Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux/fpc-iii.git] / drivers / mtd / ubi / io.c
blobd36134925d31fc91bf8c2cacf0429a7b1e366757
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Author: Artem Bityutskiy (Битюцкий Артём)
23 * UBI input/output sub-system.
25 * This sub-system provides a uniform way to work with all kinds of the
26 * underlying MTD devices. It also implements handy functions for reading and
27 * writing UBI headers.
29 * We are trying to have a paranoid mindset and not to trust to what we read
30 * from the flash media in order to be more secure and robust. So this
31 * sub-system validates every single header it reads from the flash media.
33 * Some words about how the eraseblock headers are stored.
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
43 * be aligned.
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57 * users.
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61 * headers.
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
67 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69 * Thus, we prefer to use sub-pages only for EC and VID headers.
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
82 * The I/O sub-system does the following trick in order to avoid this extra
83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85 * When the VID header is being written out, it shifts the VID header pointer
86 * back and writes the whole sub-page.
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include <linux/slab.h>
92 #include "ubi.h"
94 static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
95 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
96 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
97 const struct ubi_ec_hdr *ec_hdr);
98 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
99 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
100 const struct ubi_vid_hdr *vid_hdr);
101 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
102 int offset, int len);
105 * ubi_io_read - read data from a physical eraseblock.
106 * @ubi: UBI device description object
107 * @buf: buffer where to store the read data
108 * @pnum: physical eraseblock number to read from
109 * @offset: offset within the physical eraseblock from where to read
110 * @len: how many bytes to read
112 * This function reads data from offset @offset of physical eraseblock @pnum
113 * and stores the read data in the @buf buffer. The following return codes are
114 * possible:
116 * o %0 if all the requested data were successfully read;
117 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
118 * correctable bit-flips were detected; this is harmless but may indicate
119 * that this eraseblock may become bad soon (but do not have to);
120 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
121 * example it can be an ECC error in case of NAND; this most probably means
122 * that the data is corrupted;
123 * o %-EIO if some I/O error occurred;
124 * o other negative error codes in case of other errors.
126 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
127 int len)
129 int err, retries = 0;
130 size_t read;
131 loff_t addr;
133 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
135 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
136 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
137 ubi_assert(len > 0);
139 err = self_check_not_bad(ubi, pnum);
140 if (err)
141 return err;
144 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
145 * do not do this, the following may happen:
146 * 1. The buffer contains data from previous operation, e.g., read from
147 * another PEB previously. The data looks like expected, e.g., if we
148 * just do not read anything and return - the caller would not
149 * notice this. E.g., if we are reading a VID header, the buffer may
150 * contain a valid VID header from another PEB.
151 * 2. The driver is buggy and returns us success or -EBADMSG or
152 * -EUCLEAN, but it does not actually put any data to the buffer.
154 * This may confuse UBI or upper layers - they may think the buffer
155 * contains valid data while in fact it is just old data. This is
156 * especially possible because UBI (and UBIFS) relies on CRC, and
157 * treats data as correct even in case of ECC errors if the CRC is
158 * correct.
160 * Try to prevent this situation by changing the first byte of the
161 * buffer.
163 *((uint8_t *)buf) ^= 0xFF;
165 addr = (loff_t)pnum * ubi->peb_size + offset;
166 retry:
167 err = mtd_read(ubi->mtd, addr, len, &read, buf);
168 if (err) {
169 const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
171 if (mtd_is_bitflip(err)) {
173 * -EUCLEAN is reported if there was a bit-flip which
174 * was corrected, so this is harmless.
176 * We do not report about it here unless debugging is
177 * enabled. A corresponding message will be printed
178 * later, when it is has been scrubbed.
180 ubi_msg("fixable bit-flip detected at PEB %d", pnum);
181 ubi_assert(len == read);
182 return UBI_IO_BITFLIPS;
185 if (retries++ < UBI_IO_RETRIES) {
186 ubi_warn("error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
187 err, errstr, len, pnum, offset, read);
188 yield();
189 goto retry;
192 ubi_err("error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
193 err, errstr, len, pnum, offset, read);
194 dump_stack();
197 * The driver should never return -EBADMSG if it failed to read
198 * all the requested data. But some buggy drivers might do
199 * this, so we change it to -EIO.
201 if (read != len && mtd_is_eccerr(err)) {
202 ubi_assert(0);
203 err = -EIO;
205 } else {
206 ubi_assert(len == read);
208 if (ubi_dbg_is_bitflip(ubi)) {
209 dbg_gen("bit-flip (emulated)");
210 err = UBI_IO_BITFLIPS;
214 return err;
218 * ubi_io_write - write data to a physical eraseblock.
