4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
77 #include <asm/switch_to.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
92 void start_bandwidth_timer(struct hrtimer
*period_timer
, ktime_t period
)
95 ktime_t soft
, hard
, now
;
98 if (hrtimer_active(period_timer
))
101 now
= hrtimer_cb_get_time(period_timer
);
102 hrtimer_forward(period_timer
, now
, period
);
104 soft
= hrtimer_get_softexpires(period_timer
);
105 hard
= hrtimer_get_expires(period_timer
);
106 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
107 __hrtimer_start_range_ns(period_timer
, soft
, delta
,
108 HRTIMER_MODE_ABS_PINNED
, 0);
112 DEFINE_MUTEX(sched_domains_mutex
);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
115 static void update_rq_clock_task(struct rq
*rq
, s64 delta
);
117 void update_rq_clock(struct rq
*rq
)
121 if (rq
->skip_clock_update
> 0)
124 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
126 update_rq_clock_task(rq
, delta
);
130 * Debugging: various feature bits
133 #define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
136 const_debug
unsigned int sysctl_sched_features
=
137 #include "features.h"
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled) \
146 static const char * const sched_feat_names
[] = {
147 #include "features.h"
152 static int sched_feat_show(struct seq_file
*m
, void *v
)
156 for (i
= 0; i
< __SCHED_FEAT_NR
; i
++) {
157 if (!(sysctl_sched_features
& (1UL << i
)))
159 seq_printf(m
, "%s ", sched_feat_names
[i
]);
166 #ifdef HAVE_JUMP_LABEL
168 #define jump_label_key__true STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
171 #define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
174 struct static_key sched_feat_keys
[__SCHED_FEAT_NR
] = {
175 #include "features.h"
180 static void sched_feat_disable(int i
)
182 if (static_key_enabled(&sched_feat_keys
[i
]))
183 static_key_slow_dec(&sched_feat_keys
[i
]);
186 static void sched_feat_enable(int i
)
188 if (!static_key_enabled(&sched_feat_keys
[i
]))
189 static_key_slow_inc(&sched_feat_keys
[i
]);
192 static void sched_feat_disable(int i
) { };
193 static void sched_feat_enable(int i
) { };
194 #endif /* HAVE_JUMP_LABEL */
196 static int sched_feat_set(char *cmp
)
201 if (strncmp(cmp
, "NO_", 3) == 0) {
206 for (i
= 0; i
< __SCHED_FEAT_NR
; i
++) {
207 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
209 sysctl_sched_features
&= ~(1UL << i
);
210 sched_feat_disable(i
);
212 sysctl_sched_features
|= (1UL << i
);
213 sched_feat_enable(i
);
223 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
224 size_t cnt
, loff_t
*ppos
)
233 if (copy_from_user(&buf
, ubuf
, cnt
))
239 i
= sched_feat_set(cmp
);
240 if (i
== __SCHED_FEAT_NR
)
248 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
250 return single_open(filp
, sched_feat_show
, NULL
);
253 static const struct file_operations sched_feat_fops
= {
254 .open
= sched_feat_open
,
255 .write
= sched_feat_write
,
258 .release
= single_release
,
261 static __init
int sched_init_debug(void)
263 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
268 late_initcall(sched_init_debug
);
269 #endif /* CONFIG_SCHED_DEBUG */
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
275 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
278 * period over which we average the RT time consumption, measured
283 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
286 * period over which we measure -rt task cpu usage in us.
289 unsigned int sysctl_sched_rt_period
= 1000000;
291 __read_mostly
int scheduler_running
;
294 * part of the period that we allow rt tasks to run in us.
297 int sysctl_sched_rt_runtime
= 950000;
300 * __task_rq_lock - lock the rq @p resides on.
302 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
307 lockdep_assert_held(&p
->pi_lock
);
311 raw_spin_lock(&rq
->lock
);
312 if (likely(rq
== task_rq(p
)))
314 raw_spin_unlock(&rq
->lock
);
319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
321 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
322 __acquires(p
->pi_lock
)
328 raw_spin_lock_irqsave(&p
->pi_lock
, *flags
);
330 raw_spin_lock(&rq
->lock
);
331 if (likely(rq
== task_rq(p
)))
333 raw_spin_unlock(&rq
->lock
);
334 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
338 static void __task_rq_unlock(struct rq
*rq
)
341 raw_spin_unlock(&rq
->lock
);
345 task_rq_unlock(struct rq
*rq
, struct task_struct
*p
, unsigned long *flags
)
347 __releases(p
->pi_lock
)
349 raw_spin_unlock(&rq
->lock
);
350 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
354 * this_rq_lock - lock this runqueue and disable interrupts.
356 static struct rq
*this_rq_lock(void)
363 raw_spin_lock(&rq
->lock
);
368 #ifdef CONFIG_SCHED_HRTICK
370 * Use HR-timers to deliver accurate preemption points.
373 static void hrtick_clear(struct rq
*rq
)
375 if (hrtimer_active(&rq
->hrtick_timer
))
376 hrtimer_cancel(&rq
->hrtick_timer
);
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
383 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
385 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
387 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
389 raw_spin_lock(&rq
->lock
);
391 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
392 raw_spin_unlock(&rq
->lock
);
394 return HRTIMER_NORESTART
;
399 static int __hrtick_restart(struct rq
*rq
)
401 struct hrtimer
*timer
= &rq
->hrtick_timer
;
402 ktime_t time
= hrtimer_get_softexpires(timer
);
404 return __hrtimer_start_range_ns(timer
, time
, 0, HRTIMER_MODE_ABS_PINNED
, 0);
408 * called from hardirq (IPI) context
410 static void __hrtick_start(void *arg
)
414 raw_spin_lock(&rq
->lock
);
415 __hrtick_restart(rq
);
416 rq
->hrtick_csd_pending
= 0;
417 raw_spin_unlock(&rq
->lock
);
421 * Called to set the hrtick timer state.
423 * called with rq->lock held and irqs disabled
425 void hrtick_start(struct rq
*rq
, u64 delay
)
427 struct hrtimer
*timer
= &rq
->hrtick_timer
;
428 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
430 hrtimer_set_expires(timer
, time
);
432 if (rq
== this_rq()) {
433 __hrtick_restart(rq
);
434 } else if (!rq
->hrtick_csd_pending
) {
435 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
436 rq
->hrtick_csd_pending
= 1;
441 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
443 int cpu
= (int)(long)hcpu
;
446 case CPU_UP_CANCELED
:
447 case CPU_UP_CANCELED_FROZEN
:
448 case CPU_DOWN_PREPARE
:
449 case CPU_DOWN_PREPARE_FROZEN
:
451 case CPU_DEAD_FROZEN
:
452 hrtick_clear(cpu_rq(cpu
));
459 static __init
void init_hrtick(void)
461 hotcpu_notifier(hotplug_hrtick
, 0);
465 * Called to set the hrtick timer state.
467 * called with rq->lock held and irqs disabled
469 void hrtick_start(struct rq
*rq
, u64 delay
)
471 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
472 HRTIMER_MODE_REL_PINNED
, 0);
475 static inline void init_hrtick(void)
478 #endif /* CONFIG_SMP */
480 static void init_rq_hrtick(struct rq
*rq
)
483 rq
->hrtick_csd_pending
= 0;
485 rq
->hrtick_csd
.flags
= 0;
486 rq
->hrtick_csd
.func
= __hrtick_start
;
487 rq
->hrtick_csd
.info
= rq
;
490 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
491 rq
->hrtick_timer
.function
= hrtick
;
493 #else /* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq
*rq
)
498 static inline void init_rq_hrtick(struct rq
*rq
)
502 static inline void init_hrtick(void)
505 #endif /* CONFIG_SCHED_HRTICK */
508 * resched_task - mark a task 'to be rescheduled now'.
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
514 void resched_task(struct task_struct
*p
)
518 lockdep_assert_held(&task_rq(p
)->lock
);
520 if (test_tsk_need_resched(p
))
523 set_tsk_need_resched(p
);
526 if (cpu
== smp_processor_id()) {
527 set_preempt_need_resched();
531 /* NEED_RESCHED must be visible before we test polling */
533 if (!tsk_is_polling(p
))
534 smp_send_reschedule(cpu
);
537 void resched_cpu(int cpu
)
539 struct rq
*rq
= cpu_rq(cpu
);
542 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
544 resched_task(cpu_curr(cpu
));
545 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
549 #ifdef CONFIG_NO_HZ_COMMON
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu. This is good for power-savings.
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
558 int get_nohz_timer_target(void)
560 int cpu
= smp_processor_id();
562 struct sched_domain
*sd
;
565 for_each_domain(cpu
, sd
) {
566 for_each_cpu(i
, sched_domain_span(sd
)) {
578 * When add_timer_on() enqueues a timer into the timer wheel of an
579 * idle CPU then this timer might expire before the next timer event
580 * which is scheduled to wake up that CPU. In case of a completely
581 * idle system the next event might even be infinite time into the
582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583 * leaves the inner idle loop so the newly added timer is taken into
584 * account when the CPU goes back to idle and evaluates the timer
585 * wheel for the next timer event.
587 static void wake_up_idle_cpu(int cpu
)
589 struct rq
*rq
= cpu_rq(cpu
);
591 if (cpu
== smp_processor_id())
595 * This is safe, as this function is called with the timer
596 * wheel base lock of (cpu) held. When the CPU is on the way
597 * to idle and has not yet set rq->curr to idle then it will
598 * be serialized on the timer wheel base lock and take the new
599 * timer into account automatically.
601 if (rq
->curr
!= rq
->idle
)
605 * We can set TIF_RESCHED on the idle task of the other CPU
606 * lockless. The worst case is that the other CPU runs the
607 * idle task through an additional NOOP schedule()
609 set_tsk_need_resched(rq
->idle
);
611 /* NEED_RESCHED must be visible before we test polling */
613 if (!tsk_is_polling(rq
->idle
))
614 smp_send_reschedule(cpu
);
617 static bool wake_up_full_nohz_cpu(int cpu
)
619 if (tick_nohz_full_cpu(cpu
)) {
620 if (cpu
!= smp_processor_id() ||
621 tick_nohz_tick_stopped())
622 smp_send_reschedule(cpu
);
629 void wake_up_nohz_cpu(int cpu
)
631 if (!wake_up_full_nohz_cpu(cpu
))
632 wake_up_idle_cpu(cpu
);
635 static inline bool got_nohz_idle_kick(void)
637 int cpu
= smp_processor_id();
639 if (!test_bit(NOHZ_BALANCE_KICK
, nohz_flags(cpu
)))
642 if (idle_cpu(cpu
) && !need_resched())
646 * We can't run Idle Load Balance on this CPU for this time so we
647 * cancel it and clear NOHZ_BALANCE_KICK
649 clear_bit(NOHZ_BALANCE_KICK
, nohz_flags(cpu
));
653 #else /* CONFIG_NO_HZ_COMMON */
655 static inline bool got_nohz_idle_kick(void)
660 #endif /* CONFIG_NO_HZ_COMMON */
662 #ifdef CONFIG_NO_HZ_FULL
663 bool sched_can_stop_tick(void)
669 /* Make sure rq->nr_running update is visible after the IPI */
672 /* More than one running task need preemption */
673 if (rq
->nr_running
> 1)
678 #endif /* CONFIG_NO_HZ_FULL */
680 void sched_avg_update(struct rq
*rq
)
682 s64 period
= sched_avg_period();
684 while ((s64
)(rq_clock(rq
) - rq
->age_stamp
) > period
) {
686 * Inline assembly required to prevent the compiler
687 * optimising this loop into a divmod call.
688 * See __iter_div_u64_rem() for another example of this.
690 asm("" : "+rm" (rq
->age_stamp
));
691 rq
->age_stamp
+= period
;
696 #endif /* CONFIG_SMP */
698 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
699 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
701 * Iterate task_group tree rooted at *from, calling @down when first entering a
702 * node and @up when leaving it for the final time.
704 * Caller must hold rcu_lock or sufficient equivalent.
706 int walk_tg_tree_from(struct task_group
*from
,
707 tg_visitor down
, tg_visitor up
, void *data
)
709 struct task_group
*parent
, *child
;
715 ret
= (*down
)(parent
, data
);
718 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
725 ret
= (*up
)(parent
, data
);
726 if (ret
|| parent
== from
)
730 parent
= parent
->parent
;
737 int tg_nop(struct task_group
*tg
, void *data
)
743 static void set_load_weight(struct task_struct
*p
)
745 int prio
= p
->static_prio
- MAX_RT_PRIO
;
746 struct load_weight
*load
= &p
->se
.load
;
749 * SCHED_IDLE tasks get minimal weight:
751 if (p
->policy
== SCHED_IDLE
) {
752 load
->weight
= scale_load(WEIGHT_IDLEPRIO
);
753 load
->inv_weight
= WMULT_IDLEPRIO
;
757 load
->weight
= scale_load(prio_to_weight
[prio
]);
758 load
->inv_weight
= prio_to_wmult
[prio
];
761 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
764 sched_info_queued(rq
, p
);
765 p
->sched_class
->enqueue_task(rq
, p
, flags
);
768 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
771 sched_info_dequeued(rq
, p
);
772 p
->sched_class
->dequeue_task(rq
, p
, flags
);
775 void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
777 if (task_contributes_to_load(p
))
778 rq
->nr_uninterruptible
--;
780 enqueue_task(rq
, p
, flags
);
783 void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
785 if (task_contributes_to_load(p
))
786 rq
->nr_uninterruptible
++;
788 dequeue_task(rq
, p
, flags
);
791 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
794 * In theory, the compile should just see 0 here, and optimize out the call
795 * to sched_rt_avg_update. But I don't trust it...
797 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798 s64 steal
= 0, irq_delta
= 0;
800 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
801 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
804 * Since irq_time is only updated on {soft,}irq_exit, we might run into
805 * this case when a previous update_rq_clock() happened inside a
808 * When this happens, we stop ->clock_task and only update the
809 * prev_irq_time stamp to account for the part that fit, so that a next
810 * update will consume the rest. This ensures ->clock_task is
813 * It does however cause some slight miss-attribution of {soft,}irq
814 * time, a more accurate solution would be to update the irq_time using
815 * the current rq->clock timestamp, except that would require using
818 if (irq_delta
> delta
)
821 rq
->prev_irq_time
+= irq_delta
;
824 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
825 if (static_key_false((¶virt_steal_rq_enabled
))) {
828 steal
= paravirt_steal_clock(cpu_of(rq
));
829 steal
-= rq
->prev_steal_time_rq
;
831 if (unlikely(steal
> delta
))
834 st
= steal_ticks(steal
);
835 steal
= st
* TICK_NSEC
;
837 rq
->prev_steal_time_rq
+= steal
;
843 rq
->clock_task
+= delta
;
845 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
846 if ((irq_delta
+ steal
) && sched_feat(NONTASK_POWER
))
847 sched_rt_avg_update(rq
, irq_delta
+ steal
);
851 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
853 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
854 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
858 * Make it appear like a SCHED_FIFO task, its something
859 * userspace knows about and won't get confused about.
861 * Also, it will make PI more or less work without too
862 * much confusion -- but then, stop work should not
863 * rely on PI working anyway.
865 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
867 stop
->sched_class
= &stop_sched_class
;
870 cpu_rq(cpu
)->stop
= stop
;
874 * Reset it back to a normal scheduling class so that
875 * it can die in pieces.
877 old_stop
->sched_class
= &rt_sched_class
;
882 * __normal_prio - return the priority that is based on the static prio
884 static inline int __normal_prio(struct task_struct
*p
)
886 return p
->static_prio
;
890 * Calculate the expected normal priority: i.e. priority
891 * without taking RT-inheritance into account. Might be
892 * boosted by interactivity modifiers. Changes upon fork,
893 * setprio syscalls, and whenever the interactivity
894 * estimator recalculates.
896 static inline int normal_prio(struct task_struct
*p
)
900 if (task_has_dl_policy(p
))
901 prio
= MAX_DL_PRIO
-1;
902 else if (task_has_rt_policy(p
))
903 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
905 prio
= __normal_prio(p
);
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
916 static int effective_prio(struct task_struct
*p
)
918 p
->normal_prio
= normal_prio(p
);
920 * If we are RT tasks or we were boosted to RT priority,
921 * keep the priority unchanged. Otherwise, update priority
922 * to the normal priority:
924 if (!rt_prio(p
->prio
))
925 return p
->normal_prio
;
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
933 * Return: 1 if the task is currently executing. 0 otherwise.
935 inline int task_curr(const struct task_struct
*p
)
937 return cpu_curr(task_cpu(p
)) == p
;
940 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
941 const struct sched_class
*prev_class
,
944 if (prev_class
!= p
->sched_class
) {
945 if (prev_class
->switched_from
)
946 prev_class
->switched_from(rq
, p
);
947 p
->sched_class
->switched_to(rq
, p
);
948 } else if (oldprio
!= p
->prio
|| dl_task(p
))
949 p
->sched_class
->prio_changed(rq
, p
, oldprio
);
952 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
954 const struct sched_class
*class;
956 if (p
->sched_class
== rq
->curr
->sched_class
) {
957 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
959 for_each_class(class) {
960 if (class == rq
->curr
->sched_class
)
962 if (class == p
->sched_class
) {
963 resched_task(rq
->curr
);
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
973 if (rq
->curr
->on_rq
&& test_tsk_need_resched(rq
->curr
))
974 rq
->skip_clock_update
= 1;
978 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
980 #ifdef CONFIG_SCHED_DEBUG
982 * We should never call set_task_cpu() on a blocked task,
983 * ttwu() will sort out the placement.
985 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
986 !(task_preempt_count(p
) & PREEMPT_ACTIVE
));
988 #ifdef CONFIG_LOCKDEP
990 * The caller should hold either p->pi_lock or rq->lock, when changing
991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
993 * sched_move_task() holds both and thus holding either pins the cgroup,
996 * Furthermore, all task_rq users should acquire both locks, see
999 WARN_ON_ONCE(debug_locks
&& !(lockdep_is_held(&p
->pi_lock
) ||
1000 lockdep_is_held(&task_rq(p
)->lock
)));
1004 trace_sched_migrate_task(p
, new_cpu
);
1006 if (task_cpu(p
) != new_cpu
) {
1007 if (p
->sched_class
->migrate_task_rq
)
1008 p
->sched_class
->migrate_task_rq(p
, new_cpu
);
1009 p
->se
.nr_migrations
++;
1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, NULL
, 0);
1013 __set_task_cpu(p
, new_cpu
);
1016 static void __migrate_swap_task(struct task_struct
*p
, int cpu
)
1019 struct rq
*src_rq
, *dst_rq
;
1021 src_rq
= task_rq(p
);
1022 dst_rq
= cpu_rq(cpu
);
1024 deactivate_task(src_rq
, p
, 0);
1025 set_task_cpu(p
, cpu
);
1026 activate_task(dst_rq
, p
, 0);
1027 check_preempt_curr(dst_rq
, p
, 0);
1030 * Task isn't running anymore; make it appear like we migrated
1031 * it before it went to sleep. This means on wakeup we make the
1032 * previous cpu our targer instead of where it really is.
1038 struct migration_swap_arg
{
1039 struct task_struct
*src_task
, *dst_task
;
1040 int src_cpu
, dst_cpu
;
1043 static int migrate_swap_stop(void *data
)
1045 struct migration_swap_arg
*arg
= data
;
1046 struct rq
*src_rq
, *dst_rq
;
1049 src_rq
= cpu_rq(arg
->src_cpu
);
1050 dst_rq
= cpu_rq(arg
->dst_cpu
);
1052 double_raw_lock(&arg
->src_task
->pi_lock
,
1053 &arg
->dst_task
->pi_lock
);
1054 double_rq_lock(src_rq
, dst_rq
);
1055 if (task_cpu(arg
->dst_task
) != arg
->dst_cpu
)
1058 if (task_cpu(arg
->src_task
) != arg
->src_cpu
)
1061 if (!cpumask_test_cpu(arg
->dst_cpu
, tsk_cpus_allowed(arg
->src_task
)))
1064 if (!cpumask_test_cpu(arg
->src_cpu
, tsk_cpus_allowed(arg
->dst_task
)))
1067 __migrate_swap_task(arg
->src_task
, arg
->dst_cpu
);
1068 __migrate_swap_task(arg
->dst_task
, arg
->src_cpu
);
1073 double_rq_unlock(src_rq
, dst_rq
);
1074 raw_spin_unlock(&arg
->dst_task
->pi_lock
);
1075 raw_spin_unlock(&arg
->src_task
->pi_lock
);
1081 * Cross migrate two tasks
1083 int migrate_swap(struct task_struct
*cur
, struct task_struct
*p
)
1085 struct migration_swap_arg arg
;
1088 arg
= (struct migration_swap_arg
){
1090 .src_cpu
= task_cpu(cur
),
1092 .dst_cpu
= task_cpu(p
),
1095 if (arg
.src_cpu
== arg
.dst_cpu
)
1099 * These three tests are all lockless; this is OK since all of them
1100 * will be re-checked with proper locks held further down the line.
1102 if (!cpu_active(arg
.src_cpu
) || !cpu_active(arg
.dst_cpu
))
1105 if (!cpumask_test_cpu(arg
.dst_cpu
, tsk_cpus_allowed(arg
.src_task
)))
1108 if (!cpumask_test_cpu(arg
.src_cpu
, tsk_cpus_allowed(arg
.dst_task
)))
1111 trace_sched_swap_numa(cur
, arg
.src_cpu
, p
, arg
.dst_cpu
);
1112 ret
= stop_two_cpus(arg
.dst_cpu
, arg
.src_cpu
, migrate_swap_stop
, &arg
);
1118 struct migration_arg
{
1119 struct task_struct
*task
;
1123 static int migration_cpu_stop(void *data
);
1126 * wait_task_inactive - wait for a thread to unschedule.
1128 * If @match_state is nonzero, it's the @p->state value just checked and
1129 * not expected to change. If it changes, i.e. @p might have woken up,
1130 * then return zero. When we succeed in waiting for @p to be off its CPU,
1131 * we return a positive number (its total switch count). If a second call
1132 * a short while later returns the same number, the caller can be sure that
1133 * @p has remained unscheduled the whole time.
1135 * The caller must ensure that the task *will* unschedule sometime soon,
1136 * else this function might spin for a *long* time. This function can't
1137 * be called with interrupts off, or it may introduce deadlock with
1138 * smp_call_function() if an IPI is sent by the same process we are
1139 * waiting to become inactive.
1141 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
1143 unsigned long flags
;
1150 * We do the initial early heuristics without holding
1151 * any task-queue locks at all. We'll only try to get
1152 * the runqueue lock when things look like they will
1158 * If the task is actively running on another CPU
1159 * still, just relax and busy-wait without holding
1162 * NOTE! Since we don't hold any locks, it's not
1163 * even sure that "rq" stays as the right runqueue!
1164 * But we don't care, since "task_running()" will
1165 * return false if the runqueue has changed and p
1166 * is actually now running somewhere else!
1168 while (task_running(rq
, p
)) {
1169 if (match_state
&& unlikely(p
->state
!= match_state
))
1175 * Ok, time to look more closely! We need the rq
1176 * lock now, to be *sure*. If we're wrong, we'll
1177 * just go back and repeat.
1179 rq
= task_rq_lock(p
, &flags
);
1180 trace_sched_wait_task(p
);
1181 running
= task_running(rq
, p
);
1184 if (!match_state
|| p
->state
== match_state
)
1185 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
1186 task_rq_unlock(rq
, p
, &flags
);
1189 * If it changed from the expected state, bail out now.
1191 if (unlikely(!ncsw
))
1195 * Was it really running after all now that we
1196 * checked with the proper locks actually held?
1198 * Oops. Go back and try again..
