Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux/fpc-iii.git] / drivers / mtd / devices / docg3.c
blobdd5e1018d37b39e9301c9c43e01195f4f363a66c
1 /*
2 * Handles the M-Systems DiskOnChip G3 chip
4 * Copyright (C) 2011 Robert Jarzmik
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/platform_device.h>
26 #include <linux/string.h>
27 #include <linux/slab.h>
28 #include <linux/io.h>
29 #include <linux/delay.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/bitmap.h>
33 #include <linux/bitrev.h>
34 #include <linux/bch.h>
36 #include <linux/debugfs.h>
37 #include <linux/seq_file.h>
39 #define CREATE_TRACE_POINTS
40 #include "docg3.h"
43 * This driver handles the DiskOnChip G3 flash memory.
45 * As no specification is available from M-Systems/Sandisk, this drivers lacks
46 * several functions available on the chip, as :
47 * - IPL write
49 * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and
50 * the driver assumes a 16bits data bus.
52 * DocG3 relies on 2 ECC algorithms, which are handled in hardware :
53 * - a 1 byte Hamming code stored in the OOB for each page
54 * - a 7 bytes BCH code stored in the OOB for each page
55 * The BCH ECC is :
56 * - BCH is in GF(2^14)
57 * - BCH is over data of 520 bytes (512 page + 7 page_info bytes
58 * + 1 hamming byte)
59 * - BCH can correct up to 4 bits (t = 4)
60 * - BCH syndroms are calculated in hardware, and checked in hardware as well
64 static unsigned int reliable_mode;
65 module_param(reliable_mode, uint, 0);
66 MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, "
67 "2=reliable) : MLC normal operations are in normal mode");
69 /**
70 * struct docg3_oobinfo - DiskOnChip G3 OOB layout
71 * @eccbytes: 8 bytes are used (1 for Hamming ECC, 7 for BCH ECC)
72 * @eccpos: ecc positions (byte 7 is Hamming ECC, byte 8-14 are BCH ECC)
73 * @oobfree: free pageinfo bytes (byte 0 until byte 6, byte 15
74 * @oobavail: 8 available bytes remaining after ECC toll
76 static struct nand_ecclayout docg3_oobinfo = {
77 .eccbytes = 8,
78 .eccpos = {7, 8, 9, 10, 11, 12, 13, 14},
79 .oobfree = {{0, 7}, {15, 1} },
80 .oobavail = 8,
83 static inline u8 doc_readb(struct docg3 *docg3, u16 reg)
85 u8 val = readb(docg3->cascade->base + reg);
87 trace_docg3_io(0, 8, reg, (int)val);
88 return val;
91 static inline u16 doc_readw(struct docg3 *docg3, u16 reg)
93 u16 val = readw(docg3->cascade->base + reg);
95 trace_docg3_io(0, 16, reg, (int)val);
96 return val;
99 static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg)
101 writeb(val, docg3->cascade->base + reg);
102 trace_docg3_io(1, 8, reg, val);
105 static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg)
107 writew(val, docg3->cascade->base + reg);
108 trace_docg3_io(1, 16, reg, val);
111 static inline void doc_flash_command(struct docg3 *docg3, u8 cmd)
113 doc_writeb(docg3, cmd, DOC_FLASHCOMMAND);
116 static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq)
118 doc_writeb(docg3, seq, DOC_FLASHSEQUENCE);
121 static inline void doc_flash_address(struct docg3 *docg3, u8 addr)
123 doc_writeb(docg3, addr, DOC_FLASHADDRESS);
126 static char const * const part_probes[] = { "cmdlinepart", "saftlpart", NULL };
128 static int doc_register_readb(struct docg3 *docg3, int reg)
130 u8 val;
132 doc_writew(docg3, reg, DOC_READADDRESS);
133 val = doc_readb(docg3, reg);
134 doc_vdbg("Read register %04x : %02x\n", reg, val);
135 return val;
138 static int doc_register_readw(struct docg3 *docg3, int reg)
140 u16 val;
142 doc_writew(docg3, reg, DOC_READADDRESS);
143 val = doc_readw(docg3, reg);
144 doc_vdbg("Read register %04x : %04x\n", reg, val);
145 return val;
149 * doc_delay - delay docg3 operations
150 * @docg3: the device
151 * @nbNOPs: the number of NOPs to issue
153 * As no specification is available, the right timings between chip commands are
154 * unknown. The only available piece of information are the observed nops on a
155 * working docg3 chip.
156 * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler
157 * friendlier msleep() functions or blocking mdelay().
159 static void doc_delay(struct docg3 *docg3, int nbNOPs)
161 int i;
163 doc_vdbg("NOP x %d\n", nbNOPs);
164 for (i = 0; i < nbNOPs; i++)
165 doc_writeb(docg3, 0, DOC_NOP);
168 static int is_prot_seq_error(struct docg3 *docg3)
170 int ctrl;
172 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
173 return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR);
176 static int doc_is_ready(struct docg3 *docg3)
178 int ctrl;
180 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
181 return ctrl & DOC_CTRL_FLASHREADY;
184 static int doc_wait_ready(struct docg3 *docg3)
186 int maxWaitCycles = 100;
188 do {
189 doc_delay(docg3, 4);
190 cpu_relax();
191 } while (!doc_is_ready(docg3) && maxWaitCycles--);
192 doc_delay(docg3, 2);
193 if (maxWaitCycles > 0)
194 return 0;
195 else
196 return -EIO;
199 static int doc_reset_seq(struct docg3 *docg3)
201 int ret;
203 doc_writeb(docg3, 0x10, DOC_FLASHCONTROL);
204 doc_flash_sequence(docg3, DOC_SEQ_RESET);
205 doc_flash_command(docg3, DOC_CMD_RESET);
206 doc_delay(docg3, 2);
207 ret = doc_wait_ready(docg3);
209 doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true");
210 return ret;
214 * doc_read_data_area - Read data from data area
215 * @docg3: the device
216 * @buf: the buffer to fill in (might be NULL is dummy reads)
217 * @len: the length to read
218 * @first: first time read, DOC_READADDRESS should be set
220 * Reads bytes from flash data. Handles the single byte / even bytes reads.
222 static void doc_read_data_area(struct docg3 *docg3, void *buf, int len,
223 int first)
225 int i, cdr, len4;
226 u16 data16, *dst16;
227 u8 data8, *dst8;
229 doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len);
230 cdr = len & 0x1;
231 len4 = len - cdr;
233 if (first)
234 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
235 dst16 = buf;
236 for (i = 0; i < len4; i += 2) {
237 data16 = doc_readw(docg3, DOC_IOSPACE_DATA);
238 if (dst16) {
239 *dst16 = data16;
240 dst16++;
244 if (cdr) {
245 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
246 DOC_READADDRESS);
247 doc_delay(docg3, 1);
248 dst8 = (u8 *)dst16;
249 for (i = 0; i < cdr; i++) {
250 data8 = doc_readb(docg3, DOC_IOSPACE_DATA);
251 if (dst8) {
252 *dst8 = data8;
253 dst8++;
260 * doc_write_data_area - Write data into data area
261 * @docg3: the device
262 * @buf: the buffer to get input bytes from
263 * @len: the length to write
265 * Writes bytes into flash data. Handles the single byte / even bytes writes.
267 static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len)
269 int i, cdr, len4;
270 u16 *src16;
271 u8 *src8;
273 doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len);
274 cdr = len & 0x3;
275 len4 = len - cdr;
277 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
278 src16 = (u16 *)buf;
279 for (i = 0; i < len4; i += 2) {
280 doc_writew(docg3, *src16, DOC_IOSPACE_DATA);
281 src16++;
284 src8 = (u8 *)src16;
285 for (i = 0; i < cdr; i++) {
286 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
287 DOC_READADDRESS);
288 doc_writeb(docg3, *src8, DOC_IOSPACE_DATA);
289 src8++;
294 * doc_set_data_mode - Sets the flash to normal or reliable data mode
295 * @docg3: the device
297 * The reliable data mode is a bit slower than the fast mode, but less errors
298 * occur. Entering the reliable mode cannot be done without entering the fast
299 * mode first.
