Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux/fpc-iii.git] / drivers / block / skd_main.c
blobeb6e1e0e8db25f78f2d2407e0d54dafc2a2b9583
1 /* Copyright 2012 STEC, Inc.
3 * This file is licensed under the terms of the 3-clause
4 * BSD License (http://opensource.org/licenses/BSD-3-Clause)
5 * or the GNU GPL-2.0 (http://www.gnu.org/licenses/gpl-2.0.html),
6 * at your option. Both licenses are also available in the LICENSE file
7 * distributed with this project. This file may not be copied, modified,
8 * or distributed except in accordance with those terms.
9 * Gordoni Waidhofer <gwaidhofer@stec-inc.com>
10 * Initial Driver Design!
11 * Thomas Swann <tswann@stec-inc.com>
12 * Interrupt handling.
13 * Ramprasad Chinthekindi <rchinthekindi@stec-inc.com>
14 * biomode implementation.
15 * Akhil Bhansali <abhansali@stec-inc.com>
16 * Added support for DISCARD / FLUSH and FUA.
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/init.h>
22 #include <linux/pci.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/blkdev.h>
26 #include <linux/sched.h>
27 #include <linux/interrupt.h>
28 #include <linux/compiler.h>
29 #include <linux/workqueue.h>
30 #include <linux/bitops.h>
31 #include <linux/delay.h>
32 #include <linux/time.h>
33 #include <linux/hdreg.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/completion.h>
36 #include <linux/scatterlist.h>
37 #include <linux/version.h>
38 #include <linux/err.h>
39 #include <linux/scatterlist.h>
40 #include <linux/aer.h>
41 #include <linux/ctype.h>
42 #include <linux/wait.h>
43 #include <linux/uio.h>
44 #include <scsi/scsi.h>
45 #include <scsi/sg.h>
46 #include <linux/io.h>
47 #include <linux/uaccess.h>
48 #include <asm/unaligned.h>
50 #include "skd_s1120.h"
52 static int skd_dbg_level;
53 static int skd_isr_comp_limit = 4;
55 enum {
56 STEC_LINK_2_5GTS = 0,
57 STEC_LINK_5GTS = 1,
58 STEC_LINK_8GTS = 2,
59 STEC_LINK_UNKNOWN = 0xFF
62 enum {
63 SKD_FLUSH_INITIALIZER,
64 SKD_FLUSH_ZERO_SIZE_FIRST,
65 SKD_FLUSH_DATA_SECOND,
68 #define SKD_ASSERT(expr) \
69 do { \
70 if (unlikely(!(expr))) { \
71 pr_err("Assertion failed! %s,%s,%s,line=%d\n", \
72 # expr, __FILE__, __func__, __LINE__); \
73 } \
74 } while (0)
76 #define DRV_NAME "skd"
77 #define DRV_VERSION "2.2.1"
78 #define DRV_BUILD_ID "0260"
79 #define PFX DRV_NAME ": "
80 #define DRV_BIN_VERSION 0x100
81 #define DRV_VER_COMPL "2.2.1." DRV_BUILD_ID
83 MODULE_AUTHOR("bug-reports: support@stec-inc.com");
84 MODULE_LICENSE("Dual BSD/GPL");
86 MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver (b" DRV_BUILD_ID ")");
87 MODULE_VERSION(DRV_VERSION "-" DRV_BUILD_ID);
89 #define PCI_VENDOR_ID_STEC 0x1B39
90 #define PCI_DEVICE_ID_S1120 0x0001
92 #define SKD_FUA_NV (1 << 1)
93 #define SKD_MINORS_PER_DEVICE 16
95 #define SKD_MAX_QUEUE_DEPTH 200u
97 #define SKD_PAUSE_TIMEOUT (5 * 1000)
99 #define SKD_N_FITMSG_BYTES (512u)
101 #define SKD_N_SPECIAL_CONTEXT 32u
102 #define SKD_N_SPECIAL_FITMSG_BYTES (128u)
104 /* SG elements are 32 bytes, so we can make this 4096 and still be under the
105 * 128KB limit. That allows 4096*4K = 16M xfer size
107 #define SKD_N_SG_PER_REQ_DEFAULT 256u
108 #define SKD_N_SG_PER_SPECIAL 256u
110 #define SKD_N_COMPLETION_ENTRY 256u
111 #define SKD_N_READ_CAP_BYTES (8u)
113 #define SKD_N_INTERNAL_BYTES (512u)
115 /* 5 bits of uniqifier, 0xF800 */
116 #define SKD_ID_INCR (0x400)
117 #define SKD_ID_TABLE_MASK (3u << 8u)
118 #define SKD_ID_RW_REQUEST (0u << 8u)
119 #define SKD_ID_INTERNAL (1u << 8u)
120 #define SKD_ID_SPECIAL_REQUEST (2u << 8u)
121 #define SKD_ID_FIT_MSG (3u << 8u)
122 #define SKD_ID_SLOT_MASK 0x00FFu
123 #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
125 #define SKD_N_TIMEOUT_SLOT 4u
126 #define SKD_TIMEOUT_SLOT_MASK 3u
128 #define SKD_N_MAX_SECTORS 2048u
130 #define SKD_MAX_RETRIES 2u
132 #define SKD_TIMER_SECONDS(seconds) (seconds)
133 #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
135 #define INQ_STD_NBYTES 36
136 #define SKD_DISCARD_CDB_LENGTH 24
138 enum skd_drvr_state {
139 SKD_DRVR_STATE_LOAD,
140 SKD_DRVR_STATE_IDLE,
141 SKD_DRVR_STATE_BUSY,
142 SKD_DRVR_STATE_STARTING,
143 SKD_DRVR_STATE_ONLINE,
144 SKD_DRVR_STATE_PAUSING,
145 SKD_DRVR_STATE_PAUSED,
146 SKD_DRVR_STATE_DRAINING_TIMEOUT,
147 SKD_DRVR_STATE_RESTARTING,
148 SKD_DRVR_STATE_RESUMING,
149 SKD_DRVR_STATE_STOPPING,
150 SKD_DRVR_STATE_FAULT,
151 SKD_DRVR_STATE_DISAPPEARED,
152 SKD_DRVR_STATE_PROTOCOL_MISMATCH,
153 SKD_DRVR_STATE_BUSY_ERASE,
154 SKD_DRVR_STATE_BUSY_SANITIZE,
155 SKD_DRVR_STATE_BUSY_IMMINENT,
156 SKD_DRVR_STATE_WAIT_BOOT,
157 SKD_DRVR_STATE_SYNCING,
160 #define SKD_WAIT_BOOT_TIMO SKD_TIMER_SECONDS(90u)
161 #define SKD_STARTING_TIMO SKD_TIMER_SECONDS(8u)
162 #define SKD_RESTARTING_TIMO SKD_TIMER_MINUTES(4u)
163 #define SKD_DRAINING_TIMO SKD_TIMER_SECONDS(6u)
164 #define SKD_BUSY_TIMO SKD_TIMER_MINUTES(20u)
165 #define SKD_STARTED_BUSY_TIMO SKD_TIMER_SECONDS(60u)
166 #define SKD_START_WAIT_SECONDS 90u
168 enum skd_req_state {
169 SKD_REQ_STATE_IDLE,
170 SKD_REQ_STATE_SETUP,
171 SKD_REQ_STATE_BUSY,
172 SKD_REQ_STATE_COMPLETED,
173 SKD_REQ_STATE_TIMEOUT,
174 SKD_REQ_STATE_ABORTED,
177 enum skd_fit_msg_state {
178 SKD_MSG_STATE_IDLE,
179 SKD_MSG_STATE_BUSY,
182 enum skd_check_status_action {
183 SKD_CHECK_STATUS_REPORT_GOOD,
184 SKD_CHECK_STATUS_REPORT_SMART_ALERT,
185 SKD_CHECK_STATUS_REQUEUE_REQUEST,
186 SKD_CHECK_STATUS_REPORT_ERROR,
187 SKD_CHECK_STATUS_BUSY_IMMINENT,
190 struct skd_fitmsg_context {
191 enum skd_fit_msg_state state;
193 struct skd_fitmsg_context *next;
195 u32 id;
196 u16 outstanding;
198 u32 length;
199 u32 offset;
201 u8 *msg_buf;
202 dma_addr_t mb_dma_address;
205 struct skd_request_context {
206 enum skd_req_state state;
208 struct skd_request_context *next;
210 u16 id;
211 u32 fitmsg_id;
213 struct request *req;
214 u8 flush_cmd;
215 u8 discard_page;
217 u32 timeout_stamp;
218 u8 sg_data_dir;
219 struct scatterlist *sg;
220 u32 n_sg;
221 u32 sg_byte_count;
223 struct fit_sg_descriptor *sksg_list;
224 dma_addr_t sksg_dma_address;
226 struct fit_completion_entry_v1 completion;
228 struct fit_comp_error_info err_info;
231 #define SKD_DATA_DIR_HOST_TO_CARD 1
232 #define SKD_DATA_DIR_CARD_TO_HOST 2
233 #define SKD_DATA_DIR_NONE 3 /* especially for DISCARD requests. */
235 struct skd_special_context {
236 struct skd_request_context req;
238 u8 orphaned;
240 void *data_buf;
241 dma_addr_t db_dma_address;
243 u8 *msg_buf;
244 dma_addr_t mb_dma_address;
247 struct skd_sg_io {
248 fmode_t mode;
249 void __user *argp;
251 struct sg_io_hdr sg;
253 u8 cdb[16];
255 u32 dxfer_len;
256 u32 iovcnt;
257 struct sg_iovec *iov;
258 struct sg_iovec no_iov_iov;
260 struct skd_special_context *skspcl;
263 typedef enum skd_irq_type {
264 SKD_IRQ_LEGACY,
265 SKD_IRQ_MSI,
266 SKD_IRQ_MSIX
267 } skd_irq_type_t;
269 #define SKD_MAX_BARS 2
271 struct skd_device {
272 volatile void __iomem *mem_map[SKD_MAX_BARS];
273 resource_size_t mem_phys[SKD_MAX_BARS];
274 u32 mem_size[SKD_MAX_BARS];
276 skd_irq_type_t irq_type;
277 u32 msix_count;
278 struct skd_msix_entry *msix_entries;
280 struct pci_dev *pdev;
281 int pcie_error_reporting_is_enabled;
283 spinlock_t lock;
284 struct gendisk *disk;
285 struct request_queue *queue;
286 struct device *class_dev;
287 int gendisk_on;
288 int sync_done;
290 atomic_t device_count;
291 u32 devno;
292 u32 major;
293 char name[32];
294 char isr_name[30];
296 enum skd_drvr_state state;
297 u32 drive_state;
299 u32 in_flight;
300 u32 cur_max_queue_depth;
301 u32 queue_low_water_mark;
302 u32 dev_max_queue_depth;
304 u32 num_fitmsg_context;
305 u32 num_req_context;
307 u32 timeout_slot[SKD_N_TIMEOUT_SLOT];
308 u32 timeout_stamp;
309 struct skd_fitmsg_context *skmsg_free_list;
310 struct skd_fitmsg_context *skmsg_table;
312 struct skd_request_context *skreq_free_list;
313 struct skd_request_context *skreq_table;
315 struct skd_special_context *skspcl_free_list;
316 struct skd_special_context *skspcl_table;
318 struct skd_special_context internal_skspcl;
319 u32 read_cap_blocksize;
320 u32 read_cap_last_lba;
321 int read_cap_is_valid;
322 int inquiry_is_valid;
323 u8 inq_serial_num[13]; /*12 chars plus null term */
324 u8 id_str[80]; /* holds a composite name (pci + sernum) */
326 u8 skcomp_cycle;
327 u32 skcomp_ix;
328 struct fit_completion_entry_v1 *skcomp_table;
329 struct fit_comp_error_info *skerr_table;
330 dma_addr_t cq_dma_address;
332 wait_queue_head_t waitq;
334 struct timer_list timer;
335 u32 timer_countdown;
336 u32 timer_substate;
338 int n_special;
339 int sgs_per_request;
340 u32 last_mtd;
342 u32 proto_ver;
344 int dbg_level;
345 u32 connect_time_stamp;
346 int connect_retries;
347 #define SKD_MAX_CONNECT_RETRIES 16
348 u32 drive_jiffies;
350 u32 timo_slot;
353 struct work_struct completion_worker;
356 #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
357 #define SKD_READL(DEV, OFF) skd_reg_read32(DEV, OFF)
358 #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
360 static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
362 u32 val;
364 if (likely(skdev->dbg_level < 2))
365 return readl(skdev->mem_map[1] + offset);
366 else {
367 barrier();
368 val = readl(skdev->mem_map[1] + offset);
369 barrier();
370 pr_debug("%s:%s:%d offset %x = %x\n",
371 skdev->name, __func__, __LINE__, offset, val);
372 return val;
377 static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
378 u32 offset)
380 if (likely(skdev->dbg_level < 2)) {
381 writel(val, skdev->mem_map[1] + offset);
382 barrier();
383 } else {
384 barrier();
385 writel(val, skdev->mem_map[1] + offset);
386 barrier();
387 pr_debug("%s:%s:%d offset %x = %x\n",
388 skdev->name, __func__, __LINE__, offset, val);
392 static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
393 u32 offset)
395 if (likely(skdev->dbg_level < 2)) {
396 writeq(val, skdev->mem_map[1] + offset);
397 barrier();
398 } else {
399 barrier();
400 writeq(val, skdev->mem_map[1] + offset);
401 barrier();
402 pr_debug("%s:%s:%d offset %x = %016llx\n",
403 skdev->name, __func__, __LINE__, offset, val);
408 #define SKD_IRQ_DEFAULT SKD_IRQ_MSI
409 static int skd_isr_type = SKD_IRQ_DEFAULT;
411 module_param(skd_isr_type, int, 0444);
412 MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
413 " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
415 #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
416 static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
418 module_param(skd_max_req_per_msg, int, 0444);
419 MODULE_PARM_DESC(skd_max_req_per_msg,
420 "Maximum SCSI requests packed in a single message."
421 " (1-14, default==1)");
423 #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
424 #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
425 static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
427 module_param(skd_max_queue_depth, int, 0444);
428 MODULE_PARM_DESC(skd_max_queue_depth,
429 "Maximum SCSI requests issued to s1120."
430 " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
432 static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
433 module_param(skd_sgs_per_request, int, 0444);
434 MODULE_PARM_DESC(skd_sgs_per_request,
435 "Maximum SG elements per block request."
436 " (1-4096, default==256)");
438 static int skd_max_pass_thru = SKD_N_SPECIAL_CONTEXT;
439 module_param(skd_max_pass_thru, int, 0444);
440 MODULE_PARM_DESC(skd_max_pass_thru,
441 "Maximum SCSI pass-thru at a time." " (1-50, default==32)");
443 module_param(skd_dbg_level, int, 0444);
444 MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
446 module_param(skd_isr_comp_limit, int, 0444);
447 MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
449 /* Major device number dynamically assigned. */
450 static u32 skd_major;
452 static void skd_destruct(struct skd_device *skdev);
453 static const struct block_device_operations skd_blockdev_ops;
454 static void skd_send_fitmsg(struct skd_device *skdev,
455 struct skd_fitmsg_context *skmsg);
456 static void skd_send_special_fitmsg(struct skd_device *skdev,
457 struct skd_special_context *skspcl);
458 static void skd_request_fn(struct request_queue *rq);
459 static void skd_end_request(struct skd_device *skdev,
460 struct skd_request_context *skreq, int error);
461 static int skd_preop_sg_list(struct skd_device *skdev,
462 struct skd_request_context *skreq);
463 static void skd_postop_sg_list(struct skd_device *skdev,
464 struct skd_request_context *skreq);
466 static void skd_restart_device(struct skd_device *skdev);
467 static int skd_quiesce_dev(struct skd_device *skdev);
468 static int skd_unquiesce_dev(struct skd_device *skdev);
469 static void skd_release_special(struct skd_device *skdev,
470 struct skd_special_context *skspcl);
471 static void skd_disable_interrupts(struct skd_device *skdev);
472 static void skd_isr_fwstate(struct skd_device *skdev);
473 static void skd_recover_requests(struct skd_device *skdev, int requeue);
474 static void skd_soft_reset(struct skd_device *skdev);
476 static const char *skd_name(struct skd_device *skdev);
477 const char *skd_drive_state_to_str(int state);
478 const char *skd_skdev_state_to_str(enum skd_drvr_state state);
479 static void skd_log_skdev(struct skd_device *skdev, const char *event);
480 static void skd_log_skmsg(struct skd_device *skdev,
481 struct skd_fitmsg_context *skmsg, const char *event);
482 static void skd_log_skreq(struct skd_device *skdev,
483 struct skd_request_context *skreq, const char *event);
486 *****************************************************************************
487 * READ/WRITE REQUESTS
488 *****************************************************************************
490 static void skd_fail_all_pending(struct skd_device *skdev)
492 struct request_queue *q = skdev->queue;
493 struct request *req;
495 for (;; ) {
496 req = blk_peek_request(q);
497 if (req == NULL)
498 break;
499 blk_start_request(req);
500 __blk_end_request_all(req, -EIO);
504 static void
505 skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
506 int data_dir, unsigned lba,
507 unsigned count)
509 if (data_dir == READ)
510 scsi_req->cdb[0] = 0x28;
511 else
512 scsi_req->cdb[0] = 0x2a;
514 scsi_req->cdb[1] = 0;
515 scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
516 scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
517 scsi_req->cdb[4] = (lba & 0xff00) >> 8;
518 scsi_req->cdb[5] = (lba & 0xff);
519 scsi_req->cdb[6] = 0;
520 scsi_req->cdb[7] = (count & 0xff00) >> 8;
521 scsi_req->cdb[8] = count & 0xff;
522 scsi_req->cdb[9] = 0;
525 static void
526 skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
527 struct skd_request_context *skreq)
529 skreq->flush_cmd = 1;
531 scsi_req->cdb[0] = 0x35;
532 scsi_req->cdb[1] = 0;
533 scsi_req->cdb[2] = 0;
534 scsi_req->cdb[3] = 0;
535 scsi_req->cdb[4] = 0;
536 scsi_req->cdb[5] = 0;
537 scsi_req->cdb[6] = 0;
538 scsi_req->cdb[7] = 0;
539 scsi_req->cdb[8] = 0;
540 scsi_req->cdb[9] = 0;
543 static void
544 skd_prep_discard_cdb(struct skd_scsi_request *scsi_req,
545 struct skd_request_context *skreq,
546 struct page *page,
547 u32 lba, u32 count)
549 char *buf;
550 unsigned long len;
551 struct request *req;
553 buf = page_address(page);
554 len = SKD_DISCARD_CDB_LENGTH;
556 scsi_req->cdb[0] = UNMAP;
557 scsi_req->cdb[8] = len;
559 put_unaligned_be16(6 + 16, &buf[0]);
560 put_unaligned_be16(16, &buf[2]);
561 put_unaligned_be64(lba, &buf[8]);
562 put_unaligned_be32(count, &buf[16]);
564 req = skreq->req;
565 blk_add_request_payload(req, page, len);
566 req->buffer = buf;
569 static void skd_request_fn_not_online(struct request_queue *q);
571 static void skd_request_fn(struct request_queue *q)
573 struct skd_device *skdev = q->queuedata;
574 struct skd_fitmsg_context *skmsg = NULL;
575 struct fit_msg_hdr *fmh = NULL;
576 struct skd_request_context *skreq;
577 struct request *req = NULL;
578 struct skd_scsi_request *scsi_req;
579 struct page *page;
580 unsigned long io_flags;
581 int error;
582 u32 lba;
583 u32 count;
584 int data_dir;
585 u32 be_lba;
586 u32 be_count;
587 u64 be_dmaa;
588 u64 cmdctxt;
589 u32 timo_slot;
590 void *cmd_ptr;
591 int flush, fua;
593 if (skdev->state != SKD_DRVR_STATE_ONLINE) {
594 skd_request_fn_not_online(q);
595 return;
598 if (blk_queue_stopped(skdev->queue)) {
599 if (skdev->skmsg_free_list == NULL ||
600 skdev->skreq_free_list == NULL ||
601 skdev->in_flight >= skdev->queue_low_water_mark)
602 /* There is still some kind of shortage */
603 return;
605 queue_flag_clear(QUEUE_FLAG_STOPPED, skdev->queue);
609 * Stop conditions:
610 * - There are no more native requests
611 * - There are already the maximum number of requests in progress
612 * - There are no more skd_request_context entries
613 * - There are no more FIT msg buffers
615 for (;; ) {
617 flush = fua = 0;
619 req = blk_peek_request(q);
621 /* Are there any native requests to start? */
622 if (req == NULL)
623 break;
625 lba = (u32)blk_rq_pos(req);
626 count = blk_rq_sectors(req);
627 data_dir = rq_data_dir(req);
628 io_flags = req->cmd_flags;
630 if (io_flags & REQ_FLUSH)
631 flush++;
633 if (io_flags & REQ_FUA)
634 fua++;
636 pr_debug("%s:%s:%d new req=%p lba=%u(0x%x) "
637 "count=%u(0x%x) dir=%d\n",
638 skdev->name, __func__, __LINE__,
639 req, lba, lba, count, count, data_dir);
641 /* At this point we know there is a request */
643 /* Are too many requets already in progress? */
644 if (skdev->in_flight >= skdev->cur_max_queue_depth) {
645 pr_debug("%s:%s:%d qdepth %d, limit %d\n",
646 skdev->name, __func__, __LINE__,
647 skdev->in_flight, skdev->cur_max_queue_depth);
648 break;
651 /* Is a skd_request_context available? */
652 skreq = skdev->skreq_free_list;
653 if (skreq == NULL) {
654 pr_debug("%s:%s:%d Out of req=%p\n",
655 skdev->name, __func__, __LINE__, q);
656 break;
658 SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
659 SKD_ASSERT((skreq->id & SKD_ID_INCR) == 0);
661 /* Now we check to see if we can get a fit msg */
662 if (skmsg == NULL) {
663 if (skdev->skmsg_free_list == NULL) {
664 pr_debug("%s:%s:%d Out of msg\n",
665 skdev->name, __func__, __LINE__);
666 break;
670 skreq->flush_cmd = 0;
671 skreq->n_sg = 0;
672 skreq->sg_byte_count = 0;
673 skreq->discard_page = 0;
676 * OK to now dequeue request from q.
678 * At this point we are comitted to either start or reject
679 * the native request. Note that skd_request_context is
680 * available but is still at the head of the free list.
682 blk_start_request(req);
683 skreq->req = req;
684 skreq->fitmsg_id = 0;
686 /* Either a FIT msg is in progress or we have to start one. */
687 if (skmsg == NULL) {
688 /* Are there any FIT msg buffers available? */
689 skmsg = skdev->skmsg_free_list;
690 if (skmsg == NULL) {
691 pr_debug("%s:%s:%d Out of msg skdev=%p\n",
692 skdev->name, __func__, __LINE__,
693 skdev);
694 break;
696 SKD_ASSERT(skmsg->state == SKD_MSG_STATE_IDLE);
697 SKD_ASSERT((skmsg->id & SKD_ID_INCR) == 0);
699 skdev->skmsg_free_list = skmsg->next;
701 skmsg->state = SKD_MSG_STATE_BUSY;
702 skmsg->id += SKD_ID_INCR;
704 /* Initialize the FIT msg header */
705 fmh = (struct fit_msg_hdr *)skmsg->msg_buf;
706 memset(fmh, 0, sizeof(*fmh));
707 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
708 skmsg->length = sizeof(*fmh);
711 skreq->fitmsg_id = skmsg->id;
714 * Note that a FIT msg may have just been started
715 * but contains no SoFIT requests yet.
