_rw
& REQ_COMMON_MASK
;
1473 if (bio
->bi_rw
& REQ_RAHEAD
)
1474 req
->cmd_flags
|= REQ_FAILFAST_MASK
;
1477 req
->__sector
= bio
->bi_iter
.bi_sector
;
1478 req
->ioprio
= bio_prio(bio
);
1479 blk_rq_bio_prep(req
->q
, req
, bio
);
1482 void blk_queue_bio(struct request_queue
*q
, struct bio
*bio
)
1484 const bool sync
= !!(bio
->bi_rw
& REQ_SYNC
);
1485 struct blk_plug
*plug
;
1486 int el_ret
, rw_flags
, where
= ELEVATOR_INSERT_SORT
;
1487 struct request
*req
;
1488 unsigned int request_count
= 0;
1491 * low level driver can indicate that it wants pages above a
1492 * certain limit bounced to low memory (ie for highmem, or even
1493 * ISA dma in theory)
1495 blk_queue_bounce(q
, &bio
);
1497 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1498 bio_endio(bio
, -EIO
);
1502 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) {
1503 spin_lock_irq(q
->queue_lock
);
1504 where
= ELEVATOR_INSERT_FLUSH
;
1509 * Check if we can merge with the plugged list before grabbing
1512 if (blk_attempt_plug_merge(q
, bio
, &request_count
))
1515 spin_lock_irq(q
->queue_lock
);
1517 el_ret
= elv_merge(q
, &req
, bio
);
1518 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1519 if (bio_attempt_back_merge(q
, req
, bio
)) {
1520 elv_bio_merged(q
, req
, bio
);
1521 if (!attempt_back_merge(q
, req
))
1522 elv_merged_request(q
, req
, el_ret
);
1525 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1526 if (bio_attempt_front_merge(q
, req
, bio
)) {
1527 elv_bio_merged(q
, req
, bio
);
1528 if (!attempt_front_merge(q
, req
))
1529 elv_merged_request(q
, req
, el_ret
);
1536 * This sync check and mask will be re-done in init_request_from_bio(),
1537 * but we need to set it earlier to expose the sync flag to the
1538 * rq allocator and io schedulers.
1540 rw_flags
= bio_data_dir(bio
);
1542 rw_flags
|= REQ_SYNC
;
1545 * Grab a free request. This is might sleep but can not fail.
1546 * Returns with the queue unlocked.
1548 req
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
1549 if (unlikely(!req
)) {
1550 bio_endio(bio
, -ENODEV
); /* @q is dead */
1555 * After dropping the lock and possibly sleeping here, our request
1556 * may now be mergeable after it had proven unmergeable (above).
1557 * We don't worry about that case for efficiency. It won't happen
1558 * often, and the elevators are able to handle it.
1560 init_request_from_bio(req
, bio
);
1562 if (test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
))
1563 req
->cpu
= raw_smp_processor_id();
1565 plug
= current
->plug
;
1568 * If this is the first request added after a plug, fire
1572 trace_block_plug(q
);
1574 if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1575 blk_flush_plug_list(plug
, false);
1576 trace_block_plug(q
);
1579 list_add_tail(&req
->queuelist
, &plug
->list
);
1580 blk_account_io_start(req
, true);
1582 spin_lock_irq(q
->queue_lock
);
1583 add_acct_request(q
, req
, where
);
1586 spin_unlock_irq(q
->queue_lock
);
1589 EXPORT_SYMBOL_GPL(blk_queue_bio
); /* for device mapper only */
1592 * If bio->bi_dev is a partition, remap the location
1594 static inline void blk_partition_remap(struct bio
*bio
)
1596 struct block_device
*bdev
= bio
->bi_bdev
;
1598 if (bio_sectors(bio
) && bdev
!= bdev
->bd_contains
) {
1599 struct hd_struct
*p
= bdev
->bd_part
;
1601 bio
->bi_iter
.bi_sector
+= p
->start_sect
;
1602 bio
->bi_bdev
= bdev
->bd_contains
;
1604 trace_block_bio_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
1606 bio
->bi_iter
.bi_sector
- p
->start_sect
);
1610 static void handle_bad_sector(struct bio
*bio
)
1612 char b
[BDEVNAME_SIZE
];
1614 printk(KERN_INFO
"attempt to access beyond end of device\n");
1615 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
1616 bdevname(bio
->bi_bdev
, b
),
1618 (unsigned long long)bio_end_sector(bio
),
1619 (long long)(i_size_read(bio
->bi_bdev
->bd_inode
) >> 9));
1621 set_bit(BIO_EOF
, &bio
->bi_flags
);
1624 #ifdef CONFIG_FAIL_MAKE_REQUEST
1626 static DECLARE_FAULT_ATTR(fail_make_request
);
1628 static int __init
setup_fail_make_request(char *str
)
1630 return setup_fault_attr(&fail_make_request
, str
);
1632 __setup("fail_make_request=", setup_fail_make_request
);
1634 static bool should_fail_request(struct hd_struct
*part
, unsigned int bytes
)
1636 return part
->make_it_fail
&& should_fail(&fail_make_request
, bytes
);
1639 static int __init
fail_make_request_debugfs(void)
1641 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
1642 NULL
, &fail_make_request
);
1644 return IS_ERR(dir
) ? PTR_ERR(dir
) : 0;
1647 late_initcall(fail_make_request_debugfs
);
1649 #else /* CONFIG_FAIL_MAKE_REQUEST */
1651 static inline bool should_fail_request(struct hd_struct
*part
,
1657 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1660 * Check whether this bio extends beyond the end of the device.
1662 static inline int bio_check_eod(struct bio
*bio
, unsigned int nr_sectors
)
1669 /* Test device or partition size, when known. */
1670 maxsector
= i_size_read(bio
->bi_bdev
->bd_inode
) >> 9;
1672 sector_t sector
= bio
->bi_iter
.bi_sector
;
1674 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
1676 * This may well happen - the kernel calls bread()
1677 * without checking the size of the device, e.g., when
1678 * mounting a device.
