Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux/fpc-iii.git] / fs / exec.c
blob3d78fccdd723e21119b6c93c70e2564a11d0e6a3
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
63 #include <trace/events/task.h>
64 #include "internal.h"
66 #include <trace/events/sched.h>
68 int suid_dumpable = 0;
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
73 void __register_binfmt(struct linux_binfmt * fmt, int insert)
75 BUG_ON(!fmt);
76 if (WARN_ON(!fmt->load_binary))
77 return;
78 write_lock(&binfmt_lock);
79 insert ? list_add(&fmt->lh, &formats) :
80 list_add_tail(&fmt->lh, &formats);
81 write_unlock(&binfmt_lock);
84 EXPORT_SYMBOL(__register_binfmt);
86 void unregister_binfmt(struct linux_binfmt * fmt)
88 write_lock(&binfmt_lock);
89 list_del(&fmt->lh);
90 write_unlock(&binfmt_lock);
93 EXPORT_SYMBOL(unregister_binfmt);
95 static inline void put_binfmt(struct linux_binfmt * fmt)
97 module_put(fmt->module);
101 * Note that a shared library must be both readable and executable due to
102 * security reasons.
104 * Also note that we take the address to load from from the file itself.
106 SYSCALL_DEFINE1(uselib, const char __user *, library)
108 struct linux_binfmt *fmt;
109 struct file *file;
110 struct filename *tmp = getname(library);
111 int error = PTR_ERR(tmp);
112 static const struct open_flags uselib_flags = {
113 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
114 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
115 .intent = LOOKUP_OPEN,
116 .lookup_flags = LOOKUP_FOLLOW,
119 if (IS_ERR(tmp))
120 goto out;
122 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
123 putname(tmp);
124 error = PTR_ERR(file);
125 if (IS_ERR(file))
126 goto out;
128 error = -EINVAL;
129 if (!S_ISREG(file_inode(file)->i_mode))
130 goto exit;
132 error = -EACCES;
133 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
134 goto exit;
136 fsnotify_open(file);
138 error = -ENOEXEC;
140 read_lock(&binfmt_lock);
141 list_for_each_entry(fmt, &formats, lh) {
142 if (!fmt->load_shlib)
143 continue;
144 if (!try_module_get(fmt->module))
145 continue;
146 read_unlock(&binfmt_lock);
147 error = fmt->load_shlib(file);
148 read_lock(&binfmt_lock);
149 put_binfmt(fmt);
150 if (error != -ENOEXEC)
151 break;
153 read_unlock(&binfmt_lock);
154 exit:
155 fput(file);
156 out:
157 return error;
160 #ifdef CONFIG_MMU
162 * The nascent bprm->mm is not visible until exec_mmap() but it can
163 * use a lot of memory, account these pages in current->mm temporary
164 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
165 * change the counter back via acct_arg_size(0).
167 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
169 struct mm_struct *mm = current->mm;
170 long diff = (long)(pages - bprm->vma_pages);
172 if (!mm || !diff)
173 return;
175 bprm->vma_pages = pages;
176 add_mm_counter(mm, MM_ANONPAGES, diff);
179 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
180 int write)
182 struct page *page;
183 int ret;
185 #ifdef CONFIG_STACK_GROWSUP
186 if (write) {
187 ret = expand_downwards(bprm->vma, pos);
188 if (ret < 0)
189 return NULL;
191 #endif
192 ret = get_user_pages(current, bprm->mm, pos,
193 1, write, 1, &page, NULL);
194 if (ret <= 0)
195 return NULL;
197 if (write) {
198 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
199 struct rlimit *rlim;
201 acct_arg_size(bprm, size / PAGE_SIZE);
204 * We've historically supported up to 32 pages (ARG_MAX)
205 * of argument strings even with small stacks
207 if (size <= ARG_MAX)
208 return page;
211 * Limit to 1/4-th the stack size for the argv+env strings.
212 * This ensures that:
213 * - the remaining binfmt code will not run out of stack space,
214 * - the program will have a reasonable amount of stack left
215 * to work from.
217 rlim = current->signal->rlim;
218 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
219 put_page(page);
220 return NULL;
224 return page;
227 static void put_arg_page(struct page *page)
229 put_page(page);
232 static void free_arg_page(struct linux_binprm *bprm, int i)
236 static void free_arg_pages(struct linux_binprm *bprm)
240 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
241 struct page *page)
243 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
246 static int __bprm_mm_init(struct linux_binprm *bprm)
248 int err;
249 struct vm_area_struct *vma = NULL;
250 struct mm_struct *mm = bprm->mm;
252 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
253 if (!vma)
254 return -ENOMEM;
256 down_write(&mm->mmap_sem);
257 vma->vm_mm = mm;
260 * Place the stack at the largest stack address the architecture
261 * supports. Later, we'll move this to an appropriate place. We don't
262 * use STACK_TOP because that can depend on attributes which aren't
263 * configured yet.
