Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux/fpc-iii.git] / mm / huge_memory.c
blob82166bf974e14262ecfb064ea7c173d006d3ab98
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
30 * By default transparent hugepage support is disabled in order that avoid
31 * to risk increase the memory footprint of applications without a guaranteed
32 * benefit. When transparent hugepage support is enabled, is for all mappings,
33 * and khugepaged scans all mappings.
34 * Defrag is invoked by khugepaged hugepage allocations and by page faults
35 * for all hugepage allocations.
37 unsigned long transparent_hugepage_flags __read_mostly =
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
39 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
40 #endif
41 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
42 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
43 #endif
44 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
45 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
46 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
48 /* default scan 8*512 pte (or vmas) every 30 second */
49 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
50 static unsigned int khugepaged_pages_collapsed;
51 static unsigned int khugepaged_full_scans;
52 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
53 /* during fragmentation poll the hugepage allocator once every minute */
54 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
55 static struct task_struct *khugepaged_thread __read_mostly;
56 static DEFINE_MUTEX(khugepaged_mutex);
57 static DEFINE_SPINLOCK(khugepaged_mm_lock);
58 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
60 * default collapse hugepages if there is at least one pte mapped like
61 * it would have happened if the vma was large enough during page
62 * fault.
64 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
66 static int khugepaged(void *none);
67 static int khugepaged_slab_init(void);
69 #define MM_SLOTS_HASH_BITS 10
70 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
72 static struct kmem_cache *mm_slot_cache __read_mostly;
74 /**
75 * struct mm_slot - hash lookup from mm to mm_slot
76 * @hash: hash collision list
77 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
78 * @mm: the mm that this information is valid for
80 struct mm_slot {
81 struct hlist_node hash;
82 struct list_head mm_node;
83 struct mm_struct *mm;
86 /**
87 * struct khugepaged_scan - cursor for scanning
88 * @mm_head: the head of the mm list to scan
89 * @mm_slot: the current mm_slot we are scanning
90 * @address: the next address inside that to be scanned
92 * There is only the one khugepaged_scan instance of this cursor structure.
94 struct khugepaged_scan {
95 struct list_head mm_head;
96 struct mm_slot *mm_slot;
97 unsigned long address;
99 static struct khugepaged_scan khugepaged_scan = {
100 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
104 static int set_recommended_min_free_kbytes(void)
106 struct zone *zone;
107 int nr_zones = 0;
108 unsigned long recommended_min;
110 if (!khugepaged_enabled())
111 return 0;
113 for_each_populated_zone(zone)
114 nr_zones++;
116 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
117 recommended_min = pageblock_nr_pages * nr_zones * 2;
120 * Make sure that on average at least two pageblocks are almost free
121 * of another type, one for a migratetype to fall back to and a
122 * second to avoid subsequent fallbacks of other types There are 3
123 * MIGRATE_TYPES we care about.
125 recommended_min += pageblock_nr_pages * nr_zones *
126 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
128 /* don't ever allow to reserve more than 5% of the lowmem */
129 recommended_min = min(recommended_min,
130 (unsigned long) nr_free_buffer_pages() / 20);
131 recommended_min <<= (PAGE_SHIFT-10);
133 if (recommended_min > min_free_kbytes) {
134 if (user_min_free_kbytes >= 0)
135 pr_info("raising min_free_kbytes from %d to %lu "
136 "to help transparent hugepage allocations\n",
137 min_free_kbytes, recommended_min);
139 min_free_kbytes = recommended_min;
141 setup_per_zone_wmarks();
142 return 0;
144 late_initcall(set_recommended_min_free_kbytes);
146 static int start_khugepaged(void)
148 int err = 0;
149 if (khugepaged_enabled()) {
150 if (!khugepaged_thread)
151 khugepaged_thread = kthread_run(khugepaged, NULL,
152 "khugepaged");
153 if (unlikely(IS_ERR(khugepaged_thread))) {
154 printk(KERN_ERR
155 "khugepaged: kthread_run(khugepaged) failed\n");
156 err = PTR_ERR(khugepaged_thread);
157 khugepaged_thread = NULL;
160 if (!list_empty(&khugepaged_scan.mm_head))
161 wake_up_interruptible(&khugepaged_wait);
163 set_recommended_min_free_kbytes();
164 } else if (khugepaged_thread) {
165 kthread_stop(khugepaged_thread);
166 khugepaged_thread = NULL;
169 return err;
172 static atomic_t huge_zero_refcount;
173 static struct page *huge_zero_page __read_mostly;
175 static inline bool is_huge_zero_page(struct page *page)
177 return ACCESS_ONCE(huge_zero_page) == page;
180 static inline bool is_huge_zero_pmd(pmd_t pmd)
182 return is_huge_zero_page(pmd_page(pmd));
185 static struct page *get_huge_zero_page(void)
187 struct page *zero_page;
188 retry:
189 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
190 return ACCESS_ONCE(huge_zero_page);
192 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
193 HPAGE_PMD_ORDER);
194 if (!zero_page) {
195 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
196 return NULL;
198 count_vm_event(THP_ZERO_PAGE_ALLOC);
199 preempt_disable();
200 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
201 preempt_enable();
202 __free_page(zero_page);
203 goto retry;
206 /* We take additional reference here. It will be put back by shrinker */
207 atomic_set(&huge_zero_refcount, 2);
208 preempt_enable();
209 return ACCESS_ONCE(huge_zero_page);
212 static void put_huge_zero_page(void)
215 * Counter should never go to zero here. Only shrinker can put
216 * last reference.
