2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
45 #include <asm/irq_regs.h>
47 struct remote_function_call
{
48 struct task_struct
*p
;
49 int (*func
)(void *info
);
54 static void remote_function(void *data
)
56 struct remote_function_call
*tfc
= data
;
57 struct task_struct
*p
= tfc
->p
;
61 if (task_cpu(p
) != smp_processor_id() || !task_curr(p
))
65 tfc
->ret
= tfc
->func(tfc
->info
);
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
82 task_function_call(struct task_struct
*p
, int (*func
) (void *info
), void *info
)
84 struct remote_function_call data
= {
88 .ret
= -ESRCH
, /* No such (running) process */
92 smp_call_function_single(task_cpu(p
), remote_function
, &data
, 1);
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
102 * Calls the function @func on the remote cpu.
104 * returns: @func return value or -ENXIO when the cpu is offline
106 static int cpu_function_call(int cpu
, int (*func
) (void *info
), void *info
)
108 struct remote_function_call data
= {
112 .ret
= -ENXIO
, /* No such CPU */
115 smp_call_function_single(cpu
, remote_function
, &data
, 1);
120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
122 PERF_FLAG_PID_CGROUP |\
123 PERF_FLAG_FD_CLOEXEC)
126 * branch priv levels that need permission checks
128 #define PERF_SAMPLE_BRANCH_PERM_PLM \
129 (PERF_SAMPLE_BRANCH_KERNEL |\
130 PERF_SAMPLE_BRANCH_HV)
133 EVENT_FLEXIBLE
= 0x1,
135 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
139 * perf_sched_events : >0 events exist
140 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
142 struct static_key_deferred perf_sched_events __read_mostly
;
143 static DEFINE_PER_CPU(atomic_t
, perf_cgroup_events
);
144 static DEFINE_PER_CPU(atomic_t
, perf_branch_stack_events
);
146 static atomic_t nr_mmap_events __read_mostly
;
147 static atomic_t nr_comm_events __read_mostly
;
148 static atomic_t nr_task_events __read_mostly
;
149 static atomic_t nr_freq_events __read_mostly
;
151 static LIST_HEAD(pmus
);
152 static DEFINE_MUTEX(pmus_lock
);
153 static struct srcu_struct pmus_srcu
;
156 * perf event paranoia level:
157 * -1 - not paranoid at all
158 * 0 - disallow raw tracepoint access for unpriv
159 * 1 - disallow cpu events for unpriv
160 * 2 - disallow kernel profiling for unpriv
162 int sysctl_perf_event_paranoid __read_mostly
= 1;
164 /* Minimum for 512 kiB + 1 user control page */
165 int sysctl_perf_event_mlock __read_mostly
= 512 + (PAGE_SIZE
/ 1024); /* 'free' kiB per user */
168 * max perf event sample rate
170 #define DEFAULT_MAX_SAMPLE_RATE 100000
171 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
172 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
174 int sysctl_perf_event_sample_rate __read_mostly
= DEFAULT_MAX_SAMPLE_RATE
;
176 static int max_samples_per_tick __read_mostly
= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE
, HZ
);
177 static int perf_sample_period_ns __read_mostly
= DEFAULT_SAMPLE_PERIOD_NS
;
179 static int perf_sample_allowed_ns __read_mostly
=
180 DEFAULT_SAMPLE_PERIOD_NS
* DEFAULT_CPU_TIME_MAX_PERCENT
/ 100;
182 void update_perf_cpu_limits(void)
184 u64 tmp
= perf_sample_period_ns
;
186 tmp
*= sysctl_perf_cpu_time_max_percent
;
188 ACCESS_ONCE(perf_sample_allowed_ns
) = tmp
;
191 static int perf_rotate_context(struct perf_cpu_context
*cpuctx
);
193 int perf_proc_update_handler(struct ctl_table
*table
, int write
,
194 void __user
*buffer
, size_t *lenp
,
197 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
202 max_samples_per_tick
= DIV_ROUND_UP(sysctl_perf_event_sample_rate
, HZ
);
203 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
204 update_perf_cpu_limits();
209 int sysctl_perf_cpu_time_max_percent __read_mostly
= DEFAULT_CPU_TIME_MAX_PERCENT
;
211 int perf_cpu_time_max_percent_handler(struct ctl_table
*table
, int write
,
212 void __user
*buffer
, size_t *lenp
,
215 int ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
220 update_perf_cpu_limits();
226 * perf samples are done in some very critical code paths (NMIs).
227 * If they take too much CPU time, the system can lock up and not
228 * get any real work done. This will drop the sample rate when
229 * we detect that events are taking too long.
231 #define NR_ACCUMULATED_SAMPLES 128
232 static DEFINE_PER_CPU(u64
, running_sample_length
);
234 void perf_sample_event_took(u64 sample_len_ns
)
236 u64 avg_local_sample_len
;
237 u64 local_samples_len
;
238 u64 allowed_ns
= ACCESS_ONCE(perf_sample_allowed_ns
);
243 /* decay the counter by 1 average sample */
244 local_samples_len
= __get_cpu_var(running_sample_length
);
245 local_samples_len
-= local_samples_len
/NR_ACCUMULATED_SAMPLES
;
246 local_samples_len
+= sample_len_ns
;
247 __get_cpu_var(running_sample_length
) = local_samples_len
;
250 * note: this will be biased artifically low until we have
251 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
252 * from having to maintain a count.
254 avg_local_sample_len
= local_samples_len
/NR_ACCUMULATED_SAMPLES
;
256 if (avg_local_sample_len
<= allowed_ns
)
259 if (max_samples_per_tick
<= 1)
262 max_samples_per_tick
= DIV_ROUND_UP(max_samples_per_tick
, 2);
263 sysctl_perf_event_sample_rate
= max_samples_per_tick
* HZ
;
264 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
266 printk_ratelimited(KERN_WARNING
267 "perf samples too long (%lld > %lld), lowering "
268 "kernel.perf_event_max_sample_rate to %d\n",
269 avg_local_sample_len
, allowed_ns
,
270 sysctl_perf_event_sample_rate
);
272 update_perf_cpu_limits();
275 static atomic64_t perf_event_id
;
277 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
278 enum event_type_t event_type
);
280 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
281 enum event_type_t event_type
,
282 struct task_struct
*task
);
284 static void update_context_time(struct perf_event_context
*ctx
);
285 static u64
perf_event_time(struct perf_event
*event
);
287 void __weak
perf_event_print_debug(void) { }
289 extern __weak
const char *perf_pmu_name(void)
294 static inline u64
perf_clock(void)
296 return local_clock();
299 static inline struct perf_cpu_context
*
300 __get_cpu_context(struct perf_event_context
*ctx
)
302 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
305 static void perf_ctx_lock(struct perf_cpu_context
*cpuctx
,
306 struct perf_event_context
*ctx
)
308 raw_spin_lock(&cpuctx
->ctx
.lock
);
310 raw_spin_lock(&ctx
->lock
);
313 static void perf_ctx_unlock(struct perf_cpu_context
*cpuctx
,
314 struct perf_event_context
*ctx
)
317 raw_spin_unlock(&ctx
->lock
);
318 raw_spin_unlock(&cpuctx
->ctx
.lock
);
321 #ifdef CONFIG_CGROUP_PERF
324 * perf_cgroup_info keeps track of time_enabled for a cgroup.
325 * This is a per-cpu dynamically allocated data structure.
327 struct perf_cgroup_info
{
333 struct cgroup_subsys_state css
;
334 struct perf_cgroup_info __percpu
*info
;
338 * Must ensure cgroup is pinned (css_get) before calling
339 * this function. In other words, we cannot call this function
340 * if there is no cgroup event for the current CPU context.
342 static inline struct perf_cgroup
*
343 perf_cgroup_from_task(struct task_struct
*task
)
345 return container_of(task_css(task
, perf_subsys_id
),
346 struct perf_cgroup
, css
);
350 perf_cgroup_match(struct perf_event
*event
)
352 struct perf_event_context
*ctx
= event
->ctx
;
353 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
355 /* @event doesn't care about cgroup */
359 /* wants specific cgroup scope but @cpuctx isn't associated with any */
364 * Cgroup scoping is recursive. An event enabled for a cgroup is
365 * also enabled for all its descendant cgroups. If @cpuctx's
366 * cgroup is a descendant of @event's (the test covers identity
367 * case), it's a match.
369 return cgroup_is_descendant(cpuctx
->cgrp
->css
.cgroup
,
370 event
->cgrp
->css
.cgroup
);
373 static inline bool perf_tryget_cgroup(struct perf_event
*event
)
375 return css_tryget(&event
->cgrp
->css
);
378 static inline void perf_put_cgroup(struct perf_event
*event
)
380 css_put(&event
->cgrp
->css
);
383 static inline void perf_detach_cgroup(struct perf_event
*event
)
385 perf_put_cgroup(event
);
389 static inline int is_cgroup_event(struct perf_event
*event
)
391 return event
->cgrp
!= NULL
;
394 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
396 struct perf_cgroup_info
*t
;
398 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
402 static inline void __update_cgrp_time(struct perf_cgroup
*cgrp
)
404 struct perf_cgroup_info
*info
;
409 info
= this_cpu_ptr(cgrp
->info
);
411 info
->time
+= now
- info
->timestamp
;
412 info
->timestamp
= now
;
415 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
417 struct perf_cgroup
*cgrp_out
= cpuctx
->cgrp
;
419 __update_cgrp_time(cgrp_out
);
422 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
424 struct perf_cgroup
*cgrp
;
427 * ensure we access cgroup data only when needed and
428 * when we know the cgroup is pinned (css_get)
430 if (!is_cgroup_event(event
))
433 cgrp
= perf_cgroup_from_task(current
);
435 * Do not update time when cgroup is not active
437 if (cgrp
== event
->cgrp
)
438 __update_cgrp_time(event
->cgrp
);
442 perf_cgroup_set_timestamp(struct task_struct
*task
,
443 struct perf_event_context
*ctx
)
445 struct perf_cgroup
*cgrp
;
446 struct perf_cgroup_info
*info
;
449 * ctx->lock held by caller
450 * ensure we do not access cgroup data
451 * unless we have the cgroup pinned (css_get)
453 if (!task
|| !ctx
->nr_cgroups
)
456 cgrp
= perf_cgroup_from_task(task
);
457 info
= this_cpu_ptr(cgrp
->info
);
458 info
->timestamp
= ctx
->timestamp
;
461 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
462 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
465 * reschedule events based on the cgroup constraint of task.
467 * mode SWOUT : schedule out everything
468 * mode SWIN : schedule in based on cgroup for next
470 void perf_cgroup_switch(struct task_struct
*task
, int mode
)
472 struct perf_cpu_context
*cpuctx
;
477 * disable interrupts to avoid geting nr_cgroup
478 * changes via __perf_event_disable(). Also
481 local_irq_save(flags
);
484 * we reschedule only in the presence of cgroup
485 * constrained events.
489 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
490 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
491 if (cpuctx
->unique_pmu
!= pmu
)
492 continue; /* ensure we process each cpuctx once */
495 * perf_cgroup_events says at least one
496 * context on this CPU has cgroup events.
498 * ctx->nr_cgroups reports the number of cgroup
499 * events for a context.
501 if (cpuctx
->ctx
.nr_cgroups
> 0) {
502 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
503 perf_pmu_disable(cpuctx
->ctx
.pmu
);
505 if (mode
& PERF_CGROUP_SWOUT
) {
506 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
508 * must not be done before ctxswout due
509 * to event_filter_match() in event_sched_out()
514 if (mode
& PERF_CGROUP_SWIN
) {
515 WARN_ON_ONCE(cpuctx
->cgrp
);
517 * set cgrp before ctxsw in to allow
518 * event_filter_match() to not have to pass
521 cpuctx
->cgrp
= perf_cgroup_from_task(task
);
522 cpu_ctx_sched_in(cpuctx
, EVENT_ALL
, task
);
524 perf_pmu_enable(cpuctx
->ctx
.pmu
);
525 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
531 local_irq_restore(flags
);
534 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
535 struct task_struct
*next
)
537 struct perf_cgroup
*cgrp1
;
538 struct perf_cgroup
*cgrp2
= NULL
;
541 * we come here when we know perf_cgroup_events > 0
543 cgrp1
= perf_cgroup_from_task(task
);
546 * next is NULL when called from perf_event_enable_on_exec()
547 * that will systematically cause a cgroup_switch()
550 cgrp2
= perf_cgroup_from_task(next
);
553 * only schedule out current cgroup events if we know
554 * that we are switching to a different cgroup. Otherwise,
555 * do no touch the cgroup events.
558 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
);
561 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
562 struct task_struct
*task
)
564 struct perf_cgroup
*cgrp1
;
565 struct perf_cgroup
*cgrp2
= NULL
;
568 * we come here when we know perf_cgroup_events > 0
570 cgrp1
= perf_cgroup_from_task(task
);
572 /* prev can never be NULL */
573 cgrp2
= perf_cgroup_from_task(prev
);
576 * only need to schedule in cgroup events if we are changing
577 * cgroup during ctxsw. Cgroup events were not scheduled
578 * out of ctxsw out if that was not the case.
581 perf_cgroup_switch(task
, PERF_CGROUP_SWIN
);
584 static inline int perf_cgroup_connect(int fd
, struct perf_event
*event
,
585 struct perf_event_attr
*attr
,
586 struct perf_event
*group_leader
)
588 struct perf_cgroup
*cgrp
;
589 struct cgroup_subsys_state
*css
;
590 struct fd f
= fdget(fd
);
598 css
= css_from_dir(f
.file
->f_dentry
, &perf_subsys
);
604 cgrp
= container_of(css
, struct perf_cgroup
, css
);
607 /* must be done before we fput() the file */
608 if (!perf_tryget_cgroup(event
)) {
615 * all events in a group must monitor
616 * the same cgroup because a task belongs
617 * to only one perf cgroup at a time
619 if (group_leader
&& group_leader
->cgrp
!= cgrp
) {
620 perf_detach_cgroup(event
);
630 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
632 struct perf_cgroup_info
*t
;
633 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
634 event
->shadow_ctx_time
= now
- t
->timestamp
;
638 perf_cgroup_defer_enabled(struct perf_event
*event
)
641 * when the current task's perf cgroup does not match
642 * the event's, we need to remember to call the
643 * perf_mark_enable() function the first time a task with
644 * a matching perf cgroup is scheduled in.
646 if (is_cgroup_event(event
) && !perf_cgroup_match(event
))
647 event
->cgrp_defer_enabled
= 1;
651 perf_cgroup_mark_enabled(struct perf_event
*event
,
652 struct perf_event_context
*ctx
)
654 struct perf_event
*sub
;
655 u64 tstamp
= perf_event_time(event
);
657 if (!event
->cgrp_defer_enabled
)
660 event
->cgrp_defer_enabled
= 0;
662 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
663 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
664 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
) {
665 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
666 sub
->cgrp_defer_enabled
= 0;
670 #else /* !CONFIG_CGROUP_PERF */
673 perf_cgroup_match(struct perf_event
*event
)
678 static inline void perf_detach_cgroup(struct perf_event
*event
)
681 static inline int is_cgroup_event(struct perf_event
*event
)
686 static inline u64
perf_cgroup_event_cgrp_time(struct perf_event
*event
)
691 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
695 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
699 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
700 struct task_struct
*next
)
704 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
705 struct task_struct
*task
)
709 static inline int perf_cgroup_connect(pid_t pid
, struct perf_event
*event
,
710 struct perf_event_attr
*attr
,
711 struct perf_event
*group_leader
)
717 perf_cgroup_set_timestamp(struct task_struct
*task
,
718 struct perf_event_context
*ctx
)
723 perf_cgroup_switch(struct task_struct
*task
, struct task_struct
*next
)
728 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
732 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
738 perf_cgroup_defer_enabled(struct perf_event
*event
)
743 perf_cgroup_mark_enabled(struct perf_event
*event
,
744 struct perf_event_context
*ctx
)
750 * set default to be dependent on timer tick just
753 #define PERF_CPU_HRTIMER (1000 / HZ)
755 * function must be called with interrupts disbled
757 static enum hrtimer_restart
perf_cpu_hrtimer_handler(struct hrtimer
*hr
)
759 struct perf_cpu_context
*cpuctx
;
760 enum hrtimer_restart ret
= HRTIMER_NORESTART
;
763 WARN_ON(!irqs_disabled());
765 cpuctx
= container_of(hr
, struct perf_cpu_context
, hrtimer
);
767 rotations
= perf_rotate_context(cpuctx
);
770 * arm timer if needed
773 hrtimer_forward_now(hr
, cpuctx
->hrtimer_interval
);
774 ret
= HRTIMER_RESTART
;
780 /* CPU is going down */
781 void perf_cpu_hrtimer_cancel(int cpu
)
783 struct perf_cpu_context
*cpuctx
;
787 if (WARN_ON(cpu
!= smp_processor_id()))
790 local_irq_save(flags
);
794 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
795 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
797 if (pmu
->task_ctx_nr
== perf_sw_context
)
800 hrtimer_cancel(&cpuctx
->hrtimer
);
805 local_irq_restore(flags
);
808 static void __perf_cpu_hrtimer_init(struct perf_cpu_context
*cpuctx
, int cpu
)
810 struct hrtimer
*hr
= &cpuctx
->hrtimer
;
811 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
814 /* no multiplexing needed for SW PMU */
815 if (pmu
->task_ctx_nr
== perf_sw_context
)
819 * check default is sane, if not set then force to
820 * default interval (1/tick)
822 timer
= pmu
->hrtimer_interval_ms
;
824 timer
= pmu
->hrtimer_interval_ms
= PERF_CPU_HRTIMER
;
826 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* timer
);
828 hrtimer_init(hr
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_PINNED
);
829 hr
->function
= perf_cpu_hrtimer_handler
;
832 static void perf_cpu_hrtimer_restart(struct perf_cpu_context
*cpuctx
)
834 struct hrtimer
*hr
= &cpuctx
->hrtimer
;
835 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
838 if (pmu
->task_ctx_nr
== perf_sw_context
)
841 if (hrtimer_active(hr
))
844 if (!hrtimer_callback_running(hr
))
845 __hrtimer_start_range_ns(hr
, cpuctx
->hrtimer_interval
,
846 0, HRTIMER_MODE_REL_PINNED
, 0);
849 void perf_pmu_disable(struct pmu
*pmu
)
851 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
853 pmu
->pmu_disable(pmu
);
856 void perf_pmu_enable(struct pmu
*pmu
)
858 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
860 pmu
->pmu_enable(pmu
);
863 static DEFINE_PER_CPU(struct list_head
, rotation_list
);
866 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
867 * because they're strictly cpu affine and rotate_start is called with IRQs
868 * disabled, while rotate_context is called from IRQ context.
870 static void perf_pmu_rotate_start(struct pmu
*pmu
)
872 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
873 struct list_head
*head
= &__get_cpu_var(rotation_list
);
875 WARN_ON(!irqs_disabled());
877 if (list_empty(&cpuctx
->rotation_list
))
878 list_add(&cpuctx
->rotation_list
, head
);
881 static void get_ctx(struct perf_event_context
*ctx
)
883 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
886 static void put_ctx(struct perf_event_context
*ctx
)
888 if (atomic_dec_and_test(&ctx
->refcount
)) {
890 put_ctx(ctx
->parent_ctx
);
892 put_task_struct(ctx
->task
);
893 kfree_rcu(ctx
, rcu_head
);
897 static void unclone_ctx(struct perf_event_context
*ctx
)
899 if (ctx
->parent_ctx
) {
900 put_ctx(ctx
->parent_ctx
);
901 ctx
->parent_ctx
= NULL
;
906 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
909 * only top level events have the pid namespace they were created in
912 event
= event
->parent
;
914 return task_tgid_nr_ns(p
, event
->ns
);
917 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
920 * only top level events have the pid namespace they were created in
923 event
= event
->parent
;
925 return task_pid_nr_ns(p
, event
->ns
);
929 * If we inherit events we want to return the parent event id
932 static u64
primary_event_id(struct perf_event
*event
)
937 id
= event
->parent
->id
;
943 * Get the perf_event_context for a task and lock it.
944 * This has to cope with with the fact that until it is locked,
945 * the context could get moved to another task.
947 static struct perf_event_context
*
948 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
950 struct perf_event_context
*ctx
;
954 * One of the few rules of preemptible RCU is that one cannot do
955 * rcu_read_unlock() while holding a scheduler (or nested) lock when
956 * part of the read side critical section was preemptible -- see
957 * rcu_read_unlock_special().
959 * Since ctx->lock nests under rq->lock we must ensure the entire read
960 * side critical section is non-preemptible.
964 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
967 * If this context is a clone of another, it might
968 * get swapped for another underneath us by
969 * perf_event_task_sched_out, though the
970 * rcu_read_lock() protects us from any context
971 * getting freed. Lock the context and check if it
972 * got swapped before we could get the lock, and retry
973 * if so. If we locked the right context, then it
974 * can't get swapped on us any more.
976 raw_spin_lock_irqsave(&ctx
->lock
, *flags
);
977 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
978 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
984 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
985 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
995 * Get the context for a task and increment its pin_count so it
996 * can't get swapped to another task. This also increments its
997 * reference count so that the context can't get freed.
999 static struct perf_event_context
*
1000 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
1002 struct perf_event_context
*ctx
;
1003 unsigned long flags
;
1005 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
1008 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1013 static void perf_unpin_context(struct perf_event_context
*ctx
)
1015 unsigned long flags
;
1017 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1019 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1023 * Update the record of the current time in a context.
1025 static void update_context_time(struct perf_event_context
*ctx
)
1027 u64 now
= perf_clock();
1029 ctx
->time
+= now
- ctx
->timestamp
;
1030 ctx
->timestamp
= now
;
1033 static u64
perf_event_time(struct perf_event
*event
)
1035 struct perf_event_context
*ctx
= event
->ctx
;
1037 if (is_cgroup_event(event
))
1038 return perf_cgroup_event_time(event
);
1040 return ctx
? ctx
->time
: 0;
1044 * Update the total_time_enabled and total_time_running fields for a event.
1045 * The caller of this function needs to hold the ctx->lock.
1047 static void update_event_times(struct perf_event
*event
)
1049 struct perf_event_context
*ctx
= event
->ctx
;
1052 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
1053 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
1056 * in cgroup mode, time_enabled represents
1057 * the time the event was enabled AND active
1058 * tasks were in the monitored cgroup. This is
1059 * independent of the activity of the context as
1060 * there may be a mix of cgroup and non-cgroup events.
1062 * That is why we treat cgroup events differently
1065 if (is_cgroup_event(event
))
1066 run_end
= perf_cgroup_event_time(event
);
1067 else if (ctx
->is_active
)
1068 run_end
= ctx
->time
;
1070 run_end
= event
->tstamp_stopped
;
1072 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
1074 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
1075 run_end
= event
->tstamp_stopped
;
1077 run_end
= perf_event_time(event
);
1079 event
->total_time_running
= run_end
- event
->tstamp_running
;
1084 * Update total_time_enabled and total_time_running for all events in a group.
1086 static void update_group_times(struct perf_event
*leader
)
1088 struct perf_event
*event
;
1090 update_event_times(leader
);
1091 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
1092 update_event_times(event
);
1095 static struct list_head
*
1096 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
1098 if (event
->attr
.pinned
)
1099 return &ctx
->pinned_groups
;
1101 return &ctx
->flexible_groups
;
1105 * Add a event from the lists for its context.
1106 * Must be called with ctx->mutex and ctx->lock held.