265 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
266 vma->vm_end = STACK_TOP_MAX;
267 vma->vm_start = vma->vm_end - PAGE_SIZE;
268 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
269 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
270 INIT_LIST_HEAD(&vma->anon_vma_chain);
272 err = insert_vm_struct(mm, vma);
273 if (err)
274 goto err;
276 mm->stack_vm = mm->total_vm = 1;
277 up_write(&mm->mmap_sem);
278 bprm->p = vma->vm_end - sizeof(void *);
279 return 0;
280 err:
281 up_write(&mm->mmap_sem);
282 bprm->vma = NULL;
283 kmem_cache_free(vm_area_cachep, vma);
284 return err;
287 static bool valid_arg_len(struct linux_binprm *bprm, long len)
289 return len <= MAX_ARG_STRLEN;
292 #else
294 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
298 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
299 int write)
301 struct page *page;
303 page = bprm->page[pos / PAGE_SIZE];
304 if (!page && write) {
305 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
306 if (!page)
307 return NULL;
308 bprm->page[pos / PAGE_SIZE] = page;
311 return page;
314 static void put_arg_page(struct page *page)
318 static void free_arg_page(struct linux_binprm *bprm, int i)
320 if (bprm->page[i]) {
321 __free_page(bprm->page[i]);
322 bprm->page[i] = NULL;
326 static void free_arg_pages(struct linux_binprm *bprm)
328 int i;
330 for (i = 0; i < MAX_ARG_PAGES; i++)
331 free_arg_page(bprm, i);
334 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
335 struct page *page)
339 static int __bprm_mm_init(struct linux_binprm *bprm)
341 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
342 return 0;
345 static bool valid_arg_len(struct linux_binprm *bprm, long len)
347 return len <= bprm->p;
350 #endif /* CONFIG_MMU */
353 * Create a new mm_struct and populate it with a temporary stack
354 * vm_area_struct. We don't have enough context at this point to set the stack
355 * flags, permissions, and offset, so we use temporary values. We'll update
356 * them later in setup_arg_pages().
358 static int bprm_mm_init(struct linux_binprm *bprm)
360 int err;
361 struct mm_struct *mm = NULL;
363 bprm->mm = mm = mm_alloc();
364 err = -ENOMEM;
365 if (!mm)
366 goto err;
368 err = init_new_context(current, mm);
369 if (err)
370 goto err;
372 err = __bprm_mm_init(bprm);
373 if (err)
374 goto err;
376 return 0;
378 err:
379 if (mm) {
380 bprm->mm = NULL;
381 mmdrop(mm);
384 return err;
387 struct user_arg_ptr {
388 #ifdef CONFIG_COMPAT
389 bool is_compat;
390 #endif
391 union {
392 const char __user *const __user *native;
393 #ifdef CONFIG_COMPAT
394 const compat_uptr_t __user *compat;
395 #endif
396 } ptr;
399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
401 const char __user *native;
403 #ifdef CONFIG_COMPAT
404 if (unlikely(argv.is_compat)) {
405 compat_uptr_t compat;
407 if (get_user(compat, argv.ptr.compat + nr))
408 return ERR_PTR(-EFAULT);
410 return compat_ptr(compat);
412 #endif
414 if (get_user(native, argv.ptr.native + nr))
415 return ERR_PTR(-EFAULT);
417 return native;
421 * count() counts the number of strings in array ARGV.
423 static int count(struct user_arg_ptr argv, int max)
425 int i = 0;
427 if (argv.ptr.native != NULL) {
428 for (;;) {
429 const char __user *p = get_user_arg_ptr(argv, i);
431 if (!p)
432 break;
434 if (IS_ERR(p))
435 return -EFAULT;
437 if (i >= max)
438 return -E2BIG;
439 ++i;
441 if (fatal_signal_pending(current))
442 return -ERESTARTNOHAND;
443 cond_resched();
446 return i;
450 * 'copy_strings()' copies argument/environment strings from the old
451 * processes's memory to the new process's stack. The call to get_user_pages()
452 * ensures the destination page is created and not swapped out.
454 static int copy_strings(int argc, struct user_arg_ptr argv,
455 struct linux_binprm *bprm)
457 struct page *kmapped_page = NULL;
458 char *kaddr = NULL;
459 unsigned long kpos = 0;
460 int ret;
462 while (argc-- > 0) {
463 const char __user *str;
464 int len;
465 unsigned long pos;
467 ret = -EFAULT;
468 str = get_user_arg_ptr(argv, argc);
469 if (IS_ERR(str))
470 goto out;
472 len = strnlen_user(str, MAX_ARG_STRLEN);
473 if (!len)
474 goto out;
476 ret = -E2BIG;
477 if (!valid_arg_len(bprm, len))
478 goto out;
480 /* We're going to work our way backwords. */
481 pos = bprm->p;
482 str += len;
483 bprm->p -= len;
485 while (len > 0) {
486 int offset, bytes_to_copy;
488 if (fatal_signal_pending(current)) {
489 ret = -ERESTARTNOHAND;
490 goto out;
492 cond_resched();
494 offset = pos % PAGE_SIZE;
495 if (offset == 0)
496 offset = PAGE_SIZE;
498 bytes_to_copy = offset;
499 if (bytes_to_copy > len)
500 bytes_to_copy = len;
502 offset -= bytes_to_copy;
503 pos -= bytes_to_copy;
504 str -= bytes_to_copy;
505 len -= bytes_to_copy;
507 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
508 struct page *page;
510 page = get_arg_page(bprm, pos, 1);
511 if (!page) {
512 ret = -E2BIG;
513 goto out;
516 if (kmapped_page) {
517 flush_kernel_dcache_page(kmapped_page);
518 kunmap(kmapped_page);
519 put_arg_page(kmapped_page);
521 kmapped_page = page;
522 kaddr = kmap(kmapped_page);
523 kpos = pos & PAGE_MASK;
524 flush_arg_page(bprm, kpos, kmapped_page);
526 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
527 ret = -EFAULT;
528 goto out;
532 ret = 0;
533 out:
534 if (kmapped_page) {
535 flush_kernel_dcache_page(kmapped_page);
536 kunmap(kmapped_page);
537 put_arg_page(kmapped_page);
539 return ret;
543 * Like copy_strings, but get argv and its values from kernel memory.