1200 if (unlikely(running
)) {
1206 * It's not enough that it's not actively running,
1207 * it must be off the runqueue _entirely_, and not
1210 * So if it was still runnable (but just not actively
1211 * running right now), it's preempted, and we should
1212 * yield - it could be a while.
1214 if (unlikely(on_rq
)) {
1215 ktime_t to
= ktime_set(0, NSEC_PER_SEC
/HZ
);
1217 set_current_state(TASK_UNINTERRUPTIBLE
);
1218 schedule_hrtimeout(&to
, HRTIMER_MODE_REL
);
1223 * Ahh, all good. It wasn't running, and it wasn't
1224 * runnable, which means that it will never become
1225 * running in the future either. We're all done!
1234 * kick_process - kick a running thread to enter/exit the kernel
1235 * @p: the to-be-kicked thread
1237 * Cause a process which is running on another CPU to enter
1238 * kernel-mode, without any delay. (to get signals handled.)
1240 * NOTE: this function doesn't have to take the runqueue lock,
1241 * because all it wants to ensure is that the remote task enters
1242 * the kernel. If the IPI races and the task has been migrated
1243 * to another CPU then no harm is done and the purpose has been
1246 void kick_process(struct task_struct
*p
)
1252 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1253 smp_send_reschedule(cpu
);
1256 EXPORT_SYMBOL_GPL(kick_process
);
1257 #endif /* CONFIG_SMP */
1261 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1263 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
1265 int nid
= cpu_to_node(cpu
);
1266 const struct cpumask
*nodemask
= NULL
;
1267 enum { cpuset
, possible
, fail
} state
= cpuset
;
1271 * If the node that the cpu is on has been offlined, cpu_to_node()
1272 * will return -1. There is no cpu on the node, and we should
1273 * select the cpu on the other node.
1276 nodemask
= cpumask_of_node(nid
);
1278 /* Look for allowed, online CPU in same node. */
1279 for_each_cpu(dest_cpu
, nodemask
) {
1280 if (!cpu_online(dest_cpu
))
1282 if (!cpu_active(dest_cpu
))
1284 if (cpumask_test_cpu(dest_cpu
, tsk_cpus_allowed(p
)))
1290 /* Any allowed, online CPU? */
1291 for_each_cpu(dest_cpu
, tsk_cpus_allowed(p
)) {
1292 if (!cpu_online(dest_cpu
))
1294 if (!cpu_active(dest_cpu
))
1301 /* No more Mr. Nice Guy. */
1302 cpuset_cpus_allowed_fallback(p
);
1307 do_set_cpus_allowed(p
, cpu_possible_mask
);
1318 if (state
!= cpuset
) {
1320 * Don't tell them about moving exiting tasks or
1321 * kernel threads (both mm NULL), since they never
1324 if (p
->mm
&& printk_ratelimit()) {
1325 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1326 task_pid_nr(p
), p
->comm
, cpu
);
1334 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1337 int select_task_rq(struct task_struct
*p
, int cpu
, int sd_flags
, int wake_flags
)
1339 cpu
= p
->sched_class
->select_task_rq(p
, cpu
, sd_flags
, wake_flags
);
1342 * In order not to call set_task_cpu() on a blocking task we need
1343 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1346 * Since this is common to all placement strategies, this lives here.
1348 * [ this allows ->select_task() to simply return task_cpu(p) and
1349 * not worry about this generic constraint ]
1351 if (unlikely(!cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)) ||
1353 cpu
= select_fallback_rq(task_cpu(p
), p
);
1358 static void update_avg(u64
*avg
, u64 sample
)
1360 s64 diff
= sample
- *avg
;
1366 ttwu_stat(struct task_struct
*p
, int cpu
, int wake_flags
)
1368 #ifdef CONFIG_SCHEDSTATS
1369 struct rq
*rq
= this_rq();
1372 int this_cpu
= smp_processor_id();
1374 if (cpu
== this_cpu
) {
1375 schedstat_inc(rq
, ttwu_local
);
1376 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
1378 struct sched_domain
*sd
;
1380 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
1382 for_each_domain(this_cpu
, sd
) {
1383 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
1384 schedstat_inc(sd
, ttwu_wake_remote
);
1391 if (wake_flags
& WF_MIGRATED
)
1392 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
1394 #endif /* CONFIG_SMP */
1396 schedstat_inc(rq
, ttwu_count
);
1397 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
1399 if (wake_flags
& WF_SYNC
)
1400 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
1402 #endif /* CONFIG_SCHEDSTATS */
1405 static void ttwu_activate(struct rq
*rq
, struct task_struct
*p
, int en_flags
)
1407 activate_task(rq
, p
, en_flags
);
1410 /* if a worker is waking up, notify workqueue */
1411 if (p
->flags
& PF_WQ_WORKER
)
1412 wq_worker_waking_up(p
, cpu_of(rq
));
1416 * Mark the task runnable and perform wakeup-preemption.
1419 ttwu_do_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1421 check_preempt_curr(rq
, p
, wake_flags
);
1422 trace_sched_wakeup(p
, true);
1424 p
->state
= TASK_RUNNING
;
1426 if (p
->sched_class
->task_woken
)
1427 p
->sched_class
->task_woken(rq
, p
);
1429 if (rq
->idle_stamp
) {
1430 u64 delta
= rq_clock(rq
) - rq
->idle_stamp
;
1431 u64 max
= 2*rq
->max_idle_balance_cost
;
1433 update_avg(&rq
->avg_idle
, delta
);
1435 if (rq
->avg_idle
> max
)
1444 ttwu_do_activate(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1447 if (p
->sched_contributes_to_load
)
1448 rq
->nr_uninterruptible
--;
1451 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
| ENQUEUE_WAKING
);
1452 ttwu_do_wakeup(rq
, p
, wake_flags
);
1456 * Called in case the task @p isn't fully descheduled from its runqueue,
1457 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1458 * since all we need to do is flip p->state to TASK_RUNNING, since
1459 * the task is still ->on_rq.
1461 static int ttwu_remote(struct task_struct
*p
, int wake_flags
)
1466 rq
= __task_rq_lock(p
);
1468 /* check_preempt_curr() may use rq clock */
1469 update_rq_clock(rq
);
1470 ttwu_do_wakeup(rq
, p
, wake_flags
);
1473 __task_rq_unlock(rq
);
1479 static void sched_ttwu_pending(void)
1481 struct rq
*rq
= this_rq();
1482 struct llist_node
*llist
= llist_del_all(&rq
->wake_list
);
1483 struct task_struct
*p
;
1485 raw_spin_lock(&rq
->lock
);
1488 p
= llist_entry(llist
, struct task_struct
, wake_entry
);
1489 llist
= llist_next(llist
);
1490 ttwu_do_activate(rq
, p
, 0);
1493 raw_spin_unlock(&rq
->lock
);
1496 void scheduler_ipi(void)
1499 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1500 * TIF_NEED_RESCHED remotely (for the first time) will also send
1503 preempt_fold_need_resched();
1505 if (llist_empty(&this_rq()->wake_list
)
1506 && !tick_nohz_full_cpu(smp_processor_id())
1507 && !got_nohz_idle_kick())
1511 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512 * traditionally all their work was done from the interrupt return
1513 * path. Now that we actually do some work, we need to make sure
1516 * Some archs already do call them, luckily irq_enter/exit nest
1519 * Arguably we should visit all archs and update all handlers,
1520 * however a fair share of IPIs are still resched only so this would
1521 * somewhat pessimize the simple resched case.
1524 tick_nohz_full_check();
1525 sched_ttwu_pending();
1528 * Check if someone kicked us for doing the nohz idle load balance.
1530 if (unlikely(got_nohz_idle_kick())) {
1531 this_rq()->idle_balance
= 1;
1532 raise_softirq_irqoff(SCHED_SOFTIRQ
);
1537 static void ttwu_queue_remote(struct task_struct
*p
, int cpu
)
1539 if (llist_add(&p
->wake_entry
, &cpu_rq(cpu
)->wake_list
))
1540 smp_send_reschedule(cpu
);
1543 bool cpus_share_cache(int this_cpu
, int that_cpu
)
1545 return per_cpu(sd_llc_id
, this_cpu
) == per_cpu(sd_llc_id
, that_cpu
);
1547 #endif /* CONFIG_SMP */
1549 static void ttwu_queue(struct task_struct
*p
, int cpu
)
1551 struct rq
*rq
= cpu_rq(cpu
);
1553 #if defined(CONFIG_SMP)
1554 if (sched_feat(TTWU_QUEUE
) && !cpus_share_cache(smp_processor_id(), cpu
)) {
1555 sched_clock_cpu(cpu
); /* sync clocks x-cpu */
1556 ttwu_queue_remote(p
, cpu
);
1561 raw_spin_lock(&rq
->lock
);
1562 ttwu_do_activate(rq
, p
, 0);
1563 raw_spin_unlock(&rq
->lock
);
1567 * try_to_wake_up - wake up a thread
1568 * @p: the thread to be awakened
1569 * @state: the mask of task states that can be woken
1570 * @wake_flags: wake modifier flags (WF_*)
1572 * Put it on the run-queue if it's not already there. The "current"
1573 * thread is always on the run-queue (except when the actual
1574 * re-schedule is in progress), and as such you're allowed to do
1575 * the simpler "current->state = TASK_RUNNING" to mark yourself
1576 * runnable without the overhead of this.
1578 * Return: %true if @p was woken up, %false if it was already running.
1579 * or @state didn't match @p's state.
1582 try_to_wake_up(struct task_struct
*p
, unsigned int state
, int wake_flags
)
1584 unsigned long flags
;
1585 int cpu
, success
= 0;
1588 * If we are going to wake up a thread waiting for CONDITION we
1589 * need to ensure that CONDITION=1 done by the caller can not be
1590 * reordered with p->state check below. This pairs with mb() in
1591 * set_current_state() the waiting thread does.
1593 smp_mb__before_spinlock();
1594 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
1595 if (!(p
->state
& state
))
1598 success
= 1; /* we're going to change ->state */
1601 if (p
->on_rq
&& ttwu_remote(p
, wake_flags
))
1606 * If the owning (remote) cpu is still in the middle of schedule() with
1607 * this task as prev, wait until its done referencing the task.
1612 * Pairs with the smp_wmb() in finish_lock_switch().
1616 p
->sched_contributes_to_load
= !!task_contributes_to_load(p
);
1617 p
->state
= TASK_WAKING
;
1619 if (p
->sched_class
->task_waking
)
1620 p
->sched_class
->task_waking(p
);
1622 cpu
= select_task_rq(p
, p
->wake_cpu
, SD_BALANCE_WAKE
, wake_flags
);
1623 if (task_cpu(p
) != cpu
) {
1624 wake_flags
|= WF_MIGRATED
;
1625 set_task_cpu(p
, cpu
);
1627 #endif /* CONFIG_SMP */
1631 ttwu_stat(p
, cpu
, wake_flags
);
1633 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
1639 * try_to_wake_up_local - try to wake up a local task with rq lock held
1640 * @p: the thread to be awakened
1642 * Put @p on the run-queue if it's not already there. The caller must
1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1646 static void try_to_wake_up_local(struct task_struct
*p
)
1648 struct rq
*rq
= task_rq(p
);
1650 if (WARN_ON_ONCE(rq
!= this_rq()) ||
1651 WARN_ON_ONCE(p
== current
))
1654 lockdep_assert_held(&rq
->lock
);
1656 if (!raw_spin_trylock(&p
->pi_lock
)) {
1657 raw_spin_unlock(&rq
->lock
);
1658 raw_spin_lock(&p
->pi_lock
);
1659 raw_spin_lock(&rq
->lock
);
1662 if (!(p
->state
& TASK_NORMAL
))
1666 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
1668 ttwu_do_wakeup(rq
, p
, 0);
1669 ttwu_stat(p
, smp_processor_id(), 0);
1671 raw_spin_unlock(&p
->pi_lock
);
1675 * wake_up_process - Wake up a specific process
1676 * @p: The process to be woken up.
1678 * Attempt to wake up the nominated process and move it to the set of runnable
1681 * Return: 1 if the process was woken up, 0 if it was already running.
1683 * It may be assumed that this function implies a write memory barrier before
1684 * changing the task state if and only if any tasks are woken up.
1686 int wake_up_process(struct task_struct
*p
)
1688 WARN_ON(task_is_stopped_or_traced(p
));
1689 return try_to_wake_up(p
, TASK_NORMAL
, 0);
1691 EXPORT_SYMBOL(wake_up_process
);
1693 int wake_up_state(struct task_struct
*p
, unsigned int state
)
1695 return try_to_wake_up(p
, state
, 0);
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
1702 * __sched_fork() is basic setup used by init_idle() too:
1704 static void __sched_fork(unsigned long clone_flags
, struct task_struct
*p
)
1709 p
->se
.exec_start
= 0;
1710 p
->se
.sum_exec_runtime
= 0;
1711 p
->se
.prev_sum_exec_runtime
= 0;
1712 p
->se
.nr_migrations
= 0;
1714 INIT_LIST_HEAD(&p
->se
.group_node
);
1716 #ifdef CONFIG_SCHEDSTATS
1717 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
1720 RB_CLEAR_NODE(&p
->dl
.rb_node
);
1721 hrtimer_init(&p
->dl
.dl_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1722 p
->dl
.dl_runtime
= p
->dl
.runtime
= 0;
1723 p
->dl
.dl_deadline
= p
->dl
.deadline
= 0;
1724 p
->dl
.dl_period
= 0;
1727 INIT_LIST_HEAD(&p
->rt
.run_list
);
1729 #ifdef CONFIG_PREEMPT_NOTIFIERS
1730 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1733 #ifdef CONFIG_NUMA_BALANCING
1734 if (p
->mm
&& atomic_read(&p
->mm
->mm_users
) == 1) {
1735 p
->mm
->numa_next_scan
= jiffies
+ msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
1736 p
->mm
->numa_scan_seq
= 0;
1739 if (clone_flags
& CLONE_VM
)
1740 p
->numa_preferred_nid
= current
->numa_preferred_nid
;
1742 p
->numa_preferred_nid
= -1;
1744 p
->node_stamp
= 0ULL;
1745 p
->numa_scan_seq
= p
->mm
? p
->mm
->numa_scan_seq
: 0;
1746 p
->numa_scan_period
= sysctl_numa_balancing_scan_delay
;
1747 p
->numa_work
.next
= &p
->numa_work
;
1748 p
->numa_faults
= NULL
;
1749 p
->numa_faults_buffer
= NULL
;
1751 INIT_LIST_HEAD(&p
->numa_entry
);
1752 p
->numa_group
= NULL
;
1753 #endif /* CONFIG_NUMA_BALANCING */
1756 #ifdef CONFIG_NUMA_BALANCING
1757 #ifdef CONFIG_SCHED_DEBUG
1758 void set_numabalancing_state(bool enabled
)
1761 sched_feat_set("NUMA");
1763 sched_feat_set("NO_NUMA");
1766 __read_mostly
bool numabalancing_enabled
;
1768 void set_numabalancing_state(bool enabled
)
1770 numabalancing_enabled
= enabled
;
1772 #endif /* CONFIG_SCHED_DEBUG */
1774 #ifdef CONFIG_PROC_SYSCTL
1775 int sysctl_numa_balancing(struct ctl_table
*table
, int write
,
1776 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
1780 int state
= numabalancing_enabled
;
1782 if (write
&& !capable(CAP_SYS_ADMIN
))
1787 err
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
1791 set_numabalancing_state(state
);
1798 * fork()/clone()-time setup:
1800 int sched_fork(unsigned long clone_flags
, struct task_struct
*p
)
1802 unsigned long flags
;
1803 int cpu
= get_cpu();
1805 __sched_fork(clone_flags
, p
);
1807 * We mark the process as running here. This guarantees that
1808 * nobody will actually run it, and a signal or other external
1809 * event cannot wake it up and insert it on the runqueue either.
1811 p
->state
= TASK_RUNNING
;
1814 * Make sure we do not leak PI boosting priority to the child.
1816 p
->prio
= current
->normal_prio
;
1819 * Revert to default priority/policy on fork if requested.
1821 if (unlikely(p
->sched_reset_on_fork
)) {
1822 if (task_has_dl_policy(p
) || task_has_rt_policy(p
)) {
1823 p
->policy
= SCHED_NORMAL
;
1824 p
->static_prio
= NICE_TO_PRIO(0);
1826 } else if (PRIO_TO_NICE(p
->static_prio
) < 0)
1827 p
->static_prio
= NICE_TO_PRIO(0);
1829 p
->prio
= p
->normal_prio
= __normal_prio(p
);
1833 * We don't need the reset flag anymore after the fork. It has
1834 * fulfilled its duty:
1836 p
->sched_reset_on_fork
= 0;
1839 if (dl_prio(p
->prio
)) {
1842 } else if (rt_prio(p
->prio
)) {
1843 p
->sched_class
= &rt_sched_class
;
1845 p
->sched_class
= &fair_sched_class
;
1848 if (p
->sched_class
->task_fork
)
1849 p
->sched_class
->task_fork(p
);
1852 * The child is not yet in the pid-hash so no cgroup attach races,
1853 * and the cgroup is pinned to this child due to cgroup_fork()
1854 * is ran before sched_fork().
1856 * Silence PROVE_RCU.
1858 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
1859 set_task_cpu(p
, cpu
);
1860 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
1862 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1863 if (likely(sched_info_on()))
1864 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1866 #if defined(CONFIG_SMP)
1869 init_task_preempt_count(p
);
1871 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
1872 RB_CLEAR_NODE(&p
->pushable_dl_tasks
);
1879 unsigned long to_ratio(u64 period
, u64 runtime
)
1881 if (runtime
== RUNTIME_INF
)
1885 * Doing this here saves a lot of checks in all
1886 * the calling paths, and returning zero seems
1887 * safe for them anyway.
1892 return div64_u64(runtime
<< 20, period
);
1896 inline struct dl_bw
*dl_bw_of(int i
)
1898 return &cpu_rq(i
)->rd
->dl_bw
;
1901 static inline int dl_bw_cpus(int i
)
1903 struct root_domain
*rd
= cpu_rq(i
)->rd
;
1906 for_each_cpu_and(i
, rd
->span
, cpu_active_mask
)
1912 inline struct dl_bw
*dl_bw_of(int i
)
1914 return &cpu_rq(i
)->dl
.dl_bw
;
1917 static inline int dl_bw_cpus(int i
)
1924 void __dl_clear(struct dl_bw
*dl_b
, u64 tsk_bw
)
1926 dl_b
->total_bw
-= tsk_bw
;
1930 void __dl_add(struct dl_bw
*dl_b
, u64 tsk_bw
)
1932 dl_b
->total_bw
+= tsk_bw
;
1936 bool __dl_overflow(struct dl_bw
*dl_b
, int cpus
, u64 old_bw
, u64 new_bw
)
1938 return dl_b
->bw
!= -1 &&
1939 dl_b
->bw
* cpus
< dl_b
->total_bw
- old_bw
+ new_bw
;
1943 * We must be sure that accepting a new task (or allowing changing the
1944 * parameters of an existing one) is consistent with the bandwidth
1945 * constraints. If yes, this function also accordingly updates the currently
1946 * allocated bandwidth to reflect the new situation.
1948 * This function is called while holding p's rq->lock.
1950 static int dl_overflow(struct task_struct
*p
, int policy
,
1951 const struct sched_attr
*attr
)
1954 struct dl_bw
*dl_b
= dl_bw_of(task_cpu(p
));
1955 u64 period
= attr
->sched_period
;
1956 u64 runtime
= attr
->sched_runtime
;
1957 u64 new_bw
= dl_policy(policy
) ? to_ratio(period
, runtime
) : 0;
1960 if (new_bw
== p
->dl
.dl_bw
)
1964 * Either if a task, enters, leave, or stays -deadline but changes
1965 * its parameters, we may need to update accordingly the total
1966 * allocated bandwidth of the container.
1968 raw_spin_lock(&dl_b
->lock
);
1969 cpus
= dl_bw_cpus(task_cpu(p
));
1970 if (dl_policy(policy
) && !task_has_dl_policy(p
) &&
1971 !__dl_overflow(dl_b
, cpus
, 0, new_bw
)) {
1972 __dl_add(dl_b
, new_bw
);
1974 } else if (dl_policy(policy
) && task_has_dl_policy(p
) &&
1975 !__dl_overflow(dl_b
, cpus
, p
->dl
.dl_bw
, new_bw
)) {
1976 __dl_clear(dl_b
, p
->dl
.dl_bw
);
1977 __dl_add(dl_b
, new_bw
);
1979 } else if (!dl_policy(policy
) && task_has_dl_policy(p
)) {
1980 __dl_clear(dl_b
, p
->dl
.dl_bw
);
1983 raw_spin_unlock(&dl_b
->lock
);
1988 extern void init_dl_bw(struct dl_bw
*dl_b
);
1991 * wake_up_new_task - wake up a newly created task for the first time.
1993 * This function will do some initial scheduler statistics housekeeping
1994 * that must be done for every newly created context, then puts the task
1995 * on the runqueue and wakes it.
1997 void wake_up_new_task(struct task_struct
*p
)
1999 unsigned long flags
;
2002 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2005 * Fork balancing, do it here and not earlier because:
2006 * - cpus_allowed can change in the fork path
2007 * - any previously selected cpu might disappear through hotplug
2009 set_task_cpu(p
, select_task_rq(p
, task_cpu(p
), SD_BALANCE_FORK
, 0));
2012 /* Initialize new task's runnable average */
2013 init_task_runnable_average(p
);
2014 rq
= __task_rq_lock(p
);
2015 activate_task(rq
, p
, 0);
2017 trace_sched_wakeup_new(p
, true);
2018 check_preempt_curr(rq
, p
, WF_FORK
);
2020 if (p
->sched_class
->task_woken
)
2021 p
->sched_class
->task_woken(rq
, p
);
2023 task_rq_unlock(rq
, p
, &flags
);
2026 #ifdef CONFIG_PREEMPT_NOTIFIERS
2029 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2030 * @notifier: notifier struct to register
2032 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2034 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2036 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2039 * preempt_notifier_unregister - no longer interested in preemption notifications
2040 * @notifier: notifier struct to unregister
2042 * This is safe to call from within a preemption notifier.
2044 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2046 hlist_del(¬ifier
->link
);
2048 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2050 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2052 struct preempt_notifier
*notifier
;
2054 hlist_for_each_entry(notifier
, &curr
->preempt_notifiers
, link
)
2055 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2059 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2060 struct task_struct
*next
)
2062 struct preempt_notifier
*notifier
;
2064 hlist_for_each_entry(notifier
, &curr
->preempt_notifiers
, link
)
2065 notifier
->ops
->sched_out(notifier
, next
);
2068 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2070 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2075 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2076 struct task_struct
*next
)
2080 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2083 * prepare_task_switch - prepare to switch tasks
2084 * @rq: the runqueue preparing to switch
2085 * @prev: the current task that is being switched out
2086 * @next: the task we are going to switch to.
2088 * This is called with the rq lock held and interrupts off. It must
2089 * be paired with a subsequent finish_task_switch after the context
2092 * prepare_task_switch sets up locking and calls architecture specific
2096 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2097 struct task_struct
*next
)
2099 trace_sched_switch(prev
, next
);
2100 sched_info_switch(rq
, prev
, next
);
2101 perf_event_task_sched_out(prev
, next
);
2102 fire_sched_out_preempt_notifiers(prev
, next
);
2103 prepare_lock_switch(rq
, next
);
2104 prepare_arch_switch(next
);
2108 * finish_task_switch - clean up after a task-switch
2109 * @rq: runqueue associated with task-switch
2110 * @prev: the thread we just switched away from.
2112 * finish_task_switch must be called after the context switch, paired
2113 * with a prepare_task_switch call before the context switch.
2114 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2115 * and do any other architecture-specific cleanup actions.