1680 handle_bad_sector(bio
);
1688 static noinline_for_stack
bool
1689 generic_make_request_checks(struct bio
*bio
)
1691 struct request_queue
*q
;
1692 int nr_sectors
= bio_sectors(bio
);
1694 char b
[BDEVNAME_SIZE
];
1695 struct hd_struct
*part
;
1699 if (bio_check_eod(bio
, nr_sectors
))
1702 q
= bdev_get_queue(bio
->bi_bdev
);
1705 "generic_make_request: Trying to access "
1706 "nonexistent block-device %s (%Lu)\n",
1707 bdevname(bio
->bi_bdev
, b
),
1708 (long long) bio
->bi_iter
.bi_sector
);
1712 if (likely(bio_is_rw(bio
) &&
1713 nr_sectors
> queue_max_hw_sectors(q
))) {
1714 printk(KERN_ERR
"bio too big device %s (%u > %u)\n",
1715 bdevname(bio
->bi_bdev
, b
),
1717 queue_max_hw_sectors(q
));
1721 part
= bio
->bi_bdev
->bd_part
;
1722 if (should_fail_request(part
, bio
->bi_iter
.bi_size
) ||
1723 should_fail_request(&part_to_disk(part
)->part0
,
1724 bio
->bi_iter
.bi_size
))
1728 * If this device has partitions, remap block n
1729 * of partition p to block n+start(p) of the disk.
1731 blk_partition_remap(bio
);
1733 if (bio_check_eod(bio
, nr_sectors
))
1737 * Filter flush bio's early so that make_request based
1738 * drivers without flush support don't have to worry
1741 if ((bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) && !q
->flush_flags
) {
1742 bio
->bi_rw
&= ~(REQ_FLUSH
| REQ_FUA
);
1749 if ((bio
->bi_rw
& REQ_DISCARD
) &&
1750 (!blk_queue_discard(q
) ||
1751 ((bio
->bi_rw
& REQ_SECURE
) && !blk_queue_secdiscard(q
)))) {
1756 if (bio
->bi_rw
& REQ_WRITE_SAME
&& !bdev_write_same(bio
->bi_bdev
)) {
1762 * Various block parts want %current->io_context and lazy ioc
1763 * allocation ends up trading a lot of pain for a small amount of
1764 * memory. Just allocate it upfront. This may fail and block
1765 * layer knows how to live with it.
1767 create_io_context(GFP_ATOMIC
, q
->node
);
1769 if (blk_throtl_bio(q
, bio
))
1770 return false; /* throttled, will be resubmitted later */
1772 trace_block_bio_queue(q
, bio
);
1776 bio_endio(bio
, err
);
1781 * generic_make_request - hand a buffer to its device driver for I/O
1782 * @bio: The bio describing the location in memory and on the device.
1784 * generic_make_request() is used to make I/O requests of block
1785 * devices. It is passed a &struct bio, which describes the I/O that needs
1788 * generic_make_request() does not return any status. The
1789 * success/failure status of the request, along with notification of
1790 * completion, is delivered asynchronously through the bio->bi_end_io
1791 * function described (one day) else where.
1793 * The caller of generic_make_request must make sure that bi_io_vec
1794 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1795 * set to describe the device address, and the
1796 * bi_end_io and optionally bi_private are set to describe how
1797 * completion notification should be signaled.
1799 * generic_make_request and the drivers it calls may use bi_next if this
1800 * bio happens to be merged with someone else, and may resubmit the bio to
1801 * a lower device by calling into generic_make_request recursively, which
1802 * means the bio should NOT be touched after the call to ->make_request_fn.
1804 void generic_make_request(struct bio
*bio
)
1806 struct bio_list bio_list_on_stack
;
1808 if (!generic_make_request_checks(bio
))
1812 * We only want one ->make_request_fn to be active at a time, else
1813 * stack usage with stacked devices could be a problem. So use
1814 * current->bio_list to keep a list of requests submited by a
1815 * make_request_fn function. current->bio_list is also used as a
1816 * flag to say if generic_make_request is currently active in this
1817 * task or not. If it is NULL, then no make_request is active. If
1818 * it is non-NULL, then a make_request is active, and new requests
1819 * should be added at the tail
1821 if (current
->bio_list
) {
1822 bio_list_add(current
->bio_list
, bio
);
1826 /* following loop may be a bit non-obvious, and so deserves some
1828 * Before entering the loop, bio->bi_next is NULL (as all callers
1829 * ensure that) so we have a list with a single bio.
1830 * We pretend that we have just taken it off a longer list, so
1831 * we assign bio_list to a pointer to the bio_list_on_stack,
1832 * thus initialising the bio_list of new bios to be
1833 * added. ->make_request() may indeed add some more bios
1834 * through a recursive call to generic_make_request. If it
1835 * did, we find a non-NULL value in bio_list and re-enter the loop
1836 * from the top. In this case we really did just take the bio
1837 * of the top of the list (no pretending) and so remove it from
1838 * bio_list, and call into ->make_request() again.
1840 BUG_ON(bio
->bi_next
);
1841 bio_list_init(&bio_list_on_stack
);
1842 current
->bio_list
= &bio_list_on_stack
;
1844 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
1846 q
->make_request_fn(q
, bio
);
1848 bio
= bio_list_pop(current
->bio_list
);
1850 current
->bio_list
= NULL
; /* deactivate */
1852 EXPORT_SYMBOL(generic_make_request
);
1855 * submit_bio - submit a bio to the block device layer for I/O
1856 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1857 * @bio: The &struct bio which describes the I/O
1859 * submit_bio() is very similar in purpose to generic_make_request(), and
1860 * uses that function to do most of the work. Both are fairly rough
1861 * interfaces; @bio must be presetup and ready for I/O.
1864 void submit_bio(int rw
, struct bio
*bio
)
1869 * If it's a regular read/write or a barrier with data attached,
1870 * go through the normal accounting stuff before submission.