545 int copy_strings_kernel(int argc, const char *const *__argv,
546 struct linux_binprm *bprm)
548 int r;
549 mm_segment_t oldfs = get_fs();
550 struct user_arg_ptr argv = {
551 .ptr.native = (const char __user *const __user *)__argv,
554 set_fs(KERNEL_DS);
555 r = copy_strings(argc, argv, bprm);
556 set_fs(oldfs);
558 return r;
560 EXPORT_SYMBOL(copy_strings_kernel);
562 #ifdef CONFIG_MMU
565 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
566 * the binfmt code determines where the new stack should reside, we shift it to
567 * its final location. The process proceeds as follows:
569 * 1) Use shift to calculate the new vma endpoints.
570 * 2) Extend vma to cover both the old and new ranges. This ensures the
571 * arguments passed to subsequent functions are consistent.
572 * 3) Move vma's page tables to the new range.
573 * 4) Free up any cleared pgd range.
574 * 5) Shrink the vma to cover only the new range.
576 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
578 struct mm_struct *mm = vma->vm_mm;
579 unsigned long old_start = vma->vm_start;
580 unsigned long old_end = vma->vm_end;
581 unsigned long length = old_end - old_start;
582 unsigned long new_start = old_start - shift;
583 unsigned long new_end = old_end - shift;
584 struct mmu_gather tlb;
586 BUG_ON(new_start > new_end);
589 * ensure there are no vmas between where we want to go
590 * and where we are
592 if (vma != find_vma(mm, new_start))
593 return -EFAULT;
596 * cover the whole range: [new_start, old_end)
598 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
599 return -ENOMEM;
602 * move the page tables downwards, on failure we rely on
603 * process cleanup to remove whatever mess we made.
605 if (length != move_page_tables(vma, old_start,
606 vma, new_start, length, false))
607 return -ENOMEM;
609 lru_add_drain();
610 tlb_gather_mmu(&tlb, mm, old_start, old_end);
611 if (new_end > old_start) {
613 * when the old and new regions overlap clear from new_end.
615 free_pgd_range(&tlb, new_end, old_end, new_end,
616 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
617 } else {
619 * otherwise, clean from old_start; this is done to not touch
620 * the address space in [new_end, old_start) some architectures
621 * have constraints on va-space that make this illegal (IA64) -
622 * for the others its just a little faster.
624 free_pgd_range(&tlb, old_start, old_end, new_end,
625 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
627 tlb_finish_mmu(&tlb, old_start, old_end);
630 * Shrink the vma to just the new range. Always succeeds.
632 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
634 return 0;
638 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
639 * the stack is optionally relocated, and some extra space is added.
641 int setup_arg_pages(struct linux_binprm *bprm,
642 unsigned long stack_top,
643 int executable_stack)
645 unsigned long ret;
646 unsigned long stack_shift;
647 struct mm_struct *mm = current->mm;
648 struct vm_area_struct *vma = bprm->vma;
649 struct vm_area_struct *prev = NULL;
650 unsigned long vm_flags;
651 unsigned long stack_base;
652 unsigned long stack_size;
653 unsigned long stack_expand;
654 unsigned long rlim_stack;
656 #ifdef CONFIG_STACK_GROWSUP
657 /* Limit stack size to 1GB */
658 stack_base = rlimit_max(RLIMIT_STACK);
659 if (stack_base > (1 << 30))
660 stack_base = 1 << 30;
662 /* Make sure we didn't let the argument array grow too large. */
663 if (vma->vm_end - vma->vm_start > stack_base)
664 return -ENOMEM;
666 stack_base = PAGE_ALIGN(stack_top - stack_base);
668 stack_shift = vma->vm_start - stack_base;
669 mm->arg_start = bprm->p - stack_shift;
670 bprm->p = vma->vm_end - stack_shift;
671 #else
672 stack_top = arch_align_stack(stack_top);
673 stack_top = PAGE_ALIGN(stack_top);
675 if (unlikely(stack_top < mmap_min_addr) ||
676 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
677 return -ENOMEM;
679 stack_shift = vma->vm_end - stack_top;
681 bprm->p -= stack_shift;
682 mm->arg_start = bprm->p;
683 #endif
685 if (bprm->loader)
686 bprm->loader -= stack_shift;
687 bprm->exec -= stack_shift;
689 down_write(&mm->mmap_sem);
690 vm_flags = VM_STACK_FLAGS;
693 * Adjust stack execute permissions; explicitly enable for
694 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
695 * (arch default) otherwise.