301 * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks
302 * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading
303 * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same
304 * result, which is a logical and between bytes from page 0 and page 1 (which is
305 * consistent with the fact that writing to a page is _clearing_ bits of that
306 * page).
308 static void doc_set_reliable_mode(struct docg3 *docg3)
310 static char *strmode[] = { "normal", "fast", "reliable", "invalid" };
312 doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]);
313 switch (docg3->reliable) {
314 case 0:
315 break;
316 case 1:
317 doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE);
318 doc_flash_command(docg3, DOC_CMD_FAST_MODE);
319 break;
320 case 2:
321 doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE);
322 doc_flash_command(docg3, DOC_CMD_FAST_MODE);
323 doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE);
324 break;
325 default:
326 doc_err("doc_set_reliable_mode(): invalid mode\n");
327 break;
329 doc_delay(docg3, 2);
333 * doc_set_asic_mode - Set the ASIC mode
334 * @docg3: the device
335 * @mode: the mode
337 * The ASIC can work in 3 modes :
338 * - RESET: all registers are zeroed
339 * - NORMAL: receives and handles commands
340 * - POWERDOWN: minimal poweruse, flash parts shut off
342 static void doc_set_asic_mode(struct docg3 *docg3, u8 mode)
344 int i;
346 for (i = 0; i < 12; i++)
347 doc_readb(docg3, DOC_IOSPACE_IPL);
349 mode |= DOC_ASICMODE_MDWREN;
350 doc_dbg("doc_set_asic_mode(%02x)\n", mode);
351 doc_writeb(docg3, mode, DOC_ASICMODE);
352 doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM);
353 doc_delay(docg3, 1);
357 * doc_set_device_id - Sets the devices id for cascaded G3 chips
358 * @docg3: the device
359 * @id: the chip to select (amongst 0, 1, 2, 3)
361 * There can be 4 cascaded G3 chips. This function selects the one which will
362 * should be the active one.
364 static void doc_set_device_id(struct docg3 *docg3, int id)
366 u8 ctrl;
368 doc_dbg("doc_set_device_id(%d)\n", id);
369 doc_writeb(docg3, id, DOC_DEVICESELECT);
370 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
372 ctrl &= ~DOC_CTRL_VIOLATION;
373 ctrl |= DOC_CTRL_CE;
374 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
378 * doc_set_extra_page_mode - Change flash page layout
379 * @docg3: the device
381 * Normally, the flash page is split into the data (512 bytes) and the out of
382 * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear
383 * leveling counters are stored. To access this last area of 4 bytes, a special
384 * mode must be input to the flash ASIC.
386 * Returns 0 if no error occurred, -EIO else.
388 static int doc_set_extra_page_mode(struct docg3 *docg3)
390 int fctrl;
392 doc_dbg("doc_set_extra_page_mode()\n");
393 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532);
394 doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532);
395 doc_delay(docg3, 2);
397 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
398 if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR))
399 return -EIO;
400 else
401 return 0;
405 * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane
406 * @docg3: the device
407 * @sector: the sector
409 static void doc_setup_addr_sector(struct docg3 *docg3, int sector)
411 doc_delay(docg3, 1);
412 doc_flash_address(docg3, sector & 0xff);
413 doc_flash_address(docg3, (sector >> 8) & 0xff);
414 doc_flash_address(docg3, (sector >> 16) & 0xff);
415 doc_delay(docg3, 1);
419 * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane
420 * @docg3: the device
421 * @sector: the sector
422 * @ofs: the offset in the page, between 0 and (512 + 16 + 512)
424 static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs)
426 ofs = ofs >> 2;
427 doc_delay(docg3, 1);
428 doc_flash_address(docg3, ofs & 0xff);
429 doc_flash_address(docg3, sector & 0xff);
430 doc_flash_address(docg3, (sector >> 8) & 0xff);
431 doc_flash_address(docg3, (sector >> 16) & 0xff);
432 doc_delay(docg3, 1);
436 * doc_seek - Set both flash planes to the specified block, page for reading
437 * @docg3: the device
438 * @block0: the first plane block index
439 * @block1: the second plane block index
440 * @page: the page index within the block
441 * @wear: if true, read will occur on the 4 extra bytes of the wear area
442 * @ofs: offset in page to read
444 * Programs the flash even and odd planes to the specific block and page.
445 * Alternatively, programs the flash to the wear area of the specified page.
447 static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page,
448 int wear, int ofs)
450 int sector, ret = 0;
452 doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n",
453 block0, block1, page, ofs, wear);
455 if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) {
456 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
457 doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
458 doc_delay(docg3, 2);
459 } else {
460 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
461 doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
462 doc_delay(docg3, 2);
465 doc_set_reliable_mode(docg3);
466 if (wear)
467 ret = doc_set_extra_page_mode(docg3);
468 if (ret)
469 goto out;
471 doc_flash_sequence(docg3, DOC_SEQ_READ);
472 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
473 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
474 doc_setup_addr_sector(docg3, sector);
476 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
477 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
478 doc_setup_addr_sector(docg3, sector);
479 doc_delay(docg3, 1);
481 out:
482 return ret;
486 * doc_write_seek - Set both flash planes to the specified block, page for writing
487 * @docg3: the device
488 * @block0: the first plane block index
489 * @block1: the second plane block index
490 * @page: the page index within the block
491 * @ofs: offset in page to write
493 * Programs the flash even and odd planes to the specific block and page.
494 * Alternatively, programs the flash to the wear area of the specified page.
496 static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page,
497 int ofs)
499 int ret = 0, sector;
501 doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n",
502 block0, block1, page, ofs);
504 doc_set_reliable_mode(docg3);
506 if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) {
507 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
508 doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
509 doc_delay(docg3, 2);
510 } else {
511 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
512 doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
513 doc_delay(docg3, 2);
516 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP);
517 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
519 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
520 doc_setup_writeaddr_sector(docg3, sector, ofs);
522 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3);
523 doc_delay(docg3, 2);
524 ret = doc_wait_ready(docg3);
525 if (ret)
526 goto out;
528 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
529 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
530 doc_setup_writeaddr_sector(docg3, sector, ofs);
531 doc_delay(docg3, 1);
533 out:
534 return ret;
539 * doc_read_page_ecc_init - Initialize hardware ECC engine
540 * @docg3: the device
541 * @len: the number of bytes covered by the ECC (BCH covered)
543 * The function does initialize the hardware ECC engine to compute the Hamming
544 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
546 * Return 0 if succeeded, -EIO on error
548 static int doc_read_page_ecc_init(struct docg3 *docg3, int len)
550 doc_writew(docg3, DOC_ECCCONF0_READ_MODE
551 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
552 | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
553 DOC_ECCCONF0);
554 doc_delay(docg3, 4);
555 doc_register_readb(docg3, DOC_FLASHCONTROL);
556 return doc_wait_ready(docg3);
560 * doc_write_page_ecc_init - Initialize hardware BCH ECC engine
561 * @docg3: the device
562 * @len: the number of bytes covered by the ECC (BCH covered)
564 * The function does initialize the hardware ECC engine to compute the Hamming
565 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
567 * Return 0 if succeeded, -EIO on error
569 static int doc_write_page_ecc_init(struct docg3 *docg3, int len)
571 doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE
572 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
573 | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
574 DOC_ECCCONF0);
575 doc_delay(docg3, 4);
576 doc_register_readb(docg3, DOC_FLASHCONTROL);
577 return doc_wait_ready(docg3);
581 * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator
582 * @docg3: the device
584 * Disables the hardware ECC generator and checker, for unchecked reads (as when
585 * reading OOB only or write status byte).
587 static void doc_ecc_disable(struct docg3 *docg3)
589 doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0);
590 doc_delay(docg3, 4);
594 * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine
595 * @docg3: the device
596 * @nb_bytes: the number of bytes covered by the ECC (Hamming covered)
598 * This function programs the ECC hardware to compute the hamming code on the
599 * last provided N bytes to the hardware generator.