1872 if (bio_has_data(bio
)) {
1875 if (unlikely(rw
& REQ_WRITE_SAME
))
1876 count
= bdev_logical_block_size(bio
->bi_bdev
) >> 9;
1878 count
= bio_sectors(bio
);
1881 count_vm_events(PGPGOUT
, count
);
1883 task_io_account_read(bio
->bi_iter
.bi_size
);
1884 count_vm_events(PGPGIN
, count
);
1887 if (unlikely(block_dump
)) {
1888 char b
[BDEVNAME_SIZE
];
1889 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
1890 current
->comm
, task_pid_nr(current
),
1891 (rw
& WRITE
) ? "WRITE" : "READ",
1892 (unsigned long long)bio
->bi_iter
.bi_sector
,
1893 bdevname(bio
->bi_bdev
, b
),
1898 generic_make_request(bio
);
1900 EXPORT_SYMBOL(submit_bio
);
1903 * blk_rq_check_limits - Helper function to check a request for the queue limit
1905 * @rq: the request being checked
1908 * @rq may have been made based on weaker limitations of upper-level queues
1909 * in request stacking drivers, and it may violate the limitation of @q.
1910 * Since the block layer and the underlying device driver trust @rq
1911 * after it is inserted to @q, it should be checked against @q before
1912 * the insertion using this generic function.
1914 * This function should also be useful for request stacking drivers
1915 * in some cases below, so export this function.
1916 * Request stacking drivers like request-based dm may change the queue
1917 * limits while requests are in the queue (e.g. dm's table swapping).
1918 * Such request stacking drivers should check those requests agaist
1919 * the new queue limits again when they dispatch those requests,
1920 * although such checkings are also done against the old queue limits
1921 * when submitting requests.
1923 int blk_rq_check_limits(struct request_queue
*q
, struct request
*rq
)
1925 if (!rq_mergeable(rq
))
1928 if (blk_rq_sectors(rq
) > blk_queue_get_max_sectors(q
, rq
->cmd_flags
)) {
1929 printk(KERN_ERR
"%s: over max size limit.\n", __func__
);
1934 * queue's settings related to segment counting like q->bounce_pfn
1935 * may differ from that of other stacking queues.
1936 * Recalculate it to check the request correctly on this queue's
1939 blk_recalc_rq_segments(rq
);
1940 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
1941 printk(KERN_ERR
"%s: over max segments limit.\n", __func__
);
1947 EXPORT_SYMBOL_GPL(blk_rq_check_limits
);
1950 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1951 * @q: the queue to submit the request
1952 * @rq: the request being queued
1954 int blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
1956 unsigned long flags
;
1957 int where
= ELEVATOR_INSERT_BACK
;
1959 if (blk_rq_check_limits(q
, rq
))
1963 should_fail_request(&rq
->rq_disk
->part0
, blk_rq_bytes(rq
)))
1966 spin_lock_irqsave(q
->queue_lock
, flags
);
1967 if (unlikely(blk_queue_dying(q
))) {
1968 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1973 * Submitting request must be dequeued before calling this function
1974 * because it will be linked to another request_queue
1976 BUG_ON(blk_queued_rq(rq
));
1978 if (rq
->cmd_flags
& (REQ_FLUSH
|REQ_FUA
))
1979 where
= ELEVATOR_INSERT_FLUSH
;
1981 add_acct_request(q
, rq
, where
);
1982 if (where
== ELEVATOR_INSERT_FLUSH
)
1984 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1988 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
1991 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1992 * @rq: request to examine
1995 * A request could be merge of IOs which require different failure
1996 * handling. This function determines the number of bytes which
1997 * can be failed from the beginning of the request without
1998 * crossing into area which need to be retried further.
2001 * The number of bytes to fail.
2004 * queue_lock must be held.
2006 unsigned int blk_rq_err_bytes(const struct request
*rq
)
2008 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
2009 unsigned int bytes
= 0;
2012 if (!(rq
->cmd_flags
& REQ_MIXED_MERGE
))
2013 return blk_rq_bytes(rq
);
2016 * Currently the only 'mixing' which can happen is between
2017 * different fastfail types. We can safely fail portions
2018 * which have all the failfast bits that the first one has -
2019 * the ones which are at least as eager to fail as the first
2022 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
2023 if ((bio
->bi_rw
& ff
) != ff
)
2025 bytes
+= bio
->bi_iter
.bi_size
;
2028 /* this could lead to infinite loop */
2029 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
2032 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
2034 void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
2036 if (blk_do_io_stat(req
)) {
2037 const int rw
= rq_data_dir(req
);
2038 struct hd_struct
*part
;
2041 cpu
= part_stat_lock();
2043 part_stat_add(cpu
, part
, sectors
[rw
], bytes
>> 9);
2048 void blk_account_io_done(struct request
*req
)
2051 * Account IO completion. flush_rq isn't accounted as a
2052 * normal IO on queueing nor completion. Accounting the
2053 * containing request is enough.
2055 if (blk_do_io_stat(req
) && !(req
->cmd_flags
& REQ_FLUSH_SEQ
)) {
2056 unsigned long duration
= jiffies
- req
->start_time
;
2057 const int rw
= rq_data_dir(req
);
2058 struct hd_struct
*part
;
2061 cpu
= part_stat_lock();
2064 part_stat_inc(cpu
, part
, ios
[rw
]);
2065 part_stat_add(cpu
, part
, ticks
[rw
], duration
);
2066 part_round_stats(cpu
, part
);
2067 part_dec_in_flight(part
, rw
);
2069 hd_struct_put(part
);
2074 #ifdef CONFIG_PM_RUNTIME
2076 * Don't process normal requests when queue is suspended
2077 * or in the process of suspending/resuming
2079 static struct request
*blk_pm_peek_request(struct request_queue
*q
,
2082 if (q
->dev
&& (q
->rpm_status
== RPM_SUSPENDED
||
2083 (q
->rpm_status
!= RPM_ACTIVE
&& !(rq
->cmd_flags
& REQ_PM
))))
2089 static inline struct request
*blk_pm_peek_request(struct request_queue
*q
,
2096 void blk_account_io_start(struct request
*rq
, bool new_io
)
2098 struct hd_struct
*part
;
2099 int rw
= rq_data_dir(rq
);
2102 if (!blk_do_io_stat(rq
))
2105 cpu
= part_stat_lock();
2109 part_stat_inc(cpu
, part
, merges
[rw
]);
2111 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
2112 if (!hd_struct_try_get(part
)) {
2114 * The partition is already being removed,
2115 * the request will be accounted on the disk only
2117 * We take a reference on disk->part0 although that
2118 * partition will never be deleted, so we can treat
2119 * it as any other partition.