218 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
221 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
222 struct shrink_control *sc)
224 /* we can free zero page only if last reference remains */
225 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
228 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
229 struct shrink_control *sc)
231 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
232 struct page *zero_page = xchg(&huge_zero_page, NULL);
233 BUG_ON(zero_page == NULL);
234 __free_page(zero_page);
235 return HPAGE_PMD_NR;
238 return 0;
241 static struct shrinker huge_zero_page_shrinker = {
242 .count_objects = shrink_huge_zero_page_count,
243 .scan_objects = shrink_huge_zero_page_scan,
244 .seeks = DEFAULT_SEEKS,
247 #ifdef CONFIG_SYSFS
249 static ssize_t double_flag_show(struct kobject *kobj,
250 struct kobj_attribute *attr, char *buf,
251 enum transparent_hugepage_flag enabled,
252 enum transparent_hugepage_flag req_madv)
254 if (test_bit(enabled, &transparent_hugepage_flags)) {
255 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
256 return sprintf(buf, "[always] madvise never\n");
257 } else if (test_bit(req_madv, &transparent_hugepage_flags))
258 return sprintf(buf, "always [madvise] never\n");
259 else
260 return sprintf(buf, "always madvise [never]\n");
262 static ssize_t double_flag_store(struct kobject *kobj,
263 struct kobj_attribute *attr,
264 const char *buf, size_t count,
265 enum transparent_hugepage_flag enabled,
266 enum transparent_hugepage_flag req_madv)
268 if (!memcmp("always", buf,
269 min(sizeof("always")-1, count))) {
270 set_bit(enabled, &transparent_hugepage_flags);
271 clear_bit(req_madv, &transparent_hugepage_flags);
272 } else if (!memcmp("madvise", buf,
273 min(sizeof("madvise")-1, count))) {
274 clear_bit(enabled, &transparent_hugepage_flags);
275 set_bit(req_madv, &transparent_hugepage_flags);
276 } else if (!memcmp("never", buf,
277 min(sizeof("never")-1, count))) {
278 clear_bit(enabled, &transparent_hugepage_flags);
279 clear_bit(req_madv, &transparent_hugepage_flags);
280 } else
281 return -EINVAL;
283 return count;
286 static ssize_t enabled_show(struct kobject *kobj,
287 struct kobj_attribute *attr, char *buf)
289 return double_flag_show(kobj, attr, buf,
290 TRANSPARENT_HUGEPAGE_FLAG,
291 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
293 static ssize_t enabled_store(struct kobject *kobj,
294 struct kobj_attribute *attr,
295 const char *buf, size_t count)
297 ssize_t ret;
299 ret = double_flag_store(kobj, attr, buf, count,
300 TRANSPARENT_HUGEPAGE_FLAG,
301 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
303 if (ret > 0) {
304 int err;
306 mutex_lock(&khugepaged_mutex);
307 err = start_khugepaged();
308 mutex_unlock(&khugepaged_mutex);
310 if (err)
311 ret = err;
314 return ret;
316 static struct kobj_attribute enabled_attr =
317 __ATTR(enabled, 0644, enabled_show, enabled_store);
319 static ssize_t single_flag_show(struct kobject *kobj,
320 struct kobj_attribute *attr, char *buf,
321 enum transparent_hugepage_flag flag)
323 return sprintf(buf, "%d\n",
324 !!test_bit(flag, &transparent_hugepage_flags));
327 static ssize_t single_flag_store(struct kobject *kobj,
328 struct kobj_attribute *attr,
329 const char *buf, size_t count,
330 enum transparent_hugepage_flag flag)
332 unsigned long value;
333 int ret;
335 ret = kstrtoul(buf, 10, &value);
336 if (ret < 0)
337 return ret;
338 if (value > 1)
339 return -EINVAL;
341 if (value)
342 set_bit(flag, &transparent_hugepage_flags);
343 else
344 clear_bit(flag, &transparent_hugepage_flags);
346 return count;
350 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
351 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
352 * memory just to allocate one more hugepage.
354 static ssize_t defrag_show(struct kobject *kobj,
355 struct kobj_attribute *attr, char *buf)
357 return double_flag_show(kobj, attr, buf,
358 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
359 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
361 static ssize_t defrag_store(struct kobject *kobj,
362 struct kobj_attribute *attr,
363 const char *buf, size_t count)
365 return double_flag_store(kobj, attr, buf, count,
366 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
367 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
369 static struct kobj_attribute defrag_attr =
370 __ATTR(defrag, 0644, defrag_show, defrag_store);
372 static ssize_t use_zero_page_show(struct kobject *kobj,
373 struct kobj_attribute *attr, char *buf)
375 return single_flag_show(kobj, attr, buf,
376 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
378 static ssize_t use_zero_page_store(struct kobject *kobj,
379 struct kobj_attribute *attr, const char *buf, size_t count)
381 return single_flag_store(kobj, attr, buf, count,
382 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
384 static struct kobj_attribute use_zero_page_attr =
385 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
386 #ifdef CONFIG_DEBUG_VM
387 static ssize_t debug_cow_show(struct kobject *kobj,
388 struct kobj_attribute *attr, char *buf)
390 return single_flag_show(kobj, attr, buf,
391 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
393 static ssize_t debug_cow_store(struct kobject *kobj,
394 struct kobj_attribute *attr,
395 const char *buf, size_t count)
397 return single_flag_store(kobj, attr, buf, count,
398 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
400 static struct kobj_attribute debug_cow_attr =
401 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
402 #endif /* CONFIG_DEBUG_VM */
404 static struct attribute *hugepage_attr[] = {
405 &enabled_attr.attr,
406 &defrag_attr.attr,
407 &use_zero_page_attr.attr,
408 #ifdef CONFIG_DEBUG_VM
409 &debug_cow_attr.attr,
410 #endif
411 NULL,
414 static struct attribute_group hugepage_attr_group = {
415 .attrs = hugepage_attr,
418 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
419 struct kobj_attribute *attr,
420 char *buf)
422 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
425 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
426 struct kobj_attribute *attr,
427 const char *buf, size_t count)
429 unsigned long msecs;
430 int err;
432 err = kstrtoul(buf, 10, &msecs);
433 if (err || msecs > UINT_MAX)
434 return -EINVAL;
436 khugepaged_scan_sleep_millisecs = msecs;
437 wake_up_interruptible(&khugepaged_wait);
439 return count;
441 static struct kobj_attribute scan_sleep_millisecs_attr =
442 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
443 scan_sleep_millisecs_store);
445 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
446 struct kobj_attribute *attr,
447 char *buf)
449 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
452 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
453 struct kobj_attribute *attr,
454 const char *buf, size_t count)
456 unsigned long msecs;
457 int err;
459 err = kstrtoul(buf, 10, &msecs);
460 if (err || msecs > UINT_MAX)
461 return -EINVAL;
463 khugepaged_alloc_sleep_millisecs = msecs;
464 wake_up_interruptible(&khugepaged_wait);
466 return count;
468 static struct kobj_attribute alloc_sleep_millisecs_attr =
469 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
470 alloc_sleep_millisecs_store);
472 static ssize_t pages_to_scan_show(struct kobject *kobj,
473 struct kobj_attribute *attr,
474 char *buf)
476 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
478 static ssize_t pages_to_scan_store(struct kobject *kobj,
479 struct kobj_attribute *attr,
480 const char *buf, size_t count)
482 int err;
483 unsigned long pages;
485 err = kstrtoul(buf, 10, &pages);
486 if (err || !pages || pages > UINT_MAX)
487 return -EINVAL;
489 khugepaged_pages_to_scan = pages;
491 return count;
493 static struct kobj_attribute pages_to_scan_attr =
494 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
495 pages_to_scan_store);
497 static ssize_t pages_collapsed_show(struct kobject *kobj,
498 struct kobj_attribute *attr,
499 char *buf)
501 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
503 static struct kobj_attribute pages_collapsed_attr =
504 __ATTR_RO(pages_collapsed);
506 static ssize_t full_scans_show(struct kobject *kobj,
507 struct kobj_attribute *attr,
508 char *buf)
510 return sprintf(buf, "%u\n", khugepaged_full_scans);
512 static struct kobj_attribute full_scans_attr =
513 __ATTR_RO(full_scans);
515 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
516 struct kobj_attribute *attr, char *buf)
518 return single_flag_show(kobj, attr, buf,
519 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
521 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
522 struct kobj_attribute *attr,
523 const char *buf, size_t count)
525 return single_flag_store(kobj, attr, buf, count,
526 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
528 static struct kobj_attribute khugepaged_defrag_attr =
529 __ATTR(defrag, 0644, khugepaged_defrag_show,
530 khugepaged_defrag_store);
533 * max_ptes_none controls if khugepaged should collapse hugepages over
534 * any unmapped ptes in turn potentially increasing the memory
535 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
536 * reduce the available free memory in the system as it
537 * runs. Increasing max_ptes_none will instead potentially reduce the
538 * free memory in the system during the khugepaged scan.