1109 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1111 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
1112 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
1115 * If we're a stand alone event or group leader, we go to the context
1116 * list, group events are kept attached to the group so that
1117 * perf_group_detach can, at all times, locate all siblings.
1119 if (event
->group_leader
== event
) {
1120 struct list_head
*list
;
1122 if (is_software_event(event
))
1123 event
->group_flags
|= PERF_GROUP_SOFTWARE
;
1125 list
= ctx_group_list(event
, ctx
);
1126 list_add_tail(&event
->group_entry
, list
);
1129 if (is_cgroup_event(event
))
1132 if (has_branch_stack(event
))
1133 ctx
->nr_branch_stack
++;
1135 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
1136 if (!ctx
->nr_events
)
1137 perf_pmu_rotate_start(ctx
->pmu
);
1139 if (event
->attr
.inherit_stat
)
1146 * Initialize event state based on the perf_event_attr::disabled.
1148 static inline void perf_event__state_init(struct perf_event
*event
)
1150 event
->state
= event
->attr
.disabled
? PERF_EVENT_STATE_OFF
:
1151 PERF_EVENT_STATE_INACTIVE
;
1155 * Called at perf_event creation and when events are attached/detached from a
1158 static void perf_event__read_size(struct perf_event
*event
)
1160 int entry
= sizeof(u64
); /* value */
1164 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1165 size
+= sizeof(u64
);
1167 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1168 size
+= sizeof(u64
);
1170 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1171 entry
+= sizeof(u64
);
1173 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1174 nr
+= event
->group_leader
->nr_siblings
;
1175 size
+= sizeof(u64
);
1179 event
->read_size
= size
;
1182 static void perf_event__header_size(struct perf_event
*event
)
1184 struct perf_sample_data
*data
;
1185 u64 sample_type
= event
->attr
.sample_type
;
1188 perf_event__read_size(event
);
1190 if (sample_type
& PERF_SAMPLE_IP
)
1191 size
+= sizeof(data
->ip
);
1193 if (sample_type
& PERF_SAMPLE_ADDR
)
1194 size
+= sizeof(data
->addr
);
1196 if (sample_type
& PERF_SAMPLE_PERIOD
)
1197 size
+= sizeof(data
->period
);
1199 if (sample_type
& PERF_SAMPLE_WEIGHT
)
1200 size
+= sizeof(data
->weight
);
1202 if (sample_type
& PERF_SAMPLE_READ
)
1203 size
+= event
->read_size
;
1205 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
1206 size
+= sizeof(data
->data_src
.val
);
1208 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
1209 size
+= sizeof(data
->txn
);
1211 event
->header_size
= size
;
1214 static void perf_event__id_header_size(struct perf_event
*event
)
1216 struct perf_sample_data
*data
;
1217 u64 sample_type
= event
->attr
.sample_type
;
1220 if (sample_type
& PERF_SAMPLE_TID
)
1221 size
+= sizeof(data
->tid_entry
);
1223 if (sample_type
& PERF_SAMPLE_TIME
)
1224 size
+= sizeof(data
->time
);
1226 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
1227 size
+= sizeof(data
->id
);
1229 if (sample_type
& PERF_SAMPLE_ID
)
1230 size
+= sizeof(data
->id
);
1232 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
1233 size
+= sizeof(data
->stream_id
);
1235 if (sample_type
& PERF_SAMPLE_CPU
)
1236 size
+= sizeof(data
->cpu_entry
);
1238 event
->id_header_size
= size
;
1241 static void perf_group_attach(struct perf_event
*event
)
1243 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
1246 * We can have double attach due to group movement in perf_event_open.
1248 if (event
->attach_state
& PERF_ATTACH_GROUP
)
1251 event
->attach_state
|= PERF_ATTACH_GROUP
;
1253 if (group_leader
== event
)
1256 if (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
&&
1257 !is_software_event(event
))
1258 group_leader
->group_flags
&= ~PERF_GROUP_SOFTWARE
;
1260 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
1261 group_leader
->nr_siblings
++;
1263 perf_event__header_size(group_leader
);
1265 list_for_each_entry(pos
, &group_leader
->sibling_list
, group_entry
)
1266 perf_event__header_size(pos
);
1270 * Remove a event from the lists for its context.
1271 * Must be called with ctx->mutex and ctx->lock held.
1274 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1276 struct perf_cpu_context
*cpuctx
;
1278 * We can have double detach due to exit/hot-unplug + close.
1280 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
1283 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
1285 if (is_cgroup_event(event
)) {
1287 cpuctx
= __get_cpu_context(ctx
);
1289 * if there are no more cgroup events
1290 * then cler cgrp to avoid stale pointer
1291 * in update_cgrp_time_from_cpuctx()
1293 if (!ctx
->nr_cgroups
)
1294 cpuctx
->cgrp
= NULL
;
1297 if (has_branch_stack(event
))
1298 ctx
->nr_branch_stack
--;
1301 if (event
->attr
.inherit_stat
)
1304 list_del_rcu(&event
->event_entry
);
1306 if (event
->group_leader
== event
)
1307 list_del_init(&event
->group_entry
);
1309 update_group_times(event
);
1312 * If event was in error state, then keep it
1313 * that way, otherwise bogus counts will be
1314 * returned on read(). The only way to get out
1315 * of error state is by explicit re-enabling
1318 if (event
->state
> PERF_EVENT_STATE_OFF
)
1319 event
->state
= PERF_EVENT_STATE_OFF
;
1324 static void perf_group_detach(struct perf_event
*event
)
1326 struct perf_event
*sibling
, *tmp
;
1327 struct list_head
*list
= NULL
;
1330 * We can have double detach due to exit/hot-unplug + close.
1332 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
1335 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
1338 * If this is a sibling, remove it from its group.
1340 if (event
->group_leader
!= event
) {
1341 list_del_init(&event
->group_entry
);
1342 event
->group_leader
->nr_siblings
--;
1346 if (!list_empty(&event
->group_entry
))
1347 list
= &event
->group_entry
;
1350 * If this was a group event with sibling events then
1351 * upgrade the siblings to singleton events by adding them
1352 * to whatever list we are on.
1354 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
1356 list_move_tail(&sibling
->group_entry
, list
);
1357 sibling
->group_leader
= sibling
;
1359 /* Inherit group flags from the previous leader */
1360 sibling
->group_flags
= event
->group_flags
;
1364 perf_event__header_size(event
->group_leader
);
1366 list_for_each_entry(tmp
, &event
->group_leader
->sibling_list
, group_entry
)
1367 perf_event__header_size(tmp
);
1371 event_filter_match(struct perf_event
*event
)
1373 return (event
->cpu
== -1 || event
->cpu
== smp_processor_id())
1374 && perf_cgroup_match(event
);
1378 event_sched_out(struct perf_event
*event
,
1379 struct perf_cpu_context
*cpuctx
,
1380 struct perf_event_context
*ctx
)
1382 u64 tstamp
= perf_event_time(event
);
1385 * An event which could not be activated because of
1386 * filter mismatch still needs to have its timings
1387 * maintained, otherwise bogus information is return
1388 * via read() for time_enabled, time_running:
1390 if (event
->state
== PERF_EVENT_STATE_INACTIVE
1391 && !event_filter_match(event
)) {
1392 delta
= tstamp
- event
->tstamp_stopped
;
1393 event
->tstamp_running
+= delta
;
1394 event
->tstamp_stopped
= tstamp
;
1397 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1400 perf_pmu_disable(event
->pmu
);
1402 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1403 if (event
->pending_disable
) {
1404 event
->pending_disable
= 0;
1405 event
->state
= PERF_EVENT_STATE_OFF
;
1407 event
->tstamp_stopped
= tstamp
;
1408 event
->pmu
->del(event
, 0);
1411 if (!is_software_event(event
))
1412 cpuctx
->active_oncpu
--;
1414 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
1416 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
1417 cpuctx
->exclusive
= 0;
1419 perf_pmu_enable(event
->pmu
);
1423 group_sched_out(struct perf_event
*group_event
,
1424 struct perf_cpu_context
*cpuctx
,
1425 struct perf_event_context
*ctx
)
1427 struct perf_event
*event
;
1428 int state
= group_event
->state
;
1430 event_sched_out(group_event
, cpuctx
, ctx
);
1433 * Schedule out siblings (if any):
1435 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
1436 event_sched_out(event
, cpuctx
, ctx
);
1438 if (state
== PERF_EVENT_STATE_ACTIVE
&& group_event
->attr
.exclusive
)
1439 cpuctx
->exclusive
= 0;
1443 * Cross CPU call to remove a performance event
1445 * We disable the event on the hardware level first. After that we
1446 * remove it from the context list.
1448 static int __perf_remove_from_context(void *info
)
1450 struct perf_event
*event
= info
;
1451 struct perf_event_context
*ctx
= event
->ctx
;
1452 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1454 raw_spin_lock(&ctx
->lock
);
1455 event_sched_out(event
, cpuctx
, ctx
);
1456 list_del_event(event
, ctx
);
1457 if (!ctx
->nr_events
&& cpuctx
->task_ctx
== ctx
) {
1459 cpuctx
->task_ctx
= NULL
;
1461 raw_spin_unlock(&ctx
->lock
);
1468 * Remove the event from a task's (or a CPU's) list of events.
1470 * CPU events are removed with a smp call. For task events we only
1471 * call when the task is on a CPU.
1473 * If event->ctx is a cloned context, callers must make sure that
1474 * every task struct that event->ctx->task could possibly point to
1475 * remains valid. This is OK when called from perf_release since
1476 * that only calls us on the top-level context, which can't be a clone.
1477 * When called from perf_event_exit_task, it's OK because the
1478 * context has been detached from its task.
1480 static void perf_remove_from_context(struct perf_event
*event
)
1482 struct perf_event_context
*ctx
= event
->ctx
;
1483 struct task_struct
*task
= ctx
->task
;
1485 lockdep_assert_held(&ctx
->mutex
);
1489 * Per cpu events are removed via an smp call and
1490 * the removal is always successful.
1492 cpu_function_call(event
->cpu
, __perf_remove_from_context
, event
);
1497 if (!task_function_call(task
, __perf_remove_from_context
, event
))
1500 raw_spin_lock_irq(&ctx
->lock
);
1502 * If we failed to find a running task, but find the context active now
1503 * that we've acquired the ctx->lock, retry.
1505 if (ctx
->is_active
) {
1506 raw_spin_unlock_irq(&ctx
->lock
);
1511 * Since the task isn't running, its safe to remove the event, us
1512 * holding the ctx->lock ensures the task won't get scheduled in.
1514 list_del_event(event
, ctx
);
1515 raw_spin_unlock_irq(&ctx
->lock
);
1519 * Cross CPU call to disable a performance event
1521 int __perf_event_disable(void *info
)
1523 struct perf_event
*event
= info
;
1524 struct perf_event_context
*ctx
= event
->ctx
;
1525 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1528 * If this is a per-task event, need to check whether this
1529 * event's task is the current task on this cpu.
1531 * Can trigger due to concurrent perf_event_context_sched_out()
1532 * flipping contexts around.
1534 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1537 raw_spin_lock(&ctx
->lock
);
1540 * If the event is on, turn it off.
1541 * If it is in error state, leave it in error state.
1543 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
1544 update_context_time(ctx
);
1545 update_cgrp_time_from_event(event
);
1546 update_group_times(event
);
1547 if (event
== event
->group_leader
)
1548 group_sched_out(event
, cpuctx
, ctx
);
1550 event_sched_out(event
, cpuctx
, ctx
);
1551 event
->state
= PERF_EVENT_STATE_OFF
;
1554 raw_spin_unlock(&ctx
->lock
);
1562 * If event->ctx is a cloned context, callers must make sure that
1563 * every task struct that event->ctx->task could possibly point to
1564 * remains valid. This condition is satisifed when called through
1565 * perf_event_for_each_child or perf_event_for_each because they
1566 * hold the top-level event's child_mutex, so any descendant that
1567 * goes to exit will block in sync_child_event.
1568 * When called from perf_pending_event it's OK because event->ctx
1569 * is the current context on this CPU and preemption is disabled,
1570 * hence we can't get into perf_event_task_sched_out for this context.
1572 void perf_event_disable(struct perf_event
*event
)
1574 struct perf_event_context
*ctx
= event
->ctx
;
1575 struct task_struct
*task
= ctx
->task
;
1579 * Disable the event on the cpu that it's on
1581 cpu_function_call(event
->cpu
, __perf_event_disable
, event
);
1586 if (!task_function_call(task
, __perf_event_disable
, event
))
1589 raw_spin_lock_irq(&ctx
->lock
);
1591 * If the event is still active, we need to retry the cross-call.
1593 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1594 raw_spin_unlock_irq(&ctx
->lock
);
1596 * Reload the task pointer, it might have been changed by
1597 * a concurrent perf_event_context_sched_out().
1604 * Since we have the lock this context can't be scheduled
1605 * in, so we can change the state safely.
1607 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1608 update_group_times(event
);
1609 event
->state
= PERF_EVENT_STATE_OFF
;
1611 raw_spin_unlock_irq(&ctx
->lock
);
1613 EXPORT_SYMBOL_GPL(perf_event_disable
);
1615 static void perf_set_shadow_time(struct perf_event
*event
,
1616 struct perf_event_context
*ctx
,
1620 * use the correct time source for the time snapshot
1622 * We could get by without this by leveraging the
1623 * fact that to get to this function, the caller
1624 * has most likely already called update_context_time()
1625 * and update_cgrp_time_xx() and thus both timestamp
1626 * are identical (or very close). Given that tstamp is,
1627 * already adjusted for cgroup, we could say that:
1628 * tstamp - ctx->timestamp
1630 * tstamp - cgrp->timestamp.
1632 * Then, in perf_output_read(), the calculation would
1633 * work with no changes because:
1634 * - event is guaranteed scheduled in
1635 * - no scheduled out in between
1636 * - thus the timestamp would be the same
1638 * But this is a bit hairy.
1640 * So instead, we have an explicit cgroup call to remain
1641 * within the time time source all along. We believe it
1642 * is cleaner and simpler to understand.
1644 if (is_cgroup_event(event
))
1645 perf_cgroup_set_shadow_time(event
, tstamp
);
1647 event
->shadow_ctx_time
= tstamp
- ctx
->timestamp
;
1650 #define MAX_INTERRUPTS (~0ULL)
1652 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1655 event_sched_in(struct perf_event
*event
,
1656 struct perf_cpu_context
*cpuctx
,
1657 struct perf_event_context
*ctx
)
1659 u64 tstamp
= perf_event_time(event
);
1662 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1665 event
->state
= PERF_EVENT_STATE_ACTIVE
;
1666 event
->oncpu
= smp_processor_id();
1669 * Unthrottle events, since we scheduled we might have missed several
1670 * ticks already, also for a heavily scheduling task there is little
1671 * guarantee it'll get a tick in a timely manner.
1673 if (unlikely(event
->hw
.interrupts
== MAX_INTERRUPTS
)) {
1674 perf_log_throttle(event
, 1);
1675 event
->hw
.interrupts
= 0;
1679 * The new state must be visible before we turn it on in the hardware:
1683 perf_pmu_disable(event
->pmu
);
1685 if (event
->pmu
->add(event
, PERF_EF_START
)) {
1686 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1692 event
->tstamp_running
+= tstamp
- event
->tstamp_stopped
;
1694 perf_set_shadow_time(event
, ctx
, tstamp
);
1696 if (!is_software_event(event
))
1697 cpuctx
->active_oncpu
++;
1699 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
1702 if (event
->attr
.exclusive
)
1703 cpuctx
->exclusive
= 1;
1706 perf_pmu_enable(event
->pmu
);
1712 group_sched_in(struct perf_event
*group_event
,
1713 struct perf_cpu_context
*cpuctx
,
1714 struct perf_event_context
*ctx
)
1716 struct perf_event
*event
, *partial_group
= NULL
;
1717 struct pmu
*pmu
= group_event
->pmu
;
1718 u64 now
= ctx
->time
;
1719 bool simulate
= false;
1721 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
1724 pmu
->start_txn(pmu
);
1726 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
1727 pmu
->cancel_txn(pmu
);
1728 perf_cpu_hrtimer_restart(cpuctx
);
1733 * Schedule in siblings as one group (if any):
1735 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
1736 if (event_sched_in(event
, cpuctx
, ctx
)) {
1737 partial_group
= event
;
1742 if (!pmu
->commit_txn(pmu
))
1747 * Groups can be scheduled in as one unit only, so undo any
1748 * partial group before returning:
1749 * The events up to the failed event are scheduled out normally,
1750 * tstamp_stopped will be updated.
1752 * The failed events and the remaining siblings need to have
1753 * their timings updated as if they had gone thru event_sched_in()
1754 * and event_sched_out(). This is required to get consistent timings
1755 * across the group. This also takes care of the case where the group
1756 * could never be scheduled by ensuring tstamp_stopped is set to mark
1757 * the time the event was actually stopped, such that time delta
1758 * calculation in update_event_times() is correct.
1760 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
1761 if (event
== partial_group
)
1765 event
->tstamp_running
+= now
- event
->tstamp_stopped
;
1766 event
->tstamp_stopped
= now
;
1768 event_sched_out(event
, cpuctx
, ctx
);
1771 event_sched_out(group_event
, cpuctx
, ctx
);
1773 pmu
->cancel_txn(pmu
);
1775 perf_cpu_hrtimer_restart(cpuctx
);
1781 * Work out whether we can put this event group on the CPU now.
1783 static int group_can_go_on(struct perf_event
*event
,
1784 struct perf_cpu_context
*cpuctx
,
1788 * Groups consisting entirely of software events can always go on.
1790 if (event
->group_flags
& PERF_GROUP_SOFTWARE
)
1793 * If an exclusive group is already on, no other hardware
1796 if (cpuctx
->exclusive
)
1799 * If this group is exclusive and there are already
1800 * events on the CPU, it can't go on.
1802 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
1805 * Otherwise, try to add it if all previous groups were able
1811 static void add_event_to_ctx(struct perf_event
*event
,
1812 struct perf_event_context
*ctx
)
1814 u64 tstamp
= perf_event_time(event
);
1816 list_add_event(event
, ctx
);
1817 perf_group_attach(event
);
1818 event
->tstamp_enabled
= tstamp
;
1819 event
->tstamp_running
= tstamp
;
1820 event
->tstamp_stopped
= tstamp
;
1823 static void task_ctx_sched_out(struct perf_event_context
*ctx
);
1825 ctx_sched_in(struct perf_event_context
*ctx
,
1826 struct perf_cpu_context
*cpuctx
,
1827 enum event_type_t event_type
,
1828 struct task_struct
*task
);
1830 static void perf_event_sched_in(struct perf_cpu_context
*cpuctx
,
1831 struct perf_event_context
*ctx
,
1832 struct task_struct
*task
)
1834 cpu_ctx_sched_in(cpuctx
, EVENT_PINNED
, task
);
1836 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
, task
);
1837 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
, task
);
1839 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
, task
);
1843 * Cross CPU call to install and enable a performance event
1845 * Must be called with ctx->mutex held
1847 static int __perf_install_in_context(void *info
)
1849 struct perf_event
*event
= info
;
1850 struct perf_event_context
*ctx
= event
->ctx
;
1851 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1852 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
1853 struct task_struct
*task
= current
;
1855 perf_ctx_lock(cpuctx
, task_ctx
);
1856 perf_pmu_disable(cpuctx
->ctx
.pmu
);
1859 * If there was an active task_ctx schedule it out.
1862 task_ctx_sched_out(task_ctx
);
1865 * If the context we're installing events in is not the
1866 * active task_ctx, flip them.
1868 if (ctx
->task
&& task_ctx
!= ctx
) {
1870 raw_spin_unlock(&task_ctx
->lock
);
1871 raw_spin_lock(&ctx
->lock
);
1876 cpuctx
->task_ctx
= task_ctx
;
1877 task
= task_ctx
->task
;
1880 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
1882 update_context_time(ctx
);
1884 * update cgrp time only if current cgrp
1885 * matches event->cgrp. Must be done before
1886 * calling add_event_to_ctx()
1888 update_cgrp_time_from_event(event
);
1890 add_event_to_ctx(event
, ctx
);
1893 * Schedule everything back in
1895 perf_event_sched_in(cpuctx
, task_ctx
, task
);
1897 perf_pmu_enable(cpuctx
->ctx
.pmu
);
1898 perf_ctx_unlock(cpuctx
, task_ctx
);
1904 * Attach a performance event to a context
1906 * First we add the event to the list with the hardware enable bit
1907 * in event->hw_config cleared.
1909 * If the event is attached to a task which is on a CPU we use a smp
1910 * call to enable it in the task context. The task might have been
1911 * scheduled away, but we check this in the smp call again.
1914 perf_install_in_context(struct perf_event_context
*ctx
,
1915 struct perf_event
*event
,
1918 struct task_struct
*task
= ctx
->task
;
1920 lockdep_assert_held(&ctx
->mutex
);
1923 if (event
->cpu
!= -1)
1928 * Per cpu events are installed via an smp call and
1929 * the install is always successful.
1931 cpu_function_call(cpu
, __perf_install_in_context
, event
);
1936 if (!task_function_call(task
, __perf_install_in_context
, event
))
1939 raw_spin_lock_irq(&ctx
->lock
);
1941 * If we failed to find a running task, but find the context active now
1942 * that we've acquired the ctx->lock, retry.
1944 if (ctx
->is_active
) {
1945 raw_spin_unlock_irq(&ctx
->lock
);
1950 * Since the task isn't running, its safe to add the event, us holding
1951 * the ctx->lock ensures the task won't get scheduled in.
1953 add_event_to_ctx(event
, ctx
);
1954 raw_spin_unlock_irq(&ctx
->lock
);
1958 * Put a event into inactive state and update time fields.
1959 * Enabling the leader of a group effectively enables all
1960 * the group members that aren't explicitly disabled, so we
1961 * have to update their ->tstamp_enabled also.
1962 * Note: this works for group members as well as group leaders
1963 * since the non-leader members' sibling_lists will be empty.
1965 static void __perf_event_mark_enabled(struct perf_event
*event
)
1967 struct perf_event
*sub
;
1968 u64 tstamp
= perf_event_time(event
);
1970 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1971 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
1972 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
1973 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
1974 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
1979 * Cross CPU call to enable a performance event
1981 static int __perf_event_enable(void *info
)
1983 struct perf_event
*event
= info
;
1984 struct perf_event_context
*ctx
= event
->ctx
;
1985 struct perf_event
*leader
= event
->group_leader
;
1986 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1990 * There's a time window between 'ctx->is_active' check
1991 * in perf_event_enable function and this place having:
1993 * - ctx->lock unlocked
1995 * where the task could be killed and 'ctx' deactivated
1996 * by perf_event_exit_task.
1998 if (!ctx
->is_active
)
2001 raw_spin_lock(&ctx
->lock
);
2002 update_context_time(ctx
);
2004 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
2008 * set current task's cgroup time reference point
2010 perf_cgroup_set_timestamp(current
, ctx
);
2012 __perf_event_mark_enabled(event
);
2014 if (!event_filter_match(event
)) {
2015 if (is_cgroup_event(event
))
2016 perf_cgroup_defer_enabled(event
);
2021 * If the event is in a group and isn't the group leader,
2022 * then don't put it on unless the group is on.
2024 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
2027 if (!group_can_go_on(event
, cpuctx
, 1)) {
2030 if (event
== leader
)
2031 err
= group_sched_in(event
, cpuctx
, ctx
);
2033 err
= event_sched_in(event
, cpuctx
, ctx
);
2038 * If this event can't go on and it's part of a
2039 * group, then the whole group has to come off.