2117 * Note that we may have delayed dropping an mm in context_switch(). If
2118 * so, we finish that here outside of the runqueue lock. (Doing it
2119 * with the lock held can cause deadlocks; see schedule() for
2122 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2123 __releases(rq
->lock
)
2125 struct mm_struct
*mm
= rq
->prev_mm
;
2131 * A task struct has one reference for the use as "current".
2132 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2133 * schedule one last time. The schedule call will never return, and
2134 * the scheduled task must drop that reference.
2135 * The test for TASK_DEAD must occur while the runqueue locks are
2136 * still held, otherwise prev could be scheduled on another cpu, die
2137 * there before we look at prev->state, and then the reference would
2139 * Manfred Spraul <manfred@colorfullife.com>
2141 prev_state
= prev
->state
;
2142 vtime_task_switch(prev
);
2143 finish_arch_switch(prev
);
2144 perf_event_task_sched_in(prev
, current
);
2145 finish_lock_switch(rq
, prev
);
2146 finish_arch_post_lock_switch();
2148 fire_sched_in_preempt_notifiers(current
);
2151 if (unlikely(prev_state
== TASK_DEAD
)) {
2152 task_numa_free(prev
);
2154 if (prev
->sched_class
->task_dead
)
2155 prev
->sched_class
->task_dead(prev
);
2158 * Remove function-return probe instances associated with this
2159 * task and put them back on the free list.
2161 kprobe_flush_task(prev
);
2162 put_task_struct(prev
);
2165 tick_nohz_task_switch(current
);
2170 /* assumes rq->lock is held */
2171 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
2173 if (prev
->sched_class
->pre_schedule
)
2174 prev
->sched_class
->pre_schedule(rq
, prev
);
2177 /* rq->lock is NOT held, but preemption is disabled */
2178 static inline void post_schedule(struct rq
*rq
)
2180 if (rq
->post_schedule
) {
2181 unsigned long flags
;
2183 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2184 if (rq
->curr
->sched_class
->post_schedule
)
2185 rq
->curr
->sched_class
->post_schedule(rq
);
2186 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2188 rq
->post_schedule
= 0;
2194 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
2198 static inline void post_schedule(struct rq
*rq
)
2205 * schedule_tail - first thing a freshly forked thread must call.
2206 * @prev: the thread we just switched away from.
2208 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2209 __releases(rq
->lock
)
2211 struct rq
*rq
= this_rq();
2213 finish_task_switch(rq
, prev
);
2216 * FIXME: do we need to worry about rq being invalidated by the
2221 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2222 /* In this case, finish_task_switch does not reenable preemption */
2225 if (current
->set_child_tid
)
2226 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2230 * context_switch - switch to the new MM and the new
2231 * thread's register state.
2234 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2235 struct task_struct
*next
)
2237 struct mm_struct
*mm
, *oldmm
;
2239 prepare_task_switch(rq
, prev
, next
);
2242 oldmm
= prev
->active_mm
;
2244 * For paravirt, this is coupled with an exit in switch_to to
2245 * combine the page table reload and the switch backend into
2248 arch_start_context_switch(prev
);
2251 next
->active_mm
= oldmm
;
2252 atomic_inc(&oldmm
->mm_count
);
2253 enter_lazy_tlb(oldmm
, next
);
2255 switch_mm(oldmm
, mm
, next
);
2258 prev
->active_mm
= NULL
;
2259 rq
->prev_mm
= oldmm
;
2262 * Since the runqueue lock will be released by the next
2263 * task (which is an invalid locking op but in the case
2264 * of the scheduler it's an obvious special-case), so we
2265 * do an early lockdep release here:
2267 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2268 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2271 context_tracking_task_switch(prev
, next
);
2272 /* Here we just switch the register state and the stack. */
2273 switch_to(prev
, next
, prev
);
2277 * this_rq must be evaluated again because prev may have moved
2278 * CPUs since it called schedule(), thus the 'rq' on its stack
2279 * frame will be invalid.
2281 finish_task_switch(this_rq(), prev
);
2285 * nr_running and nr_context_switches:
2287 * externally visible scheduler statistics: current number of runnable
2288 * threads, total number of context switches performed since bootup.
2290 unsigned long nr_running(void)
2292 unsigned long i
, sum
= 0;
2294 for_each_online_cpu(i
)
2295 sum
+= cpu_rq(i
)->nr_running
;
2300 unsigned long long nr_context_switches(void)
2303 unsigned long long sum
= 0;
2305 for_each_possible_cpu(i
)
2306 sum
+= cpu_rq(i
)->nr_switches
;
2311 unsigned long nr_iowait(void)
2313 unsigned long i
, sum
= 0;
2315 for_each_possible_cpu(i
)
2316 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2321 unsigned long nr_iowait_cpu(int cpu
)
2323 struct rq
*this = cpu_rq(cpu
);
2324 return atomic_read(&this->nr_iowait
);
2330 * sched_exec - execve() is a valuable balancing opportunity, because at
2331 * this point the task has the smallest effective memory and cache footprint.
2333 void sched_exec(void)
2335 struct task_struct
*p
= current
;
2336 unsigned long flags
;
2339 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2340 dest_cpu
= p
->sched_class
->select_task_rq(p
, task_cpu(p
), SD_BALANCE_EXEC
, 0);
2341 if (dest_cpu
== smp_processor_id())
2344 if (likely(cpu_active(dest_cpu
))) {
2345 struct migration_arg arg
= { p
, dest_cpu
};
2347 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2348 stop_one_cpu(task_cpu(p
), migration_cpu_stop
, &arg
);
2352 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2357 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
2358 DEFINE_PER_CPU(struct kernel_cpustat
, kernel_cpustat
);
2360 EXPORT_PER_CPU_SYMBOL(kstat
);
2361 EXPORT_PER_CPU_SYMBOL(kernel_cpustat
);
2364 * Return any ns on the sched_clock that have not yet been accounted in
2365 * @p in case that task is currently running.
2367 * Called with task_rq_lock() held on @rq.
2369 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
2373 if (task_current(rq
, p
)) {
2374 update_rq_clock(rq
);
2375 ns
= rq_clock_task(rq
) - p
->se
.exec_start
;
2383 unsigned long long task_delta_exec(struct task_struct
*p
)
2385 unsigned long flags
;
2389 rq
= task_rq_lock(p
, &flags
);
2390 ns
= do_task_delta_exec(p
, rq
);
2391 task_rq_unlock(rq
, p
, &flags
);
2397 * Return accounted runtime for the task.
2398 * In case the task is currently running, return the runtime plus current's
2399 * pending runtime that have not been accounted yet.
2401 unsigned long long task_sched_runtime(struct task_struct
*p
)
2403 unsigned long flags
;
2407 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2409 * 64-bit doesn't need locks to atomically read a 64bit value.
2410 * So we have a optimization chance when the task's delta_exec is 0.
2411 * Reading ->on_cpu is racy, but this is ok.
2413 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2414 * If we race with it entering cpu, unaccounted time is 0. This is
2415 * indistinguishable from the read occurring a few cycles earlier.
2418 return p
->se
.sum_exec_runtime
;
2421 rq
= task_rq_lock(p
, &flags
);
2422 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
2423 task_rq_unlock(rq
, p
, &flags
);
2429 * This function gets called by the timer code, with HZ frequency.
2430 * We call it with interrupts disabled.
2432 void scheduler_tick(void)
2434 int cpu
= smp_processor_id();
2435 struct rq
*rq
= cpu_rq(cpu
);
2436 struct task_struct
*curr
= rq
->curr
;
2440 raw_spin_lock(&rq
->lock
);
2441 update_rq_clock(rq
);
2442 curr
->sched_class
->task_tick(rq
, curr
, 0);
2443 update_cpu_load_active(rq
);
2444 raw_spin_unlock(&rq
->lock
);
2446 perf_event_task_tick();
2449 rq
->idle_balance
= idle_cpu(cpu
);
2450 trigger_load_balance(rq
);
2452 rq_last_tick_reset(rq
);
2455 #ifdef CONFIG_NO_HZ_FULL
2457 * scheduler_tick_max_deferment
2459 * Keep at least one tick per second when a single
2460 * active task is running because the scheduler doesn't
2461 * yet completely support full dynticks environment.
2463 * This makes sure that uptime, CFS vruntime, load
2464 * balancing, etc... continue to move forward, even
2465 * with a very low granularity.
2467 * Return: Maximum deferment in nanoseconds.
2469 u64
scheduler_tick_max_deferment(void)
2471 struct rq
*rq
= this_rq();
2472 unsigned long next
, now
= ACCESS_ONCE(jiffies
);
2474 next
= rq
->last_sched_tick
+ HZ
;
2476 if (time_before_eq(next
, now
))
2479 return jiffies_to_nsecs(next
- now
);
2483 notrace
unsigned long get_parent_ip(unsigned long addr
)
2485 if (in_lock_functions(addr
)) {
2486 addr
= CALLER_ADDR2
;
2487 if (in_lock_functions(addr
))
2488 addr
= CALLER_ADDR3
;
2493 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2494 defined(CONFIG_PREEMPT_TRACER))
2496 void __kprobes
preempt_count_add(int val
)
2498 #ifdef CONFIG_DEBUG_PREEMPT
2502 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2505 __preempt_count_add(val
);
2506 #ifdef CONFIG_DEBUG_PREEMPT
2508 * Spinlock count overflowing soon?
2510 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
2513 if (preempt_count() == val
)
2514 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
2516 EXPORT_SYMBOL(preempt_count_add
);
2518 void __kprobes
preempt_count_sub(int val
)
2520 #ifdef CONFIG_DEBUG_PREEMPT
2524 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
2527 * Is the spinlock portion underflowing?
2529 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
2530 !(preempt_count() & PREEMPT_MASK
)))
2534 if (preempt_count() == val
)
2535 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
2536 __preempt_count_sub(val
);
2538 EXPORT_SYMBOL(preempt_count_sub
);
2543 * Print scheduling while atomic bug:
2545 static noinline
void __schedule_bug(struct task_struct
*prev
)
2547 if (oops_in_progress
)
2550 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
2551 prev
->comm
, prev
->pid
, preempt_count());
2553 debug_show_held_locks(prev
);
2555 if (irqs_disabled())
2556 print_irqtrace_events(prev
);
2558 add_taint(TAINT_WARN
, LOCKDEP_STILL_OK
);
2562 * Various schedule()-time debugging checks and statistics:
2564 static inline void schedule_debug(struct task_struct
*prev
)
2567 * Test if we are atomic. Since do_exit() needs to call into
2568 * schedule() atomically, we ignore that path. Otherwise whine
2569 * if we are scheduling when we should not.
2571 if (unlikely(in_atomic_preempt_off() && prev
->state
!= TASK_DEAD
))
2572 __schedule_bug(prev
);
2575 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
2577 schedstat_inc(this_rq(), sched_count
);
2580 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
2582 if (prev
->on_rq
|| rq
->skip_clock_update
< 0)
2583 update_rq_clock(rq
);
2584 prev
->sched_class
->put_prev_task(rq
, prev
);
2588 * Pick up the highest-prio task:
2590 static inline struct task_struct
*
2591 pick_next_task(struct rq
*rq
)
2593 const struct sched_class
*class;
2594 struct task_struct
*p
;
2597 * Optimization: we know that if all tasks are in
2598 * the fair class we can call that function directly:
2600 if (likely(rq
->nr_running
== rq
->cfs
.h_nr_running
)) {
2601 p
= fair_sched_class
.pick_next_task(rq
);
2606 for_each_class(class) {
2607 p
= class->pick_next_task(rq
);
2612 BUG(); /* the idle class will always have a runnable task */
2616 * __schedule() is the main scheduler function.
2618 * The main means of driving the scheduler and thus entering this function are:
2620 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2622 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2623 * paths. For example, see arch/x86/entry_64.S.
2625 * To drive preemption between tasks, the scheduler sets the flag in timer
2626 * interrupt handler scheduler_tick().
2628 * 3. Wakeups don't really cause entry into schedule(). They add a
2629 * task to the run-queue and that's it.
2631 * Now, if the new task added to the run-queue preempts the current
2632 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2633 * called on the nearest possible occasion:
2635 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2637 * - in syscall or exception context, at the next outmost
2638 * preempt_enable(). (this might be as soon as the wake_up()'s
2641 * - in IRQ context, return from interrupt-handler to
2642 * preemptible context
2644 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2647 * - cond_resched() call
2648 * - explicit schedule() call
2649 * - return from syscall or exception to user-space
2650 * - return from interrupt-handler to user-space
2652 static void __sched
__schedule(void)
2654 struct task_struct
*prev
, *next
;
2655 unsigned long *switch_count
;
2661 cpu
= smp_processor_id();
2663 rcu_note_context_switch(cpu
);
2666 schedule_debug(prev
);
2668 if (sched_feat(HRTICK
))
2672 * Make sure that signal_pending_state()->signal_pending() below
2673 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2674 * done by the caller to avoid the race with signal_wake_up().
2676 smp_mb__before_spinlock();
2677 raw_spin_lock_irq(&rq
->lock
);
2679 switch_count
= &prev
->nivcsw
;
2680 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
2681 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
2682 prev
->state
= TASK_RUNNING
;
2684 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
2688 * If a worker went to sleep, notify and ask workqueue
2689 * whether it wants to wake up a task to maintain
2692 if (prev
->flags
& PF_WQ_WORKER
) {
2693 struct task_struct
*to_wakeup
;
2695 to_wakeup
= wq_worker_sleeping(prev
, cpu
);
2697 try_to_wake_up_local(to_wakeup
);
2700 switch_count
= &prev
->nvcsw
;
2703 pre_schedule(rq
, prev
);
2705 if (unlikely(!rq
->nr_running
))
2706 idle_balance(cpu
, rq
);
2708 put_prev_task(rq
, prev
);
2709 next
= pick_next_task(rq
);
2710 clear_tsk_need_resched(prev
);
2711 clear_preempt_need_resched();
2712 rq
->skip_clock_update
= 0;
2714 if (likely(prev
!= next
)) {
2719 context_switch(rq
, prev
, next
); /* unlocks the rq */
2721 * The context switch have flipped the stack from under us
2722 * and restored the local variables which were saved when
2723 * this task called schedule() in the past. prev == current
2724 * is still correct, but it can be moved to another cpu/rq.
2726 cpu
= smp_processor_id();
2729 raw_spin_unlock_irq(&rq
->lock
);
2733 sched_preempt_enable_no_resched();
2738 static inline void sched_submit_work(struct task_struct
*tsk
)
2740 if (!tsk
->state
|| tsk_is_pi_blocked(tsk
))
2743 * If we are going to sleep and we have plugged IO queued,
2744 * make sure to submit it to avoid deadlocks.
2746 if (blk_needs_flush_plug(tsk
))
2747 blk_schedule_flush_plug(tsk
);
2750 asmlinkage
void __sched
schedule(void)
2752 struct task_struct
*tsk
= current
;
2754 sched_submit_work(tsk
);
2757 EXPORT_SYMBOL(schedule
);
2759 #ifdef CONFIG_CONTEXT_TRACKING
2760 asmlinkage
void __sched
schedule_user(void)
2763 * If we come here after a random call to set_need_resched(),
2764 * or we have been woken up remotely but the IPI has not yet arrived,
2765 * we haven't yet exited the RCU idle mode. Do it here manually until
2766 * we find a better solution.
2775 * schedule_preempt_disabled - called with preemption disabled
2777 * Returns with preemption disabled. Note: preempt_count must be 1
2779 void __sched
schedule_preempt_disabled(void)
2781 sched_preempt_enable_no_resched();
2786 #ifdef CONFIG_PREEMPT
2788 * this is the entry point to schedule() from in-kernel preemption
2789 * off of preempt_enable. Kernel preemptions off return from interrupt
2790 * occur there and call schedule directly.
2792 asmlinkage
void __sched notrace
preempt_schedule(void)
2795 * If there is a non-zero preempt_count or interrupts are disabled,
2796 * we do not want to preempt the current task. Just return..
2798 if (likely(!preemptible()))
2802 __preempt_count_add(PREEMPT_ACTIVE
);
2804 __preempt_count_sub(PREEMPT_ACTIVE
);
2807 * Check again in case we missed a preemption opportunity
2808 * between schedule and now.
2811 } while (need_resched());
2813 EXPORT_SYMBOL(preempt_schedule
);
2814 #endif /* CONFIG_PREEMPT */
2817 * this is the entry point to schedule() from kernel preemption
2818 * off of irq context.
2819 * Note, that this is called and return with irqs disabled. This will
2820 * protect us against recursive calling from irq.
2822 asmlinkage
void __sched
preempt_schedule_irq(void)
2824 enum ctx_state prev_state
;
2826 /* Catch callers which need to be fixed */
2827 BUG_ON(preempt_count() || !irqs_disabled());
2829 prev_state
= exception_enter();
2832 __preempt_count_add(PREEMPT_ACTIVE
);
2835 local_irq_disable();
2836 __preempt_count_sub(PREEMPT_ACTIVE
);
2839 * Check again in case we missed a preemption opportunity
2840 * between schedule and now.
2843 } while (need_resched());
2845 exception_exit(prev_state
);
2848 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
2851 return try_to_wake_up(curr
->private, mode
, wake_flags
);
2853 EXPORT_SYMBOL(default_wake_function
);
2856 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
2858 unsigned long flags
;
2861 init_waitqueue_entry(&wait
, current
);
2863 __set_current_state(state
);
2865 spin_lock_irqsave(&q
->lock
, flags
);
2866 __add_wait_queue(q
, &wait
);
2867 spin_unlock(&q
->lock
);
2868 timeout
= schedule_timeout(timeout
);
2869 spin_lock_irq(&q
->lock
);
2870 __remove_wait_queue(q
, &wait
);
2871 spin_unlock_irqrestore(&q
->lock
, flags
);
2876 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
2878 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
2880 EXPORT_SYMBOL(interruptible_sleep_on
);
2883 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
2885 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
2887 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
2889 void __sched
sleep_on(wait_queue_head_t
*q
)
2891 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
2893 EXPORT_SYMBOL(sleep_on
);
2895 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
2897 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
2899 EXPORT_SYMBOL(sleep_on_timeout
);
2901 #ifdef CONFIG_RT_MUTEXES
2904 * rt_mutex_setprio - set the current priority of a task
2906 * @prio: prio value (kernel-internal form)
2908 * This function changes the 'effective' priority of a task. It does
2909 * not touch ->normal_prio like __setscheduler().
2911 * Used by the rt_mutex code to implement priority inheritance logic.
2913 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
2915 int oldprio
, on_rq
, running
, enqueue_flag
= 0;
2917 const struct sched_class
*prev_class
;
2919 BUG_ON(prio
> MAX_PRIO
);
2921 rq
= __task_rq_lock(p
);
2924 * Idle task boosting is a nono in general. There is one
2925 * exception, when PREEMPT_RT and NOHZ is active:
2927 * The idle task calls get_next_timer_interrupt() and holds
2928 * the timer wheel base->lock on the CPU and another CPU wants
2929 * to access the timer (probably to cancel it). We can safely
2930 * ignore the boosting request, as the idle CPU runs this code
2931 * with interrupts disabled and will complete the lock
2932 * protected section without being interrupted. So there is no
2933 * real need to boost.
2935 if (unlikely(p
== rq
->idle
)) {
2936 WARN_ON(p
!= rq
->curr
);
2937 WARN_ON(p
->pi_blocked_on
);
2941 trace_sched_pi_setprio(p
, prio
);
2942 p
->pi_top_task
= rt_mutex_get_top_task(p
);
2944 prev_class
= p
->sched_class
;
2946 running
= task_current(rq
, p
);
2948 dequeue_task(rq
, p
, 0);
2950 p
->sched_class
->put_prev_task(rq
, p
);
2953 * Boosting condition are:
2954 * 1. -rt task is running and holds mutex A
2955 * --> -dl task blocks on mutex A
2957 * 2. -dl task is running and holds mutex A
2958 * --> -dl task blocks on mutex A and could preempt the
2961 if (dl_prio(prio
)) {
2962 if (!dl_prio(p
->normal_prio
) || (p
->pi_top_task
&&
2963 dl_entity_preempt(&p
->pi_top_task
->dl
, &p
->dl
))) {
2964 p
->dl
.dl_boosted
= 1;
2965 p
->dl
.dl_throttled
= 0;
2966 enqueue_flag
= ENQUEUE_REPLENISH
;
2968 p
->dl
.dl_boosted
= 0;
2969 p
->sched_class
= &dl_sched_class
;
2970 } else if (rt_prio(prio
)) {
2971 if (dl_prio(oldprio
))
2972 p
->dl
.dl_boosted
= 0;
2974 enqueue_flag
= ENQUEUE_HEAD
;
2975 p
->sched_class
= &rt_sched_class
;
2977 if (dl_prio(oldprio
))
2978 p
->dl
.dl_boosted
= 0;
2979 p
->sched_class
= &fair_sched_class
;
2985 p
->sched_class
->set_curr_task(rq
);
2987 enqueue_task(rq
, p
, enqueue_flag
);
2989 check_class_changed(rq
, p
, prev_class
, oldprio
);
2991 __task_rq_unlock(rq
);
2995 void set_user_nice(struct task_struct
*p
, long nice
)
2997 int old_prio
, delta
, on_rq
;
2998 unsigned long flags
;
3001 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
3004 * We have to be careful, if called from sys_setpriority(),
3005 * the task might be in the middle of scheduling on another CPU.
3007 rq
= task_rq_lock(p
, &flags
);
3009 * The RT priorities are set via sched_setscheduler(), but we still
3010 * allow the 'normal' nice value to be set - but as expected
3011 * it wont have any effect on scheduling until the task is
3012 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3014 if (task_has_dl_policy(p
) || task_has_rt_policy(p
)) {
3015 p
->static_prio
= NICE_TO_PRIO(nice
);
3020 dequeue_task(rq
, p
, 0);
3022 p
->static_prio
= NICE_TO_PRIO(nice
);
3025 p
->prio
= effective_prio(p
);
3026 delta
= p
->prio
- old_prio
;
3029 enqueue_task(rq
, p
, 0);
3031 * If the task increased its priority or is running and
3032 * lowered its priority, then reschedule its CPU:
3034 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3035 resched_task(rq
->curr
);
3038 task_rq_unlock(rq
, p
, &flags
);
3040 EXPORT_SYMBOL(set_user_nice
);
3043 * can_nice - check if a task can reduce its nice value
3047 int can_nice(const struct task_struct
*p
, const int nice
)
3049 /* convert nice value [19,-20] to rlimit style value [1,40] */
3050 int nice_rlim
= 20 - nice
;
3052 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
3053 capable(CAP_SYS_NICE
));
3056 #ifdef __ARCH_WANT_SYS_NICE
3059 * sys_nice - change the priority of the current process.
3060 * @increment: priority increment
3062 * sys_setpriority is a more generic, but much slower function that
3063 * does similar things.
3065 SYSCALL_DEFINE1(nice
, int, increment
)
3070 * Setpriority might change our priority at the same moment.
3071 * We don't have to worry. Conceptually one call occurs first
3072 * and we have a single winner.
3074 if (increment
< -40)
3079 nice
= TASK_NICE(current
) + increment
;
3085 if (increment
< 0 && !can_nice(current
, nice
))
3088 retval
= security_task_setnice(current
, nice
);
3092 set_user_nice(current
, nice
);
3099 * task_prio - return the priority value of a given task.
3100 * @p: the task in question.
3102 * Return: The priority value as seen by users in /proc.
3103 * RT tasks are offset by -200. Normal tasks are centered
3104 * around 0, value goes from -16 to +15.
3106 int task_prio(const struct task_struct
*p
)
3108 return p
->prio
- MAX_RT_PRIO
;
3112 * task_nice - return the nice value of a given task.
3113 * @p: the task in question.
3115 * Return: The nice value [ -20 ... 0 ... 19 ].
