2 * Alchemy Semi Au1000 IrDA driver
4 * Copyright 2001 MontaVista Software Inc.
5 * Author: MontaVista Software, Inc.
6 * ppopov@mvista.com or source@mvista.com
8 * This program is free software; you can distribute it and/or modify it
9 * under the terms of the GNU General Public License (Version 2) as
10 * published by the Free Software Foundation.
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include <linux/module.h>
22 #include <linux/netdevice.h>
23 #include <linux/interrupt.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/time.h>
27 #include <linux/types.h>
28 #include <linux/ioport.h>
30 #include <net/irda/irda.h>
31 #include <net/irda/irmod.h>
32 #include <net/irda/wrapper.h>
33 #include <net/irda/irda_device.h>
34 #include <asm/mach-au1x00/au1000.h>
37 #define IR_RING_PTR_STATUS 0x00
38 #define IR_RING_BASE_ADDR_H 0x04
39 #define IR_RING_BASE_ADDR_L 0x08
40 #define IR_RING_SIZE 0x0C
41 #define IR_RING_PROMPT 0x10
42 #define IR_RING_ADDR_CMPR 0x14
43 #define IR_INT_CLEAR 0x18
44 #define IR_CONFIG_1 0x20
45 #define IR_SIR_FLAGS 0x24
46 #define IR_STATUS 0x28
47 #define IR_READ_PHY_CONFIG 0x2C
48 #define IR_WRITE_PHY_CONFIG 0x30
49 #define IR_MAX_PKT_LEN 0x34
50 #define IR_RX_BYTE_CNT 0x38
51 #define IR_CONFIG_2 0x3C
52 #define IR_ENABLE 0x40
55 #define IR_RX_INVERT_LED (1 << 0)
56 #define IR_TX_INVERT_LED (1 << 1)
57 #define IR_ST (1 << 2)
58 #define IR_SF (1 << 3)
59 #define IR_SIR (1 << 4)
60 #define IR_MIR (1 << 5)
61 #define IR_FIR (1 << 6)
62 #define IR_16CRC (1 << 7)
63 #define IR_TD (1 << 8)
64 #define IR_RX_ALL (1 << 9)
65 #define IR_DMA_ENABLE (1 << 10)
66 #define IR_RX_ENABLE (1 << 11)
67 #define IR_TX_ENABLE (1 << 12)
68 #define IR_LOOPBACK (1 << 14)
69 #define IR_SIR_MODE (IR_SIR | IR_DMA_ENABLE | \
70 IR_RX_ALL | IR_RX_ENABLE | IR_SF | \
74 #define IR_RX_STATUS (1 << 9)
75 #define IR_TX_STATUS (1 << 10)
76 #define IR_PHYEN (1 << 15)
78 /* ir_write_phy_config */
79 #define IR_BR(x) (((x) & 0x3f) << 10) /* baud rate */
80 #define IR_PW(x) (((x) & 0x1f) << 5) /* pulse width */
81 #define IR_P(x) ((x) & 0x1f) /* preamble bits */
84 #define IR_MODE_INV (1 << 0)
85 #define IR_ONE_PIN (1 << 1)
86 #define IR_PHYCLK_40MHZ (0 << 2)
87 #define IR_PHYCLK_48MHZ (1 << 2)
88 #define IR_PHYCLK_56MHZ (2 << 2)
89 #define IR_PHYCLK_64MHZ (3 << 2)
90 #define IR_DP (1 << 4)
91 #define IR_DA (1 << 5)
92 #define IR_FLT_HIGH (0 << 6)
93 #define IR_FLT_MEDHI (1 << 6)
94 #define IR_FLT_MEDLO (2 << 6)
95 #define IR_FLT_LO (3 << 6)
96 #define IR_IEN (1 << 8)
99 #define IR_HC (1 << 3) /* divide SBUS clock by 2 */
100 #define IR_CE (1 << 2) /* clock enable */
101 #define IR_C (1 << 1) /* coherency bit */
102 #define IR_BE (1 << 0) /* set in big endian mode */