601 static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes)
603 u8 ecc_conf1;
605 ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1);
606 ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK;
607 ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK);
608 doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1);
612 * doc_ecc_bch_fix_data - Fix if need be read data from flash
613 * @docg3: the device
614 * @buf: the buffer of read data (512 + 7 + 1 bytes)
615 * @hwecc: the hardware calculated ECC.
616 * It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB
617 * area data, and calc_ecc the ECC calculated by the hardware generator.
619 * Checks if the received data matches the ECC, and if an error is detected,
620 * tries to fix the bit flips (at most 4) in the buffer buf. As the docg3
621 * understands the (data, ecc, syndroms) in an inverted order in comparison to
622 * the BCH library, the function reverses the order of bits (ie. bit7 and bit0,
623 * bit6 and bit 1, ...) for all ECC data.
625 * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch
626 * algorithm is used to decode this. However the hw operates on page
627 * data in a bit order that is the reverse of that of the bch alg,
628 * requiring that the bits be reversed on the result. Thanks to Ivan
629 * Djelic for his analysis.
631 * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit
632 * errors were detected and cannot be fixed.
634 static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc)
636 u8 ecc[DOC_ECC_BCH_SIZE];
637 int errorpos[DOC_ECC_BCH_T], i, numerrs;
639 for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
640 ecc[i] = bitrev8(hwecc[i]);
641 numerrs = decode_bch(docg3->cascade->bch, NULL,
642 DOC_ECC_BCH_COVERED_BYTES,
643 NULL, ecc, NULL, errorpos);
644 BUG_ON(numerrs == -EINVAL);
645 if (numerrs < 0)
646 goto out;
648 for (i = 0; i < numerrs; i++)
649 errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7));
650 for (i = 0; i < numerrs; i++)
651 if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8)
652 /* error is located in data, correct it */
653 change_bit(errorpos[i], buf);
654 out:
655 doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs);
656 return numerrs;
661 * doc_read_page_prepare - Prepares reading data from a flash page
662 * @docg3: the device
663 * @block0: the first plane block index on flash memory
664 * @block1: the second plane block index on flash memory
665 * @page: the page index in the block
666 * @offset: the offset in the page (must be a multiple of 4)
668 * Prepares the page to be read in the flash memory :
669 * - tell ASIC to map the flash pages
670 * - tell ASIC to be in read mode
672 * After a call to this method, a call to doc_read_page_finish is mandatory,
673 * to end the read cycle of the flash.
675 * Read data from a flash page. The length to be read must be between 0 and
676 * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because
677 * the extra bytes reading is not implemented).
679 * As pages are grouped by 2 (in 2 planes), reading from a page must be done
680 * in two steps:
681 * - one read of 512 bytes at offset 0
682 * - one read of 512 bytes at offset 512 + 16
684 * Returns 0 if successful, -EIO if a read error occurred.
686 static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1,
687 int page, int offset)
689 int wear_area = 0, ret = 0;
691 doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n",
692 block0, block1, page, offset);
693 if (offset >= DOC_LAYOUT_WEAR_OFFSET)
694 wear_area = 1;
695 if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2))
696 return -EINVAL;
698 doc_set_device_id(docg3, docg3->device_id);
699 ret = doc_reset_seq(docg3);
700 if (ret)
701 goto err;
703 /* Program the flash address block and page */
704 ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset);
705 if (ret)
706 goto err;
708 doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES);
709 doc_delay(docg3, 2);
710 doc_wait_ready(docg3);
712 doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ);
713 doc_delay(docg3, 1);
714 if (offset >= DOC_LAYOUT_PAGE_SIZE * 2)
715 offset -= 2 * DOC_LAYOUT_PAGE_SIZE;
716 doc_flash_address(docg3, offset >> 2);
717 doc_delay(docg3, 1);
718 doc_wait_ready(docg3);
720 doc_flash_command(docg3, DOC_CMD_READ_FLASH);
722 return 0;
723 err:
724 doc_writeb(docg3, 0, DOC_DATAEND);
725 doc_delay(docg3, 2);
726 return -EIO;
730 * doc_read_page_getbytes - Reads bytes from a prepared page
731 * @docg3: the device
732 * @len: the number of bytes to be read (must be a multiple of 4)
733 * @buf: the buffer to be filled in (or NULL is forget bytes)
734 * @first: 1 if first time read, DOC_READADDRESS should be set
735 * @last_odd: 1 if last read ended up on an odd byte
737 * Reads bytes from a prepared page. There is a trickery here : if the last read
738 * ended up on an odd offset in the 1024 bytes double page, ie. between the 2
739 * planes, the first byte must be read apart. If a word (16bit) read was used,
740 * the read would return the byte of plane 2 as low *and* high endian, which
741 * will mess the read.
744 static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf,
745 int first, int last_odd)
747 if (last_odd && len > 0) {
748 doc_read_data_area(docg3, buf, 1, first);
749 doc_read_data_area(docg3, buf ? buf + 1 : buf, len - 1, 0);
750 } else {
751 doc_read_data_area(docg3, buf, len, first);
753 doc_delay(docg3, 2);
754 return len;
758 * doc_write_page_putbytes - Writes bytes into a prepared page
759 * @docg3: the device
760 * @len: the number of bytes to be written
761 * @buf: the buffer of input bytes
764 static void doc_write_page_putbytes(struct docg3 *docg3, int len,
765 const u_char *buf)
767 doc_write_data_area(docg3, buf, len);
768 doc_delay(docg3, 2);
772 * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC
773 * @docg3: the device
774 * @hwecc: the array of 7 integers where the hardware ecc will be stored
776 static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc)
778 int i;
780 for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
781 hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i));
785 * doc_page_finish - Ends reading/writing of a flash page
786 * @docg3: the device
788 static void doc_page_finish(struct docg3 *docg3)
790 doc_writeb(docg3, 0, DOC_DATAEND);
791 doc_delay(docg3, 2);
795 * doc_read_page_finish - Ends reading of a flash page
796 * @docg3: the device
798 * As a side effect, resets the chip selector to 0. This ensures that after each
799 * read operation, the floor 0 is selected. Therefore, if the systems halts, the
800 * reboot will boot on floor 0, where the IPL is.
802 static void doc_read_page_finish(struct docg3 *docg3)
804 doc_page_finish(docg3);
805 doc_set_device_id(docg3, 0);
809 * calc_block_sector - Calculate blocks, pages and ofs.
811 * @from: offset in flash
812 * @block0: first plane block index calculated
813 * @block1: second plane block index calculated
814 * @page: page calculated
815 * @ofs: offset in page
816 * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in
817 * reliable mode.
819 * The calculation is based on the reliable/normal mode. In normal mode, the 64
820 * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are
821 * clones, only 32 pages per block are available.
823 static void calc_block_sector(loff_t from, int *block0, int *block1, int *page,
824 int *ofs, int reliable)
826 uint sector, pages_biblock;
828 pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES;
829 if (reliable == 1 || reliable == 2)
830 pages_biblock /= 2;
832 sector = from / DOC_LAYOUT_PAGE_SIZE;
833 *block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES;
834 *block1 = *block0 + 1;
835 *page = sector % pages_biblock;
836 *page /= DOC_LAYOUT_NBPLANES;
837 if (reliable == 1 || reliable == 2)
838 *page *= 2;
839 if (sector % 2)
840 *ofs = DOC_LAYOUT_PAGE_OOB_SIZE;
841 else
842 *ofs = 0;
846 * doc_read_oob - Read out of band bytes from flash
847 * @mtd: the device
848 * @from: the offset from first block and first page, in bytes, aligned on page
849 * size
850 * @ops: the mtd oob structure
852 * Reads flash memory OOB area of pages.