3117 int task_nice(const struct task_struct
*p
)
3119 return TASK_NICE(p
);
3121 EXPORT_SYMBOL(task_nice
);
3124 * idle_cpu - is a given cpu idle currently?
3125 * @cpu: the processor in question.
3127 * Return: 1 if the CPU is currently idle. 0 otherwise.
3129 int idle_cpu(int cpu
)
3131 struct rq
*rq
= cpu_rq(cpu
);
3133 if (rq
->curr
!= rq
->idle
)
3140 if (!llist_empty(&rq
->wake_list
))
3148 * idle_task - return the idle task for a given cpu.
3149 * @cpu: the processor in question.
3151 * Return: The idle task for the cpu @cpu.
3153 struct task_struct
*idle_task(int cpu
)
3155 return cpu_rq(cpu
)->idle
;
3159 * find_process_by_pid - find a process with a matching PID value.
3160 * @pid: the pid in question.
3162 * The task of @pid, if found. %NULL otherwise.
3164 static struct task_struct
*find_process_by_pid(pid_t pid
)
3166 return pid
? find_task_by_vpid(pid
) : current
;
3170 * This function initializes the sched_dl_entity of a newly becoming
3171 * SCHED_DEADLINE task.
3173 * Only the static values are considered here, the actual runtime and the
3174 * absolute deadline will be properly calculated when the task is enqueued
3175 * for the first time with its new policy.
3178 __setparam_dl(struct task_struct
*p
, const struct sched_attr
*attr
)
3180 struct sched_dl_entity
*dl_se
= &p
->dl
;
3182 init_dl_task_timer(dl_se
);
3183 dl_se
->dl_runtime
= attr
->sched_runtime
;
3184 dl_se
->dl_deadline
= attr
->sched_deadline
;
3185 dl_se
->dl_period
= attr
->sched_period
?: dl_se
->dl_deadline
;
3186 dl_se
->flags
= attr
->sched_flags
;
3187 dl_se
->dl_bw
= to_ratio(dl_se
->dl_period
, dl_se
->dl_runtime
);
3188 dl_se
->dl_throttled
= 0;
3192 /* Actually do priority change: must hold pi & rq lock. */
3193 static void __setscheduler(struct rq
*rq
, struct task_struct
*p
,
3194 const struct sched_attr
*attr
)
3196 int policy
= attr
->sched_policy
;
3198 if (policy
== -1) /* setparam */
3203 if (dl_policy(policy
))
3204 __setparam_dl(p
, attr
);
3205 else if (fair_policy(policy
))
3206 p
->static_prio
= NICE_TO_PRIO(attr
->sched_nice
);
3209 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3210 * !rt_policy. Always setting this ensures that things like
3211 * getparam()/getattr() don't report silly values for !rt tasks.
3213 p
->rt_priority
= attr
->sched_priority
;
3215 p
->normal_prio
= normal_prio(p
);
3216 p
->prio
= rt_mutex_getprio(p
);
3218 if (dl_prio(p
->prio
))
3219 p
->sched_class
= &dl_sched_class
;
3220 else if (rt_prio(p
->prio
))
3221 p
->sched_class
= &rt_sched_class
;
3223 p
->sched_class
= &fair_sched_class
;
3229 __getparam_dl(struct task_struct
*p
, struct sched_attr
*attr
)
3231 struct sched_dl_entity
*dl_se
= &p
->dl
;
3233 attr
->sched_priority
= p
->rt_priority
;
3234 attr
->sched_runtime
= dl_se
->dl_runtime
;
3235 attr
->sched_deadline
= dl_se
->dl_deadline
;
3236 attr
->sched_period
= dl_se
->dl_period
;
3237 attr
->sched_flags
= dl_se
->flags
;
3241 * This function validates the new parameters of a -deadline task.
3242 * We ask for the deadline not being zero, and greater or equal
3243 * than the runtime, as well as the period of being zero or
3244 * greater than deadline. Furthermore, we have to be sure that
3245 * user parameters are above the internal resolution (1us); we
3246 * check sched_runtime only since it is always the smaller one.
3249 __checkparam_dl(const struct sched_attr
*attr
)
3251 return attr
&& attr
->sched_deadline
!= 0 &&
3252 (attr
->sched_period
== 0 ||
3253 (s64
)(attr
->sched_period
- attr
->sched_deadline
) >= 0) &&
3254 (s64
)(attr
->sched_deadline
- attr
->sched_runtime
) >= 0 &&
3255 attr
->sched_runtime
>= (2 << (DL_SCALE
- 1));
3259 * check the target process has a UID that matches the current process's
3261 static bool check_same_owner(struct task_struct
*p
)
3263 const struct cred
*cred
= current_cred(), *pcred
;
3267 pcred
= __task_cred(p
);
3268 match
= (uid_eq(cred
->euid
, pcred
->euid
) ||
3269 uid_eq(cred
->euid
, pcred
->uid
));
3274 static int __sched_setscheduler(struct task_struct
*p
,
3275 const struct sched_attr
*attr
,
3278 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
3279 int policy
= attr
->sched_policy
;
3280 unsigned long flags
;
3281 const struct sched_class
*prev_class
;
3285 /* may grab non-irq protected spin_locks */
3286 BUG_ON(in_interrupt());
3288 /* double check policy once rq lock held */
3290 reset_on_fork
= p
->sched_reset_on_fork
;
3291 policy
= oldpolicy
= p
->policy
;
3293 reset_on_fork
= !!(attr
->sched_flags
& SCHED_FLAG_RESET_ON_FORK
);
3295 if (policy
!= SCHED_DEADLINE
&&
3296 policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
3297 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
3298 policy
!= SCHED_IDLE
)
3302 if (attr
->sched_flags
& ~(SCHED_FLAG_RESET_ON_FORK
))
3306 * Valid priorities for SCHED_FIFO and SCHED_RR are
3307 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3308 * SCHED_BATCH and SCHED_IDLE is 0.
3310 if ((p
->mm
&& attr
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
3311 (!p
->mm
&& attr
->sched_priority
> MAX_RT_PRIO
-1))
3313 if ((dl_policy(policy
) && !__checkparam_dl(attr
)) ||
3314 (rt_policy(policy
) != (attr
->sched_priority
!= 0)))
3318 * Allow unprivileged RT tasks to decrease priority:
3320 if (user
&& !capable(CAP_SYS_NICE
)) {
3321 if (fair_policy(policy
)) {
3322 if (attr
->sched_nice
< TASK_NICE(p
) &&
3323 !can_nice(p
, attr
->sched_nice
))
3327 if (rt_policy(policy
)) {
3328 unsigned long rlim_rtprio
=
3329 task_rlimit(p
, RLIMIT_RTPRIO
);
3331 /* can't set/change the rt policy */
3332 if (policy
!= p
->policy
&& !rlim_rtprio
)
3335 /* can't increase priority */
3336 if (attr
->sched_priority
> p
->rt_priority
&&
3337 attr
->sched_priority
> rlim_rtprio
)
3342 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3343 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3345 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
) {
3346 if (!can_nice(p
, TASK_NICE(p
)))
3350 /* can't change other user's priorities */
3351 if (!check_same_owner(p
))
3354 /* Normal users shall not reset the sched_reset_on_fork flag */
3355 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
3360 retval
= security_task_setscheduler(p
);
3366 * make sure no PI-waiters arrive (or leave) while we are
3367 * changing the priority of the task:
3369 * To be able to change p->policy safely, the appropriate
3370 * runqueue lock must be held.
3372 rq
= task_rq_lock(p
, &flags
);
3375 * Changing the policy of the stop threads its a very bad idea
3377 if (p
== rq
->stop
) {
3378 task_rq_unlock(rq
, p
, &flags
);
3383 * If not changing anything there's no need to proceed further:
3385 if (unlikely(policy
== p
->policy
)) {
3386 if (fair_policy(policy
) && attr
->sched_nice
!= TASK_NICE(p
))
3388 if (rt_policy(policy
) && attr
->sched_priority
!= p
->rt_priority
)
3390 if (dl_policy(policy
))
3393 task_rq_unlock(rq
, p
, &flags
);
3399 #ifdef CONFIG_RT_GROUP_SCHED
3401 * Do not allow realtime tasks into groups that have no runtime
3404 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
3405 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
3406 !task_group_is_autogroup(task_group(p
))) {
3407 task_rq_unlock(rq
, p
, &flags
);
3412 if (dl_bandwidth_enabled() && dl_policy(policy
)) {
3413 cpumask_t
*span
= rq
->rd
->span
;
3416 * Don't allow tasks with an affinity mask smaller than
3417 * the entire root_domain to become SCHED_DEADLINE. We
3418 * will also fail if there's no bandwidth available.
3420 if (!cpumask_subset(span
, &p
->cpus_allowed
) ||
3421 rq
->rd
->dl_bw
.bw
== 0) {
3422 task_rq_unlock(rq
, p
, &flags
);
3429 /* recheck policy now with rq lock held */
3430 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
3431 policy
= oldpolicy
= -1;
3432 task_rq_unlock(rq
, p
, &flags
);
3437 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3438 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3441 if ((dl_policy(policy
) || dl_task(p
)) && dl_overflow(p
, policy
, attr
)) {
3442 task_rq_unlock(rq
, p
, &flags
);
3447 running
= task_current(rq
, p
);
3449 dequeue_task(rq
, p
, 0);
3451 p
->sched_class
->put_prev_task(rq
, p
);
3453 p
->sched_reset_on_fork
= reset_on_fork
;
3456 prev_class
= p
->sched_class
;
3457 __setscheduler(rq
, p
, attr
);
3460 p
->sched_class
->set_curr_task(rq
);
3462 enqueue_task(rq
, p
, 0);
3464 check_class_changed(rq
, p
, prev_class
, oldprio
);
3465 task_rq_unlock(rq
, p
, &flags
);
3467 rt_mutex_adjust_pi(p
);
3472 static int _sched_setscheduler(struct task_struct
*p
, int policy
,
3473 const struct sched_param
*param
, bool check
)
3475 struct sched_attr attr
= {
3476 .sched_policy
= policy
,
3477 .sched_priority
= param
->sched_priority
,
3478 .sched_nice
= PRIO_TO_NICE(p
->static_prio
),
3482 * Fixup the legacy SCHED_RESET_ON_FORK hack
3484 if (policy
& SCHED_RESET_ON_FORK
) {
3485 attr
.sched_flags
|= SCHED_FLAG_RESET_ON_FORK
;
3486 policy
&= ~SCHED_RESET_ON_FORK
;
3487 attr
.sched_policy
= policy
;
3490 return __sched_setscheduler(p
, &attr
, check
);
3493 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3494 * @p: the task in question.
3495 * @policy: new policy.
3496 * @param: structure containing the new RT priority.
3498 * Return: 0 on success. An error code otherwise.
3500 * NOTE that the task may be already dead.
3502 int sched_setscheduler(struct task_struct
*p
, int policy
,
3503 const struct sched_param
*param
)
3505 return _sched_setscheduler(p
, policy
, param
, true);
3507 EXPORT_SYMBOL_GPL(sched_setscheduler
);
3509 int sched_setattr(struct task_struct
*p
, const struct sched_attr
*attr
)
3511 return __sched_setscheduler(p
, attr
, true);
3513 EXPORT_SYMBOL_GPL(sched_setattr
);
3516 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3517 * @p: the task in question.
3518 * @policy: new policy.
3519 * @param: structure containing the new RT priority.
3521 * Just like sched_setscheduler, only don't bother checking if the
3522 * current context has permission. For example, this is needed in
3523 * stop_machine(): we create temporary high priority worker threads,
3524 * but our caller might not have that capability.
3526 * Return: 0 on success. An error code otherwise.
3528 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
3529 const struct sched_param
*param
)
3531 return _sched_setscheduler(p
, policy
, param
, false);
3535 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
3537 struct sched_param lparam
;
3538 struct task_struct
*p
;
3541 if (!param
|| pid
< 0)
3543 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
3548 p
= find_process_by_pid(pid
);
3550 retval
= sched_setscheduler(p
, policy
, &lparam
);
3557 * Mimics kernel/events/core.c perf_copy_attr().
3559 static int sched_copy_attr(struct sched_attr __user
*uattr
,
3560 struct sched_attr
*attr
)
3565 if (!access_ok(VERIFY_WRITE
, uattr
, SCHED_ATTR_SIZE_VER0
))
3569 * zero the full structure, so that a short copy will be nice.
3571 memset(attr
, 0, sizeof(*attr
));
3573 ret
= get_user(size
, &uattr
->size
);
3577 if (size
> PAGE_SIZE
) /* silly large */
3580 if (!size
) /* abi compat */
3581 size
= SCHED_ATTR_SIZE_VER0
;
3583 if (size
< SCHED_ATTR_SIZE_VER0
)
3587 * If we're handed a bigger struct than we know of,
3588 * ensure all the unknown bits are 0 - i.e. new
3589 * user-space does not rely on any kernel feature
3590 * extensions we dont know about yet.
3592 if (size
> sizeof(*attr
)) {
3593 unsigned char __user
*addr
;
3594 unsigned char __user
*end
;
3597 addr
= (void __user
*)uattr
+ sizeof(*attr
);
3598 end
= (void __user
*)uattr
+ size
;
3600 for (; addr
< end
; addr
++) {
3601 ret
= get_user(val
, addr
);
3607 size
= sizeof(*attr
);
3610 ret
= copy_from_user(attr
, uattr
, size
);
3615 * XXX: do we want to be lenient like existing syscalls; or do we want
3616 * to be strict and return an error on out-of-bounds values?
3618 attr
->sched_nice
= clamp(attr
->sched_nice
, -20, 19);
3624 put_user(sizeof(*attr
), &uattr
->size
);
3630 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3631 * @pid: the pid in question.
3632 * @policy: new policy.
3633 * @param: structure containing the new RT priority.
3635 * Return: 0 on success. An error code otherwise.
3637 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
3638 struct sched_param __user
*, param
)
3640 /* negative values for policy are not valid */
3644 return do_sched_setscheduler(pid
, policy
, param
);
3648 * sys_sched_setparam - set/change the RT priority of a thread
3649 * @pid: the pid in question.
3650 * @param: structure containing the new RT priority.
3652 * Return: 0 on success. An error code otherwise.
3654 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
3656 return do_sched_setscheduler(pid
, -1, param
);
3660 * sys_sched_setattr - same as above, but with extended sched_attr
3661 * @pid: the pid in question.
3662 * @uattr: structure containing the extended parameters.
3664 SYSCALL_DEFINE2(sched_setattr
, pid_t
, pid
, struct sched_attr __user
*, uattr
)
3666 struct sched_attr attr
;
3667 struct task_struct
*p
;
3670 if (!uattr
|| pid
< 0)
3673 if (sched_copy_attr(uattr
, &attr
))
3678 p
= find_process_by_pid(pid
);
3680 retval
= sched_setattr(p
, &attr
);
3687 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3688 * @pid: the pid in question.
3690 * Return: On success, the policy of the thread. Otherwise, a negative error
3693 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
3695 struct task_struct
*p
;
3703 p
= find_process_by_pid(pid
);
3705 retval
= security_task_getscheduler(p
);
3708 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
3715 * sys_sched_getparam - get the RT priority of a thread
3716 * @pid: the pid in question.
3717 * @param: structure containing the RT priority.
3719 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3722 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
3724 struct sched_param lp
;
3725 struct task_struct
*p
;
3728 if (!param
|| pid
< 0)
3732 p
= find_process_by_pid(pid
);
3737 retval
= security_task_getscheduler(p
);
3741 if (task_has_dl_policy(p
)) {
3745 lp
.sched_priority
= p
->rt_priority
;
3749 * This one might sleep, we cannot do it with a spinlock held ...
3751 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
3760 static int sched_read_attr(struct sched_attr __user
*uattr
,
3761 struct sched_attr
*attr
,
3766 if (!access_ok(VERIFY_WRITE
, uattr
, usize
))
3770 * If we're handed a smaller struct than we know of,
3771 * ensure all the unknown bits are 0 - i.e. old
3772 * user-space does not get uncomplete information.
3774 if (usize
< sizeof(*attr
)) {
3775 unsigned char *addr
;
3778 addr
= (void *)attr
+ usize
;
3779 end
= (void *)attr
+ sizeof(*attr
);
3781 for (; addr
< end
; addr
++) {
3789 ret
= copy_to_user(uattr
, attr
, usize
);
3802 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3803 * @pid: the pid in question.
3804 * @uattr: structure containing the extended parameters.
3805 * @size: sizeof(attr) for fwd/bwd comp.
3807 SYSCALL_DEFINE3(sched_getattr
, pid_t
, pid
, struct sched_attr __user
*, uattr
,
3810 struct sched_attr attr
= {
3811 .size
= sizeof(struct sched_attr
),
3813 struct task_struct
*p
;
3816 if (!uattr
|| pid
< 0 || size
> PAGE_SIZE
||
3817 size
< SCHED_ATTR_SIZE_VER0
)
3821 p
= find_process_by_pid(pid
);
3826 retval
= security_task_getscheduler(p
);
3830 attr
.sched_policy
= p
->policy
;
3831 if (p
->sched_reset_on_fork
)
3832 attr
.sched_flags
|= SCHED_FLAG_RESET_ON_FORK
;
3833 if (task_has_dl_policy(p
))
3834 __getparam_dl(p
, &attr
);
3835 else if (task_has_rt_policy(p
))
3836 attr
.sched_priority
= p
->rt_priority
;
3838 attr
.sched_nice
= TASK_NICE(p
);
3842 retval
= sched_read_attr(uattr
, &attr
, size
);
3850 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
3852 cpumask_var_t cpus_allowed
, new_mask
;
3853 struct task_struct
*p
;
3858 p
= find_process_by_pid(pid
);
3864 /* Prevent p going away */
3868 if (p
->flags
& PF_NO_SETAFFINITY
) {
3872 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
3876 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
3878 goto out_free_cpus_allowed
;
3881 if (!check_same_owner(p
)) {
3883 if (!ns_capable(__task_cred(p
)->user_ns
, CAP_SYS_NICE
)) {
3890 retval
= security_task_setscheduler(p
);
3895 cpuset_cpus_allowed(p
, cpus_allowed
);
3896 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
3899 * Since bandwidth control happens on root_domain basis,
3900 * if admission test is enabled, we only admit -deadline
3901 * tasks allowed to run on all the CPUs in the task's
3905 if (task_has_dl_policy(p
)) {
3906 const struct cpumask
*span
= task_rq(p
)->rd
->span
;
3908 if (dl_bandwidth_enabled() && !cpumask_subset(span
, new_mask
)) {
3915 retval
= set_cpus_allowed_ptr(p
, new_mask
);
3918 cpuset_cpus_allowed(p
, cpus_allowed
);
3919 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
3921 * We must have raced with a concurrent cpuset
3922 * update. Just reset the cpus_allowed to the
3923 * cpuset's cpus_allowed
3925 cpumask_copy(new_mask
, cpus_allowed
);
3930 free_cpumask_var(new_mask
);
3931 out_free_cpus_allowed
:
3932 free_cpumask_var(cpus_allowed
);
3938 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
3939 struct cpumask
*new_mask
)
3941 if (len
< cpumask_size())
3942 cpumask_clear(new_mask
);
3943 else if (len
> cpumask_size())
3944 len
= cpumask_size();
3946 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
3950 * sys_sched_setaffinity - set the cpu affinity of a process
3951 * @pid: pid of the process
3952 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3953 * @user_mask_ptr: user-space pointer to the new cpu mask
3955 * Return: 0 on success. An error code otherwise.
3957 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
3958 unsigned long __user
*, user_mask_ptr
)
3960 cpumask_var_t new_mask
;
3963 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
3966 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
3968 retval
= sched_setaffinity(pid
, new_mask
);
3969 free_cpumask_var(new_mask
);
3973 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
3975 struct task_struct
*p
;
3976 unsigned long flags
;
3982 p
= find_process_by_pid(pid
);
3986 retval
= security_task_getscheduler(p
);
3990 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
3991 cpumask_and(mask
, &p
->cpus_allowed
, cpu_active_mask
);
3992 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4001 * sys_sched_getaffinity - get the cpu affinity of a process
4002 * @pid: pid of the process
4003 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4004 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4006 * Return: 0 on success. An error code otherwise.
4008 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
4009 unsigned long __user
*, user_mask_ptr
)
4014 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
4016 if (len
& (sizeof(unsigned long)-1))
4019 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
4022 ret
= sched_getaffinity(pid
, mask
);
4024 size_t retlen
= min_t(size_t, len
, cpumask_size());
4026 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
4031 free_cpumask_var(mask
);
4037 * sys_sched_yield - yield the current processor to other threads.
4039 * This function yields the current CPU to other tasks. If there are no
4040 * other threads running on this CPU then this function will return.
4044 SYSCALL_DEFINE0(sched_yield
)
4046 struct rq
*rq
= this_rq_lock();
4048 schedstat_inc(rq
, yld_count
);
4049 current
->sched_class
->yield_task(rq
);
4052 * Since we are going to call schedule() anyway, there's
4053 * no need to preempt or enable interrupts:
4055 __release(rq
->lock
);
4056 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4057 do_raw_spin_unlock(&rq
->lock
);
4058 sched_preempt_enable_no_resched();
4065 static void __cond_resched(void)
4067 __preempt_count_add(PREEMPT_ACTIVE
);
4069 __preempt_count_sub(PREEMPT_ACTIVE
);
4072 int __sched
_cond_resched(void)
4074 if (should_resched()) {
4080 EXPORT_SYMBOL(_cond_resched
);
4083 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4084 * call schedule, and on return reacquire the lock.
4086 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4087 * operations here to prevent schedule() from being called twice (once via
4088 * spin_unlock(), once by hand).
4090 int __cond_resched_lock(spinlock_t
*lock
)
4092 int resched
= should_resched();
4095 lockdep_assert_held(lock
);
4097 if (spin_needbreak(lock
) || resched
) {
4108 EXPORT_SYMBOL(__cond_resched_lock
);
4110 int __sched
__cond_resched_softirq(void)
4112 BUG_ON(!in_softirq());
4114 if (should_resched()) {
4122 EXPORT_SYMBOL(__cond_resched_softirq
);
4125 * yield - yield the current processor to other threads.
4127 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4129 * The scheduler is at all times free to pick the calling task as the most
4130 * eligible task to run, if removing the yield() call from your code breaks
4131 * it, its already broken.
4133 * Typical broken usage is:
4138 * where one assumes that yield() will let 'the other' process run that will
4139 * make event true. If the current task is a SCHED_FIFO task that will never
4140 * happen. Never use yield() as a progress guarantee!!
4142 * If you want to use yield() to wait for something, use wait_event().
4143 * If you want to use yield() to be 'nice' for others, use cond_resched().
4144 * If you still want to use yield(), do not!
4146 void __sched
yield(void)
4148 set_current_state(TASK_RUNNING
);
4151 EXPORT_SYMBOL(yield
);
4154 * yield_to - yield the current processor to another thread in
4155 * your thread group, or accelerate that thread toward the
4156 * processor it's on.
4158 * @preempt: whether task preemption is allowed or not
4160 * It's the caller's job to ensure that the target task struct
4161 * can't go away on us before we can do any checks.
4164 * true (>0) if we indeed boosted the target task.
4165 * false (0) if we failed to boost the target.
4166 * -ESRCH if there's no task to yield to.
4168 bool __sched
yield_to(struct task_struct
*p
, bool preempt
)
4170 struct task_struct
*curr
= current
;
4171 struct rq
*rq
, *p_rq
;
4172 unsigned long flags
;
4175 local_irq_save(flags
);
4181 * If we're the only runnable task on the rq and target rq also
4182 * has only one task, there's absolutely no point in yielding.