719 * Transcode the request, checking as we go. The outcome of
720 * the transcoding is represented by the error variable.
722 cmd_ptr = &skmsg->msg_buf[skmsg->length];
723 memset(cmd_ptr, 0, 32);
725 be_lba = cpu_to_be32(lba);
726 be_count = cpu_to_be32(count);
727 be_dmaa = cpu_to_be64((u64)skreq->sksg_dma_address);
728 cmdctxt = skreq->id + SKD_ID_INCR;
730 scsi_req = cmd_ptr;
731 scsi_req->hdr.tag = cmdctxt;
732 scsi_req->hdr.sg_list_dma_address = be_dmaa;
734 if (data_dir == READ)
735 skreq->sg_data_dir = SKD_DATA_DIR_CARD_TO_HOST;
736 else
737 skreq->sg_data_dir = SKD_DATA_DIR_HOST_TO_CARD;
739 if (io_flags & REQ_DISCARD) {
740 page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
741 if (!page) {
742 pr_err("request_fn:Page allocation failed.\n");
743 skd_end_request(skdev, skreq, -ENOMEM);
744 break;
746 skreq->discard_page = 1;
747 skd_prep_discard_cdb(scsi_req, skreq, page, lba, count);
749 } else if (flush == SKD_FLUSH_ZERO_SIZE_FIRST) {
750 skd_prep_zerosize_flush_cdb(scsi_req, skreq);
751 SKD_ASSERT(skreq->flush_cmd == 1);
753 } else {
754 skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
757 if (fua)
758 scsi_req->cdb[1] |= SKD_FUA_NV;
760 if (!req->bio)
761 goto skip_sg;
763 error = skd_preop_sg_list(skdev, skreq);
765 if (error != 0) {
767 * Complete the native request with error.
768 * Note that the request context is still at the
769 * head of the free list, and that the SoFIT request
770 * was encoded into the FIT msg buffer but the FIT
771 * msg length has not been updated. In short, the
772 * only resource that has been allocated but might
773 * not be used is that the FIT msg could be empty.
775 pr_debug("%s:%s:%d error Out\n",
776 skdev->name, __func__, __LINE__);
777 skd_end_request(skdev, skreq, error);
778 continue;
781 skip_sg:
782 scsi_req->hdr.sg_list_len_bytes =
783 cpu_to_be32(skreq->sg_byte_count);
785 /* Complete resource allocations. */
786 skdev->skreq_free_list = skreq->next;
787 skreq->state = SKD_REQ_STATE_BUSY;
788 skreq->id += SKD_ID_INCR;
790 skmsg->length += sizeof(struct skd_scsi_request);
791 fmh->num_protocol_cmds_coalesced++;
794 * Update the active request counts.
795 * Capture the timeout timestamp.
797 skreq->timeout_stamp = skdev->timeout_stamp;
798 timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
799 skdev->timeout_slot[timo_slot]++;
800 skdev->in_flight++;
801 pr_debug("%s:%s:%d req=0x%x busy=%d\n",
802 skdev->name, __func__, __LINE__,
803 skreq->id, skdev->in_flight);
806 * If the FIT msg buffer is full send it.
808 if (skmsg->length >= SKD_N_FITMSG_BYTES ||
809 fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
810 skd_send_fitmsg(skdev, skmsg);
811 skmsg = NULL;
812 fmh = NULL;
817 * Is a FIT msg in progress? If it is empty put the buffer back
818 * on the free list. If it is non-empty send what we got.
819 * This minimizes latency when there are fewer requests than
820 * what fits in a FIT msg.
822 if (skmsg != NULL) {
823 /* Bigger than just a FIT msg header? */
824 if (skmsg->length > sizeof(struct fit_msg_hdr)) {
825 pr_debug("%s:%s:%d sending msg=%p, len %d\n",
826 skdev->name, __func__, __LINE__,
827 skmsg, skmsg->length);
828 skd_send_fitmsg(skdev, skmsg);
829 } else {
831 * The FIT msg is empty. It means we got started
832 * on the msg, but the requests were rejected.
834 skmsg->state = SKD_MSG_STATE_IDLE;
835 skmsg->id += SKD_ID_INCR;
836 skmsg->next = skdev->skmsg_free_list;
837 skdev->skmsg_free_list = skmsg;
839 skmsg = NULL;
840 fmh = NULL;
844 * If req is non-NULL it means there is something to do but
845 * we are out of a resource.
847 if (req)
848 blk_stop_queue(skdev->queue);
851 static void skd_end_request(struct skd_device *skdev,
852 struct skd_request_context *skreq, int error)
854 struct request *req = skreq->req;
855 unsigned int io_flags = req->cmd_flags;
857 if ((io_flags & REQ_DISCARD) &&
858 (skreq->discard_page == 1)) {
859 pr_debug("%s:%s:%d, free the page!",
860 skdev->name, __func__, __LINE__);
861 free_page((unsigned long)req->buffer);
862 req->buffer = NULL;
865 if (unlikely(error)) {
866 struct request *req = skreq->req;
867 char *cmd = (rq_data_dir(req) == READ) ? "read" : "write";
868 u32 lba = (u32)blk_rq_pos(req);
869 u32 count = blk_rq_sectors(req);
871 pr_err("(%s): Error cmd=%s sect=%u count=%u id=0x%x\n",
872 skd_name(skdev), cmd, lba, count, skreq->id);
873 } else
874 pr_debug("%s:%s:%d id=0x%x error=%d\n",
875 skdev->name, __func__, __LINE__, skreq->id, error);
877 __blk_end_request_all(skreq->req, error);
880 static int skd_preop_sg_list(struct skd_device *skdev,
881 struct skd_request_context *skreq)
883 struct request *req = skreq->req;
884 int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD;
885 int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE;
886 struct scatterlist *sg = &skreq->sg[0];
887 int n_sg;
888 int i;
890 skreq->sg_byte_count = 0;
892 /* SKD_ASSERT(skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD ||
893 skreq->sg_data_dir == SKD_DATA_DIR_CARD_TO_HOST); */
895 n_sg = blk_rq_map_sg(skdev->queue, req, sg);
896 if (n_sg <= 0)
897 return -EINVAL;
900 * Map scatterlist to PCI bus addresses.
901 * Note PCI might change the number of entries.
903 n_sg = pci_map_sg(skdev->pdev, sg, n_sg, pci_dir);
904 if (n_sg <= 0)
905 return -EINVAL;
907 SKD_ASSERT(n_sg <= skdev->sgs_per_request);
909 skreq->n_sg = n_sg;
911 for (i = 0; i < n_sg; i++) {
912 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
913 u32 cnt = sg_dma_len(&sg[i]);
914 uint64_t dma_addr = sg_dma_address(&sg[i]);
916 sgd->control = FIT_SGD_CONTROL_NOT_LAST;
917 sgd->byte_count = cnt;
918 skreq->sg_byte_count += cnt;
919 sgd->host_side_addr = dma_addr;
920 sgd->dev_side_addr = 0;
923 skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
924 skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
926 if (unlikely(skdev->dbg_level > 1)) {
927 pr_debug("%s:%s:%d skreq=%x sksg_list=%p sksg_dma=%llx\n",
928 skdev->name, __func__, __LINE__,
929 skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
930 for (i = 0; i < n_sg; i++) {
931 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
932 pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
933 "addr=0x%llx next=0x%llx\n",
934 skdev->name, __func__, __LINE__,
935 i, sgd->byte_count, sgd->control,
936 sgd->host_side_addr, sgd->next_desc_ptr);
940 return 0;
943 static void skd_postop_sg_list(struct skd_device *skdev,
944 struct skd_request_context *skreq)
946 int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD;
947 int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE;
950 * restore the next ptr for next IO request so we
951 * don't have to set it every time.
953 skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
954 skreq->sksg_dma_address +
955 ((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
956 pci_unmap_sg(skdev->pdev, &skreq->sg[0], skreq->n_sg, pci_dir);
959 static void skd_request_fn_not_online(struct request_queue *q)
961 struct skd_device *skdev = q->queuedata;
962 int error;
964 SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
966 skd_log_skdev(skdev, "req_not_online");
967 switch (skdev->state) {
968 case SKD_DRVR_STATE_PAUSING:
969 case SKD_DRVR_STATE_PAUSED:
970 case SKD_DRVR_STATE_STARTING:
971 case SKD_DRVR_STATE_RESTARTING:
972 case SKD_DRVR_STATE_WAIT_BOOT:
973 /* In case of starting, we haven't started the queue,
974 * so we can't get here... but requests are
975 * possibly hanging out waiting for us because we
976 * reported the dev/skd0 already. They'll wait
977 * forever if connect doesn't complete.
978 * What to do??? delay dev/skd0 ??
980 case SKD_DRVR_STATE_BUSY:
981 case SKD_DRVR_STATE_BUSY_IMMINENT:
982 case SKD_DRVR_STATE_BUSY_ERASE:
983 case SKD_DRVR_STATE_DRAINING_TIMEOUT:
984 return;
986 case SKD_DRVR_STATE_BUSY_SANITIZE:
987 case SKD_DRVR_STATE_STOPPING:
988 case SKD_DRVR_STATE_SYNCING:
989 case SKD_DRVR_STATE_FAULT:
990 case SKD_DRVR_STATE_DISAPPEARED:
991 default:
992 error = -EIO;
993 break;
996 /* If we get here, terminate all pending block requeusts
997 * with EIO and any scsi pass thru with appropriate sense
1000 skd_fail_all_pending(skdev);
1004 *****************************************************************************
1005 * TIMER
1006 *****************************************************************************
1009 static void skd_timer_tick_not_online(struct skd_device *skdev);
1011 static void skd_timer_tick(ulong arg)
1013 struct skd_device *skdev = (struct skd_device *)arg;
1015 u32 timo_slot;
1016 u32 overdue_timestamp;
1017 unsigned long reqflags;
1018 u32 state;
1020 if (skdev->state == SKD_DRVR_STATE_FAULT)
1021 /* The driver has declared fault, and we want it to
1022 * stay that way until driver is reloaded.
1024 return;
1026 spin_lock_irqsave(&skdev->lock, reqflags);
1028 state = SKD_READL(skdev, FIT_STATUS);
1029 state &= FIT_SR_DRIVE_STATE_MASK;
1030 if (state != skdev->drive_state)
1031 skd_isr_fwstate(skdev);
1033 if (skdev->state != SKD_DRVR_STATE_ONLINE) {
1034 skd_timer_tick_not_online(skdev);
1035 goto timer_func_out;
1037 skdev->timeout_stamp++;
1038 timo_slot = skdev->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
1041 * All requests that happened during the previous use of
1042 * this slot should be done by now. The previous use was
1043 * over 7 seconds ago.
1045 if (skdev->timeout_slot[timo_slot] == 0)
1046 goto timer_func_out;
1048 /* Something is overdue */
1049 overdue_timestamp = skdev->timeout_stamp - SKD_N_TIMEOUT_SLOT;
1051 pr_debug("%s:%s:%d found %d timeouts, draining busy=%d\n",
1052 skdev->name, __func__, __LINE__,
1053 skdev->timeout_slot[timo_slot], skdev->in_flight);
1054 pr_err("(%s): Overdue IOs (%d), busy %d\n",
1055 skd_name(skdev), skdev->timeout_slot[timo_slot],
1056 skdev->in_flight);
1058 skdev->timer_countdown = SKD_DRAINING_TIMO;
1059 skdev->state = SKD_DRVR_STATE_DRAINING_TIMEOUT;
1060 skdev->timo_slot = timo_slot;
1061 blk_stop_queue(skdev->queue);
1063 timer_func_out:
1064 mod_timer(&skdev->timer, (jiffies + HZ));
1066 spin_unlock_irqrestore(&skdev->lock, reqflags);
1069 static void skd_timer_tick_not_online(struct skd_device *skdev)
1071 switch (skdev->state) {
1072 case SKD_DRVR_STATE_IDLE:
1073 case SKD_DRVR_STATE_LOAD:
1074 break;
1075 case SKD_DRVR_STATE_BUSY_SANITIZE:
1076 pr_debug("%s:%s:%d drive busy sanitize[%x], driver[%x]\n",
1077 skdev->name, __func__, __LINE__,
1078 skdev->drive_state, skdev->state);
1079 /* If we've been in sanitize for 3 seconds, we figure we're not
1080 * going to get anymore completions, so recover requests now
1082 if (skdev->timer_countdown > 0) {
1083 skdev->timer_countdown--;
1084 return;
1086 skd_recover_requests(skdev, 0);
1087 break;
1089 case SKD_DRVR_STATE_BUSY:
1090 case SKD_DRVR_STATE_BUSY_IMMINENT:
1091 case SKD_DRVR_STATE_BUSY_ERASE:
1092 pr_debug("%s:%s:%d busy[%x], countdown=%d\n",
1093 skdev->name, __func__, __LINE__,
1094 skdev->state, skdev->timer_countdown);
1095 if (skdev->timer_countdown > 0) {
1096 skdev->timer_countdown--;
1097 return;
1099 pr_debug("%s:%s:%d busy[%x], timedout=%d, restarting device.",
1100 skdev->name, __func__, __LINE__,
1101 skdev->state, skdev->timer_countdown);
1102 skd_restart_device(skdev);
1103 break;
1105 case SKD_DRVR_STATE_WAIT_BOOT:
1106 case SKD_DRVR_STATE_STARTING:
1107 if (skdev->timer_countdown > 0) {
1108 skdev->timer_countdown--;
1109 return;
1111 /* For now, we fault the drive. Could attempt resets to
1112 * revcover at some point. */
1113 skdev->state = SKD_DRVR_STATE_FAULT;
1115 pr_err("(%s): DriveFault Connect Timeout (%x)\n",
1116 skd_name(skdev), skdev->drive_state);
1118 /*start the queue so we can respond with error to requests */
1119 /* wakeup anyone waiting for startup complete */
1120 blk_start_queue(skdev->queue);
1121 skdev->gendisk_on = -1;
1122 wake_up_interruptible(&skdev->waitq);
1123 break;
1125 case SKD_DRVR_STATE_ONLINE:
1126 /* shouldn't get here. */
1127 break;
1129 case SKD_DRVR_STATE_PAUSING:
1130 case SKD_DRVR_STATE_PAUSED:
1131 break;
1133 case SKD_DRVR_STATE_DRAINING_TIMEOUT:
1134 pr_debug("%s:%s:%d "
1135 "draining busy [%d] tick[%d] qdb[%d] tmls[%d]\n",
1136 skdev->name, __func__, __LINE__,
1137 skdev->timo_slot,
1138 skdev->timer_countdown,
1139 skdev->in_flight,
1140 skdev->timeout_slot[skdev->timo_slot]);
1141 /* if the slot has cleared we can let the I/O continue */
1142 if (skdev->timeout_slot[skdev->timo_slot] == 0) {
1143 pr_debug("%s:%s:%d Slot drained, starting queue.\n",
1144 skdev->name, __func__, __LINE__);
1145 skdev->state = SKD_DRVR_STATE_ONLINE;
1146 blk_start_queue(skdev->queue);
1147 return;
1149 if (skdev->timer_countdown > 0) {
1150 skdev->timer_countdown--;
1151 return;
1153 skd_restart_device(skdev);
1154 break;
1156 case SKD_DRVR_STATE_RESTARTING:
1157 if (skdev->timer_countdown > 0) {
1158 skdev->timer_countdown--;
1159 return;
1161 /* For now, we fault the drive. Could attempt resets to
1162 * revcover at some point. */
1163 skdev->state = SKD_DRVR_STATE_FAULT;
1164 pr_err("(%s): DriveFault Reconnect Timeout (%x)\n",
1165 skd_name(skdev), skdev->drive_state);
1168 * Recovering does two things:
1169 * 1. completes IO with error
1170 * 2. reclaims dma resources
1171 * When is it safe to recover requests?
1172 * - if the drive state is faulted
1173 * - if the state is still soft reset after out timeout
1174 * - if the drive registers are dead (state = FF)
1175 * If it is "unsafe", we still need to recover, so we will
1176 * disable pci bus mastering and disable our interrupts.
1179 if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
1180 (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
1181 (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
1182 /* It never came out of soft reset. Try to
1183 * recover the requests and then let them
1184 * fail. This is to mitigate hung processes. */
1185 skd_recover_requests(skdev, 0);
1186 else {
1187 pr_err("(%s): Disable BusMaster (%x)\n",
1188 skd_name(skdev), skdev->drive_state);
1189 pci_disable_device(skdev->pdev);
1190 skd_disable_interrupts(skdev);
1191 skd_recover_requests(skdev, 0);
1194 /*start the queue so we can respond with error to requests */
1195 /* wakeup anyone waiting for startup complete */
1196 blk_start_queue(skdev->queue);
1197 skdev->gendisk_on = -1;
1198 wake_up_interruptible(&skdev->waitq);
1199 break;
1201 case SKD_DRVR_STATE_RESUMING:
1202 case SKD_DRVR_STATE_STOPPING:
1203 case SKD_DRVR_STATE_SYNCING:
1204 case SKD_DRVR_STATE_FAULT:
1205 case SKD_DRVR_STATE_DISAPPEARED:
1206 default:
1207 break;
1211 static int skd_start_timer(struct skd_device *skdev)
1213 int rc;
1215 init_timer(&skdev->timer);
1216 setup_timer(&skdev->timer, skd_timer_tick, (ulong)skdev);
1218 rc = mod_timer(&skdev->timer, (jiffies + HZ));
1219 if (rc)
1220 pr_err("%s: failed to start timer %d\n",
1221 __func__, rc);
1222 return rc;
1225 static void skd_kill_timer(struct skd_device *skdev)
1227 del_timer_sync(&skdev->timer);
1231 *****************************************************************************
1232 * IOCTL
1233 *****************************************************************************
1235 static int skd_ioctl_sg_io(struct skd_device *skdev,
1236 fmode_t mode, void __user *argp);
1237 static int skd_sg_io_get_and_check_args(struct skd_device *skdev,
1238 struct skd_sg_io *sksgio);
1239 static int skd_sg_io_obtain_skspcl(struct skd_device *skdev,
1240 struct skd_sg_io *sksgio);
1241 static int skd_sg_io_prep_buffering(struct skd_device *skdev,
1242 struct skd_sg_io *sksgio);
1243 static int skd_sg_io_copy_buffer(struct skd_device *skdev,
1244 struct skd_sg_io *sksgio, int dxfer_dir);
1245 static int skd_sg_io_send_fitmsg(struct skd_device *skdev,
1246 struct skd_sg_io *sksgio);
1247 static int skd_sg_io_await(struct skd_device *skdev, struct skd_sg_io *sksgio);
1248 static int skd_sg_io_release_skspcl(struct skd_device *skdev,
1249 struct skd_sg_io *sksgio);
1250 static int skd_sg_io_put_status(struct skd_device *skdev,
1251 struct skd_sg_io *sksgio);
1253 static void skd_complete_special(struct skd_device *skdev,
1254 volatile struct fit_completion_entry_v1
1255 *skcomp,
1256 volatile struct fit_comp_error_info *skerr,
1257 struct skd_special_context *skspcl);
1259 static int skd_bdev_ioctl(struct block_device *bdev, fmode_t mode,
1260 uint cmd_in, ulong arg)
1262 int rc = 0;
1263 struct gendisk *disk = bdev->bd_disk;
1264 struct skd_device *skdev = disk->private_data;
1265 void __user *p = (void *)arg;
1267 pr_debug("%s:%s:%d %s: CMD[%s] ioctl mode 0x%x, cmd 0x%x arg %0lx\n",
1268 skdev->name, __func__, __LINE__,
1269 disk->disk_name, current->comm, mode, cmd_in, arg);
1271 if (!capable(CAP_SYS_ADMIN))
1272 return -EPERM;
1274 switch (cmd_in) {
1275 case SG_SET_TIMEOUT:
1276 case SG_GET_TIMEOUT:
1277 case SG_GET_VERSION_NUM:
1278 rc = scsi_cmd_ioctl(disk->queue, disk, mode, cmd_in, p);
1279 break;
1280 case SG_IO:
1281 rc = skd_ioctl_sg_io(skdev, mode, p);
1282 break;
1284 default:
1285 rc = -ENOTTY;
1286 break;
1289 pr_debug("%s:%s:%d %s: completion rc %d\n",
1290 skdev->name, __func__, __LINE__, disk->disk_name, rc);
1291 return rc;
1294 static int skd_ioctl_sg_io(struct skd_device *skdev, fmode_t mode,
1295 void __user *argp)
1297 int rc;
1298 struct skd_sg_io sksgio;
1300 memset(&sksgio, 0, sizeof(sksgio));
1301 sksgio.mode = mode;
1302 sksgio.argp = argp;
1303 sksgio.iov = &sksgio.no_iov_iov;
1305 switch (skdev->state) {
1306 case SKD_DRVR_STATE_ONLINE:
1307 case SKD_DRVR_STATE_BUSY_IMMINENT:
1308 break;
1310 default:
1311 pr_debug("%s:%s:%d drive not online\n",
1312 skdev->name, __func__, __LINE__);
1313 rc = -ENXIO;
1314 goto out;
1317 rc = skd_sg_io_get_and_check_args(skdev, &sksgio);
1318 if (rc)
1319 goto out;
1321 rc = skd_sg_io_obtain_skspcl(skdev, &sksgio);
1322 if (rc)
1323 goto out;
1325 rc = skd_sg_io_prep_buffering(skdev, &sksgio);
1326 if (rc)
1327 goto out;
1329 rc = skd_sg_io_copy_buffer(skdev, &sksgio, SG_DXFER_TO_DEV);
1330 if (rc)
1331 goto out;
1333 rc = skd_sg_io_send_fitmsg(skdev, &sksgio);
1334 if (rc)
1335 goto out;
1337 rc = skd_sg_io_await(skdev, &sksgio);
1338 if (rc)
1339 goto out;
1341 rc = skd_sg_io_copy_buffer(skdev, &sksgio, SG_DXFER_FROM_DEV);
1342 if (rc)
1343 goto out;
1345 rc = skd_sg_io_put_status(skdev, &sksgio);
1346 if (rc)
1347 goto out;
1349 rc = 0;
1351 out:
1352 skd_sg_io_release_skspcl(skdev, &sksgio);
1354 if (sksgio.iov != NULL && sksgio.iov != &sksgio.no_iov_iov)
1355 kfree(sksgio.iov);
1356 return rc;
1359 static int skd_sg_io_get_and_check_args(struct skd_device *skdev,
1360 struct skd_sg_io *sksgio)
1362 struct sg_io_hdr *sgp = &sksgio->sg;
1363 int i, acc;
1365 if (!access_ok(VERIFY_WRITE, sksgio->argp, sizeof(sg_io_hdr_t))) {
1366 pr_debug("%s:%s:%d access sg failed %p\n",
1367 skdev->name, __func__, __LINE__, sksgio->argp);
1368 return -EFAULT;
1371 if (__copy_from_user(sgp, sksgio->argp, sizeof(sg_io_hdr_t))) {
1372 pr_debug("%s:%s:%d copy_from_user sg failed %p\n",
1373 skdev->name, __func__, __LINE__, sksgio->argp);
1374 return -EFAULT;
1377 if (sgp->interface_id != SG_INTERFACE_ID_ORIG) {
1378 pr_debug("%s:%s:%d interface_id invalid 0x%x\n",
1379 skdev->name, __func__, __LINE__, sgp->interface_id);
1380 return -EINVAL;
1383 if (sgp->cmd_len > sizeof(sksgio->cdb)) {
1384 pr_debug("%s:%s:%d cmd_len invalid %d\n",
1385 skdev->name, __func__, __LINE__, sgp->cmd_len);
1386 return -EINVAL;
1389 if (sgp->iovec_count > 256) {
1390 pr_debug("%s:%s:%d iovec_count invalid %d\n",
1391 skdev->name, __func__, __LINE__, sgp->iovec_count);
1392 return -EINVAL;
1395 if (sgp->dxfer_len > (PAGE_SIZE * SKD_N_SG_PER_SPECIAL)) {
1396 pr_debug("%s:%s:%d dxfer_len invalid %d\n",
1397 skdev->name, __func__, __LINE__, sgp->dxfer_len);
1398 return -EINVAL;
1401 switch (sgp->dxfer_direction) {
1402 case SG_DXFER_NONE:
1403 acc = -1;
1404 break;
1406 case SG_DXFER_TO_DEV:
1407 acc = VERIFY_READ;
1408 break;
1410 case SG_DXFER_FROM_DEV:
1411 case SG_DXFER_TO_FROM_DEV:
1412 acc = VERIFY_WRITE;
1413 break;
1415 default:
1416 pr_debug("%s:%s:%d dxfer_dir invalid %d\n",
1417 skdev->name, __func__, __LINE__, sgp->dxfer_direction);
1418 return -EINVAL;
1421 if (copy_from_user(sksgio->cdb, sgp->cmdp, sgp->cmd_len)) {
1422 pr_debug("%s:%s:%d copy_from_user cmdp failed %p\n",
1423 skdev->name, __func__, __LINE__, sgp->cmdp);
1424 return -EFAULT;
1427 if (sgp->mx_sb_len != 0) {
1428 if (!access_ok(VERIFY_WRITE, sgp->sbp, sgp->mx_sb_len)) {
1429 pr_debug("%s:%s:%d access sbp failed %p\n",
1430 skdev->name, __func__, __LINE__, sgp->sbp);
1431 return -EFAULT;
1435 if (sgp->iovec_count == 0) {
1436 sksgio->iov[0].iov_base = sgp->dxferp;
1437 sksgio->iov[0].iov_len = sgp->dxfer_len;
1438 sksgio->iovcnt = 1;
1439 sksgio->dxfer_len = sgp->dxfer_len;
1440 } else {
1441 struct sg_iovec *iov;
1442 uint nbytes = sizeof(*iov) * sgp->iovec_count;
1443 size_t iov_data_len;
1445 iov = kmalloc(nbytes, GFP_KERNEL);
1446 if (iov == NULL) {
1447 pr_debug("%s:%s:%d alloc iovec failed %d\n",
1448 skdev->name, __func__, __LINE__,
1449 sgp->iovec_count);
1450 return -ENOMEM;
1452 sksgio->iov = iov;
1453 sksgio->iovcnt = sgp->iovec_count;
1455 if (copy_from_user(iov, sgp->dxferp, nbytes)) {
1456 pr_debug("%s:%s:%d copy_from_user iovec failed %p\n",
1457 skdev->name, __func__, __LINE__, sgp->dxferp);
1458 return -EFAULT;
1462 * Sum up the vecs, making sure they don't overflow
1464 iov_data_len = 0;
1465 for (i = 0; i < sgp->iovec_count; i++) {
1466 if (iov_data_len + iov[i].iov_len < iov_data_len)
1467 return -EINVAL;
1468 iov_data_len += iov[i].iov_len;
1471 /* SG_IO howto says that the shorter of the two wins */
1472 if (sgp->dxfer_len < iov_data_len) {
1473 sksgio->iovcnt = iov_shorten((struct iovec *)iov,
1474 sgp->iovec_count,
1475 sgp->dxfer_len);
1476 sksgio->dxfer_len = sgp->dxfer_len;
1477 } else
1478 sksgio->dxfer_len = iov_data_len;
1481 if (sgp->dxfer_direction != SG_DXFER_NONE) {
1482 struct sg_iovec *iov = sksgio->iov;
1483 for (i = 0; i < sksgio->iovcnt; i++, iov++) {
1484 if (!access_ok(acc, iov->iov_base, iov->iov_len)) {
1485 pr_debug("%s:%s:%d access data failed %p/%d\n",
1486 skdev->name, __func__, __LINE__,
1487 iov->iov_base, (int)iov->iov_len);
1488 return -EFAULT;
1493 return 0;
1496 static int skd_sg_io_obtain_skspcl(struct skd_device *skdev,
1497 struct skd_sg_io *sksgio)
1499 struct skd_special_context *skspcl = NULL;
1500 int rc;
1502 for (;;) {
1503 ulong flags;
1505 spin_lock_irqsave(&skdev->lock, flags);
1506 skspcl = skdev->skspcl_free_list;
1507 if (skspcl != NULL) {
1508 skdev->skspcl_free_list =
1509 (struct skd_special_context *)skspcl->req.next;
1510 skspcl->req.id += SKD_ID_INCR;
1511 skspcl->req.state = SKD_REQ_STATE_SETUP;
1512 skspcl->orphaned = 0;
1513 skspcl->req.n_sg = 0;
1515 spin_unlock_irqrestore(&skdev->lock, flags);
1517 if (skspcl != NULL) {
1518 rc = 0;
1519 break;
1522 pr_debug("%s:%s:%d blocking\n",
1523 skdev->name, __func__, __LINE__);
1525 rc = wait_event_interruptible_timeout(
1526 skdev->waitq,
1527 (skdev->skspcl_free_list != NULL),
1528 msecs_to_jiffies(sksgio->sg.timeout));
1530 pr_debug("%s:%s:%d unblocking, rc=%d\n",
1531 skdev->name, __func__, __LINE__, rc);
1533 if (rc <= 0) {
1534 if (rc == 0)
1535 rc = -ETIMEDOUT;
1536 else
1537 rc = -EINTR;
1538 break;
1541 * If we get here rc > 0 meaning the timeout to
1542 * wait_event_interruptible_timeout() had time left, hence the
1543 * sought event -- non-empty free list -- happened.