854 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
856 static int doc_read_oob(struct mtd_info *mtd, loff_t from,
857 struct mtd_oob_ops *ops)
859 struct docg3 *docg3 = mtd->priv;
860 int block0, block1, page, ret, skip, ofs = 0;
861 u8 *oobbuf = ops->oobbuf;
862 u8 *buf = ops->datbuf;
863 size_t len, ooblen, nbdata, nboob;
864 u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1;
865 int max_bitflips = 0;
867 if (buf)
868 len = ops->len;
869 else
870 len = 0;
871 if (oobbuf)
872 ooblen = ops->ooblen;
873 else
874 ooblen = 0;
876 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
877 oobbuf += ops->ooboffs;
879 doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
880 from, ops->mode, buf, len, oobbuf, ooblen);
881 if (ooblen % DOC_LAYOUT_OOB_SIZE)
882 return -EINVAL;
884 if (from + len > mtd->size)
885 return -EINVAL;
887 ops->oobretlen = 0;
888 ops->retlen = 0;
889 ret = 0;
890 skip = from % DOC_LAYOUT_PAGE_SIZE;
891 mutex_lock(&docg3->cascade->lock);
892 while (ret >= 0 && (len > 0 || ooblen > 0)) {
893 calc_block_sector(from - skip, &block0, &block1, &page, &ofs,
894 docg3->reliable);
895 nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip);
896 nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE);
897 ret = doc_read_page_prepare(docg3, block0, block1, page, ofs);
898 if (ret < 0)
899 goto out;
900 ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
901 if (ret < 0)
902 goto err_in_read;
903 ret = doc_read_page_getbytes(docg3, skip, NULL, 1, 0);
904 if (ret < skip)
905 goto err_in_read;
906 ret = doc_read_page_getbytes(docg3, nbdata, buf, 0, skip % 2);
907 if (ret < nbdata)
908 goto err_in_read;
909 doc_read_page_getbytes(docg3,
910 DOC_LAYOUT_PAGE_SIZE - nbdata - skip,
911 NULL, 0, (skip + nbdata) % 2);
912 ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0, 0);
913 if (ret < nboob)
914 goto err_in_read;
915 doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob,
916 NULL, 0, nboob % 2);
918 doc_get_bch_hw_ecc(docg3, hwecc);
919 eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1);
921 if (nboob >= DOC_LAYOUT_OOB_SIZE) {
922 doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf);
923 doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]);
924 doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf + 8);
925 doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]);
927 doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1);
928 doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc);
930 ret = -EIO;
931 if (is_prot_seq_error(docg3))
932 goto err_in_read;
933 ret = 0;
934 if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) &&
935 (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) &&
936 (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) &&
937 (ops->mode != MTD_OPS_RAW) &&
938 (nbdata == DOC_LAYOUT_PAGE_SIZE)) {
939 ret = doc_ecc_bch_fix_data(docg3, buf, hwecc);
940 if (ret < 0) {
941 mtd->ecc_stats.failed++;
942 ret = -EBADMSG;
944 if (ret > 0) {
945 mtd->ecc_stats.corrected += ret;
946 max_bitflips = max(max_bitflips, ret);
947 ret = max_bitflips;
951 doc_read_page_finish(docg3);
952 ops->retlen += nbdata;
953 ops->oobretlen += nboob;
954 buf += nbdata;
955 oobbuf += nboob;
956 len -= nbdata;
957 ooblen -= nboob;
958 from += DOC_LAYOUT_PAGE_SIZE;
959 skip = 0;
962 out:
963 mutex_unlock(&docg3->cascade->lock);
964 return ret;
965 err_in_read:
966 doc_read_page_finish(docg3);
967 goto out;
971 * doc_read - Read bytes from flash
972 * @mtd: the device
973 * @from: the offset from first block and first page, in bytes, aligned on page
974 * size
975 * @len: the number of bytes to read (must be a multiple of 4)
976 * @retlen: the number of bytes actually read
977 * @buf: the filled in buffer
979 * Reads flash memory pages. This function does not read the OOB chunk, but only
980 * the page data.
982 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
984 static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
985 size_t *retlen, u_char *buf)
987 struct mtd_oob_ops ops;
988 size_t ret;
990 memset(&ops, 0, sizeof(ops));
991 ops.datbuf = buf;
992 ops.len = len;
993 ops.mode = MTD_OPS_AUTO_OOB;
995 ret = doc_read_oob(mtd, from, &ops);
996 *retlen = ops.retlen;
997 return ret;
1000 static int doc_reload_bbt(struct docg3 *docg3)
1002 int block = DOC_LAYOUT_BLOCK_BBT;
1003 int ret = 0, nbpages, page;
1004 u_char *buf = docg3->bbt;
1006 nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE);
1007 for (page = 0; !ret && (page < nbpages); page++) {
1008 ret = doc_read_page_prepare(docg3, block, block + 1,
1009 page + DOC_LAYOUT_PAGE_BBT, 0);
1010 if (!ret)
1011 ret = doc_read_page_ecc_init(docg3,
1012 DOC_LAYOUT_PAGE_SIZE);
1013 if (!ret)
1014 doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE,
1015 buf, 1, 0);
1016 buf += DOC_LAYOUT_PAGE_SIZE;
1018 doc_read_page_finish(docg3);
1019 return ret;
1023 * doc_block_isbad - Checks whether a block is good or not
1024 * @mtd: the device
1025 * @from: the offset to find the correct block
1027 * Returns 1 if block is bad, 0 if block is good
1029 static int doc_block_isbad(struct mtd_info *mtd, loff_t from)
1031 struct docg3 *docg3 = mtd->priv;
1032 int block0, block1, page, ofs, is_good;
1034 calc_block_sector(from, &block0, &block1, &page, &ofs,
1035 docg3->reliable);
1036 doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n",
1037 from, block0, block1, page, ofs);
1039 if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA)
1040 return 0;
1041 if (block1 > docg3->max_block)
1042 return -EINVAL;
1044 is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7));
1045 return !is_good;
1048 #if 0
1050 * doc_get_erase_count - Get block erase count
1051 * @docg3: the device
1052 * @from: the offset in which the block is.
1054 * Get the number of times a block was erased. The number is the maximum of
1055 * erase times between first and second plane (which should be equal normally).
1057 * Returns The number of erases, or -EINVAL or -EIO on error.
1059 static int doc_get_erase_count(struct docg3 *docg3, loff_t from)
1061 u8 buf[DOC_LAYOUT_WEAR_SIZE];
1062 int ret, plane1_erase_count, plane2_erase_count;
1063 int block0, block1, page, ofs;
1065 doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf);
1066 if (from % DOC_LAYOUT_PAGE_SIZE)
1067 return -EINVAL;
1068 calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable);
1069 if (block1 > docg3->max_block)
1070 return -EINVAL;
1072 ret = doc_reset_seq(docg3);
1073 if (!ret)
1074 ret = doc_read_page_prepare(docg3, block0, block1, page,
1075 ofs + DOC_LAYOUT_WEAR_OFFSET, 0);
1076 if (!ret)
1077 ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE,
1078 buf, 1, 0);
1079 doc_read_page_finish(docg3);
1081 if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK))
1082 return -EIO;
1083 plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8)
1084 | ((u8)(~buf[5]) << 16);
1085 plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8)
1086 | ((u8)(~buf[7]) << 16);
1088 return max(plane1_erase_count, plane2_erase_count);
1090 #endif
1093 * doc_get_op_status - get erase/write operation status
1094 * @docg3: the device
1096 * Queries the status from the chip, and returns it
1098 * Returns the status (bits DOC_PLANES_STATUS_*)
1100 static int doc_get_op_status(struct docg3 *docg3)
1102 u8 status;
1104 doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS);
1105 doc_flash_command(docg3, DOC_CMD_PLANES_STATUS);
1106 doc_delay(docg3, 5);
1108 doc_ecc_disable(docg3);
1109 doc_read_data_area(docg3, &status, 1, 1);
1110 return status;
1114 * doc_write_erase_wait_status - wait for write or erase completion
1115 * @docg3: the device
1117 * Wait for the chip to be ready again after erase or write operation, and check
1118 * erase/write status.