540 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
541 struct kobj_attribute *attr,
542 char *buf)
544 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
546 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
547 struct kobj_attribute *attr,
548 const char *buf, size_t count)
550 int err;
551 unsigned long max_ptes_none;
553 err = kstrtoul(buf, 10, &max_ptes_none);
554 if (err || max_ptes_none > HPAGE_PMD_NR-1)
555 return -EINVAL;
557 khugepaged_max_ptes_none = max_ptes_none;
559 return count;
561 static struct kobj_attribute khugepaged_max_ptes_none_attr =
562 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
563 khugepaged_max_ptes_none_store);
565 static struct attribute *khugepaged_attr[] = {
566 &khugepaged_defrag_attr.attr,
567 &khugepaged_max_ptes_none_attr.attr,
568 &pages_to_scan_attr.attr,
569 &pages_collapsed_attr.attr,
570 &full_scans_attr.attr,
571 &scan_sleep_millisecs_attr.attr,
572 &alloc_sleep_millisecs_attr.attr,
573 NULL,
576 static struct attribute_group khugepaged_attr_group = {
577 .attrs = khugepaged_attr,
578 .name = "khugepaged",
581 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
583 int err;
585 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
586 if (unlikely(!*hugepage_kobj)) {
587 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
588 return -ENOMEM;
591 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
592 if (err) {
593 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
594 goto delete_obj;
597 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
598 if (err) {
599 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
600 goto remove_hp_group;
603 return 0;
605 remove_hp_group:
606 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
607 delete_obj:
608 kobject_put(*hugepage_kobj);
609 return err;
612 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
614 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
615 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
616 kobject_put(hugepage_kobj);
618 #else
619 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
621 return 0;
624 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
627 #endif /* CONFIG_SYSFS */
629 static int __init hugepage_init(void)
631 int err;
632 struct kobject *hugepage_kobj;
634 if (!has_transparent_hugepage()) {
635 transparent_hugepage_flags = 0;
636 return -EINVAL;
639 err = hugepage_init_sysfs(&hugepage_kobj);
640 if (err)
641 return err;
643 err = khugepaged_slab_init();
644 if (err)
645 goto out;
647 register_shrinker(&huge_zero_page_shrinker);
650 * By default disable transparent hugepages on smaller systems,
651 * where the extra memory used could hurt more than TLB overhead
652 * is likely to save. The admin can still enable it through /sys.
654 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
655 transparent_hugepage_flags = 0;
657 start_khugepaged();
659 return 0;
660 out:
661 hugepage_exit_sysfs(hugepage_kobj);
662 return err;
664 subsys_initcall(hugepage_init);
666 static int __init setup_transparent_hugepage(char *str)
668 int ret = 0;
669 if (!str)
670 goto out;
671 if (!strcmp(str, "always")) {
672 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
673 &transparent_hugepage_flags);
674 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
675 &transparent_hugepage_flags);
676 ret = 1;
677 } else if (!strcmp(str, "madvise")) {
678 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
679 &transparent_hugepage_flags);
680 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
681 &transparent_hugepage_flags);
682 ret = 1;
683 } else if (!strcmp(str, "never")) {
684 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
685 &transparent_hugepage_flags);
686 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
687 &transparent_hugepage_flags);
688 ret = 1;
690 out:
691 if (!ret)
692 printk(KERN_WARNING
693 "transparent_hugepage= cannot parse, ignored\n");
694 return ret;
696 __setup("transparent_hugepage=", setup_transparent_hugepage);
698 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
700 if (likely(vma->vm_flags & VM_WRITE))
701 pmd = pmd_mkwrite(pmd);
702 return pmd;
705 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
707 pmd_t entry;
708 entry = mk_pmd(page, prot);
709 entry = pmd_mkhuge(entry);
710 return entry;
713 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
714 struct vm_area_struct *vma,
715 unsigned long haddr, pmd_t *pmd,
716 struct page *page)
718 pgtable_t pgtable;
719 spinlock_t *ptl;
721 VM_BUG_ON_PAGE(!PageCompound(page), page);
722 pgtable = pte_alloc_one(mm, haddr);
723 if (unlikely(!pgtable))
724 return VM_FAULT_OOM;
726 clear_huge_page(page, haddr, HPAGE_PMD_NR);
728 * The memory barrier inside __SetPageUptodate makes sure that
729 * clear_huge_page writes become visible before the set_pmd_at()
730 * write.