104 #define NUM_IR_DESC 64
105 #define RING_SIZE_4 0x0
106 #define RING_SIZE_16 0x3
107 #define RING_SIZE_64 0xF
108 #define MAX_NUM_IR_DESC 64
109 #define MAX_BUF_SIZE 2048
111 /* Ring descriptor flags */
112 #define AU_OWN (1 << 7) /* tx,rx */
113 #define IR_DIS_CRC (1 << 6) /* tx */
114 #define IR_BAD_CRC (1 << 5) /* tx */
115 #define IR_NEED_PULSE (1 << 4) /* tx */
116 #define IR_FORCE_UNDER (1 << 3) /* tx */
117 #define IR_DISABLE_TX (1 << 2) /* tx */
118 #define IR_HW_UNDER (1 << 0) /* tx */
119 #define IR_TX_ERROR (IR_DIS_CRC | IR_BAD_CRC | IR_HW_UNDER)
121 #define IR_PHY_ERROR (1 << 6) /* rx */
122 #define IR_CRC_ERROR (1 << 5) /* rx */
123 #define IR_MAX_LEN (1 << 4) /* rx */
124 #define IR_FIFO_OVER (1 << 3) /* rx */
125 #define IR_SIR_ERROR (1 << 2) /* rx */
126 #define IR_RX_ERROR (IR_PHY_ERROR | IR_CRC_ERROR | \
127 IR_MAX_LEN | IR_FIFO_OVER | IR_SIR_ERROR)
130 struct db_dest
*pnext
;
136 u8 count_0
; /* 7:0 */
137 u8 count_1
; /* 12:8 */
141 u8 addr_1
; /* 15:8 */
142 u8 addr_2
; /* 23:16 */
143 u8 addr_3
; /* 31:24 */
146 /* Private data for each instance */
147 struct au1k_private
{
148 void __iomem
*iobase
;
151 struct db_dest
*pDBfree
;
152 struct db_dest db
[2 * NUM_IR_DESC
];
153 volatile struct ring_dest
*rx_ring
[NUM_IR_DESC
];
154 volatile struct ring_dest
*tx_ring
[NUM_IR_DESC
];
155 struct db_dest
*rx_db_inuse
[NUM_IR_DESC
];
156 struct db_dest
*tx_db_inuse
[NUM_IR_DESC
];
164 struct net_device
*netdev
;
165 struct timeval stamp
;
168 struct irlap_cb
*irlap
;
174 struct timer_list timer
;
176 struct resource
*ioarea
;
177 struct au1k_irda_platform_data
*platdata
;
180 static int qos_mtt_bits
= 0x07; /* 1 ms or more */
182 #define RUN_AT(x) (jiffies + (x))
184 static void au1k_irda_plat_set_phy_mode(struct au1k_private
*p
, int mode
)
186 if (p
->platdata
&& p
->platdata
->set_phy_mode
)
187 p
->platdata
->set_phy_mode(mode
);
190 static inline unsigned long irda_read(struct au1k_private
*p
,
194 * IrDA peripheral bug. You have to read the register
195 * twice to get the right value.
197 (void)__raw_readl(p
->iobase
+ ofs
);
198 return __raw_readl(p
->iobase
+ ofs
);
201 static inline void irda_write(struct au1k_private
*p
, unsigned long ofs
,
204 __raw_writel(val
, p
->iobase
+ ofs
);
209 * Buffer allocation/deallocation routines. The buffer descriptor returned
210 * has the virtual and dma address of a buffer suitable for
211 * both, receive and transmit operations.
213 static struct db_dest
*GetFreeDB(struct au1k_private
*aup
)
219 aup
->pDBfree
= db
->pnext
;
224 DMA memory allocation, derived from pci_alloc_consistent.
225 However, the Au1000 data cache is coherent (when programmed
226 so), therefore we return KSEG0 address, not KSEG1.
