Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux/fpc-iii.git] / fs / dcache.c
blob265e0ce9769c70db65d5f9df11c4365f44c6dd29
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include "internal.h"
42 #include "mount.h"
45 * Usage:
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
52 * dentry->d_sb->s_dentry_lru_lock protects:
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
58 * - d_count
59 * - d_unhashed()
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
62 * - d_alias, d_inode
64 * Ordering:
65 * dentry->d_inode->i_lock
66 * dentry->d_lock
67 * dentry->d_sb->s_dentry_lru_lock
68 * dcache_hash_bucket lock
69 * s_anon lock
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
77 * If no ancestor relationship:
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
82 int sysctl_vfs_cache_pressure __read_mostly = 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
87 EXPORT_SYMBOL(rename_lock);
89 static struct kmem_cache *dentry_cache __read_mostly;
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
105 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
106 unsigned int hash)
108 hash += (unsigned long) parent / L1_CACHE_BYTES;
109 hash = hash + (hash >> d_hash_shift);
110 return dentry_hashtable + (hash & d_hash_mask);
113 /* Statistics gathering. */
114 struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
118 static DEFINE_PER_CPU(long, nr_dentry);
119 static DEFINE_PER_CPU(long, nr_dentry_unused);
121 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
124 * Here we resort to our own counters instead of using generic per-cpu counters
125 * for consistency with what the vfs inode code does. We are expected to harvest
126 * better code and performance by having our own specialized counters.
128 * Please note that the loop is done over all possible CPUs, not over all online
129 * CPUs. The reason for this is that we don't want to play games with CPUs going
130 * on and off. If one of them goes off, we will just keep their counters.
132 * glommer: See cffbc8a for details, and if you ever intend to change this,
133 * please update all vfs counters to match.
135 static long get_nr_dentry(void)
137 int i;
138 long sum = 0;
139 for_each_possible_cpu(i)
140 sum += per_cpu(nr_dentry, i);
141 return sum < 0 ? 0 : sum;
144 static long get_nr_dentry_unused(void)
146 int i;
147 long sum = 0;
148 for_each_possible_cpu(i)
149 sum += per_cpu(nr_dentry_unused, i);
150 return sum < 0 ? 0 : sum;
153 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
154 size_t *lenp, loff_t *ppos)
156 dentry_stat.nr_dentry = get_nr_dentry();
157 dentry_stat.nr_unused = get_nr_dentry_unused();
158 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
160 #endif
163 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
164 * The strings are both count bytes long, and count is non-zero.
166 #ifdef CONFIG_DCACHE_WORD_ACCESS
168 #include <asm/word-at-a-time.h>
170 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
171 * aligned allocation for this particular component. We don't
172 * strictly need the load_unaligned_zeropad() safety, but it
173 * doesn't hurt either.
175 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
176 * need the careful unaligned handling.
178 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 unsigned long a,b,mask;
182 for (;;) {
183 a = *(unsigned long *)cs;
184 b = load_unaligned_zeropad(ct);
185 if (tcount < sizeof(unsigned long))
186 break;
187 if (unlikely(a != b))
188 return 1;
189 cs += sizeof(unsigned long);
190 ct += sizeof(unsigned long);
191 tcount -= sizeof(unsigned long);
192 if (!tcount)
193 return 0;
195 mask = bytemask_from_count(tcount);
196 return unlikely(!!((a ^ b) & mask));
199 #else
201 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
203 do {
204 if (*cs != *ct)
205 return 1;
206 cs++;
207 ct++;
208 tcount--;
209 } while (tcount);
210 return 0;
213 #endif
215 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
217 const unsigned char *cs;
219 * Be careful about RCU walk racing with rename:
220 * use ACCESS_ONCE to fetch the name pointer.
222 * NOTE! Even if a rename will mean that the length
223 * was not loaded atomically, we don't care. The
224 * RCU walk will check the sequence count eventually,
225 * and catch it. And we won't overrun the buffer,
226 * because we're reading the name pointer atomically,
227 * and a dentry name is guaranteed to be properly
228 * terminated with a NUL byte.
230 * End result: even if 'len' is wrong, we'll exit
231 * early because the data cannot match (there can
232 * be no NUL in the ct/tcount data)
234 cs = ACCESS_ONCE(dentry->d_name.name);
235 smp_read_barrier_depends();
236 return dentry_string_cmp(cs, ct, tcount);
239 static void __d_free(struct rcu_head *head)
241 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
243 WARN_ON(!hlist_unhashed(&dentry->d_alias));
244 if (dname_external(dentry))
245 kfree(dentry->d_name.name);
246 kmem_cache_free(dentry_cache, dentry);
250 * no locks, please.
252 static void d_free(struct dentry *dentry)
254 BUG_ON((int)dentry->d_lockref.count > 0);
255 this_cpu_dec(nr_dentry);
256 if (dentry->d_op && dentry->d_op->d_release)
257 dentry->d_op->d_release(dentry);
259 /* if dentry was never visible to RCU, immediate free is OK */
260 if (!(dentry->d_flags & DCACHE_RCUACCESS))
261 __d_free(&dentry->d_u.d_rcu);
262 else
263 call_rcu(&dentry->d_u.d_rcu, __d_free);
267 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
268 * @dentry: the target dentry
269 * After this call, in-progress rcu-walk path lookup will fail. This
270 * should be called after unhashing, and after changing d_inode (if
271 * the dentry has not already been unhashed).
273 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
275 assert_spin_locked(&dentry->d_lock);
276 /* Go through a barrier */
277 write_seqcount_barrier(&dentry->d_seq);
281 * Release the dentry's inode, using the filesystem
282 * d_iput() operation if defined. Dentry has no refcount
283 * and is unhashed.
285 static void dentry_iput(struct dentry * dentry)
286 __releases(dentry->d_lock)
287 __releases(dentry->d_inode->i_lock)
289 struct inode *inode = dentry->d_inode;
290 if (inode) {
291 dentry->d_inode = NULL;
292 hlist_del_init(&dentry->d_alias);
293 spin_unlock(&dentry->d_lock);
294 spin_unlock(&inode->i_lock);
295 if (!inode->i_nlink)
296 fsnotify_inoderemove(inode);
297 if (dentry->d_op && dentry->d_op->d_iput)
298 dentry->d_op->d_iput(dentry, inode);
299 else
300 iput(inode);
301 } else {
302 spin_unlock(&dentry->d_lock);
307 * Release the dentry's inode, using the filesystem
308 * d_iput() operation if defined. dentry remains in-use.
310 static void dentry_unlink_inode(struct dentry * dentry)
311 __releases(dentry->d_lock)
312 __releases(dentry->d_inode->i_lock)
314 struct inode *inode = dentry->d_inode;
315 __d_clear_type(dentry);
316 dentry->d_inode = NULL;
317 hlist_del_init(&dentry->d_alias);
318 dentry_rcuwalk_barrier(dentry);
319 spin_unlock(&dentry->d_lock);
320 spin_unlock(&inode->i_lock);
321 if (!inode->i_nlink)
322 fsnotify_inoderemove(inode);
323 if (dentry->d_op && dentry->d_op->d_iput)
324 dentry->d_op->d_iput(dentry, inode);
325 else
326 iput(inode);
330 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
331 * is in use - which includes both the "real" per-superblock
332 * LRU list _and_ the DCACHE_SHRINK_LIST use.
334 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
335 * on the shrink list (ie not on the superblock LRU list).
337 * The per-cpu "nr_dentry_unused" counters are updated with
338 * the DCACHE_LRU_LIST bit.
340 * These helper functions make sure we always follow the
341 * rules. d_lock must be held by the caller.
343 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
344 static void d_lru_add(struct dentry *dentry)
346 D_FLAG_VERIFY(dentry, 0);
347 dentry->d_flags |= DCACHE_LRU_LIST;
348 this_cpu_inc(nr_dentry_unused);
349 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
352 static void d_lru_del(struct dentry *dentry)
354 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
355 dentry->d_flags &= ~DCACHE_LRU_LIST;
356 this_cpu_dec(nr_dentry_unused);
357 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
360 static void d_shrink_del(struct dentry *dentry)
362 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
363 list_del_init(&dentry->d_lru);
364 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
365 this_cpu_dec(nr_dentry_unused);
368 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
370 D_FLAG_VERIFY(dentry, 0);
371 list_add(&dentry->d_lru, list);
372 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
373 this_cpu_inc(nr_dentry_unused);
377 * These can only be called under the global LRU lock, ie during the
378 * callback for freeing the LRU list. "isolate" removes it from the
379 * LRU lists entirely, while shrink_move moves it to the indicated
380 * private list.
382 static void d_lru_isolate(struct dentry *dentry)
384 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
385 dentry->d_flags &= ~DCACHE_LRU_LIST;
386 this_cpu_dec(nr_dentry_unused);
387 list_del_init(&dentry->d_lru);
390 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
392 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
393 dentry->d_flags |= DCACHE_SHRINK_LIST;
394 list_move_tail(&dentry->d_lru, list);
398 * dentry_lru_(add|del)_list) must be called with d_lock held.
400 static void dentry_lru_add(struct dentry *dentry)
402 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
403 d_lru_add(dentry);
407 * Remove a dentry with references from the LRU.
409 * If we are on the shrink list, then we can get to try_prune_one_dentry() and
410 * lose our last reference through the parent walk. In this case, we need to
411 * remove ourselves from the shrink list, not the LRU.
413 static void dentry_lru_del(struct dentry *dentry)
415 if (dentry->d_flags & DCACHE_LRU_LIST) {
416 if (dentry->d_flags & DCACHE_SHRINK_LIST)
417 return d_shrink_del(dentry);
418 d_lru_del(dentry);
423 * d_kill - kill dentry and return parent
424 * @dentry: dentry to kill
425 * @parent: parent dentry
427 * The dentry must already be unhashed and removed from the LRU.
429 * If this is the root of the dentry tree, return NULL.
431 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
432 * d_kill.
434 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
435 __releases(dentry->d_lock)
436 __releases(parent->d_lock)
437 __releases(dentry->d_inode->i_lock)
439 list_del(&dentry->d_u.d_child);
441 * Inform d_walk() that we are no longer attached to the
442 * dentry tree
444 dentry->d_flags |= DCACHE_DENTRY_KILLED;
445 if (parent)
446 spin_unlock(&parent->d_lock);
447 dentry_iput(dentry);
449 * dentry_iput drops the locks, at which point nobody (except
450 * transient RCU lookups) can reach this dentry.
452 d_free(dentry);
453 return parent;
457 * d_drop - drop a dentry
458 * @dentry: dentry to drop
460 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
461 * be found through a VFS lookup any more. Note that this is different from
462 * deleting the dentry - d_delete will try to mark the dentry negative if
463 * possible, giving a successful _negative_ lookup, while d_drop will
464 * just make the cache lookup fail.
466 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
467 * reason (NFS timeouts or autofs deletes).
469 * __d_drop requires dentry->d_lock.
471 void __d_drop(struct dentry *dentry)
473 if (!d_unhashed(dentry)) {
474 struct hlist_bl_head *b;
476 * Hashed dentries are normally on the dentry hashtable,
477 * with the exception of those newly allocated by
478 * d_obtain_alias, which are always IS_ROOT:
480 if (unlikely(IS_ROOT(dentry)))
481 b = &dentry->d_sb->s_anon;
482 else
483 b = d_hash(dentry->d_parent, dentry->d_name.hash);
485 hlist_bl_lock(b);
486 __hlist_bl_del(&dentry->d_hash);
487 dentry->d_hash.pprev = NULL;
488 hlist_bl_unlock(b);
489 dentry_rcuwalk_barrier(dentry);
492 EXPORT_SYMBOL(__d_drop);
494 void d_drop(struct dentry *dentry)
496 spin_lock(&dentry->d_lock);
497 __d_drop(dentry);
498 spin_unlock(&dentry->d_lock);
500 EXPORT_SYMBOL(d_drop);
503 * Finish off a dentry we've decided to kill.