697 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
698 vm_flags |= VM_EXEC;
699 else if (executable_stack == EXSTACK_DISABLE_X)
700 vm_flags &= ~VM_EXEC;
701 vm_flags |= mm->def_flags;
702 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
704 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
705 vm_flags);
706 if (ret)
707 goto out_unlock;
708 BUG_ON(prev != vma);
710 /* Move stack pages down in memory. */
711 if (stack_shift) {
712 ret = shift_arg_pages(vma, stack_shift);
713 if (ret)
714 goto out_unlock;
717 /* mprotect_fixup is overkill to remove the temporary stack flags */
718 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
720 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
721 stack_size = vma->vm_end - vma->vm_start;
723 * Align this down to a page boundary as expand_stack
724 * will align it up.
726 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
727 #ifdef CONFIG_STACK_GROWSUP
728 if (stack_size + stack_expand > rlim_stack)
729 stack_base = vma->vm_start + rlim_stack;
730 else
731 stack_base = vma->vm_end + stack_expand;
732 #else
733 if (stack_size + stack_expand > rlim_stack)
734 stack_base = vma->vm_end - rlim_stack;
735 else
736 stack_base = vma->vm_start - stack_expand;
737 #endif
738 current->mm->start_stack = bprm->p;
739 ret = expand_stack(vma, stack_base);
740 if (ret)
741 ret = -EFAULT;
743 out_unlock:
744 up_write(&mm->mmap_sem);
745 return ret;
747 EXPORT_SYMBOL(setup_arg_pages);
749 #endif /* CONFIG_MMU */
751 static struct file *do_open_exec(struct filename *name)
753 struct file *file;
754 int err;
755 static const struct open_flags open_exec_flags = {
756 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
757 .acc_mode = MAY_EXEC | MAY_OPEN,
758 .intent = LOOKUP_OPEN,
759 .lookup_flags = LOOKUP_FOLLOW,
762 file = do_filp_open(AT_FDCWD, name, &open_exec_flags);
763 if (IS_ERR(file))
764 goto out;
766 err = -EACCES;
767 if (!S_ISREG(file_inode(file)->i_mode))
768 goto exit;
770 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
771 goto exit;
773 fsnotify_open(file);
775 err = deny_write_access(file);
776 if (err)
777 goto exit;
779 out:
780 return file;
782 exit:
783 fput(file);
784 return ERR_PTR(err);
787 struct file *open_exec(const char *name)
789 struct filename tmp = { .name = name };
790 return do_open_exec(&tmp);
792 EXPORT_SYMBOL(open_exec);
794 int kernel_read(struct file *file, loff_t offset,
795 char *addr, unsigned long count)
797 mm_segment_t old_fs;
798 loff_t pos = offset;
799 int result;
801 old_fs = get_fs();
802 set_fs(get_ds());
803 /* The cast to a user pointer is valid due to the set_fs() */
804 result = vfs_read(file, (void __user *)addr, count, &pos);
805 set_fs(old_fs);
806 return result;
809 EXPORT_SYMBOL(kernel_read);
811 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
813 ssize_t res = file->f_op->read(file, (void __user *)addr, len, &pos);
814 if (res > 0)
815 flush_icache_range(addr, addr + len);
816 return res;
818 EXPORT_SYMBOL(read_code);
820 static int exec_mmap(struct mm_struct *mm)
822 struct task_struct *tsk;
823 struct mm_struct * old_mm, *active_mm;
825 /* Notify parent that we're no longer interested in the old VM */
826 tsk = current;
827 old_mm = current->mm;
828 mm_release(tsk, old_mm);
830 if (old_mm) {
831 sync_mm_rss(old_mm);
833 * Make sure that if there is a core dump in progress
834 * for the old mm, we get out and die instead of going
835 * through with the exec. We must hold mmap_sem around
836 * checking core_state and changing tsk->mm.
838 down_read(&old_mm->mmap_sem);
839 if (unlikely(old_mm->core_state)) {
840 up_read(&old_mm->mmap_sem);
841 return -EINTR;
844 task_lock(tsk);
845 active_mm = tsk->active_mm;
846 tsk->mm = mm;
847 tsk->active_mm = mm;
848 activate_mm(active_mm, mm);
849 task_unlock(tsk);
850 if (old_mm) {
851 up_read(&old_mm->mmap_sem);
852 BUG_ON(active_mm != old_mm);
853 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
854 mm_update_next_owner(old_mm);
855 mmput(old_mm);
856 return 0;
858 mmdrop(active_mm);
859 return 0;
863 * This function makes sure the current process has its own signal table,
864 * so that flush_signal_handlers can later reset the handlers without
865 * disturbing other processes. (Other processes might share the signal
866 * table via the CLONE_SIGHAND option to clone().)
868 static int de_thread(struct task_struct *tsk)
870 struct signal_struct *sig = tsk->signal;
871 struct sighand_struct *oldsighand = tsk->sighand;
872 spinlock_t *lock = &oldsighand->siglock;
874 if (thread_group_empty(tsk))
875 goto no_thread_group;
878 * Kill all other threads in the thread group.
880 spin_lock_irq(lock);
881 if (signal_group_exit(sig)) {
883 * Another group action in progress, just
884 * return so that the signal is processed.