2041 if (leader
!= event
) {
2042 group_sched_out(leader
, cpuctx
, ctx
);
2043 perf_cpu_hrtimer_restart(cpuctx
);
2045 if (leader
->attr
.pinned
) {
2046 update_group_times(leader
);
2047 leader
->state
= PERF_EVENT_STATE_ERROR
;
2052 raw_spin_unlock(&ctx
->lock
);
2060 * If event->ctx is a cloned context, callers must make sure that
2061 * every task struct that event->ctx->task could possibly point to
2062 * remains valid. This condition is satisfied when called through
2063 * perf_event_for_each_child or perf_event_for_each as described
2064 * for perf_event_disable.
2066 void perf_event_enable(struct perf_event
*event
)
2068 struct perf_event_context
*ctx
= event
->ctx
;
2069 struct task_struct
*task
= ctx
->task
;
2073 * Enable the event on the cpu that it's on
2075 cpu_function_call(event
->cpu
, __perf_event_enable
, event
);
2079 raw_spin_lock_irq(&ctx
->lock
);
2080 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
2084 * If the event is in error state, clear that first.
2085 * That way, if we see the event in error state below, we
2086 * know that it has gone back into error state, as distinct
2087 * from the task having been scheduled away before the
2088 * cross-call arrived.
2090 if (event
->state
== PERF_EVENT_STATE_ERROR
)
2091 event
->state
= PERF_EVENT_STATE_OFF
;
2094 if (!ctx
->is_active
) {
2095 __perf_event_mark_enabled(event
);
2099 raw_spin_unlock_irq(&ctx
->lock
);
2101 if (!task_function_call(task
, __perf_event_enable
, event
))
2104 raw_spin_lock_irq(&ctx
->lock
);
2107 * If the context is active and the event is still off,
2108 * we need to retry the cross-call.
2110 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
) {
2112 * task could have been flipped by a concurrent
2113 * perf_event_context_sched_out()
2120 raw_spin_unlock_irq(&ctx
->lock
);
2122 EXPORT_SYMBOL_GPL(perf_event_enable
);
2124 int perf_event_refresh(struct perf_event
*event
, int refresh
)
2127 * not supported on inherited events
2129 if (event
->attr
.inherit
|| !is_sampling_event(event
))
2132 atomic_add(refresh
, &event
->event_limit
);
2133 perf_event_enable(event
);
2137 EXPORT_SYMBOL_GPL(perf_event_refresh
);
2139 static void ctx_sched_out(struct perf_event_context
*ctx
,
2140 struct perf_cpu_context
*cpuctx
,
2141 enum event_type_t event_type
)
2143 struct perf_event
*event
;
2144 int is_active
= ctx
->is_active
;
2146 ctx
->is_active
&= ~event_type
;
2147 if (likely(!ctx
->nr_events
))
2150 update_context_time(ctx
);
2151 update_cgrp_time_from_cpuctx(cpuctx
);
2152 if (!ctx
->nr_active
)
2155 perf_pmu_disable(ctx
->pmu
);
2156 if ((is_active
& EVENT_PINNED
) && (event_type
& EVENT_PINNED
)) {
2157 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
2158 group_sched_out(event
, cpuctx
, ctx
);
2161 if ((is_active
& EVENT_FLEXIBLE
) && (event_type
& EVENT_FLEXIBLE
)) {
2162 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
2163 group_sched_out(event
, cpuctx
, ctx
);
2165 perf_pmu_enable(ctx
->pmu
);
2169 * Test whether two contexts are equivalent, i.e. whether they have both been
2170 * cloned from the same version of the same context.
2172 * Equivalence is measured using a generation number in the context that is
2173 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2174 * and list_del_event().
2176 static int context_equiv(struct perf_event_context
*ctx1
,
2177 struct perf_event_context
*ctx2
)
2179 /* Pinning disables the swap optimization */
2180 if (ctx1
->pin_count
|| ctx2
->pin_count
)
2183 /* If ctx1 is the parent of ctx2 */
2184 if (ctx1
== ctx2
->parent_ctx
&& ctx1
->generation
== ctx2
->parent_gen
)
2187 /* If ctx2 is the parent of ctx1 */
2188 if (ctx1
->parent_ctx
== ctx2
&& ctx1
->parent_gen
== ctx2
->generation
)
2192 * If ctx1 and ctx2 have the same parent; we flatten the parent
2193 * hierarchy, see perf_event_init_context().
2195 if (ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
&&
2196 ctx1
->parent_gen
== ctx2
->parent_gen
)
2203 static void __perf_event_sync_stat(struct perf_event
*event
,
2204 struct perf_event
*next_event
)
2208 if (!event
->attr
.inherit_stat
)
2212 * Update the event value, we cannot use perf_event_read()
2213 * because we're in the middle of a context switch and have IRQs
2214 * disabled, which upsets smp_call_function_single(), however
2215 * we know the event must be on the current CPU, therefore we
2216 * don't need to use it.
2218 switch (event
->state
) {
2219 case PERF_EVENT_STATE_ACTIVE
:
2220 event
->pmu
->read(event
);
2223 case PERF_EVENT_STATE_INACTIVE
:
2224 update_event_times(event
);
2232 * In order to keep per-task stats reliable we need to flip the event
2233 * values when we flip the contexts.
2235 value
= local64_read(&next_event
->count
);
2236 value
= local64_xchg(&event
->count
, value
);
2237 local64_set(&next_event
->count
, value
);
2239 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
2240 swap(event
->total_time_running
, next_event
->total_time_running
);
2243 * Since we swizzled the values, update the user visible data too.
2245 perf_event_update_userpage(event
);
2246 perf_event_update_userpage(next_event
);
2249 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
2250 struct perf_event_context
*next_ctx
)
2252 struct perf_event
*event
, *next_event
;
2257 update_context_time(ctx
);
2259 event
= list_first_entry(&ctx
->event_list
,
2260 struct perf_event
, event_entry
);
2262 next_event
= list_first_entry(&next_ctx
->event_list
,
2263 struct perf_event
, event_entry
);
2265 while (&event
->event_entry
!= &ctx
->event_list
&&
2266 &next_event
->event_entry
!= &next_ctx
->event_list
) {
2268 __perf_event_sync_stat(event
, next_event
);
2270 event
= list_next_entry(event
, event_entry
);
2271 next_event
= list_next_entry(next_event
, event_entry
);
2275 static void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
2276 struct task_struct
*next
)
2278 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
2279 struct perf_event_context
*next_ctx
;
2280 struct perf_event_context
*parent
, *next_parent
;
2281 struct perf_cpu_context
*cpuctx
;
2287 cpuctx
= __get_cpu_context(ctx
);
2288 if (!cpuctx
->task_ctx
)
2292 next_ctx
= next
->perf_event_ctxp
[ctxn
];
2296 parent
= rcu_dereference(ctx
->parent_ctx
);
2297 next_parent
= rcu_dereference(next_ctx
->parent_ctx
);
2299 /* If neither context have a parent context; they cannot be clones. */
2300 if (!parent
&& !next_parent
)
2303 if (next_parent
== ctx
|| next_ctx
== parent
|| next_parent
== parent
) {
2305 * Looks like the two contexts are clones, so we might be
2306 * able to optimize the context switch. We lock both
2307 * contexts and check that they are clones under the
2308 * lock (including re-checking that neither has been
2309 * uncloned in the meantime). It doesn't matter which
2310 * order we take the locks because no other cpu could
2311 * be trying to lock both of these tasks.
2313 raw_spin_lock(&ctx
->lock
);
2314 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
2315 if (context_equiv(ctx
, next_ctx
)) {
2317 * XXX do we need a memory barrier of sorts
2318 * wrt to rcu_dereference() of perf_event_ctxp
2320 task
->perf_event_ctxp
[ctxn
] = next_ctx
;
2321 next
->perf_event_ctxp
[ctxn
] = ctx
;
2323 next_ctx
->task
= task
;
2326 perf_event_sync_stat(ctx
, next_ctx
);
2328 raw_spin_unlock(&next_ctx
->lock
);
2329 raw_spin_unlock(&ctx
->lock
);
2335 raw_spin_lock(&ctx
->lock
);
2336 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
2337 cpuctx
->task_ctx
= NULL
;
2338 raw_spin_unlock(&ctx
->lock
);
2342 #define for_each_task_context_nr(ctxn) \
2343 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2346 * Called from scheduler to remove the events of the current task,
2347 * with interrupts disabled.
2349 * We stop each event and update the event value in event->count.
2351 * This does not protect us against NMI, but disable()
2352 * sets the disabled bit in the control field of event _before_
2353 * accessing the event control register. If a NMI hits, then it will
2354 * not restart the event.
2356 void __perf_event_task_sched_out(struct task_struct
*task
,
2357 struct task_struct
*next
)
2361 for_each_task_context_nr(ctxn
)
2362 perf_event_context_sched_out(task
, ctxn
, next
);
2365 * if cgroup events exist on this CPU, then we need
2366 * to check if we have to switch out PMU state.
2367 * cgroup event are system-wide mode only
2369 if (atomic_read(&__get_cpu_var(perf_cgroup_events
)))
2370 perf_cgroup_sched_out(task
, next
);
2373 static void task_ctx_sched_out(struct perf_event_context
*ctx
)
2375 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2377 if (!cpuctx
->task_ctx
)
2380 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
2383 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
2384 cpuctx
->task_ctx
= NULL
;
2388 * Called with IRQs disabled
2390 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
2391 enum event_type_t event_type
)
2393 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
2397 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
2398 struct perf_cpu_context
*cpuctx
)
2400 struct perf_event
*event
;
2402 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
2403 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2405 if (!event_filter_match(event
))
2408 /* may need to reset tstamp_enabled */
2409 if (is_cgroup_event(event
))
2410 perf_cgroup_mark_enabled(event
, ctx
);
2412 if (group_can_go_on(event
, cpuctx
, 1))
2413 group_sched_in(event
, cpuctx
, ctx
);
2416 * If this pinned group hasn't been scheduled,
2417 * put it in error state.
2419 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
2420 update_group_times(event
);
2421 event
->state
= PERF_EVENT_STATE_ERROR
;
2427 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
2428 struct perf_cpu_context
*cpuctx
)
2430 struct perf_event
*event
;
2433 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
2434 /* Ignore events in OFF or ERROR state */
2435 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2438 * Listen to the 'cpu' scheduling filter constraint
2441 if (!event_filter_match(event
))
2444 /* may need to reset tstamp_enabled */
2445 if (is_cgroup_event(event
))
2446 perf_cgroup_mark_enabled(event
, ctx
);
2448 if (group_can_go_on(event
, cpuctx
, can_add_hw
)) {
2449 if (group_sched_in(event
, cpuctx
, ctx
))
2456 ctx_sched_in(struct perf_event_context
*ctx
,
2457 struct perf_cpu_context
*cpuctx
,
2458 enum event_type_t event_type
,
2459 struct task_struct
*task
)
2462 int is_active
= ctx
->is_active
;
2464 ctx
->is_active
|= event_type
;
2465 if (likely(!ctx
->nr_events
))
2469 ctx
->timestamp
= now
;
2470 perf_cgroup_set_timestamp(task
, ctx
);
2472 * First go through the list and put on any pinned groups
2473 * in order to give them the best chance of going on.
2475 if (!(is_active
& EVENT_PINNED
) && (event_type
& EVENT_PINNED
))
2476 ctx_pinned_sched_in(ctx
, cpuctx
);
2478 /* Then walk through the lower prio flexible groups */
2479 if (!(is_active
& EVENT_FLEXIBLE
) && (event_type
& EVENT_FLEXIBLE
))
2480 ctx_flexible_sched_in(ctx
, cpuctx
);
2483 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
2484 enum event_type_t event_type
,
2485 struct task_struct
*task
)
2487 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
2489 ctx_sched_in(ctx
, cpuctx
, event_type
, task
);
2492 static void perf_event_context_sched_in(struct perf_event_context
*ctx
,
2493 struct task_struct
*task
)
2495 struct perf_cpu_context
*cpuctx
;
2497 cpuctx
= __get_cpu_context(ctx
);
2498 if (cpuctx
->task_ctx
== ctx
)
2501 perf_ctx_lock(cpuctx
, ctx
);
2502 perf_pmu_disable(ctx
->pmu
);
2504 * We want to keep the following priority order:
2505 * cpu pinned (that don't need to move), task pinned,
2506 * cpu flexible, task flexible.
2508 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2511 cpuctx
->task_ctx
= ctx
;
2513 perf_event_sched_in(cpuctx
, cpuctx
->task_ctx
, task
);
2515 perf_pmu_enable(ctx
->pmu
);
2516 perf_ctx_unlock(cpuctx
, ctx
);
2519 * Since these rotations are per-cpu, we need to ensure the
2520 * cpu-context we got scheduled on is actually rotating.
2522 perf_pmu_rotate_start(ctx
->pmu
);
2526 * When sampling the branck stack in system-wide, it may be necessary
2527 * to flush the stack on context switch. This happens when the branch
2528 * stack does not tag its entries with the pid of the current task.
2529 * Otherwise it becomes impossible to associate a branch entry with a
2530 * task. This ambiguity is more likely to appear when the branch stack
2531 * supports priv level filtering and the user sets it to monitor only
2532 * at the user level (which could be a useful measurement in system-wide
2533 * mode). In that case, the risk is high of having a branch stack with
2534 * branch from multiple tasks. Flushing may mean dropping the existing
2535 * entries or stashing them somewhere in the PMU specific code layer.
2537 * This function provides the context switch callback to the lower code
2538 * layer. It is invoked ONLY when there is at least one system-wide context
2539 * with at least one active event using taken branch sampling.
2541 static void perf_branch_stack_sched_in(struct task_struct
*prev
,
2542 struct task_struct
*task
)
2544 struct perf_cpu_context
*cpuctx
;
2546 unsigned long flags
;
2548 /* no need to flush branch stack if not changing task */
2552 local_irq_save(flags
);
2556 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
2557 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
2560 * check if the context has at least one
2561 * event using PERF_SAMPLE_BRANCH_STACK
2563 if (cpuctx
->ctx
.nr_branch_stack
> 0
2564 && pmu
->flush_branch_stack
) {
2566 pmu
= cpuctx
->ctx
.pmu
;
2568 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
2570 perf_pmu_disable(pmu
);
2572 pmu
->flush_branch_stack();
2574 perf_pmu_enable(pmu
);
2576 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
2582 local_irq_restore(flags
);
2586 * Called from scheduler to add the events of the current task
2587 * with interrupts disabled.
2589 * We restore the event value and then enable it.
2591 * This does not protect us against NMI, but enable()
2592 * sets the enabled bit in the control field of event _before_
2593 * accessing the event control register. If a NMI hits, then it will
2594 * keep the event running.
2596 void __perf_event_task_sched_in(struct task_struct
*prev
,
2597 struct task_struct
*task
)
2599 struct perf_event_context
*ctx
;
2602 for_each_task_context_nr(ctxn
) {
2603 ctx
= task
->perf_event_ctxp
[ctxn
];
2607 perf_event_context_sched_in(ctx
, task
);
2610 * if cgroup events exist on this CPU, then we need
2611 * to check if we have to switch in PMU state.
2612 * cgroup event are system-wide mode only
2614 if (atomic_read(&__get_cpu_var(perf_cgroup_events
)))
2615 perf_cgroup_sched_in(prev
, task
);
2617 /* check for system-wide branch_stack events */
2618 if (atomic_read(&__get_cpu_var(perf_branch_stack_events
)))
2619 perf_branch_stack_sched_in(prev
, task
);
2622 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
2624 u64 frequency
= event
->attr
.sample_freq
;
2625 u64 sec
= NSEC_PER_SEC
;
2626 u64 divisor
, dividend
;
2628 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
2630 count_fls
= fls64(count
);
2631 nsec_fls
= fls64(nsec
);
2632 frequency_fls
= fls64(frequency
);
2636 * We got @count in @nsec, with a target of sample_freq HZ
2637 * the target period becomes:
2640 * period = -------------------
2641 * @nsec * sample_freq
2646 * Reduce accuracy by one bit such that @a and @b converge
2647 * to a similar magnitude.
2649 #define REDUCE_FLS(a, b) \
2651 if (a##_fls > b##_fls) { \
2661 * Reduce accuracy until either term fits in a u64, then proceed with
2662 * the other, so that finally we can do a u64/u64 division.
2664 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
2665 REDUCE_FLS(nsec
, frequency
);
2666 REDUCE_FLS(sec
, count
);
2669 if (count_fls
+ sec_fls
> 64) {
2670 divisor
= nsec
* frequency
;
2672 while (count_fls
+ sec_fls
> 64) {
2673 REDUCE_FLS(count
, sec
);
2677 dividend
= count
* sec
;
2679 dividend
= count
* sec
;
2681 while (nsec_fls
+ frequency_fls
> 64) {
2682 REDUCE_FLS(nsec
, frequency
);
2686 divisor
= nsec
* frequency
;
2692 return div64_u64(dividend
, divisor
);
2695 static DEFINE_PER_CPU(int, perf_throttled_count
);
2696 static DEFINE_PER_CPU(u64
, perf_throttled_seq
);
2698 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
, bool disable
)
2700 struct hw_perf_event
*hwc
= &event
->hw
;
2701 s64 period
, sample_period
;
2704 period
= perf_calculate_period(event
, nsec
, count
);
2706 delta
= (s64
)(period
- hwc
->sample_period
);
2707 delta
= (delta
+ 7) / 8; /* low pass filter */
2709 sample_period
= hwc
->sample_period
+ delta
;
2714 hwc
->sample_period
= sample_period
;
2716 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
2718 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2720 local64_set(&hwc
->period_left
, 0);
2723 event
->pmu
->start(event
, PERF_EF_RELOAD
);
2728 * combine freq adjustment with unthrottling to avoid two passes over the
2729 * events. At the same time, make sure, having freq events does not change
2730 * the rate of unthrottling as that would introduce bias.
2732 static void perf_adjust_freq_unthr_context(struct perf_event_context
*ctx
,
2735 struct perf_event
*event
;
2736 struct hw_perf_event
*hwc
;
2737 u64 now
, period
= TICK_NSEC
;
2741 * only need to iterate over all events iff:
2742 * - context have events in frequency mode (needs freq adjust)
2743 * - there are events to unthrottle on this cpu
2745 if (!(ctx
->nr_freq
|| needs_unthr
))
2748 raw_spin_lock(&ctx
->lock
);
2749 perf_pmu_disable(ctx
->pmu
);
2751 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
2752 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2755 if (!event_filter_match(event
))
2758 perf_pmu_disable(event
->pmu
);
2762 if (hwc
->interrupts
== MAX_INTERRUPTS
) {
2763 hwc
->interrupts
= 0;
2764 perf_log_throttle(event
, 1);
2765 event
->pmu
->start(event
, 0);
2768 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
2772 * stop the event and update event->count
2774 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2776 now
= local64_read(&event
->count
);
2777 delta
= now
- hwc
->freq_count_stamp
;
2778 hwc
->freq_count_stamp
= now
;
2782 * reload only if value has changed
2783 * we have stopped the event so tell that
2784 * to perf_adjust_period() to avoid stopping it
2788 perf_adjust_period(event
, period
, delta
, false);
2790 event
->pmu
->start(event
, delta
> 0 ? PERF_EF_RELOAD
: 0);
2792 perf_pmu_enable(event
->pmu
);
2795 perf_pmu_enable(ctx
->pmu
);
2796 raw_spin_unlock(&ctx
->lock
);
2800 * Round-robin a context's events:
2802 static void rotate_ctx(struct perf_event_context
*ctx
)
2805 * Rotate the first entry last of non-pinned groups. Rotation might be
2806 * disabled by the inheritance code.
2808 if (!ctx
->rotate_disable
)
2809 list_rotate_left(&ctx
->flexible_groups
);
2813 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2814 * because they're strictly cpu affine and rotate_start is called with IRQs
2815 * disabled, while rotate_context is called from IRQ context.
2817 static int perf_rotate_context(struct perf_cpu_context
*cpuctx
)
2819 struct perf_event_context
*ctx
= NULL
;
2820 int rotate
= 0, remove
= 1;
2822 if (cpuctx
->ctx
.nr_events
) {
2824 if (cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
2828 ctx
= cpuctx
->task_ctx
;
2829 if (ctx
&& ctx
->nr_events
) {
2831 if (ctx
->nr_events
!= ctx
->nr_active
)
2838 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
2839 perf_pmu_disable(cpuctx
->ctx
.pmu
);
2841 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2843 ctx_sched_out(ctx
, cpuctx
, EVENT_FLEXIBLE
);
2845 rotate_ctx(&cpuctx
->ctx
);
2849 perf_event_sched_in(cpuctx
, ctx
, current
);
2851 perf_pmu_enable(cpuctx
->ctx
.pmu
);
2852 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
2855 list_del_init(&cpuctx
->rotation_list
);
2860 #ifdef CONFIG_NO_HZ_FULL
2861 bool perf_event_can_stop_tick(void)
2863 if (atomic_read(&nr_freq_events
) ||
2864 __this_cpu_read(perf_throttled_count
))
2871 void perf_event_task_tick(void)
2873 struct list_head
*head
= &__get_cpu_var(rotation_list
);
2874 struct perf_cpu_context
*cpuctx
, *tmp
;
2875 struct perf_event_context
*ctx
;
2878 WARN_ON(!irqs_disabled());
2880 __this_cpu_inc(perf_throttled_seq
);
2881 throttled
= __this_cpu_xchg(perf_throttled_count
, 0);
2883 list_for_each_entry_safe(cpuctx
, tmp
, head
, rotation_list
) {
2885 perf_adjust_freq_unthr_context(ctx
, throttled
);
2887 ctx
= cpuctx
->task_ctx
;
2889 perf_adjust_freq_unthr_context(ctx
, throttled
);
2893 static int event_enable_on_exec(struct perf_event
*event
,
2894 struct perf_event_context
*ctx
)
2896 if (!event
->attr
.enable_on_exec
)
2899 event
->attr
.enable_on_exec
= 0;
2900 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
2903 __perf_event_mark_enabled(event
);
2909 * Enable all of a task's events that have been marked enable-on-exec.
2910 * This expects task == current.
2912 static void perf_event_enable_on_exec(struct perf_event_context
*ctx
)
2914 struct perf_event
*event
;
2915 unsigned long flags
;
2919 local_irq_save(flags
);
2920 if (!ctx
|| !ctx
->nr_events
)
2924 * We must ctxsw out cgroup events to avoid conflict
2925 * when invoking perf_task_event_sched_in() later on
2926 * in this function. Otherwise we end up trying to
2927 * ctxswin cgroup events which are already scheduled
2930 perf_cgroup_sched_out(current
, NULL
);
2932 raw_spin_lock(&ctx
->lock
);
2933 task_ctx_sched_out(ctx
);
2935 list_for_each_entry(event
, &ctx
->event_list
, event_entry
) {
2936 ret
= event_enable_on_exec(event
, ctx
);
2942 * Unclone this context if we enabled any event.
2947 raw_spin_unlock(&ctx
->lock
);
2950 * Also calls ctxswin for cgroup events, if any:
2952 perf_event_context_sched_in(ctx
, ctx
->task
);
2954 local_irq_restore(flags
);
2958 * Cross CPU call to read the hardware event
2960 static void __perf_event_read(void *info
)
2962 struct perf_event
*event
= info
;
2963 struct perf_event_context
*ctx
= event
->ctx
;
2964 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2967 * If this is a task context, we need to check whether it is
2968 * the current task context of this cpu. If not it has been
2969 * scheduled out before the smp call arrived. In that case
2970 * event->count would have been updated to a recent sample
2971 * when the event was scheduled out.