219 * @ubi: UBI device description object
220 * @buf: buffer with the data to write
221 * @pnum: physical eraseblock number to write to
222 * @offset: offset within the physical eraseblock where to write
223 * @len: how many bytes to write
225 * This function writes @len bytes of data from buffer @buf to offset @offset
226 * of physical eraseblock @pnum. If all the data were successfully written,
227 * zero is returned. If an error occurred, this function returns a negative
228 * error code. If %-EIO is returned, the physical eraseblock most probably went
229 * bad.
231 * Note, in case of an error, it is possible that something was still written
232 * to the flash media, but may be some garbage.
234 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
235 int len)
237 int err;
238 size_t written;
239 loff_t addr;
241 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
243 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
244 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
245 ubi_assert(offset % ubi->hdrs_min_io_size == 0);
246 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
248 if (ubi->ro_mode) {
249 ubi_err("read-only mode");
250 return -EROFS;
253 err = self_check_not_bad(ubi, pnum);
254 if (err)
255 return err;
257 /* The area we are writing to has to contain all 0xFF bytes */
258 err = ubi_self_check_all_ff(ubi, pnum, offset, len);
259 if (err)
260 return err;
262 if (offset >= ubi->leb_start) {
264 * We write to the data area of the physical eraseblock. Make
265 * sure it has valid EC and VID headers.
267 err = self_check_peb_ec_hdr(ubi, pnum);
268 if (err)
269 return err;
270 err = self_check_peb_vid_hdr(ubi, pnum);
271 if (err)
272 return err;
275 if (ubi_dbg_is_write_failure(ubi)) {
276 ubi_err("cannot write %d bytes to PEB %d:%d (emulated)",
277 len, pnum, offset);
278 dump_stack();
279 return -EIO;
282 addr = (loff_t)pnum * ubi->peb_size + offset;
283 err = mtd_write(ubi->mtd, addr, len, &written, buf);
284 if (err) {
285 ubi_err("error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
286 err, len, pnum, offset, written);
287 dump_stack();
288 ubi_dump_flash(ubi, pnum, offset, len);
289 } else
290 ubi_assert(written == len);
292 if (!err) {
293 err = self_check_write(ubi, buf, pnum, offset, len);
294 if (err)
295 return err;
298 * Since we always write sequentially, the rest of the PEB has
299 * to contain only 0xFF bytes.
301 offset += len;
302 len = ubi->peb_size - offset;
303 if (len)
304 err = ubi_self_check_all_ff(ubi, pnum, offset, len);
307 return err;
311 * erase_callback - MTD erasure call-back.
312 * @ei: MTD erase information object.
314 * Note, even though MTD erase interface is asynchronous, all the current
315 * implementations are synchronous anyway.
317 static void erase_callback(struct erase_info *ei)
319 wake_up_interruptible((wait_queue_head_t *)ei->priv);
323 * do_sync_erase - synchronously erase a physical eraseblock.
324 * @ubi: UBI device description object
325 * @pnum: the physical eraseblock number to erase
327 * This function synchronously erases physical eraseblock @pnum and returns
328 * zero in case of success and a negative error code in case of failure. If
329 * %-EIO is returned, the physical eraseblock most probably went bad.
331 static int do_sync_erase(struct ubi_device *ubi, int pnum)
333 int err, retries = 0;
334 struct erase_info ei;
335 wait_queue_head_t wq;
337 dbg_io("erase PEB %d", pnum);
338 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
340 if (ubi->ro_mode) {
341 ubi_err("read-only mode");
342 return -EROFS;
345 retry:
346 init_waitqueue_head(&wq);
347 memset(&ei, 0, sizeof(struct erase_info));
349 ei.mtd = ubi->mtd;
350 ei.addr = (loff_t)pnum * ubi->peb_size;
351 ei.len = ubi->peb_size;
352 ei.callback = erase_callback;
353 ei.priv = (unsigned long)&wq;
355 err = mtd_erase(ubi->mtd, &ei);
356 if (err) {
357 if (retries++ < UBI_IO_RETRIES) {
358 ubi_warn("error %d while erasing PEB %d, retry",
359 err, pnum);
360 yield();
361 goto retry;
363 ubi_err("cannot erase PEB %d, error %d", pnum, err);
364 dump_stack();
365 return err;
368 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
369 ei.state == MTD_ERASE_FAILED);
370 if (err) {
371 ubi_err("interrupted PEB %d erasure", pnum);
372 return -EINTR;
375 if (ei.state == MTD_ERASE_FAILED) {
376 if (retries++ < UBI_IO_RETRIES) {
377 ubi_warn("error while erasing PEB %d, retry", pnum);
378 yield();
379 goto retry;
381 ubi_err("cannot erase PEB %d", pnum);
382 dump_stack();
383 return -EIO;
386 err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
387 if (err)
388 return err;
390 if (ubi_dbg_is_erase_failure(ubi)) {
391 ubi_err("cannot erase PEB %d (emulated)", pnum);
392 return -EIO;
395 return 0;
398 /* Patterns to write to a physical eraseblock when torturing it */
399 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
402 * torture_peb - test a supposedly bad physical eraseblock.