1544 * Retry the allocation.
1547 sksgio->skspcl = skspcl;
1549 return rc;
1552 static int skd_skreq_prep_buffering(struct skd_device *skdev,
1553 struct skd_request_context *skreq,
1554 u32 dxfer_len)
1556 u32 resid = dxfer_len;
1559 * The DMA engine must have aligned addresses and byte counts.
1561 resid += (-resid) & 3;
1562 skreq->sg_byte_count = resid;
1564 skreq->n_sg = 0;
1566 while (resid > 0) {
1567 u32 nbytes = PAGE_SIZE;
1568 u32 ix = skreq->n_sg;
1569 struct scatterlist *sg = &skreq->sg[ix];
1570 struct fit_sg_descriptor *sksg = &skreq->sksg_list[ix];
1571 struct page *page;
1573 if (nbytes > resid)
1574 nbytes = resid;
1576 page = alloc_page(GFP_KERNEL);
1577 if (page == NULL)
1578 return -ENOMEM;
1580 sg_set_page(sg, page, nbytes, 0);
1582 /* TODO: This should be going through a pci_???()
1583 * routine to do proper mapping. */
1584 sksg->control = FIT_SGD_CONTROL_NOT_LAST;
1585 sksg->byte_count = nbytes;
1587 sksg->host_side_addr = sg_phys(sg);
1589 sksg->dev_side_addr = 0;
1590 sksg->next_desc_ptr = skreq->sksg_dma_address +
1591 (ix + 1) * sizeof(*sksg);
1593 skreq->n_sg++;
1594 resid -= nbytes;
1597 if (skreq->n_sg > 0) {
1598 u32 ix = skreq->n_sg - 1;
1599 struct fit_sg_descriptor *sksg = &skreq->sksg_list[ix];
1601 sksg->control = FIT_SGD_CONTROL_LAST;
1602 sksg->next_desc_ptr = 0;
1605 if (unlikely(skdev->dbg_level > 1)) {
1606 u32 i;
1608 pr_debug("%s:%s:%d skreq=%x sksg_list=%p sksg_dma=%llx\n",
1609 skdev->name, __func__, __LINE__,
1610 skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
1611 for (i = 0; i < skreq->n_sg; i++) {
1612 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
1614 pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
1615 "addr=0x%llx next=0x%llx\n",
1616 skdev->name, __func__, __LINE__,
1617 i, sgd->byte_count, sgd->control,
1618 sgd->host_side_addr, sgd->next_desc_ptr);
1622 return 0;
1625 static int skd_sg_io_prep_buffering(struct skd_device *skdev,
1626 struct skd_sg_io *sksgio)
1628 struct skd_special_context *skspcl = sksgio->skspcl;
1629 struct skd_request_context *skreq = &skspcl->req;
1630 u32 dxfer_len = sksgio->dxfer_len;
1631 int rc;
1633 rc = skd_skreq_prep_buffering(skdev, skreq, dxfer_len);
1635 * Eventually, errors or not, skd_release_special() is called
1636 * to recover allocations including partial allocations.
1638 return rc;
1641 static int skd_sg_io_copy_buffer(struct skd_device *skdev,
1642 struct skd_sg_io *sksgio, int dxfer_dir)
1644 struct skd_special_context *skspcl = sksgio->skspcl;
1645 u32 iov_ix = 0;
1646 struct sg_iovec curiov;
1647 u32 sksg_ix = 0;
1648 u8 *bufp = NULL;
1649 u32 buf_len = 0;
1650 u32 resid = sksgio->dxfer_len;
1651 int rc;
1653 curiov.iov_len = 0;
1654 curiov.iov_base = NULL;
1656 if (dxfer_dir != sksgio->sg.dxfer_direction) {
1657 if (dxfer_dir != SG_DXFER_TO_DEV ||
1658 sksgio->sg.dxfer_direction != SG_DXFER_TO_FROM_DEV)
1659 return 0;
1662 while (resid > 0) {
1663 u32 nbytes = PAGE_SIZE;
1665 if (curiov.iov_len == 0) {
1666 curiov = sksgio->iov[iov_ix++];
1667 continue;
1670 if (buf_len == 0) {
1671 struct page *page;
1672 page = sg_page(&skspcl->req.sg[sksg_ix++]);
1673 bufp = page_address(page);
1674 buf_len = PAGE_SIZE;
1677 nbytes = min_t(u32, nbytes, resid);
1678 nbytes = min_t(u32, nbytes, curiov.iov_len);
1679 nbytes = min_t(u32, nbytes, buf_len);
1681 if (dxfer_dir == SG_DXFER_TO_DEV)
1682 rc = __copy_from_user(bufp, curiov.iov_base, nbytes);
1683 else
1684 rc = __copy_to_user(curiov.iov_base, bufp, nbytes);
1686 if (rc)
1687 return -EFAULT;
1689 resid -= nbytes;
1690 curiov.iov_len -= nbytes;
1691 curiov.iov_base += nbytes;
1692 buf_len -= nbytes;
1695 return 0;
1698 static int skd_sg_io_send_fitmsg(struct skd_device *skdev,
1699 struct skd_sg_io *sksgio)
1701 struct skd_special_context *skspcl = sksgio->skspcl;
1702 struct fit_msg_hdr *fmh = (struct fit_msg_hdr *)skspcl->msg_buf;
1703 struct skd_scsi_request *scsi_req = (struct skd_scsi_request *)&fmh[1];
1705 memset(skspcl->msg_buf, 0, SKD_N_SPECIAL_FITMSG_BYTES);
1707 /* Initialize the FIT msg header */
1708 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
1709 fmh->num_protocol_cmds_coalesced = 1;
1711 /* Initialize the SCSI request */
1712 if (sksgio->sg.dxfer_direction != SG_DXFER_NONE)
1713 scsi_req->hdr.sg_list_dma_address =
1714 cpu_to_be64(skspcl->req.sksg_dma_address);
1715 scsi_req->hdr.tag = skspcl->req.id;
1716 scsi_req->hdr.sg_list_len_bytes =
1717 cpu_to_be32(skspcl->req.sg_byte_count);
1718 memcpy(scsi_req->cdb, sksgio->cdb, sizeof(scsi_req->cdb));
1720 skspcl->req.state = SKD_REQ_STATE_BUSY;
1721 skd_send_special_fitmsg(skdev, skspcl);
1723 return 0;
1726 static int skd_sg_io_await(struct skd_device *skdev, struct skd_sg_io *sksgio)
1728 unsigned long flags;
1729 int rc;
1731 rc = wait_event_interruptible_timeout(skdev->waitq,
1732 (sksgio->skspcl->req.state !=
1733 SKD_REQ_STATE_BUSY),
1734 msecs_to_jiffies(sksgio->sg.
1735 timeout));
1737 spin_lock_irqsave(&skdev->lock, flags);
1739 if (sksgio->skspcl->req.state == SKD_REQ_STATE_ABORTED) {
1740 pr_debug("%s:%s:%d skspcl %p aborted\n",
1741 skdev->name, __func__, __LINE__, sksgio->skspcl);
1743 /* Build check cond, sense and let command finish. */
1744 /* For a timeout, we must fabricate completion and sense
1745 * data to complete the command */
1746 sksgio->skspcl->req.completion.status =
1747 SAM_STAT_CHECK_CONDITION;
1749 memset(&sksgio->skspcl->req.err_info, 0,
1750 sizeof(sksgio->skspcl->req.err_info));
1751 sksgio->skspcl->req.err_info.type = 0x70;
1752 sksgio->skspcl->req.err_info.key = ABORTED_COMMAND;
1753 sksgio->skspcl->req.err_info.code = 0x44;
1754 sksgio->skspcl->req.err_info.qual = 0;
1755 rc = 0;
1756 } else if (sksgio->skspcl->req.state != SKD_REQ_STATE_BUSY)
1757 /* No longer on the adapter. We finish. */
1758 rc = 0;
1759 else {
1760 /* Something's gone wrong. Still busy. Timeout or
1761 * user interrupted (control-C). Mark as an orphan
1762 * so it will be disposed when completed. */
1763 sksgio->skspcl->orphaned = 1;
1764 sksgio->skspcl = NULL;
1765 if (rc == 0) {
1766 pr_debug("%s:%s:%d timed out %p (%u ms)\n",
1767 skdev->name, __func__, __LINE__,
1768 sksgio, sksgio->sg.timeout);
1769 rc = -ETIMEDOUT;
1770 } else {
1771 pr_debug("%s:%s:%d cntlc %p\n",
1772 skdev->name, __func__, __LINE__, sksgio);
1773 rc = -EINTR;
1777 spin_unlock_irqrestore(&skdev->lock, flags);
1779 return rc;
1782 static int skd_sg_io_put_status(struct skd_device *skdev,
1783 struct skd_sg_io *sksgio)
1785 struct sg_io_hdr *sgp = &sksgio->sg;
1786 struct skd_special_context *skspcl = sksgio->skspcl;
1787 int resid = 0;
1789 u32 nb = be32_to_cpu(skspcl->req.completion.num_returned_bytes);
1791 sgp->status = skspcl->req.completion.status;
1792 resid = sksgio->dxfer_len - nb;
1794 sgp->masked_status = sgp->status & STATUS_MASK;
1795 sgp->msg_status = 0;
1796 sgp->host_status = 0;
1797 sgp->driver_status = 0;
1798 sgp->resid = resid;
1799 if (sgp->masked_status || sgp->host_status || sgp->driver_status)
1800 sgp->info |= SG_INFO_CHECK;
1802 pr_debug("%s:%s:%d status %x masked %x resid 0x%x\n",
1803 skdev->name, __func__, __LINE__,
1804 sgp->status, sgp->masked_status, sgp->resid);
1806 if (sgp->masked_status == SAM_STAT_CHECK_CONDITION) {
1807 if (sgp->mx_sb_len > 0) {
1808 struct fit_comp_error_info *ei = &skspcl->req.err_info;
1809 u32 nbytes = sizeof(*ei);
1811 nbytes = min_t(u32, nbytes, sgp->mx_sb_len);
1813 sgp->sb_len_wr = nbytes;
1815 if (__copy_to_user(sgp->sbp, ei, nbytes)) {
1816 pr_debug("%s:%s:%d copy_to_user sense failed %p\n",
1817 skdev->name, __func__, __LINE__,
1818 sgp->sbp);
1819 return -EFAULT;
1824 if (__copy_to_user(sksgio->argp, sgp, sizeof(sg_io_hdr_t))) {
1825 pr_debug("%s:%s:%d copy_to_user sg failed %p\n",
1826 skdev->name, __func__, __LINE__, sksgio->argp);
1827 return -EFAULT;
1830 return 0;
1833 static int skd_sg_io_release_skspcl(struct skd_device *skdev,
1834 struct skd_sg_io *sksgio)
1836 struct skd_special_context *skspcl = sksgio->skspcl;
1838 if (skspcl != NULL) {
1839 ulong flags;
1841 sksgio->skspcl = NULL;
1843 spin_lock_irqsave(&skdev->lock, flags);
1844 skd_release_special(skdev, skspcl);
1845 spin_unlock_irqrestore(&skdev->lock, flags);
1848 return 0;
1852 *****************************************************************************
1853 * INTERNAL REQUESTS -- generated by driver itself
1854 *****************************************************************************
1857 static int skd_format_internal_skspcl(struct skd_device *skdev)
1859 struct skd_special_context *skspcl = &skdev->internal_skspcl;
1860 struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
1861 struct fit_msg_hdr *fmh;
1862 uint64_t dma_address;
1863 struct skd_scsi_request *scsi;
1865 fmh = (struct fit_msg_hdr *)&skspcl->msg_buf[0];
1866 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
1867 fmh->num_protocol_cmds_coalesced = 1;
1869 scsi = (struct skd_scsi_request *)&skspcl->msg_buf[64];
1870 memset(scsi, 0, sizeof(*scsi));
1871 dma_address = skspcl->req.sksg_dma_address;
1872 scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
1873 sgd->control = FIT_SGD_CONTROL_LAST;
1874 sgd->byte_count = 0;
1875 sgd->host_side_addr = skspcl->db_dma_address;
1876 sgd->dev_side_addr = 0;
1877 sgd->next_desc_ptr = 0LL;
1879 return 1;
1882 #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
1884 static void skd_send_internal_skspcl(struct skd_device *skdev,
1885 struct skd_special_context *skspcl,
1886 u8 opcode)
1888 struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
1889 struct skd_scsi_request *scsi;
1890 unsigned char *buf = skspcl->data_buf;
1891 int i;
1893 if (skspcl->req.state != SKD_REQ_STATE_IDLE)
1895 * A refresh is already in progress.
1896 * Just wait for it to finish.