4184 if (rq
->nr_running
== 1 && p_rq
->nr_running
== 1) {
4189 double_rq_lock(rq
, p_rq
);
4190 if (task_rq(p
) != p_rq
) {
4191 double_rq_unlock(rq
, p_rq
);
4195 if (!curr
->sched_class
->yield_to_task
)
4198 if (curr
->sched_class
!= p
->sched_class
)
4201 if (task_running(p_rq
, p
) || p
->state
)
4204 yielded
= curr
->sched_class
->yield_to_task(rq
, p
, preempt
);
4206 schedstat_inc(rq
, yld_count
);
4208 * Make p's CPU reschedule; pick_next_entity takes care of
4211 if (preempt
&& rq
!= p_rq
)
4212 resched_task(p_rq
->curr
);
4216 double_rq_unlock(rq
, p_rq
);
4218 local_irq_restore(flags
);
4225 EXPORT_SYMBOL_GPL(yield_to
);
4228 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4229 * that process accounting knows that this is a task in IO wait state.
4231 void __sched
io_schedule(void)
4233 struct rq
*rq
= raw_rq();
4235 delayacct_blkio_start();
4236 atomic_inc(&rq
->nr_iowait
);
4237 blk_flush_plug(current
);
4238 current
->in_iowait
= 1;
4240 current
->in_iowait
= 0;
4241 atomic_dec(&rq
->nr_iowait
);
4242 delayacct_blkio_end();
4244 EXPORT_SYMBOL(io_schedule
);
4246 long __sched
io_schedule_timeout(long timeout
)
4248 struct rq
*rq
= raw_rq();
4251 delayacct_blkio_start();
4252 atomic_inc(&rq
->nr_iowait
);
4253 blk_flush_plug(current
);
4254 current
->in_iowait
= 1;
4255 ret
= schedule_timeout(timeout
);
4256 current
->in_iowait
= 0;
4257 atomic_dec(&rq
->nr_iowait
);
4258 delayacct_blkio_end();
4263 * sys_sched_get_priority_max - return maximum RT priority.
4264 * @policy: scheduling class.
4266 * Return: On success, this syscall returns the maximum
4267 * rt_priority that can be used by a given scheduling class.
4268 * On failure, a negative error code is returned.
4270 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
4277 ret
= MAX_USER_RT_PRIO
-1;
4279 case SCHED_DEADLINE
:
4290 * sys_sched_get_priority_min - return minimum RT priority.
4291 * @policy: scheduling class.
4293 * Return: On success, this syscall returns the minimum
4294 * rt_priority that can be used by a given scheduling class.
4295 * On failure, a negative error code is returned.
4297 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
4306 case SCHED_DEADLINE
:
4316 * sys_sched_rr_get_interval - return the default timeslice of a process.
4317 * @pid: pid of the process.
4318 * @interval: userspace pointer to the timeslice value.
4320 * this syscall writes the default timeslice value of a given process
4321 * into the user-space timespec buffer. A value of '0' means infinity.
4323 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4326 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
4327 struct timespec __user
*, interval
)
4329 struct task_struct
*p
;
4330 unsigned int time_slice
;
4331 unsigned long flags
;
4341 p
= find_process_by_pid(pid
);
4345 retval
= security_task_getscheduler(p
);
4349 rq
= task_rq_lock(p
, &flags
);
4351 if (p
->sched_class
->get_rr_interval
)
4352 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
4353 task_rq_unlock(rq
, p
, &flags
);
4356 jiffies_to_timespec(time_slice
, &t
);
4357 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4365 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
4367 void sched_show_task(struct task_struct
*p
)
4369 unsigned long free
= 0;
4373 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4374 printk(KERN_INFO
"%-15.15s %c", p
->comm
,
4375 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4376 #if BITS_PER_LONG == 32
4377 if (state
== TASK_RUNNING
)
4378 printk(KERN_CONT
" running ");
4380 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
4382 if (state
== TASK_RUNNING
)
4383 printk(KERN_CONT
" running task ");
4385 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
4387 #ifdef CONFIG_DEBUG_STACK_USAGE
4388 free
= stack_not_used(p
);
4391 ppid
= task_pid_nr(rcu_dereference(p
->real_parent
));
4393 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
4394 task_pid_nr(p
), ppid
,
4395 (unsigned long)task_thread_info(p
)->flags
);
4397 print_worker_info(KERN_INFO
, p
);
4398 show_stack(p
, NULL
);
4401 void show_state_filter(unsigned long state_filter
)
4403 struct task_struct
*g
, *p
;
4405 #if BITS_PER_LONG == 32
4407 " task PC stack pid father\n");
4410 " task PC stack pid father\n");
4413 do_each_thread(g
, p
) {
4415 * reset the NMI-timeout, listing all files on a slow
4416 * console might take a lot of time:
4418 touch_nmi_watchdog();
4419 if (!state_filter
|| (p
->state
& state_filter
))
4421 } while_each_thread(g
, p
);
4423 touch_all_softlockup_watchdogs();
4425 #ifdef CONFIG_SCHED_DEBUG
4426 sysrq_sched_debug_show();
4430 * Only show locks if all tasks are dumped:
4433 debug_show_all_locks();
4436 void init_idle_bootup_task(struct task_struct
*idle
)
4438 idle
->sched_class
= &idle_sched_class
;
4442 * init_idle - set up an idle thread for a given CPU
4443 * @idle: task in question
4444 * @cpu: cpu the idle task belongs to
4446 * NOTE: this function does not set the idle thread's NEED_RESCHED
4447 * flag, to make booting more robust.
4449 void init_idle(struct task_struct
*idle
, int cpu
)
4451 struct rq
*rq
= cpu_rq(cpu
);
4452 unsigned long flags
;
4454 raw_spin_lock_irqsave(&rq
->lock
, flags
);
4456 __sched_fork(0, idle
);
4457 idle
->state
= TASK_RUNNING
;
4458 idle
->se
.exec_start
= sched_clock();
4460 do_set_cpus_allowed(idle
, cpumask_of(cpu
));
4462 * We're having a chicken and egg problem, even though we are
4463 * holding rq->lock, the cpu isn't yet set to this cpu so the
4464 * lockdep check in task_group() will fail.
4466 * Similar case to sched_fork(). / Alternatively we could
4467 * use task_rq_lock() here and obtain the other rq->lock.
4472 __set_task_cpu(idle
, cpu
);
4475 rq
->curr
= rq
->idle
= idle
;
4476 #if defined(CONFIG_SMP)
4479 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
4481 /* Set the preempt count _outside_ the spinlocks! */
4482 init_idle_preempt_count(idle
, cpu
);
4485 * The idle tasks have their own, simple scheduling class:
4487 idle
->sched_class
= &idle_sched_class
;
4488 ftrace_graph_init_idle_task(idle
, cpu
);
4489 vtime_init_idle(idle
, cpu
);
4490 #if defined(CONFIG_SMP)
4491 sprintf(idle
->comm
, "%s/%d", INIT_TASK_COMM
, cpu
);
4496 void do_set_cpus_allowed(struct task_struct
*p
, const struct cpumask
*new_mask
)
4498 if (p
->sched_class
&& p
->sched_class
->set_cpus_allowed
)
4499 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
4501 cpumask_copy(&p
->cpus_allowed
, new_mask
);
4502 p
->nr_cpus_allowed
= cpumask_weight(new_mask
);
4506 * This is how migration works:
4508 * 1) we invoke migration_cpu_stop() on the target CPU using
4510 * 2) stopper starts to run (implicitly forcing the migrated thread
4512 * 3) it checks whether the migrated task is still in the wrong runqueue.
4513 * 4) if it's in the wrong runqueue then the migration thread removes
4514 * it and puts it into the right queue.
4515 * 5) stopper completes and stop_one_cpu() returns and the migration
4520 * Change a given task's CPU affinity. Migrate the thread to a
4521 * proper CPU and schedule it away if the CPU it's executing on
4522 * is removed from the allowed bitmask.
4524 * NOTE: the caller must have a valid reference to the task, the
4525 * task must not exit() & deallocate itself prematurely. The
4526 * call is not atomic; no spinlocks may be held.
4528 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
4530 unsigned long flags
;
4532 unsigned int dest_cpu
;
4535 rq
= task_rq_lock(p
, &flags
);
4537 if (cpumask_equal(&p
->cpus_allowed
, new_mask
))
4540 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
4545 do_set_cpus_allowed(p
, new_mask
);
4547 /* Can the task run on the task's current CPU? If so, we're done */
4548 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
4551 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
4553 struct migration_arg arg
= { p
, dest_cpu
};
4554 /* Need help from migration thread: drop lock and wait. */
4555 task_rq_unlock(rq
, p
, &flags
);
4556 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
4557 tlb_migrate_finish(p
->mm
);
4561 task_rq_unlock(rq
, p
, &flags
);
4565 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
4568 * Move (not current) task off this cpu, onto dest cpu. We're doing
4569 * this because either it can't run here any more (set_cpus_allowed()
4570 * away from this CPU, or CPU going down), or because we're
4571 * attempting to rebalance this task on exec (sched_exec).
4573 * So we race with normal scheduler movements, but that's OK, as long
4574 * as the task is no longer on this CPU.
4576 * Returns non-zero if task was successfully migrated.
4578 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
4580 struct rq
*rq_dest
, *rq_src
;
4583 if (unlikely(!cpu_active(dest_cpu
)))
4586 rq_src
= cpu_rq(src_cpu
);
4587 rq_dest
= cpu_rq(dest_cpu
);
4589 raw_spin_lock(&p
->pi_lock
);
4590 double_rq_lock(rq_src
, rq_dest
);
4591 /* Already moved. */
4592 if (task_cpu(p
) != src_cpu
)
4594 /* Affinity changed (again). */
4595 if (!cpumask_test_cpu(dest_cpu
, tsk_cpus_allowed(p
)))
4599 * If we're not on a rq, the next wake-up will ensure we're
4603 dequeue_task(rq_src
, p
, 0);
4604 set_task_cpu(p
, dest_cpu
);
4605 enqueue_task(rq_dest
, p
, 0);
4606 check_preempt_curr(rq_dest
, p
, 0);
4611 double_rq_unlock(rq_src
, rq_dest
);
4612 raw_spin_unlock(&p
->pi_lock
);
4616 #ifdef CONFIG_NUMA_BALANCING
4617 /* Migrate current task p to target_cpu */
4618 int migrate_task_to(struct task_struct
*p
, int target_cpu
)
4620 struct migration_arg arg
= { p
, target_cpu
};
4621 int curr_cpu
= task_cpu(p
);
4623 if (curr_cpu
== target_cpu
)
4626 if (!cpumask_test_cpu(target_cpu
, tsk_cpus_allowed(p
)))
4629 /* TODO: This is not properly updating schedstats */
4631 trace_sched_move_numa(p
, curr_cpu
, target_cpu
);
4632 return stop_one_cpu(curr_cpu
, migration_cpu_stop
, &arg
);
4636 * Requeue a task on a given node and accurately track the number of NUMA
4637 * tasks on the runqueues
4639 void sched_setnuma(struct task_struct
*p
, int nid
)
4642 unsigned long flags
;
4643 bool on_rq
, running
;
4645 rq
= task_rq_lock(p
, &flags
);
4647 running
= task_current(rq
, p
);
4650 dequeue_task(rq
, p
, 0);
4652 p
->sched_class
->put_prev_task(rq
, p
);
4654 p
->numa_preferred_nid
= nid
;
4657 p
->sched_class
->set_curr_task(rq
);
4659 enqueue_task(rq
, p
, 0);
4660 task_rq_unlock(rq
, p
, &flags
);
4665 * migration_cpu_stop - this will be executed by a highprio stopper thread
4666 * and performs thread migration by bumping thread off CPU then
4667 * 'pushing' onto another runqueue.
4669 static int migration_cpu_stop(void *data
)
4671 struct migration_arg
*arg
= data
;
4674 * The original target cpu might have gone down and we might
4675 * be on another cpu but it doesn't matter.
4677 local_irq_disable();
4678 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
4683 #ifdef CONFIG_HOTPLUG_CPU
4686 * Ensures that the idle task is using init_mm right before its cpu goes
4689 void idle_task_exit(void)
4691 struct mm_struct
*mm
= current
->active_mm
;
4693 BUG_ON(cpu_online(smp_processor_id()));
4696 switch_mm(mm
, &init_mm
, current
);
4701 * Since this CPU is going 'away' for a while, fold any nr_active delta
4702 * we might have. Assumes we're called after migrate_tasks() so that the
4703 * nr_active count is stable.
4705 * Also see the comment "Global load-average calculations".
4707 static void calc_load_migrate(struct rq
*rq
)
4709 long delta
= calc_load_fold_active(rq
);
4711 atomic_long_add(delta
, &calc_load_tasks
);
4715 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4716 * try_to_wake_up()->select_task_rq().
4718 * Called with rq->lock held even though we'er in stop_machine() and
4719 * there's no concurrency possible, we hold the required locks anyway
4720 * because of lock validation efforts.
4722 static void migrate_tasks(unsigned int dead_cpu
)
4724 struct rq
*rq
= cpu_rq(dead_cpu
);
4725 struct task_struct
*next
, *stop
= rq
->stop
;
4729 * Fudge the rq selection such that the below task selection loop
4730 * doesn't get stuck on the currently eligible stop task.
4732 * We're currently inside stop_machine() and the rq is either stuck
4733 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4734 * either way we should never end up calling schedule() until we're
4740 * put_prev_task() and pick_next_task() sched
4741 * class method both need to have an up-to-date
4742 * value of rq->clock[_task]
4744 update_rq_clock(rq
);
4748 * There's this thread running, bail when that's the only
4751 if (rq
->nr_running
== 1)
4754 next
= pick_next_task(rq
);
4756 next
->sched_class
->put_prev_task(rq
, next
);
4758 /* Find suitable destination for @next, with force if needed. */
4759 dest_cpu
= select_fallback_rq(dead_cpu
, next
);
4760 raw_spin_unlock(&rq
->lock
);
4762 __migrate_task(next
, dead_cpu
, dest_cpu
);
4764 raw_spin_lock(&rq
->lock
);
4770 #endif /* CONFIG_HOTPLUG_CPU */
4772 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4774 static struct ctl_table sd_ctl_dir
[] = {
4776 .procname
= "sched_domain",
4782 static struct ctl_table sd_ctl_root
[] = {
4784 .procname
= "kernel",
4786 .child
= sd_ctl_dir
,
4791 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
4793 struct ctl_table
*entry
=
4794 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
4799 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
4801 struct ctl_table
*entry
;
4804 * In the intermediate directories, both the child directory and
4805 * procname are dynamically allocated and could fail but the mode
4806 * will always be set. In the lowest directory the names are
4807 * static strings and all have proc handlers.
4809 for (entry
= *tablep
; entry
->mode
; entry
++) {
4811 sd_free_ctl_entry(&entry
->child
);
4812 if (entry
->proc_handler
== NULL
)
4813 kfree(entry
->procname
);
4820 static int min_load_idx
= 0;
4821 static int max_load_idx
= CPU_LOAD_IDX_MAX
-1;
4824 set_table_entry(struct ctl_table
*entry
,
4825 const char *procname
, void *data
, int maxlen
,
4826 umode_t mode
, proc_handler
*proc_handler
,
4829 entry
->procname
= procname
;
4831 entry
->maxlen
= maxlen
;
4833 entry
->proc_handler
= proc_handler
;
4836 entry
->extra1
= &min_load_idx
;
4837 entry
->extra2
= &max_load_idx
;
4841 static struct ctl_table
*
4842 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
4844 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
4849 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
4850 sizeof(long), 0644, proc_doulongvec_minmax
, false);
4851 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
4852 sizeof(long), 0644, proc_doulongvec_minmax
, false);
4853 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
4854 sizeof(int), 0644, proc_dointvec_minmax
, true);
4855 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
4856 sizeof(int), 0644, proc_dointvec_minmax
, true);
4857 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
4858 sizeof(int), 0644, proc_dointvec_minmax
, true);
4859 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
4860 sizeof(int), 0644, proc_dointvec_minmax
, true);
4861 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
4862 sizeof(int), 0644, proc_dointvec_minmax
, true);
4863 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
4864 sizeof(int), 0644, proc_dointvec_minmax
, false);
4865 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
4866 sizeof(int), 0644, proc_dointvec_minmax
, false);
4867 set_table_entry(&table
[9], "cache_nice_tries",
4868 &sd
->cache_nice_tries
,
4869 sizeof(int), 0644, proc_dointvec_minmax
, false);
4870 set_table_entry(&table
[10], "flags", &sd
->flags
,
4871 sizeof(int), 0644, proc_dointvec_minmax
, false);
4872 set_table_entry(&table
[11], "name", sd
->name
,
4873 CORENAME_MAX_SIZE
, 0444, proc_dostring
, false);
4874 /* &table[12] is terminator */
4879 static struct ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
4881 struct ctl_table
*entry
, *table
;
4882 struct sched_domain
*sd
;
4883 int domain_num
= 0, i
;
4886 for_each_domain(cpu
, sd
)
4888 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
4893 for_each_domain(cpu
, sd
) {
4894 snprintf(buf
, 32, "domain%d", i
);
4895 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
4897 entry
->child
= sd_alloc_ctl_domain_table(sd
);
4904 static struct ctl_table_header
*sd_sysctl_header
;
4905 static void register_sched_domain_sysctl(void)
4907 int i
, cpu_num
= num_possible_cpus();
4908 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
4911 WARN_ON(sd_ctl_dir
[0].child
);
4912 sd_ctl_dir
[0].child
= entry
;
4917 for_each_possible_cpu(i
) {
4918 snprintf(buf
, 32, "cpu%d", i
);
4919 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
4921 entry
->child
= sd_alloc_ctl_cpu_table(i
);
4925 WARN_ON(sd_sysctl_header
);
4926 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
4929 /* may be called multiple times per register */
4930 static void unregister_sched_domain_sysctl(void)
4932 if (sd_sysctl_header
)
4933 unregister_sysctl_table(sd_sysctl_header
);
4934 sd_sysctl_header
= NULL
;
4935 if (sd_ctl_dir
[0].child
)
4936 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
4939 static void register_sched_domain_sysctl(void)
4942 static void unregister_sched_domain_sysctl(void)
4947 static void set_rq_online(struct rq
*rq
)
4950 const struct sched_class
*class;
4952 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
4955 for_each_class(class) {
4956 if (class->rq_online
)
4957 class->rq_online(rq
);
4962 static void set_rq_offline(struct rq
*rq
)
4965 const struct sched_class
*class;
4967 for_each_class(class) {
4968 if (class->rq_offline
)
4969 class->rq_offline(rq
);
4972 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
4978 * migration_call - callback that gets triggered when a CPU is added.
4979 * Here we can start up the necessary migration thread for the new CPU.
4982 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
4984 int cpu
= (long)hcpu
;
4985 unsigned long flags
;
4986 struct rq
*rq
= cpu_rq(cpu
);
4988 switch (action
& ~CPU_TASKS_FROZEN
) {
4990 case CPU_UP_PREPARE
:
4991 rq
->calc_load_update
= calc_load_update
;
4995 /* Update our root-domain */
4996 raw_spin_lock_irqsave(&rq
->lock
, flags
);
4998 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5002 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5005 #ifdef CONFIG_HOTPLUG_CPU
5007 sched_ttwu_pending();
5008 /* Update our root-domain */
5009 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5011 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5015 BUG_ON(rq
->nr_running
!= 1); /* the migration thread */
5016 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5020 calc_load_migrate(rq
);
5025 update_max_interval();
5031 * Register at high priority so that task migration (migrate_all_tasks)
5032 * happens before everything else. This has to be lower priority than
5033 * the notifier in the perf_event subsystem, though.
5035 static struct notifier_block migration_notifier
= {
5036 .notifier_call
= migration_call
,
5037 .priority
= CPU_PRI_MIGRATION
,
5040 static int sched_cpu_active(struct notifier_block
*nfb
,
5041 unsigned long action
, void *hcpu
)
5043 switch (action
& ~CPU_TASKS_FROZEN
) {
5045 case CPU_DOWN_FAILED
:
5046 set_cpu_active((long)hcpu
, true);
5053 static int sched_cpu_inactive(struct notifier_block
*nfb
,
5054 unsigned long action
, void *hcpu
)
5056 unsigned long flags
;
5057 long cpu
= (long)hcpu
;
5059 switch (action
& ~CPU_TASKS_FROZEN
) {
5060 case CPU_DOWN_PREPARE
:
5061 set_cpu_active(cpu
, false);
5063 /* explicitly allow suspend */
5064 if (!(action
& CPU_TASKS_FROZEN
)) {
5065 struct dl_bw
*dl_b
= dl_bw_of(cpu
);
5069 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
5070 cpus
= dl_bw_cpus(cpu
);
5071 overflow
= __dl_overflow(dl_b
, cpus
, 0, 0);
5072 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
5075 return notifier_from_errno(-EBUSY
);
5083 static int __init
migration_init(void)
5085 void *cpu
= (void *)(long)smp_processor_id();
5088 /* Initialize migration for the boot CPU */
5089 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5090 BUG_ON(err
== NOTIFY_BAD
);
5091 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5092 register_cpu_notifier(&migration_notifier
);
5094 /* Register cpu active notifiers */
5095 cpu_notifier(sched_cpu_active
, CPU_PRI_SCHED_ACTIVE
);
5096 cpu_notifier(sched_cpu_inactive
, CPU_PRI_SCHED_INACTIVE
);
5100 early_initcall(migration_init
);
5105 static cpumask_var_t sched_domains_tmpmask
; /* sched_domains_mutex */
5107 #ifdef CONFIG_SCHED_DEBUG
5109 static __read_mostly
int sched_debug_enabled
;
5111 static int __init
sched_debug_setup(char *str
)
5113 sched_debug_enabled
= 1;
5117 early_param("sched_debug", sched_debug_setup
);
5119 static inline bool sched_debug(void)
5121 return sched_debug_enabled
;
5124 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
5125 struct cpumask
*groupmask
)
5127 struct sched_group
*group
= sd
->groups
;
5130 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
5131 cpumask_clear(groupmask
);
5133 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
5135 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5136 printk("does not load-balance\n");
5138 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5143 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
5145 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
5146 printk(KERN_ERR
"ERROR: domain->span does not contain "
5149 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
5150 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5154 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
5158 printk(KERN_ERR
"ERROR: group is NULL\n");
5163 * Even though we initialize ->power to something semi-sane,
5164 * we leave power_orig unset. This allows us to detect if
5165 * domain iteration is still funny without causing /0 traps.