403 * @ubi: UBI device description object
404 * @pnum: the physical eraseblock number to test
406 * This function returns %-EIO if the physical eraseblock did not pass the
407 * test, a positive number of erase operations done if the test was
408 * successfully passed, and other negative error codes in case of other errors.
410 static int torture_peb(struct ubi_device *ubi, int pnum)
412 int err, i, patt_count;
414 ubi_msg("run torture test for PEB %d", pnum);
415 patt_count = ARRAY_SIZE(patterns);
416 ubi_assert(patt_count > 0);
418 mutex_lock(&ubi->buf_mutex);
419 for (i = 0; i < patt_count; i++) {
420 err = do_sync_erase(ubi, pnum);
421 if (err)
422 goto out;
424 /* Make sure the PEB contains only 0xFF bytes */
425 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
426 if (err)
427 goto out;
429 err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
430 if (err == 0) {
431 ubi_err("erased PEB %d, but a non-0xFF byte found",
432 pnum);
433 err = -EIO;
434 goto out;
437 /* Write a pattern and check it */
438 memset(ubi->peb_buf, patterns[i], ubi->peb_size);
439 err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
440 if (err)
441 goto out;
443 memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
444 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
445 if (err)
446 goto out;
448 err = ubi_check_pattern(ubi->peb_buf, patterns[i],
449 ubi->peb_size);
450 if (err == 0) {
451 ubi_err("pattern %x checking failed for PEB %d",
452 patterns[i], pnum);
453 err = -EIO;
454 goto out;
458 err = patt_count;
459 ubi_msg("PEB %d passed torture test, do not mark it as bad", pnum);
461 out:
462 mutex_unlock(&ubi->buf_mutex);
463 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
465 * If a bit-flip or data integrity error was detected, the test
466 * has not passed because it happened on a freshly erased
467 * physical eraseblock which means something is wrong with it.
469 ubi_err("read problems on freshly erased PEB %d, must be bad",
470 pnum);
471 err = -EIO;
473 return err;
477 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
478 * @ubi: UBI device description object
479 * @pnum: physical eraseblock number to prepare
481 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
482 * algorithm: the PEB is first filled with zeroes, then it is erased. And
483 * filling with zeroes starts from the end of the PEB. This was observed with
484 * Spansion S29GL512N NOR flash.
486 * This means that in case of a power cut we may end up with intact data at the
487 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
488 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
489 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
490 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
492 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
493 * magic numbers in order to invalidate them and prevent the failures. Returns
494 * zero in case of success and a negative error code in case of failure.
496 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
498 int err;
499 size_t written;
500 loff_t addr;
501 uint32_t data = 0;
502 struct ubi_ec_hdr ec_hdr;
505 * Note, we cannot generally define VID header buffers on stack,
506 * because of the way we deal with these buffers (see the header
507 * comment in this file). But we know this is a NOR-specific piece of
508 * code, so we can do this. But yes, this is error-prone and we should
509 * (pre-)allocate VID header buffer instead.
511 struct ubi_vid_hdr vid_hdr;
514 * If VID or EC is valid, we have to corrupt them before erasing.
515 * It is important to first invalidate the EC header, and then the VID
516 * header. Otherwise a power cut may lead to valid EC header and
517 * invalid VID header, in which case UBI will treat this PEB as
518 * corrupted and will try to preserve it, and print scary warnings.
520 addr = (loff_t)pnum * ubi->peb_size;
521 err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
522 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
523 err != UBI_IO_FF){
524 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
525 if(err)
526 goto error;
529 err = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
530 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
531 err != UBI_IO_FF){
532 addr += ubi->vid_hdr_aloffset;
533 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
534 if (err)
535 goto error;
537 return 0;
539 error:
541 * The PEB contains a valid VID or EC header, but we cannot invalidate
542 * it. Supposedly the flash media or the driver is screwed up, so
543 * return an error.
545 ubi_err("cannot invalidate PEB %d, write returned %d", pnum, err);
546 ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
547 return -EIO;
551 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
552 * @ubi: UBI device description object
553 * @pnum: physical eraseblock number to erase
554 * @torture: if this physical eraseblock has to be tortured
556 * This function synchronously erases physical eraseblock @pnum. If @torture
557 * flag is not zero, the physical eraseblock is checked by means of writing
558 * different patterns to it and reading them back. If the torturing is enabled,
559 * the physical eraseblock is erased more than once.