504 * dentry->d_lock must be held, returns with it unlocked.
505 * If ref is non-zero, then decrement the refcount too.
506 * Returns dentry requiring refcount drop, or NULL if we're done.
508 static struct dentry *
509 dentry_kill(struct dentry *dentry, int unlock_on_failure)
510 __releases(dentry->d_lock)
512 struct inode *inode;
513 struct dentry *parent;
515 inode = dentry->d_inode;
516 if (inode && !spin_trylock(&inode->i_lock)) {
517 relock:
518 if (unlock_on_failure) {
519 spin_unlock(&dentry->d_lock);
520 cpu_relax();
522 return dentry; /* try again with same dentry */
524 if (IS_ROOT(dentry))
525 parent = NULL;
526 else
527 parent = dentry->d_parent;
528 if (parent && !spin_trylock(&parent->d_lock)) {
529 if (inode)
530 spin_unlock(&inode->i_lock);
531 goto relock;
535 * The dentry is now unrecoverably dead to the world.
537 lockref_mark_dead(&dentry->d_lockref);
540 * inform the fs via d_prune that this dentry is about to be
541 * unhashed and destroyed.
543 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
544 dentry->d_op->d_prune(dentry);
546 dentry_lru_del(dentry);
547 /* if it was on the hash then remove it */
548 __d_drop(dentry);
549 return d_kill(dentry, parent);
553 * This is dput
555 * This is complicated by the fact that we do not want to put
556 * dentries that are no longer on any hash chain on the unused
557 * list: we'd much rather just get rid of them immediately.
559 * However, that implies that we have to traverse the dentry
560 * tree upwards to the parents which might _also_ now be
561 * scheduled for deletion (it may have been only waiting for
562 * its last child to go away).
564 * This tail recursion is done by hand as we don't want to depend
565 * on the compiler to always get this right (gcc generally doesn't).
566 * Real recursion would eat up our stack space.
570 * dput - release a dentry
571 * @dentry: dentry to release
573 * Release a dentry. This will drop the usage count and if appropriate
574 * call the dentry unlink method as well as removing it from the queues and
575 * releasing its resources. If the parent dentries were scheduled for release
576 * they too may now get deleted.
578 void dput(struct dentry *dentry)
580 if (unlikely(!dentry))
581 return;
583 repeat:
584 if (lockref_put_or_lock(&dentry->d_lockref))
585 return;
587 /* Unreachable? Get rid of it */
588 if (unlikely(d_unhashed(dentry)))
589 goto kill_it;
591 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
592 if (dentry->d_op->d_delete(dentry))
593 goto kill_it;
596 if (!(dentry->d_flags & DCACHE_REFERENCED))
597 dentry->d_flags |= DCACHE_REFERENCED;
598 dentry_lru_add(dentry);
600 dentry->d_lockref.count--;
601 spin_unlock(&dentry->d_lock);
602 return;
604 kill_it:
605 dentry = dentry_kill(dentry, 1);
606 if (dentry)
607 goto repeat;
609 EXPORT_SYMBOL(dput);
612 * d_invalidate - invalidate a dentry
613 * @dentry: dentry to invalidate
615 * Try to invalidate the dentry if it turns out to be
616 * possible. If there are other dentries that can be
617 * reached through this one we can't delete it and we
618 * return -EBUSY. On success we return 0.
620 * no dcache lock.
623 int d_invalidate(struct dentry * dentry)
626 * If it's already been dropped, return OK.
628 spin_lock(&dentry->d_lock);
629 if (d_unhashed(dentry)) {
630 spin_unlock(&dentry->d_lock);
631 return 0;
634 * Check whether to do a partial shrink_dcache
635 * to get rid of unused child entries.
637 if (!list_empty(&dentry->d_subdirs)) {
638 spin_unlock(&dentry->d_lock);
639 shrink_dcache_parent(dentry);
640 spin_lock(&dentry->d_lock);
644 * Somebody else still using it?
646 * If it's a directory, we can't drop it
647 * for fear of somebody re-populating it
648 * with children (even though dropping it
649 * would make it unreachable from the root,
650 * we might still populate it if it was a
651 * working directory or similar).
652 * We also need to leave mountpoints alone,
653 * directory or not.
655 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
656 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
657 spin_unlock(&dentry->d_lock);
658 return -EBUSY;
662 __d_drop(dentry);
663 spin_unlock(&dentry->d_lock);
664 return 0;
666 EXPORT_SYMBOL(d_invalidate);
668 /* This must be called with d_lock held */
669 static inline void __dget_dlock(struct dentry *dentry)
671 dentry->d_lockref.count++;
674 static inline void __dget(struct dentry *dentry)
676 lockref_get(&dentry->d_lockref);
679 struct dentry *dget_parent(struct dentry *dentry)
681 int gotref;
682 struct dentry *ret;
685 * Do optimistic parent lookup without any
686 * locking.
688 rcu_read_lock();
689 ret = ACCESS_ONCE(dentry->d_parent);
690 gotref = lockref_get_not_zero(&ret->d_lockref);
691 rcu_read_unlock();
692 if (likely(gotref)) {
693 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
694 return ret;
695 dput(ret);
698 repeat:
700 * Don't need rcu_dereference because we re-check it was correct under
701 * the lock.
703 rcu_read_lock();
704 ret = dentry->d_parent;
705 spin_lock(&ret->d_lock);
706 if (unlikely(ret != dentry->d_parent)) {
707 spin_unlock(&ret->d_lock);
708 rcu_read_unlock();
709 goto repeat;
711 rcu_read_unlock();
712 BUG_ON(!ret->d_lockref.count);
713 ret->d_lockref.count++;
714 spin_unlock(&ret->d_lock);
715 return ret;
717 EXPORT_SYMBOL(dget_parent);
720 * d_find_alias - grab a hashed alias of inode
721 * @inode: inode in question
722 * @want_discon: flag, used by d_splice_alias, to request
723 * that only a DISCONNECTED alias be returned.
725 * If inode has a hashed alias, or is a directory and has any alias,
726 * acquire the reference to alias and return it. Otherwise return NULL.
727 * Notice that if inode is a directory there can be only one alias and
728 * it can be unhashed only if it has no children, or if it is the root
729 * of a filesystem.
731 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
732 * any other hashed alias over that one unless @want_discon is set,
733 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
735 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
737 struct dentry *alias, *discon_alias;
739 again:
740 discon_alias = NULL;
741 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
742 spin_lock(&alias->d_lock);
743 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
744 if (IS_ROOT(alias) &&
745 (alias->d_flags & DCACHE_DISCONNECTED)) {
746 discon_alias = alias;
747 } else if (!want_discon) {
748 __dget_dlock(alias);
749 spin_unlock(&alias->d_lock);
750 return alias;
753 spin_unlock(&alias->d_lock);
755 if (discon_alias) {
756 alias = discon_alias;
757 spin_lock(&alias->d_lock);
758 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
759 if (IS_ROOT(alias) &&
760 (alias->d_flags & DCACHE_DISCONNECTED)) {
761 __dget_dlock(alias);
762 spin_unlock(&alias->d_lock);
763 return alias;
766 spin_unlock(&alias->d_lock);
767 goto again;
769 return NULL;
772 struct dentry *d_find_alias(struct inode *inode)
774 struct dentry *de = NULL;
776 if (!hlist_empty(&inode->i_dentry)) {
777 spin_lock(&inode->i_lock);
778 de = __d_find_alias(inode, 0);
779 spin_unlock(&inode->i_lock);
781 return de;
783 EXPORT_SYMBOL(d_find_alias);
786 * Try to kill dentries associated with this inode.
787 * WARNING: you must own a reference to inode.
789 void d_prune_aliases(struct inode *inode)
791 struct dentry *dentry;
792 restart:
793 spin_lock(&inode->i_lock);
794 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
795 spin_lock(&dentry->d_lock);
796 if (!dentry->d_lockref.count) {
798 * inform the fs via d_prune that this dentry
799 * is about to be unhashed and destroyed.
801 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
802 !d_unhashed(dentry))
803 dentry->d_op->d_prune(dentry);
805 __dget_dlock(dentry);
806 __d_drop(dentry);
807 spin_unlock(&dentry->d_lock);
808 spin_unlock(&inode->i_lock);
809 dput(dentry);
810 goto restart;
812 spin_unlock(&dentry->d_lock);
814 spin_unlock(&inode->i_lock);
816 EXPORT_SYMBOL(d_prune_aliases);
819 * Try to throw away a dentry - free the inode, dput the parent.
820 * Requires dentry->d_lock is held, and dentry->d_count == 0.
821 * Releases dentry->d_lock.
823 * This may fail if locks cannot be acquired no problem, just try again.
825 static struct dentry * try_prune_one_dentry(struct dentry *dentry)
826 __releases(dentry->d_lock)
828 struct dentry *parent;
830 parent = dentry_kill(dentry, 0);
832 * If dentry_kill returns NULL, we have nothing more to do.
833 * if it returns the same dentry, trylocks failed. In either
834 * case, just loop again.
836 * Otherwise, we need to prune ancestors too. This is necessary
837 * to prevent quadratic behavior of shrink_dcache_parent(), but
838 * is also expected to be beneficial in reducing dentry cache
839 * fragmentation.
841 if (!parent)
842 return NULL;
843 if (parent == dentry)
844 return dentry;
846 /* Prune ancestors. */
847 dentry = parent;
848 while (dentry) {
849 if (lockref_put_or_lock(&dentry->d_lockref))
850 return NULL;
851 dentry = dentry_kill(dentry, 1);
853 return NULL;
856 static void shrink_dentry_list(struct list_head *list)
858 struct dentry *dentry;
860 rcu_read_lock();
861 for (;;) {
862 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
863 if (&dentry->d_lru == list)
864 break; /* empty */
867 * Get the dentry lock, and re-verify that the dentry is
868 * this on the shrinking list. If it is, we know that
869 * DCACHE_SHRINK_LIST and DCACHE_LRU_LIST are set.
871 spin_lock(&dentry->d_lock);
872 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
873 spin_unlock(&dentry->d_lock);
874 continue;
878 * The dispose list is isolated and dentries are not accounted
879 * to the LRU here, so we can simply remove it from the list
880 * here regardless of whether it is referenced or not.
882 d_shrink_del(dentry);
885 * We found an inuse dentry which was not removed from
886 * the LRU because of laziness during lookup. Do not free it.
888 if (dentry->d_lockref.count) {
889 spin_unlock(&dentry->d_lock);
890 continue;
892 rcu_read_unlock();
895 * If 'try_to_prune()' returns a dentry, it will
896 * be the same one we passed in, and d_lock will
897 * have been held the whole time, so it will not
898 * have been added to any other lists. We failed
899 * to get the inode lock.
901 * We just add it back to the shrink list.
903 dentry = try_prune_one_dentry(dentry);
905 rcu_read_lock();
906 if (dentry) {
907 d_shrink_add(dentry, list);
908 spin_unlock(&dentry->d_lock);
911 rcu_read_unlock();
914 static enum lru_status
915 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
917 struct list_head *freeable = arg;
918 struct dentry *dentry = container_of(item, struct dentry, d_lru);
922 * we are inverting the lru lock/dentry->d_lock here,
923 * so use a trylock. If we fail to get the lock, just skip
924 * it
926 if (!spin_trylock(&dentry->d_lock))
927 return LRU_SKIP;
930 * Referenced dentries are still in use. If they have active
931 * counts, just remove them from the LRU. Otherwise give them
932 * another pass through the LRU.