732 __SetPageUptodate(page);
734 ptl = pmd_lock(mm, pmd);
735 if (unlikely(!pmd_none(*pmd))) {
736 spin_unlock(ptl);
737 mem_cgroup_uncharge_page(page);
738 put_page(page);
739 pte_free(mm, pgtable);
740 } else {
741 pmd_t entry;
742 entry = mk_huge_pmd(page, vma->vm_page_prot);
743 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
744 page_add_new_anon_rmap(page, vma, haddr);
745 pgtable_trans_huge_deposit(mm, pmd, pgtable);
746 set_pmd_at(mm, haddr, pmd, entry);
747 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
748 atomic_long_inc(&mm->nr_ptes);
749 spin_unlock(ptl);
752 return 0;
755 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
757 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
760 static inline struct page *alloc_hugepage_vma(int defrag,
761 struct vm_area_struct *vma,
762 unsigned long haddr, int nd,
763 gfp_t extra_gfp)
765 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
766 HPAGE_PMD_ORDER, vma, haddr, nd);
769 /* Caller must hold page table lock. */
770 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
771 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
772 struct page *zero_page)
774 pmd_t entry;
775 if (!pmd_none(*pmd))
776 return false;
777 entry = mk_pmd(zero_page, vma->vm_page_prot);
778 entry = pmd_wrprotect(entry);
779 entry = pmd_mkhuge(entry);
780 pgtable_trans_huge_deposit(mm, pmd, pgtable);
781 set_pmd_at(mm, haddr, pmd, entry);
782 atomic_long_inc(&mm->nr_ptes);
783 return true;
786 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
787 unsigned long address, pmd_t *pmd,
788 unsigned int flags)
790 struct page *page;
791 unsigned long haddr = address & HPAGE_PMD_MASK;
793 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
794 return VM_FAULT_FALLBACK;
795 if (unlikely(anon_vma_prepare(vma)))
796 return VM_FAULT_OOM;
797 if (unlikely(khugepaged_enter(vma)))
798 return VM_FAULT_OOM;
799 if (!(flags & FAULT_FLAG_WRITE) &&
800 transparent_hugepage_use_zero_page()) {
801 spinlock_t *ptl;
802 pgtable_t pgtable;
803 struct page *zero_page;
804 bool set;
805 pgtable = pte_alloc_one(mm, haddr);
806 if (unlikely(!pgtable))
807 return VM_FAULT_OOM;
808 zero_page = get_huge_zero_page();
809 if (unlikely(!zero_page)) {
810 pte_free(mm, pgtable);
811 count_vm_event(THP_FAULT_FALLBACK);
812 return VM_FAULT_FALLBACK;
814 ptl = pmd_lock(mm, pmd);
815 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
816 zero_page);
817 spin_unlock(ptl);
818 if (!set) {
819 pte_free(mm, pgtable);
820 put_huge_zero_page();
822 return 0;
824 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
825 vma, haddr, numa_node_id(), 0);
826 if (unlikely(!page)) {
827 count_vm_event(THP_FAULT_FALLBACK);
828 return VM_FAULT_FALLBACK;
830 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
831 put_page(page);
832 count_vm_event(THP_FAULT_FALLBACK);
833 return VM_FAULT_FALLBACK;
835 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
836 mem_cgroup_uncharge_page(page);
837 put_page(page);
838 count_vm_event(THP_FAULT_FALLBACK);
839 return VM_FAULT_FALLBACK;
842 count_vm_event(THP_FAULT_ALLOC);
843 return 0;
846 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
847 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
848 struct vm_area_struct *vma)
850 spinlock_t *dst_ptl, *src_ptl;
851 struct page *src_page;
852 pmd_t pmd;
853 pgtable_t pgtable;
854 int ret;
856 ret = -ENOMEM;
857 pgtable = pte_alloc_one(dst_mm, addr);
858 if (unlikely(!pgtable))
859 goto out;
861 dst_ptl = pmd_lock(dst_mm, dst_pmd);
862 src_ptl = pmd_lockptr(src_mm, src_pmd);
863 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
865 ret = -EAGAIN;
866 pmd = *src_pmd;
867 if (unlikely(!pmd_trans_huge(pmd))) {
868 pte_free(dst_mm, pgtable);
869 goto out_unlock;
872 * When page table lock is held, the huge zero pmd should not be
873 * under splitting since we don't split the page itself, only pmd to
874 * a page table.
876 if (is_huge_zero_pmd(pmd)) {
877 struct page *zero_page;
878 bool set;
880 * get_huge_zero_page() will never allocate a new page here,
881 * since we already have a zero page to copy. It just takes a
882 * reference.
884 zero_page = get_huge_zero_page();
885 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
886 zero_page);
887 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
888 ret = 0;
889 goto out_unlock;
892 if (unlikely(pmd_trans_splitting(pmd))) {
893 /* split huge page running from under us */
894 spin_unlock(src_ptl);
895 spin_unlock(dst_ptl);
896 pte_free(dst_mm, pgtable);
898 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
899 goto out;
901 src_page = pmd_page(pmd);
902 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
903 get_page(src_page);
904 page_dup_rmap(src_page);
905 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
907 pmdp_set_wrprotect(src_mm, addr, src_pmd);
908 pmd = pmd_mkold(pmd_wrprotect(pmd));
909 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
910 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
911 atomic_long_inc(&dst_mm->nr_ptes);
913 ret = 0;
914 out_unlock:
915 spin_unlock(src_ptl);
916 spin_unlock(dst_ptl);
917 out:
918 return ret;
921 void huge_pmd_set_accessed(struct mm_struct *mm,
922 struct vm_area_struct *vma,
923 unsigned long address,
924 pmd_t *pmd, pmd_t orig_pmd,
925 int dirty)
927 spinlock_t *ptl;
928 pmd_t entry;
929 unsigned long haddr;
931 ptl = pmd_lock(mm, pmd);
932 if (unlikely(!pmd_same(*pmd, orig_pmd)))
933 goto unlock;
935 entry = pmd_mkyoung(orig_pmd);
936 haddr = address & HPAGE_PMD_MASK;
937 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
938 update_mmu_cache_pmd(vma, address, pmd);
940 unlock:
941 spin_unlock(ptl);
944 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
945 struct vm_area_struct *vma, unsigned long address,
946 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
948 spinlock_t *ptl;
949 pgtable_t pgtable;
950 pmd_t _pmd;
951 struct page *page;
952 int i, ret = 0;
953 unsigned long mmun_start; /* For mmu_notifiers */
954 unsigned long mmun_end; /* For mmu_notifiers */
956 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
957 if (!page) {
958 ret |= VM_FAULT_OOM;
959 goto out;
962 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
963 put_page(page);
964 ret |= VM_FAULT_OOM;
965 goto out;
968 clear_user_highpage(page, address);
969 __SetPageUptodate(page);
971 mmun_start = haddr;
972 mmun_end = haddr + HPAGE_PMD_SIZE;
973 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
975 ptl = pmd_lock(mm, pmd);
976 if (unlikely(!pmd_same(*pmd, orig_pmd)))
977 goto out_free_page;
979 pmdp_clear_flush(vma, haddr, pmd);
980 /* leave pmd empty until pte is filled */
982 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
983 pmd_populate(mm, &_pmd, pgtable);
985 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
986 pte_t *pte, entry;
987 if (haddr == (address & PAGE_MASK)) {
988 entry = mk_pte(page, vma->vm_page_prot);
989 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
990 page_add_new_anon_rmap(page, vma, haddr);
991 } else {
992 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
993 entry = pte_mkspecial(entry);
995 pte = pte_offset_map(&_pmd, haddr);
996 VM_BUG_ON(!pte_none(*pte));
997 set_pte_at(mm, haddr, pte, entry);
998 pte_unmap(pte);
1000 smp_wmb(); /* make pte visible before pmd */
1001 pmd_populate(mm, pmd, pgtable);