561 * This function returns the number of erasures made in case of success, %-EIO
562 * if the erasure failed or the torturing test failed, and other negative error
563 * codes in case of other errors. Note, %-EIO means that the physical
564 * eraseblock is bad.
566 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
568 int err, ret = 0;
570 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
572 err = self_check_not_bad(ubi, pnum);
573 if (err != 0)
574 return err;
576 if (ubi->ro_mode) {
577 ubi_err("read-only mode");
578 return -EROFS;
581 if (ubi->nor_flash) {
582 err = nor_erase_prepare(ubi, pnum);
583 if (err)
584 return err;
587 if (torture) {
588 ret = torture_peb(ubi, pnum);
589 if (ret < 0)
590 return ret;
593 err = do_sync_erase(ubi, pnum);
594 if (err)
595 return err;
597 return ret + 1;
601 * ubi_io_is_bad - check if a physical eraseblock is bad.
602 * @ubi: UBI device description object
603 * @pnum: the physical eraseblock number to check
605 * This function returns a positive number if the physical eraseblock is bad,
606 * zero if not, and a negative error code if an error occurred.
608 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
610 struct mtd_info *mtd = ubi->mtd;
612 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
614 if (ubi->bad_allowed) {
615 int ret;
617 ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
618 if (ret < 0)
619 ubi_err("error %d while checking if PEB %d is bad",
620 ret, pnum);
621 else if (ret)
622 dbg_io("PEB %d is bad", pnum);
623 return ret;
626 return 0;
630 * ubi_io_mark_bad - mark a physical eraseblock as bad.
631 * @ubi: UBI device description object
632 * @pnum: the physical eraseblock number to mark
634 * This function returns zero in case of success and a negative error code in
635 * case of failure.
637 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
639 int err;
640 struct mtd_info *mtd = ubi->mtd;
642 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
644 if (ubi->ro_mode) {
645 ubi_err("read-only mode");
646 return -EROFS;
649 if (!ubi->bad_allowed)
650 return 0;
652 err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
653 if (err)
654 ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
655 return err;
659 * validate_ec_hdr - validate an erase counter header.
660 * @ubi: UBI device description object
661 * @ec_hdr: the erase counter header to check
663 * This function returns zero if the erase counter header is OK, and %1 if
664 * not.
666 static int validate_ec_hdr(const struct ubi_device *ubi,
667 const struct ubi_ec_hdr *ec_hdr)
669 long long ec;
670 int vid_hdr_offset, leb_start;
672 ec = be64_to_cpu(ec_hdr->ec);
673 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
674 leb_start = be32_to_cpu(ec_hdr->data_offset);
676 if (ec_hdr->version != UBI_VERSION) {
677 ubi_err("node with incompatible UBI version found: this UBI version is %d, image version is %d",
678 UBI_VERSION, (int)ec_hdr->version);
679 goto bad;
682 if (vid_hdr_offset != ubi->vid_hdr_offset) {
683 ubi_err("bad VID header offset %d, expected %d",
684 vid_hdr_offset, ubi->vid_hdr_offset);
685 goto bad;
688 if (leb_start != ubi->leb_start) {
689 ubi_err("bad data offset %d, expected %d",
690 leb_start, ubi->leb_start);
691 goto bad;
694 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
695 ubi_err("bad erase counter %lld", ec);
696 goto bad;
699 return 0;
701 bad:
702 ubi_err("bad EC header");
703 ubi_dump_ec_hdr(ec_hdr);
704 dump_stack();
705 return 1;
709 * ubi_io_read_ec_hdr - read and check an erase counter header.
710 * @ubi: UBI device description object
711 * @pnum: physical eraseblock to read from
712 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
713 * header
714 * @verbose: be verbose if the header is corrupted or was not found
716 * This function reads erase counter header from physical eraseblock @pnum and
717 * stores it in @ec_hdr. This function also checks CRC checksum of the read
718 * erase counter header. The following codes may be returned:
720 * o %0 if the CRC checksum is correct and the header was successfully read;
721 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
722 * and corrected by the flash driver; this is harmless but may indicate that
723 * this eraseblock may become bad soon (but may be not);
724 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
725 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
726 * a data integrity error (uncorrectable ECC error in case of NAND);
727 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
728 * o a negative error code in case of failure.