934 if (dentry->d_lockref.count) {
935 d_lru_isolate(dentry);
936 spin_unlock(&dentry->d_lock);
937 return LRU_REMOVED;
940 if (dentry->d_flags & DCACHE_REFERENCED) {
941 dentry->d_flags &= ~DCACHE_REFERENCED;
942 spin_unlock(&dentry->d_lock);
945 * The list move itself will be made by the common LRU code. At
946 * this point, we've dropped the dentry->d_lock but keep the
947 * lru lock. This is safe to do, since every list movement is
948 * protected by the lru lock even if both locks are held.
950 * This is guaranteed by the fact that all LRU management
951 * functions are intermediated by the LRU API calls like
952 * list_lru_add and list_lru_del. List movement in this file
953 * only ever occur through this functions or through callbacks
954 * like this one, that are called from the LRU API.
956 * The only exceptions to this are functions like
957 * shrink_dentry_list, and code that first checks for the
958 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
959 * operating only with stack provided lists after they are
960 * properly isolated from the main list. It is thus, always a
961 * local access.
963 return LRU_ROTATE;
966 d_lru_shrink_move(dentry, freeable);
967 spin_unlock(&dentry->d_lock);
969 return LRU_REMOVED;
973 * prune_dcache_sb - shrink the dcache
974 * @sb: superblock
975 * @nr_to_scan : number of entries to try to free
976 * @nid: which node to scan for freeable entities
978 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
979 * done when we need more memory an called from the superblock shrinker
980 * function.
982 * This function may fail to free any resources if all the dentries are in
983 * use.
985 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
986 int nid)
988 LIST_HEAD(dispose);
989 long freed;
991 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
992 &dispose, &nr_to_scan);
993 shrink_dentry_list(&dispose);
994 return freed;
997 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
998 spinlock_t *lru_lock, void *arg)
1000 struct list_head *freeable = arg;
1001 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1004 * we are inverting the lru lock/dentry->d_lock here,
1005 * so use a trylock. If we fail to get the lock, just skip
1006 * it
1008 if (!spin_trylock(&dentry->d_lock))
1009 return LRU_SKIP;
1011 d_lru_shrink_move(dentry, freeable);
1012 spin_unlock(&dentry->d_lock);
1014 return LRU_REMOVED;
1019 * shrink_dcache_sb - shrink dcache for a superblock
1020 * @sb: superblock
1022 * Shrink the dcache for the specified super block. This is used to free
1023 * the dcache before unmounting a file system.
1025 void shrink_dcache_sb(struct super_block *sb)
1027 long freed;
1029 do {
1030 LIST_HEAD(dispose);
1032 freed = list_lru_walk(&sb->s_dentry_lru,
1033 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1035 this_cpu_sub(nr_dentry_unused, freed);
1036 shrink_dentry_list(&dispose);
1037 } while (freed > 0);
1039 EXPORT_SYMBOL(shrink_dcache_sb);
1042 * enum d_walk_ret - action to talke during tree walk
1043 * @D_WALK_CONTINUE: contrinue walk
1044 * @D_WALK_QUIT: quit walk
1045 * @D_WALK_NORETRY: quit when retry is needed
1046 * @D_WALK_SKIP: skip this dentry and its children
1048 enum d_walk_ret {
1049 D_WALK_CONTINUE,
1050 D_WALK_QUIT,
1051 D_WALK_NORETRY,
1052 D_WALK_SKIP,
1056 * d_walk - walk the dentry tree
1057 * @parent: start of walk
1058 * @data: data passed to @enter() and @finish()
1059 * @enter: callback when first entering the dentry
1060 * @finish: callback when successfully finished the walk
1062 * The @enter() and @finish() callbacks are called with d_lock held.
1064 static void d_walk(struct dentry *parent, void *data,
1065 enum d_walk_ret (*enter)(void *, struct dentry *),
1066 void (*finish)(void *))
1068 struct dentry *this_parent;
1069 struct list_head *next;
1070 unsigned seq = 0;
1071 enum d_walk_ret ret;
1072 bool retry = true;
1074 again:
1075 read_seqbegin_or_lock(&rename_lock, &seq);
1076 this_parent = parent;
1077 spin_lock(&this_parent->d_lock);
1079 ret = enter(data, this_parent);
1080 switch (ret) {
1081 case D_WALK_CONTINUE:
1082 break;
1083 case D_WALK_QUIT:
1084 case D_WALK_SKIP:
1085 goto out_unlock;
1086 case D_WALK_NORETRY:
1087 retry = false;
1088 break;
1090 repeat:
1091 next = this_parent->d_subdirs.next;
1092 resume:
1093 while (next != &this_parent->d_subdirs) {
1094 struct list_head *tmp = next;
1095 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1096 next = tmp->next;
1098 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1100 ret = enter(data, dentry);
1101 switch (ret) {
1102 case D_WALK_CONTINUE:
1103 break;
1104 case D_WALK_QUIT:
1105 spin_unlock(&dentry->d_lock);
1106 goto out_unlock;
1107 case D_WALK_NORETRY:
1108 retry = false;
1109 break;
1110 case D_WALK_SKIP:
1111 spin_unlock(&dentry->d_lock);
1112 continue;
1115 if (!list_empty(&dentry->d_subdirs)) {
1116 spin_unlock(&this_parent->d_lock);
1117 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1118 this_parent = dentry;
1119 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1120 goto repeat;
1122 spin_unlock(&dentry->d_lock);
1125 * All done at this level ... ascend and resume the search.
1127 if (this_parent != parent) {
1128 struct dentry *child = this_parent;
1129 this_parent = child->d_parent;
1131 rcu_read_lock();
1132 spin_unlock(&child->d_lock);
1133 spin_lock(&this_parent->d_lock);
1136 * might go back up the wrong parent if we have had a rename
1137 * or deletion
1139 if (this_parent != child->d_parent ||
1140 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1141 need_seqretry(&rename_lock, seq)) {
1142 spin_unlock(&this_parent->d_lock);
1143 rcu_read_unlock();
1144 goto rename_retry;
1146 rcu_read_unlock();
1147 next = child->d_u.d_child.next;
1148 goto resume;
1150 if (need_seqretry(&rename_lock, seq)) {
1151 spin_unlock(&this_parent->d_lock);
1152 goto rename_retry;
1154 if (finish)
1155 finish(data);
1157 out_unlock:
1158 spin_unlock(&this_parent->d_lock);
1159 done_seqretry(&rename_lock, seq);
1160 return;
1162 rename_retry:
1163 if (!retry)
1164 return;
1165 seq = 1;
1166 goto again;
1170 * Search for at least 1 mount point in the dentry's subdirs.
1171 * We descend to the next level whenever the d_subdirs
1172 * list is non-empty and continue searching.
1175 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1177 int *ret = data;
1178 if (d_mountpoint(dentry)) {
1179 *ret = 1;
1180 return D_WALK_QUIT;
1182 return D_WALK_CONTINUE;
1186 * have_submounts - check for mounts over a dentry
1187 * @parent: dentry to check.
1189 * Return true if the parent or its subdirectories contain
1190 * a mount point
1192 int have_submounts(struct dentry *parent)
1194 int ret = 0;
1196 d_walk(parent, &ret, check_mount, NULL);
1198 return ret;
1200 EXPORT_SYMBOL(have_submounts);
1203 * Called by mount code to set a mountpoint and check if the mountpoint is
1204 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1205 * subtree can become unreachable).
1207 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1208 * this reason take rename_lock and d_lock on dentry and ancestors.
1210 int d_set_mounted(struct dentry *dentry)
1212 struct dentry *p;
1213 int ret = -ENOENT;
1214 write_seqlock(&rename_lock);
1215 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1216 /* Need exclusion wrt. check_submounts_and_drop() */
1217 spin_lock(&p->d_lock);
1218 if (unlikely(d_unhashed(p))) {
1219 spin_unlock(&p->d_lock);
1220 goto out;
1222 spin_unlock(&p->d_lock);
1224 spin_lock(&dentry->d_lock);
1225 if (!d_unlinked(dentry)) {
1226 dentry->d_flags |= DCACHE_MOUNTED;
1227 ret = 0;
1229 spin_unlock(&dentry->d_lock);
1230 out:
1231 write_sequnlock(&rename_lock);
1232 return ret;
1236 * Search the dentry child list of the specified parent,
1237 * and move any unused dentries to the end of the unused
1238 * list for prune_dcache(). We descend to the next level
1239 * whenever the d_subdirs list is non-empty and continue
1240 * searching.
1242 * It returns zero iff there are no unused children,
1243 * otherwise it returns the number of children moved to
1244 * the end of the unused list. This may not be the total
1245 * number of unused children, because select_parent can
1246 * drop the lock and return early due to latency
1247 * constraints.
1250 struct select_data {
1251 struct dentry *start;
1252 struct list_head dispose;
1253 int found;
1256 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1258 struct select_data *data = _data;
1259 enum d_walk_ret ret = D_WALK_CONTINUE;
1261 if (data->start == dentry)
1262 goto out;
1265 * move only zero ref count dentries to the dispose list.
1267 * Those which are presently on the shrink list, being processed
1268 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1269 * loop in shrink_dcache_parent() might not make any progress
1270 * and loop forever.
1272 if (dentry->d_lockref.count) {
1273 dentry_lru_del(dentry);
1274 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1276 * We can't use d_lru_shrink_move() because we
1277 * need to get the global LRU lock and do the
1278 * LRU accounting.
1280 d_lru_del(dentry);
1281 d_shrink_add(dentry, &data->dispose);
1282 data->found++;
1283 ret = D_WALK_NORETRY;
1286 * We can return to the caller if we have found some (this
1287 * ensures forward progress). We'll be coming back to find
1288 * the rest.
1290 if (data->found && need_resched())
1291 ret = D_WALK_QUIT;
1292 out:
1293 return ret;
1297 * shrink_dcache_parent - prune dcache
1298 * @parent: parent of entries to prune
1300 * Prune the dcache to remove unused children of the parent dentry.
1302 void shrink_dcache_parent(struct dentry *parent)
1304 for (;;) {
1305 struct select_data data;
1307 INIT_LIST_HEAD(&data.dispose);
1308 data.start = parent;
1309 data.found = 0;
1311 d_walk(parent, &data, select_collect, NULL);
1312 if (!data.found)
1313 break;
1315 shrink_dentry_list(&data.dispose);
1316 cond_resched();
1319 EXPORT_SYMBOL(shrink_dcache_parent);
1321 static enum d_walk_ret umount_collect(void *_data, struct dentry *dentry)
1323 struct select_data *data = _data;
1324 enum d_walk_ret ret = D_WALK_CONTINUE;
1326 if (dentry->d_lockref.count) {
1327 dentry_lru_del(dentry);
1328 if (likely(!list_empty(&dentry->d_subdirs)))
1329 goto out;
1330 if (dentry == data->start && dentry->d_lockref.count == 1)
1331 goto out;
1332 printk(KERN_ERR
1333 "BUG: Dentry %p{i=%lx,n=%s}"
1334 " still in use (%d)"
1335 " [unmount of %s %s]\n",
1336 dentry,
1337 dentry->d_inode ?
1338 dentry->d_inode->i_ino : 0UL,
1339 dentry->d_name.name,
1340 dentry->d_lockref.count,
1341 dentry->d_sb->s_type->name,
1342 dentry->d_sb->s_id);
1343 BUG();
1344 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1346 * We can't use d_lru_shrink_move() because we
1347 * need to get the global LRU lock and do the
1348 * LRU accounting.