1898 return;
1900 SKD_ASSERT((skspcl->req.id & SKD_ID_INCR) == 0);
1901 skspcl->req.state = SKD_REQ_STATE_BUSY;
1902 skspcl->req.id += SKD_ID_INCR;
1904 scsi = (struct skd_scsi_request *)&skspcl->msg_buf[64];
1905 scsi->hdr.tag = skspcl->req.id;
1907 memset(scsi->cdb, 0, sizeof(scsi->cdb));
1909 switch (opcode) {
1910 case TEST_UNIT_READY:
1911 scsi->cdb[0] = TEST_UNIT_READY;
1912 sgd->byte_count = 0;
1913 scsi->hdr.sg_list_len_bytes = 0;
1914 break;
1916 case READ_CAPACITY:
1917 scsi->cdb[0] = READ_CAPACITY;
1918 sgd->byte_count = SKD_N_READ_CAP_BYTES;
1919 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1920 break;
1922 case INQUIRY:
1923 scsi->cdb[0] = INQUIRY;
1924 scsi->cdb[1] = 0x01; /* evpd */
1925 scsi->cdb[2] = 0x80; /* serial number page */
1926 scsi->cdb[4] = 0x10;
1927 sgd->byte_count = 16;
1928 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1929 break;
1931 case SYNCHRONIZE_CACHE:
1932 scsi->cdb[0] = SYNCHRONIZE_CACHE;
1933 sgd->byte_count = 0;
1934 scsi->hdr.sg_list_len_bytes = 0;
1935 break;
1937 case WRITE_BUFFER:
1938 scsi->cdb[0] = WRITE_BUFFER;
1939 scsi->cdb[1] = 0x02;
1940 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
1941 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
1942 sgd->byte_count = WR_BUF_SIZE;
1943 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1944 /* fill incrementing byte pattern */
1945 for (i = 0; i < sgd->byte_count; i++)
1946 buf[i] = i & 0xFF;
1947 break;
1949 case READ_BUFFER:
1950 scsi->cdb[0] = READ_BUFFER;
1951 scsi->cdb[1] = 0x02;
1952 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
1953 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
1954 sgd->byte_count = WR_BUF_SIZE;
1955 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1956 memset(skspcl->data_buf, 0, sgd->byte_count);
1957 break;
1959 default:
1960 SKD_ASSERT("Don't know what to send");
1961 return;
1964 skd_send_special_fitmsg(skdev, skspcl);
1967 static void skd_refresh_device_data(struct skd_device *skdev)
1969 struct skd_special_context *skspcl = &skdev->internal_skspcl;
1971 skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
1974 static int skd_chk_read_buf(struct skd_device *skdev,
1975 struct skd_special_context *skspcl)
1977 unsigned char *buf = skspcl->data_buf;
1978 int i;
1980 /* check for incrementing byte pattern */
1981 for (i = 0; i < WR_BUF_SIZE; i++)
1982 if (buf[i] != (i & 0xFF))
1983 return 1;
1985 return 0;
1988 static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
1989 u8 code, u8 qual, u8 fruc)
1991 /* If the check condition is of special interest, log a message */
1992 if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
1993 && (code == 0x04) && (qual == 0x06)) {
1994 pr_err("(%s): *** LOST_WRITE_DATA ERROR *** key/asc/"
1995 "ascq/fruc %02x/%02x/%02x/%02x\n",
1996 skd_name(skdev), key, code, qual, fruc);
2000 static void skd_complete_internal(struct skd_device *skdev,
2001 volatile struct fit_completion_entry_v1
2002 *skcomp,
2003 volatile struct fit_comp_error_info *skerr,
2004 struct skd_special_context *skspcl)
2006 u8 *buf = skspcl->data_buf;
2007 u8 status;
2008 int i;
2009 struct skd_scsi_request *scsi =
2010 (struct skd_scsi_request *)&skspcl->msg_buf[64];
2012 SKD_ASSERT(skspcl == &skdev->internal_skspcl);
2014 pr_debug("%s:%s:%d complete internal %x\n",
2015 skdev->name, __func__, __LINE__, scsi->cdb[0]);
2017 skspcl->req.completion = *skcomp;
2018 skspcl->req.state = SKD_REQ_STATE_IDLE;
2019 skspcl->req.id += SKD_ID_INCR;
2021 status = skspcl->req.completion.status;
2023 skd_log_check_status(skdev, status, skerr->key, skerr->code,
2024 skerr->qual, skerr->fruc);
2026 switch (scsi->cdb[0]) {
2027 case TEST_UNIT_READY:
2028 if (status == SAM_STAT_GOOD)
2029 skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
2030 else if ((status == SAM_STAT_CHECK_CONDITION) &&
2031 (skerr->key == MEDIUM_ERROR))
2032 skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
2033 else {
2034 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
2035 pr_debug("%s:%s:%d TUR failed, don't send anymore state 0x%x\n",
2036 skdev->name, __func__, __LINE__,
2037 skdev->state);
2038 return;
2040 pr_debug("%s:%s:%d **** TUR failed, retry skerr\n",
2041 skdev->name, __func__, __LINE__);
2042 skd_send_internal_skspcl(skdev, skspcl, 0x00);
2044 break;
2046 case WRITE_BUFFER:
2047 if (status == SAM_STAT_GOOD)
2048 skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
2049 else {
2050 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
2051 pr_debug("%s:%s:%d write buffer failed, don't send anymore state 0x%x\n",
2052 skdev->name, __func__, __LINE__,
2053 skdev->state);
2054 return;
2056 pr_debug("%s:%s:%d **** write buffer failed, retry skerr\n",
2057 skdev->name, __func__, __LINE__);
2058 skd_send_internal_skspcl(skdev, skspcl, 0x00);
2060 break;
2062 case READ_BUFFER:
2063 if (status == SAM_STAT_GOOD) {
2064 if (skd_chk_read_buf(skdev, skspcl) == 0)
2065 skd_send_internal_skspcl(skdev, skspcl,
2066 READ_CAPACITY);
2067 else {
2068 pr_err(
2069 "(%s):*** W/R Buffer mismatch %d ***\n",
2070 skd_name(skdev), skdev->connect_retries);
2071 if (skdev->connect_retries <
2072 SKD_MAX_CONNECT_RETRIES) {
2073 skdev->connect_retries++;
2074 skd_soft_reset(skdev);
2075 } else {
2076 pr_err(
2077 "(%s): W/R Buffer Connect Error\n",
2078 skd_name(skdev));
2079 return;
2083 } else {
2084 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
2085 pr_debug("%s:%s:%d "
2086 "read buffer failed, don't send anymore state 0x%x\n",
2087 skdev->name, __func__, __LINE__,
2088 skdev->state);
2089 return;
2091 pr_debug("%s:%s:%d "
2092 "**** read buffer failed, retry skerr\n",
2093 skdev->name, __func__, __LINE__);
2094 skd_send_internal_skspcl(skdev, skspcl, 0x00);
2096 break;
2098 case READ_CAPACITY:
2099 skdev->read_cap_is_valid = 0;
2100 if (status == SAM_STAT_GOOD) {
2101 skdev->read_cap_last_lba =
2102 (buf[0] << 24) | (buf[1] << 16) |
2103 (buf[2] << 8) | buf[3];
2104 skdev->read_cap_blocksize =
2105 (buf[4] << 24) | (buf[5] << 16) |
2106 (buf[6] << 8) | buf[7];
2108 pr_debug("%s:%s:%d last lba %d, bs %d\n",
2109 skdev->name, __func__, __LINE__,
2110 skdev->read_cap_last_lba,
2111 skdev->read_cap_blocksize);
2113 set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
2115 skdev->read_cap_is_valid = 1;
2117 skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
2118 } else if ((status == SAM_STAT_CHECK_CONDITION) &&
2119 (skerr->key == MEDIUM_ERROR)) {
2120 skdev->read_cap_last_lba = ~0;
2121 set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
2122 pr_debug("%s:%s:%d "
2123 "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n",
2124 skdev->name, __func__, __LINE__);
2125 skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
2126 } else {
2127 pr_debug("%s:%s:%d **** READCAP failed, retry TUR\n",
2128 skdev->name, __func__, __LINE__);
2129 skd_send_internal_skspcl(skdev, skspcl,
2130 TEST_UNIT_READY);
2132 break;
2134 case INQUIRY:
2135 skdev->inquiry_is_valid = 0;
2136 if (status == SAM_STAT_GOOD) {
2137 skdev->inquiry_is_valid = 1;
2139 for (i = 0; i < 12; i++)
2140 skdev->inq_serial_num[i] = buf[i + 4];
2141 skdev->inq_serial_num[12] = 0;
2144 if (skd_unquiesce_dev(skdev) < 0)
2145 pr_debug("%s:%s:%d **** failed, to ONLINE device\n",
2146 skdev->name, __func__, __LINE__);
2147 /* connection is complete */
2148 skdev->connect_retries = 0;
2149 break;
2151 case SYNCHRONIZE_CACHE:
2152 if (status == SAM_STAT_GOOD)
2153 skdev->sync_done = 1;
2154 else
2155 skdev->sync_done = -1;
2156 wake_up_interruptible(&skdev->waitq);
2157 break;
2159 default:
2160 SKD_ASSERT("we didn't send this");
2165 *****************************************************************************
2166 * FIT MESSAGES
2167 *****************************************************************************
2170 static void skd_send_fitmsg(struct skd_device *skdev,
2171 struct skd_fitmsg_context *skmsg)
2173 u64 qcmd;
2174 struct fit_msg_hdr *fmh;
2176 pr_debug("%s:%s:%d dma address 0x%llx, busy=%d\n",
2177 skdev->name, __func__, __LINE__,
2178 skmsg->mb_dma_address, skdev->in_flight);
2179 pr_debug("%s:%s:%d msg_buf 0x%p, offset %x\n",
2180 skdev->name, __func__, __LINE__,
2181 skmsg->msg_buf, skmsg->offset);
2183 qcmd = skmsg->mb_dma_address;
2184 qcmd |= FIT_QCMD_QID_NORMAL;
2186 fmh = (struct fit_msg_hdr *)skmsg->msg_buf;
2187 skmsg->outstanding = fmh->num_protocol_cmds_coalesced;
2189 if (unlikely(skdev->dbg_level > 1)) {
2190 u8 *bp = (u8 *)skmsg->msg_buf;
2191 int i;
2192 for (i = 0; i < skmsg->length; i += 8) {
2193 pr_debug("%s:%s:%d msg[%2d] %02x %02x %02x %02x "
2194 "%02x %02x %02x %02x\n",
2195 skdev->name, __func__, __LINE__,
2196 i, bp[i + 0], bp[i + 1], bp[i + 2],
2197 bp[i + 3], bp[i + 4], bp[i + 5],
2198 bp[i + 6], bp[i + 7]);
2199 if (i == 0)
2200 i = 64 - 8;
2204 if (skmsg->length > 256)
2205 qcmd |= FIT_QCMD_MSGSIZE_512;
2206 else if (skmsg->length > 128)
2207 qcmd |= FIT_QCMD_MSGSIZE_256;
2208 else if (skmsg->length > 64)
2209 qcmd |= FIT_QCMD_MSGSIZE_128;
2210 else
2212 * This makes no sense because the FIT msg header is
2213 * 64 bytes. If the msg is only 64 bytes long it has
2214 * no payload.
2216 qcmd |= FIT_QCMD_MSGSIZE_64;
2218 SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
2222 static void skd_send_special_fitmsg(struct skd_device *skdev,
2223 struct skd_special_context *skspcl)
2225 u64 qcmd;
2227 if (unlikely(skdev->dbg_level > 1)) {
2228 u8 *bp = (u8 *)skspcl->msg_buf;
2229 int i;
2231 for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
2232 pr_debug("%s:%s:%d spcl[%2d] %02x %02x %02x %02x "
2233 "%02x %02x %02x %02x\n",
2234 skdev->name, __func__, __LINE__, i,
2235 bp[i + 0], bp[i + 1], bp[i + 2], bp[i + 3],
2236 bp[i + 4], bp[i + 5], bp[i + 6], bp[i + 7]);
2237 if (i == 0)
2238 i = 64 - 8;
2241 pr_debug("%s:%s:%d skspcl=%p id=%04x sksg_list=%p sksg_dma=%llx\n",
2242 skdev->name, __func__, __LINE__,
2243 skspcl, skspcl->req.id, skspcl->req.sksg_list,
2244 skspcl->req.sksg_dma_address);
2245 for (i = 0; i < skspcl->req.n_sg; i++) {
2246 struct fit_sg_descriptor *sgd =
2247 &skspcl->req.sksg_list[i];
2249 pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
2250 "addr=0x%llx next=0x%llx\n",
2251 skdev->name, __func__, __LINE__,
2252 i, sgd->byte_count, sgd->control,
2253 sgd->host_side_addr, sgd->next_desc_ptr);
2258 * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
2259 * and one 64-byte SSDI command.
2261 qcmd = skspcl->mb_dma_address;
2262 qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
2264 SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
2268 *****************************************************************************
2269 * COMPLETION QUEUE
2270 *****************************************************************************
2273 static void skd_complete_other(struct skd_device *skdev,
2274 volatile struct fit_completion_entry_v1 *skcomp,
2275 volatile struct fit_comp_error_info *skerr);
2277 struct sns_info {
2278 u8 type;
2279 u8 stat;
2280 u8 key;
2281 u8 asc;
2282 u8 ascq;
2283 u8 mask;
2284 enum skd_check_status_action action;
2287 static struct sns_info skd_chkstat_table[] = {
2288 /* Good */
2289 { 0x70, 0x02, RECOVERED_ERROR, 0, 0, 0x1c,
2290 SKD_CHECK_STATUS_REPORT_GOOD },
2292 /* Smart alerts */
2293 { 0x70, 0x02, NO_SENSE, 0x0B, 0x00, 0x1E, /* warnings */
2294 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
2295 { 0x70, 0x02, NO_SENSE, 0x5D, 0x00, 0x1E, /* thresholds */
2296 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
2297 { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F, /* temperature over trigger */
2298 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
2300 /* Retry (with limits) */
2301 { 0x70, 0x02, 0x0B, 0, 0, 0x1C, /* This one is for DMA ERROR */
2302 SKD_CHECK_STATUS_REQUEUE_REQUEST },
2303 { 0x70, 0x02, 0x06, 0x0B, 0x00, 0x1E, /* warnings */
2304 SKD_CHECK_STATUS_REQUEUE_REQUEST },
2305 { 0x70, 0x02, 0x06, 0x5D, 0x00, 0x1E, /* thresholds */
2306 SKD_CHECK_STATUS_REQUEUE_REQUEST },
2307 { 0x70, 0x02, 0x06, 0x80, 0x30, 0x1F, /* backup power */
2308 SKD_CHECK_STATUS_REQUEUE_REQUEST },
2310 /* Busy (or about to be) */
2311 { 0x70, 0x02, 0x06, 0x3f, 0x01, 0x1F, /* fw changed */
2312 SKD_CHECK_STATUS_BUSY_IMMINENT },
2316 * Look up status and sense data to decide how to handle the error
2317 * from the device.
2318 * mask says which fields must match e.g., mask=0x18 means check
2319 * type and stat, ignore key, asc, ascq.
2322 static enum skd_check_status_action
2323 skd_check_status(struct skd_device *skdev,
2324 u8 cmp_status, volatile struct fit_comp_error_info *skerr)
2326 int i, n;
2328 pr_err("(%s): key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
2329 skd_name(skdev), skerr->key, skerr->code, skerr->qual,
2330 skerr->fruc);
2332 pr_debug("%s:%s:%d stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
2333 skdev->name, __func__, __LINE__, skerr->type, cmp_status,
2334 skerr->key, skerr->code, skerr->qual, skerr->fruc);
2336 /* Does the info match an entry in the good category? */
2337 n = sizeof(skd_chkstat_table) / sizeof(skd_chkstat_table[0]);
2338 for (i = 0; i < n; i++) {
2339 struct sns_info *sns = &skd_chkstat_table[i];
2341 if (sns->mask & 0x10)
2342 if (skerr->type != sns->type)
2343 continue;
2345 if (sns->mask & 0x08)
2346 if (cmp_status != sns->stat)
2347 continue;
2349 if (sns->mask & 0x04)
2350 if (skerr->key != sns->key)
2351 continue;
2353 if (sns->mask & 0x02)
2354 if (skerr->code != sns->asc)
2355 continue;
2357 if (sns->mask & 0x01)
2358 if (skerr->qual != sns->ascq)
2359 continue;
2361 if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
2362 pr_err("(%s): SMART Alert: sense key/asc/ascq "
2363 "%02x/%02x/%02x\n",
2364 skd_name(skdev), skerr->key,
2365 skerr->code, skerr->qual);
2367 return sns->action;
2370 /* No other match, so nonzero status means error,
2371 * zero status means good
2373 if (cmp_status) {
2374 pr_debug("%s:%s:%d status check: error\n",
2375 skdev->name, __func__, __LINE__);
2376 return SKD_CHECK_STATUS_REPORT_ERROR;
2379 pr_debug("%s:%s:%d status check good default\n",
2380 skdev->name, __func__, __LINE__);
2381 return SKD_CHECK_STATUS_REPORT_GOOD;
2384 static void skd_resolve_req_exception(struct skd_device *skdev,
2385 struct skd_request_context *skreq)
2387 u8 cmp_status = skreq->completion.status;
2389 switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
2390 case SKD_CHECK_STATUS_REPORT_GOOD:
2391 case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
2392 skd_end_request(skdev, skreq, 0);
2393 break;
2395 case SKD_CHECK_STATUS_BUSY_IMMINENT:
2396 skd_log_skreq(skdev, skreq, "retry(busy)");
2397 blk_requeue_request(skdev->queue, skreq->req);
2398 pr_info("(%s) drive BUSY imminent\n", skd_name(skdev));
2399 skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
2400 skdev->timer_countdown = SKD_TIMER_MINUTES(20);
2401 skd_quiesce_dev(skdev);
2402 break;
2404 case SKD_CHECK_STATUS_REQUEUE_REQUEST:
2405 if ((unsigned long) ++skreq->req->special < SKD_MAX_RETRIES) {
2406 skd_log_skreq(skdev, skreq, "retry");
2407 blk_requeue_request(skdev->queue, skreq->req);
2408 break;
2410 /* fall through to report error */
2412 case SKD_CHECK_STATUS_REPORT_ERROR:
2413 default:
2414 skd_end_request(skdev, skreq, -EIO);
2415 break;
2419 /* assume spinlock is already held */
2420 static void skd_release_skreq(struct skd_device *skdev,
2421 struct skd_request_context *skreq)
2423 u32 msg_slot;
2424 struct skd_fitmsg_context *skmsg;
2426 u32 timo_slot;
2429 * Reclaim the FIT msg buffer if this is
2430 * the first of the requests it carried to
2431 * be completed. The FIT msg buffer used to
2432 * send this request cannot be reused until
2433 * we are sure the s1120 card has copied
2434 * it to its memory. The FIT msg might have
2435 * contained several requests. As soon as
2436 * any of them are completed we know that
2437 * the entire FIT msg was transferred.
2438 * Only the first completed request will
2439 * match the FIT msg buffer id. The FIT
2440 * msg buffer id is immediately updated.
2441 * When subsequent requests complete the FIT
2442 * msg buffer id won't match, so we know
2443 * quite cheaply that it is already done.
2445 msg_slot = skreq->fitmsg_id & SKD_ID_SLOT_MASK;
2446 SKD_ASSERT(msg_slot < skdev->num_fitmsg_context);
2448 skmsg = &skdev->skmsg_table[msg_slot];
2449 if (skmsg->id == skreq->fitmsg_id) {
2450 SKD_ASSERT(skmsg->state == SKD_MSG_STATE_BUSY);
2451 SKD_ASSERT(skmsg->outstanding > 0);
2452 skmsg->outstanding--;
2453 if (skmsg->outstanding == 0) {
2454 skmsg->state = SKD_MSG_STATE_IDLE;
2455 skmsg->id += SKD_ID_INCR;
2456 skmsg->next = skdev->skmsg_free_list;
2457 skdev->skmsg_free_list = skmsg;
2462 * Decrease the number of active requests.
2463 * Also decrements the count in the timeout slot.
2465 SKD_ASSERT(skdev->in_flight > 0);
2466 skdev->in_flight -= 1;
2468 timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
2469 SKD_ASSERT(skdev->timeout_slot[timo_slot] > 0);
2470 skdev->timeout_slot[timo_slot] -= 1;
2473 * Reset backpointer
2475 skreq->req = NULL;
2478 * Reclaim the skd_request_context
2480 skreq->state = SKD_REQ_STATE_IDLE;
2481 skreq->id += SKD_ID_INCR;
2482 skreq->next = skdev->skreq_free_list;
2483 skdev->skreq_free_list = skreq;
2486 #define DRIVER_INQ_EVPD_PAGE_CODE 0xDA
2488 static void skd_do_inq_page_00(struct skd_device *skdev,
2489 volatile struct fit_completion_entry_v1 *skcomp,
2490 volatile struct fit_comp_error_info *skerr,
2491 uint8_t *cdb, uint8_t *buf)
2493 uint16_t insert_pt, max_bytes, drive_pages, drive_bytes, new_size;
2495 /* Caller requested "supported pages". The driver needs to insert
2496 * its page.
2498 pr_debug("%s:%s:%d skd_do_driver_inquiry: modify supported pages.\n",
2499 skdev->name, __func__, __LINE__);
2501 /* If the device rejected the request because the CDB was
2502 * improperly formed, then just leave.
2504 if (skcomp->status == SAM_STAT_CHECK_CONDITION &&
2505 skerr->key == ILLEGAL_REQUEST && skerr->code == 0x24)
2506 return;
2508 /* Get the amount of space the caller allocated */
2509 max_bytes = (cdb[3] << 8) | cdb[4];
2511 /* Get the number of pages actually returned by the device */
2512 drive_pages = (buf[2] << 8) | buf[3];
2513 drive_bytes = drive_pages + 4;
2514 new_size = drive_pages + 1;
2516 /* Supported pages must be in numerical order, so find where
2517 * the driver page needs to be inserted into the list of
2518 * pages returned by the device.
2520 for (insert_pt = 4; insert_pt < drive_bytes; insert_pt++) {
2521 if (buf[insert_pt] == DRIVER_INQ_EVPD_PAGE_CODE)
2522 return; /* Device using this page code. abort */
2523 else if (buf[insert_pt] > DRIVER_INQ_EVPD_PAGE_CODE)
2524 break;
2527 if (insert_pt < max_bytes) {
2528 uint16_t u;
2530 /* Shift everything up one byte to make room. */
2531 for (u = new_size + 3; u > insert_pt; u--)
2532 buf[u] = buf[u - 1];
2533 buf[insert_pt] = DRIVER_INQ_EVPD_PAGE_CODE;
2535 /* SCSI byte order increment of num_returned_bytes by 1 */
2536 skcomp->num_returned_bytes =
2537 be32_to_cpu(skcomp->num_returned_bytes) + 1;
2538 skcomp->num_returned_bytes =
2539 be32_to_cpu(skcomp->num_returned_bytes);
2542 /* update page length field to reflect the driver's page too */
2543 buf[2] = (uint8_t)((new_size >> 8) & 0xFF);
2544 buf[3] = (uint8_t)((new_size >> 0) & 0xFF);
2547 static void skd_get_link_info(struct pci_dev *pdev, u8 *speed, u8 *width)
2549 int pcie_reg;
2550 u16 pci_bus_speed;
2551 u8 pci_lanes;
2553 pcie_reg = pci_find_capability(pdev, PCI_CAP_ID_EXP);
2554 if (pcie_reg) {
2555 u16 linksta;
2556 pci_read_config_word(pdev, pcie_reg + PCI_EXP_LNKSTA, &linksta);
2558 pci_bus_speed = linksta & 0xF;
2559 pci_lanes = (linksta & 0x3F0) >> 4;
2560 } else {
2561 *speed = STEC_LINK_UNKNOWN;
2562 *width = 0xFF;
2563 return;
2566 switch (pci_bus_speed) {
2567 case 1:
2568 *speed = STEC_LINK_2_5GTS;
2569 break;
2570 case 2:
2571 *speed = STEC_LINK_5GTS;
2572 break;
2573 case 3:
2574 *speed = STEC_LINK_8GTS;
2575 break;
2576 default:
2577 *speed = STEC_LINK_UNKNOWN;
2578 break;
2581 if (pci_lanes <= 0x20)
2582 *width = pci_lanes;
2583 else
2584 *width = 0xFF;
2587 static void skd_do_inq_page_da(struct skd_device *skdev,
2588 volatile struct fit_completion_entry_v1 *skcomp,
2589 volatile struct fit_comp_error_info *skerr,
2590 uint8_t *cdb, uint8_t *buf)
2592 struct pci_dev *pdev = skdev->pdev;
2593 unsigned max_bytes;
2594 struct driver_inquiry_data inq;
2595 u16 val;
2597 pr_debug("%s:%s:%d skd_do_driver_inquiry: return driver page\n",
2598 skdev->name, __func__, __LINE__);
2600 memset(&inq, 0, sizeof(inq));
2602 inq.page_code = DRIVER_INQ_EVPD_PAGE_CODE;
2604 skd_get_link_info(pdev, &inq.pcie_link_speed, &inq.pcie_link_lanes);
2605 inq.pcie_bus_number = cpu_to_be16(pdev->bus->number);
2606 inq.pcie_device_number = PCI_SLOT(pdev->devfn);
2607 inq.pcie_function_number = PCI_FUNC(pdev->devfn);
2609 pci_read_config_word(pdev, PCI_VENDOR_ID, &val);
2610 inq.pcie_vendor_id = cpu_to_be16(val);
2612 pci_read_config_word(pdev, PCI_DEVICE_ID, &val);
2613 inq.pcie_device_id = cpu_to_be16(val);
2615 pci_read_config_word(pdev, PCI_SUBSYSTEM_VENDOR_ID, &val);
2616 inq.pcie_subsystem_vendor_id = cpu_to_be16(val);
2618 pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &val);
2619 inq.pcie_subsystem_device_id = cpu_to_be16(val);
2621 /* Driver version, fixed lenth, padded with spaces on the right */
2622 inq.driver_version_length = sizeof(inq.driver_version);
2623 memset(&inq.driver_version, ' ', sizeof(inq.driver_version));
2624 memcpy(inq.driver_version, DRV_VER_COMPL,
2625 min(sizeof(inq.driver_version), strlen(DRV_VER_COMPL)));
2627 inq.page_length = cpu_to_be16((sizeof(inq) - 4));
2629 /* Clear the error set by the device */
2630 skcomp->status = SAM_STAT_GOOD;
2631 memset((void *)skerr, 0, sizeof(*skerr));
2633 /* copy response into output buffer */
2634 max_bytes = (cdb[3] << 8) | cdb[4];
2635 memcpy(buf, &inq, min_t(unsigned, max_bytes, sizeof(inq)));
2637 skcomp->num_returned_bytes =
2638 be32_to_cpu(min_t(uint16_t, max_bytes, sizeof(inq)));
2641 static void skd_do_driver_inq(struct skd_device *skdev,
2642 volatile struct fit_completion_entry_v1 *skcomp,
2643 volatile struct fit_comp_error_info *skerr,
2644 uint8_t *cdb, uint8_t *buf)
2646 if (!buf)
2647 return;
2648 else if (cdb[0] != INQUIRY)
2649 return; /* Not an INQUIRY */
2650 else if ((cdb[1] & 1) == 0)
2651 return; /* EVPD not set */
2652 else if (cdb[2] == 0)
2653 /* Need to add driver's page to supported pages list */
2654 skd_do_inq_page_00(skdev, skcomp, skerr, cdb, buf);
2655 else if (cdb[2] == DRIVER_INQ_EVPD_PAGE_CODE)
2656 /* Caller requested driver's page */
2657 skd_do_inq_page_da(skdev, skcomp, skerr, cdb, buf);
2660 static unsigned char *skd_sg_1st_page_ptr(struct scatterlist *sg)
2662 if (!sg)
2663 return NULL;
2664 if (!sg_page(sg))
2665 return NULL;
2666 return sg_virt(sg);
2669 static void skd_process_scsi_inq(struct skd_device *skdev,
2670 volatile struct fit_completion_entry_v1
2671 *skcomp,
2672 volatile struct fit_comp_error_info *skerr,
2673 struct skd_special_context *skspcl)
2675 uint8_t *buf;
2676 struct fit_msg_hdr *fmh = (struct fit_msg_hdr *)skspcl->msg_buf;
2677 struct skd_scsi_request *scsi_req = (struct skd_scsi_request *)&fmh[1];
2679 dma_sync_sg_for_cpu(skdev->class_dev, skspcl->req.sg, skspcl->req.n_sg,
2680 skspcl->req.sg_data_dir);
2681 buf = skd_sg_1st_page_ptr(skspcl->req.sg);
2683 if (buf)
2684 skd_do_driver_inq(skdev, skcomp, skerr, scsi_req->cdb, buf);
2688 static int skd_isr_completion_posted(struct skd_device *skdev,
2689 int limit, int *enqueued)
2691 volatile struct fit_completion_entry_v1 *skcmp = NULL;
2692 volatile struct fit_comp_error_info *skerr;
2693 u16 req_id;
2694 u32 req_slot;
2695 struct skd_request_context *skreq;
2696 u16 cmp_cntxt = 0;
2697 u8 cmp_status = 0;
2698 u8 cmp_cycle = 0;
2699 u32 cmp_bytes = 0;
2700 int rc = 0;
2701 int processed = 0;
2703 for (;; ) {
2704 SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
2706 skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
2707 cmp_cycle = skcmp->cycle;
2708 cmp_cntxt = skcmp->tag;
2709 cmp_status = skcmp->status;
2710 cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
2712 skerr = &skdev->skerr_table[skdev->skcomp_ix];
2714 pr_debug("%s:%s:%d "
2715 "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d "
2716 "busy=%d rbytes=0x%x proto=%d\n",
2717 skdev->name, __func__, __LINE__, skdev->skcomp_cycle,
2718 skdev->skcomp_ix, cmp_cycle, cmp_cntxt, cmp_status,
2719 skdev->in_flight, cmp_bytes, skdev->proto_ver);
2721 if (cmp_cycle != skdev->skcomp_cycle) {
2722 pr_debug("%s:%s:%d end of completions\n",
2723 skdev->name, __func__, __LINE__);
2724 break;
2727 * Update the completion queue head index and possibly
2728 * the completion cycle count. 8-bit wrap-around.