730 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
731 struct ubi_ec_hdr *ec_hdr, int verbose)
733 int err, read_err;
734 uint32_t crc, magic, hdr_crc;
736 dbg_io("read EC header from PEB %d", pnum);
737 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
739 read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
740 if (read_err) {
741 if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
742 return read_err;
745 * We read all the data, but either a correctable bit-flip
746 * occurred, or MTD reported a data integrity error
747 * (uncorrectable ECC error in case of NAND). The former is
748 * harmless, the later may mean that the read data is
749 * corrupted. But we have a CRC check-sum and we will detect
750 * this. If the EC header is still OK, we just report this as
751 * there was a bit-flip, to force scrubbing.
755 magic = be32_to_cpu(ec_hdr->magic);
756 if (magic != UBI_EC_HDR_MAGIC) {
757 if (mtd_is_eccerr(read_err))
758 return UBI_IO_BAD_HDR_EBADMSG;
761 * The magic field is wrong. Let's check if we have read all
762 * 0xFF. If yes, this physical eraseblock is assumed to be
763 * empty.
765 if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
766 /* The physical eraseblock is supposedly empty */
767 if (verbose)
768 ubi_warn("no EC header found at PEB %d, only 0xFF bytes",
769 pnum);
770 dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
771 pnum);
772 if (!read_err)
773 return UBI_IO_FF;
774 else
775 return UBI_IO_FF_BITFLIPS;
779 * This is not a valid erase counter header, and these are not
780 * 0xFF bytes. Report that the header is corrupted.
782 if (verbose) {
783 ubi_warn("bad magic number at PEB %d: %08x instead of %08x",
784 pnum, magic, UBI_EC_HDR_MAGIC);
785 ubi_dump_ec_hdr(ec_hdr);
787 dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
788 pnum, magic, UBI_EC_HDR_MAGIC);
789 return UBI_IO_BAD_HDR;
792 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
793 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
795 if (hdr_crc != crc) {
796 if (verbose) {
797 ubi_warn("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
798 pnum, crc, hdr_crc);
799 ubi_dump_ec_hdr(ec_hdr);
801 dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
802 pnum, crc, hdr_crc);
804 if (!read_err)
805 return UBI_IO_BAD_HDR;
806 else
807 return UBI_IO_BAD_HDR_EBADMSG;
810 /* And of course validate what has just been read from the media */
811 err = validate_ec_hdr(ubi, ec_hdr);
812 if (err) {
813 ubi_err("validation failed for PEB %d", pnum);
814 return -EINVAL;
818 * If there was %-EBADMSG, but the header CRC is still OK, report about
819 * a bit-flip to force scrubbing on this PEB.
821 return read_err ? UBI_IO_BITFLIPS : 0;
825 * ubi_io_write_ec_hdr - write an erase counter header.
826 * @ubi: UBI device description object
827 * @pnum: physical eraseblock to write to
828 * @ec_hdr: the erase counter header to write
830 * This function writes erase counter header described by @ec_hdr to physical
831 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
832 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
833 * field.
835 * This function returns zero in case of success and a negative error code in
836 * case of failure. If %-EIO is returned, the physical eraseblock most probably
837 * went bad.
839 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
840 struct ubi_ec_hdr *ec_hdr)
842 int err;
843 uint32_t crc;
845 dbg_io("write EC header to PEB %d", pnum);
846 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
848 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
849 ec_hdr->version = UBI_VERSION;
850 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
851 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
852 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
853 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
854 ec_hdr->hdr_crc = cpu_to_be32(crc);
856 err = self_check_ec_hdr(ubi, pnum, ec_hdr);
857 if (err)
858 return err;
860 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
861 return err;
865 * validate_vid_hdr - validate a volume identifier header.
866 * @ubi: UBI device description object
867 * @vid_hdr: the volume identifier header to check
869 * This function checks that data stored in the volume identifier header
870 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
872 static int validate_vid_hdr(const struct ubi_device *ubi,
873 const struct ubi_vid_hdr *vid_hdr)
875 int vol_type = vid_hdr->vol_type;
876 int copy_flag = vid_hdr->copy_flag;
877 int vol_id = be32_to_cpu(vid_hdr->vol_id);
878 int lnum = be32_to_cpu(vid_hdr->lnum);
879 int compat = vid_hdr->compat;
880 int data_size = be32_to_cpu(vid_hdr->data_size);
881 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
882 int data_pad = be32_to_cpu(vid_hdr->data_pad);
883 int data_crc = be32_to_cpu(vid_hdr->data_crc);
884 int usable_leb_size = ubi->leb_size - data_pad;
886 if (copy_flag != 0 && copy_flag != 1) {
887 ubi_err("bad copy_flag");
888 goto bad;
891 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
892 data_pad < 0) {
893 ubi_err("negative values");
894 goto bad;
897 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
898 ubi_err("bad vol_id");
899 goto bad;
902 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
903 ubi_err("bad compat");
904 goto bad;
907 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
908 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
909 compat != UBI_COMPAT_REJECT) {
910 ubi_err("bad compat");
911 goto bad;
914 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
915 ubi_err("bad vol_type");
916 goto bad;
919 if (data_pad >= ubi->leb_size / 2) {
920 ubi_err("bad data_pad");
921 goto bad;
924 if (vol_type == UBI_VID_STATIC) {
926 * Although from high-level point of view static volumes may
927 * contain zero bytes of data, but no VID headers can contain
928 * zero at these fields, because they empty volumes do not have
929 * mapped logical eraseblocks.