886 spin_unlock_irq(lock);
887 return -EAGAIN;
890 sig->group_exit_task = tsk;
891 sig->notify_count = zap_other_threads(tsk);
892 if (!thread_group_leader(tsk))
893 sig->notify_count--;
895 while (sig->notify_count) {
896 __set_current_state(TASK_KILLABLE);
897 spin_unlock_irq(lock);
898 schedule();
899 if (unlikely(__fatal_signal_pending(tsk)))
900 goto killed;
901 spin_lock_irq(lock);
903 spin_unlock_irq(lock);
906 * At this point all other threads have exited, all we have to
907 * do is to wait for the thread group leader to become inactive,
908 * and to assume its PID:
910 if (!thread_group_leader(tsk)) {
911 struct task_struct *leader = tsk->group_leader;
913 sig->notify_count = -1; /* for exit_notify() */
914 for (;;) {
915 threadgroup_change_begin(tsk);
916 write_lock_irq(&tasklist_lock);
917 if (likely(leader->exit_state))
918 break;
919 __set_current_state(TASK_KILLABLE);
920 write_unlock_irq(&tasklist_lock);
921 threadgroup_change_end(tsk);
922 schedule();
923 if (unlikely(__fatal_signal_pending(tsk)))
924 goto killed;
928 * The only record we have of the real-time age of a
929 * process, regardless of execs it's done, is start_time.
930 * All the past CPU time is accumulated in signal_struct
931 * from sister threads now dead. But in this non-leader
932 * exec, nothing survives from the original leader thread,
933 * whose birth marks the true age of this process now.
934 * When we take on its identity by switching to its PID, we
935 * also take its birthdate (always earlier than our own).
937 tsk->start_time = leader->start_time;
938 tsk->real_start_time = leader->real_start_time;
940 BUG_ON(!same_thread_group(leader, tsk));
941 BUG_ON(has_group_leader_pid(tsk));
943 * An exec() starts a new thread group with the
944 * TGID of the previous thread group. Rehash the
945 * two threads with a switched PID, and release
946 * the former thread group leader:
949 /* Become a process group leader with the old leader's pid.
950 * The old leader becomes a thread of the this thread group.
951 * Note: The old leader also uses this pid until release_task
952 * is called. Odd but simple and correct.
954 tsk->pid = leader->pid;
955 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
956 transfer_pid(leader, tsk, PIDTYPE_PGID);
957 transfer_pid(leader, tsk, PIDTYPE_SID);
959 list_replace_rcu(&leader->tasks, &tsk->tasks);
960 list_replace_init(&leader->sibling, &tsk->sibling);
962 tsk->group_leader = tsk;
963 leader->group_leader = tsk;
965 tsk->exit_signal = SIGCHLD;
966 leader->exit_signal = -1;
968 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
969 leader->exit_state = EXIT_DEAD;
972 * We are going to release_task()->ptrace_unlink() silently,
973 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
974 * the tracer wont't block again waiting for this thread.
976 if (unlikely(leader->ptrace))
977 __wake_up_parent(leader, leader->parent);
978 write_unlock_irq(&tasklist_lock);
979 threadgroup_change_end(tsk);
981 release_task(leader);
984 sig->group_exit_task = NULL;
985 sig->notify_count = 0;
987 no_thread_group:
988 /* we have changed execution domain */
989 tsk->exit_signal = SIGCHLD;
991 exit_itimers(sig);
992 flush_itimer_signals();
994 if (atomic_read(&oldsighand->count) != 1) {
995 struct sighand_struct *newsighand;
997 * This ->sighand is shared with the CLONE_SIGHAND
998 * but not CLONE_THREAD task, switch to the new one.
1000 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1001 if (!newsighand)
1002 return -ENOMEM;
1004 atomic_set(&newsighand->count, 1);
1005 memcpy(newsighand->action, oldsighand->action,
1006 sizeof(newsighand->action));
1008 write_lock_irq(&tasklist_lock);
1009 spin_lock(&oldsighand->siglock);
1010 rcu_assign_pointer(tsk->sighand, newsighand);
1011 spin_unlock(&oldsighand->siglock);
1012 write_unlock_irq(&tasklist_lock);
1014 __cleanup_sighand(oldsighand);
1017 BUG_ON(!thread_group_leader(tsk));
1018 return 0;
1020 killed:
1021 /* protects against exit_notify() and __exit_signal() */
1022 read_lock(&tasklist_lock);
1023 sig->group_exit_task = NULL;
1024 sig->notify_count = 0;
1025 read_unlock(&tasklist_lock);
1026 return -EAGAIN;
1029 char *get_task_comm(char *buf, struct task_struct *tsk)
1031 /* buf must be at least sizeof(tsk->comm) in size */
1032 task_lock(tsk);
1033 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1034 task_unlock(tsk);
1035 return buf;
1037 EXPORT_SYMBOL_GPL(get_task_comm);
1040 * These functions flushes out all traces of the currently running executable
1041 * so that a new one can be started
1044 void set_task_comm(struct task_struct *tsk, char *buf)
1046 task_lock(tsk);
1047 trace_task_rename(tsk, buf);
1048 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1049 task_unlock(tsk);
1050 perf_event_comm(tsk);
1053 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1055 int i, ch;
1057 /* Copies the binary name from after last slash */
1058 for (i = 0; (ch = *(fn++)) != '\0';) {
1059 if (ch == '/')
1060 i = 0; /* overwrite what we wrote */
1061 else
1062 if (i < len - 1)
1063 tcomm[i++] = ch;
1065 tcomm[i] = '\0';
1068 int flush_old_exec(struct linux_binprm * bprm)
1070 int retval;
1073 * Make sure we have a private signal table and that
1074 * we are unassociated from the previous thread group.