228 static void *dma_alloc(size_t size
, dma_addr_t
*dma_handle
)
231 int gfp
= GFP_ATOMIC
| GFP_DMA
;
233 ret
= (void *)__get_free_pages(gfp
, get_order(size
));
236 memset(ret
, 0, size
);
237 *dma_handle
= virt_to_bus(ret
);
238 ret
= (void *)KSEG0ADDR(ret
);
243 static void dma_free(void *vaddr
, size_t size
)
245 vaddr
= (void *)KSEG0ADDR(vaddr
);
246 free_pages((unsigned long) vaddr
, get_order(size
));
250 static void setup_hw_rings(struct au1k_private
*aup
, u32 rx_base
, u32 tx_base
)
253 for (i
= 0; i
< NUM_IR_DESC
; i
++) {
254 aup
->rx_ring
[i
] = (volatile struct ring_dest
*)
255 (rx_base
+ sizeof(struct ring_dest
) * i
);
257 for (i
= 0; i
< NUM_IR_DESC
; i
++) {
258 aup
->tx_ring
[i
] = (volatile struct ring_dest
*)
259 (tx_base
+ sizeof(struct ring_dest
) * i
);
263 static int au1k_irda_init_iobuf(iobuff_t
*io
, int size
)
265 io
->head
= kmalloc(size
, GFP_KERNEL
);
266 if (io
->head
!= NULL
) {
268 io
->in_frame
= FALSE
;
269 io
->state
= OUTSIDE_FRAME
;
272 return io
->head
? 0 : -ENOMEM
;
276 * Set the IrDA communications speed.
278 static int au1k_irda_set_speed(struct net_device
*dev
, int speed
)
280 struct au1k_private
*aup
= netdev_priv(dev
);
281 volatile struct ring_dest
*ptxd
;
282 unsigned long control
;
283 int ret
= 0, timeout
= 10, i
;
285 if (speed
== aup
->speed
)
288 /* disable PHY first */
289 au1k_irda_plat_set_phy_mode(aup
, AU1000_IRDA_PHY_MODE_OFF
);
290 irda_write(aup
, IR_STATUS
, irda_read(aup
, IR_STATUS
) & ~IR_PHYEN
);
293 irda_write(aup
, IR_CONFIG_1
,
294 irda_read(aup
, IR_CONFIG_1
) & ~(IR_RX_ENABLE
| IR_TX_ENABLE
));
296 while (irda_read(aup
, IR_STATUS
) & (IR_RX_STATUS
| IR_TX_STATUS
)) {
299 printk(KERN_ERR
"%s: rx/tx disable timeout\n",
306 irda_write(aup
, IR_CONFIG_1
,
307 irda_read(aup
, IR_CONFIG_1
) & ~IR_DMA_ENABLE
);
310 /* After we disable tx/rx. the index pointers go back to zero. */
311 aup
->tx_head
= aup
->tx_tail
= aup
->rx_head
= 0;
312 for (i
= 0; i
< NUM_IR_DESC
; i
++) {
313 ptxd
= aup
->tx_ring
[i
];
319 for (i
= 0; i
< NUM_IR_DESC
; i
++) {
320 ptxd
= aup
->rx_ring
[i
];
323 ptxd
->flags
= AU_OWN
;
326 if (speed
== 4000000)
327 au1k_irda_plat_set_phy_mode(aup
, AU1000_IRDA_PHY_MODE_FIR
);
329 au1k_irda_plat_set_phy_mode(aup
, AU1000_IRDA_PHY_MODE_SIR
);
333 irda_write(aup
, IR_WRITE_PHY_CONFIG
, IR_BR(11) | IR_PW(12));
334 irda_write(aup
, IR_CONFIG_1
, IR_SIR_MODE
);
337 irda_write(aup
, IR_WRITE_PHY_CONFIG
, IR_BR(5) | IR_PW(12));
338 irda_write(aup
, IR_CONFIG_1
, IR_SIR_MODE
);
341 irda_write(aup
, IR_WRITE_PHY_CONFIG
, IR_BR(2) | IR_PW(12));