2973 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
2976 raw_spin_lock(&ctx
->lock
);
2977 if (ctx
->is_active
) {
2978 update_context_time(ctx
);
2979 update_cgrp_time_from_event(event
);
2981 update_event_times(event
);
2982 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
2983 event
->pmu
->read(event
);
2984 raw_spin_unlock(&ctx
->lock
);
2987 static inline u64
perf_event_count(struct perf_event
*event
)
2989 return local64_read(&event
->count
) + atomic64_read(&event
->child_count
);
2992 static u64
perf_event_read(struct perf_event
*event
)
2995 * If event is enabled and currently active on a CPU, update the
2996 * value in the event structure:
2998 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
2999 smp_call_function_single(event
->oncpu
,
3000 __perf_event_read
, event
, 1);
3001 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
3002 struct perf_event_context
*ctx
= event
->ctx
;
3003 unsigned long flags
;
3005 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
3007 * may read while context is not active
3008 * (e.g., thread is blocked), in that case
3009 * we cannot update context time
3011 if (ctx
->is_active
) {
3012 update_context_time(ctx
);
3013 update_cgrp_time_from_event(event
);
3015 update_event_times(event
);
3016 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
3019 return perf_event_count(event
);
3023 * Initialize the perf_event context in a task_struct:
3025 static void __perf_event_init_context(struct perf_event_context
*ctx
)
3027 raw_spin_lock_init(&ctx
->lock
);
3028 mutex_init(&ctx
->mutex
);
3029 INIT_LIST_HEAD(&ctx
->pinned_groups
);
3030 INIT_LIST_HEAD(&ctx
->flexible_groups
);
3031 INIT_LIST_HEAD(&ctx
->event_list
);
3032 atomic_set(&ctx
->refcount
, 1);
3035 static struct perf_event_context
*
3036 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
3038 struct perf_event_context
*ctx
;
3040 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
3044 __perf_event_init_context(ctx
);
3047 get_task_struct(task
);
3054 static struct task_struct
*
3055 find_lively_task_by_vpid(pid_t vpid
)
3057 struct task_struct
*task
;
3064 task
= find_task_by_vpid(vpid
);
3066 get_task_struct(task
);
3070 return ERR_PTR(-ESRCH
);
3072 /* Reuse ptrace permission checks for now. */
3074 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
3079 put_task_struct(task
);
3080 return ERR_PTR(err
);
3085 * Returns a matching context with refcount and pincount.
3087 static struct perf_event_context
*
3088 find_get_context(struct pmu
*pmu
, struct task_struct
*task
, int cpu
)
3090 struct perf_event_context
*ctx
;
3091 struct perf_cpu_context
*cpuctx
;
3092 unsigned long flags
;
3096 /* Must be root to operate on a CPU event: */
3097 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
3098 return ERR_PTR(-EACCES
);
3101 * We could be clever and allow to attach a event to an
3102 * offline CPU and activate it when the CPU comes up, but
3105 if (!cpu_online(cpu
))
3106 return ERR_PTR(-ENODEV
);
3108 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
3117 ctxn
= pmu
->task_ctx_nr
;
3122 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
3126 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
3128 ctx
= alloc_perf_context(pmu
, task
);
3134 mutex_lock(&task
->perf_event_mutex
);
3136 * If it has already passed perf_event_exit_task().
3137 * we must see PF_EXITING, it takes this mutex too.
3139 if (task
->flags
& PF_EXITING
)
3141 else if (task
->perf_event_ctxp
[ctxn
])
3146 rcu_assign_pointer(task
->perf_event_ctxp
[ctxn
], ctx
);
3148 mutex_unlock(&task
->perf_event_mutex
);
3150 if (unlikely(err
)) {
3162 return ERR_PTR(err
);
3165 static void perf_event_free_filter(struct perf_event
*event
);
3167 static void free_event_rcu(struct rcu_head
*head
)
3169 struct perf_event
*event
;
3171 event
= container_of(head
, struct perf_event
, rcu_head
);
3173 put_pid_ns(event
->ns
);
3174 perf_event_free_filter(event
);
3178 static void ring_buffer_put(struct ring_buffer
*rb
);
3179 static void ring_buffer_detach(struct perf_event
*event
, struct ring_buffer
*rb
);
3181 static void unaccount_event_cpu(struct perf_event
*event
, int cpu
)
3186 if (has_branch_stack(event
)) {
3187 if (!(event
->attach_state
& PERF_ATTACH_TASK
))
3188 atomic_dec(&per_cpu(perf_branch_stack_events
, cpu
));
3190 if (is_cgroup_event(event
))
3191 atomic_dec(&per_cpu(perf_cgroup_events
, cpu
));
3194 static void unaccount_event(struct perf_event
*event
)
3199 if (event
->attach_state
& PERF_ATTACH_TASK
)
3200 static_key_slow_dec_deferred(&perf_sched_events
);
3201 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
3202 atomic_dec(&nr_mmap_events
);
3203 if (event
->attr
.comm
)
3204 atomic_dec(&nr_comm_events
);
3205 if (event
->attr
.task
)
3206 atomic_dec(&nr_task_events
);
3207 if (event
->attr
.freq
)
3208 atomic_dec(&nr_freq_events
);
3209 if (is_cgroup_event(event
))
3210 static_key_slow_dec_deferred(&perf_sched_events
);
3211 if (has_branch_stack(event
))
3212 static_key_slow_dec_deferred(&perf_sched_events
);
3214 unaccount_event_cpu(event
, event
->cpu
);
3217 static void __free_event(struct perf_event
*event
)
3219 if (!event
->parent
) {
3220 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
3221 put_callchain_buffers();
3225 event
->destroy(event
);
3228 put_ctx(event
->ctx
);
3230 call_rcu(&event
->rcu_head
, free_event_rcu
);
3232 static void free_event(struct perf_event
*event
)
3234 irq_work_sync(&event
->pending
);
3236 unaccount_event(event
);
3239 struct ring_buffer
*rb
;
3242 * Can happen when we close an event with re-directed output.
3244 * Since we have a 0 refcount, perf_mmap_close() will skip
3245 * over us; possibly making our ring_buffer_put() the last.
3247 mutex_lock(&event
->mmap_mutex
);
3250 rcu_assign_pointer(event
->rb
, NULL
);
3251 ring_buffer_detach(event
, rb
);
3252 ring_buffer_put(rb
); /* could be last */
3254 mutex_unlock(&event
->mmap_mutex
);
3257 if (is_cgroup_event(event
))
3258 perf_detach_cgroup(event
);
3261 __free_event(event
);
3264 int perf_event_release_kernel(struct perf_event
*event
)
3266 struct perf_event_context
*ctx
= event
->ctx
;
3268 WARN_ON_ONCE(ctx
->parent_ctx
);
3270 * There are two ways this annotation is useful:
3272 * 1) there is a lock recursion from perf_event_exit_task
3273 * see the comment there.
3275 * 2) there is a lock-inversion with mmap_sem through
3276 * perf_event_read_group(), which takes faults while
3277 * holding ctx->mutex, however this is called after
3278 * the last filedesc died, so there is no possibility
3279 * to trigger the AB-BA case.
3281 mutex_lock_nested(&ctx
->mutex
, SINGLE_DEPTH_NESTING
);
3282 raw_spin_lock_irq(&ctx
->lock
);
3283 perf_group_detach(event
);
3284 raw_spin_unlock_irq(&ctx
->lock
);
3285 perf_remove_from_context(event
);
3286 mutex_unlock(&ctx
->mutex
);
3292 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
3295 * Called when the last reference to the file is gone.
3297 static void put_event(struct perf_event
*event
)
3299 struct task_struct
*owner
;
3301 if (!atomic_long_dec_and_test(&event
->refcount
))
3305 owner
= ACCESS_ONCE(event
->owner
);
3307 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3308 * !owner it means the list deletion is complete and we can indeed
3309 * free this event, otherwise we need to serialize on
3310 * owner->perf_event_mutex.
3312 smp_read_barrier_depends();
3315 * Since delayed_put_task_struct() also drops the last
3316 * task reference we can safely take a new reference
3317 * while holding the rcu_read_lock().
3319 get_task_struct(owner
);
3324 mutex_lock(&owner
->perf_event_mutex
);
3326 * We have to re-check the event->owner field, if it is cleared
3327 * we raced with perf_event_exit_task(), acquiring the mutex
3328 * ensured they're done, and we can proceed with freeing the
3332 list_del_init(&event
->owner_entry
);
3333 mutex_unlock(&owner
->perf_event_mutex
);
3334 put_task_struct(owner
);
3337 perf_event_release_kernel(event
);
3340 static int perf_release(struct inode
*inode
, struct file
*file
)
3342 put_event(file
->private_data
);
3346 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
3348 struct perf_event
*child
;
3354 mutex_lock(&event
->child_mutex
);
3355 total
+= perf_event_read(event
);
3356 *enabled
+= event
->total_time_enabled
+
3357 atomic64_read(&event
->child_total_time_enabled
);
3358 *running
+= event
->total_time_running
+
3359 atomic64_read(&event
->child_total_time_running
);
3361 list_for_each_entry(child
, &event
->child_list
, child_list
) {
3362 total
+= perf_event_read(child
);
3363 *enabled
+= child
->total_time_enabled
;
3364 *running
+= child
->total_time_running
;
3366 mutex_unlock(&event
->child_mutex
);
3370 EXPORT_SYMBOL_GPL(perf_event_read_value
);
3372 static int perf_event_read_group(struct perf_event
*event
,
3373 u64 read_format
, char __user
*buf
)
3375 struct perf_event
*leader
= event
->group_leader
, *sub
;
3376 int n
= 0, size
= 0, ret
= -EFAULT
;
3377 struct perf_event_context
*ctx
= leader
->ctx
;
3379 u64 count
, enabled
, running
;
3381 mutex_lock(&ctx
->mutex
);
3382 count
= perf_event_read_value(leader
, &enabled
, &running
);
3384 values
[n
++] = 1 + leader
->nr_siblings
;
3385 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3386 values
[n
++] = enabled
;
3387 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3388 values
[n
++] = running
;
3389 values
[n
++] = count
;
3390 if (read_format
& PERF_FORMAT_ID
)
3391 values
[n
++] = primary_event_id(leader
);
3393 size
= n
* sizeof(u64
);
3395 if (copy_to_user(buf
, values
, size
))
3400 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
3403 values
[n
++] = perf_event_read_value(sub
, &enabled
, &running
);
3404 if (read_format
& PERF_FORMAT_ID
)
3405 values
[n
++] = primary_event_id(sub
);
3407 size
= n
* sizeof(u64
);
3409 if (copy_to_user(buf
+ ret
, values
, size
)) {
3417 mutex_unlock(&ctx
->mutex
);
3422 static int perf_event_read_one(struct perf_event
*event
,
3423 u64 read_format
, char __user
*buf
)
3425 u64 enabled
, running
;
3429 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
3430 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3431 values
[n
++] = enabled
;
3432 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3433 values
[n
++] = running
;
3434 if (read_format
& PERF_FORMAT_ID
)
3435 values
[n
++] = primary_event_id(event
);
3437 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
3440 return n
* sizeof(u64
);
3444 * Read the performance event - simple non blocking version for now
3447 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
3449 u64 read_format
= event
->attr
.read_format
;
3453 * Return end-of-file for a read on a event that is in
3454 * error state (i.e. because it was pinned but it couldn't be
3455 * scheduled on to the CPU at some point).
3457 if (event
->state
== PERF_EVENT_STATE_ERROR
)
3460 if (count
< event
->read_size
)
3463 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3464 if (read_format
& PERF_FORMAT_GROUP
)
3465 ret
= perf_event_read_group(event
, read_format
, buf
);
3467 ret
= perf_event_read_one(event
, read_format
, buf
);
3473 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
3475 struct perf_event
*event
= file
->private_data
;
3477 return perf_read_hw(event
, buf
, count
);
3480 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
3482 struct perf_event
*event
= file
->private_data
;
3483 struct ring_buffer
*rb
;
3484 unsigned int events
= POLL_HUP
;
3487 * Pin the event->rb by taking event->mmap_mutex; otherwise
3488 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3490 mutex_lock(&event
->mmap_mutex
);
3493 events
= atomic_xchg(&rb
->poll
, 0);
3494 mutex_unlock(&event
->mmap_mutex
);
3496 poll_wait(file
, &event
->waitq
, wait
);
3501 static void perf_event_reset(struct perf_event
*event
)
3503 (void)perf_event_read(event
);
3504 local64_set(&event
->count
, 0);
3505 perf_event_update_userpage(event
);
3509 * Holding the top-level event's child_mutex means that any
3510 * descendant process that has inherited this event will block
3511 * in sync_child_event if it goes to exit, thus satisfying the
3512 * task existence requirements of perf_event_enable/disable.
3514 static void perf_event_for_each_child(struct perf_event
*event
,
3515 void (*func
)(struct perf_event
*))
3517 struct perf_event
*child
;
3519 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3520 mutex_lock(&event
->child_mutex
);
3522 list_for_each_entry(child
, &event
->child_list
, child_list
)
3524 mutex_unlock(&event
->child_mutex
);
3527 static void perf_event_for_each(struct perf_event
*event
,
3528 void (*func
)(struct perf_event
*))
3530 struct perf_event_context
*ctx
= event
->ctx
;
3531 struct perf_event
*sibling
;
3533 WARN_ON_ONCE(ctx
->parent_ctx
);
3534 mutex_lock(&ctx
->mutex
);
3535 event
= event
->group_leader
;
3537 perf_event_for_each_child(event
, func
);
3538 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
3539 perf_event_for_each_child(sibling
, func
);
3540 mutex_unlock(&ctx
->mutex
);
3543 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
3545 struct perf_event_context
*ctx
= event
->ctx
;
3546 int ret
= 0, active
;
3549 if (!is_sampling_event(event
))
3552 if (copy_from_user(&value
, arg
, sizeof(value
)))
3558 raw_spin_lock_irq(&ctx
->lock
);
3559 if (event
->attr
.freq
) {
3560 if (value
> sysctl_perf_event_sample_rate
) {
3565 event
->attr
.sample_freq
= value
;
3567 event
->attr
.sample_period
= value
;
3568 event
->hw
.sample_period
= value
;
3571 active
= (event
->state
== PERF_EVENT_STATE_ACTIVE
);
3573 perf_pmu_disable(ctx
->pmu
);
3574 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3577 local64_set(&event
->hw
.period_left
, 0);
3580 event
->pmu
->start(event
, PERF_EF_RELOAD
);
3581 perf_pmu_enable(ctx
->pmu
);
3585 raw_spin_unlock_irq(&ctx
->lock
);
3590 static const struct file_operations perf_fops
;
3592 static inline int perf_fget_light(int fd
, struct fd
*p
)
3594 struct fd f
= fdget(fd
);
3598 if (f
.file
->f_op
!= &perf_fops
) {
3606 static int perf_event_set_output(struct perf_event
*event
,
3607 struct perf_event
*output_event
);
3608 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
3610 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
3612 struct perf_event
*event
= file
->private_data
;
3613 void (*func
)(struct perf_event
*);
3617 case PERF_EVENT_IOC_ENABLE
:
3618 func
= perf_event_enable
;
3620 case PERF_EVENT_IOC_DISABLE
:
3621 func
= perf_event_disable
;
3623 case PERF_EVENT_IOC_RESET
:
3624 func
= perf_event_reset
;
3627 case PERF_EVENT_IOC_REFRESH
:
3628 return perf_event_refresh(event
, arg
);
3630 case PERF_EVENT_IOC_PERIOD
:
3631 return perf_event_period(event
, (u64 __user
*)arg
);
3633 case PERF_EVENT_IOC_ID
:
3635 u64 id
= primary_event_id(event
);
3637 if (copy_to_user((void __user
*)arg
, &id
, sizeof(id
)))
3642 case PERF_EVENT_IOC_SET_OUTPUT
:
3646 struct perf_event
*output_event
;
3648 ret
= perf_fget_light(arg
, &output
);
3651 output_event
= output
.file
->private_data
;
3652 ret
= perf_event_set_output(event
, output_event
);
3655 ret
= perf_event_set_output(event
, NULL
);
3660 case PERF_EVENT_IOC_SET_FILTER
:
3661 return perf_event_set_filter(event
, (void __user
*)arg
);
3667 if (flags
& PERF_IOC_FLAG_GROUP
)
3668 perf_event_for_each(event
, func
);
3670 perf_event_for_each_child(event
, func
);
3675 int perf_event_task_enable(void)
3677 struct perf_event
*event
;
3679 mutex_lock(¤t
->perf_event_mutex
);
3680 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
3681 perf_event_for_each_child(event
, perf_event_enable
);
3682 mutex_unlock(¤t
->perf_event_mutex
);
3687 int perf_event_task_disable(void)
3689 struct perf_event
*event
;
3691 mutex_lock(¤t
->perf_event_mutex
);
3692 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
3693 perf_event_for_each_child(event
, perf_event_disable
);
3694 mutex_unlock(¤t
->perf_event_mutex
);
3699 static int perf_event_index(struct perf_event
*event
)
3701 if (event
->hw
.state
& PERF_HES_STOPPED
)
3704 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3707 return event
->pmu
->event_idx(event
);
3710 static void calc_timer_values(struct perf_event
*event
,
3717 *now
= perf_clock();
3718 ctx_time
= event
->shadow_ctx_time
+ *now
;
3719 *enabled
= ctx_time
- event
->tstamp_enabled
;
3720 *running
= ctx_time
- event
->tstamp_running
;
3723 static void perf_event_init_userpage(struct perf_event
*event
)
3725 struct perf_event_mmap_page
*userpg
;
3726 struct ring_buffer
*rb
;
3729 rb
= rcu_dereference(event
->rb
);
3733 userpg
= rb
->user_page
;
3735 /* Allow new userspace to detect that bit 0 is deprecated */
3736 userpg
->cap_bit0_is_deprecated
= 1;
3737 userpg
->size
= offsetof(struct perf_event_mmap_page
, __reserved
);
3743 void __weak
arch_perf_update_userpage(struct perf_event_mmap_page
*userpg
, u64 now
)
3748 * Callers need to ensure there can be no nesting of this function, otherwise
3749 * the seqlock logic goes bad. We can not serialize this because the arch
3750 * code calls this from NMI context.
3752 void perf_event_update_userpage(struct perf_event
*event
)
3754 struct perf_event_mmap_page
*userpg
;
3755 struct ring_buffer
*rb
;
3756 u64 enabled
, running
, now
;
3759 rb
= rcu_dereference(event
->rb
);
3764 * compute total_time_enabled, total_time_running
3765 * based on snapshot values taken when the event
3766 * was last scheduled in.
3768 * we cannot simply called update_context_time()
3769 * because of locking issue as we can be called in
3772 calc_timer_values(event
, &now
, &enabled
, &running
);
3774 userpg
= rb
->user_page
;
3776 * Disable preemption so as to not let the corresponding user-space
3777 * spin too long if we get preempted.
3782 userpg
->index
= perf_event_index(event
);
3783 userpg
->offset
= perf_event_count(event
);
3785 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
3787 userpg
->time_enabled
= enabled
+
3788 atomic64_read(&event
->child_total_time_enabled
);
3790 userpg
->time_running
= running
+
3791 atomic64_read(&event
->child_total_time_running
);
3793 arch_perf_update_userpage(userpg
, now
);
3802 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
3804 struct perf_event
*event
= vma
->vm_file
->private_data
;
3805 struct ring_buffer
*rb
;
3806 int ret
= VM_FAULT_SIGBUS
;
3808 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
3809 if (vmf
->pgoff
== 0)
3815 rb
= rcu_dereference(event
->rb
);
3819 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
3822 vmf
->page
= perf_mmap_to_page(rb
, vmf
->pgoff
);
3826 get_page(vmf
->page
);
3827 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
3828 vmf
->page
->index
= vmf
->pgoff
;
3837 static void ring_buffer_attach(struct perf_event
*event
,
3838 struct ring_buffer
*rb
)
3840 unsigned long flags
;
3842 if (!list_empty(&event
->rb_entry
))
3845 spin_lock_irqsave(&rb
->event_lock
, flags
);
3846 if (list_empty(&event
->rb_entry
))
3847 list_add(&event
->rb_entry
, &rb
->event_list
);
3848 spin_unlock_irqrestore(&rb
->event_lock
, flags
);
3851 static void ring_buffer_detach(struct perf_event
*event
, struct ring_buffer
*rb
)
3853 unsigned long flags
;
3855 if (list_empty(&event
->rb_entry
))
3858 spin_lock_irqsave(&rb
->event_lock
, flags
);
3859 list_del_init(&event
->rb_entry
);
3860 wake_up_all(&event
->waitq
);
3861 spin_unlock_irqrestore(&rb
->event_lock
, flags
);
3864 static void ring_buffer_wakeup(struct perf_event
*event
)
3866 struct ring_buffer
*rb
;
3869 rb
= rcu_dereference(event
->rb
);
3871 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
)
3872 wake_up_all(&event
->waitq
);
3877 static void rb_free_rcu(struct rcu_head
*rcu_head
)
3879 struct ring_buffer
*rb
;
3881 rb
= container_of(rcu_head
, struct ring_buffer
, rcu_head
);
3885 static struct ring_buffer
*ring_buffer_get(struct perf_event
*event
)
3887 struct ring_buffer
*rb
;
3890 rb
= rcu_dereference(event
->rb
);
3892 if (!atomic_inc_not_zero(&rb
->refcount
))
3900 static void ring_buffer_put(struct ring_buffer
*rb
)
3902 if (!atomic_dec_and_test(&rb
->refcount
))
3905 WARN_ON_ONCE(!list_empty(&rb
->event_list
));
3907 call_rcu(&rb
->rcu_head
, rb_free_rcu
);
3910 static void perf_mmap_open(struct vm_area_struct
*vma
)
3912 struct perf_event
*event
= vma
->vm_file
->private_data
;
3914 atomic_inc(&event
->mmap_count
);
3915 atomic_inc(&event
->rb
->mmap_count
);
3919 * A buffer can be mmap()ed multiple times; either directly through the same
3920 * event, or through other events by use of perf_event_set_output().
3922 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3923 * the buffer here, where we still have a VM context. This means we need
3924 * to detach all events redirecting to us.
3926 static void perf_mmap_close(struct vm_area_struct
*vma
)
3928 struct perf_event
*event
= vma
->vm_file
->private_data
;
3930 struct ring_buffer
*rb
= event
->rb
;
3931 struct user_struct
*mmap_user
= rb
->mmap_user
;
3932 int mmap_locked
= rb
->mmap_locked
;
3933 unsigned long size
= perf_data_size(rb
);
3935 atomic_dec(&rb
->mmap_count
);
3937 if (!atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
))
3940 /* Detach current event from the buffer. */
3941 rcu_assign_pointer(event
->rb
, NULL
);
3942 ring_buffer_detach(event
, rb
);
3943 mutex_unlock(&event
->mmap_mutex
);
3945 /* If there's still other mmap()s of this buffer, we're done. */
3946 if (atomic_read(&rb
->mmap_count
)) {
3947 ring_buffer_put(rb
); /* can't be last */
3952 * No other mmap()s, detach from all other events that might redirect
3953 * into the now unreachable buffer. Somewhat complicated by the
3954 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3958 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
) {
3959 if (!atomic_long_inc_not_zero(&event
->refcount
)) {
3961 * This event is en-route to free_event() which will
3962 * detach it and remove it from the list.