1076 retval = de_thread(current);
1077 if (retval)
1078 goto out;
1080 set_mm_exe_file(bprm->mm, bprm->file);
1082 filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1084 * Release all of the old mmap stuff
1086 acct_arg_size(bprm, 0);
1087 retval = exec_mmap(bprm->mm);
1088 if (retval)
1089 goto out;
1091 bprm->mm = NULL; /* We're using it now */
1093 set_fs(USER_DS);
1094 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1095 PF_NOFREEZE | PF_NO_SETAFFINITY);
1096 flush_thread();
1097 current->personality &= ~bprm->per_clear;
1099 return 0;
1101 out:
1102 return retval;
1104 EXPORT_SYMBOL(flush_old_exec);
1106 void would_dump(struct linux_binprm *bprm, struct file *file)
1108 if (inode_permission(file_inode(file), MAY_READ) < 0)
1109 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1111 EXPORT_SYMBOL(would_dump);
1113 void setup_new_exec(struct linux_binprm * bprm)
1115 arch_pick_mmap_layout(current->mm);
1117 /* This is the point of no return */
1118 current->sas_ss_sp = current->sas_ss_size = 0;
1120 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1121 set_dumpable(current->mm, SUID_DUMP_USER);
1122 else
1123 set_dumpable(current->mm, suid_dumpable);
1125 set_task_comm(current, bprm->tcomm);
1127 /* Set the new mm task size. We have to do that late because it may
1128 * depend on TIF_32BIT which is only updated in flush_thread() on
1129 * some architectures like powerpc
1131 current->mm->task_size = TASK_SIZE;
1133 /* install the new credentials */
1134 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1135 !gid_eq(bprm->cred->gid, current_egid())) {
1136 current->pdeath_signal = 0;
1137 } else {
1138 would_dump(bprm, bprm->file);
1139 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1140 set_dumpable(current->mm, suid_dumpable);
1143 /* An exec changes our domain. We are no longer part of the thread
1144 group */
1145 current->self_exec_id++;
1146 flush_signal_handlers(current, 0);
1147 do_close_on_exec(current->files);
1149 EXPORT_SYMBOL(setup_new_exec);
1152 * Prepare credentials and lock ->cred_guard_mutex.
1153 * install_exec_creds() commits the new creds and drops the lock.
1154 * Or, if exec fails before, free_bprm() should release ->cred and
1155 * and unlock.
1157 int prepare_bprm_creds(struct linux_binprm *bprm)
1159 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1160 return -ERESTARTNOINTR;
1162 bprm->cred = prepare_exec_creds();
1163 if (likely(bprm->cred))
1164 return 0;
1166 mutex_unlock(&current->signal->cred_guard_mutex);
1167 return -ENOMEM;
1170 static void free_bprm(struct linux_binprm *bprm)
1172 free_arg_pages(bprm);
1173 if (bprm->cred) {
1174 mutex_unlock(&current->signal->cred_guard_mutex);
1175 abort_creds(bprm->cred);
1177 if (bprm->file) {
1178 allow_write_access(bprm->file);
1179 fput(bprm->file);
1181 /* If a binfmt changed the interp, free it. */
1182 if (bprm->interp != bprm->filename)
1183 kfree(bprm->interp);
1184 kfree(bprm);
1187 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1189 /* If a binfmt changed the interp, free it first. */
1190 if (bprm->interp != bprm->filename)
1191 kfree(bprm->interp);
1192 bprm->interp = kstrdup(interp, GFP_KERNEL);
1193 if (!bprm->interp)
1194 return -ENOMEM;
1195 return 0;
1197 EXPORT_SYMBOL(bprm_change_interp);
1200 * install the new credentials for this executable
1202 void install_exec_creds(struct linux_binprm *bprm)
1204 security_bprm_committing_creds(bprm);
1206 commit_creds(bprm->cred);
1207 bprm->cred = NULL;
1210 * Disable monitoring for regular users
1211 * when executing setuid binaries. Must
1212 * wait until new credentials are committed
1213 * by commit_creds() above
1215 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1216 perf_event_exit_task(current);
1218 * cred_guard_mutex must be held at least to this point to prevent
1219 * ptrace_attach() from altering our determination of the task's
1220 * credentials; any time after this it may be unlocked.
1222 security_bprm_committed_creds(bprm);
1223 mutex_unlock(&current->signal->cred_guard_mutex);
1225 EXPORT_SYMBOL(install_exec_creds);
1228 * determine how safe it is to execute the proposed program
1229 * - the caller must hold ->cred_guard_mutex to protect against
1230 * PTRACE_ATTACH
1232 static void check_unsafe_exec(struct linux_binprm *bprm)
1234 struct task_struct *p = current, *t;
1235 unsigned n_fs;
1237 if (p->ptrace) {
1238 if (p->ptrace & PT_PTRACE_CAP)
1239 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1240 else
1241 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1245 * This isn't strictly necessary, but it makes it harder for LSMs to
1246 * mess up.