342 irda_write(aup
, IR_CONFIG_1
, IR_SIR_MODE
);
345 irda_write(aup
, IR_WRITE_PHY_CONFIG
, IR_BR(1) | IR_PW(12));
346 irda_write(aup
, IR_CONFIG_1
, IR_SIR_MODE
);
349 irda_write(aup
, IR_WRITE_PHY_CONFIG
, IR_PW(12));
350 irda_write(aup
, IR_CONFIG_1
, IR_SIR_MODE
);
353 irda_write(aup
, IR_WRITE_PHY_CONFIG
, IR_P(15));
354 irda_write(aup
, IR_CONFIG_1
, IR_FIR
| IR_DMA_ENABLE
|
358 printk(KERN_ERR
"%s unsupported speed %x\n", dev
->name
, speed
);
364 irda_write(aup
, IR_STATUS
, irda_read(aup
, IR_STATUS
) | IR_PHYEN
);
366 control
= irda_read(aup
, IR_STATUS
);
367 irda_write(aup
, IR_RING_PROMPT
, 0);
369 if (control
& (1 << 14)) {
370 printk(KERN_ERR
"%s: configuration error\n", dev
->name
);
372 if (control
& (1 << 11))
373 printk(KERN_DEBUG
"%s Valid SIR config\n", dev
->name
);
374 if (control
& (1 << 12))
375 printk(KERN_DEBUG
"%s Valid MIR config\n", dev
->name
);
376 if (control
& (1 << 13))
377 printk(KERN_DEBUG
"%s Valid FIR config\n", dev
->name
);
378 if (control
& (1 << 10))
379 printk(KERN_DEBUG
"%s TX enabled\n", dev
->name
);
380 if (control
& (1 << 9))
381 printk(KERN_DEBUG
"%s RX enabled\n", dev
->name
);
387 static void update_rx_stats(struct net_device
*dev
, u32 status
, u32 count
)
389 struct net_device_stats
*ps
= &dev
->stats
;
393 if (status
& IR_RX_ERROR
) {
395 if (status
& (IR_PHY_ERROR
| IR_FIFO_OVER
))
396 ps
->rx_missed_errors
++;
397 if (status
& IR_MAX_LEN
)
398 ps
->rx_length_errors
++;
399 if (status
& IR_CRC_ERROR
)
402 ps
->rx_bytes
+= count
;
405 static void update_tx_stats(struct net_device
*dev
, u32 status
, u32 pkt_len
)
407 struct net_device_stats
*ps
= &dev
->stats
;
410 ps
->tx_bytes
+= pkt_len
;
412 if (status
& IR_TX_ERROR
) {
414 ps
->tx_aborted_errors
++;
418 static void au1k_tx_ack(struct net_device
*dev
)
420 struct au1k_private
*aup
= netdev_priv(dev
);
421 volatile struct ring_dest
*ptxd
;
423 ptxd
= aup
->tx_ring
[aup
->tx_tail
];
424 while (!(ptxd
->flags
& AU_OWN
) && (aup
->tx_tail
!= aup
->tx_head
)) {
425 update_tx_stats(dev
, ptxd
->flags
,
426 (ptxd
->count_1
<< 8) | ptxd
->count_0
);
430 aup
->tx_tail
= (aup
->tx_tail
+ 1) & (NUM_IR_DESC
- 1);
431 ptxd
= aup
->tx_ring
[aup
->tx_tail
];
435 netif_wake_queue(dev
);
439 if (aup
->tx_tail
== aup
->tx_head
) {
441 au1k_irda_set_speed(dev
, aup
->newspeed
);
444 irda_write(aup
, IR_CONFIG_1
,
445 irda_read(aup
, IR_CONFIG_1
) & ~IR_TX_ENABLE
);
446 irda_write(aup
, IR_CONFIG_1
,
447 irda_read(aup
, IR_CONFIG_1
) | IR_RX_ENABLE
);
448 irda_write(aup
, IR_RING_PROMPT
, 0);
453 static int au1k_irda_rx(struct net_device