1002 spin_unlock(ptl);
1003 put_huge_zero_page();
1004 inc_mm_counter(mm, MM_ANONPAGES);
1006 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1008 ret |= VM_FAULT_WRITE;
1009 out:
1010 return ret;
1011 out_free_page:
1012 spin_unlock(ptl);
1013 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1014 mem_cgroup_uncharge_page(page);
1015 put_page(page);
1016 goto out;
1019 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1020 struct vm_area_struct *vma,
1021 unsigned long address,
1022 pmd_t *pmd, pmd_t orig_pmd,
1023 struct page *page,
1024 unsigned long haddr)
1026 spinlock_t *ptl;
1027 pgtable_t pgtable;
1028 pmd_t _pmd;
1029 int ret = 0, i;
1030 struct page **pages;
1031 unsigned long mmun_start; /* For mmu_notifiers */
1032 unsigned long mmun_end; /* For mmu_notifiers */
1034 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1035 GFP_KERNEL);
1036 if (unlikely(!pages)) {
1037 ret |= VM_FAULT_OOM;
1038 goto out;
1041 for (i = 0; i < HPAGE_PMD_NR; i++) {
1042 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1043 __GFP_OTHER_NODE,
1044 vma, address, page_to_nid(page));
1045 if (unlikely(!pages[i] ||
1046 mem_cgroup_newpage_charge(pages[i], mm,
1047 GFP_KERNEL))) {
1048 if (pages[i])
1049 put_page(pages[i]);
1050 mem_cgroup_uncharge_start();
1051 while (--i >= 0) {
1052 mem_cgroup_uncharge_page(pages[i]);
1053 put_page(pages[i]);
1055 mem_cgroup_uncharge_end();
1056 kfree(pages);
1057 ret |= VM_FAULT_OOM;
1058 goto out;
1062 for (i = 0; i < HPAGE_PMD_NR; i++) {
1063 copy_user_highpage(pages[i], page + i,
1064 haddr + PAGE_SIZE * i, vma);
1065 __SetPageUptodate(pages[i]);
1066 cond_resched();
1069 mmun_start = haddr;
1070 mmun_end = haddr + HPAGE_PMD_SIZE;
1071 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1073 ptl = pmd_lock(mm, pmd);
1074 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1075 goto out_free_pages;
1076 VM_BUG_ON_PAGE(!PageHead(page), page);
1078 pmdp_clear_flush(vma, haddr, pmd);
1079 /* leave pmd empty until pte is filled */
1081 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1082 pmd_populate(mm, &_pmd, pgtable);
1084 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1085 pte_t *pte, entry;
1086 entry = mk_pte(pages[i], vma->vm_page_prot);
1087 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1088 page_add_new_anon_rmap(pages[i], vma, haddr);
1089 pte = pte_offset_map(&_pmd, haddr);
1090 VM_BUG_ON(!pte_none(*pte));
1091 set_pte_at(mm, haddr, pte, entry);
1092 pte_unmap(pte);
1094 kfree(pages);
1096 smp_wmb(); /* make pte visible before pmd */
1097 pmd_populate(mm, pmd, pgtable);
1098 page_remove_rmap(page);
1099 spin_unlock(ptl);
1101 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1103 ret |= VM_FAULT_WRITE;
1104 put_page(page);
1106 out:
1107 return ret;
1109 out_free_pages:
1110 spin_unlock(ptl);
1111 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1112 mem_cgroup_uncharge_start();
1113 for (i = 0; i < HPAGE_PMD_NR; i++) {
1114 mem_cgroup_uncharge_page(pages[i]);
1115 put_page(pages[i]);
1117 mem_cgroup_uncharge_end();
1118 kfree(pages);
1119 goto out;
1122 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1123 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1125 spinlock_t *ptl;
1126 int ret = 0;
1127 struct page *page = NULL, *new_page;
1128 unsigned long haddr;
1129 unsigned long mmun_start; /* For mmu_notifiers */
1130 unsigned long mmun_end; /* For mmu_notifiers */
1132 ptl = pmd_lockptr(mm, pmd);
1133 VM_BUG_ON(!vma->anon_vma);
1134 haddr = address & HPAGE_PMD_MASK;
1135 if (is_huge_zero_pmd(orig_pmd))
1136 goto alloc;
1137 spin_lock(ptl);
1138 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1139 goto out_unlock;
1141 page = pmd_page(orig_pmd);
1142 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1143 if (page_mapcount(page) == 1) {
1144 pmd_t entry;
1145 entry = pmd_mkyoung(orig_pmd);
1146 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1147 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1148 update_mmu_cache_pmd(vma, address, pmd);
1149 ret |= VM_FAULT_WRITE;
1150 goto out_unlock;
1152 get_page(page);
1153 spin_unlock(ptl);
1154 alloc:
1155 if (transparent_hugepage_enabled(vma) &&
1156 !transparent_hugepage_debug_cow())
1157 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1158 vma, haddr, numa_node_id(), 0);
1159 else
1160 new_page = NULL;
1162 if (unlikely(!new_page)) {
1163 if (!page) {
1164 ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1165 address, pmd, orig_pmd, haddr);
1166 } else {
1167 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1168 pmd, orig_pmd, page, haddr);
1169 if (ret & VM_FAULT_OOM)
1170 split_huge_page(page);
1171 put_page(page);
1173 count_vm_event(THP_FAULT_FALLBACK);
1174 goto out;
1177 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1178 put_page(new_page);
1179 if (page) {
1180 split_huge_page(page);
1181 put_page(page);
1183 count_vm_event(THP_FAULT_FALLBACK);
1184 ret |= VM_FAULT_OOM;
1185 goto out;
1188 count_vm_event(THP_FAULT_ALLOC);
1190 if (!page)
1191 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1192 else
1193 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1194 __SetPageUptodate(new_page);
1196 mmun_start = haddr;
1197 mmun_end = haddr + HPAGE_PMD_SIZE;
1198 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1200 spin_lock(ptl);
1201 if (page)
1202 put_page(page);
1203 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1204 spin_unlock(ptl);
1205 mem_cgroup_uncharge_page(new_page);
1206 put_page(new_page);
1207 goto out_mn;
1208 } else {
1209 pmd_t entry;
1210 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1211 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1212 pmdp_clear_flush(vma, haddr, pmd);
1213 page_add_new_anon_rmap(new_page, vma, haddr);
1214 set_pmd_at(mm, haddr, pmd, entry);
1215 update_mmu_cache_pmd(vma, address, pmd);
1216 if (!page) {
1217 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1218 put_huge_zero_page();
1219 } else {
1220 VM_BUG_ON_PAGE(!PageHead(page), page);
1221 page_remove_rmap(page);
1222 put_page(page);
1224 ret |= VM_FAULT_WRITE;
1226 spin_unlock(ptl);
1227 out_mn:
1228 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1229 out:
1230 return ret;
1231 out_unlock:
1232 spin_unlock(ptl);
1233 return ret;
1236 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1237 unsigned long addr,
1238 pmd_t *pmd,
1239 unsigned int flags)
1241 struct mm_struct *mm = vma->vm_mm;
1242 struct page *page = NULL;
1244 assert_spin_locked(pmd_lockptr(mm, pmd));
1246 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1247 goto out;
1249 /* Avoid dumping huge zero page */
1250 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1251 return ERR_PTR(-EFAULT);
1253 /* Full NUMA hinting faults to serialise migration in fault paths */
1254 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1255 goto out;
1257 page = pmd_page(*pmd);
1258 VM_BUG_ON_PAGE(!PageHead(page), page);
1259 if (flags & FOLL_TOUCH) {
1260 pmd_t _pmd;
1262 * We should set the dirty bit only for FOLL_WRITE but
1263 * for now the dirty bit in the pmd is meaningless.
1264 * And if the dirty bit will become meaningful and
1265 * we'll only set it with FOLL_WRITE, an atomic
1266 * set_bit will be required on the pmd to set the
1267 * young bit, instead of the current set_pmd_at.