2121 part
= &rq
->rq_disk
->part0
;
2122 hd_struct_get(part
);
2124 part_round_stats(cpu
, part
);
2125 part_inc_in_flight(part
, rw
);
2133 * blk_peek_request - peek at the top of a request queue
2134 * @q: request queue to peek at
2137 * Return the request at the top of @q. The returned request
2138 * should be started using blk_start_request() before LLD starts
2142 * Pointer to the request at the top of @q if available. Null
2146 * queue_lock must be held.
2148 struct request
*blk_peek_request(struct request_queue
*q
)
2153 while ((rq
= __elv_next_request(q
)) != NULL
) {
2155 rq
= blk_pm_peek_request(q
, rq
);
2159 if (!(rq
->cmd_flags
& REQ_STARTED
)) {
2161 * This is the first time the device driver
2162 * sees this request (possibly after
2163 * requeueing). Notify IO scheduler.
2165 if (rq
->cmd_flags
& REQ_SORTED
)
2166 elv_activate_rq(q
, rq
);
2169 * just mark as started even if we don't start
2170 * it, a request that has been delayed should
2171 * not be passed by new incoming requests
2173 rq
->cmd_flags
|= REQ_STARTED
;
2174 trace_block_rq_issue(q
, rq
);
2177 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
2178 q
->end_sector
= rq_end_sector(rq
);
2179 q
->boundary_rq
= NULL
;
2182 if (rq
->cmd_flags
& REQ_DONTPREP
)
2185 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
2187 * make sure space for the drain appears we
2188 * know we can do this because max_hw_segments
2189 * has been adjusted to be one fewer than the
2192 rq
->nr_phys_segments
++;
2198 ret
= q
->prep_rq_fn(q
, rq
);
2199 if (ret
== BLKPREP_OK
) {
2201 } else if (ret
== BLKPREP_DEFER
) {
2203 * the request may have been (partially) prepped.
2204 * we need to keep this request in the front to
2205 * avoid resource deadlock. REQ_STARTED will
2206 * prevent other fs requests from passing this one.
2208 if (q
->dma_drain_size
&& blk_rq_bytes(rq
) &&
2209 !(rq
->cmd_flags
& REQ_DONTPREP
)) {
2211 * remove the space for the drain we added
2212 * so that we don't add it again
2214 --rq
->nr_phys_segments
;
2219 } else if (ret
== BLKPREP_KILL
) {
2220 rq
->cmd_flags
|= REQ_QUIET
;
2222 * Mark this request as started so we don't trigger
2223 * any debug logic in the end I/O path.
2225 blk_start_request(rq
);
2226 __blk_end_request_all(rq
, -EIO
);
2228 printk(KERN_ERR
"%s: bad return=%d\n", __func__
, ret
);
2235 EXPORT_SYMBOL(blk_peek_request
);
2237 void blk_dequeue_request(struct request
*rq
)
2239 struct request_queue
*q
= rq
->q
;
2241 BUG_ON(list_empty(&rq
->queuelist
));
2242 BUG_ON(ELV_ON_HASH(rq
));
2244 list_del_init(&rq
->queuelist
);
2247 * the time frame between a request being removed from the lists
2248 * and to it is freed is accounted as io that is in progress at
2251 if (blk_account_rq(rq
)) {
2252 q
->in_flight
[rq_is_sync(rq
)]++;
2253 set_io_start_time_ns(rq
);
2258 * blk_start_request - start request processing on the driver
2259 * @req: request to dequeue
2262 * Dequeue @req and start timeout timer on it. This hands off the
2263 * request to the driver.
2265 * Block internal functions which don't want to start timer should
2266 * call blk_dequeue_request().
2269 * queue_lock must be held.
2271 void blk_start_request(struct request
*req
)
2273 blk_dequeue_request(req
);
2276 * We are now handing the request to the hardware, initialize
2277 * resid_len to full count and add the timeout handler.
2279 req
->resid_len
= blk_rq_bytes(req
);
2280 if (unlikely(blk_bidi_rq(req
)))
2281 req
->next_rq
->resid_len
= blk_rq_bytes(req
->next_rq
);
2283 BUG_ON(test_bit(REQ_ATOM_COMPLETE
, &req
->atomic_flags
));
2286 EXPORT_SYMBOL(blk_start_request
);
2289 * blk_fetch_request - fetch a request from a request queue
2290 * @q: request queue to fetch a request from
2293 * Return the request at the top of @q. The request is started on
2294 * return and LLD can start processing it immediately.
2297 * Pointer to the request at the top of @q if available. Null
2301 * queue_lock must be held.
2303 struct request
*blk_fetch_request(struct request_queue
*q
)
2307 rq
= blk_peek_request(q
);
2309 blk_start_request(rq
);
2312 EXPORT_SYMBOL(blk_fetch_request
);
2315 * blk_update_request - Special helper function for request stacking drivers
2316 * @req: the request being processed
2317 * @error: %0 for success, < %0 for error
2318 * @nr_bytes: number of bytes to complete @req
2321 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2322 * the request structure even if @req doesn't have leftover.
2323 * If @req has leftover, sets it up for the next range of segments.
2325 * This special helper function is only for request stacking drivers
2326 * (e.g. request-based dm) so that they can handle partial completion.
2327 * Actual device drivers should use blk_end_request instead.
2329 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2330 * %false return from this function.
2333 * %false - this request doesn't have any more data
2334 * %true - this request has more data
2336 bool blk_update_request(struct request
*req
, int error
, unsigned int nr_bytes
)
2343 trace_block_rq_complete(req
->q
, req
);
2346 * For fs requests, rq is just carrier of independent bio's
2347 * and each partial completion should be handled separately.
2348 * Reset per-request error on each partial completion.
2350 * TODO: tj: This is too subtle. It would be better to let
2351 * low level drivers do what they see fit.