1120 * Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if
1121 * timeout
1123 static int doc_write_erase_wait_status(struct docg3 *docg3)
1125 int i, status, ret = 0;
1127 for (i = 0; !doc_is_ready(docg3) && i < 5; i++)
1128 msleep(20);
1129 if (!doc_is_ready(docg3)) {
1130 doc_dbg("Timeout reached and the chip is still not ready\n");
1131 ret = -EAGAIN;
1132 goto out;
1135 status = doc_get_op_status(docg3);
1136 if (status & DOC_PLANES_STATUS_FAIL) {
1137 doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n",
1138 status);
1139 ret = -EIO;
1142 out:
1143 doc_page_finish(docg3);
1144 return ret;
1148 * doc_erase_block - Erase a couple of blocks
1149 * @docg3: the device
1150 * @block0: the first block to erase (leftmost plane)
1151 * @block1: the second block to erase (rightmost plane)
1153 * Erase both blocks, and return operation status
1155 * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not
1156 * ready for too long
1158 static int doc_erase_block(struct docg3 *docg3, int block0, int block1)
1160 int ret, sector;
1162 doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1);
1163 ret = doc_reset_seq(docg3);
1164 if (ret)
1165 return -EIO;
1167 doc_set_reliable_mode(docg3);
1168 doc_flash_sequence(docg3, DOC_SEQ_ERASE);
1170 sector = block0 << DOC_ADDR_BLOCK_SHIFT;
1171 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1172 doc_setup_addr_sector(docg3, sector);
1173 sector = block1 << DOC_ADDR_BLOCK_SHIFT;
1174 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1175 doc_setup_addr_sector(docg3, sector);
1176 doc_delay(docg3, 1);
1178 doc_flash_command(docg3, DOC_CMD_ERASECYCLE2);
1179 doc_delay(docg3, 2);
1181 if (is_prot_seq_error(docg3)) {
1182 doc_err("Erase blocks %d,%d error\n", block0, block1);
1183 return -EIO;
1186 return doc_write_erase_wait_status(docg3);
1190 * doc_erase - Erase a portion of the chip
1191 * @mtd: the device
1192 * @info: the erase info
1194 * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is
1195 * split into 2 pages of 512 bytes on 2 contiguous blocks.
1197 * Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase
1198 * issue
1200 static int doc_erase(struct mtd_info *mtd, struct erase_info *info)
1202 struct docg3 *docg3 = mtd->priv;
1203 uint64_t len;
1204 int block0, block1, page, ret, ofs = 0;
1206 doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len);
1208 info->state = MTD_ERASE_PENDING;
1209 calc_block_sector(info->addr + info->len, &block0, &block1, &page,
1210 &ofs, docg3->reliable);
1211 ret = -EINVAL;
1212 if (info->addr + info->len > mtd->size || page || ofs)
1213 goto reset_err;
1215 ret = 0;
1216 calc_block_sector(info->addr, &block0, &block1, &page, &ofs,
1217 docg3->reliable);
1218 mutex_lock(&docg3->cascade->lock);
1219 doc_set_device_id(docg3, docg3->device_id);
1220 doc_set_reliable_mode(docg3);
1221 for (len = info->len; !ret && len > 0; len -= mtd->erasesize) {
1222 info->state = MTD_ERASING;
1223 ret = doc_erase_block(docg3, block0, block1);
1224 block0 += 2;
1225 block1 += 2;
1227 mutex_unlock(&docg3->cascade->lock);
1229 if (ret)
1230 goto reset_err;
1232 info->state = MTD_ERASE_DONE;
1233 return 0;
1235 reset_err:
1236 info->state = MTD_ERASE_FAILED;
1237 return ret;
1241 * doc_write_page - Write a single page to the chip
1242 * @docg3: the device
1243 * @to: the offset from first block and first page, in bytes, aligned on page
1244 * size
1245 * @buf: buffer to get bytes from
1246 * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be
1247 * written)
1248 * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or
1249 * BCH computations. If 1, only bytes 0-7 and byte 15 are taken,
1250 * remaining ones are filled with hardware Hamming and BCH
1251 * computations. Its value is not meaningfull is oob == NULL.
1253 * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the
1254 * OOB data. The OOB ECC is automatically computed by the hardware Hamming and
1255 * BCH generator if autoecc is not null.
1257 * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout
1259 static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf,
1260 const u_char *oob, int autoecc)
1262 int block0, block1, page, ret, ofs = 0;
1263 u8 hwecc[DOC_ECC_BCH_SIZE], hamming;
1265 doc_dbg("doc_write_page(to=%lld)\n", to);
1266 calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable);
1268 doc_set_device_id(docg3, docg3->device_id);
1269 ret = doc_reset_seq(docg3);
1270 if (ret)
1271 goto err;
1273 /* Program the flash address block and page */
1274 ret = doc_write_seek(docg3, block0, block1, page, ofs);
1275 if (ret)
1276 goto err;
1278 doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
1279 doc_delay(docg3, 2);
1280 doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf);
1282 if (oob && autoecc) {
1283 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob);
1284 doc_delay(docg3, 2);
1285 oob += DOC_LAYOUT_OOB_UNUSED_OFS;
1287 hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY);
1288 doc_delay(docg3, 2);
1289 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ,
1290 &hamming);
1291 doc_delay(docg3, 2);
1293 doc_get_bch_hw_ecc(docg3, hwecc);
1294 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc);
1295 doc_delay(docg3, 2);
1297 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob);
1299 if (oob && !autoecc)
1300 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob);
1302 doc_delay(docg3, 2);
1303 doc_page_finish(docg3);
1304 doc_delay(docg3, 2);
1305 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2);
1306 doc_delay(docg3, 2);
1309 * The wait status will perform another doc_page_finish() call, but that
1310 * seems to please the docg3, so leave it.
1312 ret = doc_write_erase_wait_status(docg3);
1313 return ret;
1314 err:
1315 doc_read_page_finish(docg3);
1316 return ret;
1320 * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops
1321 * @ops: the oob operations
1323 * Returns 0 or 1 if success, -EINVAL if invalid oob mode
1325 static int doc_guess_autoecc(struct mtd_oob_ops *ops)
1327 int autoecc;
1329 switch (ops->mode) {
1330 case MTD_OPS_PLACE_OOB:
1331 case MTD_OPS_AUTO_OOB:
1332 autoecc = 1;
1333 break;
1334 case MTD_OPS_RAW:
1335 autoecc = 0;
1336 break;
1337 default:
1338 autoecc = -EINVAL;
1340 return autoecc;
1344 * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes
1345 * @dst: the target 16 bytes OOB buffer
1346 * @oobsrc: the source 8 bytes non-ECC OOB buffer
1349 static void doc_fill_autooob(u8 *dst, u8 *oobsrc)
1351 memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1352 dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ];
1356 * doc_backup_oob - Backup OOB into docg3 structure
1357 * @docg3: the device
1358 * @to: the page offset in the chip
1359 * @ops: the OOB size and buffer
1361 * As the docg3 should write a page with its OOB in one pass, and some userland
1362 * applications do write_oob() to setup the OOB and then write(), store the OOB
1363 * into a temporary storage. This is very dangerous, as 2 concurrent
1364 * applications could store an OOB, and then write their pages (which will
1365 * result into one having its OOB corrupted).
1367 * The only reliable way would be for userland to call doc_write_oob() with both
1368 * the page data _and_ the OOB area.
1370 * Returns 0 if success, -EINVAL if ops content invalid
1372 static int doc_backup_oob(struct docg3 *docg3, loff_t to,
1373 struct mtd_oob_ops *ops)
1375 int ooblen = ops->ooblen, autoecc;
1377 if (ooblen != DOC_LAYOUT_OOB_SIZE)
1378 return -EINVAL;
1379 autoecc = doc_guess_autoecc(ops);
1380 if (autoecc < 0)
1381 return autoecc;
1383 docg3->oob_write_ofs = to;
1384 docg3->oob_autoecc = autoecc;
1385 if (ops->mode == MTD_OPS_AUTO_OOB) {
1386 doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf);
1387 ops->oobretlen = 8;
1388 } else {
1389 memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE);
1390 ops->oobretlen = DOC_LAYOUT_OOB_SIZE;
1392 return 0;
1396 * doc_write_oob - Write out of band bytes to flash
1397 * @mtd: the device
1398 * @ofs: the offset from first block and first page, in bytes, aligned on page
1399 * size
1400 * @ops: the mtd oob structure
1402 * Either write OOB data into a temporary buffer, for the subsequent write
1403 * page. The provided OOB should be 16 bytes long. If a data buffer is provided
1404 * as well, issue the page write.