1269 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1270 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1271 pmd, _pmd, 1))
1272 update_mmu_cache_pmd(vma, addr, pmd);
1274 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1275 if (page->mapping && trylock_page(page)) {
1276 lru_add_drain();
1277 if (page->mapping)
1278 mlock_vma_page(page);
1279 unlock_page(page);
1282 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1283 VM_BUG_ON_PAGE(!PageCompound(page), page);
1284 if (flags & FOLL_GET)
1285 get_page_foll(page);
1287 out:
1288 return page;
1291 /* NUMA hinting page fault entry point for trans huge pmds */
1292 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1293 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1295 spinlock_t *ptl;
1296 struct anon_vma *anon_vma = NULL;
1297 struct page *page;
1298 unsigned long haddr = addr & HPAGE_PMD_MASK;
1299 int page_nid = -1, this_nid = numa_node_id();
1300 int target_nid, last_cpupid = -1;
1301 bool page_locked;
1302 bool migrated = false;
1303 int flags = 0;
1305 ptl = pmd_lock(mm, pmdp);
1306 if (unlikely(!pmd_same(pmd, *pmdp)))
1307 goto out_unlock;
1310 * If there are potential migrations, wait for completion and retry
1311 * without disrupting NUMA hinting information. Do not relock and
1312 * check_same as the page may no longer be mapped.
1314 if (unlikely(pmd_trans_migrating(*pmdp))) {
1315 spin_unlock(ptl);
1316 wait_migrate_huge_page(vma->anon_vma, pmdp);
1317 goto out;
1320 page = pmd_page(pmd);
1321 BUG_ON(is_huge_zero_page(page));
1322 page_nid = page_to_nid(page);
1323 last_cpupid = page_cpupid_last(page);
1324 count_vm_numa_event(NUMA_HINT_FAULTS);
1325 if (page_nid == this_nid) {
1326 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1327 flags |= TNF_FAULT_LOCAL;
1331 * Avoid grouping on DSO/COW pages in specific and RO pages
1332 * in general, RO pages shouldn't hurt as much anyway since
1333 * they can be in shared cache state.
1335 if (!pmd_write(pmd))
1336 flags |= TNF_NO_GROUP;
1339 * Acquire the page lock to serialise THP migrations but avoid dropping
1340 * page_table_lock if at all possible
1342 page_locked = trylock_page(page);
1343 target_nid = mpol_misplaced(page, vma, haddr);
1344 if (target_nid == -1) {
1345 /* If the page was locked, there are no parallel migrations */
1346 if (page_locked)
1347 goto clear_pmdnuma;
1350 /* Migration could have started since the pmd_trans_migrating check */
1351 if (!page_locked) {
1352 spin_unlock(ptl);
1353 wait_on_page_locked(page);
1354 page_nid = -1;
1355 goto out;
1359 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1360 * to serialises splits
1362 get_page(page);
1363 spin_unlock(ptl);
1364 anon_vma = page_lock_anon_vma_read(page);
1366 /* Confirm the PMD did not change while page_table_lock was released */
1367 spin_lock(ptl);
1368 if (unlikely(!pmd_same(pmd, *pmdp))) {
1369 unlock_page(page);
1370 put_page(page);
1371 page_nid = -1;
1372 goto out_unlock;
1375 /* Bail if we fail to protect against THP splits for any reason */
1376 if (unlikely(!anon_vma)) {
1377 put_page(page);
1378 page_nid = -1;
1379 goto clear_pmdnuma;
1383 * Migrate the THP to the requested node, returns with page unlocked
1384 * and pmd_numa cleared.
1386 spin_unlock(ptl);
1387 migrated = migrate_misplaced_transhuge_page(mm, vma,
1388 pmdp, pmd, addr, page, target_nid);
1389 if (migrated) {
1390 flags |= TNF_MIGRATED;
1391 page_nid = target_nid;
1394 goto out;
1395 clear_pmdnuma:
1396 BUG_ON(!PageLocked(page));
1397 pmd = pmd_mknonnuma(pmd);
1398 set_pmd_at(mm, haddr, pmdp, pmd);
1399 VM_BUG_ON(pmd_numa(*pmdp));
1400 update_mmu_cache_pmd(vma, addr, pmdp);
1401 unlock_page(page);
1402 out_unlock:
1403 spin_unlock(ptl);
1405 out:
1406 if (anon_vma)
1407 page_unlock_anon_vma_read(anon_vma);
1409 if (page_nid != -1)
1410 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1412 return 0;
1415 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1416 pmd_t *pmd, unsigned long addr)
1418 spinlock_t *ptl;
1419 int ret = 0;
1421 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1422 struct page *page;
1423 pgtable_t pgtable;
1424 pmd_t orig_pmd;
1426 * For architectures like ppc64 we look at deposited pgtable
1427 * when calling pmdp_get_and_clear. So do the
1428 * pgtable_trans_huge_withdraw after finishing pmdp related
1429 * operations.
1431 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1432 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1433 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1434 if (is_huge_zero_pmd(orig_pmd)) {
1435 atomic_long_dec(&tlb->mm->nr_ptes);
1436 spin_unlock(ptl);
1437 put_huge_zero_page();
1438 } else {
1439 page = pmd_page(orig_pmd);
1440 page_remove_rmap(page);
1441 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1442 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1443 VM_BUG_ON_PAGE(!PageHead(page), page);
1444 atomic_long_dec(&tlb->mm->nr_ptes);
1445 spin_unlock(ptl);
1446 tlb_remove_page(tlb, page);
1448 pte_free(tlb->mm, pgtable);
1449 ret = 1;
1451 return ret;
1454 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1455 unsigned long addr, unsigned long end,
1456 unsigned char *vec)
1458 spinlock_t *ptl;
1459 int ret = 0;
1461 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1463 * All logical pages in the range are present
1464 * if backed by a huge page.
1466 spin_unlock(ptl);
1467 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1468 ret = 1;
1471 return ret;
1474 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1475 unsigned long old_addr,
1476 unsigned long new_addr, unsigned long old_end,
1477 pmd_t *old_pmd, pmd_t *new_pmd)
1479 spinlock_t *old_ptl, *new_ptl;
1480 int ret = 0;
1481 pmd_t pmd;
1483 struct mm_struct *mm = vma->vm_mm;
1485 if ((old_addr & ~HPAGE_PMD_MASK) ||
1486 (new_addr & ~HPAGE_PMD_MASK) ||
1487 old_end - old_addr < HPAGE_PMD_SIZE ||
1488 (new_vma->vm_flags & VM_NOHUGEPAGE))
1489 goto out;
1492 * The destination pmd shouldn't be established, free_pgtables()
1493 * should have release it.
1495 if (WARN_ON(!pmd_none(*new_pmd))) {
1496 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1497 goto out;
1501 * We don't have to worry about the ordering of src and dst
1502 * ptlocks because exclusive mmap_sem prevents deadlock.