1350 if (dentry->d_flags & DCACHE_LRU_LIST)
1351 d_lru_del(dentry);
1352 d_shrink_add(dentry, &data->dispose);
1353 data->found++;
1354 ret = D_WALK_NORETRY;
1356 out:
1357 if (data->found && need_resched())
1358 ret = D_WALK_QUIT;
1359 return ret;
1363 * destroy the dentries attached to a superblock on unmounting
1365 void shrink_dcache_for_umount(struct super_block *sb)
1367 struct dentry *dentry;
1369 if (down_read_trylock(&sb->s_umount))
1370 BUG();
1372 dentry = sb->s_root;
1373 sb->s_root = NULL;
1374 for (;;) {
1375 struct select_data data;
1377 INIT_LIST_HEAD(&data.dispose);
1378 data.start = dentry;
1379 data.found = 0;
1381 d_walk(dentry, &data, umount_collect, NULL);
1382 if (!data.found)
1383 break;
1385 shrink_dentry_list(&data.dispose);
1386 cond_resched();
1388 d_drop(dentry);
1389 dput(dentry);
1391 while (!hlist_bl_empty(&sb->s_anon)) {
1392 struct select_data data;
1393 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1395 INIT_LIST_HEAD(&data.dispose);
1396 data.start = NULL;
1397 data.found = 0;
1399 d_walk(dentry, &data, umount_collect, NULL);
1400 if (data.found)
1401 shrink_dentry_list(&data.dispose);
1402 cond_resched();
1406 static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1408 struct select_data *data = _data;
1410 if (d_mountpoint(dentry)) {
1411 data->found = -EBUSY;
1412 return D_WALK_QUIT;
1415 return select_collect(_data, dentry);
1418 static void check_and_drop(void *_data)
1420 struct select_data *data = _data;
1422 if (d_mountpoint(data->start))
1423 data->found = -EBUSY;
1424 if (!data->found)
1425 __d_drop(data->start);
1429 * check_submounts_and_drop - prune dcache, check for submounts and drop
1431 * All done as a single atomic operation relative to has_unlinked_ancestor().
1432 * Returns 0 if successfully unhashed @parent. If there were submounts then
1433 * return -EBUSY.
1435 * @dentry: dentry to prune and drop
1437 int check_submounts_and_drop(struct dentry *dentry)
1439 int ret = 0;
1441 /* Negative dentries can be dropped without further checks */
1442 if (!dentry->d_inode) {
1443 d_drop(dentry);
1444 goto out;
1447 for (;;) {
1448 struct select_data data;
1450 INIT_LIST_HEAD(&data.dispose);
1451 data.start = dentry;
1452 data.found = 0;
1454 d_walk(dentry, &data, check_and_collect, check_and_drop);
1455 ret = data.found;
1457 if (!list_empty(&data.dispose))
1458 shrink_dentry_list(&data.dispose);
1460 if (ret <= 0)
1461 break;
1463 cond_resched();
1466 out:
1467 return ret;
1469 EXPORT_SYMBOL(check_submounts_and_drop);
1472 * __d_alloc - allocate a dcache entry
1473 * @sb: filesystem it will belong to
1474 * @name: qstr of the name
1476 * Allocates a dentry. It returns %NULL if there is insufficient memory
1477 * available. On a success the dentry is returned. The name passed in is
1478 * copied and the copy passed in may be reused after this call.
1481 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1483 struct dentry *dentry;
1484 char *dname;
1486 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1487 if (!dentry)
1488 return NULL;
1491 * We guarantee that the inline name is always NUL-terminated.
1492 * This way the memcpy() done by the name switching in rename
1493 * will still always have a NUL at the end, even if we might
1494 * be overwriting an internal NUL character
1496 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1497 if (name->len > DNAME_INLINE_LEN-1) {
1498 dname = kmalloc(name->len + 1, GFP_KERNEL);
1499 if (!dname) {
1500 kmem_cache_free(dentry_cache, dentry);
1501 return NULL;
1503 } else {
1504 dname = dentry->d_iname;
1507 dentry->d_name.len = name->len;
1508 dentry->d_name.hash = name->hash;
1509 memcpy(dname, name->name, name->len);
1510 dname[name->len] = 0;
1512 /* Make sure we always see the terminating NUL character */
1513 smp_wmb();
1514 dentry->d_name.name = dname;
1516 dentry->d_lockref.count = 1;
1517 dentry->d_flags = 0;
1518 spin_lock_init(&dentry->d_lock);
1519 seqcount_init(&dentry->d_seq);
1520 dentry->d_inode = NULL;
1521 dentry->d_parent = dentry;
1522 dentry->d_sb = sb;
1523 dentry->d_op = NULL;
1524 dentry->d_fsdata = NULL;
1525 INIT_HLIST_BL_NODE(&dentry->d_hash);
1526 INIT_LIST_HEAD(&dentry->d_lru);
1527 INIT_LIST_HEAD(&dentry->d_subdirs);
1528 INIT_HLIST_NODE(&dentry->d_alias);
1529 INIT_LIST_HEAD(&dentry->d_u.d_child);
1530 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1532 this_cpu_inc(nr_dentry);
1534 return dentry;
1538 * d_alloc - allocate a dcache entry
1539 * @parent: parent of entry to allocate
1540 * @name: qstr of the name
1542 * Allocates a dentry. It returns %NULL if there is insufficient memory
1543 * available. On a success the dentry is returned. The name passed in is
1544 * copied and the copy passed in may be reused after this call.
1546 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1548 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1549 if (!dentry)
1550 return NULL;
1552 spin_lock(&parent->d_lock);
1554 * don't need child lock because it is not subject
1555 * to concurrency here
1557 __dget_dlock(parent);
1558 dentry->d_parent = parent;
1559 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1560 spin_unlock(&parent->d_lock);
1562 return dentry;
1564 EXPORT_SYMBOL(d_alloc);
1567 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1568 * @sb: the superblock
1569 * @name: qstr of the name
1571 * For a filesystem that just pins its dentries in memory and never
1572 * performs lookups at all, return an unhashed IS_ROOT dentry.
1574 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1576 return __d_alloc(sb, name);
1578 EXPORT_SYMBOL(d_alloc_pseudo);
1580 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1582 struct qstr q;
1584 q.name = name;
1585 q.len = strlen(name);
1586 q.hash = full_name_hash(q.name, q.len);
1587 return d_alloc(parent, &q);
1589 EXPORT_SYMBOL(d_alloc_name);
1591 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1593 WARN_ON_ONCE(dentry->d_op);
1594 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1595 DCACHE_OP_COMPARE |
1596 DCACHE_OP_REVALIDATE |
1597 DCACHE_OP_WEAK_REVALIDATE |
1598 DCACHE_OP_DELETE ));
1599 dentry->d_op = op;
1600 if (!op)
1601 return;
1602 if (op->d_hash)
1603 dentry->d_flags |= DCACHE_OP_HASH;
1604 if (op->d_compare)
1605 dentry->d_flags |= DCACHE_OP_COMPARE;
1606 if (op->d_revalidate)
1607 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1608 if (op->d_weak_revalidate)
1609 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1610 if (op->d_delete)
1611 dentry->d_flags |= DCACHE_OP_DELETE;
1612 if (op->d_prune)
1613 dentry->d_flags |= DCACHE_OP_PRUNE;
1616 EXPORT_SYMBOL(d_set_d_op);
1618 static unsigned d_flags_for_inode(struct inode *inode)
1620 unsigned add_flags = DCACHE_FILE_TYPE;
1622 if (!inode)
1623 return DCACHE_MISS_TYPE;
1625 if (S_ISDIR(inode->i_mode)) {
1626 add_flags = DCACHE_DIRECTORY_TYPE;
1627 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1628 if (unlikely(!inode->i_op->lookup))
1629 add_flags = DCACHE_AUTODIR_TYPE;
1630 else
1631 inode->i_opflags |= IOP_LOOKUP;
1633 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1634 if (unlikely(inode->i_op->follow_link))
1635 add_flags = DCACHE_SYMLINK_TYPE;
1636 else
1637 inode->i_opflags |= IOP_NOFOLLOW;
1640 if (unlikely(IS_AUTOMOUNT(inode)))
1641 add_flags |= DCACHE_NEED_AUTOMOUNT;
1642 return add_flags;
1645 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1647 unsigned add_flags = d_flags_for_inode(inode);
1649 spin_lock(&dentry->d_lock);
1650 dentry->d_flags &= ~DCACHE_ENTRY_TYPE;
1651 dentry->d_flags |= add_flags;
1652 if (inode)
1653 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1654 dentry->d_inode = inode;
1655 dentry_rcuwalk_barrier(dentry);
1656 spin_unlock(&dentry->d_lock);
1657 fsnotify_d_instantiate(dentry, inode);
1661 * d_instantiate - fill in inode information for a dentry
1662 * @entry: dentry to complete
1663 * @inode: inode to attach to this dentry
1665 * Fill in inode information in the entry.
1667 * This turns negative dentries into productive full members
1668 * of society.
1670 * NOTE! This assumes that the inode count has been incremented
1671 * (or otherwise set) by the caller to indicate that it is now
1672 * in use by the dcache.
1675 void d_instantiate(struct dentry *entry, struct inode * inode)
1677 BUG_ON(!hlist_unhashed(&entry->d_alias));
1678 if (inode)
1679 spin_lock(&inode->i_lock);
1680 __d_instantiate(entry, inode);
1681 if (inode)
1682 spin_unlock(&inode->i_lock);
1683 security_d_instantiate(entry, inode);
1685 EXPORT_SYMBOL(d_instantiate);
1688 * d_instantiate_unique - instantiate a non-aliased dentry
1689 * @entry: dentry to instantiate
1690 * @inode: inode to attach to this dentry
1692 * Fill in inode information in the entry. On success, it returns NULL.
1693 * If an unhashed alias of "entry" already exists, then we return the
1694 * aliased dentry instead and drop one reference to inode.
1696 * Note that in order to avoid conflicts with rename() etc, the caller
1697 * had better be holding the parent directory semaphore.
1699 * This also assumes that the inode count has been incremented
1700 * (or otherwise set) by the caller to indicate that it is now
1701 * in use by the dcache.
1703 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1704 struct inode *inode)
1706 struct dentry *alias;
1707 int len = entry->d_name.len;
1708 const char *name = entry->d_name.name;
1709 unsigned int hash = entry->d_name.hash;
1711 if (!inode) {
1712 __d_instantiate(entry, NULL);
1713 return NULL;
1716 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1718 * Don't need alias->d_lock here, because aliases with
1719 * d_parent == entry->d_parent are not subject to name or
1720 * parent changes, because the parent inode i_mutex is held.
1722 if (alias->d_name.hash != hash)
1723 continue;
1724 if (alias->d_parent != entry->d_parent)
1725 continue;
1726 if (alias->d_name.len != len)
1727 continue;
1728 if (dentry_cmp(alias, name, len))
1729 continue;
1730 __dget(alias);
1731 return alias;
1734 __d_instantiate(entry, inode);
1735 return NULL;
1738 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1740 struct dentry *result;
1742 BUG_ON(!hlist_unhashed(&entry->d_alias));
1744 if (inode)
1745 spin_lock(&inode->i_lock);
1746 result = __d_instantiate_unique(entry, inode);
1747 if (inode)
1748 spin_unlock(&inode->i_lock);
1750 if (!result) {
1751 security_d_instantiate(entry, inode);
1752 return NULL;
1755 BUG_ON(!d_unhashed(result));
1756 iput(inode);
1757 return result;
1760 EXPORT_SYMBOL(d_instantiate_unique);
1763 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1764 * @entry: dentry to complete
1765 * @inode: inode to attach to this dentry
1767 * Fill in inode information in the entry. If a directory alias is found, then
1768 * return an error (and drop inode). Together with d_materialise_unique() this
1769 * guarantees that a directory inode may never have more than one alias.