2730 skdev->skcomp_ix++;
2731 if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
2732 skdev->skcomp_ix = 0;
2733 skdev->skcomp_cycle++;
2737 * The command context is a unique 32-bit ID. The low order
2738 * bits help locate the request. The request is usually a
2739 * r/w request (see skd_start() above) or a special request.
2741 req_id = cmp_cntxt;
2742 req_slot = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
2744 /* Is this other than a r/w request? */
2745 if (req_slot >= skdev->num_req_context) {
2747 * This is not a completion for a r/w request.
2749 skd_complete_other(skdev, skcmp, skerr);
2750 continue;
2753 skreq = &skdev->skreq_table[req_slot];
2756 * Make sure the request ID for the slot matches.
2758 if (skreq->id != req_id) {
2759 pr_debug("%s:%s:%d mismatch comp_id=0x%x req_id=0x%x\n",
2760 skdev->name, __func__, __LINE__,
2761 req_id, skreq->id);
2763 u16 new_id = cmp_cntxt;
2764 pr_err("(%s): Completion mismatch "
2765 "comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
2766 skd_name(skdev), req_id,
2767 skreq->id, new_id);
2769 continue;
2773 SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
2775 if (skreq->state == SKD_REQ_STATE_ABORTED) {
2776 pr_debug("%s:%s:%d reclaim req %p id=%04x\n",
2777 skdev->name, __func__, __LINE__,
2778 skreq, skreq->id);
2779 /* a previously timed out command can
2780 * now be cleaned up */
2781 skd_release_skreq(skdev, skreq);
2782 continue;
2785 skreq->completion = *skcmp;
2786 if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
2787 skreq->err_info = *skerr;
2788 skd_log_check_status(skdev, cmp_status, skerr->key,
2789 skerr->code, skerr->qual,
2790 skerr->fruc);
2792 /* Release DMA resources for the request. */
2793 if (skreq->n_sg > 0)
2794 skd_postop_sg_list(skdev, skreq);
2796 if (!skreq->req) {
2797 pr_debug("%s:%s:%d NULL backptr skdreq %p, "
2798 "req=0x%x req_id=0x%x\n",
2799 skdev->name, __func__, __LINE__,
2800 skreq, skreq->id, req_id);
2801 } else {
2803 * Capture the outcome and post it back to the
2804 * native request.
2806 if (likely(cmp_status == SAM_STAT_GOOD))
2807 skd_end_request(skdev, skreq, 0);
2808 else
2809 skd_resolve_req_exception(skdev, skreq);
2813 * Release the skreq, its FIT msg (if one), timeout slot,
2814 * and queue depth.
2816 skd_release_skreq(skdev, skreq);
2818 /* skd_isr_comp_limit equal zero means no limit */
2819 if (limit) {
2820 if (++processed >= limit) {
2821 rc = 1;
2822 break;
2827 if ((skdev->state == SKD_DRVR_STATE_PAUSING)
2828 && (skdev->in_flight) == 0) {
2829 skdev->state = SKD_DRVR_STATE_PAUSED;
2830 wake_up_interruptible(&skdev->waitq);
2833 return rc;
2836 static void skd_complete_other(struct skd_device *skdev,
2837 volatile struct fit_completion_entry_v1 *skcomp,
2838 volatile struct fit_comp_error_info *skerr)
2840 u32 req_id = 0;
2841 u32 req_table;
2842 u32 req_slot;
2843 struct skd_special_context *skspcl;
2845 req_id = skcomp->tag;
2846 req_table = req_id & SKD_ID_TABLE_MASK;
2847 req_slot = req_id & SKD_ID_SLOT_MASK;
2849 pr_debug("%s:%s:%d table=0x%x id=0x%x slot=%d\n",
2850 skdev->name, __func__, __LINE__,
2851 req_table, req_id, req_slot);
2854 * Based on the request id, determine how to dispatch this completion.
2855 * This swich/case is finding the good cases and forwarding the
2856 * completion entry. Errors are reported below the switch.
2858 switch (req_table) {
2859 case SKD_ID_RW_REQUEST:
2861 * The caller, skd_completion_posted_isr() above,
2862 * handles r/w requests. The only way we get here
2863 * is if the req_slot is out of bounds.
2865 break;
2867 case SKD_ID_SPECIAL_REQUEST:
2869 * Make sure the req_slot is in bounds and that the id
2870 * matches.
2872 if (req_slot < skdev->n_special) {
2873 skspcl = &skdev->skspcl_table[req_slot];
2874 if (skspcl->req.id == req_id &&
2875 skspcl->req.state == SKD_REQ_STATE_BUSY) {
2876 skd_complete_special(skdev,
2877 skcomp, skerr, skspcl);
2878 return;
2881 break;
2883 case SKD_ID_INTERNAL:
2884 if (req_slot == 0) {
2885 skspcl = &skdev->internal_skspcl;
2886 if (skspcl->req.id == req_id &&
2887 skspcl->req.state == SKD_REQ_STATE_BUSY) {
2888 skd_complete_internal(skdev,
2889 skcomp, skerr, skspcl);
2890 return;
2893 break;
2895 case SKD_ID_FIT_MSG:
2897 * These id's should never appear in a completion record.
2899 break;
2901 default:
2903 * These id's should never appear anywhere;
2905 break;
2909 * If we get here it is a bad or stale id.
2913 static void skd_complete_special(struct skd_device *skdev,
2914 volatile struct fit_completion_entry_v1
2915 *skcomp,
2916 volatile struct fit_comp_error_info *skerr,
2917 struct skd_special_context *skspcl)
2919 pr_debug("%s:%s:%d completing special request %p\n",
2920 skdev->name, __func__, __LINE__, skspcl);
2921 if (skspcl->orphaned) {
2922 /* Discard orphaned request */
2923 /* ?: Can this release directly or does it need
2924 * to use a worker? */
2925 pr_debug("%s:%s:%d release orphaned %p\n",
2926 skdev->name, __func__, __LINE__, skspcl);
2927 skd_release_special(skdev, skspcl);
2928 return;
2931 skd_process_scsi_inq(skdev, skcomp, skerr, skspcl);
2933 skspcl->req.state = SKD_REQ_STATE_COMPLETED;
2934 skspcl->req.completion = *skcomp;
2935 skspcl->req.err_info = *skerr;
2937 skd_log_check_status(skdev, skspcl->req.completion.status, skerr->key,
2938 skerr->code, skerr->qual, skerr->fruc);
2940 wake_up_interruptible(&skdev->waitq);
2943 /* assume spinlock is already held */
2944 static void skd_release_special(struct skd_device *skdev,
2945 struct skd_special_context *skspcl)
2947 int i, was_depleted;
2949 for (i = 0; i < skspcl->req.n_sg; i++) {
2950 struct page *page = sg_page(&skspcl->req.sg[i]);
2951 __free_page(page);
2954 was_depleted = (skdev->skspcl_free_list == NULL);
2956 skspcl->req.state = SKD_REQ_STATE_IDLE;
2957 skspcl->req.id += SKD_ID_INCR;
2958 skspcl->req.next =
2959 (struct skd_request_context *)skdev->skspcl_free_list;
2960 skdev->skspcl_free_list = (struct skd_special_context *)skspcl;
2962 if (was_depleted) {
2963 pr_debug("%s:%s:%d skspcl was depleted\n",
2964 skdev->name, __func__, __LINE__);
2965 /* Free list was depleted. Their might be waiters. */
2966 wake_up_interruptible(&skdev->waitq);
2970 static void skd_reset_skcomp(struct skd_device *skdev)
2972 u32 nbytes;
2973 struct fit_completion_entry_v1 *skcomp;
2975 nbytes = sizeof(*skcomp) * SKD_N_COMPLETION_ENTRY;
2976 nbytes += sizeof(struct fit_comp_error_info) * SKD_N_COMPLETION_ENTRY;
2978 memset(skdev->skcomp_table, 0, nbytes);
2980 skdev->skcomp_ix = 0;
2981 skdev->skcomp_cycle = 1;
2985 *****************************************************************************
2986 * INTERRUPTS
2987 *****************************************************************************
2989 static void skd_completion_worker(struct work_struct *work)
2991 struct skd_device *skdev =
2992 container_of(work, struct skd_device, completion_worker);
2993 unsigned long flags;
2994 int flush_enqueued = 0;
2996 spin_lock_irqsave(&skdev->lock, flags);
2999 * pass in limit=0, which means no limit..
3000 * process everything in compq
3002 skd_isr_completion_posted(skdev, 0, &flush_enqueued);
3003 skd_request_fn(skdev->queue);
3005 spin_unlock_irqrestore(&skdev->lock, flags);
3008 static void skd_isr_msg_from_dev(struct skd_device *skdev);
3010 irqreturn_t
3011 static skd_isr(int irq, void *ptr)
3013 struct skd_device *skdev;
3014 u32 intstat;
3015 u32 ack;
3016 int rc = 0;
3017 int deferred = 0;
3018 int flush_enqueued = 0;
3020 skdev = (struct skd_device *)ptr;
3021 spin_lock(&skdev->lock);
3023 for (;; ) {
3024 intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
3026 ack = FIT_INT_DEF_MASK;
3027 ack &= intstat;
3029 pr_debug("%s:%s:%d intstat=0x%x ack=0x%x\n",
3030 skdev->name, __func__, __LINE__, intstat, ack);
3032 /* As long as there is an int pending on device, keep
3033 * running loop. When none, get out, but if we've never
3034 * done any processing, call completion handler?
3036 if (ack == 0) {
3037 /* No interrupts on device, but run the completion
3038 * processor anyway?
3040 if (rc == 0)
3041 if (likely (skdev->state
3042 == SKD_DRVR_STATE_ONLINE))
3043 deferred = 1;
3044 break;
3047 rc = IRQ_HANDLED;
3049 SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
3051 if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
3052 (skdev->state != SKD_DRVR_STATE_STOPPING))) {
3053 if (intstat & FIT_ISH_COMPLETION_POSTED) {
3055 * If we have already deferred completion
3056 * processing, don't bother running it again
3058 if (deferred == 0)
3059 deferred =
3060 skd_isr_completion_posted(skdev,
3061 skd_isr_comp_limit, &flush_enqueued);
3064 if (intstat & FIT_ISH_FW_STATE_CHANGE) {
3065 skd_isr_fwstate(skdev);
3066 if (skdev->state == SKD_DRVR_STATE_FAULT ||
3067 skdev->state ==
3068 SKD_DRVR_STATE_DISAPPEARED) {
3069 spin_unlock(&skdev->lock);
3070 return rc;
3074 if (intstat & FIT_ISH_MSG_FROM_DEV)
3075 skd_isr_msg_from_dev(skdev);
3079 if (unlikely(flush_enqueued))
3080 skd_request_fn(skdev->queue);
3082 if (deferred)
3083 schedule_work(&skdev->completion_worker);
3084 else if (!flush_enqueued)
3085 skd_request_fn(skdev->queue);
3087 spin_unlock(&skdev->lock);
3089 return rc;
3092 static void skd_drive_fault(struct skd_device *skdev)
3094 skdev->state = SKD_DRVR_STATE_FAULT;
3095 pr_err("(%s): Drive FAULT\n", skd_name(skdev));
3098 static void skd_drive_disappeared(struct skd_device *skdev)
3100 skdev->state = SKD_DRVR_STATE_DISAPPEARED;
3101 pr_err("(%s): Drive DISAPPEARED\n", skd_name(skdev));
3104 static void skd_isr_fwstate(struct skd_device *skdev)
3106 u32 sense;
3107 u32 state;
3108 u32 mtd;
3109 int prev_driver_state = skdev->state;
3111 sense = SKD_READL(skdev, FIT_STATUS);
3112 state = sense & FIT_SR_DRIVE_STATE_MASK;
3114 pr_err("(%s): s1120 state %s(%d)=>%s(%d)\n",
3115 skd_name(skdev),
3116 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
3117 skd_drive_state_to_str(state), state);
3119 skdev->drive_state = state;
3121 switch (skdev->drive_state) {
3122 case FIT_SR_DRIVE_INIT:
3123 if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
3124 skd_disable_interrupts(skdev);
3125 break;
3127 if (skdev->state == SKD_DRVR_STATE_RESTARTING)
3128 skd_recover_requests(skdev, 0);
3129 if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
3130 skdev->timer_countdown = SKD_STARTING_TIMO;
3131 skdev->state = SKD_DRVR_STATE_STARTING;
3132 skd_soft_reset(skdev);
3133 break;
3135 mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
3136 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3137 skdev->last_mtd = mtd;
3138 break;
3140 case FIT_SR_DRIVE_ONLINE:
3141 skdev->cur_max_queue_depth = skd_max_queue_depth;
3142 if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
3143 skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
3145 skdev->queue_low_water_mark =
3146 skdev->cur_max_queue_depth * 2 / 3 + 1;
3147 if (skdev->queue_low_water_mark < 1)
3148 skdev->queue_low_water_mark = 1;
3149 pr_info(
3150 "(%s): Queue depth limit=%d dev=%d lowat=%d\n",
3151 skd_name(skdev),
3152 skdev->cur_max_queue_depth,
3153 skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
3155 skd_refresh_device_data(skdev);
3156 break;
3158 case FIT_SR_DRIVE_BUSY:
3159 skdev->state = SKD_DRVR_STATE_BUSY;
3160 skdev->timer_countdown = SKD_BUSY_TIMO;
3161 skd_quiesce_dev(skdev);
3162 break;
3163 case FIT_SR_DRIVE_BUSY_SANITIZE:
3164 /* set timer for 3 seconds, we'll abort any unfinished
3165 * commands after that expires
3167 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
3168 skdev->timer_countdown = SKD_TIMER_SECONDS(3);
3169 blk_start_queue(skdev->queue);
3170 break;
3171 case FIT_SR_DRIVE_BUSY_ERASE:
3172 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
3173 skdev->timer_countdown = SKD_BUSY_TIMO;
3174 break;
3175 case FIT_SR_DRIVE_OFFLINE:
3176 skdev->state = SKD_DRVR_STATE_IDLE;
3177 break;
3178 case FIT_SR_DRIVE_SOFT_RESET:
3179 switch (skdev->state) {
3180 case SKD_DRVR_STATE_STARTING:
3181 case SKD_DRVR_STATE_RESTARTING:
3182 /* Expected by a caller of skd_soft_reset() */
3183 break;
3184 default:
3185 skdev->state = SKD_DRVR_STATE_RESTARTING;
3186 break;
3188 break;
3189 case FIT_SR_DRIVE_FW_BOOTING:
3190 pr_debug("%s:%s:%d ISR FIT_SR_DRIVE_FW_BOOTING %s\n",
3191 skdev->name, __func__, __LINE__, skdev->name);
3192 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
3193 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
3194 break;
3196 case FIT_SR_DRIVE_DEGRADED:
3197 case FIT_SR_PCIE_LINK_DOWN:
3198 case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
3199 break;
3201 case FIT_SR_DRIVE_FAULT:
3202 skd_drive_fault(skdev);
3203 skd_recover_requests(skdev, 0);
3204 blk_start_queue(skdev->queue);
3205 break;
3207 /* PCIe bus returned all Fs? */
3208 case 0xFF:
3209 pr_info("(%s): state=0x%x sense=0x%x\n",
3210 skd_name(skdev), state, sense);
3211 skd_drive_disappeared(skdev);
3212 skd_recover_requests(skdev, 0);
3213 blk_start_queue(skdev->queue);
3214 break;
3215 default:
3217 * Uknown FW State. Wait for a state we recognize.
3219 break;
3221 pr_err("(%s): Driver state %s(%d)=>%s(%d)\n",
3222 skd_name(skdev),
3223 skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
3224 skd_skdev_state_to_str(skdev->state), skdev->state);
3227 static void skd_recover_requests(struct skd_device *skdev, int requeue)
3229 int i;
3231 for (i = 0; i < skdev->num_req_context; i++) {
3232 struct skd_request_context *skreq = &skdev->skreq_table[i];
3234 if (skreq->state == SKD_REQ_STATE_BUSY) {
3235 skd_log_skreq(skdev, skreq, "recover");
3237 SKD_ASSERT((skreq->id & SKD_ID_INCR) != 0);
3238 SKD_ASSERT(skreq->req != NULL);
3240 /* Release DMA resources for the request. */
3241 if (skreq->n_sg > 0)
3242 skd_postop_sg_list(skdev, skreq);
3244 if (requeue &&
3245 (unsigned long) ++skreq->req->special <
3246 SKD_MAX_RETRIES)
3247 blk_requeue_request(skdev->queue, skreq->req);
3248 else
3249 skd_end_request(skdev, skreq, -EIO);
3251 skreq->req = NULL;
3253 skreq->state = SKD_REQ_STATE_IDLE;
3254 skreq->id += SKD_ID_INCR;
3256 if (i > 0)
3257 skreq[-1].next = skreq;
3258 skreq->next = NULL;
3260 skdev->skreq_free_list = skdev->skreq_table;
3262 for (i = 0; i < skdev->num_fitmsg_context; i++) {
3263 struct skd_fitmsg_context *skmsg = &skdev->skmsg_table[i];
3265 if (skmsg->state == SKD_MSG_STATE_BUSY) {
3266 skd_log_skmsg(skdev, skmsg, "salvaged");
3267 SKD_ASSERT((skmsg->id & SKD_ID_INCR) != 0);
3268 skmsg->state = SKD_MSG_STATE_IDLE;
3269 skmsg->id += SKD_ID_INCR;
3271 if (i > 0)
3272 skmsg[-1].next = skmsg;
3273 skmsg->next = NULL;
3275 skdev->skmsg_free_list = skdev->skmsg_table;
3277 for (i = 0; i < skdev->n_special; i++) {
3278 struct skd_special_context *skspcl = &skdev->skspcl_table[i];
3280 /* If orphaned, reclaim it because it has already been reported
3281 * to the process as an error (it was just waiting for
3282 * a completion that didn't come, and now it will never come)
3283 * If busy, change to a state that will cause it to error
3284 * out in the wait routine and let it do the normal
3285 * reporting and reclaiming
3287 if (skspcl->req.state == SKD_REQ_STATE_BUSY) {
3288 if (skspcl->orphaned) {
3289 pr_debug("%s:%s:%d orphaned %p\n",
3290 skdev->name, __func__, __LINE__,
3291 skspcl);
3292 skd_release_special(skdev, skspcl);
3293 } else {
3294 pr_debug("%s:%s:%d not orphaned %p\n",
3295 skdev->name, __func__, __LINE__,
3296 skspcl);
3297 skspcl->req.state = SKD_REQ_STATE_ABORTED;
3301 skdev->skspcl_free_list = skdev->skspcl_table;
3303 for (i = 0; i < SKD_N_TIMEOUT_SLOT; i++)
3304 skdev->timeout_slot[i] = 0;
3306 skdev->in_flight = 0;
3309 static void skd_isr_msg_from_dev(struct skd_device *skdev)
3311 u32 mfd;
3312 u32 mtd;
3313 u32 data;
3315 mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
3317 pr_debug("%s:%s:%d mfd=0x%x last_mtd=0x%x\n",
3318 skdev->name, __func__, __LINE__, mfd, skdev->last_mtd);
3320 /* ignore any mtd that is an ack for something we didn't send */
3321 if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
3322 return;
3324 switch (FIT_MXD_TYPE(mfd)) {
3325 case FIT_MTD_FITFW_INIT:
3326 skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
3328 if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
3329 pr_err("(%s): protocol mismatch\n",
3330 skdev->name);
3331 pr_err("(%s): got=%d support=%d\n",
3332 skdev->name, skdev->proto_ver,
3333 FIT_PROTOCOL_VERSION_1);
3334 pr_err("(%s): please upgrade driver\n",
3335 skdev->name);
3336 skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
3337 skd_soft_reset(skdev);
3338 break;
3340 mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
3341 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3342 skdev->last_mtd = mtd;
3343 break;
3345 case FIT_MTD_GET_CMDQ_DEPTH:
3346 skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
3347 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
3348 SKD_N_COMPLETION_ENTRY);
3349 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3350 skdev->last_mtd = mtd;
3351 break;
3353 case FIT_MTD_SET_COMPQ_DEPTH:
3354 SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
3355 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
3356 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3357 skdev->last_mtd = mtd;
3358 break;
3360 case FIT_MTD_SET_COMPQ_ADDR:
3361 skd_reset_skcomp(skdev);
3362 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
3363 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3364 skdev->last_mtd = mtd;
3365 break;
3367 case FIT_MTD_CMD_LOG_HOST_ID:
3368 skdev->connect_time_stamp = get_seconds();
3369 data = skdev->connect_time_stamp & 0xFFFF;
3370 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
3371 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3372 skdev->last_mtd = mtd;
3373 break;
3375 case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
3376 skdev->drive_jiffies = FIT_MXD_DATA(mfd);
3377 data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
3378 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
3379 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3380 skdev->last_mtd = mtd;
3381 break;
3383 case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
3384 skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
3385 mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
3386 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
3387 skdev->last_mtd = mtd;
3389 pr_err("(%s): Time sync driver=0x%x device=0x%x\n",
3390 skd_name(skdev),
3391 skdev->connect_time_stamp, skdev->drive_jiffies);
3392 break;
3394 case FIT_MTD_ARM_QUEUE:
3395 skdev->last_mtd = 0;
3397 * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
3399 break;
3401 default:
3402 break;
3406 static void skd_disable_interrupts(struct skd_device *skdev)
3408 u32 sense;
3410 sense = SKD_READL(skdev, FIT_CONTROL);
3411 sense &= ~FIT_CR_ENABLE_INTERRUPTS;
3412 SKD_WRITEL(skdev, sense, FIT_CONTROL);
3413 pr_debug("%s:%s:%d sense 0x%x\n",
3414 skdev->name, __func__, __LINE__, sense);
3416 /* Note that the 1s is written. A 1-bit means
3417 * disable, a 0 means enable.