1405 * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will
1406 * still be filled in if asked for).
1408 * Returns 0 is successful, EINVAL if length is not 14 bytes
1410 static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
1411 struct mtd_oob_ops *ops)
1413 struct docg3 *docg3 = mtd->priv;
1414 int ret, autoecc, oobdelta;
1415 u8 *oobbuf = ops->oobbuf;
1416 u8 *buf = ops->datbuf;
1417 size_t len, ooblen;
1418 u8 oob[DOC_LAYOUT_OOB_SIZE];
1420 if (buf)
1421 len = ops->len;
1422 else
1423 len = 0;
1424 if (oobbuf)
1425 ooblen = ops->ooblen;
1426 else
1427 ooblen = 0;
1429 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
1430 oobbuf += ops->ooboffs;
1432 doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
1433 ofs, ops->mode, buf, len, oobbuf, ooblen);
1434 switch (ops->mode) {
1435 case MTD_OPS_PLACE_OOB:
1436 case MTD_OPS_RAW:
1437 oobdelta = mtd->oobsize;
1438 break;
1439 case MTD_OPS_AUTO_OOB:
1440 oobdelta = mtd->ecclayout->oobavail;
1441 break;
1442 default:
1443 return -EINVAL;
1445 if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) ||
1446 (ofs % DOC_LAYOUT_PAGE_SIZE))
1447 return -EINVAL;
1448 if (len && ooblen &&
1449 (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta))
1450 return -EINVAL;
1451 if (ofs + len > mtd->size)
1452 return -EINVAL;
1454 ops->oobretlen = 0;
1455 ops->retlen = 0;
1456 ret = 0;
1457 if (len == 0 && ooblen == 0)
1458 return -EINVAL;
1459 if (len == 0 && ooblen > 0)
1460 return doc_backup_oob(docg3, ofs, ops);
1462 autoecc = doc_guess_autoecc(ops);
1463 if (autoecc < 0)
1464 return autoecc;
1466 mutex_lock(&docg3->cascade->lock);
1467 while (!ret && len > 0) {
1468 memset(oob, 0, sizeof(oob));
1469 if (ofs == docg3->oob_write_ofs)
1470 memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE);
1471 else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB)
1472 doc_fill_autooob(oob, oobbuf);
1473 else if (ooblen > 0)
1474 memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE);
1475 ret = doc_write_page(docg3, ofs, buf, oob, autoecc);
1477 ofs += DOC_LAYOUT_PAGE_SIZE;
1478 len -= DOC_LAYOUT_PAGE_SIZE;
1479 buf += DOC_LAYOUT_PAGE_SIZE;
1480 if (ooblen) {
1481 oobbuf += oobdelta;
1482 ooblen -= oobdelta;
1483 ops->oobretlen += oobdelta;
1485 ops->retlen += DOC_LAYOUT_PAGE_SIZE;
1488 doc_set_device_id(docg3, 0);
1489 mutex_unlock(&docg3->cascade->lock);
1490 return ret;
1494 * doc_write - Write a buffer to the chip
1495 * @mtd: the device
1496 * @to: the offset from first block and first page, in bytes, aligned on page
1497 * size
1498 * @len: the number of bytes to write (must be a full page size, ie. 512)
1499 * @retlen: the number of bytes actually written (0 or 512)
1500 * @buf: the buffer to get bytes from
1502 * Writes data to the chip.
1504 * Returns 0 if write successful, -EIO if write error
1506 static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
1507 size_t *retlen, const u_char *buf)
1509 struct docg3 *docg3 = mtd->priv;
1510 int ret;
1511 struct mtd_oob_ops ops;
1513 doc_dbg("doc_write(to=%lld, len=%zu)\n", to, len);
1514 ops.datbuf = (char *)buf;
1515 ops.len = len;
1516 ops.mode = MTD_OPS_PLACE_OOB;
1517 ops.oobbuf = NULL;
1518 ops.ooblen = 0;
1519 ops.ooboffs = 0;
1521 ret = doc_write_oob(mtd, to, &ops);
1522 *retlen = ops.retlen;
1523 return ret;
1526 static struct docg3 *sysfs_dev2docg3(struct device *dev,
1527 struct device_attribute *attr)
1529 int floor;
1530 struct platform_device *pdev = to_platform_device(dev);
1531 struct mtd_info **docg3_floors = platform_get_drvdata(pdev);
1533 floor = attr->attr.name[1] - '0';
1534 if (floor < 0 || floor >= DOC_MAX_NBFLOORS)
1535 return NULL;
1536 else
1537 return docg3_floors[floor]->priv;
1540 static ssize_t dps0_is_key_locked(struct device *dev,
1541 struct device_attribute *attr, char *buf)
1543 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1544 int dps0;
1546 mutex_lock(&docg3->cascade->lock);
1547 doc_set_device_id(docg3, docg3->device_id);
1548 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1549 doc_set_device_id(docg3, 0);
1550 mutex_unlock(&docg3->cascade->lock);
1552 return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK));
1555 static ssize_t dps1_is_key_locked(struct device *dev,
1556 struct device_attribute *attr, char *buf)
1558 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1559 int dps1;
1561 mutex_lock(&docg3->cascade->lock);
1562 doc_set_device_id(docg3, docg3->device_id);
1563 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1564 doc_set_device_id(docg3, 0);
1565 mutex_unlock(&docg3->cascade->lock);
1567 return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK));
1570 static ssize_t dps0_insert_key(struct device *dev,
1571 struct device_attribute *attr,
1572 const char *buf, size_t count)
1574 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1575 int i;
1577 if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1578 return -EINVAL;
1580 mutex_lock(&docg3->cascade->lock);
1581 doc_set_device_id(docg3, docg3->device_id);
1582 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1583 doc_writeb(docg3, buf[i], DOC_DPS0_KEY);
1584 doc_set_device_id(docg3, 0);
1585 mutex_unlock(&docg3->cascade->lock);
1586 return count;
1589 static ssize_t dps1_insert_key(struct device *dev,
1590 struct device_attribute *attr,
1591 const char *buf, size_t count)
1593 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1594 int i;
1596 if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1597 return -EINVAL;
1599 mutex_lock(&docg3->cascade->lock);
1600 doc_set_device_id(docg3, docg3->device_id);
1601 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1602 doc_writeb(docg3, buf[i], DOC_DPS1_KEY);
1603 doc_set_device_id(docg3, 0);
1604 mutex_unlock(&docg3->cascade->lock);
1605 return count;
1608 #define FLOOR_SYSFS(id) { \
1609 __ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \
1610 __ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \
1611 __ATTR(f##id##_dps0_protection_key, S_IWUGO, NULL, dps0_insert_key), \
1612 __ATTR(f##id##_dps1_protection_key, S_IWUGO, NULL, dps1_insert_key), \
1615 static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = {
1616 FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3)
1619 static int doc_register_sysfs(struct platform_device *pdev,
1620 struct docg3_cascade *cascade)
1622 int ret = 0, floor, i = 0;
1623 struct device *dev = &pdev->dev;
1625 for (floor = 0; !ret && floor < DOC_MAX_NBFLOORS &&
1626 cascade->floors[floor]; floor++)
1627 for (i = 0; !ret && i < 4; i++)
1628 ret = device_create_file(dev, &doc_sys_attrs[floor][i]);
1629 if (!ret)
1630 return 0;
1631 do {
1632 while (--i >= 0)
1633 device_remove_file(dev, &doc_sys_attrs[floor][i]);
1634 i = 4;
1635 } while (--floor >= 0);
1636 return ret;
1639 static void doc_unregister_sysfs(struct platform_device *pdev,
1640 struct docg3_cascade *cascade)
1642 struct device *dev = &pdev->dev;
1643 int floor, i;
1645 for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
1646 floor++)
1647 for (i = 0; i < 4; i++)
1648 device_remove_file(dev, &doc_sys_attrs[floor][i]);
1652 * Debug sysfs entries
1654 static int dbg_flashctrl_show(struct seq_file *s, void *p)