1771 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1773 BUG_ON(!hlist_unhashed(&entry->d_alias));
1775 spin_lock(&inode->i_lock);
1776 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1777 spin_unlock(&inode->i_lock);
1778 iput(inode);
1779 return -EBUSY;
1781 __d_instantiate(entry, inode);
1782 spin_unlock(&inode->i_lock);
1783 security_d_instantiate(entry, inode);
1785 return 0;
1787 EXPORT_SYMBOL(d_instantiate_no_diralias);
1789 struct dentry *d_make_root(struct inode *root_inode)
1791 struct dentry *res = NULL;
1793 if (root_inode) {
1794 static const struct qstr name = QSTR_INIT("/", 1);
1796 res = __d_alloc(root_inode->i_sb, &name);
1797 if (res)
1798 d_instantiate(res, root_inode);
1799 else
1800 iput(root_inode);
1802 return res;
1804 EXPORT_SYMBOL(d_make_root);
1806 static struct dentry * __d_find_any_alias(struct inode *inode)
1808 struct dentry *alias;
1810 if (hlist_empty(&inode->i_dentry))
1811 return NULL;
1812 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1813 __dget(alias);
1814 return alias;
1818 * d_find_any_alias - find any alias for a given inode
1819 * @inode: inode to find an alias for
1821 * If any aliases exist for the given inode, take and return a
1822 * reference for one of them. If no aliases exist, return %NULL.
1824 struct dentry *d_find_any_alias(struct inode *inode)
1826 struct dentry *de;
1828 spin_lock(&inode->i_lock);
1829 de = __d_find_any_alias(inode);
1830 spin_unlock(&inode->i_lock);
1831 return de;
1833 EXPORT_SYMBOL(d_find_any_alias);
1836 * d_obtain_alias - find or allocate a dentry for a given inode
1837 * @inode: inode to allocate the dentry for
1839 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1840 * similar open by handle operations. The returned dentry may be anonymous,
1841 * or may have a full name (if the inode was already in the cache).
1843 * When called on a directory inode, we must ensure that the inode only ever
1844 * has one dentry. If a dentry is found, that is returned instead of
1845 * allocating a new one.
1847 * On successful return, the reference to the inode has been transferred
1848 * to the dentry. In case of an error the reference on the inode is released.
1849 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1850 * be passed in and will be the error will be propagate to the return value,
1851 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1853 struct dentry *d_obtain_alias(struct inode *inode)
1855 static const struct qstr anonstring = QSTR_INIT("/", 1);
1856 struct dentry *tmp;
1857 struct dentry *res;
1858 unsigned add_flags;
1860 if (!inode)
1861 return ERR_PTR(-ESTALE);
1862 if (IS_ERR(inode))
1863 return ERR_CAST(inode);
1865 res = d_find_any_alias(inode);
1866 if (res)
1867 goto out_iput;
1869 tmp = __d_alloc(inode->i_sb, &anonstring);
1870 if (!tmp) {
1871 res = ERR_PTR(-ENOMEM);
1872 goto out_iput;
1875 spin_lock(&inode->i_lock);
1876 res = __d_find_any_alias(inode);
1877 if (res) {
1878 spin_unlock(&inode->i_lock);
1879 dput(tmp);
1880 goto out_iput;
1883 /* attach a disconnected dentry */
1884 add_flags = d_flags_for_inode(inode) | DCACHE_DISCONNECTED;
1886 spin_lock(&tmp->d_lock);
1887 tmp->d_inode = inode;
1888 tmp->d_flags |= add_flags;
1889 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1890 hlist_bl_lock(&tmp->d_sb->s_anon);
1891 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1892 hlist_bl_unlock(&tmp->d_sb->s_anon);
1893 spin_unlock(&tmp->d_lock);
1894 spin_unlock(&inode->i_lock);
1895 security_d_instantiate(tmp, inode);
1897 return tmp;
1899 out_iput:
1900 if (res && !IS_ERR(res))
1901 security_d_instantiate(res, inode);
1902 iput(inode);
1903 return res;
1905 EXPORT_SYMBOL(d_obtain_alias);
1908 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1909 * @inode: the inode which may have a disconnected dentry
1910 * @dentry: a negative dentry which we want to point to the inode.
1912 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1913 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1914 * and return it, else simply d_add the inode to the dentry and return NULL.
1916 * This is needed in the lookup routine of any filesystem that is exportable
1917 * (via knfsd) so that we can build dcache paths to directories effectively.
1919 * If a dentry was found and moved, then it is returned. Otherwise NULL
1920 * is returned. This matches the expected return value of ->lookup.
1922 * Cluster filesystems may call this function with a negative, hashed dentry.
1923 * In that case, we know that the inode will be a regular file, and also this
1924 * will only occur during atomic_open. So we need to check for the dentry
1925 * being already hashed only in the final case.
1927 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1929 struct dentry *new = NULL;
1931 if (IS_ERR(inode))
1932 return ERR_CAST(inode);
1934 if (inode && S_ISDIR(inode->i_mode)) {
1935 spin_lock(&inode->i_lock);
1936 new = __d_find_alias(inode, 1);
1937 if (new) {
1938 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1939 spin_unlock(&inode->i_lock);
1940 security_d_instantiate(new, inode);
1941 d_move(new, dentry);
1942 iput(inode);
1943 } else {
1944 /* already taking inode->i_lock, so d_add() by hand */
1945 __d_instantiate(dentry, inode);
1946 spin_unlock(&inode->i_lock);
1947 security_d_instantiate(dentry, inode);
1948 d_rehash(dentry);
1950 } else {
1951 d_instantiate(dentry, inode);
1952 if (d_unhashed(dentry))
1953 d_rehash(dentry);
1955 return new;
1957 EXPORT_SYMBOL(d_splice_alias);
1960 * d_add_ci - lookup or allocate new dentry with case-exact name
1961 * @inode: the inode case-insensitive lookup has found
1962 * @dentry: the negative dentry that was passed to the parent's lookup func
1963 * @name: the case-exact name to be associated with the returned dentry
1965 * This is to avoid filling the dcache with case-insensitive names to the
1966 * same inode, only the actual correct case is stored in the dcache for
1967 * case-insensitive filesystems.
1969 * For a case-insensitive lookup match and if the the case-exact dentry
1970 * already exists in in the dcache, use it and return it.
1972 * If no entry exists with the exact case name, allocate new dentry with
1973 * the exact case, and return the spliced entry.
1975 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1976 struct qstr *name)
1978 struct dentry *found;
1979 struct dentry *new;
1982 * First check if a dentry matching the name already exists,
1983 * if not go ahead and create it now.
1985 found = d_hash_and_lookup(dentry->d_parent, name);
1986 if (unlikely(IS_ERR(found)))
1987 goto err_out;
1988 if (!found) {
1989 new = d_alloc(dentry->d_parent, name);
1990 if (!new) {
1991 found = ERR_PTR(-ENOMEM);
1992 goto err_out;
1995 found = d_splice_alias(inode, new);
1996 if (found) {
1997 dput(new);
1998 return found;
2000 return new;
2004 * If a matching dentry exists, and it's not negative use it.
2006 * Decrement the reference count to balance the iget() done
2007 * earlier on.
2009 if (found->d_inode) {
2010 if (unlikely(found->d_inode != inode)) {
2011 /* This can't happen because bad inodes are unhashed. */
2012 BUG_ON(!is_bad_inode(inode));
2013 BUG_ON(!is_bad_inode(found->d_inode));
2015 iput(inode);
2016 return found;
2020 * Negative dentry: instantiate it unless the inode is a directory and
2021 * already has a dentry.
2023 new = d_splice_alias(inode, found);
2024 if (new) {
2025 dput(found);
2026 found = new;
2028 return found;
2030 err_out:
2031 iput(inode);
2032 return found;
2034 EXPORT_SYMBOL(d_add_ci);
2037 * Do the slow-case of the dentry name compare.
2039 * Unlike the dentry_cmp() function, we need to atomically
2040 * load the name and length information, so that the
2041 * filesystem can rely on them, and can use the 'name' and
2042 * 'len' information without worrying about walking off the
2043 * end of memory etc.
2045 * Thus the read_seqcount_retry() and the "duplicate" info
2046 * in arguments (the low-level filesystem should not look
2047 * at the dentry inode or name contents directly, since
2048 * rename can change them while we're in RCU mode).
2050 enum slow_d_compare {
2051 D_COMP_OK,
2052 D_COMP_NOMATCH,
2053 D_COMP_SEQRETRY,
2056 static noinline enum slow_d_compare slow_dentry_cmp(
2057 const struct dentry *parent,
2058 struct dentry *dentry,
2059 unsigned int seq,
2060 const struct qstr *name)
2062 int tlen = dentry->d_name.len;
2063 const char *tname = dentry->d_name.name;
2065 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2066 cpu_relax();
2067 return D_COMP_SEQRETRY;
2069 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2070 return D_COMP_NOMATCH;
2071 return D_COMP_OK;
2075 * __d_lookup_rcu - search for a dentry (racy, store-free)
2076 * @parent: parent dentry
2077 * @name: qstr of name we wish to find
2078 * @seqp: returns d_seq value at the point where the dentry was found
2079 * Returns: dentry, or NULL
2081 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2082 * resolution (store-free path walking) design described in
2083 * Documentation/filesystems/path-lookup.txt.
2085 * This is not to be used outside core vfs.
2087 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2088 * held, and rcu_read_lock held. The returned dentry must not be stored into
2089 * without taking d_lock and checking d_seq sequence count against @seq
2090 * returned here.
2092 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2093 * function.
2095 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2096 * the returned dentry, so long as its parent's seqlock is checked after the
2097 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2098 * is formed, giving integrity down the path walk.
2100 * NOTE! The caller *has* to check the resulting dentry against the sequence
2101 * number we've returned before using any of the resulting dentry state!
2103 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2104 const struct qstr *name,
2105 unsigned *seqp)
2107 u64 hashlen = name->hash_len;
2108 const unsigned char *str = name->name;
2109 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2110 struct hlist_bl_node *node;
2111 struct dentry *dentry;
2114 * Note: There is significant duplication with __d_lookup_rcu which is
2115 * required to prevent single threaded performance regressions
2116 * especially on architectures where smp_rmb (in seqcounts) are costly.
2117 * Keep the two functions in sync.
2121 * The hash list is protected using RCU.
2123 * Carefully use d_seq when comparing a candidate dentry, to avoid
2124 * races with d_move().
2126 * It is possible that concurrent renames can mess up our list
2127 * walk here and result in missing our dentry, resulting in the
2128 * false-negative result. d_lookup() protects against concurrent
2129 * renames using rename_lock seqlock.
2131 * See Documentation/filesystems/path-lookup.txt for more details.
2133 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2134 unsigned seq;
2136 seqretry:
2138 * The dentry sequence count protects us from concurrent
2139 * renames, and thus protects parent and name fields.
2141 * The caller must perform a seqcount check in order
2142 * to do anything useful with the returned dentry.
2144 * NOTE! We do a "raw" seqcount_begin here. That means that
2145 * we don't wait for the sequence count to stabilize if it
2146 * is in the middle of a sequence change. If we do the slow
2147 * dentry compare, we will do seqretries until it is stable,
2148 * and if we end up with a successful lookup, we actually
2149 * want to exit RCU lookup anyway.