2353 if (req
->cmd_type
== REQ_TYPE_FS
)
2356 if (error
&& req
->cmd_type
== REQ_TYPE_FS
&&
2357 !(req
->cmd_flags
& REQ_QUIET
)) {
2362 error_type
= "recoverable transport";
2365 error_type
= "critical target";
2368 error_type
= "critical nexus";
2371 error_type
= "timeout";
2374 error_type
= "critical space allocation";
2377 error_type
= "critical medium";
2384 printk_ratelimited(KERN_ERR
"end_request: %s error, dev %s, sector %llu\n",
2385 error_type
, req
->rq_disk
?
2386 req
->rq_disk
->disk_name
: "?",
2387 (unsigned long long)blk_rq_pos(req
));
2391 blk_account_io_completion(req
, nr_bytes
);
2395 struct bio
*bio
= req
->bio
;
2396 unsigned bio_bytes
= min(bio
->bi_iter
.bi_size
, nr_bytes
);
2398 if (bio_bytes
== bio
->bi_iter
.bi_size
)
2399 req
->bio
= bio
->bi_next
;
2401 req_bio_endio(req
, bio
, bio_bytes
, error
);
2403 total_bytes
+= bio_bytes
;
2404 nr_bytes
-= bio_bytes
;
2415 * Reset counters so that the request stacking driver
2416 * can find how many bytes remain in the request
2419 req
->__data_len
= 0;
2423 req
->__data_len
-= total_bytes
;
2424 req
->buffer
= bio_data(req
->bio
);
2426 /* update sector only for requests with clear definition of sector */
2427 if (req
->cmd_type
== REQ_TYPE_FS
)
2428 req
->__sector
+= total_bytes
>> 9;
2430 /* mixed attributes always follow the first bio */
2431 if (req
->cmd_flags
& REQ_MIXED_MERGE
) {
2432 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
2433 req
->cmd_flags
|= req
->bio
->bi_rw
& REQ_FAILFAST_MASK
;
2437 * If total number of sectors is less than the first segment
2438 * size, something has gone terribly wrong.
2440 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
2441 blk_dump_rq_flags(req
, "request botched");
2442 req
->__data_len
= blk_rq_cur_bytes(req
);
2445 /* recalculate the number of segments */
2446 blk_recalc_rq_segments(req
);
2450 EXPORT_SYMBOL_GPL(blk_update_request
);
2452 static bool blk_update_bidi_request(struct request
*rq
, int error
,
2453 unsigned int nr_bytes
,
2454 unsigned int bidi_bytes
)
2456 if (blk_update_request(rq
, error
, nr_bytes
))
2459 /* Bidi request must be completed as a whole */
2460 if (unlikely(blk_bidi_rq(rq
)) &&
2461 blk_update_request(rq
->next_rq
, error
, bidi_bytes
))
2464 if (blk_queue_add_random(rq
->q
))
2465 add_disk_randomness(rq
->rq_disk
);
2471 * blk_unprep_request - unprepare a request
2474 * This function makes a request ready for complete resubmission (or
2475 * completion). It happens only after all error handling is complete,
2476 * so represents the appropriate moment to deallocate any resources
2477 * that were allocated to the request in the prep_rq_fn. The queue
2478 * lock is held when calling this.
2480 void blk_unprep_request(struct request
*req
)
2482 struct request_queue
*q
= req
->q
;
2484 req
->cmd_flags
&= ~REQ_DONTPREP
;
2485 if (q
->unprep_rq_fn
)
2486 q
->unprep_rq_fn(q
, req
);
2488 EXPORT_SYMBOL_GPL(blk_unprep_request
);
2491 * queue lock must be held
2493 static void blk_finish_request(struct request
*req
, int error
)
2495 if (blk_rq_tagged(req
))
2496 blk_queue_end_tag(req
->q
, req
);
2498 BUG_ON(blk_queued_rq(req
));
2500 if (unlikely(laptop_mode
) && req
->cmd_type
== REQ_TYPE_FS
)
2501 laptop_io_completion(&req
->q
->backing_dev_info
);
2503 blk_delete_timer(req
);
2505 if (req
->cmd_flags
& REQ_DONTPREP
)
2506 blk_unprep_request(req
);
2508 blk_account_io_done(req
);
2511 req
->end_io(req
, error
);
2513 if (blk_bidi_rq(req
))
2514 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
2516 __blk_put_request(req
->q
, req
);
2521 * blk_end_bidi_request - Complete a bidi request
2522 * @rq: the request to complete
2523 * @error: %0 for success, < %0 for error
2524 * @nr_bytes: number of bytes to complete @rq
2525 * @bidi_bytes: number of bytes to complete @rq->next_rq
2528 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2529 * Drivers that supports bidi can safely call this member for any
2530 * type of request, bidi or uni. In the later case @bidi_bytes is
2534 * %false - we are done with this request
2535 * %true - still buffers pending for this request
2537 static bool blk_end_bidi_request(struct request
*rq
, int error
,
2538 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2540 struct request_queue
*q
= rq
->q
;
2541 unsigned long flags
;
2543 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2546 spin_lock_irqsave(q
->queue_lock
, flags
);
2547 blk_finish_request(rq
, error
);
2548 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2554 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2555 * @rq: the request to complete
2556 * @error: %0 for success, < %0 for error
2557 * @nr_bytes: number of bytes to complete @rq
2558 * @bidi_bytes: number of bytes to complete @rq->next_rq
2561 * Identical to blk_end_bidi_request() except that queue lock is
2562 * assumed to be locked on entry and remains so on return.
2565 * %false - we are done with this request
2566 * %true - still buffers pending for this request
2568 bool __blk_end_bidi_request(struct request
*rq
, int error
,
2569 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2571 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2574 blk_finish_request(rq
, error
);
2580 * blk_end_request - Helper function for drivers to complete the request.
2581 * @rq: the request being processed
2582 * @error: %0 for success, < %0 for error
2583 * @nr_bytes: number of bytes to complete
2586 * Ends I/O on a number of bytes attached to @rq.
2587 * If @rq has leftover, sets it up for the next range of segments.