931 if (used_ebs == 0) {
932 ubi_err("zero used_ebs");
933 goto bad;
935 if (data_size == 0) {
936 ubi_err("zero data_size");
937 goto bad;
939 if (lnum < used_ebs - 1) {
940 if (data_size != usable_leb_size) {
941 ubi_err("bad data_size");
942 goto bad;
944 } else if (lnum == used_ebs - 1) {
945 if (data_size == 0) {
946 ubi_err("bad data_size at last LEB");
947 goto bad;
949 } else {
950 ubi_err("too high lnum");
951 goto bad;
953 } else {
954 if (copy_flag == 0) {
955 if (data_crc != 0) {
956 ubi_err("non-zero data CRC");
957 goto bad;
959 if (data_size != 0) {
960 ubi_err("non-zero data_size");
961 goto bad;
963 } else {
964 if (data_size == 0) {
965 ubi_err("zero data_size of copy");
966 goto bad;
969 if (used_ebs != 0) {
970 ubi_err("bad used_ebs");
971 goto bad;
975 return 0;
977 bad:
978 ubi_err("bad VID header");
979 ubi_dump_vid_hdr(vid_hdr);
980 dump_stack();
981 return 1;
985 * ubi_io_read_vid_hdr - read and check a volume identifier header.
986 * @ubi: UBI device description object
987 * @pnum: physical eraseblock number to read from
988 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
989 * identifier header
990 * @verbose: be verbose if the header is corrupted or wasn't found
992 * This function reads the volume identifier header from physical eraseblock
993 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
994 * volume identifier header. The error codes are the same as in
995 * 'ubi_io_read_ec_hdr()'.
997 * Note, the implementation of this function is also very similar to
998 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
1000 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
1001 struct ubi_vid_hdr *vid_hdr, int verbose)
1003 int err, read_err;
1004 uint32_t crc, magic, hdr_crc;
1005 void *p;
1007 dbg_io("read VID header from PEB %d", pnum);
1008 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1010 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1011 read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1012 ubi->vid_hdr_alsize);
1013 if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
1014 return read_err;
1016 magic = be32_to_cpu(vid_hdr->magic);
1017 if (magic != UBI_VID_HDR_MAGIC) {
1018 if (mtd_is_eccerr(read_err))
1019 return UBI_IO_BAD_HDR_EBADMSG;
1021 if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1022 if (verbose)
1023 ubi_warn("no VID header found at PEB %d, only 0xFF bytes",
1024 pnum);
1025 dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
1026 pnum);
1027 if (!read_err)
1028 return UBI_IO_FF;
1029 else
1030 return UBI_IO_FF_BITFLIPS;
1033 if (verbose) {
1034 ubi_warn("bad magic number at PEB %d: %08x instead of %08x",
1035 pnum, magic, UBI_VID_HDR_MAGIC);
1036 ubi_dump_vid_hdr(vid_hdr);
1038 dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1039 pnum, magic, UBI_VID_HDR_MAGIC);
1040 return UBI_IO_BAD_HDR;
1043 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1044 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1046 if (hdr_crc != crc) {
1047 if (verbose) {
1048 ubi_warn("bad CRC at PEB %d, calculated %#08x, read %#08x",
1049 pnum, crc, hdr_crc);
1050 ubi_dump_vid_hdr(vid_hdr);
1052 dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1053 pnum, crc, hdr_crc);
1054 if (!read_err)
1055 return UBI_IO_BAD_HDR;
1056 else
1057 return UBI_IO_BAD_HDR_EBADMSG;
1060 err = validate_vid_hdr(ubi, vid_hdr);
1061 if (err) {
1062 ubi_err("validation failed for PEB %d", pnum);
1063 return -EINVAL;
1066 return read_err ? UBI_IO_BITFLIPS : 0;
1070 * ubi_io_write_vid_hdr - write a volume identifier header.
1071 * @ubi: UBI device description object
1072 * @pnum: the physical eraseblock number to write to
1073 * @vid_hdr: the volume identifier header to write
1075 * This function writes the volume identifier header described by @vid_hdr to
1076 * physical eraseblock @pnum. This function automatically fills the
1077 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1078 * header CRC checksum and stores it at vid_hdr->hdr_crc.