5167 if (!group
->sgp
->power_orig
) {
5168 printk(KERN_CONT
"\n");
5169 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5174 if (!cpumask_weight(sched_group_cpus(group
))) {
5175 printk(KERN_CONT
"\n");
5176 printk(KERN_ERR
"ERROR: empty group\n");
5180 if (!(sd
->flags
& SD_OVERLAP
) &&
5181 cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
5182 printk(KERN_CONT
"\n");
5183 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5187 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
5189 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
5191 printk(KERN_CONT
" %s", str
);
5192 if (group
->sgp
->power
!= SCHED_POWER_SCALE
) {
5193 printk(KERN_CONT
" (cpu_power = %d)",
5197 group
= group
->next
;
5198 } while (group
!= sd
->groups
);
5199 printk(KERN_CONT
"\n");
5201 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
5202 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
5205 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
5206 printk(KERN_ERR
"ERROR: parent span is not a superset "
5207 "of domain->span\n");
5211 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5215 if (!sched_debug_enabled
)
5219 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5223 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5226 if (sched_domain_debug_one(sd
, cpu
, level
, sched_domains_tmpmask
))
5234 #else /* !CONFIG_SCHED_DEBUG */
5235 # define sched_domain_debug(sd, cpu) do { } while (0)
5236 static inline bool sched_debug(void)
5240 #endif /* CONFIG_SCHED_DEBUG */
5242 static int sd_degenerate(struct sched_domain
*sd
)
5244 if (cpumask_weight(sched_domain_span(sd
)) == 1)
5247 /* Following flags need at least 2 groups */
5248 if (sd
->flags
& (SD_LOAD_BALANCE
|
5249 SD_BALANCE_NEWIDLE
|
5253 SD_SHARE_PKG_RESOURCES
)) {
5254 if (sd
->groups
!= sd
->groups
->next
)
5258 /* Following flags don't use groups */
5259 if (sd
->flags
& (SD_WAKE_AFFINE
))
5266 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5268 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5270 if (sd_degenerate(parent
))
5273 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
5276 /* Flags needing groups don't count if only 1 group in parent */
5277 if (parent
->groups
== parent
->groups
->next
) {
5278 pflags
&= ~(SD_LOAD_BALANCE
|
5279 SD_BALANCE_NEWIDLE
|
5283 SD_SHARE_PKG_RESOURCES
|
5285 if (nr_node_ids
== 1)
5286 pflags
&= ~SD_SERIALIZE
;
5288 if (~cflags
& pflags
)
5294 static void free_rootdomain(struct rcu_head
*rcu
)
5296 struct root_domain
*rd
= container_of(rcu
, struct root_domain
, rcu
);
5298 cpupri_cleanup(&rd
->cpupri
);
5299 cpudl_cleanup(&rd
->cpudl
);
5300 free_cpumask_var(rd
->dlo_mask
);
5301 free_cpumask_var(rd
->rto_mask
);
5302 free_cpumask_var(rd
->online
);
5303 free_cpumask_var(rd
->span
);
5307 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
5309 struct root_domain
*old_rd
= NULL
;
5310 unsigned long flags
;
5312 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5317 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
5320 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
5323 * If we dont want to free the old_rd yet then
5324 * set old_rd to NULL to skip the freeing later
5327 if (!atomic_dec_and_test(&old_rd
->refcount
))
5331 atomic_inc(&rd
->refcount
);
5334 cpumask_set_cpu(rq
->cpu
, rd
->span
);
5335 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
5338 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5341 call_rcu_sched(&old_rd
->rcu
, free_rootdomain
);
5344 static int init_rootdomain(struct root_domain
*rd
)
5346 memset(rd
, 0, sizeof(*rd
));
5348 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
5350 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
5352 if (!alloc_cpumask_var(&rd
->dlo_mask
, GFP_KERNEL
))
5354 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
5357 init_dl_bw(&rd
->dl_bw
);
5358 if (cpudl_init(&rd
->cpudl
) != 0)
5361 if (cpupri_init(&rd
->cpupri
) != 0)
5366 free_cpumask_var(rd
->rto_mask
);
5368 free_cpumask_var(rd
->dlo_mask
);
5370 free_cpumask_var(rd
->online
);
5372 free_cpumask_var(rd
->span
);
5378 * By default the system creates a single root-domain with all cpus as
5379 * members (mimicking the global state we have today).
5381 struct root_domain def_root_domain
;
5383 static void init_defrootdomain(void)
5385 init_rootdomain(&def_root_domain
);
5387 atomic_set(&def_root_domain
.refcount
, 1);
5390 static struct root_domain
*alloc_rootdomain(void)
5392 struct root_domain
*rd
;
5394 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
5398 if (init_rootdomain(rd
) != 0) {
5406 static void free_sched_groups(struct sched_group
*sg
, int free_sgp
)
5408 struct sched_group
*tmp
, *first
;
5417 if (free_sgp
&& atomic_dec_and_test(&sg
->sgp
->ref
))
5422 } while (sg
!= first
);
5425 static void free_sched_domain(struct rcu_head
*rcu
)
5427 struct sched_domain
*sd
= container_of(rcu
, struct sched_domain
, rcu
);
5430 * If its an overlapping domain it has private groups, iterate and
5433 if (sd
->flags
& SD_OVERLAP
) {
5434 free_sched_groups(sd
->groups
, 1);
5435 } else if (atomic_dec_and_test(&sd
->groups
->ref
)) {
5436 kfree(sd
->groups
->sgp
);
5442 static void destroy_sched_domain(struct sched_domain
*sd
, int cpu
)
5444 call_rcu(&sd
->rcu
, free_sched_domain
);
5447 static void destroy_sched_domains(struct sched_domain
*sd
, int cpu
)
5449 for (; sd
; sd
= sd
->parent
)
5450 destroy_sched_domain(sd
, cpu
);
5454 * Keep a special pointer to the highest sched_domain that has
5455 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5456 * allows us to avoid some pointer chasing select_idle_sibling().
5458 * Also keep a unique ID per domain (we use the first cpu number in
5459 * the cpumask of the domain), this allows us to quickly tell if
5460 * two cpus are in the same cache domain, see cpus_share_cache().
5462 DEFINE_PER_CPU(struct sched_domain
*, sd_llc
);
5463 DEFINE_PER_CPU(int, sd_llc_size
);
5464 DEFINE_PER_CPU(int, sd_llc_id
);
5465 DEFINE_PER_CPU(struct sched_domain
*, sd_numa
);
5466 DEFINE_PER_CPU(struct sched_domain
*, sd_busy
);
5467 DEFINE_PER_CPU(struct sched_domain
*, sd_asym
);
5469 static void update_top_cache_domain(int cpu
)
5471 struct sched_domain
*sd
;
5472 struct sched_domain
*busy_sd
= NULL
;
5476 sd
= highest_flag_domain(cpu
, SD_SHARE_PKG_RESOURCES
);
5478 id
= cpumask_first(sched_domain_span(sd
));
5479 size
= cpumask_weight(sched_domain_span(sd
));
5480 busy_sd
= sd
->parent
; /* sd_busy */
5482 rcu_assign_pointer(per_cpu(sd_busy
, cpu
), busy_sd
);
5484 rcu_assign_pointer(per_cpu(sd_llc
, cpu
), sd
);
5485 per_cpu(sd_llc_size
, cpu
) = size
;
5486 per_cpu(sd_llc_id
, cpu
) = id
;
5488 sd
= lowest_flag_domain(cpu
, SD_NUMA
);
5489 rcu_assign_pointer(per_cpu(sd_numa
, cpu
), sd
);
5491 sd
= highest_flag_domain(cpu
, SD_ASYM_PACKING
);
5492 rcu_assign_pointer(per_cpu(sd_asym
, cpu
), sd
);
5496 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5497 * hold the hotplug lock.
5500 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
5502 struct rq
*rq
= cpu_rq(cpu
);
5503 struct sched_domain
*tmp
;
5505 /* Remove the sched domains which do not contribute to scheduling. */
5506 for (tmp
= sd
; tmp
; ) {
5507 struct sched_domain
*parent
= tmp
->parent
;
5511 if (sd_parent_degenerate(tmp
, parent
)) {
5512 tmp
->parent
= parent
->parent
;
5514 parent
->parent
->child
= tmp
;
5516 * Transfer SD_PREFER_SIBLING down in case of a
5517 * degenerate parent; the spans match for this
5518 * so the property transfers.
5520 if (parent
->flags
& SD_PREFER_SIBLING
)
5521 tmp
->flags
|= SD_PREFER_SIBLING
;
5522 destroy_sched_domain(parent
, cpu
);
5527 if (sd
&& sd_degenerate(sd
)) {
5530 destroy_sched_domain(tmp
, cpu
);
5535 sched_domain_debug(sd
, cpu
);
5537 rq_attach_root(rq
, rd
);
5539 rcu_assign_pointer(rq
->sd
, sd
);
5540 destroy_sched_domains(tmp
, cpu
);
5542 update_top_cache_domain(cpu
);
5545 /* cpus with isolated domains */
5546 static cpumask_var_t cpu_isolated_map
;
5548 /* Setup the mask of cpus configured for isolated domains */
5549 static int __init
isolated_cpu_setup(char *str
)
5551 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
5552 cpulist_parse(str
, cpu_isolated_map
);
5556 __setup("isolcpus=", isolated_cpu_setup
);
5558 static const struct cpumask
*cpu_cpu_mask(int cpu
)
5560 return cpumask_of_node(cpu_to_node(cpu
));
5564 struct sched_domain
**__percpu sd
;
5565 struct sched_group
**__percpu sg
;
5566 struct sched_group_power
**__percpu sgp
;
5570 struct sched_domain
** __percpu sd
;
5571 struct root_domain
*rd
;
5581 struct sched_domain_topology_level
;
5583 typedef struct sched_domain
*(*sched_domain_init_f
)(struct sched_domain_topology_level
*tl
, int cpu
);
5584 typedef const struct cpumask
*(*sched_domain_mask_f
)(int cpu
);
5586 #define SDTL_OVERLAP 0x01
5588 struct sched_domain_topology_level
{
5589 sched_domain_init_f init
;
5590 sched_domain_mask_f mask
;
5593 struct sd_data data
;
5597 * Build an iteration mask that can exclude certain CPUs from the upwards
5600 * Asymmetric node setups can result in situations where the domain tree is of
5601 * unequal depth, make sure to skip domains that already cover the entire
5604 * In that case build_sched_domains() will have terminated the iteration early
5605 * and our sibling sd spans will be empty. Domains should always include the
5606 * cpu they're built on, so check that.
5609 static void build_group_mask(struct sched_domain
*sd
, struct sched_group
*sg
)
5611 const struct cpumask
*span
= sched_domain_span(sd
);
5612 struct sd_data
*sdd
= sd
->private;
5613 struct sched_domain
*sibling
;
5616 for_each_cpu(i
, span
) {
5617 sibling
= *per_cpu_ptr(sdd
->sd
, i
);
5618 if (!cpumask_test_cpu(i
, sched_domain_span(sibling
)))
5621 cpumask_set_cpu(i
, sched_group_mask(sg
));
5626 * Return the canonical balance cpu for this group, this is the first cpu
5627 * of this group that's also in the iteration mask.
5629 int group_balance_cpu(struct sched_group
*sg
)
5631 return cpumask_first_and(sched_group_cpus(sg
), sched_group_mask(sg
));
5635 build_overlap_sched_groups(struct sched_domain
*sd
, int cpu
)
5637 struct sched_group
*first
= NULL
, *last
= NULL
, *groups
= NULL
, *sg
;
5638 const struct cpumask
*span
= sched_domain_span(sd
);
5639 struct cpumask
*covered
= sched_domains_tmpmask
;
5640 struct sd_data
*sdd
= sd
->private;
5641 struct sched_domain
*child
;
5644 cpumask_clear(covered
);
5646 for_each_cpu(i
, span
) {
5647 struct cpumask
*sg_span
;
5649 if (cpumask_test_cpu(i
, covered
))
5652 child
= *per_cpu_ptr(sdd
->sd
, i
);
5654 /* See the comment near build_group_mask(). */
5655 if (!cpumask_test_cpu(i
, sched_domain_span(child
)))
5658 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
5659 GFP_KERNEL
, cpu_to_node(cpu
));
5664 sg_span
= sched_group_cpus(sg
);
5666 child
= child
->child
;
5667 cpumask_copy(sg_span
, sched_domain_span(child
));
5669 cpumask_set_cpu(i
, sg_span
);
5671 cpumask_or(covered
, covered
, sg_span
);
5673 sg
->sgp
= *per_cpu_ptr(sdd
->sgp
, i
);
5674 if (atomic_inc_return(&sg
->sgp
->ref
) == 1)
5675 build_group_mask(sd
, sg
);
5678 * Initialize sgp->power such that even if we mess up the
5679 * domains and no possible iteration will get us here, we won't
5682 sg
->sgp
->power
= SCHED_POWER_SCALE
* cpumask_weight(sg_span
);
5683 sg
->sgp
->power_orig
= sg
->sgp
->power
;
5686 * Make sure the first group of this domain contains the
5687 * canonical balance cpu. Otherwise the sched_domain iteration
5688 * breaks. See update_sg_lb_stats().
5690 if ((!groups
&& cpumask_test_cpu(cpu
, sg_span
)) ||
5691 group_balance_cpu(sg
) == cpu
)
5701 sd
->groups
= groups
;
5706 free_sched_groups(first
, 0);
5711 static int get_group(int cpu
, struct sd_data
*sdd
, struct sched_group
**sg
)
5713 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
5714 struct sched_domain
*child
= sd
->child
;
5717 cpu
= cpumask_first(sched_domain_span(child
));
5720 *sg
= *per_cpu_ptr(sdd
->sg
, cpu
);
5721 (*sg
)->sgp
= *per_cpu_ptr(sdd
->sgp
, cpu
);
5722 atomic_set(&(*sg
)->sgp
->ref
, 1); /* for claim_allocations */
5729 * build_sched_groups will build a circular linked list of the groups
5730 * covered by the given span, and will set each group's ->cpumask correctly,
5731 * and ->cpu_power to 0.
5733 * Assumes the sched_domain tree is fully constructed
5736 build_sched_groups(struct sched_domain
*sd
, int cpu
)
5738 struct sched_group
*first
= NULL
, *last
= NULL
;
5739 struct sd_data
*sdd
= sd
->private;
5740 const struct cpumask
*span
= sched_domain_span(sd
);
5741 struct cpumask
*covered
;
5744 get_group(cpu
, sdd
, &sd
->groups
);
5745 atomic_inc(&sd
->groups
->ref
);
5747 if (cpu
!= cpumask_first(span
))
5750 lockdep_assert_held(&sched_domains_mutex
);
5751 covered
= sched_domains_tmpmask
;
5753 cpumask_clear(covered
);
5755 for_each_cpu(i
, span
) {
5756 struct sched_group
*sg
;
5759 if (cpumask_test_cpu(i
, covered
))
5762 group
= get_group(i
, sdd
, &sg
);
5763 cpumask_clear(sched_group_cpus(sg
));
5765 cpumask_setall(sched_group_mask(sg
));
5767 for_each_cpu(j
, span
) {
5768 if (get_group(j
, sdd
, NULL
) != group
)
5771 cpumask_set_cpu(j
, covered
);
5772 cpumask_set_cpu(j
, sched_group_cpus(sg
));
5787 * Initialize sched groups cpu_power.
5789 * cpu_power indicates the capacity of sched group, which is used while
5790 * distributing the load between different sched groups in a sched domain.
5791 * Typically cpu_power for all the groups in a sched domain will be same unless
5792 * there are asymmetries in the topology. If there are asymmetries, group
5793 * having more cpu_power will pickup more load compared to the group having
5796 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
5798 struct sched_group
*sg
= sd
->groups
;
5803 sg
->group_weight
= cpumask_weight(sched_group_cpus(sg
));
5805 } while (sg
!= sd
->groups
);
5807 if (cpu
!= group_balance_cpu(sg
))
5810 update_group_power(sd
, cpu
);
5811 atomic_set(&sg
->sgp
->nr_busy_cpus
, sg
->group_weight
);
5814 int __weak
arch_sd_sibling_asym_packing(void)
5816 return 0*SD_ASYM_PACKING
;
5820 * Initializers for schedule domains
5821 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5824 #ifdef CONFIG_SCHED_DEBUG
5825 # define SD_INIT_NAME(sd, type) sd->name = #type
5827 # define SD_INIT_NAME(sd, type) do { } while (0)
5830 #define SD_INIT_FUNC(type) \
5831 static noinline struct sched_domain * \
5832 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5834 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5835 *sd = SD_##type##_INIT; \
5836 SD_INIT_NAME(sd, type); \
5837 sd->private = &tl->data; \
5842 #ifdef CONFIG_SCHED_SMT
5843 SD_INIT_FUNC(SIBLING
)
5845 #ifdef CONFIG_SCHED_MC
5848 #ifdef CONFIG_SCHED_BOOK
5852 static int default_relax_domain_level
= -1;
5853 int sched_domain_level_max
;
5855 static int __init
setup_relax_domain_level(char *str
)
5857 if (kstrtoint(str
, 0, &default_relax_domain_level
))
5858 pr_warn("Unable to set relax_domain_level\n");
5862 __setup("relax_domain_level=", setup_relax_domain_level
);
5864 static void set_domain_attribute(struct sched_domain
*sd
,
5865 struct sched_domain_attr
*attr
)
5869 if (!attr
|| attr
->relax_domain_level
< 0) {
5870 if (default_relax_domain_level
< 0)
5873 request
= default_relax_domain_level
;
5875 request
= attr
->relax_domain_level
;
5876 if (request
< sd
->level
) {
5877 /* turn off idle balance on this domain */
5878 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
5880 /* turn on idle balance on this domain */
5881 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
5885 static void __sdt_free(const struct cpumask
*cpu_map
);
5886 static int __sdt_alloc(const struct cpumask
*cpu_map
);
5888 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
5889 const struct cpumask
*cpu_map
)
5893 if (!atomic_read(&d
->rd
->refcount
))
5894 free_rootdomain(&d
->rd
->rcu
); /* fall through */
5896 free_percpu(d
->sd
); /* fall through */
5898 __sdt_free(cpu_map
); /* fall through */
5904 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
5905 const struct cpumask
*cpu_map
)
5907 memset(d
, 0, sizeof(*d
));
5909 if (__sdt_alloc(cpu_map
))
5910 return sa_sd_storage
;
5911 d
->sd
= alloc_percpu(struct sched_domain
*);
5913 return sa_sd_storage
;
5914 d
->rd
= alloc_rootdomain();
5917 return sa_rootdomain
;
5921 * NULL the sd_data elements we've used to build the sched_domain and
5922 * sched_group structure so that the subsequent __free_domain_allocs()
5923 * will not free the data we're using.
5925 static void claim_allocations(int cpu
, struct sched_domain
*sd
)
5927 struct sd_data
*sdd
= sd
->private;
5929 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sd
, cpu
) != sd
);
5930 *per_cpu_ptr(sdd
->sd
, cpu
) = NULL
;
5932 if (atomic_read(&(*per_cpu_ptr(sdd
->sg
, cpu
))->ref
))
5933 *per_cpu_ptr(sdd
->sg
, cpu
) = NULL
;
5935 if (atomic_read(&(*per_cpu_ptr(sdd
->sgp
, cpu
))->ref
))
5936 *per_cpu_ptr(sdd
->sgp
, cpu
) = NULL
;
5939 #ifdef CONFIG_SCHED_SMT
5940 static const struct cpumask
*cpu_smt_mask(int cpu
)
5942 return topology_thread_cpumask(cpu
);
5947 * Topology list, bottom-up.
5949 static struct sched_domain_topology_level default_topology
[] = {
5950 #ifdef CONFIG_SCHED_SMT
5951 { sd_init_SIBLING
, cpu_smt_mask
, },
5953 #ifdef CONFIG_SCHED_MC
5954 { sd_init_MC
, cpu_coregroup_mask
, },
5956 #ifdef CONFIG_SCHED_BOOK
5957 { sd_init_BOOK
, cpu_book_mask
, },
5959 { sd_init_CPU
, cpu_cpu_mask
, },
5963 static struct sched_domain_topology_level
*sched_domain_topology
= default_topology
;
5965 #define for_each_sd_topology(tl) \
5966 for (tl = sched_domain_topology; tl->init; tl++)
5970 static int sched_domains_numa_levels
;
5971 static int *sched_domains_numa_distance
;
5972 static struct cpumask
***sched_domains_numa_masks
;
5973 static int sched_domains_curr_level
;
5975 static inline int sd_local_flags(int level
)
5977 if (sched_domains_numa_distance
[level
] > RECLAIM_DISTANCE
)
5980 return SD_BALANCE_EXEC
| SD_BALANCE_FORK
| SD_WAKE_AFFINE
;
5983 static struct sched_domain
*
5984 sd_numa_init(struct sched_domain_topology_level
*tl
, int cpu
)
5986 struct sched_domain
*sd
= *per_cpu_ptr(tl
->data
.sd
, cpu
);
5987 int level
= tl
->numa_level
;
5988 int sd_weight
= cpumask_weight(
5989 sched_domains_numa_masks
[level
][cpu_to_node(cpu
)]);
5991 *sd
= (struct sched_domain
){
5992 .min_interval
= sd_weight
,
5993 .max_interval
= 2*sd_weight
,
5995 .imbalance_pct
= 125,
5996 .cache_nice_tries
= 2,
6003 .flags
= 1*SD_LOAD_BALANCE
6004 | 1*SD_BALANCE_NEWIDLE
6009 | 0*SD_SHARE_CPUPOWER
6010 | 0*SD_SHARE_PKG_RESOURCES
6012 | 0*SD_PREFER_SIBLING
6014 | sd_local_flags(level
)
6016 .last_balance
= jiffies
,
6017 .balance_interval
= sd_weight
,
6019 SD_INIT_NAME(sd
, NUMA
);
6020 sd
->private = &tl
->data
;
6023 * Ugly hack to pass state to sd_numa_mask()...
6025 sched_domains_curr_level
= tl
->numa_level
;
6030 static const struct cpumask
*sd_numa_mask(int cpu
)
6032 return sched_domains_numa_masks
[sched_domains_curr_level
][cpu_to_node(cpu
)];
6035 static void sched_numa_warn(const char *str
)
6037 static int done
= false;
6045 printk(KERN_WARNING
"ERROR: %s\n\n", str
);
6047 for (i
= 0; i
< nr_node_ids
; i
++) {
6048 printk(KERN_WARNING
" ");
6049 for (j
= 0; j
< nr_node_ids
; j
++)
6050 printk(KERN_CONT
"%02d ", node_distance(i
,j
));
6051 printk(KERN_CONT
"\n");
6053 printk(KERN_WARNING
"\n");
6056 static bool find_numa_distance(int distance
)
6060 if (distance
== node_distance(0, 0))
6063 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
6064 if (sched_domains_numa_distance
[i
] == distance
)
6071 static void sched_init_numa(void)
6073 int next_distance
, curr_distance
= node_distance(0, 0);
6074 struct sched_domain_topology_level
*tl
;
6078 sched_domains_numa_distance
= kzalloc(sizeof(int) * nr_node_ids
, GFP_KERNEL
);
6079 if (!sched_domains_numa_distance
)
6083 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6084 * unique distances in the node_distance() table.
6086 * Assumes node_distance(0,j) includes all distances in
6087 * node_distance(i,j) in order to avoid cubic time.
6089 next_distance
= curr_distance
;
6090 for (i
= 0; i
< nr_node_ids
; i
++) {
6091 for (j
= 0; j
< nr_node_ids
; j
++) {
6092 for (k
= 0; k
< nr_node_ids
; k
++) {
6093 int distance
= node_distance(i
, k
);
6095 if (distance
> curr_distance
&&
6096 (distance
< next_distance
||
6097 next_distance
== curr_distance
))
6098 next_distance
= distance
;
6101 * While not a strong assumption it would be nice to know
6102 * about cases where if node A is connected to B, B is not
6103 * equally connected to A.
6105 if (sched_debug() && node_distance(k
, i
) != distance
)
6106 sched_numa_warn("Node-distance not symmetric");
6108 if (sched_debug() && i
&& !find_numa_distance(distance
))
6109 sched_numa_warn("Node-0 not representative");
6111 if (next_distance
!= curr_distance
) {
6112 sched_domains_numa_distance
[level
++] = next_distance
;
6113 sched_domains_numa_levels
= level
;
6114 curr_distance
= next_distance
;
6119 * In case of sched_debug() we verify the above assumption.
6125 * 'level' contains the number of unique distances, excluding the
6126 * identity distance node_distance(i,i).
6128 * The sched_domains_numa_distance[] array includes the actual distance
6133 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6134 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6135 * the array will contain less then 'level' members. This could be
6136 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6137 * in other functions.
6139 * We reset it to 'level' at the end of this function.
6141 sched_domains_numa_levels
= 0;
6143 sched_domains_numa_masks
= kzalloc(sizeof(void *) * level
, GFP_KERNEL
);
6144 if (!sched_domains_numa_masks
)
6148 * Now for each level, construct a mask per node which contains all
6149 * cpus of nodes that are that many hops away from us.