3968 mutex_lock(&event
->mmap_mutex
);
3970 * Check we didn't race with perf_event_set_output() which can
3971 * swizzle the rb from under us while we were waiting to
3972 * acquire mmap_mutex.
3974 * If we find a different rb; ignore this event, a next
3975 * iteration will no longer find it on the list. We have to
3976 * still restart the iteration to make sure we're not now
3977 * iterating the wrong list.
3979 if (event
->rb
== rb
) {
3980 rcu_assign_pointer(event
->rb
, NULL
);
3981 ring_buffer_detach(event
, rb
);
3982 ring_buffer_put(rb
); /* can't be last, we still have one */
3984 mutex_unlock(&event
->mmap_mutex
);
3988 * Restart the iteration; either we're on the wrong list or
3989 * destroyed its integrity by doing a deletion.
3996 * It could be there's still a few 0-ref events on the list; they'll
3997 * get cleaned up by free_event() -- they'll also still have their
3998 * ref on the rb and will free it whenever they are done with it.
4000 * Aside from that, this buffer is 'fully' detached and unmapped,
4001 * undo the VM accounting.
4004 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &mmap_user
->locked_vm
);
4005 vma
->vm_mm
->pinned_vm
-= mmap_locked
;
4006 free_uid(mmap_user
);
4008 ring_buffer_put(rb
); /* could be last */
4011 static const struct vm_operations_struct perf_mmap_vmops
= {
4012 .open
= perf_mmap_open
,
4013 .close
= perf_mmap_close
,
4014 .fault
= perf_mmap_fault
,
4015 .page_mkwrite
= perf_mmap_fault
,
4018 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
4020 struct perf_event
*event
= file
->private_data
;
4021 unsigned long user_locked
, user_lock_limit
;
4022 struct user_struct
*user
= current_user();
4023 unsigned long locked
, lock_limit
;
4024 struct ring_buffer
*rb
;
4025 unsigned long vma_size
;
4026 unsigned long nr_pages
;
4027 long user_extra
, extra
;
4028 int ret
= 0, flags
= 0;
4031 * Don't allow mmap() of inherited per-task counters. This would
4032 * create a performance issue due to all children writing to the
4035 if (event
->cpu
== -1 && event
->attr
.inherit
)
4038 if (!(vma
->vm_flags
& VM_SHARED
))
4041 vma_size
= vma
->vm_end
- vma
->vm_start
;
4042 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
4045 * If we have rb pages ensure they're a power-of-two number, so we
4046 * can do bitmasks instead of modulo.
4048 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
4051 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
4054 if (vma
->vm_pgoff
!= 0)
4057 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4059 mutex_lock(&event
->mmap_mutex
);
4061 if (event
->rb
->nr_pages
!= nr_pages
) {
4066 if (!atomic_inc_not_zero(&event
->rb
->mmap_count
)) {
4068 * Raced against perf_mmap_close() through
4069 * perf_event_set_output(). Try again, hope for better
4072 mutex_unlock(&event
->mmap_mutex
);
4079 user_extra
= nr_pages
+ 1;
4080 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
4083 * Increase the limit linearly with more CPUs:
4085 user_lock_limit
*= num_online_cpus();
4087 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
4090 if (user_locked
> user_lock_limit
)
4091 extra
= user_locked
- user_lock_limit
;
4093 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
4094 lock_limit
>>= PAGE_SHIFT
;
4095 locked
= vma
->vm_mm
->pinned_vm
+ extra
;
4097 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
4098 !capable(CAP_IPC_LOCK
)) {
4105 if (vma
->vm_flags
& VM_WRITE
)
4106 flags
|= RING_BUFFER_WRITABLE
;
4108 rb
= rb_alloc(nr_pages
,
4109 event
->attr
.watermark
? event
->attr
.wakeup_watermark
: 0,
4117 atomic_set(&rb
->mmap_count
, 1);
4118 rb
->mmap_locked
= extra
;
4119 rb
->mmap_user
= get_current_user();
4121 atomic_long_add(user_extra
, &user
->locked_vm
);
4122 vma
->vm_mm
->pinned_vm
+= extra
;
4124 ring_buffer_attach(event
, rb
);
4125 rcu_assign_pointer(event
->rb
, rb
);
4127 perf_event_init_userpage(event
);
4128 perf_event_update_userpage(event
);
4132 atomic_inc(&event
->mmap_count
);
4133 mutex_unlock(&event
->mmap_mutex
);
4136 * Since pinned accounting is per vm we cannot allow fork() to copy our
4139 vma
->vm_flags
|= VM_DONTCOPY
| VM_DONTEXPAND
| VM_DONTDUMP
;
4140 vma
->vm_ops
= &perf_mmap_vmops
;
4145 static int perf_fasync(int fd
, struct file
*filp
, int on
)
4147 struct inode
*inode
= file_inode(filp
);
4148 struct perf_event
*event
= filp
->private_data
;
4151 mutex_lock(&inode
->i_mutex
);
4152 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
4153 mutex_unlock(&inode
->i_mutex
);
4161 static const struct file_operations perf_fops
= {
4162 .llseek
= no_llseek
,
4163 .release
= perf_release
,
4166 .unlocked_ioctl
= perf_ioctl
,
4167 .compat_ioctl
= perf_ioctl
,
4169 .fasync
= perf_fasync
,
4175 * If there's data, ensure we set the poll() state and publish everything
4176 * to user-space before waking everybody up.
4179 void perf_event_wakeup(struct perf_event
*event
)
4181 ring_buffer_wakeup(event
);
4183 if (event
->pending_kill
) {
4184 kill_fasync(&event
->fasync
, SIGIO
, event
->pending_kill
);
4185 event
->pending_kill
= 0;
4189 static void perf_pending_event(struct irq_work
*entry
)
4191 struct perf_event
*event
= container_of(entry
,
4192 struct perf_event
, pending
);
4194 if (event
->pending_disable
) {
4195 event
->pending_disable
= 0;
4196 __perf_event_disable(event
);
4199 if (event
->pending_wakeup
) {
4200 event
->pending_wakeup
= 0;
4201 perf_event_wakeup(event
);
4206 * We assume there is only KVM supporting the callbacks.
4207 * Later on, we might change it to a list if there is
4208 * another virtualization implementation supporting the callbacks.
4210 struct perf_guest_info_callbacks
*perf_guest_cbs
;
4212 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
4214 perf_guest_cbs
= cbs
;
4217 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
4219 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
4221 perf_guest_cbs
= NULL
;
4224 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
4227 perf_output_sample_regs(struct perf_output_handle
*handle
,
4228 struct pt_regs
*regs
, u64 mask
)
4232 for_each_set_bit(bit
, (const unsigned long *) &mask
,
4233 sizeof(mask
) * BITS_PER_BYTE
) {
4236 val
= perf_reg_value(regs
, bit
);
4237 perf_output_put(handle
, val
);
4241 static void perf_sample_regs_user(struct perf_regs_user
*regs_user
,
4242 struct pt_regs
*regs
)
4244 if (!user_mode(regs
)) {
4246 regs
= task_pt_regs(current
);
4252 regs_user
->regs
= regs
;
4253 regs_user
->abi
= perf_reg_abi(current
);
4258 * Get remaining task size from user stack pointer.
4260 * It'd be better to take stack vma map and limit this more
4261 * precisly, but there's no way to get it safely under interrupt,
4262 * so using TASK_SIZE as limit.
4264 static u64
perf_ustack_task_size(struct pt_regs
*regs
)
4266 unsigned long addr
= perf_user_stack_pointer(regs
);
4268 if (!addr
|| addr
>= TASK_SIZE
)
4271 return TASK_SIZE
- addr
;
4275 perf_sample_ustack_size(u16 stack_size
, u16 header_size
,
4276 struct pt_regs
*regs
)
4280 /* No regs, no stack pointer, no dump. */
4285 * Check if we fit in with the requested stack size into the:
4287 * If we don't, we limit the size to the TASK_SIZE.
4289 * - remaining sample size
4290 * If we don't, we customize the stack size to
4291 * fit in to the remaining sample size.
4294 task_size
= min((u64
) USHRT_MAX
, perf_ustack_task_size(regs
));
4295 stack_size
= min(stack_size
, (u16
) task_size
);
4297 /* Current header size plus static size and dynamic size. */
4298 header_size
+= 2 * sizeof(u64
);
4300 /* Do we fit in with the current stack dump size? */
4301 if ((u16
) (header_size
+ stack_size
) < header_size
) {
4303 * If we overflow the maximum size for the sample,
4304 * we customize the stack dump size to fit in.
4306 stack_size
= USHRT_MAX
- header_size
- sizeof(u64
);
4307 stack_size
= round_up(stack_size
, sizeof(u64
));
4314 perf_output_sample_ustack(struct perf_output_handle
*handle
, u64 dump_size
,
4315 struct pt_regs
*regs
)
4317 /* Case of a kernel thread, nothing to dump */
4320 perf_output_put(handle
, size
);
4329 * - the size requested by user or the best one we can fit
4330 * in to the sample max size
4332 * - user stack dump data
4334 * - the actual dumped size
4338 perf_output_put(handle
, dump_size
);
4341 sp
= perf_user_stack_pointer(regs
);
4342 rem
= __output_copy_user(handle
, (void *) sp
, dump_size
);
4343 dyn_size
= dump_size
- rem
;
4345 perf_output_skip(handle
, rem
);
4348 perf_output_put(handle
, dyn_size
);
4352 static void __perf_event_header__init_id(struct perf_event_header
*header
,
4353 struct perf_sample_data
*data
,
4354 struct perf_event
*event
)
4356 u64 sample_type
= event
->attr
.sample_type
;
4358 data
->type
= sample_type
;
4359 header
->size
+= event
->id_header_size
;
4361 if (sample_type
& PERF_SAMPLE_TID
) {
4362 /* namespace issues */
4363 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
4364 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
4367 if (sample_type
& PERF_SAMPLE_TIME
)
4368 data
->time
= perf_clock();
4370 if (sample_type
& (PERF_SAMPLE_ID
| PERF_SAMPLE_IDENTIFIER
))
4371 data
->id
= primary_event_id(event
);
4373 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
4374 data
->stream_id
= event
->id
;
4376 if (sample_type
& PERF_SAMPLE_CPU
) {
4377 data
->cpu_entry
.cpu
= raw_smp_processor_id();
4378 data
->cpu_entry
.reserved
= 0;
4382 void perf_event_header__init_id(struct perf_event_header
*header
,
4383 struct perf_sample_data
*data
,
4384 struct perf_event
*event
)
4386 if (event
->attr
.sample_id_all
)
4387 __perf_event_header__init_id(header
, data
, event
);
4390 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
4391 struct perf_sample_data
*data
)
4393 u64 sample_type
= data
->type
;
4395 if (sample_type
& PERF_SAMPLE_TID
)
4396 perf_output_put(handle
, data
->tid_entry
);
4398 if (sample_type
& PERF_SAMPLE_TIME
)
4399 perf_output_put(handle
, data
->time
);
4401 if (sample_type
& PERF_SAMPLE_ID
)
4402 perf_output_put(handle
, data
->id
);
4404 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
4405 perf_output_put(handle
, data
->stream_id
);
4407 if (sample_type
& PERF_SAMPLE_CPU
)
4408 perf_output_put(handle
, data
->cpu_entry
);
4410 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
4411 perf_output_put(handle
, data
->id
);
4414 void perf_event__output_id_sample(struct perf_event
*event
,
4415 struct perf_output_handle
*handle
,
4416 struct perf_sample_data
*sample
)
4418 if (event
->attr
.sample_id_all
)
4419 __perf_event__output_id_sample(handle
, sample
);
4422 static void perf_output_read_one(struct perf_output_handle
*handle
,
4423 struct perf_event
*event
,
4424 u64 enabled
, u64 running
)
4426 u64 read_format
= event
->attr
.read_format
;
4430 values
[n
++] = perf_event_count(event
);
4431 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
4432 values
[n
++] = enabled
+
4433 atomic64_read(&event
->child_total_time_enabled
);
4435 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
4436 values
[n
++] = running
+
4437 atomic64_read(&event
->child_total_time_running
);
4439 if (read_format
& PERF_FORMAT_ID
)
4440 values
[n
++] = primary_event_id(event
);
4442 __output_copy(handle
, values
, n
* sizeof(u64
));
4446 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4448 static void perf_output_read_group(struct perf_output_handle
*handle
,
4449 struct perf_event
*event
,
4450 u64 enabled
, u64 running
)
4452 struct perf_event
*leader
= event
->group_leader
, *sub
;
4453 u64 read_format
= event
->attr
.read_format
;
4457 values
[n
++] = 1 + leader
->nr_siblings
;
4459 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
4460 values
[n
++] = enabled
;
4462 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
4463 values
[n
++] = running
;
4465 if (leader
!= event
)
4466 leader
->pmu
->read(leader
);
4468 values
[n
++] = perf_event_count(leader
);
4469 if (read_format
& PERF_FORMAT_ID
)
4470 values
[n
++] = primary_event_id(leader
);
4472 __output_copy(handle
, values
, n
* sizeof(u64
));
4474 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
4477 if ((sub
!= event
) &&
4478 (sub
->state
== PERF_EVENT_STATE_ACTIVE
))
4479 sub
->pmu
->read(sub
);
4481 values
[n
++] = perf_event_count(sub
);
4482 if (read_format
& PERF_FORMAT_ID
)
4483 values
[n
++] = primary_event_id(sub
);
4485 __output_copy(handle
, values
, n
* sizeof(u64
));
4489 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4490 PERF_FORMAT_TOTAL_TIME_RUNNING)
4492 static void perf_output_read(struct perf_output_handle
*handle
,
4493 struct perf_event
*event
)
4495 u64 enabled
= 0, running
= 0, now
;
4496 u64 read_format
= event
->attr
.read_format
;
4499 * compute total_time_enabled, total_time_running
4500 * based on snapshot values taken when the event
4501 * was last scheduled in.
4503 * we cannot simply called update_context_time()
4504 * because of locking issue as we are called in
4507 if (read_format
& PERF_FORMAT_TOTAL_TIMES
)
4508 calc_timer_values(event
, &now
, &enabled
, &running
);
4510 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
4511 perf_output_read_group(handle
, event
, enabled
, running
);
4513 perf_output_read_one(handle
, event
, enabled
, running
);
4516 void perf_output_sample(struct perf_output_handle
*handle
,
4517 struct perf_event_header
*header
,
4518 struct perf_sample_data
*data
,
4519 struct perf_event
*event
)
4521 u64 sample_type
= data
->type
;
4523 perf_output_put(handle
, *header
);
4525 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
4526 perf_output_put(handle
, data
->id
);
4528 if (sample_type
& PERF_SAMPLE_IP
)
4529 perf_output_put(handle
, data
->ip
);
4531 if (sample_type
& PERF_SAMPLE_TID
)
4532 perf_output_put(handle
, data
->tid_entry
);
4534 if (sample_type
& PERF_SAMPLE_TIME
)
4535 perf_output_put(handle
, data
->time
);
4537 if (sample_type
& PERF_SAMPLE_ADDR
)
4538 perf_output_put(handle
, data
->addr
);
4540 if (sample_type
& PERF_SAMPLE_ID
)
4541 perf_output_put(handle
, data
->id
);
4543 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
4544 perf_output_put(handle
, data
->stream_id
);
4546 if (sample_type
& PERF_SAMPLE_CPU
)
4547 perf_output_put(handle
, data
->cpu_entry
);
4549 if (sample_type
& PERF_SAMPLE_PERIOD
)
4550 perf_output_put(handle
, data
->period
);
4552 if (sample_type
& PERF_SAMPLE_READ
)
4553 perf_output_read(handle
, event
);
4555 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
4556 if (data
->callchain
) {
4559 if (data
->callchain
)
4560 size
+= data
->callchain
->nr
;
4562 size
*= sizeof(u64
);
4564 __output_copy(handle
, data
->callchain
, size
);
4567 perf_output_put(handle
, nr
);
4571 if (sample_type
& PERF_SAMPLE_RAW
) {
4573 perf_output_put(handle
, data
->raw
->size
);
4574 __output_copy(handle
, data
->raw
->data
,
4581 .size
= sizeof(u32
),
4584 perf_output_put(handle
, raw
);
4588 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
4589 if (data
->br_stack
) {
4592 size
= data
->br_stack
->nr
4593 * sizeof(struct perf_branch_entry
);
4595 perf_output_put(handle
, data
->br_stack
->nr
);
4596 perf_output_copy(handle
, data
->br_stack
->entries
, size
);
4599 * we always store at least the value of nr
4602 perf_output_put(handle
, nr
);
4606 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
4607 u64 abi
= data
->regs_user
.abi
;
4610 * If there are no regs to dump, notice it through
4611 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4613 perf_output_put(handle
, abi
);
4616 u64 mask
= event
->attr
.sample_regs_user
;
4617 perf_output_sample_regs(handle
,
4618 data
->regs_user
.regs
,
4623 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
4624 perf_output_sample_ustack(handle
,
4625 data
->stack_user_size
,
4626 data
->regs_user
.regs
);
4629 if (sample_type
& PERF_SAMPLE_WEIGHT
)
4630 perf_output_put(handle
, data
->weight
);
4632 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
4633 perf_output_put(handle
, data
->data_src
.val
);
4635 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
4636 perf_output_put(handle
, data
->txn
);
4638 if (!event
->attr
.watermark
) {
4639 int wakeup_events
= event
->attr
.wakeup_events
;
4641 if (wakeup_events
) {
4642 struct ring_buffer
*rb
= handle
->rb
;
4643 int events
= local_inc_return(&rb
->events
);
4645 if (events
>= wakeup_events
) {
4646 local_sub(wakeup_events
, &rb
->events
);
4647 local_inc(&rb
->wakeup
);
4653 void perf_prepare_sample(struct perf_event_header
*header
,
4654 struct perf_sample_data
*data
,
4655 struct perf_event
*event
,
4656 struct pt_regs
*regs
)
4658 u64 sample_type
= event
->attr
.sample_type
;
4660 header
->type
= PERF_RECORD_SAMPLE
;
4661 header
->size
= sizeof(*header
) + event
->header_size
;
4664 header
->misc
|= perf_misc_flags(regs
);
4666 __perf_event_header__init_id(header
, data
, event
);
4668 if (sample_type
& PERF_SAMPLE_IP
)
4669 data
->ip
= perf_instruction_pointer(regs
);
4671 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
4674 data
->callchain
= perf_callchain(event
, regs
);
4676 if (data
->callchain
)
4677 size
+= data
->callchain
->nr
;
4679 header
->size
+= size
* sizeof(u64
);
4682 if (sample_type
& PERF_SAMPLE_RAW
) {
4683 int size
= sizeof(u32
);
4686 size
+= data
->raw
->size
;
4688 size
+= sizeof(u32
);
4690 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
4691 header
->size
+= size
;
4694 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
4695 int size
= sizeof(u64
); /* nr */
4696 if (data
->br_stack
) {
4697 size
+= data
->br_stack
->nr
4698 * sizeof(struct perf_branch_entry
);
4700 header
->size
+= size
;
4703 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
4704 /* regs dump ABI info */
4705 int size
= sizeof(u64
);
4707 perf_sample_regs_user(&data
->regs_user
, regs
);
4709 if (data
->regs_user
.regs
) {
4710 u64 mask
= event
->attr
.sample_regs_user
;
4711 size
+= hweight64(mask
) * sizeof(u64
);
4714 header
->size
+= size
;
4717 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
4719 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4720 * processed as the last one or have additional check added
4721 * in case new sample type is added, because we could eat
4722 * up the rest of the sample size.
4724 struct perf_regs_user
*uregs
= &data
->regs_user
;
4725 u16 stack_size
= event
->attr
.sample_stack_user
;
4726 u16 size
= sizeof(u64
);
4729 perf_sample_regs_user(uregs
, regs
);
4731 stack_size
= perf_sample_ustack_size(stack_size
, header
->size
,
4735 * If there is something to dump, add space for the dump
4736 * itself and for the field that tells the dynamic size,
4737 * which is how many have been actually dumped.