3419 SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
3422 static void skd_enable_interrupts(struct skd_device *skdev)
3424 u32 val;
3426 /* unmask interrupts first */
3427 val = FIT_ISH_FW_STATE_CHANGE +
3428 FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
3430 /* Note that the compliment of mask is written. A 1-bit means
3431 * disable, a 0 means enable. */
3432 SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
3433 pr_debug("%s:%s:%d interrupt mask=0x%x\n",
3434 skdev->name, __func__, __LINE__, ~val);
3436 val = SKD_READL(skdev, FIT_CONTROL);
3437 val |= FIT_CR_ENABLE_INTERRUPTS;
3438 pr_debug("%s:%s:%d control=0x%x\n",
3439 skdev->name, __func__, __LINE__, val);
3440 SKD_WRITEL(skdev, val, FIT_CONTROL);
3444 *****************************************************************************
3445 * START, STOP, RESTART, QUIESCE, UNQUIESCE
3446 *****************************************************************************
3449 static void skd_soft_reset(struct skd_device *skdev)
3451 u32 val;
3453 val = SKD_READL(skdev, FIT_CONTROL);
3454 val |= (FIT_CR_SOFT_RESET);
3455 pr_debug("%s:%s:%d control=0x%x\n",
3456 skdev->name, __func__, __LINE__, val);
3457 SKD_WRITEL(skdev, val, FIT_CONTROL);
3460 static void skd_start_device(struct skd_device *skdev)
3462 unsigned long flags;
3463 u32 sense;
3464 u32 state;
3466 spin_lock_irqsave(&skdev->lock, flags);
3468 /* ack all ghost interrupts */
3469 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
3471 sense = SKD_READL(skdev, FIT_STATUS);
3473 pr_debug("%s:%s:%d initial status=0x%x\n",
3474 skdev->name, __func__, __LINE__, sense);
3476 state = sense & FIT_SR_DRIVE_STATE_MASK;
3477 skdev->drive_state = state;
3478 skdev->last_mtd = 0;
3480 skdev->state = SKD_DRVR_STATE_STARTING;
3481 skdev->timer_countdown = SKD_STARTING_TIMO;
3483 skd_enable_interrupts(skdev);
3485 switch (skdev->drive_state) {
3486 case FIT_SR_DRIVE_OFFLINE:
3487 pr_err("(%s): Drive offline...\n", skd_name(skdev));
3488 break;
3490 case FIT_SR_DRIVE_FW_BOOTING:
3491 pr_debug("%s:%s:%d FIT_SR_DRIVE_FW_BOOTING %s\n",
3492 skdev->name, __func__, __LINE__, skdev->name);
3493 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
3494 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
3495 break;
3497 case FIT_SR_DRIVE_BUSY_SANITIZE:
3498 pr_info("(%s): Start: BUSY_SANITIZE\n",
3499 skd_name(skdev));
3500 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
3501 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
3502 break;
3504 case FIT_SR_DRIVE_BUSY_ERASE:
3505 pr_info("(%s): Start: BUSY_ERASE\n", skd_name(skdev));
3506 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
3507 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
3508 break;
3510 case FIT_SR_DRIVE_INIT:
3511 case FIT_SR_DRIVE_ONLINE:
3512 skd_soft_reset(skdev);
3513 break;
3515 case FIT_SR_DRIVE_BUSY:
3516 pr_err("(%s): Drive Busy...\n", skd_name(skdev));
3517 skdev->state = SKD_DRVR_STATE_BUSY;
3518 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
3519 break;
3521 case FIT_SR_DRIVE_SOFT_RESET:
3522 pr_err("(%s) drive soft reset in prog\n",
3523 skd_name(skdev));
3524 break;
3526 case FIT_SR_DRIVE_FAULT:
3527 /* Fault state is bad...soft reset won't do it...
3528 * Hard reset, maybe, but does it work on device?
3529 * For now, just fault so the system doesn't hang.
3531 skd_drive_fault(skdev);
3532 /*start the queue so we can respond with error to requests */
3533 pr_debug("%s:%s:%d starting %s queue\n",
3534 skdev->name, __func__, __LINE__, skdev->name);
3535 blk_start_queue(skdev->queue);
3536 skdev->gendisk_on = -1;
3537 wake_up_interruptible(&skdev->waitq);
3538 break;
3540 case 0xFF:
3541 /* Most likely the device isn't there or isn't responding
3542 * to the BAR1 addresses. */
3543 skd_drive_disappeared(skdev);
3544 /*start the queue so we can respond with error to requests */
3545 pr_debug("%s:%s:%d starting %s queue to error-out reqs\n",
3546 skdev->name, __func__, __LINE__, skdev->name);
3547 blk_start_queue(skdev->queue);
3548 skdev->gendisk_on = -1;
3549 wake_up_interruptible(&skdev->waitq);
3550 break;
3552 default:
3553 pr_err("(%s) Start: unknown state %x\n",
3554 skd_name(skdev), skdev->drive_state);
3555 break;
3558 state = SKD_READL(skdev, FIT_CONTROL);
3559 pr_debug("%s:%s:%d FIT Control Status=0x%x\n",
3560 skdev->name, __func__, __LINE__, state);
3562 state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
3563 pr_debug("%s:%s:%d Intr Status=0x%x\n",
3564 skdev->name, __func__, __LINE__, state);
3566 state = SKD_READL(skdev, FIT_INT_MASK_HOST);
3567 pr_debug("%s:%s:%d Intr Mask=0x%x\n",
3568 skdev->name, __func__, __LINE__, state);
3570 state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
3571 pr_debug("%s:%s:%d Msg from Dev=0x%x\n",
3572 skdev->name, __func__, __LINE__, state);
3574 state = SKD_READL(skdev, FIT_HW_VERSION);
3575 pr_debug("%s:%s:%d HW version=0x%x\n",
3576 skdev->name, __func__, __LINE__, state);
3578 spin_unlock_irqrestore(&skdev->lock, flags);
3581 static void skd_stop_device(struct skd_device *skdev)
3583 unsigned long flags;
3584 struct skd_special_context *skspcl = &skdev->internal_skspcl;
3585 u32 dev_state;
3586 int i;
3588 spin_lock_irqsave(&skdev->lock, flags);
3590 if (skdev->state != SKD_DRVR_STATE_ONLINE) {
3591 pr_err("(%s): skd_stop_device not online no sync\n",
3592 skd_name(skdev));
3593 goto stop_out;
3596 if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
3597 pr_err("(%s): skd_stop_device no special\n",
3598 skd_name(skdev));
3599 goto stop_out;
3602 skdev->state = SKD_DRVR_STATE_SYNCING;
3603 skdev->sync_done = 0;
3605 skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
3607 spin_unlock_irqrestore(&skdev->lock, flags);
3609 wait_event_interruptible_timeout(skdev->waitq,
3610 (skdev->sync_done), (10 * HZ));
3612 spin_lock_irqsave(&skdev->lock, flags);
3614 switch (skdev->sync_done) {
3615 case 0:
3616 pr_err("(%s): skd_stop_device no sync\n",
3617 skd_name(skdev));
3618 break;
3619 case 1:
3620 pr_err("(%s): skd_stop_device sync done\n",
3621 skd_name(skdev));
3622 break;
3623 default:
3624 pr_err("(%s): skd_stop_device sync error\n",
3625 skd_name(skdev));
3628 stop_out:
3629 skdev->state = SKD_DRVR_STATE_STOPPING;
3630 spin_unlock_irqrestore(&skdev->lock, flags);
3632 skd_kill_timer(skdev);
3634 spin_lock_irqsave(&skdev->lock, flags);
3635 skd_disable_interrupts(skdev);
3637 /* ensure all ints on device are cleared */
3638 /* soft reset the device to unload with a clean slate */
3639 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
3640 SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
3642 spin_unlock_irqrestore(&skdev->lock, flags);
3644 /* poll every 100ms, 1 second timeout */
3645 for (i = 0; i < 10; i++) {
3646 dev_state =
3647 SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
3648 if (dev_state == FIT_SR_DRIVE_INIT)
3649 break;
3650 set_current_state(TASK_INTERRUPTIBLE);
3651 schedule_timeout(msecs_to_jiffies(100));
3654 if (dev_state != FIT_SR_DRIVE_INIT)
3655 pr_err("(%s): skd_stop_device state error 0x%02x\n",
3656 skd_name(skdev), dev_state);
3659 /* assume spinlock is held */
3660 static void skd_restart_device(struct skd_device *skdev)
3662 u32 state;
3664 /* ack all ghost interrupts */
3665 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
3667 state = SKD_READL(skdev, FIT_STATUS);
3669 pr_debug("%s:%s:%d drive status=0x%x\n",
3670 skdev->name, __func__, __LINE__, state);
3672 state &= FIT_SR_DRIVE_STATE_MASK;
3673 skdev->drive_state = state;
3674 skdev->last_mtd = 0;
3676 skdev->state = SKD_DRVR_STATE_RESTARTING;
3677 skdev->timer_countdown = SKD_RESTARTING_TIMO;
3679 skd_soft_reset(skdev);
3682 /* assume spinlock is held */
3683 static int skd_quiesce_dev(struct skd_device *skdev)
3685 int rc = 0;
3687 switch (skdev->state) {
3688 case SKD_DRVR_STATE_BUSY:
3689 case SKD_DRVR_STATE_BUSY_IMMINENT:
3690 pr_debug("%s:%s:%d stopping %s queue\n",
3691 skdev->name, __func__, __LINE__, skdev->name);
3692 blk_stop_queue(skdev->queue);
3693 break;
3694 case SKD_DRVR_STATE_ONLINE:
3695 case SKD_DRVR_STATE_STOPPING:
3696 case SKD_DRVR_STATE_SYNCING:
3697 case SKD_DRVR_STATE_PAUSING:
3698 case SKD_DRVR_STATE_PAUSED:
3699 case SKD_DRVR_STATE_STARTING:
3700 case SKD_DRVR_STATE_RESTARTING:
3701 case SKD_DRVR_STATE_RESUMING:
3702 default:
3703 rc = -EINVAL;
3704 pr_debug("%s:%s:%d state [%d] not implemented\n",
3705 skdev->name, __func__, __LINE__, skdev->state);
3707 return rc;
3710 /* assume spinlock is held */
3711 static int skd_unquiesce_dev(struct skd_device *skdev)
3713 int prev_driver_state = skdev->state;
3715 skd_log_skdev(skdev, "unquiesce");
3716 if (skdev->state == SKD_DRVR_STATE_ONLINE) {
3717 pr_debug("%s:%s:%d **** device already ONLINE\n",
3718 skdev->name, __func__, __LINE__);
3719 return 0;
3721 if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
3723 * If there has been an state change to other than
3724 * ONLINE, we will rely on controller state change
3725 * to come back online and restart the queue.
3726 * The BUSY state means that driver is ready to
3727 * continue normal processing but waiting for controller
3728 * to become available.
3730 skdev->state = SKD_DRVR_STATE_BUSY;
3731 pr_debug("%s:%s:%d drive BUSY state\n",
3732 skdev->name, __func__, __LINE__);
3733 return 0;
3737 * Drive has just come online, driver is either in startup,
3738 * paused performing a task, or bust waiting for hardware.
3740 switch (skdev->state) {
3741 case SKD_DRVR_STATE_PAUSED:
3742 case SKD_DRVR_STATE_BUSY:
3743 case SKD_DRVR_STATE_BUSY_IMMINENT:
3744 case SKD_DRVR_STATE_BUSY_ERASE:
3745 case SKD_DRVR_STATE_STARTING:
3746 case SKD_DRVR_STATE_RESTARTING:
3747 case SKD_DRVR_STATE_FAULT:
3748 case SKD_DRVR_STATE_IDLE:
3749 case SKD_DRVR_STATE_LOAD:
3750 skdev->state = SKD_DRVR_STATE_ONLINE;
3751 pr_err("(%s): Driver state %s(%d)=>%s(%d)\n",
3752 skd_name(skdev),
3753 skd_skdev_state_to_str(prev_driver_state),
3754 prev_driver_state, skd_skdev_state_to_str(skdev->state),
3755 skdev->state);
3756 pr_debug("%s:%s:%d **** device ONLINE...starting block queue\n",
3757 skdev->name, __func__, __LINE__);
3758 pr_debug("%s:%s:%d starting %s queue\n",
3759 skdev->name, __func__, __LINE__, skdev->name);
3760 pr_info("(%s): STEC s1120 ONLINE\n", skd_name(skdev));
3761 blk_start_queue(skdev->queue);
3762 skdev->gendisk_on = 1;
3763 wake_up_interruptible(&skdev->waitq);
3764 break;
3766 case SKD_DRVR_STATE_DISAPPEARED:
3767 default:
3768 pr_debug("%s:%s:%d **** driver state %d, not implemented \n",
3769 skdev->name, __func__, __LINE__,
3770 skdev->state);
3771 return -EBUSY;
3773 return 0;
3777 *****************************************************************************
3778 * PCIe MSI/MSI-X INTERRUPT HANDLERS
3779 *****************************************************************************
3782 static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
3784 struct skd_device *skdev = skd_host_data;
3785 unsigned long flags;
3787 spin_lock_irqsave(&skdev->lock, flags);
3788 pr_debug("%s:%s:%d MSIX = 0x%x\n",
3789 skdev->name, __func__, __LINE__,
3790 SKD_READL(skdev, FIT_INT_STATUS_HOST));
3791 pr_err("(%s): MSIX reserved irq %d = 0x%x\n", skd_name(skdev),
3792 irq, SKD_READL(skdev, FIT_INT_STATUS_HOST));
3793 SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
3794 spin_unlock_irqrestore(&skdev->lock, flags);
3795 return IRQ_HANDLED;
3798 static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
3800 struct skd_device *skdev = skd_host_data;
3801 unsigned long flags;
3803 spin_lock_irqsave(&skdev->lock, flags);
3804 pr_debug("%s:%s:%d MSIX = 0x%x\n",
3805 skdev->name, __func__, __LINE__,
3806 SKD_READL(skdev, FIT_INT_STATUS_HOST));
3807 SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
3808 skd_isr_fwstate(skdev);
3809 spin_unlock_irqrestore(&skdev->lock, flags);
3810 return IRQ_HANDLED;
3813 static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
3815 struct skd_device *skdev = skd_host_data;
3816 unsigned long flags;
3817 int flush_enqueued = 0;
3818 int deferred;
3820 spin_lock_irqsave(&skdev->lock, flags);
3821 pr_debug("%s:%s:%d MSIX = 0x%x\n",
3822 skdev->name, __func__, __LINE__,
3823 SKD_READL(skdev, FIT_INT_STATUS_HOST));
3824 SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
3825 deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
3826 &flush_enqueued);
3827 if (flush_enqueued)
3828 skd_request_fn(skdev->queue);
3830 if (deferred)
3831 schedule_work(&skdev->completion_worker);
3832 else if (!flush_enqueued)
3833 skd_request_fn(skdev->queue);
3835 spin_unlock_irqrestore(&skdev->lock, flags);
3837 return IRQ_HANDLED;
3840 static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
3842 struct skd_device *skdev = skd_host_data;
3843 unsigned long flags;
3845 spin_lock_irqsave(&skdev->lock, flags);
3846 pr_debug("%s:%s:%d MSIX = 0x%x\n",
3847 skdev->name, __func__, __LINE__,
3848 SKD_READL(skdev, FIT_INT_STATUS_HOST));
3849 SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
3850 skd_isr_msg_from_dev(skdev);
3851 spin_unlock_irqrestore(&skdev->lock, flags);
3852 return IRQ_HANDLED;
3855 static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
3857 struct skd_device *skdev = skd_host_data;
3858 unsigned long flags;
3860 spin_lock_irqsave(&skdev->lock, flags);
3861 pr_debug("%s:%s:%d MSIX = 0x%x\n",
3862 skdev->name, __func__, __LINE__,
3863 SKD_READL(skdev, FIT_INT_STATUS_HOST));
3864 SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
3865 spin_unlock_irqrestore(&skdev->lock, flags);
3866 return IRQ_HANDLED;
3870 *****************************************************************************
3871 * PCIe MSI/MSI-X SETUP
3872 *****************************************************************************
3875 struct skd_msix_entry {
3876 int have_irq;
3877 u32 vector;
3878 u32 entry;
3879 struct skd_device *rsp;
3880 char isr_name[30];
3883 struct skd_init_msix_entry {
3884 const char *name;
3885 irq_handler_t handler;
3888 #define SKD_MAX_MSIX_COUNT 13
3889 #define SKD_MIN_MSIX_COUNT 7
3890 #define SKD_BASE_MSIX_IRQ 4
3892 static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
3893 { "(DMA 0)", skd_reserved_isr },
3894 { "(DMA 1)", skd_reserved_isr },
3895 { "(DMA 2)", skd_reserved_isr },
3896 { "(DMA 3)", skd_reserved_isr },
3897 { "(State Change)", skd_statec_isr },
3898 { "(COMPL_Q)", skd_comp_q },
3899 { "(MSG)", skd_msg_isr },
3900 { "(Reserved)", skd_reserved_isr },
3901 { "(Reserved)", skd_reserved_isr },
3902 { "(Queue Full 0)", skd_qfull_isr },
3903 { "(Queue Full 1)", skd_qfull_isr },
3904 { "(Queue Full 2)", skd_qfull_isr },
3905 { "(Queue Full 3)", skd_qfull_isr },
3908 static void skd_release_msix(struct skd_device *skdev)
3910 struct skd_msix_entry *qentry;
3911 int i;
3913 if (skdev->msix_entries == NULL)
3914 return;
3915 for (i = 0; i < skdev->msix_count; i++) {
3916 qentry = &skdev->msix_entries[i];
3917 skdev = qentry->rsp;
3919 if (qentry->have_irq)
3920 devm_free_irq(&skdev->pdev->dev,
3921 qentry->vector, qentry->rsp);
3923 pci_disable_msix(skdev->pdev);
3924 kfree(skdev->msix_entries);
3925 skdev->msix_count = 0;
3926 skdev->msix_entries = NULL;
3929 static int skd_acquire_msix(struct skd_device *skdev)
3931 int i, rc;
3932 struct pci_dev *pdev;
3933 struct msix_entry *entries = NULL;
3934 struct skd_msix_entry *qentry;
3936 pdev = skdev->pdev;
3937 skdev->msix_count = SKD_MAX_MSIX_COUNT;
3938 entries = kzalloc(sizeof(struct msix_entry) * SKD_MAX_MSIX_COUNT,
3939 GFP_KERNEL);
3940 if (!entries)
3941 return -ENOMEM;
3943 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++)
3944 entries[i].entry = i;
3946 rc = pci_enable_msix(pdev, entries, SKD_MAX_MSIX_COUNT);
3947 if (rc < 0)
3948 goto msix_out;
3949 if (rc) {
3950 if (rc < SKD_MIN_MSIX_COUNT) {
3951 pr_err("(%s): failed to enable MSI-X %d\n",
3952 skd_name(skdev), rc);
3953 goto msix_out;
3955 pr_debug("%s:%s:%d %s: <%s> allocated %d MSI-X vectors\n",
3956 skdev->name, __func__, __LINE__,
3957 pci_name(pdev), skdev->name, rc);
3959 skdev->msix_count = rc;
3960 rc = pci_enable_msix(pdev, entries, skdev->msix_count);
3961 if (rc) {
3962 pr_err("(%s): failed to enable MSI-X "
3963 "support (%d) %d\n",
3964 skd_name(skdev), skdev->msix_count, rc);
3965 goto msix_out;
3968 skdev->msix_entries = kzalloc(sizeof(struct skd_msix_entry) *
3969 skdev->msix_count, GFP_KERNEL);
3970 if (!skdev->msix_entries) {
3971 rc = -ENOMEM;
3972 skdev->msix_count = 0;
3973 pr_err("(%s): msix table allocation error\n",
3974 skd_name(skdev));
3975 goto msix_out;
3978 qentry = skdev->msix_entries;
3979 for (i = 0; i < skdev->msix_count; i++) {
3980 qentry->vector = entries[i].vector;
3981 qentry->entry = entries[i].entry;
3982 qentry->rsp = NULL;
3983 qentry->have_irq = 0;
3984 pr_debug("%s:%s:%d %s: <%s> msix (%d) vec %d, entry %x\n",
3985 skdev->name, __func__, __LINE__,
3986 pci_name(pdev), skdev->name,
3987 i, qentry->vector, qentry->entry);
3988 qentry++;
3991 /* Enable MSI-X vectors for the base queue */
3992 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
3993 qentry = &skdev->msix_entries[i];
3994 snprintf(qentry->isr_name, sizeof(qentry->isr_name),
3995 "%s%d-msix %s", DRV_NAME, skdev->devno,
3996 msix_entries[i].name);
3997 rc = devm_request_irq(&skdev->pdev->dev, qentry->vector,
3998 msix_entries[i].handler, 0,
3999 qentry->isr_name, skdev);
4000 if (rc) {
4001 pr_err("(%s): Unable to register(%d) MSI-X "
4002 "handler %d: %s\n",
4003 skd_name(skdev), rc, i, qentry->isr_name);
4004 goto msix_out;
4005 } else {
4006 qentry->have_irq = 1;
4007 qentry->rsp = skdev;
4010 pr_debug("%s:%s:%d %s: <%s> msix %d irq(s) enabled\n",
4011 skdev->name, __func__, __LINE__,
4012 pci_name(pdev), skdev->name, skdev->msix_count);
4013 return 0;
4015 msix_out:
4016 if (entries)
4017 kfree(entries);
4018 skd_release_msix(skdev);
4019 return rc;
4022 static int skd_acquire_irq(struct skd_device *skdev)
4024 int rc;
4025 struct pci_dev *pdev;
4027 pdev = skdev->pdev;
4028 skdev->msix_count = 0;
4030 RETRY_IRQ_TYPE:
4031 switch (skdev->irq_type) {
4032 case SKD_IRQ_MSIX:
4033 rc = skd_acquire_msix(skdev);
4034 if (!rc)