*dev
)
455 struct au1k_private
*aup
= netdev_priv(dev
);
456 volatile struct ring_dest
*prxd
;
461 prxd
= aup
->rx_ring
[aup
->rx_head
];
464 while (!(flags
& AU_OWN
)) {
465 pDB
= aup
->rx_db_inuse
[aup
->rx_head
];
466 count
= (prxd
->count_1
<< 8) | prxd
->count_0
;
467 if (!(flags
& IR_RX_ERROR
)) {
469 update_rx_stats(dev
, flags
, count
);
470 skb
= alloc_skb(count
+ 1, GFP_ATOMIC
);
472 dev
->stats
.rx_dropped
++;
476 if (aup
->speed
== 4000000)
479 skb_put(skb
, count
- 2);
480 skb_copy_to_linear_data(skb
, (void *)pDB
->vaddr
,
483 skb_reset_mac_header(skb
);
484 skb
->protocol
= htons(ETH_P_IRDA
);
489 prxd
->flags
|= AU_OWN
;
490 aup
->rx_head
= (aup
->rx_head
+ 1) & (NUM_IR_DESC
- 1);
491 irda_write(aup
, IR_RING_PROMPT
, 0);
493 /* next descriptor */
494 prxd
= aup
->rx_ring
[aup
->rx_head
];
501 static irqreturn_t
au1k_irda_interrupt(int dummy
, void *dev_id
)
503 struct net_device
*dev
= dev_id
;
504 struct au1k_private
*aup
= netdev_priv(dev
);
506 irda_write(aup
, IR_INT_CLEAR
, 0); /* ack irda interrupts */
514 static int au1k_init(struct net_device
*dev
)
516 struct au1k_private
*aup
= netdev_priv(dev
);
517 u32 enable
, ring_address
;
520 enable
= IR_HC
| IR_CE
| IR_C
;
521 #ifndef CONFIG_CPU_LITTLE_ENDIAN
528 for (i
= 0; i
< NUM_IR_DESC
; i
++)
529 aup
->rx_ring
[i
]->flags
= AU_OWN
;
531 irda_write(aup
, IR_ENABLE
, enable
);
535 au1k_irda_plat_set_phy_mode(aup
, AU1000_IRDA_PHY_MODE_OFF
);
536 irda_write(aup
, IR_STATUS
, irda_read(aup
, IR_STATUS
) & ~IR_PHYEN
);
539 irda_write(aup
, IR_MAX_PKT_LEN
, MAX_BUF_SIZE
);
541 ring_address
= (u32
)virt_to_phys((void *)aup
->rx_ring
[0]);
542 irda_write(aup
, IR_RING_BASE_ADDR_H
, ring_address
>> 26);
543 irda_write(aup
, IR_RING_BASE_ADDR_L
, (ring_address
>> 10) & 0xffff);
545 irda_write(aup
, IR_RING_SIZE
,
546 (RING_SIZE_64
<< 8) | (RING_SIZE_64
<< 12));
548 irda_write(aup
, IR_CONFIG_2
, IR_PHYCLK_48MHZ
| IR_ONE_PIN
);
549 irda_write(aup
, IR_RING_ADDR_CMPR
, 0);
551 au1k_irda_set_speed(dev
, 9600);
555 static int au1k_irda_start(struct net_device
*dev
)
557 struct au1k_private
*aup
= netdev_priv(dev
);
561 retval
= au1k_init(dev
);
563 printk(KERN_ERR
"%s: error in au1k_init\n", dev
->name
);
567 retval
= request_irq(aup
->irq_tx
, &au1k_irda_interrupt
, 0,
570 printk(KERN_ERR
"%s: unable to get IRQ %d\n",
571 dev
->name
, dev
->irq
);
574 retval
= request_irq(aup
->irq_rx
, &au1k_irda_interrupt
, 0,
577 free_irq(aup
->irq_tx
, dev
);
578 printk(KERN_ERR
"%s: unable to get IRQ %d\n",
579 dev
->name
, dev
->irq
);
583 /* Give self a hardware name */