1656 struct docg3 *docg3 = (struct docg3 *)s->private;
1658 int pos = 0;
1659 u8 fctrl;
1661 mutex_lock(&docg3->cascade->lock);
1662 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1663 mutex_unlock(&docg3->cascade->lock);
1665 pos += seq_printf(s,
1666 "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n",
1667 fctrl,
1668 fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-",
1669 fctrl & DOC_CTRL_CE ? "active" : "inactive",
1670 fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-",
1671 fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-",
1672 fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready");
1673 return pos;
1675 DEBUGFS_RO_ATTR(flashcontrol, dbg_flashctrl_show);
1677 static int dbg_asicmode_show(struct seq_file *s, void *p)
1679 struct docg3 *docg3 = (struct docg3 *)s->private;
1681 int pos = 0, pctrl, mode;
1683 mutex_lock(&docg3->cascade->lock);
1684 pctrl = doc_register_readb(docg3, DOC_ASICMODE);
1685 mode = pctrl & 0x03;
1686 mutex_unlock(&docg3->cascade->lock);
1688 pos += seq_printf(s,
1689 "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (",
1690 pctrl,
1691 pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0,
1692 pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0,
1693 pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0,
1694 pctrl & DOC_ASICMODE_MDWREN ? 1 : 0,
1695 pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0,
1696 mode >> 1, mode & 0x1);
1698 switch (mode) {
1699 case DOC_ASICMODE_RESET:
1700 pos += seq_printf(s, "reset");
1701 break;
1702 case DOC_ASICMODE_NORMAL:
1703 pos += seq_printf(s, "normal");
1704 break;
1705 case DOC_ASICMODE_POWERDOWN:
1706 pos += seq_printf(s, "powerdown");
1707 break;
1709 pos += seq_printf(s, ")\n");
1710 return pos;
1712 DEBUGFS_RO_ATTR(asic_mode, dbg_asicmode_show);
1714 static int dbg_device_id_show(struct seq_file *s, void *p)
1716 struct docg3 *docg3 = (struct docg3 *)s->private;
1717 int pos = 0;
1718 int id;
1720 mutex_lock(&docg3->cascade->lock);
1721 id = doc_register_readb(docg3, DOC_DEVICESELECT);
1722 mutex_unlock(&docg3->cascade->lock);
1724 pos += seq_printf(s, "DeviceId = %d\n", id);
1725 return pos;
1727 DEBUGFS_RO_ATTR(device_id, dbg_device_id_show);
1729 static int dbg_protection_show(struct seq_file *s, void *p)
1731 struct docg3 *docg3 = (struct docg3 *)s->private;
1732 int pos = 0;
1733 int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high;
1735 mutex_lock(&docg3->cascade->lock);
1736 protect = doc_register_readb(docg3, DOC_PROTECTION);
1737 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1738 dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW);
1739 dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH);
1740 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1741 dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW);
1742 dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH);
1743 mutex_unlock(&docg3->cascade->lock);
1745 pos += seq_printf(s, "Protection = 0x%02x (",
1746 protect);
1747 if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK)
1748 pos += seq_printf(s, "FOUNDRY_OTP_LOCK,");
1749 if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK)
1750 pos += seq_printf(s, "CUSTOMER_OTP_LOCK,");
1751 if (protect & DOC_PROTECT_LOCK_INPUT)
1752 pos += seq_printf(s, "LOCK_INPUT,");
1753 if (protect & DOC_PROTECT_STICKY_LOCK)
1754 pos += seq_printf(s, "STICKY_LOCK,");
1755 if (protect & DOC_PROTECT_PROTECTION_ENABLED)
1756 pos += seq_printf(s, "PROTECTION ON,");
1757 if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK)
1758 pos += seq_printf(s, "IPL_DOWNLOAD_LOCK,");
1759 if (protect & DOC_PROTECT_PROTECTION_ERROR)
1760 pos += seq_printf(s, "PROTECT_ERR,");
1761 else
1762 pos += seq_printf(s, "NO_PROTECT_ERR");
1763 pos += seq_printf(s, ")\n");
1765 pos += seq_printf(s, "DPS0 = 0x%02x : "
1766 "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, "
1767 "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1768 dps0, dps0_low, dps0_high,
1769 !!(dps0 & DOC_DPS_OTP_PROTECTED),
1770 !!(dps0 & DOC_DPS_READ_PROTECTED),
1771 !!(dps0 & DOC_DPS_WRITE_PROTECTED),
1772 !!(dps0 & DOC_DPS_HW_LOCK_ENABLED),
1773 !!(dps0 & DOC_DPS_KEY_OK));
1774 pos += seq_printf(s, "DPS1 = 0x%02x : "
1775 "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, "
1776 "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1777 dps1, dps1_low, dps1_high,
1778 !!(dps1 & DOC_DPS_OTP_PROTECTED),
1779 !!(dps1 & DOC_DPS_READ_PROTECTED),
1780 !!(dps1 & DOC_DPS_WRITE_PROTECTED),
1781 !!(dps1 & DOC_DPS_HW_LOCK_ENABLED),
1782 !!(dps1 & DOC_DPS_KEY_OK));
1783 return pos;
1785 DEBUGFS_RO_ATTR(protection, dbg_protection_show);
1787 static int __init doc_dbg_register(struct docg3 *docg3)
1789 struct dentry *root, *entry;
1791 root = debugfs_create_dir("docg3", NULL);
1792 if (!root)
1793 return -ENOMEM;
1795 entry = debugfs_create_file("flashcontrol", S_IRUSR, root, docg3,
1796 &flashcontrol_fops);
1797 if (entry)
1798 entry = debugfs_create_file("asic_mode", S_IRUSR, root,
1799 docg3, &asic_mode_fops);
1800 if (entry)
1801 entry = debugfs_create_file("device_id", S_IRUSR, root,
1802 docg3, &device_id_fops);
1803 if (entry)
1804 entry = debugfs_create_file("protection", S_IRUSR, root,
1805 docg3, &protection_fops);
1806 if (entry) {
1807 docg3->debugfs_root = root;
1808 return 0;
1809 } else {
1810 debugfs_remove_recursive(root);
1811 return -ENOMEM;
1815 static void __exit doc_dbg_unregister(struct docg3 *docg3)
1817 debugfs_remove_recursive(docg3->debugfs_root);
1821 * doc_set_driver_info - Fill the mtd_info structure and docg3 structure
1822 * @chip_id: The chip ID of the supported chip
1823 * @mtd: The structure to fill
1825 static void __init doc_set_driver_info(int chip_id, struct mtd_info *mtd)
1827 struct docg3 *docg3 = mtd->priv;
1828 int cfg;
1830 cfg = doc_register_readb(docg3, DOC_CONFIGURATION);
1831 docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0);
1832 docg3->reliable = reliable_mode;
1834 switch (chip_id) {
1835 case DOC_CHIPID_G3:
1836 mtd->name = kasprintf(GFP_KERNEL, "docg3.%d",
1837 docg3->device_id);
1838 docg3->max_block = 2047;
1839 break;
1841 mtd->type = MTD_NANDFLASH;
1842 mtd->flags = MTD_CAP_NANDFLASH;
1843 mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE;
1844 if (docg3->reliable == 2)
1845 mtd->size /= 2;
1846 mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES;
1847 if (docg3->reliable == 2)
1848 mtd->erasesize /= 2;
1849 mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE;
1850 mtd->oobsize = DOC_LAYOUT_OOB_SIZE;
1851 mtd->owner = THIS_MODULE;
1852 mtd->_erase = doc_erase;
1853 mtd->_read = doc_read;
1854 mtd->_write = doc_write;
1855 mtd->_read_oob = doc_read_oob;
1856 mtd->_write_oob = doc_write_oob;
1857 mtd->_block_isbad = doc_block_isbad;
1858 mtd->ecclayout = &docg3_oobinfo;
1859 mtd->ecc_strength = DOC_ECC_BCH_T;
1863 * doc_probe_device - Check if a device is available
1864 * @base: the io space where the device is probed
1865 * @floor: the floor of the probed device
1866 * @dev: the device
1867 * @cascade: the cascade of chips this devices will belong to
1869 * Checks whether a device at the specified IO range, and floor is available.