4035 pr_info("(%s): MSI-X %d irqs enabled\n",
4036 skd_name(skdev), skdev->msix_count);
4037 else {
4038 pr_err(
4039 "(%s): failed to enable MSI-X, re-trying with MSI %d\n",
4040 skd_name(skdev), rc);
4041 skdev->irq_type = SKD_IRQ_MSI;
4042 goto RETRY_IRQ_TYPE;
4044 break;
4045 case SKD_IRQ_MSI:
4046 snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d-msi",
4047 DRV_NAME, skdev->devno);
4048 rc = pci_enable_msi(pdev);
4049 if (!rc) {
4050 rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr, 0,
4051 skdev->isr_name, skdev);
4052 if (rc) {
4053 pci_disable_msi(pdev);
4054 pr_err(
4055 "(%s): failed to allocate the MSI interrupt %d\n",
4056 skd_name(skdev), rc);
4057 goto RETRY_IRQ_LEGACY;
4059 pr_info("(%s): MSI irq %d enabled\n",
4060 skd_name(skdev), pdev->irq);
4061 } else {
4062 RETRY_IRQ_LEGACY:
4063 pr_err(
4064 "(%s): failed to enable MSI, re-trying with LEGACY %d\n",
4065 skd_name(skdev), rc);
4066 skdev->irq_type = SKD_IRQ_LEGACY;
4067 goto RETRY_IRQ_TYPE;
4069 break;
4070 case SKD_IRQ_LEGACY:
4071 snprintf(skdev->isr_name, sizeof(skdev->isr_name),
4072 "%s%d-legacy", DRV_NAME, skdev->devno);
4073 rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
4074 IRQF_SHARED, skdev->isr_name, skdev);
4075 if (!rc)
4076 pr_info("(%s): LEGACY irq %d enabled\n",
4077 skd_name(skdev), pdev->irq);
4078 else
4079 pr_err("(%s): request LEGACY irq error %d\n",
4080 skd_name(skdev), rc);
4081 break;
4082 default:
4083 pr_info("(%s): irq_type %d invalid, re-set to %d\n",
4084 skd_name(skdev), skdev->irq_type, SKD_IRQ_DEFAULT);
4085 skdev->irq_type = SKD_IRQ_LEGACY;
4086 goto RETRY_IRQ_TYPE;
4088 return rc;
4091 static void skd_release_irq(struct skd_device *skdev)
4093 switch (skdev->irq_type) {
4094 case SKD_IRQ_MSIX:
4095 skd_release_msix(skdev);
4096 break;
4097 case SKD_IRQ_MSI:
4098 devm_free_irq(&skdev->pdev->dev, skdev->pdev->irq, skdev);
4099 pci_disable_msi(skdev->pdev);
4100 break;
4101 case SKD_IRQ_LEGACY:
4102 devm_free_irq(&skdev->pdev->dev, skdev->pdev->irq, skdev);
4103 break;
4104 default:
4105 pr_err("(%s): wrong irq type %d!",
4106 skd_name(skdev), skdev->irq_type);
4107 break;
4112 *****************************************************************************
4113 * CONSTRUCT
4114 *****************************************************************************
4117 static int skd_cons_skcomp(struct skd_device *skdev)
4119 int rc = 0;
4120 struct fit_completion_entry_v1 *skcomp;
4121 u32 nbytes;
4123 nbytes = sizeof(*skcomp) * SKD_N_COMPLETION_ENTRY;
4124 nbytes += sizeof(struct fit_comp_error_info) * SKD_N_COMPLETION_ENTRY;
4126 pr_debug("%s:%s:%d comp pci_alloc, total bytes %d entries %d\n",
4127 skdev->name, __func__, __LINE__,
4128 nbytes, SKD_N_COMPLETION_ENTRY);
4130 skcomp = pci_alloc_consistent(skdev->pdev, nbytes,
4131 &skdev->cq_dma_address);
4133 if (skcomp == NULL) {
4134 rc = -ENOMEM;
4135 goto err_out;
4138 memset(skcomp, 0, nbytes);
4140 skdev->skcomp_table = skcomp;
4141 skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
4142 sizeof(*skcomp) *
4143 SKD_N_COMPLETION_ENTRY);
4145 err_out:
4146 return rc;
4149 static int skd_cons_skmsg(struct skd_device *skdev)
4151 int rc = 0;
4152 u32 i;
4154 pr_debug("%s:%s:%d skmsg_table kzalloc, struct %lu, count %u total %lu\n",
4155 skdev->name, __func__, __LINE__,
4156 sizeof(struct skd_fitmsg_context),
4157 skdev->num_fitmsg_context,
4158 sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
4160 skdev->skmsg_table = kzalloc(sizeof(struct skd_fitmsg_context)
4161 *skdev->num_fitmsg_context, GFP_KERNEL);
4162 if (skdev->skmsg_table == NULL) {
4163 rc = -ENOMEM;
4164 goto err_out;
4167 for (i = 0; i < skdev->num_fitmsg_context; i++) {
4168 struct skd_fitmsg_context *skmsg;
4170 skmsg = &skdev->skmsg_table[i];
4172 skmsg->id = i + SKD_ID_FIT_MSG;
4174 skmsg->state = SKD_MSG_STATE_IDLE;
4175 skmsg->msg_buf = pci_alloc_consistent(skdev->pdev,
4176 SKD_N_FITMSG_BYTES + 64,
4177 &skmsg->mb_dma_address);
4179 if (skmsg->msg_buf == NULL) {
4180 rc = -ENOMEM;
4181 goto err_out;
4184 skmsg->offset = (u32)((u64)skmsg->msg_buf &
4185 (~FIT_QCMD_BASE_ADDRESS_MASK));
4186 skmsg->msg_buf += ~FIT_QCMD_BASE_ADDRESS_MASK;
4187 skmsg->msg_buf = (u8 *)((u64)skmsg->msg_buf &
4188 FIT_QCMD_BASE_ADDRESS_MASK);
4189 skmsg->mb_dma_address += ~FIT_QCMD_BASE_ADDRESS_MASK;
4190 skmsg->mb_dma_address &= FIT_QCMD_BASE_ADDRESS_MASK;
4191 memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
4193 skmsg->next = &skmsg[1];
4196 /* Free list is in order starting with the 0th entry. */
4197 skdev->skmsg_table[i - 1].next = NULL;
4198 skdev->skmsg_free_list = skdev->skmsg_table;
4200 err_out:
4201 return rc;
4204 static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
4205 u32 n_sg,
4206 dma_addr_t *ret_dma_addr)
4208 struct fit_sg_descriptor *sg_list;
4209 u32 nbytes;
4211 nbytes = sizeof(*sg_list) * n_sg;
4213 sg_list = pci_alloc_consistent(skdev->pdev, nbytes, ret_dma_addr);
4215 if (sg_list != NULL) {
4216 uint64_t dma_address = *ret_dma_addr;
4217 u32 i;
4219 memset(sg_list, 0, nbytes);
4221 for (i = 0; i < n_sg - 1; i++) {
4222 uint64_t ndp_off;
4223 ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
4225 sg_list[i].next_desc_ptr = dma_address + ndp_off;
4227 sg_list[i].next_desc_ptr = 0LL;
4230 return sg_list;
4233 static int skd_cons_skreq(struct skd_device *skdev)
4235 int rc = 0;
4236 u32 i;
4238 pr_debug("%s:%s:%d skreq_table kzalloc, struct %lu, count %u total %lu\n",
4239 skdev->name, __func__, __LINE__,
4240 sizeof(struct skd_request_context),
4241 skdev->num_req_context,
4242 sizeof(struct skd_request_context) * skdev->num_req_context);
4244 skdev->skreq_table = kzalloc(sizeof(struct skd_request_context)
4245 * skdev->num_req_context, GFP_KERNEL);
4246 if (skdev->skreq_table == NULL) {
4247 rc = -ENOMEM;
4248 goto err_out;
4251 pr_debug("%s:%s:%d alloc sg_table sg_per_req %u scatlist %lu total %lu\n",
4252 skdev->name, __func__, __LINE__,
4253 skdev->sgs_per_request, sizeof(struct scatterlist),
4254 skdev->sgs_per_request * sizeof(struct scatterlist));
4256 for (i = 0; i < skdev->num_req_context; i++) {
4257 struct skd_request_context *skreq;
4259 skreq = &skdev->skreq_table[i];
4261 skreq->id = i + SKD_ID_RW_REQUEST;
4262 skreq->state = SKD_REQ_STATE_IDLE;
4264 skreq->sg = kzalloc(sizeof(struct scatterlist) *
4265 skdev->sgs_per_request, GFP_KERNEL);
4266 if (skreq->sg == NULL) {
4267 rc = -ENOMEM;
4268 goto err_out;
4270 sg_init_table(skreq->sg, skdev->sgs_per_request);
4272 skreq->sksg_list = skd_cons_sg_list(skdev,
4273 skdev->sgs_per_request,
4274 &skreq->sksg_dma_address);
4276 if (skreq->sksg_list == NULL) {
4277 rc = -ENOMEM;
4278 goto err_out;
4281 skreq->next = &skreq[1];
4284 /* Free list is in order starting with the 0th entry. */
4285 skdev->skreq_table[i - 1].next = NULL;
4286 skdev->skreq_free_list = skdev->skreq_table;
4288 err_out:
4289 return rc;
4292 static int skd_cons_skspcl(struct skd_device *skdev)
4294 int rc = 0;
4295 u32 i, nbytes;
4297 pr_debug("%s:%s:%d skspcl_table kzalloc, struct %lu, count %u total %lu\n",
4298 skdev->name, __func__, __LINE__,
4299 sizeof(struct skd_special_context),
4300 skdev->n_special,
4301 sizeof(struct skd_special_context) * skdev->n_special);
4303 skdev->skspcl_table = kzalloc(sizeof(struct skd_special_context)
4304 * skdev->n_special, GFP_KERNEL);
4305 if (skdev->skspcl_table == NULL) {
4306 rc = -ENOMEM;
4307 goto err_out;
4310 for (i = 0; i < skdev->n_special; i++) {
4311 struct skd_special_context *skspcl;
4313 skspcl = &skdev->skspcl_table[i];
4315 skspcl->req.id = i + SKD_ID_SPECIAL_REQUEST;
4316 skspcl->req.state = SKD_REQ_STATE_IDLE;
4318 skspcl->req.next = &skspcl[1].req;
4320 nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
4322 skspcl->msg_buf = pci_alloc_consistent(skdev->pdev, nbytes,
4323 &skspcl->mb_dma_address);
4324 if (skspcl->msg_buf == NULL) {
4325 rc = -ENOMEM;
4326 goto err_out;
4329 memset(skspcl->msg_buf, 0, nbytes);
4331 skspcl->req.sg = kzalloc(sizeof(struct scatterlist) *
4332 SKD_N_SG_PER_SPECIAL, GFP_KERNEL);
4333 if (skspcl->req.sg == NULL) {
4334 rc = -ENOMEM;
4335 goto err_out;
4338 skspcl->req.sksg_list = skd_cons_sg_list(skdev,
4339 SKD_N_SG_PER_SPECIAL,
4340 &skspcl->req.
4341 sksg_dma_address);
4342 if (skspcl->req.sksg_list == NULL) {
4343 rc = -ENOMEM;
4344 goto err_out;
4348 /* Free list is in order starting with the 0th entry. */
4349 skdev->skspcl_table[i - 1].req.next = NULL;
4350 skdev->skspcl_free_list = skdev->skspcl_table;
4352 return rc;
4354 err_out:
4355 return rc;
4358 static int skd_cons_sksb(struct skd_device *skdev)
4360 int rc = 0;
4361 struct skd_special_context *skspcl;
4362 u32 nbytes;
4364 skspcl = &skdev->internal_skspcl;
4366 skspcl->req.id = 0 + SKD_ID_INTERNAL;
4367 skspcl->req.state = SKD_REQ_STATE_IDLE;
4369 nbytes = SKD_N_INTERNAL_BYTES;
4371 skspcl->data_buf = pci_alloc_consistent(skdev->pdev, nbytes,
4372 &skspcl->db_dma_address);
4373 if (skspcl->data_buf == NULL) {
4374 rc = -ENOMEM;
4375 goto err_out;
4378 memset(skspcl->data_buf, 0, nbytes);
4380 nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
4381 skspcl->msg_buf = pci_alloc_consistent(skdev->pdev, nbytes,
4382 &skspcl->mb_dma_address);
4383 if (skspcl->msg_buf == NULL) {
4384 rc = -ENOMEM;
4385 goto err_out;
4388 memset(skspcl->msg_buf, 0, nbytes);
4390 skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
4391 &skspcl->req.sksg_dma_address);
4392 if (skspcl->req.sksg_list == NULL) {
4393 rc = -ENOMEM;
4394 goto err_out;
4397 if (!skd_format_internal_skspcl(skdev)) {
4398 rc = -EINVAL;
4399 goto err_out;
4402 err_out:
4403 return rc;
4406 static int skd_cons_disk(struct skd_device *skdev)
4408 int rc = 0;
4409 struct gendisk *disk;
4410 struct request_queue *q;
4411 unsigned long flags;
4413 disk = alloc_disk(SKD_MINORS_PER_DEVICE);
4414 if (!disk) {
4415 rc = -ENOMEM;
4416 goto err_out;
4419 skdev->disk = disk;
4420 sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
4422 disk->major = skdev->major;
4423 disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
4424 disk->fops = &skd_blockdev_ops;
4425 disk->private_data = skdev;
4427 q = blk_init_queue(skd_request_fn, &skdev->lock);
4428 if (!q) {
4429 rc = -ENOMEM;
4430 goto err_out;
4433 skdev->queue = q;
4434 disk->queue = q;
4435 q->queuedata = skdev;
4437 blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
4438 blk_queue_max_segments(q, skdev->sgs_per_request);
4439 blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
4441 /* set sysfs ptimal_io_size to 8K */
4442 blk_queue_io_opt(q, 8192);
4444 /* DISCARD Flag initialization. */
4445 q->limits.discard_granularity = 8192;
4446 q->limits.discard_alignment = 0;
4447 q->limits.max_discard_sectors = UINT_MAX >> 9;
4448 q->limits.discard_zeroes_data = 1;
4449 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
4450 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
4452 spin_lock_irqsave(&skdev->lock, flags);
4453 pr_debug("%s:%s:%d stopping %s queue\n",
4454 skdev->name, __func__, __LINE__, skdev->name);
4455 blk_stop_queue(skdev->queue);
4456 spin_unlock_irqrestore(&skdev->lock, flags);
4458 err_out:
4459 return rc;
4462 #define SKD_N_DEV_TABLE 16u
4463 static u32 skd_next_devno;
4465 static struct skd_device *skd_construct(struct pci_dev *pdev)
4467 struct skd_device *skdev;
4468 int blk_major = skd_major;
4469 int rc;
4471 skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
4473 if (!skdev) {
4474 pr_err(PFX "(%s): memory alloc failure\n",
4475 pci_name(pdev));
4476 return NULL;
4479 skdev->state = SKD_DRVR_STATE_LOAD;
4480 skdev->pdev = pdev;
4481 skdev->devno = skd_next_devno++;
4482 skdev->major = blk_major;
4483 skdev->irq_type = skd_isr_type;
4484 sprintf(skdev->name, DRV_NAME "%d", skdev->devno);
4485 skdev->dev_max_queue_depth = 0;
4487 skdev->num_req_context = skd_max_queue_depth;
4488 skdev->num_fitmsg_context = skd_max_queue_depth;
4489 skdev->n_special = skd_max_pass_thru;
4490 skdev->cur_max_queue_depth = 1;
4491 skdev->queue_low_water_mark = 1;
4492 skdev->proto_ver = 99;
4493 skdev->sgs_per_request = skd_sgs_per_request;
4494 skdev->dbg_level = skd_dbg_level;
4496 atomic_set(&skdev->device_count, 0);
4498 spin_lock_init(&skdev->lock);
4500 INIT_WORK(&skdev->completion_worker, skd_completion_worker);
4502 pr_debug("%s:%s:%d skcomp\n", skdev->name, __func__, __LINE__);
4503 rc = skd_cons_skcomp(skdev);
4504 if (rc < 0)
4505 goto err_out;
4507 pr_debug("%s:%s:%d skmsg\n", skdev->name, __func__, __LINE__);
4508 rc = skd_cons_skmsg(skdev);
4509 if (rc < 0)
4510 goto err_out;
4512 pr_debug("%s:%s:%d skreq\n", skdev->name, __func__, __LINE__);
4513 rc = skd_cons_skreq(skdev);
4514 if (rc < 0)
4515 goto err_out;
4517 pr_debug("%s:%s:%d skspcl\n", skdev->name, __func__, __LINE__);
4518 rc = skd_cons_skspcl(skdev);
4519 if (rc < 0)
4520 goto err_out;
4522 pr_debug("%s:%s:%d sksb\n", skdev->name, __func__, __LINE__);
4523 rc = skd_cons_sksb(skdev);
4524 if (rc < 0)
4525 goto err_out;
4527 pr_debug("%s:%s:%d disk\n", skdev->name, __func__, __LINE__);
4528 rc = skd_cons_disk(skdev);
4529 if (rc < 0)
4530 goto err_out;
4532 pr_debug("%s:%s:%d VICTORY\n", skdev->name, __func__, __LINE__);
4533 return skdev;
4535 err_out:
4536 pr_debug("%s:%s:%d construct failed\n",
4537 skdev->name, __func__, __LINE__);
4538 skd_destruct(skdev);
4539 return NULL;
4543 *****************************************************************************
4544 * DESTRUCT (FREE)
4545 *****************************************************************************
4548 static void skd_free_skcomp(struct skd_device *skdev)
4550 if (skdev->skcomp_table != NULL) {
4551 u32 nbytes;
4553 nbytes = sizeof(skdev->skcomp_table[0]) *
4554 SKD_N_COMPLETION_ENTRY;
4555 pci_free_consistent(skdev->pdev, nbytes,
4556 skdev->skcomp_table, skdev->cq_dma_address);
4559 skdev->skcomp_table = NULL;
4560 skdev->cq_dma_address = 0;
4563 static void skd_free_skmsg(struct skd_device *skdev)
4565 u32 i;
4567 if (skdev->skmsg_table == NULL)
4568 return;
4570 for (i = 0; i < skdev->num_fitmsg_context; i++) {
4571 struct skd_fitmsg_context *skmsg;
4573 skmsg = &skdev->skmsg_table[i];
4575 if (skmsg->msg_buf != NULL) {
4576 skmsg->msg_buf += skmsg->offset;
4577 skmsg->mb_dma_address += skmsg->offset;
4578 pci_free_consistent(skdev->pdev, SKD_N_FITMSG_BYTES,
4579 skmsg->msg_buf,
4580 skmsg->mb_dma_address);
4582 skmsg->msg_buf = NULL;
4583 skmsg->mb_dma_address = 0;
4586 kfree(skdev->skmsg_table);
4587 skdev->skmsg_table = NULL;
4590 static void skd_free_sg_list(struct skd_device *skdev,
4591 struct fit_sg_descriptor *sg_list,
4592 u32 n_sg, dma_addr_t dma_addr)
4594 if (sg_list != NULL) {
4595 u32 nbytes;
4597 nbytes = sizeof(*sg_list) * n_sg;
4599 pci_free_consistent(skdev->pdev, nbytes, sg_list, dma_addr);
4603 static void skd_free_skreq(struct skd_device *skdev)
4605 u32 i;
4607 if (skdev->skreq_table == NULL)
4608 return;
4610 for (i = 0; i < skdev->num_req_context; i++) {
4611 struct skd_request_context *skreq;
4613 skreq = &skdev->skreq_table[i];
4615 skd_free_sg_list(skdev, skreq->sksg_list,
4616 skdev->sgs_per_request,
4617 skreq->sksg_dma_address);
4619 skreq->sksg_list = NULL;
4620 skreq->sksg_dma_address = 0;
4622 kfree(skreq->sg);
4625 kfree(skdev->skreq_table);
4626 skdev->skreq_table = NULL;
4629 static void skd_free_skspcl(struct skd_device *skdev)
4631 u32 i;
4632 u32 nbytes;
4634 if (skdev->skspcl_table == NULL)
4635 return;
4637 for (i = 0; i < skdev->n_special; i++) {
4638 struct skd_special_context *skspcl;
4640 skspcl = &skdev->skspcl_table[i];
4642 if (skspcl->msg_buf != NULL) {
4643 nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
4644 pci_free_consistent(skdev->pdev, nbytes,
4645 skspcl->msg_buf,
4646 skspcl->mb_dma_address);
4649 skspcl->msg_buf = NULL;
4650 skspcl->mb_dma_address = 0;
4652 skd_free_sg_list(skdev, skspcl->req.sksg_list,
4653 SKD_N_SG_PER_SPECIAL,
4654 skspcl->req.sksg_dma_address);
4656 skspcl->req.sksg_list = NULL;
4657 skspcl->req.sksg_dma_address = 0;
4659 kfree(skspcl->req.sg);
4662 kfree(skdev->skspcl_table);
4663 skdev->skspcl_table = NULL;
4666 static void skd_free_sksb(struct skd_device *skdev)
4668 struct skd_special_context *skspcl;
4669 u32 nbytes;
4671 skspcl = &skdev->internal_skspcl;
4673 if (skspcl->data_buf != NULL) {
4674 nbytes = SKD_N_INTERNAL_BYTES;
4676 pci_free_consistent(skdev->pdev, nbytes,
4677 skspcl->data_buf, skspcl->db_dma_address);
4680 skspcl->data_buf = NULL;
4681 skspcl->db_dma_address = 0;
4683 if (skspcl->msg_buf != NULL) {
4684 nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
4685 pci_free_consistent(skdev->pdev, nbytes,
4686 skspcl->msg_buf, skspcl->mb_dma_address);
4689 skspcl->msg_buf = NULL;
4690 skspcl->mb_dma_address = 0;
4692 skd_free_sg_list(skdev, skspcl->req.sksg_list, 1,
4693 skspcl->req.sksg_dma_address);
4695 skspcl->req.sksg_list = NULL;
4696 skspcl->req.sksg_dma_address = 0;
4699 static void skd_free_disk(struct skd_device *skdev)
4701 struct gendisk *disk = skdev->disk;
4703 if (disk != NULL) {
4704 struct request_queue *q = disk->queue;
4706 if (disk->flags & GENHD_FL_UP)
4707 del_gendisk(disk);
4708 if (q)
4709 blk_cleanup_queue(q);
4710 put_disk(disk);
4712 skdev->disk = NULL;
4715 static void skd_destruct(struct skd_device *skdev)
4717 if (skdev == NULL)
4718 return;
4721 pr_debug("%s:%s:%d disk\n", skdev->name, __func__, __LINE__);
4722 skd_free_disk(skdev);
4724 pr_debug("%s:%s:%d sksb\n", skdev->name, __func__, __LINE__);
4725 skd_free_sksb(skdev);
4727 pr_debug("%s:%s:%d skspcl\n", skdev->name, __func__, __LINE__);
4728 skd_free_skspcl(skdev);
4730 pr_debug("%s:%s:%d skreq\n", skdev->name, __func__, __LINE__);
4731 skd_free_skreq(skdev);
4733 pr_debug("%s:%s:%d skmsg\n", skdev->name, __func__, __LINE__);
4734 skd_free_skmsg(skdev);
4736 pr_debug("%s:%s:%d skcomp\n", skdev->name, __func__, __LINE__);
4737 skd_free_skcomp(skdev);
4739 pr_debug("%s:%s:%d skdev\n", skdev->name, __func__, __LINE__);
4740 kfree(skdev);
4744 *****************************************************************************
4745 * BLOCK DEVICE (BDEV) GLUE
4746 *****************************************************************************