1080 * This function returns zero in case of success and a negative error code in
1081 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1082 * bad.
1084 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1085 struct ubi_vid_hdr *vid_hdr)
1087 int err;
1088 uint32_t crc;
1089 void *p;
1091 dbg_io("write VID header to PEB %d", pnum);
1092 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1094 err = self_check_peb_ec_hdr(ubi, pnum);
1095 if (err)
1096 return err;
1098 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1099 vid_hdr->version = UBI_VERSION;
1100 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1101 vid_hdr->hdr_crc = cpu_to_be32(crc);
1103 err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1104 if (err)
1105 return err;
1107 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1108 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1109 ubi->vid_hdr_alsize);
1110 return err;
1114 * self_check_not_bad - ensure that a physical eraseblock is not bad.
1115 * @ubi: UBI device description object
1116 * @pnum: physical eraseblock number to check
1118 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1119 * it is bad and a negative error code if an error occurred.
1121 static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
1123 int err;
1125 if (!ubi_dbg_chk_io(ubi))
1126 return 0;
1128 err = ubi_io_is_bad(ubi, pnum);
1129 if (!err)
1130 return err;
1132 ubi_err("self-check failed for PEB %d", pnum);
1133 dump_stack();
1134 return err > 0 ? -EINVAL : err;
1138 * self_check_ec_hdr - check if an erase counter header is all right.
1139 * @ubi: UBI device description object
1140 * @pnum: physical eraseblock number the erase counter header belongs to
1141 * @ec_hdr: the erase counter header to check
1143 * This function returns zero if the erase counter header contains valid
1144 * values, and %-EINVAL if not.
1146 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1147 const struct ubi_ec_hdr *ec_hdr)
1149 int err;
1150 uint32_t magic;
1152 if (!ubi_dbg_chk_io(ubi))
1153 return 0;
1155 magic = be32_to_cpu(ec_hdr->magic);
1156 if (magic != UBI_EC_HDR_MAGIC) {
1157 ubi_err("bad magic %#08x, must be %#08x",
1158 magic, UBI_EC_HDR_MAGIC);
1159 goto fail;
1162 err = validate_ec_hdr(ubi, ec_hdr);
1163 if (err) {
1164 ubi_err("self-check failed for PEB %d", pnum);
1165 goto fail;
1168 return 0;
1170 fail:
1171 ubi_dump_ec_hdr(ec_hdr);
1172 dump_stack();
1173 return -EINVAL;
1177 * self_check_peb_ec_hdr - check erase counter header.
1178 * @ubi: UBI device description object
1179 * @pnum: the physical eraseblock number to check
1181 * This function returns zero if the erase counter header is all right and and
1182 * a negative error code if not or if an error occurred.
1184 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1186 int err;
1187 uint32_t crc, hdr_crc;
1188 struct ubi_ec_hdr *ec_hdr;
1190 if (!ubi_dbg_chk_io(ubi))
1191 return 0;
1193 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1194 if (!ec_hdr)
1195 return -ENOMEM;
1197 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1198 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1199 goto exit;
1201 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1202 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1203 if (hdr_crc != crc) {
1204 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1205 ubi_err("self-check failed for PEB %d", pnum);
1206 ubi_dump_ec_hdr(ec_hdr);
1207 dump_stack();
1208 err = -EINVAL;
1209 goto exit;
1212 err = self_check_ec_hdr(ubi, pnum, ec_hdr);
1214 exit:
1215 kfree(ec_hdr);
1216 return err;
1220 * self_check_vid_hdr - check that a volume identifier header is all right.
1221 * @ubi: UBI device description object
1222 * @pnum: physical eraseblock number the volume identifier header belongs to
1223 * @vid_hdr: the volume identifier header to check
1225 * This function returns zero if the volume identifier header is all right, and
1226 * %-EINVAL if not.
1228 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1229 const struct ubi_vid_hdr *vid_hdr)
1231 int err;
1232 uint32_t magic;
1234 if (!ubi_dbg_chk_io(ubi))
1235 return 0;
1237 magic = be32_to_cpu(vid_hdr->magic);
1238 if (magic != UBI_VID_HDR_MAGIC) {
1239 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1240 magic, pnum, UBI_VID_HDR_MAGIC);
1241 goto fail;
1244 err = validate_vid_hdr(ubi, vid_hdr);
1245 if (err) {
1246 ubi_err("self-check failed for PEB %d", pnum);
1247 goto fail;
1250 return err;
1252 fail:
1253 ubi_err("self-check failed for PEB %d", pnum);
1254 ubi_dump_vid_hdr(vid_hdr);
1255 dump_stack();
1256 return -EINVAL;
1261 * self_check_peb_vid_hdr - check volume identifier header.