1248 if (current->no_new_privs)
1249 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1251 t = p;
1252 n_fs = 1;
1253 spin_lock(&p->fs->lock);
1254 rcu_read_lock();
1255 while_each_thread(p, t) {
1256 if (t->fs == p->fs)
1257 n_fs++;
1259 rcu_read_unlock();
1261 if (p->fs->users > n_fs)
1262 bprm->unsafe |= LSM_UNSAFE_SHARE;
1263 else
1264 p->fs->in_exec = 1;
1265 spin_unlock(&p->fs->lock);
1269 * Fill the binprm structure from the inode.
1270 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1272 * This may be called multiple times for binary chains (scripts for example).
1274 int prepare_binprm(struct linux_binprm *bprm)
1276 struct inode *inode = file_inode(bprm->file);
1277 umode_t mode = inode->i_mode;
1278 int retval;
1281 /* clear any previous set[ug]id data from a previous binary */
1282 bprm->cred->euid = current_euid();
1283 bprm->cred->egid = current_egid();
1285 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1286 !current->no_new_privs &&
1287 kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) &&
1288 kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) {
1289 /* Set-uid? */
1290 if (mode & S_ISUID) {
1291 bprm->per_clear |= PER_CLEAR_ON_SETID;
1292 bprm->cred->euid = inode->i_uid;
1295 /* Set-gid? */
1297 * If setgid is set but no group execute bit then this
1298 * is a candidate for mandatory locking, not a setgid
1299 * executable.
1301 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1302 bprm->per_clear |= PER_CLEAR_ON_SETID;
1303 bprm->cred->egid = inode->i_gid;
1307 /* fill in binprm security blob */
1308 retval = security_bprm_set_creds(bprm);
1309 if (retval)
1310 return retval;
1311 bprm->cred_prepared = 1;
1313 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1314 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1317 EXPORT_SYMBOL(prepare_binprm);
1320 * Arguments are '\0' separated strings found at the location bprm->p
1321 * points to; chop off the first by relocating brpm->p to right after
1322 * the first '\0' encountered.
1324 int remove_arg_zero(struct linux_binprm *bprm)
1326 int ret = 0;
1327 unsigned long offset;
1328 char *kaddr;
1329 struct page *page;
1331 if (!bprm->argc)
1332 return 0;
1334 do {
1335 offset = bprm->p & ~PAGE_MASK;
1336 page = get_arg_page(bprm, bprm->p, 0);
1337 if (!page) {
1338 ret = -EFAULT;
1339 goto out;
1341 kaddr = kmap_atomic(page);
1343 for (; offset < PAGE_SIZE && kaddr[offset];
1344 offset++, bprm->p++)
1347 kunmap_atomic(kaddr);
1348 put_arg_page(page);
1350 if (offset == PAGE_SIZE)
1351 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1352 } while (offset == PAGE_SIZE);
1354 bprm->p++;
1355 bprm->argc--;
1356 ret = 0;
1358 out:
1359 return ret;
1361 EXPORT_SYMBOL(remove_arg_zero);
1363 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1365 * cycle the list of binary formats handler, until one recognizes the image
1367 int search_binary_handler(struct linux_binprm *bprm)
1369 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1370 struct linux_binfmt *fmt;
1371 int retval;
1373 /* This allows 4 levels of binfmt rewrites before failing hard. */
1374 if (bprm->recursion_depth > 5)
1375 return -ELOOP;
1377 retval = security_bprm_check(bprm);
1378 if (retval)
1379 return retval;
1381 retval = -ENOENT;
1382 retry:
1383 read_lock(&binfmt_lock);
1384 list_for_each_entry(fmt, &formats, lh) {
1385 if (!try_module_get(fmt->module))
1386 continue;
1387 read_unlock(&binfmt_lock);
1388 bprm->recursion_depth++;
1389 retval = fmt->load_binary(bprm);
1390 bprm->recursion_depth--;
1391 if (retval >= 0 || retval != -ENOEXEC ||
1392 bprm->mm == NULL || bprm->file == NULL) {
1393 put_binfmt(fmt);
1394 return retval;
1396 read_lock(&binfmt_lock);
1397 put_binfmt(fmt);
1399 read_unlock(&binfmt_lock);
1401 if (need_retry && retval == -ENOEXEC) {
1402 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1403 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1404 return retval;
1405 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1406 return retval;
1407 need_retry = false;
1408 goto retry;
1411 return retval;
1413 EXPORT_SYMBOL(search_binary_handler);
1415 static int exec_binprm(struct linux_binprm *bprm)
1417 pid_t old_pid, old_vpid;
1418 int ret;
1420 /* Need to fetch pid before load_binary changes it */
1421 old_pid = current->pid;
1422 rcu_read_lock();
1423 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1424 rcu_read_unlock();
1426 ret = search_binary_handler(bprm);
1427 if (ret >= 0) {
1428 audit_bprm(bprm);
1429 trace_sched_process_exec(current, old_pid, bprm);
1430 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1431 proc_exec_connector(current);
1434 return ret;
1438 * sys_execve() executes a new program.