2151 seq = raw_seqcount_begin(&dentry->d_seq);
2152 if (dentry->d_parent != parent)
2153 continue;
2154 if (d_unhashed(dentry))
2155 continue;
2157 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2158 if (dentry->d_name.hash != hashlen_hash(hashlen))
2159 continue;
2160 *seqp = seq;
2161 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2162 case D_COMP_OK:
2163 return dentry;
2164 case D_COMP_NOMATCH:
2165 continue;
2166 default:
2167 goto seqretry;
2171 if (dentry->d_name.hash_len != hashlen)
2172 continue;
2173 *seqp = seq;
2174 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2175 return dentry;
2177 return NULL;
2181 * d_lookup - search for a dentry
2182 * @parent: parent dentry
2183 * @name: qstr of name we wish to find
2184 * Returns: dentry, or NULL
2186 * d_lookup searches the children of the parent dentry for the name in
2187 * question. If the dentry is found its reference count is incremented and the
2188 * dentry is returned. The caller must use dput to free the entry when it has
2189 * finished using it. %NULL is returned if the dentry does not exist.
2191 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2193 struct dentry *dentry;
2194 unsigned seq;
2196 do {
2197 seq = read_seqbegin(&rename_lock);
2198 dentry = __d_lookup(parent, name);
2199 if (dentry)
2200 break;
2201 } while (read_seqretry(&rename_lock, seq));
2202 return dentry;
2204 EXPORT_SYMBOL(d_lookup);
2207 * __d_lookup - search for a dentry (racy)
2208 * @parent: parent dentry
2209 * @name: qstr of name we wish to find
2210 * Returns: dentry, or NULL
2212 * __d_lookup is like d_lookup, however it may (rarely) return a
2213 * false-negative result due to unrelated rename activity.
2215 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2216 * however it must be used carefully, eg. with a following d_lookup in
2217 * the case of failure.
2219 * __d_lookup callers must be commented.
2221 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2223 unsigned int len = name->len;
2224 unsigned int hash = name->hash;
2225 const unsigned char *str = name->name;
2226 struct hlist_bl_head *b = d_hash(parent, hash);
2227 struct hlist_bl_node *node;
2228 struct dentry *found = NULL;
2229 struct dentry *dentry;
2232 * Note: There is significant duplication with __d_lookup_rcu which is
2233 * required to prevent single threaded performance regressions
2234 * especially on architectures where smp_rmb (in seqcounts) are costly.
2235 * Keep the two functions in sync.
2239 * The hash list is protected using RCU.
2241 * Take d_lock when comparing a candidate dentry, to avoid races
2242 * with d_move().
2244 * It is possible that concurrent renames can mess up our list
2245 * walk here and result in missing our dentry, resulting in the
2246 * false-negative result. d_lookup() protects against concurrent
2247 * renames using rename_lock seqlock.
2249 * See Documentation/filesystems/path-lookup.txt for more details.
2251 rcu_read_lock();
2253 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2255 if (dentry->d_name.hash != hash)
2256 continue;
2258 spin_lock(&dentry->d_lock);
2259 if (dentry->d_parent != parent)
2260 goto next;
2261 if (d_unhashed(dentry))
2262 goto next;
2265 * It is safe to compare names since d_move() cannot
2266 * change the qstr (protected by d_lock).
2268 if (parent->d_flags & DCACHE_OP_COMPARE) {
2269 int tlen = dentry->d_name.len;
2270 const char *tname = dentry->d_name.name;
2271 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2272 goto next;
2273 } else {
2274 if (dentry->d_name.len != len)
2275 goto next;
2276 if (dentry_cmp(dentry, str, len))
2277 goto next;
2280 dentry->d_lockref.count++;
2281 found = dentry;
2282 spin_unlock(&dentry->d_lock);
2283 break;
2284 next:
2285 spin_unlock(&dentry->d_lock);
2287 rcu_read_unlock();
2289 return found;
2293 * d_hash_and_lookup - hash the qstr then search for a dentry
2294 * @dir: Directory to search in
2295 * @name: qstr of name we wish to find
2297 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2299 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2302 * Check for a fs-specific hash function. Note that we must
2303 * calculate the standard hash first, as the d_op->d_hash()
2304 * routine may choose to leave the hash value unchanged.
2306 name->hash = full_name_hash(name->name, name->len);
2307 if (dir->d_flags & DCACHE_OP_HASH) {
2308 int err = dir->d_op->d_hash(dir, name);
2309 if (unlikely(err < 0))
2310 return ERR_PTR(err);
2312 return d_lookup(dir, name);
2314 EXPORT_SYMBOL(d_hash_and_lookup);
2317 * d_validate - verify dentry provided from insecure source (deprecated)
2318 * @dentry: The dentry alleged to be valid child of @dparent
2319 * @dparent: The parent dentry (known to be valid)
2321 * An insecure source has sent us a dentry, here we verify it and dget() it.
2322 * This is used by ncpfs in its readdir implementation.
2323 * Zero is returned in the dentry is invalid.
2325 * This function is slow for big directories, and deprecated, do not use it.
2327 int d_validate(struct dentry *dentry, struct dentry *dparent)
2329 struct dentry *child;
2331 spin_lock(&dparent->d_lock);
2332 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2333 if (dentry == child) {
2334 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2335 __dget_dlock(dentry);
2336 spin_unlock(&dentry->d_lock);
2337 spin_unlock(&dparent->d_lock);
2338 return 1;
2341 spin_unlock(&dparent->d_lock);
2343 return 0;
2345 EXPORT_SYMBOL(d_validate);
2348 * When a file is deleted, we have two options:
2349 * - turn this dentry into a negative dentry
2350 * - unhash this dentry and free it.
2352 * Usually, we want to just turn this into
2353 * a negative dentry, but if anybody else is
2354 * currently using the dentry or the inode
2355 * we can't do that and we fall back on removing
2356 * it from the hash queues and waiting for
2357 * it to be deleted later when it has no users
2361 * d_delete - delete a dentry
2362 * @dentry: The dentry to delete
2364 * Turn the dentry into a negative dentry if possible, otherwise
2365 * remove it from the hash queues so it can be deleted later
2368 void d_delete(struct dentry * dentry)
2370 struct inode *inode;
2371 int isdir = 0;
2373 * Are we the only user?
2375 again:
2376 spin_lock(&dentry->d_lock);
2377 inode = dentry->d_inode;
2378 isdir = S_ISDIR(inode->i_mode);
2379 if (dentry->d_lockref.count == 1) {
2380 if (!spin_trylock(&inode->i_lock)) {
2381 spin_unlock(&dentry->d_lock);
2382 cpu_relax();
2383 goto again;
2385 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2386 dentry_unlink_inode(dentry);
2387 fsnotify_nameremove(dentry, isdir);
2388 return;
2391 if (!d_unhashed(dentry))
2392 __d_drop(dentry);
2394 spin_unlock(&dentry->d_lock);
2396 fsnotify_nameremove(dentry, isdir);
2398 EXPORT_SYMBOL(d_delete);
2400 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2402 BUG_ON(!d_unhashed(entry));
2403 hlist_bl_lock(b);
2404 entry->d_flags |= DCACHE_RCUACCESS;
2405 hlist_bl_add_head_rcu(&entry->d_hash, b);
2406 hlist_bl_unlock(b);
2409 static void _d_rehash(struct dentry * entry)
2411 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2415 * d_rehash - add an entry back to the hash
2416 * @entry: dentry to add to the hash
2418 * Adds a dentry to the hash according to its name.
2421 void d_rehash(struct dentry * entry)
2423 spin_lock(&entry->d_lock);
2424 _d_rehash(entry);
2425 spin_unlock(&entry->d_lock);
2427 EXPORT_SYMBOL(d_rehash);
2430 * dentry_update_name_case - update case insensitive dentry with a new name
2431 * @dentry: dentry to be updated
2432 * @name: new name
2434 * Update a case insensitive dentry with new case of name.
2436 * dentry must have been returned by d_lookup with name @name. Old and new
2437 * name lengths must match (ie. no d_compare which allows mismatched name
2438 * lengths).
2440 * Parent inode i_mutex must be held over d_lookup and into this call (to
2441 * keep renames and concurrent inserts, and readdir(2) away).
2443 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2445 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2446 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2448 spin_lock(&dentry->d_lock);
2449 write_seqcount_begin(&dentry->d_seq);
2450 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2451 write_seqcount_end(&dentry->d_seq);
2452 spin_unlock(&dentry->d_lock);
2454 EXPORT_SYMBOL(dentry_update_name_case);
2456 static void switch_names(struct dentry *dentry, struct dentry *target)
2458 if (dname_external(target)) {
2459 if (dname_external(dentry)) {
2461 * Both external: swap the pointers
2463 swap(target->d_name.name, dentry->d_name.name);
2464 } else {
2466 * dentry:internal, target:external. Steal target's
2467 * storage and make target internal.
2469 memcpy(target->d_iname, dentry->d_name.name,
2470 dentry->d_name.len + 1);
2471 dentry->d_name.name = target->d_name.name;
2472 target->d_name.name = target->d_iname;
2474 } else {
2475 if (dname_external(dentry)) {
2477 * dentry:external, target:internal. Give dentry's
2478 * storage to target and make dentry internal
2480 memcpy(dentry->d_iname, target->d_name.name,
2481 target->d_name.len + 1);
2482 target->d_name.name = dentry->d_name.name;
2483 dentry->d_name.name = dentry->d_iname;
2484 } else {
2486 * Both are internal. Just copy target to dentry
2488 memcpy(dentry->d_iname, target->d_name.name,
2489 target->d_name.len + 1);
2490 dentry->d_name.len = target->d_name.len;
2491 return;
2494 swap(dentry->d_name.len, target->d_name.len);
2497 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2500 * XXXX: do we really need to take target->d_lock?
2502 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2503 spin_lock(&target->d_parent->d_lock);
2504 else {
2505 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2506 spin_lock(&dentry->d_parent->d_lock);
2507 spin_lock_nested(&target->d_parent->d_lock,
2508 DENTRY_D_LOCK_NESTED);
2509 } else {
2510 spin_lock(&target->d_parent->d_lock);
2511 spin_lock_nested(&dentry->d_parent->d_lock,
2512 DENTRY_D_LOCK_NESTED);
2515 if (target < dentry) {
2516 spin_lock_nested(&target->d_lock, 2);
2517 spin_lock_nested(&dentry->d_lock, 3);
2518 } else {
2519 spin_lock_nested(&dentry->d_lock, 2);
2520 spin_lock_nested(&target->d_lock, 3);
2524 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2525 struct dentry *target)
2527 if (target->d_parent != dentry->d_parent)
2528 spin_unlock(&dentry->d_parent->d_lock);
2529 if (target->d_parent != target)
2530 spin_unlock(&target->d_parent->d_lock);
2534 * When switching names, the actual string doesn't strictly have to
2535 * be preserved in the target - because we're dropping the target
2536 * anyway. As such, we can just do a simple memcpy() to copy over
2537 * the new name before we switch.
2539 * Note that we have to be a lot more careful about getting the hash
2540 * switched - we have to switch the hash value properly even if it
2541 * then no longer matches the actual (corrupted) string of the target.
2542 * The hash value has to match the hash queue that the dentry is on..
2545 * __d_move - move a dentry
2546 * @dentry: entry to move
2547 * @target: new dentry
2549 * Update the dcache to reflect the move of a file name. Negative
2550 * dcache entries should not be moved in this way. Caller must hold
2551 * rename_lock, the i_mutex of the source and target directories,
2552 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2554 static void __d_move(struct dentry * dentry, struct dentry * target)
2556 if (!dentry->d_inode)
2557 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2559 BUG_ON(d_ancestor(dentry, target));
2560 BUG_ON(d_ancestor(target, dentry));
2562 dentry_lock_for_move(dentry, target);
2564 write_seqcount_begin(&dentry->d_seq);
2565 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2567 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2570 * Move the dentry to the target hash queue. Don't bother checking
2571 * for the same hash queue because of how unlikely it is.