2590 * %false - we are done with this request
2591 * %true - still buffers pending for this request
2593 bool blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2595 return blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2597 EXPORT_SYMBOL(blk_end_request
);
2600 * blk_end_request_all - Helper function for drives to finish the request.
2601 * @rq: the request to finish
2602 * @error: %0 for success, < %0 for error
2605 * Completely finish @rq.
2607 void blk_end_request_all(struct request
*rq
, int error
)
2610 unsigned int bidi_bytes
= 0;
2612 if (unlikely(blk_bidi_rq(rq
)))
2613 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2615 pending
= blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2618 EXPORT_SYMBOL(blk_end_request_all
);
2621 * blk_end_request_cur - Helper function to finish the current request chunk.
2622 * @rq: the request to finish the current chunk for
2623 * @error: %0 for success, < %0 for error
2626 * Complete the current consecutively mapped chunk from @rq.
2629 * %false - we are done with this request
2630 * %true - still buffers pending for this request
2632 bool blk_end_request_cur(struct request
*rq
, int error
)
2634 return blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2636 EXPORT_SYMBOL(blk_end_request_cur
);
2639 * blk_end_request_err - Finish a request till the next failure boundary.
2640 * @rq: the request to finish till the next failure boundary for
2641 * @error: must be negative errno
2644 * Complete @rq till the next failure boundary.
2647 * %false - we are done with this request
2648 * %true - still buffers pending for this request
2650 bool blk_end_request_err(struct request
*rq
, int error
)
2652 WARN_ON(error
>= 0);
2653 return blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2655 EXPORT_SYMBOL_GPL(blk_end_request_err
);
2658 * __blk_end_request - Helper function for drivers to complete the request.
2659 * @rq: the request being processed
2660 * @error: %0 for success, < %0 for error
2661 * @nr_bytes: number of bytes to complete
2664 * Must be called with queue lock held unlike blk_end_request().
2667 * %false - we are done with this request
2668 * %true - still buffers pending for this request
2670 bool __blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2672 return __blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2674 EXPORT_SYMBOL(__blk_end_request
);
2677 * __blk_end_request_all - Helper function for drives to finish the request.
2678 * @rq: the request to finish
2679 * @error: %0 for success, < %0 for error
2682 * Completely finish @rq. Must be called with queue lock held.
2684 void __blk_end_request_all(struct request
*rq
, int error
)
2687 unsigned int bidi_bytes
= 0;
2689 if (unlikely(blk_bidi_rq(rq
)))
2690 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2692 pending
= __blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2695 EXPORT_SYMBOL(__blk_end_request_all
);
2698 * __blk_end_request_cur - Helper function to finish the current request chunk.
2699 * @rq: the request to finish the current chunk for
2700 * @error: %0 for success, < %0 for error
2703 * Complete the current consecutively mapped chunk from @rq. Must
2704 * be called with queue lock held.
2707 * %false - we are done with this request
2708 * %true - still buffers pending for this request
2710 bool __blk_end_request_cur(struct request
*rq
, int error
)
2712 return __blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2714 EXPORT_SYMBOL(__blk_end_request_cur
);
2717 * __blk_end_request_err - Finish a request till the next failure boundary.
2718 * @rq: the request to finish till the next failure boundary for
2719 * @error: must be negative errno
2722 * Complete @rq till the next failure boundary. Must be called
2723 * with queue lock held.
2726 * %false - we are done with this request
2727 * %true - still buffers pending for this request
2729 bool __blk_end_request_err(struct request
*rq
, int error
)
2731 WARN_ON(error
>= 0);
2732 return __blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2734 EXPORT_SYMBOL_GPL(__blk_end_request_err
);
2736 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
2739 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2740 rq
->cmd_flags
|= bio
->bi_rw
& REQ_WRITE
;
2742 if (bio_has_data(bio
)) {
2743 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2744 rq
->buffer
= bio_data(bio
);
2746 rq
->__data_len
= bio
->bi_iter
.bi_size
;
2747 rq
->bio
= rq
->biotail
= bio
;
2750 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2753 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2755 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2756 * @rq: the request to be flushed
2759 * Flush all pages in @rq.
2761 void rq_flush_dcache_pages(struct request
*rq
)
2763 struct req_iterator iter
;
2764 struct bio_vec bvec
;
2766 rq_for_each_segment(bvec
, rq
, iter
)
2767 flush_dcache_page(bvec
.bv_page
);
2769 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
2773 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2774 * @q : the queue of the device being checked
2777 * Check if underlying low-level drivers of a device are busy.
2778 * If the drivers want to export their busy state, they must set own
2779 * exporting function using blk_queue_lld_busy() first.
2781 * Basically, this function is used only by request stacking drivers
2782 * to stop dispatching requests to underlying devices when underlying
2783 * devices are busy. This behavior helps more I/O merging on the queue
2784 * of the request stacking driver and prevents I/O throughput regression
2785 * on burst I/O load.
2788 * 0 - Not busy (The request stacking driver should dispatch request)
2789 * 1 - Busy (The request stacking driver should stop dispatching request)
2791 int blk_lld_busy(struct request_queue
*q
)
2794 return q
->lld_busy_fn(q
);
2798 EXPORT_SYMBOL_GPL(blk_lld_busy
);
2801 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2802 * @rq: the clone request to be cleaned up
2805 * Free all bios in @rq for a cloned request.
2807 void blk_rq_unprep_clone(struct request
*rq
)
2811 while ((bio
= rq
->bio
) != NULL
) {
2812 rq
->bio
= bio
->bi_next
;
2817 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
2820 * Copy attributes of the original request to the clone request.
2821 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2823 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
2825 dst
->cpu
= src
->cpu
;
2826 dst
->cmd_flags
= (src
->cmd_flags
& REQ_CLONE_MASK
) | REQ_NOMERGE
;
2827 dst
->cmd_type
= src
->cmd_type
;
2828 dst
->__sector
= blk_rq_pos(src
);
2829 dst
->__data_len
= blk_rq_bytes(src
);
2830 dst
->nr_phys_segments
= src
->nr_phys_segments
;
2831 dst
->ioprio
= src
->ioprio
;
2832 dst
->extra_len
= src
->extra_len
;
2836 * blk_rq_prep_clone - Helper function to setup clone request
2837 * @rq: the request to be setup
2838 * @rq_src: original request to be cloned
2839 * @bs: bio_set that bios for clone are allocated from
2840 * @gfp_mask: memory allocation mask for bio
2841 * @bio_ctr: setup function to be called for each clone bio.