1504 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1505 if (ret == 1) {
1506 new_ptl = pmd_lockptr(mm, new_pmd);
1507 if (new_ptl != old_ptl)
1508 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1509 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1510 VM_BUG_ON(!pmd_none(*new_pmd));
1512 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1513 pgtable_t pgtable;
1514 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1515 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1517 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1518 if (new_ptl != old_ptl)
1519 spin_unlock(new_ptl);
1520 spin_unlock(old_ptl);
1522 out:
1523 return ret;
1527 * Returns
1528 * - 0 if PMD could not be locked
1529 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1530 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1532 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1533 unsigned long addr, pgprot_t newprot, int prot_numa)
1535 struct mm_struct *mm = vma->vm_mm;
1536 spinlock_t *ptl;
1537 int ret = 0;
1539 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1540 pmd_t entry;
1541 ret = 1;
1542 if (!prot_numa) {
1543 entry = pmdp_get_and_clear(mm, addr, pmd);
1544 if (pmd_numa(entry))
1545 entry = pmd_mknonnuma(entry);
1546 entry = pmd_modify(entry, newprot);
1547 ret = HPAGE_PMD_NR;
1548 BUG_ON(pmd_write(entry));
1549 } else {
1550 struct page *page = pmd_page(*pmd);
1553 * Do not trap faults against the zero page. The
1554 * read-only data is likely to be read-cached on the
1555 * local CPU cache and it is less useful to know about
1556 * local vs remote hits on the zero page.
1558 if (!is_huge_zero_page(page) &&
1559 !pmd_numa(*pmd)) {
1560 entry = *pmd;
1561 entry = pmd_mknuma(entry);
1562 ret = HPAGE_PMD_NR;
1566 /* Set PMD if cleared earlier */
1567 if (ret == HPAGE_PMD_NR)
1568 set_pmd_at(mm, addr, pmd, entry);
1570 spin_unlock(ptl);
1573 return ret;
1577 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1578 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1580 * Note that if it returns 1, this routine returns without unlocking page
1581 * table locks. So callers must unlock them.
1583 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1584 spinlock_t **ptl)
1586 *ptl = pmd_lock(vma->vm_mm, pmd);
1587 if (likely(pmd_trans_huge(*pmd))) {
1588 if (unlikely(pmd_trans_splitting(*pmd))) {
1589 spin_unlock(*ptl);
1590 wait_split_huge_page(vma->anon_vma, pmd);
1591 return -1;
1592 } else {
1593 /* Thp mapped by 'pmd' is stable, so we can
1594 * handle it as it is. */
1595 return 1;
1598 spin_unlock(*ptl);
1599 return 0;
1603 * This function returns whether a given @page is mapped onto the @address
1604 * in the virtual space of @mm.
1606 * When it's true, this function returns *pmd with holding the page table lock
1607 * and passing it back to the caller via @ptl.
1608 * If it's false, returns NULL without holding the page table lock.
1610 pmd_t *page_check_address_pmd(struct page *page,
1611 struct mm_struct *mm,
1612 unsigned long address,
1613 enum page_check_address_pmd_flag flag,
1614 spinlock_t **ptl)
1616 pmd_t *pmd;
1618 if (address & ~HPAGE_PMD_MASK)
1619 return NULL;
1621 pmd = mm_find_pmd(mm, address);
1622 if (!pmd)
1623 return NULL;
1624 *ptl = pmd_lock(mm, pmd);
1625 if (pmd_none(*pmd))
1626 goto unlock;
1627 if (pmd_page(*pmd) != page)
1628 goto unlock;
1630 * split_vma() may create temporary aliased mappings. There is
1631 * no risk as long as all huge pmd are found and have their
1632 * splitting bit set before __split_huge_page_refcount
1633 * runs. Finding the same huge pmd more than once during the
1634 * same rmap walk is not a problem.
1636 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1637 pmd_trans_splitting(*pmd))
1638 goto unlock;
1639 if (pmd_trans_huge(*pmd)) {
1640 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1641 !pmd_trans_splitting(*pmd));
1642 return pmd;
1644 unlock:
1645 spin_unlock(*ptl);
1646 return NULL;
1649 static int __split_huge_page_splitting(struct page *page,
1650 struct vm_area_struct *vma,
1651 unsigned long address)
1653 struct mm_struct *mm = vma->vm_mm;
1654 spinlock_t *ptl;
1655 pmd_t *pmd;
1656 int ret = 0;
1657 /* For mmu_notifiers */
1658 const unsigned long mmun_start = address;
1659 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1661 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1662 pmd = page_check_address_pmd(page, mm, address,
1663 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1664 if (pmd) {
1666 * We can't temporarily set the pmd to null in order
1667 * to split it, the pmd must remain marked huge at all
1668 * times or the VM won't take the pmd_trans_huge paths
1669 * and it won't wait on the anon_vma->root->rwsem to
1670 * serialize against split_huge_page*.
1672 pmdp_splitting_flush(vma, address, pmd);
1673 ret = 1;
1674 spin_unlock(ptl);
1676 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1678 return ret;
1681 static void __split_huge_page_refcount(struct page *page,
1682 struct list_head *list)
1684 int i;
1685 struct zone *zone = page_zone(page);
1686 struct lruvec *lruvec;
1687 int tail_count = 0;
1689 /* prevent PageLRU to go away from under us, and freeze lru stats */
1690 spin_lock_irq(&zone->lru_lock);
1691 lruvec = mem_cgroup_page_lruvec(page, zone);
1693 compound_lock(page);
1694 /* complete memcg works before add pages to LRU */
1695 mem_cgroup_split_huge_fixup(page);
1697 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1698 struct page *page_tail = page + i;
1700 /* tail_page->_mapcount cannot change */
1701 BUG_ON(page_mapcount(page_tail) < 0);
1702 tail_count += page_mapcount(page_tail);
1703 /* check for overflow */
1704 BUG_ON(tail_count < 0);
1705 BUG_ON(atomic_read(&page_tail->_count) != 0);
1707 * tail_page->_count is zero and not changing from
1708 * under us. But get_page_unless_zero() may be running
1709 * from under us on the tail_page. If we used
1710 * atomic_set() below instead of atomic_add(), we
1711 * would then run atomic_set() concurrently with
1712 * get_page_unless_zero(), and atomic_set() is
1713 * implemented in C not using locked ops. spin_unlock
1714 * on x86 sometime uses locked ops because of PPro
1715 * errata 66, 92, so unless somebody can guarantee
1716 * atomic_set() here would be safe on all archs (and
1717 * not only on x86), it's safer to use atomic_add().
1719 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1720 &page_tail->_count);
1722 /* after clearing PageTail the gup refcount can be released */
1723 smp_mb();
1726 * retain hwpoison flag of the poisoned tail page:
1727 * fix for the unsuitable process killed on Guest Machine(KVM)
1728 * by the memory-failure.