1440 static int do_execve_common(struct filename *filename,
1441 struct user_arg_ptr argv,
1442 struct user_arg_ptr envp)
1444 struct linux_binprm *bprm;
1445 struct file *file;
1446 struct files_struct *displaced;
1447 int retval;
1449 if (IS_ERR(filename))
1450 return PTR_ERR(filename);
1453 * We move the actual failure in case of RLIMIT_NPROC excess from
1454 * set*uid() to execve() because too many poorly written programs
1455 * don't check setuid() return code. Here we additionally recheck
1456 * whether NPROC limit is still exceeded.
1458 if ((current->flags & PF_NPROC_EXCEEDED) &&
1459 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1460 retval = -EAGAIN;
1461 goto out_ret;
1464 /* We're below the limit (still or again), so we don't want to make
1465 * further execve() calls fail. */
1466 current->flags &= ~PF_NPROC_EXCEEDED;
1468 retval = unshare_files(&displaced);
1469 if (retval)
1470 goto out_ret;
1472 retval = -ENOMEM;
1473 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1474 if (!bprm)
1475 goto out_files;
1477 retval = prepare_bprm_creds(bprm);
1478 if (retval)
1479 goto out_free;
1481 check_unsafe_exec(bprm);
1482 current->in_execve = 1;
1484 file = do_open_exec(filename);
1485 retval = PTR_ERR(file);
1486 if (IS_ERR(file))
1487 goto out_unmark;
1489 sched_exec();
1491 bprm->file = file;
1492 bprm->filename = bprm->interp = filename->name;
1494 retval = bprm_mm_init(bprm);
1495 if (retval)
1496 goto out_unmark;
1498 bprm->argc = count(argv, MAX_ARG_STRINGS);
1499 if ((retval = bprm->argc) < 0)
1500 goto out;
1502 bprm->envc = count(envp, MAX_ARG_STRINGS);
1503 if ((retval = bprm->envc) < 0)
1504 goto out;
1506 retval = prepare_binprm(bprm);
1507 if (retval < 0)
1508 goto out;
1510 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1511 if (retval < 0)
1512 goto out;
1514 bprm->exec = bprm->p;
1515 retval = copy_strings(bprm->envc, envp, bprm);
1516 if (retval < 0)
1517 goto out;
1519 retval = copy_strings(bprm->argc, argv, bprm);
1520 if (retval < 0)
1521 goto out;
1523 retval = exec_binprm(bprm);
1524 if (retval < 0)
1525 goto out;
1527 /* execve succeeded */
1528 current->fs->in_exec = 0;
1529 current->in_execve = 0;
1530 acct_update_integrals(current);
1531 task_numa_free(current);
1532 free_bprm(bprm);
1533 putname(filename);
1534 if (displaced)
1535 put_files_struct(displaced);
1536 return retval;
1538 out:
1539 if (bprm->mm) {
1540 acct_arg_size(bprm, 0);
1541 mmput(bprm->mm);
1544 out_unmark:
1545 current->fs->in_exec = 0;
1546 current->in_execve = 0;
1548 out_free:
1549 free_bprm(bprm);
1551 out_files:
1552 if (displaced)
1553 reset_files_struct(displaced);
1554 out_ret:
1555 putname(filename);
1556 return retval;
1559 int do_execve(struct filename *filename,
1560 const char __user *const __user *__argv,
1561 const char __user *const __user *__envp)
1563 struct user_arg_ptr argv = { .ptr.native = __argv };
1564 struct user_arg_ptr envp = { .ptr.native = __envp };
1565 return do_execve_common(filename, argv, envp);
1568 #ifdef CONFIG_COMPAT
1569 static int compat_do_execve(struct filename *filename,
1570 const compat_uptr_t __user *__argv,
1571 const compat_uptr_t __user *__envp)
1573 struct user_arg_ptr argv = {
1574 .is_compat = true,
1575 .ptr.compat = __argv,
1577 struct user_arg_ptr envp = {
1578 .is_compat = true,
1579 .ptr.compat = __envp,
1581 return do_execve_common(filename, argv, envp);
1583 #endif
1585 void set_binfmt(struct linux_binfmt *new)
1587 struct mm_struct *mm = current->mm;
1589 if (mm->binfmt)
1590 module_put(mm->binfmt->module);
1592 mm->binfmt = new;
1593 if (new)
1594 __module_get(new->module);
1596 EXPORT_SYMBOL(set_binfmt);
1599 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1601 void set_dumpable(struct mm_struct *mm, int value)
1603 unsigned long old, new;
1605 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1606 return;
1608 do {
1609 old = ACCESS_ONCE(mm->flags);
1610 new = (old & ~MMF_DUMPABLE_MASK) | value;
1611 } while (cmpxchg(&mm->flags, old, new) != old);
1614 SYSCALL_DEFINE3(execve,
1615 const char __user *, filename,
1616 const char __user *const __user *, argv,
1617 const char __user *const __user *, envp)
1619 return do_execve(getname(filename), argv, envp);
1621 #ifdef CONFIG_COMPAT
1622 asmlinkage long compat_sys_execve(const char __user * filename,
1623 const compat_uptr_t __user * argv,
1624 const compat_uptr_t __user * envp)
1626 return compat_do_execve(getname(filename), argv, envp);
1628 #endif