4740 size
+= sizeof(u64
) + stack_size
;
4742 data
->stack_user_size
= stack_size
;
4743 header
->size
+= size
;
4747 static void perf_event_output(struct perf_event
*event
,
4748 struct perf_sample_data
*data
,
4749 struct pt_regs
*regs
)
4751 struct perf_output_handle handle
;
4752 struct perf_event_header header
;
4754 /* protect the callchain buffers */
4757 perf_prepare_sample(&header
, data
, event
, regs
);
4759 if (perf_output_begin(&handle
, event
, header
.size
))
4762 perf_output_sample(&handle
, &header
, data
, event
);
4764 perf_output_end(&handle
);
4774 struct perf_read_event
{
4775 struct perf_event_header header
;
4782 perf_event_read_event(struct perf_event
*event
,
4783 struct task_struct
*task
)
4785 struct perf_output_handle handle
;
4786 struct perf_sample_data sample
;
4787 struct perf_read_event read_event
= {
4789 .type
= PERF_RECORD_READ
,
4791 .size
= sizeof(read_event
) + event
->read_size
,
4793 .pid
= perf_event_pid(event
, task
),
4794 .tid
= perf_event_tid(event
, task
),
4798 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
4799 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
);
4803 perf_output_put(&handle
, read_event
);
4804 perf_output_read(&handle
, event
);
4805 perf_event__output_id_sample(event
, &handle
, &sample
);
4807 perf_output_end(&handle
);
4810 typedef void (perf_event_aux_output_cb
)(struct perf_event
*event
, void *data
);
4813 perf_event_aux_ctx(struct perf_event_context
*ctx
,
4814 perf_event_aux_output_cb output
,
4817 struct perf_event
*event
;
4819 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4820 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
4822 if (!event_filter_match(event
))
4824 output(event
, data
);
4829 perf_event_aux(perf_event_aux_output_cb output
, void *data
,
4830 struct perf_event_context
*task_ctx
)
4832 struct perf_cpu_context
*cpuctx
;
4833 struct perf_event_context
*ctx
;
4838 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
4839 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
4840 if (cpuctx
->unique_pmu
!= pmu
)
4842 perf_event_aux_ctx(&cpuctx
->ctx
, output
, data
);
4845 ctxn
= pmu
->task_ctx_nr
;
4848 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
4850 perf_event_aux_ctx(ctx
, output
, data
);
4852 put_cpu_ptr(pmu
->pmu_cpu_context
);
4857 perf_event_aux_ctx(task_ctx
, output
, data
);
4864 * task tracking -- fork/exit
4866 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
4869 struct perf_task_event
{
4870 struct task_struct
*task
;
4871 struct perf_event_context
*task_ctx
;
4874 struct perf_event_header header
;
4884 static int perf_event_task_match(struct perf_event
*event
)
4886 return event
->attr
.comm
|| event
->attr
.mmap
||
4887 event
->attr
.mmap2
|| event
->attr
.mmap_data
||
4891 static void perf_event_task_output(struct perf_event
*event
,
4894 struct perf_task_event
*task_event
= data
;
4895 struct perf_output_handle handle
;
4896 struct perf_sample_data sample
;
4897 struct task_struct
*task
= task_event
->task
;
4898 int ret
, size
= task_event
->event_id
.header
.size
;
4900 if (!perf_event_task_match(event
))
4903 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
4905 ret
= perf_output_begin(&handle
, event
,
4906 task_event
->event_id
.header
.size
);
4910 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
4911 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
4913 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
4914 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
4916 perf_output_put(&handle
, task_event
->event_id
);
4918 perf_event__output_id_sample(event
, &handle
, &sample
);
4920 perf_output_end(&handle
);
4922 task_event
->event_id
.header
.size
= size
;
4925 static void perf_event_task(struct task_struct
*task
,
4926 struct perf_event_context
*task_ctx
,
4929 struct perf_task_event task_event
;
4931 if (!atomic_read(&nr_comm_events
) &&
4932 !atomic_read(&nr_mmap_events
) &&
4933 !atomic_read(&nr_task_events
))
4936 task_event
= (struct perf_task_event
){
4938 .task_ctx
= task_ctx
,
4941 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
4943 .size
= sizeof(task_event
.event_id
),
4949 .time
= perf_clock(),
4953 perf_event_aux(perf_event_task_output
,
4958 void perf_event_fork(struct task_struct
*task
)
4960 perf_event_task(task
, NULL
, 1);
4967 struct perf_comm_event
{
4968 struct task_struct
*task
;
4973 struct perf_event_header header
;
4980 static int perf_event_comm_match(struct perf_event
*event
)
4982 return event
->attr
.comm
;
4985 static void perf_event_comm_output(struct perf_event
*event
,
4988 struct perf_comm_event
*comm_event
= data
;
4989 struct perf_output_handle handle
;
4990 struct perf_sample_data sample
;
4991 int size
= comm_event
->event_id
.header
.size
;
4994 if (!perf_event_comm_match(event
))
4997 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
4998 ret
= perf_output_begin(&handle
, event
,
4999 comm_event
->event_id
.header
.size
);
5004 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
5005 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
5007 perf_output_put(&handle
, comm_event
->event_id
);
5008 __output_copy(&handle
, comm_event
->comm
,
5009 comm_event
->comm_size
);
5011 perf_event__output_id_sample(event
, &handle
, &sample
);
5013 perf_output_end(&handle
);
5015 comm_event
->event_id
.header
.size
= size
;
5018 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
5020 char comm
[TASK_COMM_LEN
];
5023 memset(comm
, 0, sizeof(comm
));
5024 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
5025 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
5027 comm_event
->comm
= comm
;
5028 comm_event
->comm_size
= size
;
5030 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
5032 perf_event_aux(perf_event_comm_output
,
5037 void perf_event_comm(struct task_struct
*task
)
5039 struct perf_comm_event comm_event
;
5040 struct perf_event_context
*ctx
;
5044 for_each_task_context_nr(ctxn
) {
5045 ctx
= task
->perf_event_ctxp
[ctxn
];
5049 perf_event_enable_on_exec(ctx
);
5053 if (!atomic_read(&nr_comm_events
))
5056 comm_event
= (struct perf_comm_event
){
5062 .type
= PERF_RECORD_COMM
,
5071 perf_event_comm_event(&comm_event
);
5078 struct perf_mmap_event
{
5079 struct vm_area_struct
*vma
;
5081 const char *file_name
;
5088 struct perf_event_header header
;
5098 static int perf_event_mmap_match(struct perf_event
*event
,
5101 struct perf_mmap_event
*mmap_event
= data
;
5102 struct vm_area_struct
*vma
= mmap_event
->vma
;
5103 int executable
= vma
->vm_flags
& VM_EXEC
;
5105 return (!executable
&& event
->attr
.mmap_data
) ||
5106 (executable
&& (event
->attr
.mmap
|| event
->attr
.mmap2
));
5109 static void perf_event_mmap_output(struct perf_event
*event
,
5112 struct perf_mmap_event
*mmap_event
= data
;
5113 struct perf_output_handle handle
;
5114 struct perf_sample_data sample
;
5115 int size
= mmap_event
->event_id
.header
.size
;
5118 if (!perf_event_mmap_match(event
, data
))
5121 if (event
->attr
.mmap2
) {
5122 mmap_event
->event_id
.header
.type
= PERF_RECORD_MMAP2
;
5123 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->maj
);
5124 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->min
);
5125 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino
);
5126 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino_generation
);
5129 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
5130 ret
= perf_output_begin(&handle
, event
,
5131 mmap_event
->event_id
.header
.size
);
5135 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
5136 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
5138 perf_output_put(&handle
, mmap_event
->event_id
);
5140 if (event
->attr
.mmap2
) {
5141 perf_output_put(&handle
, mmap_event
->maj
);
5142 perf_output_put(&handle
, mmap_event
->min
);
5143 perf_output_put(&handle
, mmap_event
->ino
);
5144 perf_output_put(&handle
, mmap_event
->ino_generation
);
5147 __output_copy(&handle
, mmap_event
->file_name
,
5148 mmap_event
->file_size
);
5150 perf_event__output_id_sample(event
, &handle
, &sample
);
5152 perf_output_end(&handle
);
5154 mmap_event
->event_id
.header
.size
= size
;
5157 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
5159 struct vm_area_struct
*vma
= mmap_event
->vma
;
5160 struct file
*file
= vma
->vm_file
;
5161 int maj
= 0, min
= 0;
5162 u64 ino
= 0, gen
= 0;
5169 struct inode
*inode
;
5172 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5178 * d_path() works from the end of the rb backwards, so we
5179 * need to add enough zero bytes after the string to handle
5180 * the 64bit alignment we do later.
5182 name
= d_path(&file
->f_path
, buf
, PATH_MAX
- sizeof(u64
));
5187 inode
= file_inode(vma
->vm_file
);
5188 dev
= inode
->i_sb
->s_dev
;
5190 gen
= inode
->i_generation
;
5195 name
= (char *)arch_vma_name(vma
);
5199 if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
5200 vma
->vm_end
>= vma
->vm_mm
->brk
) {
5204 if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
5205 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
5215 strlcpy(tmp
, name
, sizeof(tmp
));
5219 * Since our buffer works in 8 byte units we need to align our string
5220 * size to a multiple of 8. However, we must guarantee the tail end is
5221 * zero'd out to avoid leaking random bits to userspace.
5223 size
= strlen(name
)+1;
5224 while (!IS_ALIGNED(size
, sizeof(u64
)))
5225 name
[size
++] = '\0';
5227 mmap_event
->file_name
= name
;
5228 mmap_event
->file_size
= size
;
5229 mmap_event
->maj
= maj
;
5230 mmap_event
->min
= min
;
5231 mmap_event
->ino
= ino
;
5232 mmap_event
->ino_generation
= gen
;
5234 if (!(vma
->vm_flags
& VM_EXEC
))
5235 mmap_event
->event_id
.header
.misc
|= PERF_RECORD_MISC_MMAP_DATA
;
5237 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
5239 perf_event_aux(perf_event_mmap_output
,
5246 void perf_event_mmap(struct vm_area_struct
*vma
)
5248 struct perf_mmap_event mmap_event
;
5250 if (!atomic_read(&nr_mmap_events
))
5253 mmap_event
= (struct perf_mmap_event
){
5259 .type
= PERF_RECORD_MMAP
,
5260 .misc
= PERF_RECORD_MISC_USER
,
5265 .start
= vma
->vm_start
,
5266 .len
= vma
->vm_end
- vma
->vm_start
,
5267 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
5269 /* .maj (attr_mmap2 only) */
5270 /* .min (attr_mmap2 only) */
5271 /* .ino (attr_mmap2 only) */
5272 /* .ino_generation (attr_mmap2 only) */
5275 perf_event_mmap_event(&mmap_event
);
5279 * IRQ throttle logging
5282 static void perf_log_throttle(struct perf_event
*event
, int enable
)
5284 struct perf_output_handle handle
;
5285 struct perf_sample_data sample
;
5289 struct perf_event_header header
;
5293 } throttle_event
= {
5295 .type
= PERF_RECORD_THROTTLE
,
5297 .size
= sizeof(throttle_event
),
5299 .time
= perf_clock(),
5300 .id
= primary_event_id(event
),
5301 .stream_id
= event
->id
,
5305 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
5307 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
5309 ret
= perf_output_begin(&handle
, event
,
5310 throttle_event
.header
.size
);
5314 perf_output_put(&handle
, throttle_event
);
5315 perf_event__output_id_sample(event
, &handle
, &sample
);
5316 perf_output_end(&handle
);
5320 * Generic event overflow handling, sampling.
5323 static int __perf_event_overflow(struct perf_event
*event
,
5324 int throttle
, struct perf_sample_data
*data
,
5325 struct pt_regs
*regs
)
5327 int events
= atomic_read(&event
->event_limit
);
5328 struct hw_perf_event
*hwc
= &event
->hw
;
5333 * Non-sampling counters might still use the PMI to fold short
5334 * hardware counters, ignore those.
5336 if (unlikely(!is_sampling_event(event
)))
5339 seq
= __this_cpu_read(perf_throttled_seq
);
5340 if (seq
!= hwc
->interrupts_seq
) {
5341 hwc
->interrupts_seq
= seq
;
5342 hwc
->interrupts
= 1;
5345 if (unlikely(throttle
5346 && hwc
->interrupts
>= max_samples_per_tick
)) {
5347 __this_cpu_inc(perf_throttled_count
);
5348 hwc
->interrupts
= MAX_INTERRUPTS
;
5349 perf_log_throttle(event
, 0);
5350 tick_nohz_full_kick();
5355 if (event
->attr
.freq
) {
5356 u64 now
= perf_clock();
5357 s64 delta
= now
- hwc
->freq_time_stamp
;
5359 hwc
->freq_time_stamp
= now
;
5361 if (delta
> 0 && delta
< 2*TICK_NSEC
)
5362 perf_adjust_period(event
, delta
, hwc
->last_period
, true);
5366 * XXX event_limit might not quite work as expected on inherited
5370 event
->pending_kill
= POLL_IN
;
5371 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
5373 event
->pending_kill
= POLL_HUP
;
5374 event
->pending_disable
= 1;
5375 irq_work_queue(&event
->pending
);
5378 if (event
->overflow_handler
)
5379 event
->overflow_handler(event
, data
, regs
);
5381 perf_event_output(event
, data
, regs
);
5383 if (event
->fasync
&& event
->pending_kill
) {
5384 event
->pending_wakeup
= 1;
5385 irq_work_queue(&event
->pending
);
5391 int perf_event_overflow(struct perf_event
*event
,
5392 struct perf_sample_data
*data
,
5393 struct pt_regs
*regs
)
5395 return __perf_event_overflow(event
, 1, data
, regs
);
5399 * Generic software event infrastructure
5402 struct swevent_htable
{
5403 struct swevent_hlist
*swevent_hlist
;
5404 struct mutex hlist_mutex
;
5407 /* Recursion avoidance in each contexts */
5408 int recursion
[PERF_NR_CONTEXTS
];
5411 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
5414 * We directly increment event->count and keep a second value in
5415 * event->hw.period_left to count intervals. This period event
5416 * is kept in the range [-sample_period, 0] so that we can use the
5420 u64
perf_swevent_set_period(struct perf_event
*event
)
5422 struct hw_perf_event
*hwc
= &event
->hw
;
5423 u64 period
= hwc
->last_period
;
5427 hwc
->last_period
= hwc
->sample_period
;
5430 old
= val
= local64_read(&hwc
->period_left
);
5434 nr
= div64_u64(period
+ val
, period
);
5435 offset
= nr
* period
;
5437 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
5443 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
5444 struct perf_sample_data
*data
,
5445 struct pt_regs
*regs
)
5447 struct hw_perf_event
*hwc
= &event
->hw
;
5451 overflow
= perf_swevent_set_period(event
);
5453 if (hwc
->interrupts
== MAX_INTERRUPTS
)
5456 for (; overflow
; overflow
--) {
5457 if (__perf_event_overflow(event
, throttle
,
5460 * We inhibit the overflow from happening when
5461 * hwc->interrupts == MAX_INTERRUPTS.
5469 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
5470 struct perf_sample_data
*data
,
5471 struct pt_regs
*regs
)
5473 struct hw_perf_event
*hwc
= &event
->hw
;
5475 local64_add(nr
, &event
->count
);
5480 if (!is_sampling_event(event
))
5483 if ((event
->attr
.sample_type
& PERF_SAMPLE_PERIOD
) && !event
->attr
.freq
) {
5485 return perf_swevent_overflow(event
, 1, data
, regs
);
5487 data
->period
= event
->hw
.last_period
;
5489 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
5490 return perf_swevent_overflow(event
, 1, data
, regs
);
5492 if (local64_add_negative(nr
, &hwc
->period_left
))
5495 perf_swevent_overflow(event
, 0, data
, regs
);
5498 static int perf_exclude_event(struct perf_event
*event
,
5499 struct pt_regs
*regs
)
5501 if (event
->hw
.state
& PERF_HES_STOPPED
)
5505 if (event
->attr
.exclude_user
&& user_mode(regs
))
5508 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
5515 static int perf_swevent_match(struct perf_event
*event
,
5516 enum perf_type_id type
,
5518 struct perf_sample_data
*data
,
5519 struct pt_regs
*regs
)
5521 if (event
->attr
.type
!= type
)
5524 if (event
->attr
.config
!= event_id
)
5527 if (perf_exclude_event(event
, regs
))
5533 static inline u64
swevent_hash(u64 type
, u32 event_id
)
5535 u64 val
= event_id
| (type
<< 32);
5537 return hash_64(val
, SWEVENT_HLIST_BITS
);
5540 static inline struct hlist_head
*
5541 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
5543 u64 hash
= swevent_hash(type
, event_id
);
5545 return &hlist
->heads
[hash
];
5548 /* For the read side: events when they trigger */
5549 static inline struct hlist_head
*
5550 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
5552 struct swevent_hlist
*hlist
;
5554 hlist
= rcu_dereference(swhash
->swevent_hlist
);
5558 return __find_swevent_head(hlist
, type
, event_id
);
5561 /* For the event head insertion and removal in the hlist */
5562 static inline struct hlist_head
*
5563 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
5565 struct swevent_hlist
*hlist
;
5566 u32 event_id
= event
->attr
.config
;
5567 u64 type
= event
->attr
.type
;
5570 * Event scheduling is always serialized against hlist allocation
5571 * and release. Which makes the protected version suitable here.
5572 * The context lock guarantees that.
5574 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
5575 lockdep_is_held(&event
->ctx
->lock
));
5579 return __find_swevent_head(hlist
, type
, event_id
);
5582 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
5584 struct perf_sample_data
*data
,
5585 struct pt_regs
*regs
)
5587 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
5588 struct perf_event
*event
;
5589 struct hlist_head
*head
;
5592 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
5596 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
5597 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
5598 perf_swevent_event(event
, nr
, data
, regs
);
5604 int perf_swevent_get_recursion_context(void)
5606 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
5608 return get_recursion_context(swhash
->recursion
);
5610 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
5612 inline void perf_swevent_put_recursion_context(int rctx
)
5614 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
5616 put_recursion_context(swhash
->recursion
, rctx
);
5619 void __perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
5621 struct perf_sample_data data
;
5624 preempt_disable_notrace();
5625 rctx
= perf_swevent_get_recursion_context();
5629 perf_sample_data_init(&data
, addr
, 0);
5631 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, &data
, regs
);
5633 perf_swevent_put_recursion_context(rctx
);
5634 preempt_enable_notrace();
5637 static void perf_swevent_read(struct perf_event
*event
)
5641 static int perf_swevent_add(struct perf_event
*event
, int flags
)
5643 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
5644 struct hw_perf_event
*hwc
= &event
->hw
;
5645 struct hlist_head
*head
;
5647 if (is_sampling_event(event
)) {
5648 hwc
->last_period
= hwc
->sample_period
;
5649 perf_swevent_set_period(event
);
5652 hwc
->state
= !(flags
& PERF_EF_START
);
5654 head
= find_swevent_head(swhash
, event
);
5655 if (WARN_ON_ONCE(!head
))
5658 hlist_add_head_rcu(&event
->hlist_entry
, head
);
5663 static void perf_swevent_del(struct perf_event
*event
, int flags
)
5665 hlist_del_rcu(&event
->hlist_entry
);
5668 static void perf_swevent_start(struct perf_event
*event
, int flags
)
5670 event
->hw
.state
= 0;
5673 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
5675 event
->hw
.state
= PERF_HES_STOPPED
;
5678 /* Deref the hlist from the update side */
5679 static inline struct swevent_hlist
*
5680 swevent_hlist_deref(struct swevent_htable
*swhash
)
5682 return rcu_dereference_protected(swhash
->swevent_hlist
,
5683 lockdep_is_held(&swhash
->hlist_mutex
));
5686 static void swevent_hlist_release(struct swevent_htable
*swhash
)
5688 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
5693 rcu_assign_pointer(swhash
->swevent_hlist
, NULL
);
5694 kfree_rcu(hlist
, rcu_head
);
5697 static void swevent_hlist_put_cpu(struct perf_event
*event
, int cpu
)
5699 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
5701 mutex_lock(&swhash
->hlist_mutex
);
5703 if (!--swhash
->hlist_refcount
)
5704 swevent_hlist_release(swhash
);
5706 mutex_unlock(&swhash
->hlist_mutex
);
5709 static void swevent_hlist_put(struct perf_event
*event
)
5713 for_each_possible_cpu(cpu
)
5714 swevent_hlist_put_cpu(event
, cpu
);
5717 static int swevent_hlist_get_cpu(struct perf_event
*event
, int cpu
)
5719 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
5722 mutex_lock(&swhash
->hlist_mutex
);
5724 if (!swevent_hlist_deref(swhash
) && cpu_online(cpu
)) {
5725 struct swevent_hlist
*hlist
;
5727 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
5732 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
5734 swhash
->hlist_refcount
++;
5736 mutex_unlock(&swhash
->hlist_mutex
);
5741 static int swevent_hlist_get(struct perf_event
*event
)
5744 int cpu
, failed_cpu
;
5747 for_each_possible_cpu(cpu
) {
5748 err
= swevent_hlist_get_cpu(event
, cpu
);
5758 for_each_possible_cpu(cpu
) {
5759 if (cpu
== failed_cpu
)
5761 swevent_hlist_put_cpu(event
, cpu
);
5768 struct static_key perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
5770 static void sw_perf_event_destroy(struct perf_event
*event
)
5772 u64 event_id
= event
->attr
.config
;
5774 WARN_ON(event
->parent
);
5776 static_key_slow_dec(&perf_swevent_enabled
[event_id
]);
5777 swevent_hlist_put(event
);
5780 static int perf_swevent_init(struct perf_event
*event
)
5782 u64 event_id
= event
->attr
.config
;
5784 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5788 * no branch sampling for software events
5790 if (has_branch_stack(event
))
5794 case PERF_COUNT_SW_CPU_CLOCK
:
5795 case PERF_COUNT_SW_TASK_CLOCK
:
5802 if (event_id
>= PERF_COUNT_SW_MAX
)
5805 if (!event
->parent
) {
5808 err
= swevent_hlist_get(event
);
5812 static_key_slow_inc(&perf_swevent_enabled
[event_id
]);
5813 event
->destroy
= sw_perf_event_destroy
;
5819 static int perf_swevent_event_idx(struct perf_event
*event
)
5824 static struct pmu perf_swevent
= {
5825 .task_ctx_nr
= perf_sw_context
,
5827 .event_init
= perf_swevent_init
,
5828 .add
= perf_swevent_add
,
5829 .del
= perf_swevent_del
,
5830 .start
= perf_swevent_start
,
5831 .stop
= perf_swevent_stop
,
5832 .read
= perf_swevent_read
,
5834 .event_idx
= perf_swevent_event_idx
,
5837 #ifdef CONFIG_EVENT_TRACING
5839 static int perf_tp_filter_match(struct perf_event
*event
,
5840 struct perf_sample_data
*data
)
5842 void *record
= data
->raw
->data
;
5844 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
5849 static int perf_tp_event_match(struct perf_event
*event
,
5850 struct perf_sample_data
*data
,
5851 struct pt_regs
*regs
)
5853 if (event
->hw
.state
& PERF_HES_STOPPED
)
5856 * All tracepoints are from kernel-space.
5858 if (event
->attr
.exclude_kernel
)
5861 if (!perf_tp_filter_match(event
, data
))
5867 void perf_tp_event(u64 addr
, u64 count
, void *record
, int entry_size
,
5868 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
,
5869 struct task_struct
*task
)
5871 struct perf_sample_data data
;
5872 struct perf_event
*event
;
5874 struct perf_raw_record raw
= {
5879 perf_sample_data_init(&data
, addr
, 0);
5882 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
5883 if (perf_tp_event_match(event
, &data
, regs
))
5884 perf_swevent_event(event
, count
, &data
, regs
);
5888 * If we got specified a target task, also iterate its context and
5889 * deliver this event there too.
5891 if (task
&& task
!= current
) {
5892 struct perf_event_context
*ctx
;
5893 struct trace_entry
*entry
= record
;
5896 ctx
= rcu_dereference(task
->perf_event_ctxp
[perf_sw_context
]);
5900 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
5901 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
5903 if (event
->attr
.config
!= entry
->type
)
5905 if (perf_tp_event_match(event
, &data
, regs
))
5906 perf_swevent_event(event
, count
, &data
, regs
);
5912 perf_swevent_put_recursion_context(rctx
);
5914 EXPORT_SYMBOL_GPL(perf_tp_event
);
5916 static void tp_perf_event_destroy(struct perf_event
*event
)
5918 perf_trace_destroy(event
);
5921 static int perf_tp_event_init(struct perf_event
*event
)
5925 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
5929 * no branch sampling for tracepoint events
5931 if (has_branch_stack(event
))
5934 err
= perf_trace_init(event
);
5938 event
->destroy
= tp_perf_event_destroy
;
5943 static struct pmu perf_tracepoint
= {
5944 .task_ctx_nr
= perf_sw_context
,
5946 .event_init
= perf_tp_event_init
,
5947 .add
= perf_trace_add
,
5948 .del
= perf_trace_del
,
5949 .start
= perf_swevent_start
,
5950 .stop
= perf_swevent_stop
,
5951 .read
= perf_swevent_read
,
5953 .event_idx
= perf_swevent_event_idx
,
5956 static inline void perf_tp_register(void)
5958 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
5961 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
5966 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
5969 filter_str
= strndup_user(arg
, PAGE_SIZE
);
5970 if (IS_ERR(filter_str
))
5971 return PTR_ERR(filter_str
);
5973 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
5979 static void perf_event_free_filter(struct perf_event
*event
)
5981 ftrace_profile_free_filter(event
);
5986 static inline void perf_tp_register(void)
5990 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
5995 static void perf_event_free_filter(struct perf_event
*event
)
5999 #endif /* CONFIG_EVENT_TRACING */
6001 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6002 void perf_bp_event(struct perf_event
*bp
, void *data
)
6004 struct perf_sample_data sample
;
6005 struct pt_regs
*regs
= data
;
6007 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
, 0);
6009 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
6010 perf_swevent_event(bp
, 1, &sample
, regs
);
6015 * hrtimer based swevent callback
6018 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
6020 enum hrtimer_restart ret
= HRTIMER_RESTART
;
6021 struct perf_sample_data data
;
6022 struct pt_regs
*regs
;
6023 struct perf_event
*event
;
6026 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
6028 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
6029 return HRTIMER_NORESTART
;
6031 event
->pmu
->read(event
);
6033 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
6034 regs
= get_irq_regs();
6036 if (regs
&& !perf_exclude_event(event
, regs
)) {
6037 if (!(event
->attr
.exclude_idle
&& is_idle_task(current
)))
6038 if (__perf_event_overflow(event
, 1, &data
, regs
))
6039 ret
= HRTIMER_NORESTART
;
6042 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
6043 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
6048 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
6050 struct hw_perf_event
*hwc
= &event
->hw
;
6053 if (!is_sampling_event(event
))
6056 period
= local64_read(&hwc
->period_left
);
6061 local64_set(&hwc
->period_left
, 0);
6063 period
= max_t(u64
, 10000, hwc
->sample_period
);
6065 __hrtimer_start_range_ns(&hwc
->hrtimer
,
6066 ns_to_ktime(period
), 0,
6067 HRTIMER_MODE_REL_PINNED
, 0);
6070 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
6072 struct hw_perf_event
*hwc
= &event
->hw
;
6074 if (is_sampling_event(event
)) {
6075 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
6076 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
6078 hrtimer_cancel(&hwc
->hrtimer
);
6082 static void perf_swevent_init_hrtimer(struct perf_event
*event
)
6084 struct hw_perf_event
*hwc
= &event
->hw
;
6086 if (!is_sampling_event(event
))
6089 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
6090 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
6093 * Since hrtimers have a fixed rate, we can do a static freq->period
6094 * mapping and avoid the whole period adjust feedback stuff.