1871 * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM
1872 * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is
1873 * launched.
1875 static struct mtd_info * __init
1876 doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev)
1878 int ret, bbt_nbpages;
1879 u16 chip_id, chip_id_inv;
1880 struct docg3 *docg3;
1881 struct mtd_info *mtd;
1883 ret = -ENOMEM;
1884 docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL);
1885 if (!docg3)
1886 goto nomem1;
1887 mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
1888 if (!mtd)
1889 goto nomem2;
1890 mtd->priv = docg3;
1891 bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1,
1892 8 * DOC_LAYOUT_PAGE_SIZE);
1893 docg3->bbt = kzalloc(bbt_nbpages * DOC_LAYOUT_PAGE_SIZE, GFP_KERNEL);
1894 if (!docg3->bbt)
1895 goto nomem3;
1897 docg3->dev = dev;
1898 docg3->device_id = floor;
1899 docg3->cascade = cascade;
1900 doc_set_device_id(docg3, docg3->device_id);
1901 if (!floor)
1902 doc_set_asic_mode(docg3, DOC_ASICMODE_RESET);
1903 doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL);
1905 chip_id = doc_register_readw(docg3, DOC_CHIPID);
1906 chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV);
1908 ret = 0;
1909 if (chip_id != (u16)(~chip_id_inv)) {
1910 goto nomem3;
1913 switch (chip_id) {
1914 case DOC_CHIPID_G3:
1915 doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n",
1916 docg3->cascade->base, floor);
1917 break;
1918 default:
1919 doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id);
1920 goto nomem3;
1923 doc_set_driver_info(chip_id, mtd);
1925 doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1926 doc_reload_bbt(docg3);
1927 return mtd;
1929 nomem3:
1930 kfree(mtd);
1931 nomem2:
1932 kfree(docg3);
1933 nomem1:
1934 return ERR_PTR(ret);
1938 * doc_release_device - Release a docg3 floor
1939 * @mtd: the device
1941 static void doc_release_device(struct mtd_info *mtd)
1943 struct docg3 *docg3 = mtd->priv;
1945 mtd_device_unregister(mtd);
1946 kfree(docg3->bbt);
1947 kfree(docg3);
1948 kfree(mtd->name);
1949 kfree(mtd);
1953 * docg3_resume - Awakens docg3 floor
1954 * @pdev: platfrom device
1956 * Returns 0 (always successful)
1958 static int docg3_resume(struct platform_device *pdev)
1960 int i;
1961 struct docg3_cascade *cascade;
1962 struct mtd_info **docg3_floors, *mtd;
1963 struct docg3 *docg3;
1965 cascade = platform_get_drvdata(pdev);
1966 docg3_floors = cascade->floors;
1967 mtd = docg3_floors[0];
1968 docg3 = mtd->priv;
1970 doc_dbg("docg3_resume()\n");
1971 for (i = 0; i < 12; i++)
1972 doc_readb(docg3, DOC_IOSPACE_IPL);
1973 return 0;
1977 * docg3_suspend - Put in low power mode the docg3 floor
1978 * @pdev: platform device
1979 * @state: power state
1981 * Shuts off most of docg3 circuitery to lower power consumption.
1983 * Returns 0 if suspend succeeded, -EIO if chip refused suspend
1985 static int docg3_suspend(struct platform_device *pdev, pm_message_t state)
1987 int floor, i;
1988 struct docg3_cascade *cascade;
1989 struct mtd_info **docg3_floors, *mtd;
1990 struct docg3 *docg3;
1991 u8 ctrl, pwr_down;
1993 cascade = platform_get_drvdata(pdev);
1994 docg3_floors = cascade->floors;
1995 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
1996 mtd = docg3_floors[floor];
1997 if (!mtd)
1998 continue;
1999 docg3 = mtd->priv;
2001 doc_writeb(docg3, floor, DOC_DEVICESELECT);
2002 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
2003 ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE;
2004 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
2006 for (i = 0; i < 10; i++) {
2007 usleep_range(3000, 4000);
2008 pwr_down = doc_register_readb(docg3, DOC_POWERMODE);
2009 if (pwr_down & DOC_POWERDOWN_READY)
2010 break;
2012 if (pwr_down & DOC_POWERDOWN_READY) {
2013 doc_dbg("docg3_suspend(): floor %d powerdown ok\n",
2014 floor);
2015 } else {
2016 doc_err("docg3_suspend(): floor %d powerdown failed\n",
2017 floor);
2018 return -EIO;
2022 mtd = docg3_floors[0];
2023 docg3 = mtd->priv;
2024 doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN);
2025 return 0;
2029 * doc_probe - Probe the IO space for a DiskOnChip G3 chip
2030 * @pdev: platform device
2032 * Probes for a G3 chip at the specified IO space in the platform data
2033 * ressources. The floor 0 must be available.
2035 * Returns 0 on success, -ENOMEM, -ENXIO on error
2037 static int __init docg3_probe(struct platform_device *pdev)
2039 struct device *dev = &pdev->dev;
2040 struct mtd_info *mtd;
2041 struct resource *ress;
2042 void __iomem *base;
2043 int ret, floor, found = 0;
2044 struct docg3_cascade *cascade;
2046 ret = -ENXIO;
2047 ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2048 if (!ress) {
2049 dev_err(dev, "No I/O memory resource defined\n");
2050 return ret;
2052 base = devm_ioremap(dev, ress->start, DOC_IOSPACE_SIZE);
2054 ret = -ENOMEM;
2055 cascade = devm_kzalloc(dev, sizeof(*cascade) * DOC_MAX_NBFLOORS,
2056 GFP_KERNEL);
2057 if (!cascade)
2058 return ret;
2059 cascade->base = base;
2060 mutex_init(&cascade->lock);
2061 cascade->bch = init_bch(DOC_ECC_BCH_M, DOC_ECC_BCH_T,
2062 DOC_ECC_BCH_PRIMPOLY);
2063 if (!cascade->bch)
2064 return ret;
2066 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
2067 mtd = doc_probe_device(cascade, floor, dev);
2068 if (IS_ERR(mtd)) {
2069 ret = PTR_ERR(mtd);
2070 goto err_probe;
2072 if (!mtd) {
2073 if (floor == 0)
2074 goto notfound;
2075 else
2076 continue;
2078 cascade->floors[floor] = mtd;
2079 ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL,
2081 if (ret)
2082 goto err_probe;
2083 found++;
2086 ret = doc_register_sysfs(pdev, cascade);
2087 if (ret)
2088 goto err_probe;
2089 if (!found)
2090 goto notfound;
2092 platform_set_drvdata(pdev, cascade);
2093 doc_dbg_register(cascade->floors[0]->priv);
2094 return 0;
2096 notfound:
2097 ret = -ENODEV;
2098 dev_info(dev, "No supported DiskOnChip found\n");
2099 err_probe:
2100 free_bch(cascade->bch);
2101 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2102 if (cascade->floors[floor])
2103 doc_release_device(cascade->floors[floor]);
2104 return ret;
2108 * docg3_release - Release the driver
2109 * @pdev: the platform device
2111 * Returns 0
2113 static int __exit docg3_release(struct platform_device *pdev)
2115 struct docg3_cascade *cascade = platform_get_drvdata(pdev);
2116 struct docg3 *docg3 = cascade->floors[0]->priv;
2117 int floor;
2119 doc_unregister_sysfs(pdev, cascade);
2120 doc_dbg_unregister(docg3);
2121 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2122 if (cascade->floors[floor])
2123 doc_release_device(cascade->floors[floor]);
2125 free_bch(docg3->cascade->bch);
2126 return 0;
2129 static struct platform_driver g3_driver = {
2130 .driver = {
2131 .name = "docg3",
2132 .owner = THIS_MODULE,
2134 .suspend = docg3_suspend,
2135 .resume = docg3_resume,
2136 .remove = __exit_p(docg3_release),
2139 module_platform_driver_probe(g3_driver, docg3_probe);
2141 MODULE_LICENSE("GPL");
2142 MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
2143 MODULE_DESCRIPTION("MTD driver for DiskOnChip G3");