6151 for (i
= 0; i
< level
; i
++) {
6152 sched_domains_numa_masks
[i
] =
6153 kzalloc(nr_node_ids
* sizeof(void *), GFP_KERNEL
);
6154 if (!sched_domains_numa_masks
[i
])
6157 for (j
= 0; j
< nr_node_ids
; j
++) {
6158 struct cpumask
*mask
= kzalloc(cpumask_size(), GFP_KERNEL
);
6162 sched_domains_numa_masks
[i
][j
] = mask
;
6164 for (k
= 0; k
< nr_node_ids
; k
++) {
6165 if (node_distance(j
, k
) > sched_domains_numa_distance
[i
])
6168 cpumask_or(mask
, mask
, cpumask_of_node(k
));
6173 tl
= kzalloc((ARRAY_SIZE(default_topology
) + level
) *
6174 sizeof(struct sched_domain_topology_level
), GFP_KERNEL
);
6179 * Copy the default topology bits..
6181 for (i
= 0; default_topology
[i
].init
; i
++)
6182 tl
[i
] = default_topology
[i
];
6185 * .. and append 'j' levels of NUMA goodness.
6187 for (j
= 0; j
< level
; i
++, j
++) {
6188 tl
[i
] = (struct sched_domain_topology_level
){
6189 .init
= sd_numa_init
,
6190 .mask
= sd_numa_mask
,
6191 .flags
= SDTL_OVERLAP
,
6196 sched_domain_topology
= tl
;
6198 sched_domains_numa_levels
= level
;
6201 static void sched_domains_numa_masks_set(int cpu
)
6204 int node
= cpu_to_node(cpu
);
6206 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
6207 for (j
= 0; j
< nr_node_ids
; j
++) {
6208 if (node_distance(j
, node
) <= sched_domains_numa_distance
[i
])
6209 cpumask_set_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
6214 static void sched_domains_numa_masks_clear(int cpu
)
6217 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
6218 for (j
= 0; j
< nr_node_ids
; j
++)
6219 cpumask_clear_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
6224 * Update sched_domains_numa_masks[level][node] array when new cpus
6227 static int sched_domains_numa_masks_update(struct notifier_block
*nfb
,
6228 unsigned long action
,
6231 int cpu
= (long)hcpu
;
6233 switch (action
& ~CPU_TASKS_FROZEN
) {
6235 sched_domains_numa_masks_set(cpu
);
6239 sched_domains_numa_masks_clear(cpu
);
6249 static inline void sched_init_numa(void)
6253 static int sched_domains_numa_masks_update(struct notifier_block
*nfb
,
6254 unsigned long action
,
6259 #endif /* CONFIG_NUMA */
6261 static int __sdt_alloc(const struct cpumask
*cpu_map
)
6263 struct sched_domain_topology_level
*tl
;
6266 for_each_sd_topology(tl
) {
6267 struct sd_data
*sdd
= &tl
->data
;
6269 sdd
->sd
= alloc_percpu(struct sched_domain
*);
6273 sdd
->sg
= alloc_percpu(struct sched_group
*);
6277 sdd
->sgp
= alloc_percpu(struct sched_group_power
*);
6281 for_each_cpu(j
, cpu_map
) {
6282 struct sched_domain
*sd
;
6283 struct sched_group
*sg
;
6284 struct sched_group_power
*sgp
;
6286 sd
= kzalloc_node(sizeof(struct sched_domain
) + cpumask_size(),
6287 GFP_KERNEL
, cpu_to_node(j
));
6291 *per_cpu_ptr(sdd
->sd
, j
) = sd
;
6293 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6294 GFP_KERNEL
, cpu_to_node(j
));
6300 *per_cpu_ptr(sdd
->sg
, j
) = sg
;
6302 sgp
= kzalloc_node(sizeof(struct sched_group_power
) + cpumask_size(),
6303 GFP_KERNEL
, cpu_to_node(j
));
6307 *per_cpu_ptr(sdd
->sgp
, j
) = sgp
;
6314 static void __sdt_free(const struct cpumask
*cpu_map
)
6316 struct sched_domain_topology_level
*tl
;
6319 for_each_sd_topology(tl
) {
6320 struct sd_data
*sdd
= &tl
->data
;
6322 for_each_cpu(j
, cpu_map
) {
6323 struct sched_domain
*sd
;
6326 sd
= *per_cpu_ptr(sdd
->sd
, j
);
6327 if (sd
&& (sd
->flags
& SD_OVERLAP
))
6328 free_sched_groups(sd
->groups
, 0);
6329 kfree(*per_cpu_ptr(sdd
->sd
, j
));
6333 kfree(*per_cpu_ptr(sdd
->sg
, j
));
6335 kfree(*per_cpu_ptr(sdd
->sgp
, j
));
6337 free_percpu(sdd
->sd
);
6339 free_percpu(sdd
->sg
);
6341 free_percpu(sdd
->sgp
);
6346 struct sched_domain
*build_sched_domain(struct sched_domain_topology_level
*tl
,
6347 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
6348 struct sched_domain
*child
, int cpu
)
6350 struct sched_domain
*sd
= tl
->init(tl
, cpu
);
6354 cpumask_and(sched_domain_span(sd
), cpu_map
, tl
->mask(cpu
));
6356 sd
->level
= child
->level
+ 1;
6357 sched_domain_level_max
= max(sched_domain_level_max
, sd
->level
);
6361 set_domain_attribute(sd
, attr
);
6367 * Build sched domains for a given set of cpus and attach the sched domains
6368 * to the individual cpus
6370 static int build_sched_domains(const struct cpumask
*cpu_map
,
6371 struct sched_domain_attr
*attr
)
6373 enum s_alloc alloc_state
;
6374 struct sched_domain
*sd
;
6376 int i
, ret
= -ENOMEM
;
6378 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
6379 if (alloc_state
!= sa_rootdomain
)
6382 /* Set up domains for cpus specified by the cpu_map. */
6383 for_each_cpu(i
, cpu_map
) {
6384 struct sched_domain_topology_level
*tl
;
6387 for_each_sd_topology(tl
) {
6388 sd
= build_sched_domain(tl
, cpu_map
, attr
, sd
, i
);
6389 if (tl
== sched_domain_topology
)
6390 *per_cpu_ptr(d
.sd
, i
) = sd
;
6391 if (tl
->flags
& SDTL_OVERLAP
|| sched_feat(FORCE_SD_OVERLAP
))
6392 sd
->flags
|= SD_OVERLAP
;
6393 if (cpumask_equal(cpu_map
, sched_domain_span(sd
)))
6398 /* Build the groups for the domains */
6399 for_each_cpu(i
, cpu_map
) {
6400 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
6401 sd
->span_weight
= cpumask_weight(sched_domain_span(sd
));
6402 if (sd
->flags
& SD_OVERLAP
) {
6403 if (build_overlap_sched_groups(sd
, i
))
6406 if (build_sched_groups(sd
, i
))
6412 /* Calculate CPU power for physical packages and nodes */
6413 for (i
= nr_cpumask_bits
-1; i
>= 0; i
--) {
6414 if (!cpumask_test_cpu(i
, cpu_map
))
6417 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
6418 claim_allocations(i
, sd
);
6419 init_sched_groups_power(i
, sd
);
6423 /* Attach the domains */
6425 for_each_cpu(i
, cpu_map
) {
6426 sd
= *per_cpu_ptr(d
.sd
, i
);
6427 cpu_attach_domain(sd
, d
.rd
, i
);
6433 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
6437 static cpumask_var_t
*doms_cur
; /* current sched domains */
6438 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
6439 static struct sched_domain_attr
*dattr_cur
;
6440 /* attribues of custom domains in 'doms_cur' */
6443 * Special case: If a kmalloc of a doms_cur partition (array of
6444 * cpumask) fails, then fallback to a single sched domain,
6445 * as determined by the single cpumask fallback_doms.
6447 static cpumask_var_t fallback_doms
;
6450 * arch_update_cpu_topology lets virtualized architectures update the
6451 * cpu core maps. It is supposed to return 1 if the topology changed
6452 * or 0 if it stayed the same.
6454 int __attribute__((weak
)) arch_update_cpu_topology(void)
6459 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
6462 cpumask_var_t
*doms
;
6464 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
6467 for (i
= 0; i
< ndoms
; i
++) {
6468 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
6469 free_sched_domains(doms
, i
);
6476 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
6479 for (i
= 0; i
< ndoms
; i
++)
6480 free_cpumask_var(doms
[i
]);
6485 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6486 * For now this just excludes isolated cpus, but could be used to
6487 * exclude other special cases in the future.
6489 static int init_sched_domains(const struct cpumask
*cpu_map
)
6493 arch_update_cpu_topology();
6495 doms_cur
= alloc_sched_domains(ndoms_cur
);
6497 doms_cur
= &fallback_doms
;
6498 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
6499 err
= build_sched_domains(doms_cur
[0], NULL
);
6500 register_sched_domain_sysctl();
6506 * Detach sched domains from a group of cpus specified in cpu_map
6507 * These cpus will now be attached to the NULL domain
6509 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
6514 for_each_cpu(i
, cpu_map
)
6515 cpu_attach_domain(NULL
, &def_root_domain
, i
);
6519 /* handle null as "default" */
6520 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
6521 struct sched_domain_attr
*new, int idx_new
)
6523 struct sched_domain_attr tmp
;
6530 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
6531 new ? (new + idx_new
) : &tmp
,
6532 sizeof(struct sched_domain_attr
));
6536 * Partition sched domains as specified by the 'ndoms_new'
6537 * cpumasks in the array doms_new[] of cpumasks. This compares
6538 * doms_new[] to the current sched domain partitioning, doms_cur[].
6539 * It destroys each deleted domain and builds each new domain.
6541 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6542 * The masks don't intersect (don't overlap.) We should setup one
6543 * sched domain for each mask. CPUs not in any of the cpumasks will
6544 * not be load balanced. If the same cpumask appears both in the
6545 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6548 * The passed in 'doms_new' should be allocated using
6549 * alloc_sched_domains. This routine takes ownership of it and will
6550 * free_sched_domains it when done with it. If the caller failed the
6551 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6552 * and partition_sched_domains() will fallback to the single partition
6553 * 'fallback_doms', it also forces the domains to be rebuilt.
6555 * If doms_new == NULL it will be replaced with cpu_online_mask.
6556 * ndoms_new == 0 is a special case for destroying existing domains,
6557 * and it will not create the default domain.
6559 * Call with hotplug lock held
6561 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
6562 struct sched_domain_attr
*dattr_new
)
6567 mutex_lock(&sched_domains_mutex
);
6569 /* always unregister in case we don't destroy any domains */
6570 unregister_sched_domain_sysctl();
6572 /* Let architecture update cpu core mappings. */
6573 new_topology
= arch_update_cpu_topology();
6575 n
= doms_new
? ndoms_new
: 0;
6577 /* Destroy deleted domains */
6578 for (i
= 0; i
< ndoms_cur
; i
++) {
6579 for (j
= 0; j
< n
&& !new_topology
; j
++) {
6580 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
6581 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
6584 /* no match - a current sched domain not in new doms_new[] */
6585 detach_destroy_domains(doms_cur
[i
]);
6591 if (doms_new
== NULL
) {
6593 doms_new
= &fallback_doms
;
6594 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
6595 WARN_ON_ONCE(dattr_new
);
6598 /* Build new domains */
6599 for (i
= 0; i
< ndoms_new
; i
++) {
6600 for (j
= 0; j
< n
&& !new_topology
; j
++) {
6601 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
6602 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
6605 /* no match - add a new doms_new */
6606 build_sched_domains(doms_new
[i
], dattr_new
? dattr_new
+ i
: NULL
);
6611 /* Remember the new sched domains */
6612 if (doms_cur
!= &fallback_doms
)
6613 free_sched_domains(doms_cur
, ndoms_cur
);
6614 kfree(dattr_cur
); /* kfree(NULL) is safe */
6615 doms_cur
= doms_new
;
6616 dattr_cur
= dattr_new
;
6617 ndoms_cur
= ndoms_new
;
6619 register_sched_domain_sysctl();
6621 mutex_unlock(&sched_domains_mutex
);
6624 static int num_cpus_frozen
; /* used to mark begin/end of suspend/resume */
6627 * Update cpusets according to cpu_active mask. If cpusets are
6628 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6629 * around partition_sched_domains().
6631 * If we come here as part of a suspend/resume, don't touch cpusets because we
6632 * want to restore it back to its original state upon resume anyway.
6634 static int cpuset_cpu_active(struct notifier_block
*nfb
, unsigned long action
,
6638 case CPU_ONLINE_FROZEN
:
6639 case CPU_DOWN_FAILED_FROZEN
:
6642 * num_cpus_frozen tracks how many CPUs are involved in suspend
6643 * resume sequence. As long as this is not the last online
6644 * operation in the resume sequence, just build a single sched
6645 * domain, ignoring cpusets.
6648 if (likely(num_cpus_frozen
)) {
6649 partition_sched_domains(1, NULL
, NULL
);
6654 * This is the last CPU online operation. So fall through and
6655 * restore the original sched domains by considering the
6656 * cpuset configurations.
6660 case CPU_DOWN_FAILED
:
6661 cpuset_update_active_cpus(true);
6669 static int cpuset_cpu_inactive(struct notifier_block
*nfb
, unsigned long action
,
6673 case CPU_DOWN_PREPARE
:
6674 cpuset_update_active_cpus(false);
6676 case CPU_DOWN_PREPARE_FROZEN
:
6678 partition_sched_domains(1, NULL
, NULL
);
6686 void __init
sched_init_smp(void)
6688 cpumask_var_t non_isolated_cpus
;
6690 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
6691 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
6696 * There's no userspace yet to cause hotplug operations; hence all the
6697 * cpu masks are stable and all blatant races in the below code cannot
6700 mutex_lock(&sched_domains_mutex
);
6701 init_sched_domains(cpu_active_mask
);
6702 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
6703 if (cpumask_empty(non_isolated_cpus
))
6704 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
6705 mutex_unlock(&sched_domains_mutex
);
6707 hotcpu_notifier(sched_domains_numa_masks_update
, CPU_PRI_SCHED_ACTIVE
);
6708 hotcpu_notifier(cpuset_cpu_active
, CPU_PRI_CPUSET_ACTIVE
);
6709 hotcpu_notifier(cpuset_cpu_inactive
, CPU_PRI_CPUSET_INACTIVE
);
6713 /* Move init over to a non-isolated CPU */
6714 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
6716 sched_init_granularity();
6717 free_cpumask_var(non_isolated_cpus
);
6719 init_sched_rt_class();
6720 init_sched_dl_class();
6723 void __init
sched_init_smp(void)
6725 sched_init_granularity();
6727 #endif /* CONFIG_SMP */
6729 const_debug
unsigned int sysctl_timer_migration
= 1;
6731 int in_sched_functions(unsigned long addr
)
6733 return in_lock_functions(addr
) ||
6734 (addr
>= (unsigned long)__sched_text_start
6735 && addr
< (unsigned long)__sched_text_end
);
6738 #ifdef CONFIG_CGROUP_SCHED
6740 * Default task group.
6741 * Every task in system belongs to this group at bootup.
6743 struct task_group root_task_group
;
6744 LIST_HEAD(task_groups
);
6747 DECLARE_PER_CPU(cpumask_var_t
, load_balance_mask
);
6749 void __init
sched_init(void)
6752 unsigned long alloc_size
= 0, ptr
;
6754 #ifdef CONFIG_FAIR_GROUP_SCHED
6755 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
6757 #ifdef CONFIG_RT_GROUP_SCHED
6758 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
6760 #ifdef CONFIG_CPUMASK_OFFSTACK
6761 alloc_size
+= num_possible_cpus() * cpumask_size();
6764 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
6766 #ifdef CONFIG_FAIR_GROUP_SCHED
6767 root_task_group
.se
= (struct sched_entity
**)ptr
;
6768 ptr
+= nr_cpu_ids
* sizeof(void **);
6770 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
6771 ptr
+= nr_cpu_ids
* sizeof(void **);
6773 #endif /* CONFIG_FAIR_GROUP_SCHED */
6774 #ifdef CONFIG_RT_GROUP_SCHED
6775 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
6776 ptr
+= nr_cpu_ids
* sizeof(void **);
6778 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
6779 ptr
+= nr_cpu_ids
* sizeof(void **);
6781 #endif /* CONFIG_RT_GROUP_SCHED */
6782 #ifdef CONFIG_CPUMASK_OFFSTACK
6783 for_each_possible_cpu(i
) {
6784 per_cpu(load_balance_mask
, i
) = (void *)ptr
;
6785 ptr
+= cpumask_size();
6787 #endif /* CONFIG_CPUMASK_OFFSTACK */
6790 init_rt_bandwidth(&def_rt_bandwidth
,
6791 global_rt_period(), global_rt_runtime());
6792 init_dl_bandwidth(&def_dl_bandwidth
,
6793 global_rt_period(), global_rt_runtime());
6796 init_defrootdomain();
6799 #ifdef CONFIG_RT_GROUP_SCHED
6800 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
6801 global_rt_period(), global_rt_runtime());
6802 #endif /* CONFIG_RT_GROUP_SCHED */
6804 #ifdef CONFIG_CGROUP_SCHED
6805 list_add(&root_task_group
.list
, &task_groups
);
6806 INIT_LIST_HEAD(&root_task_group
.children
);
6807 INIT_LIST_HEAD(&root_task_group
.siblings
);
6808 autogroup_init(&init_task
);
6810 #endif /* CONFIG_CGROUP_SCHED */
6812 for_each_possible_cpu(i
) {
6816 raw_spin_lock_init(&rq
->lock
);
6818 rq
->calc_load_active
= 0;
6819 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
6820 init_cfs_rq(&rq
->cfs
);
6821 init_rt_rq(&rq
->rt
, rq
);
6822 init_dl_rq(&rq
->dl
, rq
);
6823 #ifdef CONFIG_FAIR_GROUP_SCHED
6824 root_task_group
.shares
= ROOT_TASK_GROUP_LOAD
;
6825 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
6827 * How much cpu bandwidth does root_task_group get?
6829 * In case of task-groups formed thr' the cgroup filesystem, it
6830 * gets 100% of the cpu resources in the system. This overall
6831 * system cpu resource is divided among the tasks of
6832 * root_task_group and its child task-groups in a fair manner,
6833 * based on each entity's (task or task-group's) weight
6834 * (se->load.weight).
6836 * In other words, if root_task_group has 10 tasks of weight
6837 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6838 * then A0's share of the cpu resource is:
6840 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6842 * We achieve this by letting root_task_group's tasks sit
6843 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6845 init_cfs_bandwidth(&root_task_group
.cfs_bandwidth
);
6846 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
6847 #endif /* CONFIG_FAIR_GROUP_SCHED */
6849 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
6850 #ifdef CONFIG_RT_GROUP_SCHED
6851 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
6852 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
6855 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
6856 rq
->cpu_load
[j
] = 0;
6858 rq
->last_load_update_tick
= jiffies
;
6863 rq
->cpu_power
= SCHED_POWER_SCALE
;
6864 rq
->post_schedule
= 0;
6865 rq
->active_balance
= 0;
6866 rq
->next_balance
= jiffies
;
6871 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
6872 rq
->max_idle_balance_cost
= sysctl_sched_migration_cost
;
6874 INIT_LIST_HEAD(&rq
->cfs_tasks
);
6876 rq_attach_root(rq
, &def_root_domain
);
6877 #ifdef CONFIG_NO_HZ_COMMON
6880 #ifdef CONFIG_NO_HZ_FULL
6881 rq
->last_sched_tick
= 0;
6885 atomic_set(&rq
->nr_iowait
, 0);
6888 set_load_weight(&init_task
);
6890 #ifdef CONFIG_PREEMPT_NOTIFIERS
6891 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
6895 * The boot idle thread does lazy MMU switching as well:
6897 atomic_inc(&init_mm
.mm_count
);
6898 enter_lazy_tlb(&init_mm
, current
);
6901 * Make us the idle thread. Technically, schedule() should not be
6902 * called from this thread, however somewhere below it might be,
6903 * but because we are the idle thread, we just pick up running again
6904 * when this runqueue becomes "idle".
6906 init_idle(current
, smp_processor_id());
6908 calc_load_update
= jiffies
+ LOAD_FREQ
;
6911 * During early bootup we pretend to be a normal task:
6913 current
->sched_class
= &fair_sched_class
;
6916 zalloc_cpumask_var(&sched_domains_tmpmask
, GFP_NOWAIT
);
6917 /* May be allocated at isolcpus cmdline parse time */
6918 if (cpu_isolated_map
== NULL
)
6919 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
6920 idle_thread_set_boot_cpu();
6922 init_sched_fair_class();
6924 scheduler_running
= 1;
6927 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6928 static inline int preempt_count_equals(int preempt_offset
)
6930 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
6932 return (nested
== preempt_offset
);
6935 void __might_sleep(const char *file
, int line
, int preempt_offset
)
6937 static unsigned long prev_jiffy
; /* ratelimiting */
6939 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6940 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
6941 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
6943 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6945 prev_jiffy
= jiffies
;
6948 "BUG: sleeping function called from invalid context at %s:%d\n",
6951 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6952 in_atomic(), irqs_disabled(),
6953 current
->pid
, current
->comm
);
6955 debug_show_held_locks(current
);
6956 if (irqs_disabled())
6957 print_irqtrace_events(current
);
6960 EXPORT_SYMBOL(__might_sleep
);
6963 #ifdef CONFIG_MAGIC_SYSRQ
6964 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
6966 const struct sched_class
*prev_class
= p
->sched_class
;
6967 struct sched_attr attr
= {
6968 .sched_policy
= SCHED_NORMAL
,
6970 int old_prio
= p
->prio
;
6975 dequeue_task(rq
, p
, 0);
6976 __setscheduler(rq
, p
, &attr
);
6978 enqueue_task(rq
, p
, 0);
6979 resched_task(rq
->curr
);
6982 check_class_changed(rq
, p
, prev_class
, old_prio
);
6985 void normalize_rt_tasks(void)
6987 struct task_struct
*g
, *p
;
6988 unsigned long flags
;
6991 read_lock_irqsave(&tasklist_lock
, flags
);
6992 do_each_thread(g
, p
) {
6994 * Only normalize user tasks:
6999 p
->se
.exec_start
= 0;
7000 #ifdef CONFIG_SCHEDSTATS
7001 p
->se
.statistics
.wait_start
= 0;
7002 p
->se
.statistics
.sleep_start
= 0;
7003 p
->se
.statistics
.block_start
= 0;
7006 if (!dl_task(p
) && !rt_task(p
)) {
7008 * Renice negative nice level userspace
7011 if (TASK_NICE(p
) < 0 && p
->mm
)
7012 set_user_nice(p
, 0);
7016 raw_spin_lock(&p
->pi_lock
);
7017 rq
= __task_rq_lock(p
);
7019 normalize_task(rq
, p
);
7021 __task_rq_unlock(rq
);
7022 raw_spin_unlock(&p
->pi_lock
);
7023 } while_each_thread(g
, p
);
7025 read_unlock_irqrestore(&tasklist_lock
, flags
);
7028 #endif /* CONFIG_MAGIC_SYSRQ */
7030 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7032 * These functions are only useful for the IA64 MCA handling, or kdb.
7034 * They can only be called when the whole system has been
7035 * stopped - every CPU needs to be quiescent, and no scheduling
7036 * activity can take place. Using them for anything else would
7037 * be a serious bug, and as a result, they aren't even visible
7038 * under any other configuration.
7042 * curr_task - return the current task for a given cpu.
7043 * @cpu: the processor in question.
7045 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7047 * Return: The current task for @cpu.
7049 struct task_struct
*curr_task(int cpu
)
7051 return cpu_curr(cpu
);
7054 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7058 * set_curr_task - set the current task for a given cpu.
7059 * @cpu: the processor in question.
7060 * @p: the task pointer to set.