6096 if (event
->attr
.freq
) {
6097 long freq
= event
->attr
.sample_freq
;
6099 event
->attr
.sample_period
= NSEC_PER_SEC
/ freq
;
6100 hwc
->sample_period
= event
->attr
.sample_period
;
6101 local64_set(&hwc
->period_left
, hwc
->sample_period
);
6102 hwc
->last_period
= hwc
->sample_period
;
6103 event
->attr
.freq
= 0;
6108 * Software event: cpu wall time clock
6111 static void cpu_clock_event_update(struct perf_event
*event
)
6116 now
= local_clock();
6117 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
6118 local64_add(now
- prev
, &event
->count
);
6121 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
6123 local64_set(&event
->hw
.prev_count
, local_clock());
6124 perf_swevent_start_hrtimer(event
);
6127 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
6129 perf_swevent_cancel_hrtimer(event
);
6130 cpu_clock_event_update(event
);
6133 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
6135 if (flags
& PERF_EF_START
)
6136 cpu_clock_event_start(event
, flags
);
6141 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
6143 cpu_clock_event_stop(event
, flags
);
6146 static void cpu_clock_event_read(struct perf_event
*event
)
6148 cpu_clock_event_update(event
);
6151 static int cpu_clock_event_init(struct perf_event
*event
)
6153 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
6156 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
6160 * no branch sampling for software events
6162 if (has_branch_stack(event
))
6165 perf_swevent_init_hrtimer(event
);
6170 static struct pmu perf_cpu_clock
= {
6171 .task_ctx_nr
= perf_sw_context
,
6173 .event_init
= cpu_clock_event_init
,
6174 .add
= cpu_clock_event_add
,
6175 .del
= cpu_clock_event_del
,
6176 .start
= cpu_clock_event_start
,
6177 .stop
= cpu_clock_event_stop
,
6178 .read
= cpu_clock_event_read
,
6180 .event_idx
= perf_swevent_event_idx
,
6184 * Software event: task time clock
6187 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
6192 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
6194 local64_add(delta
, &event
->count
);
6197 static void task_clock_event_start(struct perf_event
*event
, int flags
)
6199 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
6200 perf_swevent_start_hrtimer(event
);
6203 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
6205 perf_swevent_cancel_hrtimer(event
);
6206 task_clock_event_update(event
, event
->ctx
->time
);
6209 static int task_clock_event_add(struct perf_event
*event
, int flags
)
6211 if (flags
& PERF_EF_START
)
6212 task_clock_event_start(event
, flags
);
6217 static void task_clock_event_del(struct perf_event
*event
, int flags
)
6219 task_clock_event_stop(event
, PERF_EF_UPDATE
);
6222 static void task_clock_event_read(struct perf_event
*event
)
6224 u64 now
= perf_clock();
6225 u64 delta
= now
- event
->ctx
->timestamp
;
6226 u64 time
= event
->ctx
->time
+ delta
;
6228 task_clock_event_update(event
, time
);
6231 static int task_clock_event_init(struct perf_event
*event
)
6233 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
6236 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
6240 * no branch sampling for software events
6242 if (has_branch_stack(event
))
6245 perf_swevent_init_hrtimer(event
);
6250 static struct pmu perf_task_clock
= {
6251 .task_ctx_nr
= perf_sw_context
,
6253 .event_init
= task_clock_event_init
,
6254 .add
= task_clock_event_add
,
6255 .del
= task_clock_event_del
,
6256 .start
= task_clock_event_start
,
6257 .stop
= task_clock_event_stop
,
6258 .read
= task_clock_event_read
,
6260 .event_idx
= perf_swevent_event_idx
,
6263 static void perf_pmu_nop_void(struct pmu
*pmu
)
6267 static int perf_pmu_nop_int(struct pmu
*pmu
)
6272 static void perf_pmu_start_txn(struct pmu
*pmu
)
6274 perf_pmu_disable(pmu
);
6277 static int perf_pmu_commit_txn(struct pmu
*pmu
)
6279 perf_pmu_enable(pmu
);
6283 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
6285 perf_pmu_enable(pmu
);
6288 static int perf_event_idx_default(struct perf_event
*event
)
6290 return event
->hw
.idx
+ 1;
6294 * Ensures all contexts with the same task_ctx_nr have the same
6295 * pmu_cpu_context too.
6297 static void *find_pmu_context(int ctxn
)
6304 list_for_each_entry(pmu
, &pmus
, entry
) {
6305 if (pmu
->task_ctx_nr
== ctxn
)
6306 return pmu
->pmu_cpu_context
;
6312 static void update_pmu_context(struct pmu
*pmu
, struct pmu
*old_pmu
)
6316 for_each_possible_cpu(cpu
) {
6317 struct perf_cpu_context
*cpuctx
;
6319 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
6321 if (cpuctx
->unique_pmu
== old_pmu
)
6322 cpuctx
->unique_pmu
= pmu
;
6326 static void free_pmu_context(struct pmu
*pmu
)
6330 mutex_lock(&pmus_lock
);
6332 * Like a real lame refcount.
6334 list_for_each_entry(i
, &pmus
, entry
) {
6335 if (i
->pmu_cpu_context
== pmu
->pmu_cpu_context
) {
6336 update_pmu_context(i
, pmu
);
6341 free_percpu(pmu
->pmu_cpu_context
);
6343 mutex_unlock(&pmus_lock
);
6345 static struct idr pmu_idr
;
6348 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
6350 struct pmu
*pmu
= dev_get_drvdata(dev
);
6352 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->type
);
6354 static DEVICE_ATTR_RO(type
);
6357 perf_event_mux_interval_ms_show(struct device
*dev
,
6358 struct device_attribute
*attr
,
6361 struct pmu
*pmu
= dev_get_drvdata(dev
);
6363 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->hrtimer_interval_ms
);
6367 perf_event_mux_interval_ms_store(struct device
*dev
,
6368 struct device_attribute
*attr
,
6369 const char *buf
, size_t count
)
6371 struct pmu
*pmu
= dev_get_drvdata(dev
);
6372 int timer
, cpu
, ret
;
6374 ret
= kstrtoint(buf
, 0, &timer
);
6381 /* same value, noting to do */
6382 if (timer
== pmu
->hrtimer_interval_ms
)
6385 pmu
->hrtimer_interval_ms
= timer
;
6387 /* update all cpuctx for this PMU */
6388 for_each_possible_cpu(cpu
) {
6389 struct perf_cpu_context
*cpuctx
;
6390 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
6391 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* timer
);
6393 if (hrtimer_active(&cpuctx
->hrtimer
))
6394 hrtimer_forward_now(&cpuctx
->hrtimer
, cpuctx
->hrtimer_interval
);
6399 static DEVICE_ATTR_RW(perf_event_mux_interval_ms
);
6401 static struct attribute
*pmu_dev_attrs
[] = {
6402 &dev_attr_type
.attr
,
6403 &dev_attr_perf_event_mux_interval_ms
.attr
,
6406 ATTRIBUTE_GROUPS(pmu_dev
);
6408 static int pmu_bus_running
;
6409 static struct bus_type pmu_bus
= {
6410 .name
= "event_source",
6411 .dev_groups
= pmu_dev_groups
,
6414 static void pmu_dev_release(struct device
*dev
)
6419 static int pmu_dev_alloc(struct pmu
*pmu
)
6423 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
6427 pmu
->dev
->groups
= pmu
->attr_groups
;
6428 device_initialize(pmu
->dev
);
6429 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
6433 dev_set_drvdata(pmu
->dev
, pmu
);
6434 pmu
->dev
->bus
= &pmu_bus
;
6435 pmu
->dev
->release
= pmu_dev_release
;
6436 ret
= device_add(pmu
->dev
);
6444 put_device(pmu
->dev
);
6448 static struct lock_class_key cpuctx_mutex
;
6449 static struct lock_class_key cpuctx_lock
;
6451 int perf_pmu_register(struct pmu
*pmu
, const char *name
, int type
)
6455 mutex_lock(&pmus_lock
);
6457 pmu
->pmu_disable_count
= alloc_percpu(int);
6458 if (!pmu
->pmu_disable_count
)
6467 type
= idr_alloc(&pmu_idr
, pmu
, PERF_TYPE_MAX
, 0, GFP_KERNEL
);
6475 if (pmu_bus_running
) {
6476 ret
= pmu_dev_alloc(pmu
);
6482 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
6483 if (pmu
->pmu_cpu_context
)
6484 goto got_cpu_context
;
6487 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
6488 if (!pmu
->pmu_cpu_context
)
6491 for_each_possible_cpu(cpu
) {
6492 struct perf_cpu_context
*cpuctx
;
6494 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
6495 __perf_event_init_context(&cpuctx
->ctx
);
6496 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
6497 lockdep_set_class(&cpuctx
->ctx
.lock
, &cpuctx_lock
);
6498 cpuctx
->ctx
.type
= cpu_context
;
6499 cpuctx
->ctx
.pmu
= pmu
;
6501 __perf_cpu_hrtimer_init(cpuctx
, cpu
);
6503 INIT_LIST_HEAD(&cpuctx
->rotation_list
);
6504 cpuctx
->unique_pmu
= pmu
;
6508 if (!pmu
->start_txn
) {
6509 if (pmu
->pmu_enable
) {
6511 * If we have pmu_enable/pmu_disable calls, install
6512 * transaction stubs that use that to try and batch
6513 * hardware accesses.
6515 pmu
->start_txn
= perf_pmu_start_txn
;
6516 pmu
->commit_txn
= perf_pmu_commit_txn
;
6517 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
6519 pmu
->start_txn
= perf_pmu_nop_void
;
6520 pmu
->commit_txn
= perf_pmu_nop_int
;
6521 pmu
->cancel_txn
= perf_pmu_nop_void
;
6525 if (!pmu
->pmu_enable
) {
6526 pmu
->pmu_enable
= perf_pmu_nop_void
;
6527 pmu
->pmu_disable
= perf_pmu_nop_void
;
6530 if (!pmu
->event_idx
)
6531 pmu
->event_idx
= perf_event_idx_default
;
6533 list_add_rcu(&pmu
->entry
, &pmus
);
6536 mutex_unlock(&pmus_lock
);
6541 device_del(pmu
->dev
);
6542 put_device(pmu
->dev
);
6545 if (pmu
->type
>= PERF_TYPE_MAX
)
6546 idr_remove(&pmu_idr
, pmu
->type
);
6549 free_percpu(pmu
->pmu_disable_count
);
6553 void perf_pmu_unregister(struct pmu
*pmu
)
6555 mutex_lock(&pmus_lock
);
6556 list_del_rcu(&pmu
->entry
);
6557 mutex_unlock(&pmus_lock
);
6560 * We dereference the pmu list under both SRCU and regular RCU, so
6561 * synchronize against both of those.
6563 synchronize_srcu(&pmus_srcu
);
6566 free_percpu(pmu
->pmu_disable_count
);
6567 if (pmu
->type
>= PERF_TYPE_MAX
)
6568 idr_remove(&pmu_idr
, pmu
->type
);
6569 device_del(pmu
->dev
);
6570 put_device(pmu
->dev
);
6571 free_pmu_context(pmu
);
6574 struct pmu
*perf_init_event(struct perf_event
*event
)
6576 struct pmu
*pmu
= NULL
;
6580 idx
= srcu_read_lock(&pmus_srcu
);
6583 pmu
= idr_find(&pmu_idr
, event
->attr
.type
);
6587 ret
= pmu
->event_init(event
);
6593 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
6595 ret
= pmu
->event_init(event
);
6599 if (ret
!= -ENOENT
) {
6604 pmu
= ERR_PTR(-ENOENT
);
6606 srcu_read_unlock(&pmus_srcu
, idx
);
6611 static void account_event_cpu(struct perf_event
*event
, int cpu
)
6616 if (has_branch_stack(event
)) {
6617 if (!(event
->attach_state
& PERF_ATTACH_TASK
))
6618 atomic_inc(&per_cpu(perf_branch_stack_events
, cpu
));
6620 if (is_cgroup_event(event
))
6621 atomic_inc(&per_cpu(perf_cgroup_events
, cpu
));
6624 static void account_event(struct perf_event
*event
)
6629 if (event
->attach_state
& PERF_ATTACH_TASK
)
6630 static_key_slow_inc(&perf_sched_events
.key
);
6631 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
6632 atomic_inc(&nr_mmap_events
);
6633 if (event
->attr
.comm
)
6634 atomic_inc(&nr_comm_events
);
6635 if (event
->attr
.task
)
6636 atomic_inc(&nr_task_events
);
6637 if (event
->attr
.freq
) {
6638 if (atomic_inc_return(&nr_freq_events
) == 1)
6639 tick_nohz_full_kick_all();
6641 if (has_branch_stack(event
))
6642 static_key_slow_inc(&perf_sched_events
.key
);
6643 if (is_cgroup_event(event
))
6644 static_key_slow_inc(&perf_sched_events
.key
);
6646 account_event_cpu(event
, event
->cpu
);
6650 * Allocate and initialize a event structure
6652 static struct perf_event
*
6653 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
6654 struct task_struct
*task
,
6655 struct perf_event
*group_leader
,
6656 struct perf_event
*parent_event
,
6657 perf_overflow_handler_t overflow_handler
,
6661 struct perf_event
*event
;
6662 struct hw_perf_event
*hwc
;
6665 if ((unsigned)cpu
>= nr_cpu_ids
) {
6666 if (!task
|| cpu
!= -1)
6667 return ERR_PTR(-EINVAL
);
6670 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
6672 return ERR_PTR(-ENOMEM
);
6675 * Single events are their own group leaders, with an
6676 * empty sibling list:
6679 group_leader
= event
;
6681 mutex_init(&event
->child_mutex
);
6682 INIT_LIST_HEAD(&event
->child_list
);
6684 INIT_LIST_HEAD(&event
->group_entry
);
6685 INIT_LIST_HEAD(&event
->event_entry
);
6686 INIT_LIST_HEAD(&event
->sibling_list
);
6687 INIT_LIST_HEAD(&event
->rb_entry
);
6688 INIT_LIST_HEAD(&event
->active_entry
);
6689 INIT_HLIST_NODE(&event
->hlist_entry
);
6692 init_waitqueue_head(&event
->waitq
);
6693 init_irq_work(&event
->pending
, perf_pending_event
);
6695 mutex_init(&event
->mmap_mutex
);
6697 atomic_long_set(&event
->refcount
, 1);
6699 event
->attr
= *attr
;
6700 event
->group_leader
= group_leader
;
6704 event
->parent
= parent_event
;
6706 event
->ns
= get_pid_ns(task_active_pid_ns(current
));
6707 event
->id
= atomic64_inc_return(&perf_event_id
);
6709 event
->state
= PERF_EVENT_STATE_INACTIVE
;
6712 event
->attach_state
= PERF_ATTACH_TASK
;
6714 if (attr
->type
== PERF_TYPE_TRACEPOINT
)
6715 event
->hw
.tp_target
= task
;
6716 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6718 * hw_breakpoint is a bit difficult here..
6720 else if (attr
->type
== PERF_TYPE_BREAKPOINT
)
6721 event
->hw
.bp_target
= task
;
6725 if (!overflow_handler
&& parent_event
) {
6726 overflow_handler
= parent_event
->overflow_handler
;
6727 context
= parent_event
->overflow_handler_context
;
6730 event
->overflow_handler
= overflow_handler
;
6731 event
->overflow_handler_context
= context
;
6733 perf_event__state_init(event
);
6738 hwc
->sample_period
= attr
->sample_period
;
6739 if (attr
->freq
&& attr
->sample_freq
)
6740 hwc
->sample_period
= 1;
6741 hwc
->last_period
= hwc
->sample_period
;
6743 local64_set(&hwc
->period_left
, hwc
->sample_period
);
6746 * we currently do not support PERF_FORMAT_GROUP on inherited events
6748 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
6751 pmu
= perf_init_event(event
);
6754 else if (IS_ERR(pmu
)) {
6759 if (!event
->parent
) {
6760 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
6761 err
= get_callchain_buffers();
6771 event
->destroy(event
);
6774 put_pid_ns(event
->ns
);
6777 return ERR_PTR(err
);
6780 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
6781 struct perf_event_attr
*attr
)
6786 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
6790 * zero the full structure, so that a short copy will be nice.
6792 memset(attr
, 0, sizeof(*attr
));
6794 ret
= get_user(size
, &uattr
->size
);
6798 if (size
> PAGE_SIZE
) /* silly large */
6801 if (!size
) /* abi compat */
6802 size
= PERF_ATTR_SIZE_VER0
;
6804 if (size
< PERF_ATTR_SIZE_VER0
)
6808 * If we're handed a bigger struct than we know of,
6809 * ensure all the unknown bits are 0 - i.e. new
6810 * user-space does not rely on any kernel feature
6811 * extensions we dont know about yet.
6813 if (size
> sizeof(*attr
)) {
6814 unsigned char __user
*addr
;
6815 unsigned char __user
*end
;
6818 addr
= (void __user
*)uattr
+ sizeof(*attr
);
6819 end
= (void __user
*)uattr
+ size
;
6821 for (; addr
< end
; addr
++) {
6822 ret
= get_user(val
, addr
);
6828 size
= sizeof(*attr
);
6831 ret
= copy_from_user(attr
, uattr
, size
);
6835 /* disabled for now */
6839 if (attr
->__reserved_1
)
6842 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
6845 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
6848 if (attr
->sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
6849 u64 mask
= attr
->branch_sample_type
;
6851 /* only using defined bits */
6852 if (mask
& ~(PERF_SAMPLE_BRANCH_MAX
-1))
6855 /* at least one branch bit must be set */
6856 if (!(mask
& ~PERF_SAMPLE_BRANCH_PLM_ALL
))
6859 /* propagate priv level, when not set for branch */
6860 if (!(mask
& PERF_SAMPLE_BRANCH_PLM_ALL
)) {
6862 /* exclude_kernel checked on syscall entry */
6863 if (!attr
->exclude_kernel
)
6864 mask
|= PERF_SAMPLE_BRANCH_KERNEL
;
6866 if (!attr
->exclude_user
)
6867 mask
|= PERF_SAMPLE_BRANCH_USER
;
6869 if (!attr
->exclude_hv
)
6870 mask
|= PERF_SAMPLE_BRANCH_HV
;
6872 * adjust user setting (for HW filter setup)
6874 attr
->branch_sample_type
= mask
;
6876 /* privileged levels capture (kernel, hv): check permissions */
6877 if ((mask
& PERF_SAMPLE_BRANCH_PERM_PLM
)
6878 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
6882 if (attr
->sample_type
& PERF_SAMPLE_REGS_USER
) {
6883 ret
= perf_reg_validate(attr
->sample_regs_user
);
6888 if (attr
->sample_type
& PERF_SAMPLE_STACK_USER
) {
6889 if (!arch_perf_have_user_stack_dump())
6893 * We have __u32 type for the size, but so far
6894 * we can only use __u16 as maximum due to the
6895 * __u16 sample size limit.
6897 if (attr
->sample_stack_user
>= USHRT_MAX
)
6899 else if (!IS_ALIGNED(attr
->sample_stack_user
, sizeof(u64
)))
6907 put_user(sizeof(*attr
), &uattr
->size
);
6913 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
6915 struct ring_buffer
*rb
= NULL
, *old_rb
= NULL
;
6921 /* don't allow circular references */
6922 if (event
== output_event
)
6926 * Don't allow cross-cpu buffers
6928 if (output_event
->cpu
!= event
->cpu
)
6932 * If its not a per-cpu rb, it must be the same task.
6934 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
6938 mutex_lock(&event
->mmap_mutex
);
6939 /* Can't redirect output if we've got an active mmap() */
6940 if (atomic_read(&event
->mmap_count
))
6946 /* get the rb we want to redirect to */
6947 rb
= ring_buffer_get(output_event
);
6953 ring_buffer_detach(event
, old_rb
);
6956 ring_buffer_attach(event
, rb
);
6958 rcu_assign_pointer(event
->rb
, rb
);
6961 ring_buffer_put(old_rb
);
6963 * Since we detached before setting the new rb, so that we
6964 * could attach the new rb, we could have missed a wakeup.
6967 wake_up_all(&event
->waitq
);
6972 mutex_unlock(&event
->mmap_mutex
);
6979 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6981 * @attr_uptr: event_id type attributes for monitoring/sampling
6984 * @group_fd: group leader event fd
6986 SYSCALL_DEFINE5(perf_event_open
,
6987 struct perf_event_attr __user
*, attr_uptr
,
6988 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
6990 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
6991 struct perf_event
*event
, *sibling
;
6992 struct perf_event_attr attr
;
6993 struct perf_event_context
*ctx
;
6994 struct file
*event_file
= NULL
;
6995 struct fd group
= {NULL
, 0};
6996 struct task_struct
*task
= NULL
;
7001 int f_flags
= O_RDWR
;
7003 /* for future expandability... */
7004 if (flags
& ~PERF_FLAG_ALL
)
7007 err
= perf_copy_attr(attr_uptr
, &attr
);
7011 if (!attr
.exclude_kernel
) {
7012 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
7017 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
7022 * In cgroup mode, the pid argument is used to pass the fd
7023 * opened to the cgroup directory in cgroupfs. The cpu argument
7024 * designates the cpu on which to monitor threads from that
7027 if ((flags
& PERF_FLAG_PID_CGROUP
) && (pid
== -1 || cpu
== -1))
7030 if (flags
& PERF_FLAG_FD_CLOEXEC
)
7031 f_flags
|= O_CLOEXEC
;
7033 event_fd
= get_unused_fd_flags(f_flags
);
7037 if (group_fd
!= -1) {
7038 err
= perf_fget_light(group_fd
, &group
);
7041 group_leader
= group
.file
->private_data
;
7042 if (flags
& PERF_FLAG_FD_OUTPUT
)
7043 output_event
= group_leader
;
7044 if (flags
& PERF_FLAG_FD_NO_GROUP
)
7045 group_leader
= NULL
;
7048 if (pid
!= -1 && !(flags
& PERF_FLAG_PID_CGROUP
)) {
7049 task
= find_lively_task_by_vpid(pid
);
7051 err
= PTR_ERR(task
);
7058 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
,
7060 if (IS_ERR(event
)) {
7061 err
= PTR_ERR(event
);
7065 if (flags
& PERF_FLAG_PID_CGROUP
) {
7066 err
= perf_cgroup_connect(pid
, event
, &attr
, group_leader
);
7068 __free_event(event
);
7073 account_event(event
);
7076 * Special case software events and allow them to be part of
7077 * any hardware group.
7082 (is_software_event(event
) != is_software_event(group_leader
))) {
7083 if (is_software_event(event
)) {
7085 * If event and group_leader are not both a software
7086 * event, and event is, then group leader is not.