584 sprintf(hwname
, "Au1000 SIR/FIR");
585 aup
->irlap
= irlap_open(dev
, &aup
->qos
, hwname
);
586 netif_start_queue(dev
);
589 irda_write(aup
, IR_CONFIG_2
, irda_read(aup
, IR_CONFIG_2
) | IR_IEN
);
592 au1k_irda_plat_set_phy_mode(aup
, AU1000_IRDA_PHY_MODE_SIR
);
594 aup
->timer
.expires
= RUN_AT((3 * HZ
));
595 aup
->timer
.data
= (unsigned long)dev
;
599 static int au1k_irda_stop(struct net_device
*dev
)
601 struct au1k_private
*aup
= netdev_priv(dev
);
603 au1k_irda_plat_set_phy_mode(aup
, AU1000_IRDA_PHY_MODE_OFF
);
605 /* disable interrupts */
606 irda_write(aup
, IR_CONFIG_2
, irda_read(aup
, IR_CONFIG_2
) & ~IR_IEN
);
607 irda_write(aup
, IR_CONFIG_1
, 0);
608 irda_write(aup
, IR_ENABLE
, 0); /* disable clock */
611 irlap_close(aup
->irlap
);
615 netif_stop_queue(dev
);
616 del_timer(&aup
->timer
);
618 /* disable the interrupt */
619 free_irq(aup
->irq_tx
, dev
);
620 free_irq(aup
->irq_rx
, dev
);
626 * Au1000 transmit routine.
628 static int au1k_irda_hard_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
630 struct au1k_private
*aup
= netdev_priv(dev
);
631 int speed
= irda_get_next_speed(skb
);
632 volatile struct ring_dest
*ptxd
;
636 if (speed
!= aup
->speed
&& speed
!= -1)
637 aup
->newspeed
= speed
;
639 if ((skb
->len
== 0) && (aup
->newspeed
)) {
640 if (aup
->tx_tail
== aup
->tx_head
) {
641 au1k_irda_set_speed(dev
, speed
);
648 ptxd
= aup
->tx_ring
[aup
->tx_head
];
651 if (flags
& AU_OWN
) {
652 printk(KERN_DEBUG
"%s: tx_full\n", dev
->name
);
653 netif_stop_queue(dev
);
656 } else if (((aup
->tx_head
+ 1) & (NUM_IR_DESC
- 1)) == aup
->tx_tail
) {
657 printk(KERN_DEBUG
"%s: tx_full\n", dev
->name
);
658 netif_stop_queue(dev
);
663 pDB
= aup
->tx_db_inuse
[aup
->tx_head
];
666 if (irda_read(aup
, IR_RX_BYTE_CNT
) != 0) {
667 printk(KERN_DEBUG
"tx warning: rx byte cnt %x\n",
668 irda_read(aup
, IR_RX_BYTE_CNT
));
672 if (aup
->speed
== 4000000) {
674 skb_copy_from_linear_data(skb
, (void *)pDB
->vaddr
, skb
->len
);
675 ptxd
->count_0
= skb
->len
& 0xff;
676 ptxd
->count_1
= (skb
->len
>> 8) & 0xff;
679 len
= async_wrap_skb(skb
, (u8
*)pDB
->vaddr
, MAX_BUF_SIZE
);
680 ptxd
->count_0
= len
& 0xff;
681 ptxd
->count_1
= (len
>> 8) & 0xff;
682 ptxd
->flags
|= IR_DIS_CRC
;
684 ptxd
->flags
|= AU_OWN
;
687 irda_write(aup
, IR_CONFIG_1
,
688 irda_read(aup
, IR_CONFIG_1
) | IR_TX_ENABLE
);
689 irda_write(aup
, IR_RING_PROMPT
, 0);
692 aup
->tx_head
= (aup
->tx_head
+ 1) & (NUM_IR_DESC
- 1);
697 * The Tx ring has been full longer than the watchdog timeout
698 * value. The transmitter must be hung?