7062 * Description: This function must only be used when non-maskable interrupts
7063 * are serviced on a separate stack. It allows the architecture to switch the
7064 * notion of the current task on a cpu in a non-blocking manner. This function
7065 * must be called with all CPU's synchronized, and interrupts disabled, the
7066 * and caller must save the original value of the current task (see
7067 * curr_task() above) and restore that value before reenabling interrupts and
7068 * re-starting the system.
7070 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7072 void set_curr_task(int cpu
, struct task_struct
*p
)
7079 #ifdef CONFIG_CGROUP_SCHED
7080 /* task_group_lock serializes the addition/removal of task groups */
7081 static DEFINE_SPINLOCK(task_group_lock
);
7083 static void free_sched_group(struct task_group
*tg
)
7085 free_fair_sched_group(tg
);
7086 free_rt_sched_group(tg
);
7091 /* allocate runqueue etc for a new task group */
7092 struct task_group
*sched_create_group(struct task_group
*parent
)
7094 struct task_group
*tg
;
7096 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
7098 return ERR_PTR(-ENOMEM
);
7100 if (!alloc_fair_sched_group(tg
, parent
))
7103 if (!alloc_rt_sched_group(tg
, parent
))
7109 free_sched_group(tg
);
7110 return ERR_PTR(-ENOMEM
);
7113 void sched_online_group(struct task_group
*tg
, struct task_group
*parent
)
7115 unsigned long flags
;
7117 spin_lock_irqsave(&task_group_lock
, flags
);
7118 list_add_rcu(&tg
->list
, &task_groups
);
7120 WARN_ON(!parent
); /* root should already exist */
7122 tg
->parent
= parent
;
7123 INIT_LIST_HEAD(&tg
->children
);
7124 list_add_rcu(&tg
->siblings
, &parent
->children
);
7125 spin_unlock_irqrestore(&task_group_lock
, flags
);
7128 /* rcu callback to free various structures associated with a task group */
7129 static void free_sched_group_rcu(struct rcu_head
*rhp
)
7131 /* now it should be safe to free those cfs_rqs */
7132 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
7135 /* Destroy runqueue etc associated with a task group */
7136 void sched_destroy_group(struct task_group
*tg
)
7138 /* wait for possible concurrent references to cfs_rqs complete */
7139 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
7142 void sched_offline_group(struct task_group
*tg
)
7144 unsigned long flags
;
7147 /* end participation in shares distribution */
7148 for_each_possible_cpu(i
)
7149 unregister_fair_sched_group(tg
, i
);
7151 spin_lock_irqsave(&task_group_lock
, flags
);
7152 list_del_rcu(&tg
->list
);
7153 list_del_rcu(&tg
->siblings
);
7154 spin_unlock_irqrestore(&task_group_lock
, flags
);
7157 /* change task's runqueue when it moves between groups.
7158 * The caller of this function should have put the task in its new group
7159 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7160 * reflect its new group.
7162 void sched_move_task(struct task_struct
*tsk
)
7164 struct task_group
*tg
;
7166 unsigned long flags
;
7169 rq
= task_rq_lock(tsk
, &flags
);
7171 running
= task_current(rq
, tsk
);
7175 dequeue_task(rq
, tsk
, 0);
7176 if (unlikely(running
))
7177 tsk
->sched_class
->put_prev_task(rq
, tsk
);
7179 tg
= container_of(task_css_check(tsk
, cpu_cgroup_subsys_id
,
7180 lockdep_is_held(&tsk
->sighand
->siglock
)),
7181 struct task_group
, css
);
7182 tg
= autogroup_task_group(tsk
, tg
);
7183 tsk
->sched_task_group
= tg
;
7185 #ifdef CONFIG_FAIR_GROUP_SCHED
7186 if (tsk
->sched_class
->task_move_group
)
7187 tsk
->sched_class
->task_move_group(tsk
, on_rq
);
7190 set_task_rq(tsk
, task_cpu(tsk
));
7192 if (unlikely(running
))
7193 tsk
->sched_class
->set_curr_task(rq
);
7195 enqueue_task(rq
, tsk
, 0);
7197 task_rq_unlock(rq
, tsk
, &flags
);
7199 #endif /* CONFIG_CGROUP_SCHED */
7201 #ifdef CONFIG_RT_GROUP_SCHED
7203 * Ensure that the real time constraints are schedulable.
7205 static DEFINE_MUTEX(rt_constraints_mutex
);
7207 /* Must be called with tasklist_lock held */
7208 static inline int tg_has_rt_tasks(struct task_group
*tg
)
7210 struct task_struct
*g
, *p
;
7212 do_each_thread(g
, p
) {
7213 if (rt_task(p
) && task_rq(p
)->rt
.tg
== tg
)
7215 } while_each_thread(g
, p
);
7220 struct rt_schedulable_data
{
7221 struct task_group
*tg
;
7226 static int tg_rt_schedulable(struct task_group
*tg
, void *data
)
7228 struct rt_schedulable_data
*d
= data
;
7229 struct task_group
*child
;
7230 unsigned long total
, sum
= 0;
7231 u64 period
, runtime
;
7233 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
7234 runtime
= tg
->rt_bandwidth
.rt_runtime
;
7237 period
= d
->rt_period
;
7238 runtime
= d
->rt_runtime
;
7242 * Cannot have more runtime than the period.
7244 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
7248 * Ensure we don't starve existing RT tasks.
7250 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
7253 total
= to_ratio(period
, runtime
);
7256 * Nobody can have more than the global setting allows.
7258 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
7262 * The sum of our children's runtime should not exceed our own.
7264 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
7265 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
7266 runtime
= child
->rt_bandwidth
.rt_runtime
;
7268 if (child
== d
->tg
) {
7269 period
= d
->rt_period
;
7270 runtime
= d
->rt_runtime
;
7273 sum
+= to_ratio(period
, runtime
);
7282 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
7286 struct rt_schedulable_data data
= {
7288 .rt_period
= period
,
7289 .rt_runtime
= runtime
,
7293 ret
= walk_tg_tree(tg_rt_schedulable
, tg_nop
, &data
);
7299 static int tg_set_rt_bandwidth(struct task_group
*tg
,
7300 u64 rt_period
, u64 rt_runtime
)
7304 mutex_lock(&rt_constraints_mutex
);
7305 read_lock(&tasklist_lock
);
7306 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
7310 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
7311 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
7312 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
7314 for_each_possible_cpu(i
) {
7315 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
7317 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
7318 rt_rq
->rt_runtime
= rt_runtime
;
7319 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
7321 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
7323 read_unlock(&tasklist_lock
);
7324 mutex_unlock(&rt_constraints_mutex
);
7329 static int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
7331 u64 rt_runtime
, rt_period
;
7333 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
7334 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
7335 if (rt_runtime_us
< 0)
7336 rt_runtime
= RUNTIME_INF
;
7338 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
7341 static long sched_group_rt_runtime(struct task_group
*tg
)
7345 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
7348 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
7349 do_div(rt_runtime_us
, NSEC_PER_USEC
);
7350 return rt_runtime_us
;
7353 static int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
7355 u64 rt_runtime
, rt_period
;
7357 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
7358 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7363 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
7366 static long sched_group_rt_period(struct task_group
*tg
)
7370 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
7371 do_div(rt_period_us
, NSEC_PER_USEC
);
7372 return rt_period_us
;
7374 #endif /* CONFIG_RT_GROUP_SCHED */
7376 #ifdef CONFIG_RT_GROUP_SCHED
7377 static int sched_rt_global_constraints(void)
7381 mutex_lock(&rt_constraints_mutex
);
7382 read_lock(&tasklist_lock
);
7383 ret
= __rt_schedulable(NULL
, 0, 0);
7384 read_unlock(&tasklist_lock
);
7385 mutex_unlock(&rt_constraints_mutex
);
7390 static int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
7392 /* Don't accept realtime tasks when there is no way for them to run */
7393 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
7399 #else /* !CONFIG_RT_GROUP_SCHED */
7400 static int sched_rt_global_constraints(void)
7402 unsigned long flags
;
7405 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
7406 for_each_possible_cpu(i
) {
7407 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
7409 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
7410 rt_rq
->rt_runtime
= global_rt_runtime();
7411 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
7413 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
7417 #endif /* CONFIG_RT_GROUP_SCHED */
7419 static int sched_dl_global_constraints(void)
7421 u64 runtime
= global_rt_runtime();
7422 u64 period
= global_rt_period();
7423 u64 new_bw
= to_ratio(period
, runtime
);
7427 * Here we want to check the bandwidth not being set to some
7428 * value smaller than the currently allocated bandwidth in
7429 * any of the root_domains.
7431 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7432 * cycling on root_domains... Discussion on different/better
7433 * solutions is welcome!
7435 for_each_possible_cpu(cpu
) {
7436 struct dl_bw
*dl_b
= dl_bw_of(cpu
);
7438 raw_spin_lock(&dl_b
->lock
);
7439 if (new_bw
< dl_b
->total_bw
)
7441 raw_spin_unlock(&dl_b
->lock
);
7450 static void sched_dl_do_global(void)
7455 def_dl_bandwidth
.dl_period
= global_rt_period();
7456 def_dl_bandwidth
.dl_runtime
= global_rt_runtime();
7458 if (global_rt_runtime() != RUNTIME_INF
)
7459 new_bw
= to_ratio(global_rt_period(), global_rt_runtime());
7462 * FIXME: As above...
7464 for_each_possible_cpu(cpu
) {
7465 struct dl_bw
*dl_b
= dl_bw_of(cpu
);
7467 raw_spin_lock(&dl_b
->lock
);
7469 raw_spin_unlock(&dl_b
->lock
);
7473 static int sched_rt_global_validate(void)
7475 if (sysctl_sched_rt_period
<= 0)
7478 if (sysctl_sched_rt_runtime
> sysctl_sched_rt_period
)
7484 static void sched_rt_do_global(void)
7486 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
7487 def_rt_bandwidth
.rt_period
= ns_to_ktime(global_rt_period());
7490 int sched_rt_handler(struct ctl_table
*table
, int write
,
7491 void __user
*buffer
, size_t *lenp
,
7494 int old_period
, old_runtime
;
7495 static DEFINE_MUTEX(mutex
);
7499 old_period
= sysctl_sched_rt_period
;
7500 old_runtime
= sysctl_sched_rt_runtime
;
7502 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
7504 if (!ret
&& write
) {
7505 ret
= sched_rt_global_validate();
7509 ret
= sched_rt_global_constraints();
7513 ret
= sched_dl_global_constraints();
7517 sched_rt_do_global();
7518 sched_dl_do_global();
7522 sysctl_sched_rt_period
= old_period
;
7523 sysctl_sched_rt_runtime
= old_runtime
;
7525 mutex_unlock(&mutex
);
7530 int sched_rr_handler(struct ctl_table
*table
, int write
,
7531 void __user
*buffer
, size_t *lenp
,
7535 static DEFINE_MUTEX(mutex
);
7538 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
7539 /* make sure that internally we keep jiffies */
7540 /* also, writing zero resets timeslice to default */
7541 if (!ret
&& write
) {
7542 sched_rr_timeslice
= sched_rr_timeslice
<= 0 ?
7543 RR_TIMESLICE
: msecs_to_jiffies(sched_rr_timeslice
);
7545 mutex_unlock(&mutex
);
7549 #ifdef CONFIG_CGROUP_SCHED
7551 static inline struct task_group
*css_tg(struct cgroup_subsys_state
*css
)
7553 return css
? container_of(css
, struct task_group
, css
) : NULL
;
7556 static struct cgroup_subsys_state
*
7557 cpu_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
7559 struct task_group
*parent
= css_tg(parent_css
);
7560 struct task_group
*tg
;
7563 /* This is early initialization for the top cgroup */
7564 return &root_task_group
.css
;
7567 tg
= sched_create_group(parent
);
7569 return ERR_PTR(-ENOMEM
);
7574 static int cpu_cgroup_css_online(struct cgroup_subsys_state
*css
)
7576 struct task_group
*tg
= css_tg(css
);
7577 struct task_group
*parent
= css_tg(css_parent(css
));
7580 sched_online_group(tg
, parent
);
7584 static void cpu_cgroup_css_free(struct cgroup_subsys_state
*css
)
7586 struct task_group
*tg
= css_tg(css
);
7588 sched_destroy_group(tg
);
7591 static void cpu_cgroup_css_offline(struct cgroup_subsys_state
*css
)
7593 struct task_group
*tg
= css_tg(css
);
7595 sched_offline_group(tg
);
7598 static int cpu_cgroup_can_attach(struct cgroup_subsys_state
*css
,
7599 struct cgroup_taskset
*tset
)
7601 struct task_struct
*task
;
7603 cgroup_taskset_for_each(task
, css
, tset
) {
7604 #ifdef CONFIG_RT_GROUP_SCHED
7605 if (!sched_rt_can_attach(css_tg(css
), task
))
7608 /* We don't support RT-tasks being in separate groups */
7609 if (task
->sched_class
!= &fair_sched_class
)
7616 static void cpu_cgroup_attach(struct cgroup_subsys_state
*css
,
7617 struct cgroup_taskset
*tset
)
7619 struct task_struct
*task
;
7621 cgroup_taskset_for_each(task
, css
, tset
)
7622 sched_move_task(task
);
7625 static void cpu_cgroup_exit(struct cgroup_subsys_state
*css
,
7626 struct cgroup_subsys_state
*old_css
,
7627 struct task_struct
*task
)
7630 * cgroup_exit() is called in the copy_process() failure path.
7631 * Ignore this case since the task hasn't ran yet, this avoids
7632 * trying to poke a half freed task state from generic code.
7634 if (!(task
->flags
& PF_EXITING
))
7637 sched_move_task(task
);
7640 #ifdef CONFIG_FAIR_GROUP_SCHED
7641 static int cpu_shares_write_u64(struct cgroup_subsys_state
*css
,
7642 struct cftype
*cftype
, u64 shareval
)
7644 return sched_group_set_shares(css_tg(css
), scale_load(shareval
));
7647 static u64
cpu_shares_read_u64(struct cgroup_subsys_state
*css
,
7650 struct task_group
*tg
= css_tg(css
);
7652 return (u64
) scale_load_down(tg
->shares
);
7655 #ifdef CONFIG_CFS_BANDWIDTH
7656 static DEFINE_MUTEX(cfs_constraints_mutex
);
7658 const u64 max_cfs_quota_period
= 1 * NSEC_PER_SEC
; /* 1s */
7659 const u64 min_cfs_quota_period
= 1 * NSEC_PER_MSEC
; /* 1ms */
7661 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
);
7663 static int tg_set_cfs_bandwidth(struct task_group
*tg
, u64 period
, u64 quota
)
7665 int i
, ret
= 0, runtime_enabled
, runtime_was_enabled
;
7666 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
7668 if (tg
== &root_task_group
)
7672 * Ensure we have at some amount of bandwidth every period. This is
7673 * to prevent reaching a state of large arrears when throttled via
7674 * entity_tick() resulting in prolonged exit starvation.
7676 if (quota
< min_cfs_quota_period
|| period
< min_cfs_quota_period
)
7680 * Likewise, bound things on the otherside by preventing insane quota
7681 * periods. This also allows us to normalize in computing quota
7684 if (period
> max_cfs_quota_period
)
7687 mutex_lock(&cfs_constraints_mutex
);
7688 ret
= __cfs_schedulable(tg
, period
, quota
);
7692 runtime_enabled
= quota
!= RUNTIME_INF
;
7693 runtime_was_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
7695 * If we need to toggle cfs_bandwidth_used, off->on must occur
7696 * before making related changes, and on->off must occur afterwards
7698 if (runtime_enabled
&& !runtime_was_enabled
)
7699 cfs_bandwidth_usage_inc();
7700 raw_spin_lock_irq(&cfs_b
->lock
);
7701 cfs_b
->period
= ns_to_ktime(period
);
7702 cfs_b
->quota
= quota
;
7704 __refill_cfs_bandwidth_runtime(cfs_b
);
7705 /* restart the period timer (if active) to handle new period expiry */
7706 if (runtime_enabled
&& cfs_b
->timer_active
) {
7707 /* force a reprogram */
7708 cfs_b
->timer_active
= 0;
7709 __start_cfs_bandwidth(cfs_b
);
7711 raw_spin_unlock_irq(&cfs_b
->lock
);
7713 for_each_possible_cpu(i
) {
7714 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[i
];
7715 struct rq
*rq
= cfs_rq
->rq
;
7717 raw_spin_lock_irq(&rq
->lock
);
7718 cfs_rq
->runtime_enabled
= runtime_enabled
;
7719 cfs_rq
->runtime_remaining
= 0;
7721 if (cfs_rq
->throttled
)
7722 unthrottle_cfs_rq(cfs_rq
);
7723 raw_spin_unlock_irq(&rq
->lock
);
7725 if (runtime_was_enabled
&& !runtime_enabled
)
7726 cfs_bandwidth_usage_dec();
7728 mutex_unlock(&cfs_constraints_mutex
);
7733 int tg_set_cfs_quota(struct task_group
*tg
, long cfs_quota_us
)
7737 period
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
7738 if (cfs_quota_us
< 0)
7739 quota
= RUNTIME_INF
;
7741 quota
= (u64
)cfs_quota_us
* NSEC_PER_USEC
;
7743 return tg_set_cfs_bandwidth(tg
, period
, quota
);
7746 long tg_get_cfs_quota(struct task_group
*tg
)
7750 if (tg
->cfs_bandwidth
.quota
== RUNTIME_INF
)
7753 quota_us
= tg
->cfs_bandwidth
.quota
;
7754 do_div(quota_us
, NSEC_PER_USEC
);
7759 int tg_set_cfs_period(struct task_group
*tg
, long cfs_period_us
)
7763 period
= (u64
)cfs_period_us
* NSEC_PER_USEC
;
7764 quota
= tg
->cfs_bandwidth
.quota
;
7766 return tg_set_cfs_bandwidth(tg
, period
, quota
);
7769 long tg_get_cfs_period(struct task_group
*tg
)
7773 cfs_period_us
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
7774 do_div(cfs_period_us
, NSEC_PER_USEC
);
7776 return cfs_period_us
;
7779 static s64
cpu_cfs_quota_read_s64(struct cgroup_subsys_state
*css
,
7782 return tg_get_cfs_quota(css_tg(css
));
7785 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state
*css
,
7786 struct cftype
*cftype
, s64 cfs_quota_us
)
7788 return tg_set_cfs_quota(css_tg(css
), cfs_quota_us
);
7791 static u64
cpu_cfs_period_read_u64(struct cgroup_subsys_state
*css
,
7794 return tg_get_cfs_period(css_tg(css
));
7797 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state
*css
,
7798 struct cftype
*cftype
, u64 cfs_period_us
)
7800 return tg_set_cfs_period(css_tg(css
), cfs_period_us
);
7803 struct cfs_schedulable_data
{
7804 struct task_group
*tg
;
7809 * normalize group quota/period to be quota/max_period
7810 * note: units are usecs
7812 static u64
normalize_cfs_quota(struct task_group
*tg
,
7813 struct cfs_schedulable_data
*d
)
7821 period
= tg_get_cfs_period(tg
);
7822 quota
= tg_get_cfs_quota(tg
);
7825 /* note: these should typically be equivalent */
7826 if (quota
== RUNTIME_INF
|| quota
== -1)
7829 return to_ratio(period
, quota
);
7832 static int tg_cfs_schedulable_down(struct task_group
*tg
, void *data
)
7834 struct cfs_schedulable_data
*d
= data
;
7835 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
7836 s64 quota
= 0, parent_quota
= -1;
7839 quota
= RUNTIME_INF
;
7841 struct cfs_bandwidth
*parent_b
= &tg
->parent
->cfs_bandwidth
;
7843 quota
= normalize_cfs_quota(tg
, d
);
7844 parent_quota
= parent_b
->hierarchal_quota
;
7847 * ensure max(child_quota) <= parent_quota, inherit when no
7850 if (quota
== RUNTIME_INF
)
7851 quota
= parent_quota
;
7852 else if (parent_quota
!= RUNTIME_INF
&& quota
> parent_quota
)
7855 cfs_b
->hierarchal_quota
= quota
;
7860 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 quota
)
7863 struct cfs_schedulable_data data
= {
7869 if (quota
!= RUNTIME_INF
) {
7870 do_div(data
.period
, NSEC_PER_USEC
);
7871 do_div(data
.quota
, NSEC_PER_USEC
);
7875 ret
= walk_tg_tree(tg_cfs_schedulable_down
, tg_nop
, &data
);
7881 static int cpu_stats_show(struct seq_file
*sf
, void *v
)
7883 struct task_group
*tg
= css_tg(seq_css(sf
));
7884 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
7886 seq_printf(sf
, "nr_periods %d\n", cfs_b
->nr_periods
);
7887 seq_printf(sf
, "nr_throttled %d\n", cfs_b
->nr_throttled
);
7888 seq_printf(sf
, "throttled_time %llu\n", cfs_b
->throttled_time
);
7892 #endif /* CONFIG_CFS_BANDWIDTH */
7893 #endif /* CONFIG_FAIR_GROUP_SCHED */
7895 #ifdef CONFIG_RT_GROUP_SCHED
7896 static int cpu_rt_runtime_write(struct cgroup_subsys_state
*css
,
7897 struct cftype
*cft
, s64 val
)
7899 return sched_group_set_rt_runtime(css_tg(css
), val
);
7902 static s64
cpu_rt_runtime_read(struct cgroup_subsys_state
*css
,
7905 return sched_group_rt_runtime(css_tg(css
));
7908 static int cpu_rt_period_write_uint(struct cgroup_subsys_state
*css
,
7909 struct cftype
*cftype
, u64 rt_period_us
)
7911 return sched_group_set_rt_period(css_tg(css
), rt_period_us
);
7914 static u64
cpu_rt_period_read_uint(struct cgroup_subsys_state
*css
,
7917 return sched_group_rt_period(css_tg(css
));
7919 #endif /* CONFIG_RT_GROUP_SCHED */
7921 static struct cftype cpu_files
[] = {
7922 #ifdef CONFIG_FAIR_GROUP_SCHED
7925 .read_u64
= cpu_shares_read_u64
,
7926 .write_u64
= cpu_shares_write_u64
,
7929 #ifdef CONFIG_CFS_BANDWIDTH
7931 .name
= "cfs_quota_us",
7932 .read_s64
= cpu_cfs_quota_read_s64
,
7933 .write_s64
= cpu_cfs_quota_write_s64
,
7936 .name
= "cfs_period_us",
7937 .read_u64
= cpu_cfs_period_read_u64
,
7938 .write_u64
= cpu_cfs_period_write_u64
,
7942 .seq_show
= cpu_stats_show
,
7945 #ifdef CONFIG_RT_GROUP_SCHED
7947 .name
= "rt_runtime_us",
7948 .read_s64
= cpu_rt_runtime_read
,
7949 .write_s64
= cpu_rt_runtime_write
,
7952 .name
= "rt_period_us",
7953 .read_u64
= cpu_rt_period_read_uint
,
7954 .write_u64
= cpu_rt_period_write_uint
,
7960 struct cgroup_subsys cpu_cgroup_subsys
= {
7962 .css_alloc
= cpu_cgroup_css_alloc
,
7963 .css_free
= cpu_cgroup_css_free
,
7964 .css_online
= cpu_cgroup_css_online
,
7965 .css_offline
= cpu_cgroup_css_offline
,
7966 .can_attach
= cpu_cgroup_can_attach
,
7967 .attach
= cpu_cgroup_attach
,
7968 .exit
= cpu_cgroup_exit
,
7969 .subsys_id
= cpu_cgroup_subsys_id
,
7970 .base_cftypes
= cpu_files
,
7974 #endif /* CONFIG_CGROUP_SCHED */
7976 void dump_cpu_task(int cpu
)
7978 pr_info("Task dump for CPU %d:\n", cpu
);
7979 sched_show_task(cpu_curr(cpu
));