2842 * Returns %0 for success, non %0 for failure.
2843 * @data: private data to be passed to @bio_ctr
2846 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2847 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2848 * are not copied, and copying such parts is the caller's responsibility.
2849 * Also, pages which the original bios are pointing to are not copied
2850 * and the cloned bios just point same pages.
2851 * So cloned bios must be completed before original bios, which means
2852 * the caller must complete @rq before @rq_src.
2854 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
2855 struct bio_set
*bs
, gfp_t gfp_mask
,
2856 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
2859 struct bio
*bio
, *bio_src
;
2864 blk_rq_init(NULL
, rq
);
2866 __rq_for_each_bio(bio_src
, rq_src
) {
2867 bio
= bio_clone_bioset(bio_src
, gfp_mask
, bs
);
2871 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
2875 rq
->biotail
->bi_next
= bio
;
2878 rq
->bio
= rq
->biotail
= bio
;
2881 __blk_rq_prep_clone(rq
, rq_src
);
2888 blk_rq_unprep_clone(rq
);
2892 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
2894 int kblockd_schedule_work(struct request_queue
*q
, struct work_struct
*work
)
2896 return queue_work(kblockd_workqueue
, work
);
2898 EXPORT_SYMBOL(kblockd_schedule_work
);
2900 int kblockd_schedule_delayed_work(struct request_queue
*q
,
2901 struct delayed_work
*dwork
, unsigned long delay
)
2903 return queue_delayed_work(kblockd_workqueue
, dwork
, delay
);
2905 EXPORT_SYMBOL(kblockd_schedule_delayed_work
);
2907 #define PLUG_MAGIC 0x91827364
2910 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2911 * @plug: The &struct blk_plug that needs to be initialized
2914 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2915 * pending I/O should the task end up blocking between blk_start_plug() and
2916 * blk_finish_plug(). This is important from a performance perspective, but
2917 * also ensures that we don't deadlock. For instance, if the task is blocking
2918 * for a memory allocation, memory reclaim could end up wanting to free a
2919 * page belonging to that request that is currently residing in our private
2920 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2921 * this kind of deadlock.
2923 void blk_start_plug(struct blk_plug
*plug
)
2925 struct task_struct
*tsk
= current
;
2927 plug
->magic
= PLUG_MAGIC
;
2928 INIT_LIST_HEAD(&plug
->list
);
2929 INIT_LIST_HEAD(&plug
->mq_list
);
2930 INIT_LIST_HEAD(&plug
->cb_list
);
2933 * If this is a nested plug, don't actually assign it. It will be
2934 * flushed on its own.
2938 * Store ordering should not be needed here, since a potential
2939 * preempt will imply a full memory barrier
2944 EXPORT_SYMBOL(blk_start_plug
);
2946 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
2948 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
2949 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
2951 return !(rqa
->q
< rqb
->q
||
2952 (rqa
->q
== rqb
->q
&& blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
2956 * If 'from_schedule' is true, then postpone the dispatch of requests
2957 * until a safe kblockd context. We due this to avoid accidental big
2958 * additional stack usage in driver dispatch, in places where the originally
2959 * plugger did not intend it.
2961 static void queue_unplugged(struct request_queue
*q
, unsigned int depth
,
2963 __releases(q
->queue_lock
)
2965 trace_block_unplug(q
, depth
, !from_schedule
);
2968 blk_run_queue_async(q
);
2971 spin_unlock(q
->queue_lock
);
2974 static void flush_plug_callbacks(struct blk_plug
*plug
, bool from_schedule
)
2976 LIST_HEAD(callbacks
);
2978 while (!list_empty(&plug
->cb_list
)) {
2979 list_splice_init(&plug
->cb_list
, &callbacks
);
2981 while (!list_empty(&callbacks
)) {
2982 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
2985 list_del(&cb
->list
);
2986 cb
->callback(cb
, from_schedule
);
2991 struct blk_plug_cb
*blk_check_plugged(blk_plug_cb_fn unplug
, void *data
,
2994 struct blk_plug
*plug
= current
->plug
;
2995 struct blk_plug_cb
*cb
;
3000 list_for_each_entry(cb
, &plug
->cb_list
, list
)
3001 if (cb
->callback
== unplug
&& cb
->data
== data
)
3004 /* Not currently on the callback list */
3005 BUG_ON(size
< sizeof(*cb
));
3006 cb
= kzalloc(size
, GFP_ATOMIC
);
3009 cb
->callback
= unplug
;
3010 list_add(&cb
->list
, &plug
->cb_list
);
3014 EXPORT_SYMBOL(blk_check_plugged
);
3016 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
3018 struct request_queue
*q
;
3019 unsigned long flags
;
3024 BUG_ON(plug
->magic
!= PLUG_MAGIC
);
3026 flush_plug_callbacks(plug
, from_schedule
);
3028 if (!list_empty(&plug
->mq_list
))
3029 blk_mq_flush_plug_list(plug
, from_schedule
);
3031 if (list_empty(&plug
->list
))
3034 list_splice_init(&plug
->list
, &list
);
3036 list_sort(NULL
, &list
, plug_rq_cmp
);
3042 * Save and disable interrupts here, to avoid doing it for every
3043 * queue lock we have to take.