700 static void au1k_tx_timeout(struct net_device
*dev
)
703 struct au1k_private
*aup
= netdev_priv(dev
);
705 printk(KERN_ERR
"%s: tx timeout\n", dev
->name
);
708 au1k_irda_set_speed(dev
, speed
);
710 netif_wake_queue(dev
);
713 static int au1k_irda_ioctl(struct net_device
*dev
, struct ifreq
*ifreq
, int cmd
)
715 struct if_irda_req
*rq
= (struct if_irda_req
*)ifreq
;
716 struct au1k_private
*aup
= netdev_priv(dev
);
717 int ret
= -EOPNOTSUPP
;
721 if (capable(CAP_NET_ADMIN
)) {
723 * We are unable to set the speed if the
724 * device is not running.
727 ret
= au1k_irda_set_speed(dev
,
730 printk(KERN_ERR
"%s ioctl: !netif_running\n",
739 if (capable(CAP_NET_ADMIN
)) {
740 irda_device_set_media_busy(dev
, TRUE
);
746 rq
->ifr_receiving
= 0;
754 static const struct net_device_ops au1k_irda_netdev_ops
= {
755 .ndo_open
= au1k_irda_start
,
756 .ndo_stop
= au1k_irda_stop
,
757 .ndo_start_xmit
= au1k_irda_hard_xmit
,
758 .ndo_tx_timeout
= au1k_tx_timeout
,
759 .ndo_do_ioctl
= au1k_irda_ioctl
,
762 static int au1k_irda_net_init(struct net_device
*dev
)
764 struct au1k_private
*aup
= netdev_priv(dev
);
765 struct db_dest
*pDB
, *pDBfree
;
766 int i
, err
, retval
= 0;
769 err
= au1k_irda_init_iobuf(&aup
->rx_buff
, 14384);
773 dev
->netdev_ops
= &au1k_irda_netdev_ops
;
775 irda_init_max_qos_capabilies(&aup
->qos
);
777 /* The only value we must override it the baudrate */
778 aup
->qos
.baud_rate
.bits
= IR_9600
| IR_19200
| IR_38400
|
779 IR_57600
| IR_115200
| IR_576000
| (IR_4000000
<< 8);
781 aup
->qos
.min_turn_time
.bits
= qos_mtt_bits
;
782 irda_qos_bits_to_value(&aup
->qos
);
786 /* Tx ring follows rx ring + 512 bytes */
787 /* we need a 1k aligned buffer */
788 aup
->rx_ring
[0] = (struct ring_dest
*)
789 dma_alloc(2 * MAX_NUM_IR_DESC
* (sizeof(struct ring_dest
)),
791 if (!aup
->rx_ring
[0])
794 /* allocate the data buffers */
796 dma_alloc(MAX_BUF_SIZE
* 2 * NUM_IR_DESC
, &temp
);
797 if (!aup
->db
[0].vaddr
)
800 setup_hw_rings(aup
, (u32
)aup
->rx_ring
[0], (u32
)aup
->rx_ring
[0] + 512);
804 for (i
= 0; i
< (2 * NUM_IR_DESC
); i
++) {
805 pDB
->pnext
= pDBfree
;
808 (u32
*)((unsigned)aup
->db
[0].vaddr
+ (MAX_BUF_SIZE
* i
));
809 pDB
->dma_addr
= (dma_addr_t
)virt_to_bus(pDB
->vaddr
);
812 aup
->pDBfree
= pDBfree
;
814 /* attach a data buffer to each descriptor */
815 for (i
= 0; i
< NUM_IR_DESC
; i
++) {
816 pDB
= GetFreeDB(aup
);
819 aup
->rx_ring
[i
]->addr_0
= (u8
)(pDB
->dma_addr
& 0xff);
820 aup
->rx_ring
[i
]->addr_1
= (u8
)((pDB
->dma_addr
>> 8) & 0xff);
821 aup
->rx_ring
[i
]->addr_2
= (u8
)((pDB
->dma_addr
>> 16) & 0xff);
822 aup
->rx_ring
[i
]->addr_3
= (u8
)((pDB
->dma_addr