2573 __d_drop(dentry);
2574 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2576 /* Unhash the target: dput() will then get rid of it */
2577 __d_drop(target);
2579 list_del(&dentry->d_u.d_child);
2580 list_del(&target->d_u.d_child);
2582 /* Switch the names.. */
2583 switch_names(dentry, target);
2584 swap(dentry->d_name.hash, target->d_name.hash);
2586 /* ... and switch the parents */
2587 if (IS_ROOT(dentry)) {
2588 dentry->d_parent = target->d_parent;
2589 target->d_parent = target;
2590 INIT_LIST_HEAD(&target->d_u.d_child);
2591 } else {
2592 swap(dentry->d_parent, target->d_parent);
2594 /* And add them back to the (new) parent lists */
2595 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2598 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2600 write_seqcount_end(&target->d_seq);
2601 write_seqcount_end(&dentry->d_seq);
2603 dentry_unlock_parents_for_move(dentry, target);
2604 spin_unlock(&target->d_lock);
2605 fsnotify_d_move(dentry);
2606 spin_unlock(&dentry->d_lock);
2610 * d_move - move a dentry
2611 * @dentry: entry to move
2612 * @target: new dentry
2614 * Update the dcache to reflect the move of a file name. Negative
2615 * dcache entries should not be moved in this way. See the locking
2616 * requirements for __d_move.
2618 void d_move(struct dentry *dentry, struct dentry *target)
2620 write_seqlock(&rename_lock);
2621 __d_move(dentry, target);
2622 write_sequnlock(&rename_lock);
2624 EXPORT_SYMBOL(d_move);
2627 * d_ancestor - search for an ancestor
2628 * @p1: ancestor dentry
2629 * @p2: child dentry
2631 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2632 * an ancestor of p2, else NULL.
2634 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2636 struct dentry *p;
2638 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2639 if (p->d_parent == p1)
2640 return p;
2642 return NULL;
2646 * This helper attempts to cope with remotely renamed directories
2648 * It assumes that the caller is already holding
2649 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2651 * Note: If ever the locking in lock_rename() changes, then please
2652 * remember to update this too...
2654 static struct dentry *__d_unalias(struct inode *inode,
2655 struct dentry *dentry, struct dentry *alias)
2657 struct mutex *m1 = NULL, *m2 = NULL;
2658 struct dentry *ret = ERR_PTR(-EBUSY);
2660 /* If alias and dentry share a parent, then no extra locks required */
2661 if (alias->d_parent == dentry->d_parent)
2662 goto out_unalias;
2664 /* See lock_rename() */
2665 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2666 goto out_err;
2667 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2668 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2669 goto out_err;
2670 m2 = &alias->d_parent->d_inode->i_mutex;
2671 out_unalias:
2672 if (likely(!d_mountpoint(alias))) {
2673 __d_move(alias, dentry);
2674 ret = alias;
2676 out_err:
2677 spin_unlock(&inode->i_lock);
2678 if (m2)
2679 mutex_unlock(m2);
2680 if (m1)
2681 mutex_unlock(m1);
2682 return ret;
2686 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2687 * named dentry in place of the dentry to be replaced.
2688 * returns with anon->d_lock held!
2690 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2692 struct dentry *dparent;
2694 dentry_lock_for_move(anon, dentry);
2696 write_seqcount_begin(&dentry->d_seq);
2697 write_seqcount_begin_nested(&anon->d_seq, DENTRY_D_LOCK_NESTED);
2699 dparent = dentry->d_parent;
2701 switch_names(dentry, anon);
2702 swap(dentry->d_name.hash, anon->d_name.hash);
2704 dentry->d_parent = dentry;
2705 list_del_init(&dentry->d_u.d_child);
2706 anon->d_parent = dparent;
2707 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
2709 write_seqcount_end(&dentry->d_seq);
2710 write_seqcount_end(&anon->d_seq);
2712 dentry_unlock_parents_for_move(anon, dentry);
2713 spin_unlock(&dentry->d_lock);
2715 /* anon->d_lock still locked, returns locked */
2719 * d_materialise_unique - introduce an inode into the tree
2720 * @dentry: candidate dentry
2721 * @inode: inode to bind to the dentry, to which aliases may be attached
2723 * Introduces an dentry into the tree, substituting an extant disconnected
2724 * root directory alias in its place if there is one. Caller must hold the
2725 * i_mutex of the parent directory.
2727 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2729 struct dentry *actual;
2731 BUG_ON(!d_unhashed(dentry));
2733 if (!inode) {
2734 actual = dentry;
2735 __d_instantiate(dentry, NULL);
2736 d_rehash(actual);
2737 goto out_nolock;
2740 spin_lock(&inode->i_lock);
2742 if (S_ISDIR(inode->i_mode)) {
2743 struct dentry *alias;
2745 /* Does an aliased dentry already exist? */
2746 alias = __d_find_alias(inode, 0);
2747 if (alias) {
2748 actual = alias;
2749 write_seqlock(&rename_lock);
2751 if (d_ancestor(alias, dentry)) {
2752 /* Check for loops */
2753 actual = ERR_PTR(-ELOOP);
2754 spin_unlock(&inode->i_lock);
2755 } else if (IS_ROOT(alias)) {
2756 /* Is this an anonymous mountpoint that we
2757 * could splice into our tree? */
2758 __d_materialise_dentry(dentry, alias);
2759 write_sequnlock(&rename_lock);
2760 __d_drop(alias);
2761 goto found;
2762 } else {
2763 /* Nope, but we must(!) avoid directory
2764 * aliasing. This drops inode->i_lock */
2765 actual = __d_unalias(inode, dentry, alias);
2767 write_sequnlock(&rename_lock);
2768 if (IS_ERR(actual)) {
2769 if (PTR_ERR(actual) == -ELOOP)
2770 pr_warn_ratelimited(
2771 "VFS: Lookup of '%s' in %s %s"
2772 " would have caused loop\n",
2773 dentry->d_name.name,
2774 inode->i_sb->s_type->name,
2775 inode->i_sb->s_id);
2776 dput(alias);
2778 goto out_nolock;
2782 /* Add a unique reference */
2783 actual = __d_instantiate_unique(dentry, inode);
2784 if (!actual)
2785 actual = dentry;
2786 else
2787 BUG_ON(!d_unhashed(actual));
2789 spin_lock(&actual->d_lock);
2790 found:
2791 _d_rehash(actual);
2792 spin_unlock(&actual->d_lock);
2793 spin_unlock(&inode->i_lock);
2794 out_nolock:
2795 if (actual == dentry) {
2796 security_d_instantiate(dentry, inode);
2797 return NULL;
2800 iput(inode);
2801 return actual;
2803 EXPORT_SYMBOL_GPL(d_materialise_unique);
2805 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2807 *buflen -= namelen;
2808 if (*buflen < 0)
2809 return -ENAMETOOLONG;
2810 *buffer -= namelen;
2811 memcpy(*buffer, str, namelen);
2812 return 0;
2816 * prepend_name - prepend a pathname in front of current buffer pointer
2817 * @buffer: buffer pointer
2818 * @buflen: allocated length of the buffer
2819 * @name: name string and length qstr structure
2821 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2822 * make sure that either the old or the new name pointer and length are
2823 * fetched. However, there may be mismatch between length and pointer.
2824 * The length cannot be trusted, we need to copy it byte-by-byte until
2825 * the length is reached or a null byte is found. It also prepends "/" at
2826 * the beginning of the name. The sequence number check at the caller will
2827 * retry it again when a d_move() does happen. So any garbage in the buffer
2828 * due to mismatched pointer and length will be discarded.
2830 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2832 const char *dname = ACCESS_ONCE(name->name);
2833 u32 dlen = ACCESS_ONCE(name->len);
2834 char *p;
2836 if (*buflen < dlen + 1)
2837 return -ENAMETOOLONG;
2838 *buflen -= dlen + 1;
2839 p = *buffer -= dlen + 1;
2840 *p++ = '/';
2841 while (dlen--) {
2842 char c = *dname++;
2843 if (!c)
2844 break;
2845 *p++ = c;
2847 return 0;
2851 * prepend_path - Prepend path string to a buffer
2852 * @path: the dentry/vfsmount to report
2853 * @root: root vfsmnt/dentry
2854 * @buffer: pointer to the end of the buffer
2855 * @buflen: pointer to buffer length
2857 * The function will first try to write out the pathname without taking any
2858 * lock other than the RCU read lock to make sure that dentries won't go away.
2859 * It only checks the sequence number of the global rename_lock as any change
2860 * in the dentry's d_seq will be preceded by changes in the rename_lock
2861 * sequence number. If the sequence number had been changed, it will restart
2862 * the whole pathname back-tracing sequence again by taking the rename_lock.
2863 * In this case, there is no need to take the RCU read lock as the recursive
2864 * parent pointer references will keep the dentry chain alive as long as no
2865 * rename operation is performed.
2867 static int prepend_path(const struct path *path,
2868 const struct path *root,
2869 char **buffer, int *buflen)
2871 struct dentry *dentry;
2872 struct vfsmount *vfsmnt;
2873 struct mount *mnt;
2874 int error = 0;
2875 unsigned seq, m_seq = 0;
2876 char *bptr;
2877 int blen;
2879 rcu_read_lock();
2880 restart_mnt:
2881 read_seqbegin_or_lock(&mount_lock, &m_seq);
2882 seq = 0;
2883 rcu_read_lock();
2884 restart:
2885 bptr = *buffer;
2886 blen = *buflen;
2887 error = 0;
2888 dentry = path->dentry;
2889 vfsmnt = path->mnt;
2890 mnt = real_mount(vfsmnt);
2891 read_seqbegin_or_lock(&rename_lock, &seq);
2892 while (dentry != root->dentry || vfsmnt != root->mnt) {
2893 struct dentry * parent;
2895 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2896 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2897 /* Global root? */
2898 if (mnt != parent) {
2899 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2900 mnt = parent;
2901 vfsmnt = &mnt->mnt;
2902 continue;
2905 * Filesystems needing to implement special "root names"
2906 * should do so with ->d_dname()
2908 if (IS_ROOT(dentry) &&
2909 (dentry->d_name.len != 1 ||
2910 dentry->d_name.name[0] != '/')) {
2911 WARN(1, "Root dentry has weird name <%.*s>\n",
2912 (int) dentry->d_name.len,
2913 dentry->d_name.name);
2915 if (!error)
2916 error = is_mounted(vfsmnt) ? 1 : 2;
2917 break;
2919 parent = dentry->d_parent;
2920 prefetch(parent);
2921 error = prepend_name(&bptr, &blen, &dentry->d_name);
2922 if (error)
2923 break;
2925 dentry = parent;
2927 if (!(seq & 1))
2928 rcu_read_unlock();
2929 if (need_seqretry(&rename_lock, seq)) {
2930 seq = 1;
2931 goto restart;
2933 done_seqretry(&rename_lock, seq);
2935 if (!(m_seq & 1))
2936 rcu_read_unlock();
2937 if (need_seqretry(&mount_lock, m_seq)) {
2938 m_seq = 1;
2939 goto restart_mnt;
2941 done_seqretry(&mount_lock, m_seq);
2943 if (error >= 0 && bptr == *buffer) {
2944 if (--blen < 0)
2945 error = -ENAMETOOLONG;
2946 else
2947 *--bptr = '/';
2949 *buffer = bptr;
2950 *buflen = blen;
2951 return error;
2955 * __d_path - return the path of a dentry
2956 * @path: the dentry/vfsmount to report
2957 * @root: root vfsmnt/dentry
2958 * @buf: buffer to return value in
2959 * @buflen: buffer length
2961 * Convert a dentry into an ASCII path name.
2963 * Returns a pointer into the buffer or an error code if the
2964 * path was too long.
2966 * "buflen" should be positive.