7088 * Allow the addition of software events to !software
7089 * groups, this is safe because software events never
7092 pmu
= group_leader
->pmu
;
7093 } else if (is_software_event(group_leader
) &&
7094 (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
)) {
7096 * In case the group is a pure software group, and we
7097 * try to add a hardware event, move the whole group to
7098 * the hardware context.
7105 * Get the target context (task or percpu):
7107 ctx
= find_get_context(pmu
, task
, event
->cpu
);
7114 put_task_struct(task
);
7119 * Look up the group leader (we will attach this event to it):
7125 * Do not allow a recursive hierarchy (this new sibling
7126 * becoming part of another group-sibling):
7128 if (group_leader
->group_leader
!= group_leader
)
7131 * Do not allow to attach to a group in a different
7132 * task or CPU context:
7135 if (group_leader
->ctx
->type
!= ctx
->type
)
7138 if (group_leader
->ctx
!= ctx
)
7143 * Only a group leader can be exclusive or pinned
7145 if (attr
.exclusive
|| attr
.pinned
)
7150 err
= perf_event_set_output(event
, output_event
);
7155 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
,
7157 if (IS_ERR(event_file
)) {
7158 err
= PTR_ERR(event_file
);
7163 struct perf_event_context
*gctx
= group_leader
->ctx
;
7165 mutex_lock(&gctx
->mutex
);
7166 perf_remove_from_context(group_leader
);
7169 * Removing from the context ends up with disabled
7170 * event. What we want here is event in the initial
7171 * startup state, ready to be add into new context.
7173 perf_event__state_init(group_leader
);
7174 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
7176 perf_remove_from_context(sibling
);
7177 perf_event__state_init(sibling
);
7180 mutex_unlock(&gctx
->mutex
);
7184 WARN_ON_ONCE(ctx
->parent_ctx
);
7185 mutex_lock(&ctx
->mutex
);
7189 perf_install_in_context(ctx
, group_leader
, event
->cpu
);
7191 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
7193 perf_install_in_context(ctx
, sibling
, event
->cpu
);
7198 perf_install_in_context(ctx
, event
, event
->cpu
);
7199 perf_unpin_context(ctx
);
7200 mutex_unlock(&ctx
->mutex
);
7204 event
->owner
= current
;
7206 mutex_lock(¤t
->perf_event_mutex
);
7207 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
7208 mutex_unlock(¤t
->perf_event_mutex
);
7211 * Precalculate sample_data sizes
7213 perf_event__header_size(event
);
7214 perf_event__id_header_size(event
);
7217 * Drop the reference on the group_event after placing the
7218 * new event on the sibling_list. This ensures destruction
7219 * of the group leader will find the pointer to itself in
7220 * perf_group_detach().
7223 fd_install(event_fd
, event_file
);
7227 perf_unpin_context(ctx
);
7234 put_task_struct(task
);
7238 put_unused_fd(event_fd
);
7243 * perf_event_create_kernel_counter
7245 * @attr: attributes of the counter to create
7246 * @cpu: cpu in which the counter is bound
7247 * @task: task to profile (NULL for percpu)
7250 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
7251 struct task_struct
*task
,
7252 perf_overflow_handler_t overflow_handler
,
7255 struct perf_event_context
*ctx
;
7256 struct perf_event
*event
;
7260 * Get the target context (task or percpu):
7263 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
,
7264 overflow_handler
, context
);
7265 if (IS_ERR(event
)) {
7266 err
= PTR_ERR(event
);
7270 account_event(event
);
7272 ctx
= find_get_context(event
->pmu
, task
, cpu
);
7278 WARN_ON_ONCE(ctx
->parent_ctx
);
7279 mutex_lock(&ctx
->mutex
);
7280 perf_install_in_context(ctx
, event
, cpu
);
7281 perf_unpin_context(ctx
);
7282 mutex_unlock(&ctx
->mutex
);
7289 return ERR_PTR(err
);
7291 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
7293 void perf_pmu_migrate_context(struct pmu
*pmu
, int src_cpu
, int dst_cpu
)
7295 struct perf_event_context
*src_ctx
;
7296 struct perf_event_context
*dst_ctx
;
7297 struct perf_event
*event
, *tmp
;
7300 src_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, src_cpu
)->ctx
;
7301 dst_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, dst_cpu
)->ctx
;
7303 mutex_lock(&src_ctx
->mutex
);
7304 list_for_each_entry_safe(event
, tmp
, &src_ctx
->event_list
,
7306 perf_remove_from_context(event
);
7307 unaccount_event_cpu(event
, src_cpu
);
7309 list_add(&event
->migrate_entry
, &events
);
7311 mutex_unlock(&src_ctx
->mutex
);
7315 mutex_lock(&dst_ctx
->mutex
);
7316 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
7317 list_del(&event
->migrate_entry
);
7318 if (event
->state
>= PERF_EVENT_STATE_OFF
)
7319 event
->state
= PERF_EVENT_STATE_INACTIVE
;
7320 account_event_cpu(event
, dst_cpu
);
7321 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
7324 mutex_unlock(&dst_ctx
->mutex
);
7326 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context
);
7328 static void sync_child_event(struct perf_event
*child_event
,
7329 struct task_struct
*child
)
7331 struct perf_event
*parent_event
= child_event
->parent
;
7334 if (child_event
->attr
.inherit_stat
)
7335 perf_event_read_event(child_event
, child
);
7337 child_val
= perf_event_count(child_event
);
7340 * Add back the child's count to the parent's count:
7342 atomic64_add(child_val
, &parent_event
->child_count
);
7343 atomic64_add(child_event
->total_time_enabled
,
7344 &parent_event
->child_total_time_enabled
);
7345 atomic64_add(child_event
->total_time_running
,
7346 &parent_event
->child_total_time_running
);
7349 * Remove this event from the parent's list
7351 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
7352 mutex_lock(&parent_event
->child_mutex
);
7353 list_del_init(&child_event
->child_list
);
7354 mutex_unlock(&parent_event
->child_mutex
);
7357 * Release the parent event, if this was the last
7360 put_event(parent_event
);
7364 __perf_event_exit_task(struct perf_event
*child_event
,
7365 struct perf_event_context
*child_ctx
,
7366 struct task_struct
*child
)
7368 if (child_event
->parent
) {
7369 raw_spin_lock_irq(&child_ctx
->lock
);
7370 perf_group_detach(child_event
);
7371 raw_spin_unlock_irq(&child_ctx
->lock
);
7374 perf_remove_from_context(child_event
);
7377 * It can happen that the parent exits first, and has events
7378 * that are still around due to the child reference. These
7379 * events need to be zapped.
7381 if (child_event
->parent
) {
7382 sync_child_event(child_event
, child
);
7383 free_event(child_event
);
7387 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
7389 struct perf_event
*child_event
, *tmp
;
7390 struct perf_event_context
*child_ctx
;
7391 unsigned long flags
;
7393 if (likely(!child
->perf_event_ctxp
[ctxn
])) {
7394 perf_event_task(child
, NULL
, 0);
7398 local_irq_save(flags
);
7400 * We can't reschedule here because interrupts are disabled,
7401 * and either child is current or it is a task that can't be
7402 * scheduled, so we are now safe from rescheduling changing
7405 child_ctx
= rcu_dereference_raw(child
->perf_event_ctxp
[ctxn
]);
7408 * Take the context lock here so that if find_get_context is
7409 * reading child->perf_event_ctxp, we wait until it has
7410 * incremented the context's refcount before we do put_ctx below.
7412 raw_spin_lock(&child_ctx
->lock
);
7413 task_ctx_sched_out(child_ctx
);
7414 child
->perf_event_ctxp
[ctxn
] = NULL
;
7416 * If this context is a clone; unclone it so it can't get
7417 * swapped to another process while we're removing all
7418 * the events from it.
7420 unclone_ctx(child_ctx
);
7421 update_context_time(child_ctx
);
7422 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
7425 * Report the task dead after unscheduling the events so that we
7426 * won't get any samples after PERF_RECORD_EXIT. We can however still
7427 * get a few PERF_RECORD_READ events.
7429 perf_event_task(child
, child_ctx
, 0);
7432 * We can recurse on the same lock type through:
7434 * __perf_event_exit_task()
7435 * sync_child_event()
7437 * mutex_lock(&ctx->mutex)
7439 * But since its the parent context it won't be the same instance.
7441 mutex_lock(&child_ctx
->mutex
);
7444 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->pinned_groups
,
7446 __perf_event_exit_task(child_event
, child_ctx
, child
);
7448 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->flexible_groups
,
7450 __perf_event_exit_task(child_event
, child_ctx
, child
);
7453 * If the last event was a group event, it will have appended all
7454 * its siblings to the list, but we obtained 'tmp' before that which
7455 * will still point to the list head terminating the iteration.
7457 if (!list_empty(&child_ctx
->pinned_groups
) ||
7458 !list_empty(&child_ctx
->flexible_groups
))
7461 mutex_unlock(&child_ctx
->mutex
);
7467 * When a child task exits, feed back event values to parent events.
7469 void perf_event_exit_task(struct task_struct
*child
)
7471 struct perf_event
*event
, *tmp
;
7474 mutex_lock(&child
->perf_event_mutex
);
7475 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
7477 list_del_init(&event
->owner_entry
);
7480 * Ensure the list deletion is visible before we clear
7481 * the owner, closes a race against perf_release() where
7482 * we need to serialize on the owner->perf_event_mutex.
7485 event
->owner
= NULL
;
7487 mutex_unlock(&child
->perf_event_mutex
);
7489 for_each_task_context_nr(ctxn
)
7490 perf_event_exit_task_context(child
, ctxn
);
7493 static void perf_free_event(struct perf_event
*event
,
7494 struct perf_event_context
*ctx
)
7496 struct perf_event
*parent
= event
->parent
;
7498 if (WARN_ON_ONCE(!parent
))
7501 mutex_lock(&parent
->child_mutex
);
7502 list_del_init(&event
->child_list
);
7503 mutex_unlock(&parent
->child_mutex
);
7507 perf_group_detach(event
);
7508 list_del_event(event
, ctx
);
7513 * free an unexposed, unused context as created by inheritance by
7514 * perf_event_init_task below, used by fork() in case of fail.
7516 void perf_event_free_task(struct task_struct
*task
)
7518 struct perf_event_context
*ctx
;
7519 struct perf_event
*event
, *tmp
;
7522 for_each_task_context_nr(ctxn
) {
7523 ctx
= task
->perf_event_ctxp
[ctxn
];
7527 mutex_lock(&ctx
->mutex
);
7529 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
,
7531 perf_free_event(event
, ctx
);
7533 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
,
7535 perf_free_event(event
, ctx
);
7537 if (!list_empty(&ctx
->pinned_groups
) ||
7538 !list_empty(&ctx
->flexible_groups
))
7541 mutex_unlock(&ctx
->mutex
);
7547 void perf_event_delayed_put(struct task_struct
*task
)
7551 for_each_task_context_nr(ctxn
)
7552 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
7556 * inherit a event from parent task to child task:
7558 static struct perf_event
*
7559 inherit_event(struct perf_event
*parent_event
,
7560 struct task_struct
*parent
,
7561 struct perf_event_context
*parent_ctx
,
7562 struct task_struct
*child
,
7563 struct perf_event
*group_leader
,
7564 struct perf_event_context
*child_ctx
)
7566 struct perf_event
*child_event
;
7567 unsigned long flags
;
7570 * Instead of creating recursive hierarchies of events,
7571 * we link inherited events back to the original parent,
7572 * which has a filp for sure, which we use as the reference
7575 if (parent_event
->parent
)
7576 parent_event
= parent_event
->parent
;
7578 child_event
= perf_event_alloc(&parent_event
->attr
,
7581 group_leader
, parent_event
,
7583 if (IS_ERR(child_event
))
7586 if (!atomic_long_inc_not_zero(&parent_event
->refcount
)) {
7587 free_event(child_event
);
7594 * Make the child state follow the state of the parent event,
7595 * not its attr.disabled bit. We hold the parent's mutex,
7596 * so we won't race with perf_event_{en, dis}able_family.
7598 if (parent_event
->state
>= PERF_EVENT_STATE_INACTIVE
)
7599 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
7601 child_event
->state
= PERF_EVENT_STATE_OFF
;
7603 if (parent_event
->attr
.freq
) {
7604 u64 sample_period
= parent_event
->hw
.sample_period
;
7605 struct hw_perf_event
*hwc
= &child_event
->hw
;
7607 hwc
->sample_period
= sample_period
;
7608 hwc
->last_period
= sample_period
;
7610 local64_set(&hwc
->period_left
, sample_period
);
7613 child_event
->ctx
= child_ctx
;
7614 child_event
->overflow_handler
= parent_event
->overflow_handler
;
7615 child_event
->overflow_handler_context
7616 = parent_event
->overflow_handler_context
;
7619 * Precalculate sample_data sizes
7621 perf_event__header_size(child_event
);
7622 perf_event__id_header_size(child_event
);
7625 * Link it up in the child's context:
7627 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
7628 add_event_to_ctx(child_event
, child_ctx
);
7629 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
7632 * Link this into the parent event's child list
7634 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
7635 mutex_lock(&parent_event
->child_mutex
);
7636 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
7637 mutex_unlock(&parent_event
->child_mutex
);
7642 static int inherit_group(struct perf_event
*parent_event
,
7643 struct task_struct
*parent
,
7644 struct perf_event_context
*parent_ctx
,
7645 struct task_struct
*child
,
7646 struct perf_event_context
*child_ctx
)
7648 struct perf_event
*leader
;
7649 struct perf_event
*sub
;
7650 struct perf_event
*child_ctr
;
7652 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
7653 child
, NULL
, child_ctx
);
7655 return PTR_ERR(leader
);
7656 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
7657 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
7658 child
, leader
, child_ctx
);
7659 if (IS_ERR(child_ctr
))
7660 return PTR_ERR(child_ctr
);
7666 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
7667 struct perf_event_context
*parent_ctx
,
7668 struct task_struct
*child
, int ctxn
,
7672 struct perf_event_context
*child_ctx
;
7674 if (!event
->attr
.inherit
) {
7679 child_ctx
= child
->perf_event_ctxp
[ctxn
];
7682 * This is executed from the parent task context, so
7683 * inherit events that have been marked for cloning.
7684 * First allocate and initialize a context for the
7688 child_ctx
= alloc_perf_context(parent_ctx
->pmu
, child
);
7692 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
7695 ret
= inherit_group(event
, parent
, parent_ctx
,
7705 * Initialize the perf_event context in task_struct
7707 int perf_event_init_context(struct task_struct
*child
, int ctxn
)
7709 struct perf_event_context
*child_ctx
, *parent_ctx
;
7710 struct perf_event_context
*cloned_ctx
;
7711 struct perf_event
*event
;
7712 struct task_struct
*parent
= current
;
7713 int inherited_all
= 1;
7714 unsigned long flags
;
7717 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
7721 * If the parent's context is a clone, pin it so it won't get
7724 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
7727 * No need to check if parent_ctx != NULL here; since we saw
7728 * it non-NULL earlier, the only reason for it to become NULL
7729 * is if we exit, and since we're currently in the middle of
7730 * a fork we can't be exiting at the same time.
7734 * Lock the parent list. No need to lock the child - not PID
7735 * hashed yet and not running, so nobody can access it.
7737 mutex_lock(&parent_ctx
->mutex
);
7740 * We dont have to disable NMIs - we are only looking at
7741 * the list, not manipulating it:
7743 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
7744 ret
= inherit_task_group(event
, parent
, parent_ctx
,
7745 child
, ctxn
, &inherited_all
);
7751 * We can't hold ctx->lock when iterating the ->flexible_group list due
7752 * to allocations, but we need to prevent rotation because
7753 * rotate_ctx() will change the list from interrupt context.
7755 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
7756 parent_ctx
->rotate_disable
= 1;
7757 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
7759 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
7760 ret
= inherit_task_group(event
, parent
, parent_ctx
,
7761 child
, ctxn
, &inherited_all
);
7766 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
7767 parent_ctx
->rotate_disable
= 0;
7769 child_ctx
= child
->perf_event_ctxp
[ctxn
];
7771 if (child_ctx
&& inherited_all
) {
7773 * Mark the child context as a clone of the parent
7774 * context, or of whatever the parent is a clone of.
7776 * Note that if the parent is a clone, the holding of
7777 * parent_ctx->lock avoids it from being uncloned.
7779 cloned_ctx
= parent_ctx
->parent_ctx
;
7781 child_ctx
->parent_ctx
= cloned_ctx
;
7782 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
7784 child_ctx
->parent_ctx
= parent_ctx
;
7785 child_ctx
->parent_gen
= parent_ctx
->generation
;
7787 get_ctx(child_ctx
->parent_ctx
);
7790 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
7791 mutex_unlock(&parent_ctx
->mutex
);
7793 perf_unpin_context(parent_ctx
);
7794 put_ctx(parent_ctx
);
7800 * Initialize the perf_event context in task_struct
7802 int perf_event_init_task(struct task_struct
*child
)
7806 memset(child
->perf_event_ctxp
, 0, sizeof(child
->perf_event_ctxp
));
7807 mutex_init(&child
->perf_event_mutex
);
7808 INIT_LIST_HEAD(&child
->perf_event_list
);
7810 for_each_task_context_nr(ctxn
) {
7811 ret
= perf_event_init_context(child
, ctxn
);
7819 static void __init
perf_event_init_all_cpus(void)
7821 struct swevent_htable
*swhash
;
7824 for_each_possible_cpu(cpu
) {
7825 swhash
= &per_cpu(swevent_htable
, cpu
);
7826 mutex_init(&swhash
->hlist_mutex
);
7827 INIT_LIST_HEAD(&per_cpu(rotation_list
, cpu
));
7831 static void perf_event_init_cpu(int cpu
)
7833 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
7835 mutex_lock(&swhash
->hlist_mutex
);
7836 if (swhash
->hlist_refcount
> 0) {
7837 struct swevent_hlist
*hlist
;
7839 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
7841 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
7843 mutex_unlock(&swhash
->hlist_mutex
);
7846 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7847 static void perf_pmu_rotate_stop(struct pmu
*pmu
)
7849 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
7851 WARN_ON(!irqs_disabled());
7853 list_del_init(&cpuctx
->rotation_list
);
7856 static void __perf_event_exit_context(void *__info
)
7858 struct perf_event_context
*ctx
= __info
;
7859 struct perf_event
*event
, *tmp
;
7861 perf_pmu_rotate_stop(ctx
->pmu
);
7863 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
, group_entry
)
7864 __perf_remove_from_context(event
);
7865 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
, group_entry
)
7866 __perf_remove_from_context(event
);
7869 static void perf_event_exit_cpu_context(int cpu
)
7871 struct perf_event_context
*ctx
;
7875 idx
= srcu_read_lock(&pmus_srcu
);
7876 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
7877 ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
)->ctx
;
7879 mutex_lock(&ctx
->mutex
);
7880 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
7881 mutex_unlock(&ctx
->mutex
);
7883 srcu_read_unlock(&pmus_srcu
, idx
);
7886 static void perf_event_exit_cpu(int cpu
)
7888 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
7890 mutex_lock(&swhash
->hlist_mutex
);
7891 swevent_hlist_release(swhash
);
7892 mutex_unlock(&swhash
->hlist_mutex
);
7894 perf_event_exit_cpu_context(cpu
);
7897 static inline void perf_event_exit_cpu(int cpu
) { }
7901 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
7905 for_each_online_cpu(cpu
)
7906 perf_event_exit_cpu(cpu
);
7912 * Run the perf reboot notifier at the very last possible moment so that
7913 * the generic watchdog code runs as long as possible.
7915 static struct notifier_block perf_reboot_notifier
= {
7916 .notifier_call
= perf_reboot
,
7917 .priority
= INT_MIN
,
7921 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
7923 unsigned int cpu
= (long)hcpu
;
7925 switch (action
& ~CPU_TASKS_FROZEN
) {
7927 case CPU_UP_PREPARE
:
7928 case CPU_DOWN_FAILED
:
7929 perf_event_init_cpu(cpu
);
7932 case CPU_UP_CANCELED
:
7933 case CPU_DOWN_PREPARE
:
7934 perf_event_exit_cpu(cpu
);
7943 void __init
perf_event_init(void)
7949 perf_event_init_all_cpus();
7950 init_srcu_struct(&pmus_srcu
);
7951 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
7952 perf_pmu_register(&perf_cpu_clock
, NULL
, -1);
7953 perf_pmu_register(&perf_task_clock
, NULL
, -1);
7955 perf_cpu_notifier(perf_cpu_notify
);
7956 register_reboot_notifier(&perf_reboot_notifier
);
7958 ret
= init_hw_breakpoint();
7959 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
7961 /* do not patch jump label more than once per second */
7962 jump_label_rate_limit(&perf_sched_events
, HZ
);
7965 * Build time assertion that we keep the data_head at the intended
7966 * location. IOW, validation we got the __reserved[] size right.
7968 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page
, data_head
))
7972 static int __init
perf_event_sysfs_init(void)
7977 mutex_lock(&pmus_lock
);
7979 ret
= bus_register(&pmu_bus
);
7983 list_for_each_entry(pmu
, &pmus
, entry
) {
7984 if (!pmu
->name
|| pmu
->type
< 0)
7987 ret
= pmu_dev_alloc(pmu
);
7988 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
7990 pmu_bus_running
= 1;
7994 mutex_unlock(&pmus_lock
);
7998 device_initcall(perf_event_sysfs_init
);
8000 #ifdef CONFIG_CGROUP_PERF
8001 static struct cgroup_subsys_state
*
8002 perf_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
8004 struct perf_cgroup
*jc
;
8006 jc
= kzalloc(sizeof(*jc
), GFP_KERNEL
);
8008 return ERR_PTR(-ENOMEM
);
8010 jc
->info
= alloc_percpu(struct perf_cgroup_info
);
8013 return ERR_PTR(-ENOMEM
);
8019 static void perf_cgroup_css_free(struct cgroup_subsys_state
*css
)
8021 struct perf_cgroup
*jc
= container_of(css
, struct perf_cgroup
, css
);
8023 free_percpu(jc
->info
);
8027 static int __perf_cgroup_move(void *info
)
8029 struct task_struct
*task
= info
;
8030 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
| PERF_CGROUP_SWIN
);
8034 static void perf_cgroup_attach(struct cgroup_subsys_state
*css
,
8035 struct cgroup_taskset
*tset
)
8037 struct task_struct
*task
;
8039 cgroup_taskset_for_each(task
, css
, tset
)
8040 task_function_call(task
, __perf_cgroup_move
, task
);
8043 static void perf_cgroup_exit(struct cgroup_subsys_state
*css
,
8044 struct cgroup_subsys_state
*old_css
,
8045 struct task_struct
*task
)
8048 * cgroup_exit() is called in the copy_process() failure path.
8049 * Ignore this case since the task hasn't ran yet, this avoids
8050 * trying to poke a half freed task state from generic code.
8052 if (!(task
->flags
& PF_EXITING
))
8055 task_function_call(task
, __perf_cgroup_move
, task
);
8058 struct cgroup_subsys perf_subsys
= {
8059 .name
= "perf_event",
8060 .subsys_id
= perf_subsys_id
,
8061 .css_alloc
= perf_cgroup_css_alloc
,
8062 .css_free
= perf_cgroup_css_free
,
8063 .exit
= perf_cgroup_exit
,
8064 .attach
= perf_cgroup_attach
,
8066 #endif /* CONFIG_CGROUP_PERF */