>> 24) & 0xff);
823 aup
->rx_db_inuse
[i
] = pDB
;
825 for (i
= 0; i
< NUM_IR_DESC
; i
++) {
826 pDB
= GetFreeDB(aup
);
829 aup
->tx_ring
[i
]->addr_0
= (u8
)(pDB
->dma_addr
& 0xff);
830 aup
->tx_ring
[i
]->addr_1
= (u8
)((pDB
->dma_addr
>> 8) & 0xff);
831 aup
->tx_ring
[i
]->addr_2
= (u8
)((pDB
->dma_addr
>> 16) & 0xff);
832 aup
->tx_ring
[i
]->addr_3
= (u8
)((pDB
->dma_addr
>> 24) & 0xff);
833 aup
->tx_ring
[i
]->count_0
= 0;
834 aup
->tx_ring
[i
]->count_1
= 0;
835 aup
->tx_ring
[i
]->flags
= 0;
836 aup
->tx_db_inuse
[i
] = pDB
;
842 dma_free((void *)aup
->rx_ring
[0],
843 2 * MAX_NUM_IR_DESC
* (sizeof(struct ring_dest
)));
845 kfree(aup
->rx_buff
.head
);
847 printk(KERN_ERR
"au1k_irda_net_init() failed. Returns %d\n", retval
);
851 static int au1k_irda_probe(struct platform_device
*pdev
)
853 struct au1k_private
*aup
;
854 struct net_device
*dev
;
858 dev
= alloc_irdadev(sizeof(struct au1k_private
));
862 aup
= netdev_priv(dev
);
864 aup
->platdata
= pdev
->dev
.platform_data
;
867 r
= platform_get_resource(pdev
, IORESOURCE_IRQ
, 0);
871 aup
->irq_tx
= r
->start
;
873 r
= platform_get_resource(pdev
, IORESOURCE_IRQ
, 1);
877 aup
->irq_rx
= r
->start
;
879 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
884 aup
->ioarea
= request_mem_region(r
->start
, resource_size(r
),
889 aup
->iobase
= ioremap_nocache(r
->start
, resource_size(r
));
893 dev
->irq
= aup
->irq_rx
;
895 err
= au1k_irda_net_init(dev
);
898 err
= register_netdev(dev
);
902 platform_set_drvdata(pdev
, dev
);
904 printk(KERN_INFO
"IrDA: Registered device %s\n", dev
->name
);
908 dma_free((void *)aup
->db
[0].vaddr
,
909 MAX_BUF_SIZE
* 2 * NUM_IR_DESC
);
910 dma_free((void *)aup
->rx_ring
[0],
911 2 * MAX_NUM_IR_DESC
* (sizeof(struct ring_dest
)));
912 kfree(aup
->rx_buff
.head
);
914 iounmap(aup
->iobase
);
916 release_resource(aup
->ioarea
);
923 static int au1k_irda_remove(struct platform_device
*pdev
)
925 struct net_device
*dev
= platform_get_drvdata(pdev
);
926 struct au1k_private
*aup
= netdev_priv(dev
);
928 unregister_netdev(dev
);
930 dma_free((void *)aup
->db
[0].vaddr
,
931 MAX_BUF_SIZE
* 2 * NUM_IR_DESC
);
932 dma_free((void *)aup
->rx_ring
[0],
933 2 * MAX_NUM_IR_DESC
* (sizeof(struct ring_dest
)));
934 kfree(aup
->rx_buff
.head
);
936 iounmap(aup
->iobase
);
937 release_resource(aup
->ioarea
);
945 static struct platform_driver au1k_irda_driver
= {
947 .name
= "au1000-irda",
948 .owner
= THIS_MODULE
,
950 .probe
= au1k_irda_probe
,
951 .remove
= au1k_irda_remove
,
954 module_platform_driver(au1k_irda_driver
);
956 MODULE_AUTHOR("Pete Popov <ppopov@mvista.com>");
957 MODULE_DESCRIPTION("Au1000 IrDA Device Driver");