2968 * If the path is not reachable from the supplied root, return %NULL.
2970 char *__d_path(const struct path *path,
2971 const struct path *root,
2972 char *buf, int buflen)
2974 char *res = buf + buflen;
2975 int error;
2977 prepend(&res, &buflen, "\0", 1);
2978 error = prepend_path(path, root, &res, &buflen);
2980 if (error < 0)
2981 return ERR_PTR(error);
2982 if (error > 0)
2983 return NULL;
2984 return res;
2987 char *d_absolute_path(const struct path *path,
2988 char *buf, int buflen)
2990 struct path root = {};
2991 char *res = buf + buflen;
2992 int error;
2994 prepend(&res, &buflen, "\0", 1);
2995 error = prepend_path(path, &root, &res, &buflen);
2997 if (error > 1)
2998 error = -EINVAL;
2999 if (error < 0)
3000 return ERR_PTR(error);
3001 return res;
3005 * same as __d_path but appends "(deleted)" for unlinked files.
3007 static int path_with_deleted(const struct path *path,
3008 const struct path *root,
3009 char **buf, int *buflen)
3011 prepend(buf, buflen, "\0", 1);
3012 if (d_unlinked(path->dentry)) {
3013 int error = prepend(buf, buflen, " (deleted)", 10);
3014 if (error)
3015 return error;
3018 return prepend_path(path, root, buf, buflen);
3021 static int prepend_unreachable(char **buffer, int *buflen)
3023 return prepend(buffer, buflen, "(unreachable)", 13);
3026 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3028 unsigned seq;
3030 do {
3031 seq = read_seqcount_begin(&fs->seq);
3032 *root = fs->root;
3033 } while (read_seqcount_retry(&fs->seq, seq));
3037 * d_path - return the path of a dentry
3038 * @path: path to report
3039 * @buf: buffer to return value in
3040 * @buflen: buffer length
3042 * Convert a dentry into an ASCII path name. If the entry has been deleted
3043 * the string " (deleted)" is appended. Note that this is ambiguous.
3045 * Returns a pointer into the buffer or an error code if the path was
3046 * too long. Note: Callers should use the returned pointer, not the passed
3047 * in buffer, to use the name! The implementation often starts at an offset
3048 * into the buffer, and may leave 0 bytes at the start.
3050 * "buflen" should be positive.
3052 char *d_path(const struct path *path, char *buf, int buflen)
3054 char *res = buf + buflen;
3055 struct path root;
3056 int error;
3059 * We have various synthetic filesystems that never get mounted. On
3060 * these filesystems dentries are never used for lookup purposes, and
3061 * thus don't need to be hashed. They also don't need a name until a
3062 * user wants to identify the object in /proc/pid/fd/. The little hack
3063 * below allows us to generate a name for these objects on demand:
3065 * Some pseudo inodes are mountable. When they are mounted
3066 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3067 * and instead have d_path return the mounted path.
3069 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3070 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3071 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3073 rcu_read_lock();
3074 get_fs_root_rcu(current->fs, &root);
3075 error = path_with_deleted(path, &root, &res, &buflen);
3076 rcu_read_unlock();
3078 if (error < 0)
3079 res = ERR_PTR(error);
3080 return res;
3082 EXPORT_SYMBOL(d_path);
3085 * Helper function for dentry_operations.d_dname() members
3087 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3088 const char *fmt, ...)
3090 va_list args;
3091 char temp[64];
3092 int sz;
3094 va_start(args, fmt);
3095 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3096 va_end(args);
3098 if (sz > sizeof(temp) || sz > buflen)
3099 return ERR_PTR(-ENAMETOOLONG);
3101 buffer += buflen - sz;
3102 return memcpy(buffer, temp, sz);
3105 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3107 char *end = buffer + buflen;
3108 /* these dentries are never renamed, so d_lock is not needed */
3109 if (prepend(&end, &buflen, " (deleted)", 11) ||
3110 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3111 prepend(&end, &buflen, "/", 1))
3112 end = ERR_PTR(-ENAMETOOLONG);
3113 return end;
3117 * Write full pathname from the root of the filesystem into the buffer.
3119 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3121 struct dentry *dentry;
3122 char *end, *retval;
3123 int len, seq = 0;
3124 int error = 0;
3126 if (buflen < 2)
3127 goto Elong;
3129 rcu_read_lock();
3130 restart:
3131 dentry = d;
3132 end = buf + buflen;
3133 len = buflen;
3134 prepend(&end, &len, "\0", 1);
3135 /* Get '/' right */
3136 retval = end-1;
3137 *retval = '/';
3138 read_seqbegin_or_lock(&rename_lock, &seq);
3139 while (!IS_ROOT(dentry)) {
3140 struct dentry *parent = dentry->d_parent;
3142 prefetch(parent);
3143 error = prepend_name(&end, &len, &dentry->d_name);
3144 if (error)
3145 break;
3147 retval = end;
3148 dentry = parent;
3150 if (!(seq & 1))
3151 rcu_read_unlock();
3152 if (need_seqretry(&rename_lock, seq)) {
3153 seq = 1;
3154 goto restart;
3156 done_seqretry(&rename_lock, seq);
3157 if (error)
3158 goto Elong;
3159 return retval;
3160 Elong:
3161 return ERR_PTR(-ENAMETOOLONG);
3164 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3166 return __dentry_path(dentry, buf, buflen);
3168 EXPORT_SYMBOL(dentry_path_raw);
3170 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3172 char *p = NULL;
3173 char *retval;
3175 if (d_unlinked(dentry)) {
3176 p = buf + buflen;
3177 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3178 goto Elong;
3179 buflen++;
3181 retval = __dentry_path(dentry, buf, buflen);
3182 if (!IS_ERR(retval) && p)
3183 *p = '/'; /* restore '/' overriden with '\0' */
3184 return retval;
3185 Elong:
3186 return ERR_PTR(-ENAMETOOLONG);
3189 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3190 struct path *pwd)
3192 unsigned seq;
3194 do {
3195 seq = read_seqcount_begin(&fs->seq);
3196 *root = fs->root;
3197 *pwd = fs->pwd;
3198 } while (read_seqcount_retry(&fs->seq, seq));
3202 * NOTE! The user-level library version returns a
3203 * character pointer. The kernel system call just
3204 * returns the length of the buffer filled (which
3205 * includes the ending '\0' character), or a negative
3206 * error value. So libc would do something like
3208 * char *getcwd(char * buf, size_t size)
3210 * int retval;
3212 * retval = sys_getcwd(buf, size);
3213 * if (retval >= 0)
3214 * return buf;
3215 * errno = -retval;
3216 * return NULL;
3219 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3221 int error;
3222 struct path pwd, root;
3223 char *page = __getname();
3225 if (!page)
3226 return -ENOMEM;
3228 rcu_read_lock();
3229 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3231 error = -ENOENT;
3232 if (!d_unlinked(pwd.dentry)) {
3233 unsigned long len;
3234 char *cwd = page + PATH_MAX;
3235 int buflen = PATH_MAX;
3237 prepend(&cwd, &buflen, "\0", 1);
3238 error = prepend_path(&pwd, &root, &cwd, &buflen);
3239 rcu_read_unlock();
3241 if (error < 0)
3242 goto out;
3244 /* Unreachable from current root */
3245 if (error > 0) {
3246 error = prepend_unreachable(&cwd, &buflen);
3247 if (error)
3248 goto out;
3251 error = -ERANGE;
3252 len = PATH_MAX + page - cwd;
3253 if (len <= size) {
3254 error = len;
3255 if (copy_to_user(buf, cwd, len))
3256 error = -EFAULT;
3258 } else {
3259 rcu_read_unlock();
3262 out:
3263 __putname(page);
3264 return error;
3268 * Test whether new_dentry is a subdirectory of old_dentry.
3270 * Trivially implemented using the dcache structure
3274 * is_subdir - is new dentry a subdirectory of old_dentry
3275 * @new_dentry: new dentry
3276 * @old_dentry: old dentry
3278 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3279 * Returns 0 otherwise.
3280 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3283 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3285 int result;
3286 unsigned seq;
3288 if (new_dentry == old_dentry)
3289 return 1;
3291 do {
3292 /* for restarting inner loop in case of seq retry */
3293 seq = read_seqbegin(&rename_lock);
3295 * Need rcu_readlock to protect against the d_parent trashing
3296 * due to d_move
3298 rcu_read_lock();
3299 if (d_ancestor(old_dentry, new_dentry))
3300 result = 1;
3301 else
3302 result = 0;
3303 rcu_read_unlock();
3304 } while (read_seqretry(&rename_lock, seq));
3306 return result;
3309 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3311 struct dentry *root = data;
3312 if (dentry != root) {
3313 if (d_unhashed(dentry) || !dentry->d_inode)
3314 return D_WALK_SKIP;
3316 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3317 dentry->d_flags |= DCACHE_GENOCIDE;
3318 dentry->d_lockref.count--;
3321 return D_WALK_CONTINUE;
3324 void d_genocide(struct dentry *parent)
3326 d_walk(parent, parent, d_genocide_kill, NULL);
3329 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3331 inode_dec_link_count(inode);
3332 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3333 !hlist_unhashed(&dentry->d_alias) ||
3334 !d_unlinked(dentry));
3335 spin_lock(&dentry->d_parent->d_lock);
3336 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3337 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3338 (unsigned long long)inode->i_ino);
3339 spin_unlock(&dentry->d_lock);
3340 spin_unlock(&dentry->d_parent->d_lock);
3341 d_instantiate(dentry, inode);
3343 EXPORT_SYMBOL(d_tmpfile);
3345 static __initdata unsigned long dhash_entries;
3346 static int __init set_dhash_entries(char *str)
3348 if (!str)
3349 return 0;
3350 dhash_entries = simple_strtoul(str, &str, 0);
3351 return 1;
3353 __setup("dhash_entries=", set_dhash_entries);
3355 static void __init dcache_init_early(void)
3357 unsigned int loop;
3359 /* If hashes are distributed across NUMA nodes, defer
3360 * hash allocation until vmalloc space is available.
3362 if (hashdist)
3363 return;
3365 dentry_hashtable =
3366 alloc_large_system_hash("Dentry cache",
3367 sizeof(struct hlist_bl_head),
3368 dhash_entries,
3370 HASH_EARLY,
3371 &d_hash_shift,
3372 &d_hash_mask,
3376 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3377 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3380 static void __init dcache_init(void)
3382 unsigned int loop;
3385 * A constructor could be added for stable state like the lists,
3386 * but it is probably not worth it because of the cache nature
3387 * of the dcache.
3389 dentry_cache = KMEM_CACHE(dentry,
3390 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3392 /* Hash may have been set up in dcache_init_early */
3393 if (!hashdist)
3394 return;
3396 dentry_hashtable =
3397 alloc_large_system_hash("Dentry cache",
3398 sizeof(struct hlist_bl_head),
3399 dhash_entries,
3402 &d_hash_shift,
3403 &d_hash_mask,
3407 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3408 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3411 /* SLAB cache for __getname() consumers */
3412 struct kmem_cache *names_cachep __read_mostly;
3413 EXPORT_SYMBOL(names_cachep);
3415 EXPORT_SYMBOL(d_genocide);
3417 void __init vfs_caches_init_early(void)
3419 dcache_init_early();
3420 inode_init_early();
3423 void __init vfs_caches_init(unsigned long mempages)
3425 unsigned long reserve;
3427 /* Base hash sizes on available memory, with a reserve equal to
3428 150% of current kernel size */
3430 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3431 mempages -= reserve;
3433 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3434 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3436 dcache_init();
3437 inode_init();
3438 files_init(mempages);
3439 mnt_init();
3440 bdev_cache_init();
3441 chrdev_init();