1262 * @ubi: UBI device description object
1263 * @pnum: the physical eraseblock number to check
1265 * This function returns zero if the volume identifier header is all right,
1266 * and a negative error code if not or if an error occurred.
1268 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1270 int err;
1271 uint32_t crc, hdr_crc;
1272 struct ubi_vid_hdr *vid_hdr;
1273 void *p;
1275 if (!ubi_dbg_chk_io(ubi))
1276 return 0;
1278 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1279 if (!vid_hdr)
1280 return -ENOMEM;
1282 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1283 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1284 ubi->vid_hdr_alsize);
1285 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1286 goto exit;
1288 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1289 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1290 if (hdr_crc != crc) {
1291 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
1292 pnum, crc, hdr_crc);
1293 ubi_err("self-check failed for PEB %d", pnum);
1294 ubi_dump_vid_hdr(vid_hdr);
1295 dump_stack();
1296 err = -EINVAL;
1297 goto exit;
1300 err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1302 exit:
1303 ubi_free_vid_hdr(ubi, vid_hdr);
1304 return err;
1308 * self_check_write - make sure write succeeded.
1309 * @ubi: UBI device description object
1310 * @buf: buffer with data which were written
1311 * @pnum: physical eraseblock number the data were written to
1312 * @offset: offset within the physical eraseblock the data were written to
1313 * @len: how many bytes were written
1315 * This functions reads data which were recently written and compares it with
1316 * the original data buffer - the data have to match. Returns zero if the data
1317 * match and a negative error code if not or in case of failure.
1319 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1320 int offset, int len)
1322 int err, i;
1323 size_t read;
1324 void *buf1;
1325 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1327 if (!ubi_dbg_chk_io(ubi))
1328 return 0;
1330 buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1331 if (!buf1) {
1332 ubi_err("cannot allocate memory to check writes");
1333 return 0;
1336 err = mtd_read(ubi->mtd, addr, len, &read, buf1);
1337 if (err && !mtd_is_bitflip(err))
1338 goto out_free;
1340 for (i = 0; i < len; i++) {
1341 uint8_t c = ((uint8_t *)buf)[i];
1342 uint8_t c1 = ((uint8_t *)buf1)[i];
1343 int dump_len;
1345 if (c == c1)
1346 continue;
1348 ubi_err("self-check failed for PEB %d:%d, len %d",
1349 pnum, offset, len);
1350 ubi_msg("data differ at position %d", i);
1351 dump_len = max_t(int, 128, len - i);
1352 ubi_msg("hex dump of the original buffer from %d to %d",
1353 i, i + dump_len);
1354 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1355 buf + i, dump_len, 1);
1356 ubi_msg("hex dump of the read buffer from %d to %d",
1357 i, i + dump_len);
1358 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1359 buf1 + i, dump_len, 1);
1360 dump_stack();
1361 err = -EINVAL;
1362 goto out_free;
1365 vfree(buf1);
1366 return 0;
1368 out_free:
1369 vfree(buf1);
1370 return err;
1374 * ubi_self_check_all_ff - check that a region of flash is empty.
1375 * @ubi: UBI device description object
1376 * @pnum: the physical eraseblock number to check
1377 * @offset: the starting offset within the physical eraseblock to check
1378 * @len: the length of the region to check
1380 * This function returns zero if only 0xFF bytes are present at offset
1381 * @offset of the physical eraseblock @pnum, and a negative error code if not
1382 * or if an error occurred.
1384 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1386 size_t read;
1387 int err;
1388 void *buf;
1389 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1391 if (!ubi_dbg_chk_io(ubi))
1392 return 0;
1394 buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1395 if (!buf) {
1396 ubi_err("cannot allocate memory to check for 0xFFs");
1397 return 0;
1400 err = mtd_read(ubi->mtd, addr, len, &read, buf);
1401 if (err && !mtd_is_bitflip(err)) {
1402 ubi_err("error %d while reading %d bytes from PEB %d:%d, read %zd bytes",
1403 err, len, pnum, offset, read);
1404 goto error;
1407 err = ubi_check_pattern(buf, 0xFF, len);
1408 if (err == 0) {
1409 ubi_err("flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
1410 pnum, offset, len);
1411 goto fail;
1414 vfree(buf);
1415 return 0;
1417 fail:
1418 ubi_err("self-check failed for PEB %d", pnum);
1419 ubi_msg("hex dump of the %d-%d region", offset, offset + len);
1420 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1421 err = -EINVAL;
1422 error:
1423 dump_stack();
1424 vfree(buf);
1425 return err;