3045 local_irq_save(flags
);
3046 while (!list_empty(&list
)) {
3047 rq
= list_entry_rq(list
.next
);
3048 list_del_init(&rq
->queuelist
);
3052 * This drops the queue lock
3055 queue_unplugged(q
, depth
, from_schedule
);
3058 spin_lock(q
->queue_lock
);
3062 * Short-circuit if @q is dead
3064 if (unlikely(blk_queue_dying(q
))) {
3065 __blk_end_request_all(rq
, -ENODEV
);
3070 * rq is already accounted, so use raw insert
3072 if (rq
->cmd_flags
& (REQ_FLUSH
| REQ_FUA
))
3073 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FLUSH
);
3075 __elv_add_request(q
, rq
, ELEVATOR_INSERT_SORT_MERGE
);
3081 * This drops the queue lock
3084 queue_unplugged(q
, depth
, from_schedule
);
3086 local_irq_restore(flags
);
3089 void blk_finish_plug(struct blk_plug
*plug
)
3091 blk_flush_plug_list(plug
, false);
3093 if (plug
== current
->plug
)
3094 current
->plug
= NULL
;
3096 EXPORT_SYMBOL(blk_finish_plug
);
3098 #ifdef CONFIG_PM_RUNTIME
3100 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3101 * @q: the queue of the device
3102 * @dev: the device the queue belongs to
3105 * Initialize runtime-PM-related fields for @q and start auto suspend for
3106 * @dev. Drivers that want to take advantage of request-based runtime PM
3107 * should call this function after @dev has been initialized, and its
3108 * request queue @q has been allocated, and runtime PM for it can not happen
3109 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3110 * cases, driver should call this function before any I/O has taken place.
3112 * This function takes care of setting up using auto suspend for the device,
3113 * the autosuspend delay is set to -1 to make runtime suspend impossible
3114 * until an updated value is either set by user or by driver. Drivers do
3115 * not need to touch other autosuspend settings.
3117 * The block layer runtime PM is request based, so only works for drivers
3118 * that use request as their IO unit instead of those directly use bio's.
3120 void blk_pm_runtime_init(struct request_queue
*q
, struct device
*dev
)
3123 q
->rpm_status
= RPM_ACTIVE
;
3124 pm_runtime_set_autosuspend_delay(q
->dev
, -1);
3125 pm_runtime_use_autosuspend(q
->dev
);
3127 EXPORT_SYMBOL(blk_pm_runtime_init
);
3130 * blk_pre_runtime_suspend - Pre runtime suspend check
3131 * @q: the queue of the device
3134 * This function will check if runtime suspend is allowed for the device
3135 * by examining if there are any requests pending in the queue. If there
3136 * are requests pending, the device can not be runtime suspended; otherwise,
3137 * the queue's status will be updated to SUSPENDING and the driver can
3138 * proceed to suspend the device.
3140 * For the not allowed case, we mark last busy for the device so that
3141 * runtime PM core will try to autosuspend it some time later.
3143 * This function should be called near the start of the device's
3144 * runtime_suspend callback.
3147 * 0 - OK to runtime suspend the device
3148 * -EBUSY - Device should not be runtime suspended
3150 int blk_pre_runtime_suspend(struct request_queue
*q
)
3154 spin_lock_irq(q
->queue_lock
);
3155 if (q
->nr_pending
) {
3157 pm_runtime_mark_last_busy(q
->dev
);
3159 q
->rpm_status
= RPM_SUSPENDING
;
3161 spin_unlock_irq(q
->queue_lock
);
3164 EXPORT_SYMBOL(blk_pre_runtime_suspend
);
3167 * blk_post_runtime_suspend - Post runtime suspend processing
3168 * @q: the queue of the device
3169 * @err: return value of the device's runtime_suspend function
3172 * Update the queue's runtime status according to the return value of the
3173 * device's runtime suspend function and mark last busy for the device so
3174 * that PM core will try to auto suspend the device at a later time.
3176 * This function should be called near the end of the device's
3177 * runtime_suspend callback.
3179 void blk_post_runtime_suspend(struct request_queue
*q
, int err
)
3181 spin_lock_irq(q
->queue_lock
);
3183 q
->rpm_status
= RPM_SUSPENDED
;
3185 q
->rpm_status
= RPM_ACTIVE
;
3186 pm_runtime_mark_last_busy(q
->dev
);
3188 spin_unlock_irq(q
->queue_lock
);
3190 EXPORT_SYMBOL(blk_post_runtime_suspend
);
3193 * blk_pre_runtime_resume - Pre runtime resume processing
3194 * @q: the queue of the device
3197 * Update the queue's runtime status to RESUMING in preparation for the
3198 * runtime resume of the device.
3200 * This function should be called near the start of the device's
3201 * runtime_resume callback.
3203 void blk_pre_runtime_resume(struct request_queue
*q
)
3205 spin_lock_irq(q
->queue_lock
);
3206 q
->rpm_status
= RPM_RESUMING
;
3207 spin_unlock_irq(q
->queue_lock
);
3209 EXPORT_SYMBOL(blk_pre_runtime_resume
);
3212 * blk_post_runtime_resume - Post runtime resume processing
3213 * @q: the queue of the device
3214 * @err: return value of the device's runtime_resume function
3217 * Update the queue's runtime status according to the return value of the
3218 * device's runtime_resume function. If it is successfully resumed, process
3219 * the requests that are queued into the device's queue when it is resuming
3220 * and then mark last busy and initiate autosuspend for it.
3222 * This function should be called near the end of the device's
3223 * runtime_resume callback.
3225 void blk_post_runtime_resume(struct request_queue
*q
, int err
)
3227 spin_lock_irq(q
->queue_lock
);
3229 q
->rpm_status
= RPM_ACTIVE
;
3231 pm_runtime_mark_last_busy(q
->dev
);
3232 pm_request_autosuspend(q
->dev
);
3234 q
->rpm_status
= RPM_SUSPENDED
;
3236 spin_unlock_irq(q
->queue_lock
);
3238 EXPORT_SYMBOL(blk_post_runtime_resume
);
3241 int __init
blk_dev_init(void)
3243 BUILD_BUG_ON(__REQ_NR_BITS
> 8 *
3244 sizeof(((struct request
*)0)->cmd_flags
));
3246 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3247 kblockd_workqueue
= alloc_workqueue("kblockd",
3248 WQ_MEM_RECLAIM
| WQ_HIGHPRI
|
3249 WQ_POWER_EFFICIENT
, 0);
3250 if (!kblockd_workqueue
)
3251 panic("Failed to create kblockd\n");
3253 request_cachep
= kmem_cache_create("blkdev_requests",
3254 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
3256 blk_requestq_cachep
= kmem_cache_create("blkdev_queue",
3257 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);