4749 static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4751 struct skd_device *skdev;
4752 u64 capacity;
4754 skdev = bdev->bd_disk->private_data;
4756 pr_debug("%s:%s:%d %s: CMD[%s] getgeo device\n",
4757 skdev->name, __func__, __LINE__,
4758 bdev->bd_disk->disk_name, current->comm);
4760 if (skdev->read_cap_is_valid) {
4761 capacity = get_capacity(skdev->disk);
4762 geo->heads = 64;
4763 geo->sectors = 255;
4764 geo->cylinders = (capacity) / (255 * 64);
4766 return 0;
4768 return -EIO;
4771 static int skd_bdev_attach(struct skd_device *skdev)
4773 pr_debug("%s:%s:%d add_disk\n", skdev->name, __func__, __LINE__);
4774 add_disk(skdev->disk);
4775 return 0;
4778 static const struct block_device_operations skd_blockdev_ops = {
4779 .owner = THIS_MODULE,
4780 .ioctl = skd_bdev_ioctl,
4781 .getgeo = skd_bdev_getgeo,
4786 *****************************************************************************
4787 * PCIe DRIVER GLUE
4788 *****************************************************************************
4791 static DEFINE_PCI_DEVICE_TABLE(skd_pci_tbl) = {
4792 { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
4793 PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
4794 { 0 } /* terminate list */
4797 MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
4799 static char *skd_pci_info(struct skd_device *skdev, char *str)
4801 int pcie_reg;
4803 strcpy(str, "PCIe (");
4804 pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
4806 if (pcie_reg) {
4808 char lwstr[6];
4809 uint16_t pcie_lstat, lspeed, lwidth;
4811 pcie_reg += 0x12;
4812 pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
4813 lspeed = pcie_lstat & (0xF);
4814 lwidth = (pcie_lstat & 0x3F0) >> 4;
4816 if (lspeed == 1)
4817 strcat(str, "2.5GT/s ");
4818 else if (lspeed == 2)
4819 strcat(str, "5.0GT/s ");
4820 else
4821 strcat(str, "<unknown> ");
4822 snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
4823 strcat(str, lwstr);
4825 return str;
4828 static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4830 int i;
4831 int rc = 0;
4832 char pci_str[32];
4833 struct skd_device *skdev;
4835 pr_info("STEC s1120 Driver(%s) version %s-b%s\n",
4836 DRV_NAME, DRV_VERSION, DRV_BUILD_ID);
4837 pr_info("(skd?:??:[%s]): vendor=%04X device=%04x\n",
4838 pci_name(pdev), pdev->vendor, pdev->device);
4840 rc = pci_enable_device(pdev);
4841 if (rc)
4842 return rc;
4843 rc = pci_request_regions(pdev, DRV_NAME);
4844 if (rc)
4845 goto err_out;
4846 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4847 if (!rc) {
4848 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
4850 pr_err("(%s): consistent DMA mask error %d\n",
4851 pci_name(pdev), rc);
4853 } else {
4854 (rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)));
4855 if (rc) {
4857 pr_err("(%s): DMA mask error %d\n",
4858 pci_name(pdev), rc);
4859 goto err_out_regions;
4863 if (!skd_major) {
4864 rc = register_blkdev(0, DRV_NAME);
4865 if (rc < 0)
4866 goto err_out_regions;
4867 BUG_ON(!rc);
4868 skd_major = rc;
4871 skdev = skd_construct(pdev);
4872 if (skdev == NULL) {
4873 rc = -ENOMEM;
4874 goto err_out_regions;
4877 skd_pci_info(skdev, pci_str);
4878 pr_info("(%s): %s 64bit\n", skd_name(skdev), pci_str);
4880 pci_set_master(pdev);
4881 rc = pci_enable_pcie_error_reporting(pdev);
4882 if (rc) {
4883 pr_err(
4884 "(%s): bad enable of PCIe error reporting rc=%d\n",
4885 skd_name(skdev), rc);
4886 skdev->pcie_error_reporting_is_enabled = 0;
4887 } else
4888 skdev->pcie_error_reporting_is_enabled = 1;
4891 pci_set_drvdata(pdev, skdev);
4893 skdev->disk->driverfs_dev = &pdev->dev;
4895 for (i = 0; i < SKD_MAX_BARS; i++) {
4896 skdev->mem_phys[i] = pci_resource_start(pdev, i);
4897 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
4898 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
4899 skdev->mem_size[i]);
4900 if (!skdev->mem_map[i]) {
4901 pr_err("(%s): Unable to map adapter memory!\n",
4902 skd_name(skdev));
4903 rc = -ENODEV;
4904 goto err_out_iounmap;
4906 pr_debug("%s:%s:%d mem_map=%p, phyd=%016llx, size=%d\n",
4907 skdev->name, __func__, __LINE__,
4908 skdev->mem_map[i],
4909 (uint64_t)skdev->mem_phys[i], skdev->mem_size[i]);
4912 rc = skd_acquire_irq(skdev);
4913 if (rc) {
4914 pr_err("(%s): interrupt resource error %d\n",
4915 skd_name(skdev), rc);
4916 goto err_out_iounmap;
4919 rc = skd_start_timer(skdev);
4920 if (rc)
4921 goto err_out_timer;
4923 init_waitqueue_head(&skdev->waitq);
4925 skd_start_device(skdev);
4927 rc = wait_event_interruptible_timeout(skdev->waitq,
4928 (skdev->gendisk_on),
4929 (SKD_START_WAIT_SECONDS * HZ));
4930 if (skdev->gendisk_on > 0) {
4931 /* device came on-line after reset */
4932 skd_bdev_attach(skdev);
4933 rc = 0;
4934 } else {
4935 /* we timed out, something is wrong with the device,
4936 don't add the disk structure */
4937 pr_err(
4938 "(%s): error: waiting for s1120 timed out %d!\n",
4939 skd_name(skdev), rc);
4940 /* in case of no error; we timeout with ENXIO */
4941 if (!rc)
4942 rc = -ENXIO;
4943 goto err_out_timer;
4947 #ifdef SKD_VMK_POLL_HANDLER
4948 if (skdev->irq_type == SKD_IRQ_MSIX) {
4949 /* MSIX completion handler is being used for coredump */
4950 vmklnx_scsi_register_poll_handler(skdev->scsi_host,
4951 skdev->msix_entries[5].vector,
4952 skd_comp_q, skdev);
4953 } else {
4954 vmklnx_scsi_register_poll_handler(skdev->scsi_host,
4955 skdev->pdev->irq, skd_isr,
4956 skdev);
4958 #endif /* SKD_VMK_POLL_HANDLER */
4960 return rc;
4962 err_out_timer:
4963 skd_stop_device(skdev);
4964 skd_release_irq(skdev);
4966 err_out_iounmap:
4967 for (i = 0; i < SKD_MAX_BARS; i++)
4968 if (skdev->mem_map[i])
4969 iounmap(skdev->mem_map[i]);
4971 if (skdev->pcie_error_reporting_is_enabled)
4972 pci_disable_pcie_error_reporting(pdev);
4974 skd_destruct(skdev);
4976 err_out_regions:
4977 pci_release_regions(pdev);
4979 err_out:
4980 pci_disable_device(pdev);
4981 pci_set_drvdata(pdev, NULL);
4982 return rc;
4985 static void skd_pci_remove(struct pci_dev *pdev)
4987 int i;
4988 struct skd_device *skdev;
4990 skdev = pci_get_drvdata(pdev);
4991 if (!skdev) {
4992 pr_err("%s: no device data for PCI\n", pci_name(pdev));
4993 return;
4995 skd_stop_device(skdev);
4996 skd_release_irq(skdev);
4998 for (i = 0; i < SKD_MAX_BARS; i++)
4999 if (skdev->mem_map[i])
5000 iounmap((u32 *)skdev->mem_map[i]);
5002 if (skdev->pcie_error_reporting_is_enabled)
5003 pci_disable_pcie_error_reporting(pdev);
5005 skd_destruct(skdev);
5007 pci_release_regions(pdev);
5008 pci_disable_device(pdev);
5009 pci_set_drvdata(pdev, NULL);
5011 return;
5014 static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
5016 int i;
5017 struct skd_device *skdev;
5019 skdev = pci_get_drvdata(pdev);
5020 if (!skdev) {
5021 pr_err("%s: no device data for PCI\n", pci_name(pdev));
5022 return -EIO;
5025 skd_stop_device(skdev);
5027 skd_release_irq(skdev);
5029 for (i = 0; i < SKD_MAX_BARS; i++)
5030 if (skdev->mem_map[i])
5031 iounmap((u32 *)skdev->mem_map[i]);
5033 if (skdev->pcie_error_reporting_is_enabled)
5034 pci_disable_pcie_error_reporting(pdev);
5036 pci_release_regions(pdev);
5037 pci_save_state(pdev);
5038 pci_disable_device(pdev);
5039 pci_set_power_state(pdev, pci_choose_state(pdev, state));
5040 return 0;
5043 static int skd_pci_resume(struct pci_dev *pdev)
5045 int i;
5046 int rc = 0;
5047 struct skd_device *skdev;
5049 skdev = pci_get_drvdata(pdev);
5050 if (!skdev) {
5051 pr_err("%s: no device data for PCI\n", pci_name(pdev));
5052 return -1;
5055 pci_set_power_state(pdev, PCI_D0);
5056 pci_enable_wake(pdev, PCI_D0, 0);
5057 pci_restore_state(pdev);
5059 rc = pci_enable_device(pdev);
5060 if (rc)
5061 return rc;
5062 rc = pci_request_regions(pdev, DRV_NAME);
5063 if (rc)
5064 goto err_out;
5065 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
5066 if (!rc) {
5067 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
5069 pr_err("(%s): consistent DMA mask error %d\n",
5070 pci_name(pdev), rc);
5072 } else {
5073 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5074 if (rc) {
5076 pr_err("(%s): DMA mask error %d\n",
5077 pci_name(pdev), rc);
5078 goto err_out_regions;
5082 pci_set_master(pdev);
5083 rc = pci_enable_pcie_error_reporting(pdev);
5084 if (rc) {
5085 pr_err("(%s): bad enable of PCIe error reporting rc=%d\n",
5086 skdev->name, rc);
5087 skdev->pcie_error_reporting_is_enabled = 0;
5088 } else
5089 skdev->pcie_error_reporting_is_enabled = 1;
5091 for (i = 0; i < SKD_MAX_BARS; i++) {
5093 skdev->mem_phys[i] = pci_resource_start(pdev, i);
5094 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
5095 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
5096 skdev->mem_size[i]);
5097 if (!skdev->mem_map[i]) {
5098 pr_err("(%s): Unable to map adapter memory!\n",
5099 skd_name(skdev));
5100 rc = -ENODEV;
5101 goto err_out_iounmap;
5103 pr_debug("%s:%s:%d mem_map=%p, phyd=%016llx, size=%d\n",
5104 skdev->name, __func__, __LINE__,
5105 skdev->mem_map[i],
5106 (uint64_t)skdev->mem_phys[i], skdev->mem_size[i]);
5108 rc = skd_acquire_irq(skdev);
5109 if (rc) {
5111 pr_err("(%s): interrupt resource error %d\n",
5112 pci_name(pdev), rc);
5113 goto err_out_iounmap;
5116 rc = skd_start_timer(skdev);
5117 if (rc)
5118 goto err_out_timer;
5120 init_waitqueue_head(&skdev->waitq);
5122 skd_start_device(skdev);
5124 return rc;
5126 err_out_timer:
5127 skd_stop_device(skdev);
5128 skd_release_irq(skdev);
5130 err_out_iounmap:
5131 for (i = 0; i < SKD_MAX_BARS; i++)
5132 if (skdev->mem_map[i])
5133 iounmap(skdev->mem_map[i]);
5135 if (skdev->pcie_error_reporting_is_enabled)
5136 pci_disable_pcie_error_reporting(pdev);
5138 err_out_regions:
5139 pci_release_regions(pdev);
5141 err_out:
5142 pci_disable_device(pdev);
5143 return rc;
5146 static void skd_pci_shutdown(struct pci_dev *pdev)
5148 struct skd_device *skdev;
5150 pr_err("skd_pci_shutdown called\n");
5152 skdev = pci_get_drvdata(pdev);
5153 if (!skdev) {
5154 pr_err("%s: no device data for PCI\n", pci_name(pdev));
5155 return;
5158 pr_err("%s: calling stop\n", skd_name(skdev));
5159 skd_stop_device(skdev);
5162 static struct pci_driver skd_driver = {
5163 .name = DRV_NAME,
5164 .id_table = skd_pci_tbl,
5165 .probe = skd_pci_probe,
5166 .remove = skd_pci_remove,
5167 .suspend = skd_pci_suspend,
5168 .resume = skd_pci_resume,
5169 .shutdown = skd_pci_shutdown,
5173 *****************************************************************************
5174 * LOGGING SUPPORT
5175 *****************************************************************************
5178 static const char *skd_name(struct skd_device *skdev)
5180 memset(skdev->id_str, 0, sizeof(skdev->id_str));
5182 if (skdev->inquiry_is_valid)
5183 snprintf(skdev->id_str, sizeof(skdev->id_str), "%s:%s:[%s]",
5184 skdev->name, skdev->inq_serial_num,
5185 pci_name(skdev->pdev));
5186 else
5187 snprintf(skdev->id_str, sizeof(skdev->id_str), "%s:??:[%s]",
5188 skdev->name, pci_name(skdev->pdev));
5190 return skdev->id_str;
5193 const char *skd_drive_state_to_str(int state)
5195 switch (state) {
5196 case FIT_SR_DRIVE_OFFLINE:
5197 return "OFFLINE";
5198 case FIT_SR_DRIVE_INIT:
5199 return "INIT";
5200 case FIT_SR_DRIVE_ONLINE:
5201 return "ONLINE";
5202 case FIT_SR_DRIVE_BUSY:
5203 return "BUSY";
5204 case FIT_SR_DRIVE_FAULT:
5205 return "FAULT";
5206 case FIT_SR_DRIVE_DEGRADED:
5207 return "DEGRADED";
5208 case FIT_SR_PCIE_LINK_DOWN:
5209 return "INK_DOWN";
5210 case FIT_SR_DRIVE_SOFT_RESET:
5211 return "SOFT_RESET";
5212 case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
5213 return "NEED_FW";
5214 case FIT_SR_DRIVE_INIT_FAULT:
5215 return "INIT_FAULT";
5216 case FIT_SR_DRIVE_BUSY_SANITIZE:
5217 return "BUSY_SANITIZE";
5218 case FIT_SR_DRIVE_BUSY_ERASE:
5219 return "BUSY_ERASE";
5220 case FIT_SR_DRIVE_FW_BOOTING:
5221 return "FW_BOOTING";
5222 default:
5223 return "???";
5227 const char *skd_skdev_state_to_str(enum skd_drvr_state state)
5229 switch (state) {
5230 case SKD_DRVR_STATE_LOAD:
5231 return "LOAD";
5232 case SKD_DRVR_STATE_IDLE:
5233 return "IDLE";
5234 case SKD_DRVR_STATE_BUSY:
5235 return "BUSY";
5236 case SKD_DRVR_STATE_STARTING:
5237 return "STARTING";
5238 case SKD_DRVR_STATE_ONLINE:
5239 return "ONLINE";
5240 case SKD_DRVR_STATE_PAUSING:
5241 return "PAUSING";
5242 case SKD_DRVR_STATE_PAUSED:
5243 return "PAUSED";
5244 case SKD_DRVR_STATE_DRAINING_TIMEOUT:
5245 return "DRAINING_TIMEOUT";
5246 case SKD_DRVR_STATE_RESTARTING:
5247 return "RESTARTING";
5248 case SKD_DRVR_STATE_RESUMING:
5249 return "RESUMING";
5250 case SKD_DRVR_STATE_STOPPING:
5251 return "STOPPING";
5252 case SKD_DRVR_STATE_SYNCING:
5253 return "SYNCING";
5254 case SKD_DRVR_STATE_FAULT:
5255 return "FAULT";
5256 case SKD_DRVR_STATE_DISAPPEARED:
5257 return "DISAPPEARED";
5258 case SKD_DRVR_STATE_BUSY_ERASE:
5259 return "BUSY_ERASE";
5260 case SKD_DRVR_STATE_BUSY_SANITIZE:
5261 return "BUSY_SANITIZE";
5262 case SKD_DRVR_STATE_BUSY_IMMINENT:
5263 return "BUSY_IMMINENT";
5264 case SKD_DRVR_STATE_WAIT_BOOT:
5265 return "WAIT_BOOT";
5267 default:
5268 return "???";
5272 static const char *skd_skmsg_state_to_str(enum skd_fit_msg_state state)
5274 switch (state) {
5275 case SKD_MSG_STATE_IDLE:
5276 return "IDLE";
5277 case SKD_MSG_STATE_BUSY:
5278 return "BUSY";
5279 default:
5280 return "???";
5284 static const char *skd_skreq_state_to_str(enum skd_req_state state)
5286 switch (state) {
5287 case SKD_REQ_STATE_IDLE:
5288 return "IDLE";
5289 case SKD_REQ_STATE_SETUP:
5290 return "SETUP";
5291 case SKD_REQ_STATE_BUSY:
5292 return "BUSY";
5293 case SKD_REQ_STATE_COMPLETED:
5294 return "COMPLETED";
5295 case SKD_REQ_STATE_TIMEOUT:
5296 return "TIMEOUT";
5297 case SKD_REQ_STATE_ABORTED:
5298 return "ABORTED";
5299 default:
5300 return "???";
5304 static void skd_log_skdev(struct skd_device *skdev, const char *event)
5306 pr_debug("%s:%s:%d (%s) skdev=%p event='%s'\n",
5307 skdev->name, __func__, __LINE__, skdev->name, skdev, event);
5308 pr_debug("%s:%s:%d drive_state=%s(%d) driver_state=%s(%d)\n",
5309 skdev->name, __func__, __LINE__,
5310 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
5311 skd_skdev_state_to_str(skdev->state), skdev->state);
5312 pr_debug("%s:%s:%d busy=%d limit=%d dev=%d lowat=%d\n",
5313 skdev->name, __func__, __LINE__,
5314 skdev->in_flight, skdev->cur_max_queue_depth,
5315 skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
5316 pr_debug("%s:%s:%d timestamp=0x%x cycle=%d cycle_ix=%d\n",
5317 skdev->name, __func__, __LINE__,
5318 skdev->timeout_stamp, skdev->skcomp_cycle, skdev->skcomp_ix);
5321 static void skd_log_skmsg(struct skd_device *skdev,
5322 struct skd_fitmsg_context *skmsg, const char *event)
5324 pr_debug("%s:%s:%d (%s) skmsg=%p event='%s'\n",
5325 skdev->name, __func__, __LINE__, skdev->name, skmsg, event);
5326 pr_debug("%s:%s:%d state=%s(%d) id=0x%04x length=%d\n",
5327 skdev->name, __func__, __LINE__,
5328 skd_skmsg_state_to_str(skmsg->state), skmsg->state,
5329 skmsg->id, skmsg->length);
5332 static void skd_log_skreq(struct skd_device *skdev,
5333 struct skd_request_context *skreq, const char *event)
5335 pr_debug("%s:%s:%d (%s) skreq=%p event='%s'\n",
5336 skdev->name, __func__, __LINE__, skdev->name, skreq, event);
5337 pr_debug("%s:%s:%d state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
5338 skdev->name, __func__, __LINE__,
5339 skd_skreq_state_to_str(skreq->state), skreq->state,
5340 skreq->id, skreq->fitmsg_id);
5341 pr_debug("%s:%s:%d timo=0x%x sg_dir=%d n_sg=%d\n",
5342 skdev->name, __func__, __LINE__,
5343 skreq->timeout_stamp, skreq->sg_data_dir, skreq->n_sg);
5345 if (skreq->req != NULL) {
5346 struct request *req = skreq->req;
5347 u32 lba = (u32)blk_rq_pos(req);
5348 u32 count = blk_rq_sectors(req);
5350 pr_debug("%s:%s:%d "
5351 "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n",
5352 skdev->name, __func__, __LINE__,
5353 req, lba, lba, count, count,
5354 (int)rq_data_dir(req));
5355 } else
5356 pr_debug("%s:%s:%d req=NULL\n",
5357 skdev->name, __func__, __LINE__);
5361 *****************************************************************************
5362 * MODULE GLUE
5363 *****************************************************************************
5366 static int __init skd_init(void)
5368 pr_info(PFX " v%s-b%s loaded\n", DRV_VERSION, DRV_BUILD_ID);
5370 switch (skd_isr_type) {
5371 case SKD_IRQ_LEGACY:
5372 case SKD_IRQ_MSI:
5373 case SKD_IRQ_MSIX:
5374 break;
5375 default:
5376 pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
5377 skd_isr_type, SKD_IRQ_DEFAULT);
5378 skd_isr_type = SKD_IRQ_DEFAULT;
5381 if (skd_max_queue_depth < 1 ||
5382 skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
5383 pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
5384 skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
5385 skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
5388 if (skd_max_req_per_msg < 1 || skd_max_req_per_msg > 14) {
5389 pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
5390 skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
5391 skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
5394 if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
5395 pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
5396 skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
5397 skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
5400 if (skd_dbg_level < 0 || skd_dbg_level > 2) {
5401 pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
5402 skd_dbg_level, 0);
5403 skd_dbg_level = 0;
5406 if (skd_isr_comp_limit < 0) {
5407 pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
5408 skd_isr_comp_limit, 0);
5409 skd_isr_comp_limit = 0;
5412 if (skd_max_pass_thru < 1 || skd_max_pass_thru > 50) {
5413 pr_err(PFX "skd_max_pass_thru %d invalid, re-set to %d\n",
5414 skd_max_pass_thru, SKD_N_SPECIAL_CONTEXT);
5415 skd_max_pass_thru = SKD_N_SPECIAL_CONTEXT;
5418 return pci_register_driver(&skd_driver);
5421 static void __exit skd_exit(void)
5423 pr_info(PFX " v%s-b%s unloading\n", DRV_VERSION, DRV_BUILD_ID);
5425 pci_unregister_driver(&skd_driver);
5427 if (skd_major)
5428 unregister_blkdev(skd_major, DRV_NAME);
5431 module_init(skd_init);
5432 module_exit(skd_exit);