1730 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1731 page_tail->flags |= (page->flags &
1732 ((1L << PG_referenced) |
1733 (1L << PG_swapbacked) |
1734 (1L << PG_mlocked) |
1735 (1L << PG_uptodate) |
1736 (1L << PG_active) |
1737 (1L << PG_unevictable)));
1738 page_tail->flags |= (1L << PG_dirty);
1740 /* clear PageTail before overwriting first_page */
1741 smp_wmb();
1744 * __split_huge_page_splitting() already set the
1745 * splitting bit in all pmd that could map this
1746 * hugepage, that will ensure no CPU can alter the
1747 * mapcount on the head page. The mapcount is only
1748 * accounted in the head page and it has to be
1749 * transferred to all tail pages in the below code. So
1750 * for this code to be safe, the split the mapcount
1751 * can't change. But that doesn't mean userland can't
1752 * keep changing and reading the page contents while
1753 * we transfer the mapcount, so the pmd splitting
1754 * status is achieved setting a reserved bit in the
1755 * pmd, not by clearing the present bit.
1757 page_tail->_mapcount = page->_mapcount;
1759 BUG_ON(page_tail->mapping);
1760 page_tail->mapping = page->mapping;
1762 page_tail->index = page->index + i;
1763 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1765 BUG_ON(!PageAnon(page_tail));
1766 BUG_ON(!PageUptodate(page_tail));
1767 BUG_ON(!PageDirty(page_tail));
1768 BUG_ON(!PageSwapBacked(page_tail));
1770 lru_add_page_tail(page, page_tail, lruvec, list);
1772 atomic_sub(tail_count, &page->_count);
1773 BUG_ON(atomic_read(&page->_count) <= 0);
1775 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1777 ClearPageCompound(page);
1778 compound_unlock(page);
1779 spin_unlock_irq(&zone->lru_lock);
1781 for (i = 1; i < HPAGE_PMD_NR; i++) {
1782 struct page *page_tail = page + i;
1783 BUG_ON(page_count(page_tail) <= 0);
1785 * Tail pages may be freed if there wasn't any mapping
1786 * like if add_to_swap() is running on a lru page that
1787 * had its mapping zapped. And freeing these pages
1788 * requires taking the lru_lock so we do the put_page
1789 * of the tail pages after the split is complete.
1791 put_page(page_tail);
1795 * Only the head page (now become a regular page) is required
1796 * to be pinned by the caller.
1798 BUG_ON(page_count(page) <= 0);
1801 static int __split_huge_page_map(struct page *page,
1802 struct vm_area_struct *vma,
1803 unsigned long address)
1805 struct mm_struct *mm = vma->vm_mm;
1806 spinlock_t *ptl;
1807 pmd_t *pmd, _pmd;
1808 int ret = 0, i;
1809 pgtable_t pgtable;
1810 unsigned long haddr;
1812 pmd = page_check_address_pmd(page, mm, address,
1813 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1814 if (pmd) {
1815 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1816 pmd_populate(mm, &_pmd, pgtable);
1818 haddr = address;
1819 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1820 pte_t *pte, entry;
1821 BUG_ON(PageCompound(page+i));
1822 entry = mk_pte(page + i, vma->vm_page_prot);
1823 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1824 if (!pmd_write(*pmd))
1825 entry = pte_wrprotect(entry);
1826 else
1827 BUG_ON(page_mapcount(page) != 1);
1828 if (!pmd_young(*pmd))
1829 entry = pte_mkold(entry);
1830 if (pmd_numa(*pmd))
1831 entry = pte_mknuma(entry);
1832 pte = pte_offset_map(&_pmd, haddr);
1833 BUG_ON(!pte_none(*pte));
1834 set_pte_at(mm, haddr, pte, entry);
1835 pte_unmap(pte);
1838 smp_wmb(); /* make pte visible before pmd */
1840 * Up to this point the pmd is present and huge and
1841 * userland has the whole access to the hugepage
1842 * during the split (which happens in place). If we
1843 * overwrite the pmd with the not-huge version
1844 * pointing to the pte here (which of course we could
1845 * if all CPUs were bug free), userland could trigger
1846 * a small page size TLB miss on the small sized TLB
1847 * while the hugepage TLB entry is still established
1848 * in the huge TLB. Some CPU doesn't like that. See
1849 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1850 * Erratum 383 on page 93. Intel should be safe but is
1851 * also warns that it's only safe if the permission
1852 * and cache attributes of the two entries loaded in
1853 * the two TLB is identical (which should be the case
1854 * here). But it is generally safer to never allow
1855 * small and huge TLB entries for the same virtual
1856 * address to be loaded simultaneously. So instead of
1857 * doing "pmd_populate(); flush_tlb_range();" we first
1858 * mark the current pmd notpresent (atomically because
1859 * here the pmd_trans_huge and pmd_trans_splitting
1860 * must remain set at all times on the pmd until the
1861 * split is complete for this pmd), then we flush the
1862 * SMP TLB and finally we write the non-huge version
1863 * of the pmd entry with pmd_populate.
1865 pmdp_invalidate(vma, address, pmd);
1866 pmd_populate(mm, pmd, pgtable);
1867 ret = 1;
1868 spin_unlock(ptl);
1871 return ret;
1874 /* must be called with anon_vma->root->rwsem held */
1875 static void __split_huge_page(struct page *page,
1876 struct anon_vma *anon_vma,
1877 struct list_head *list)
1879 int mapcount, mapcount2;
1880 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1881 struct anon_vma_chain *avc;
1883 BUG_ON(!PageHead(page));
1884 BUG_ON(PageTail(page));
1886 mapcount = 0;
1887 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1888 struct vm_area_struct *vma = avc->vma;
1889 unsigned long addr = vma_address(page, vma);
1890 BUG_ON(is_vma_temporary_stack(vma));
1891 mapcount += __split_huge_page_splitting(page, vma, addr);
1894 * It is critical that new vmas are added to the tail of the
1895 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1896 * and establishes a child pmd before
1897 * __split_huge_page_splitting() freezes the parent pmd (so if
1898 * we fail to prevent copy_huge_pmd() from running until the
1899 * whole __split_huge_page() is complete), we will still see
1900 * the newly established pmd of the child later during the
1901 * walk, to be able to set it as pmd_trans_splitting too.
1903 if (mapcount != page_mapcount(page))
1904 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1905 mapcount, page_mapcount(page));
1906 BUG_ON(mapcount != page_mapcount(page));
1908 __split_huge_page_refcount(page, list);
1910 mapcount2 = 0;
1911 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1912 struct vm_area_struct *vma = avc->vma;
1913 unsigned long addr = vma_address(page, vma);
1914 BUG_ON(is_vma_temporary_stack(vma));
1915 mapcount2 += __split_huge_page_map(page, vma, addr);
1917 if (mapcount != mapcount2)
1918 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1919 mapcount, mapcount2, page_mapcount(page));
1920 BUG_ON(mapcount != mapcount2);
1924 * Split a hugepage into normal pages. This doesn't change the position of head
1925 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1926 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1927 * from the hugepage.
1928 * Return 0 if the hugepage is split successfully otherwise return 1.
1930 int split_huge_page_to_list(struct page *page, struct list_head *list)
1932 struct anon_vma *anon_vma;
1933 int ret = 1;
1935 BUG_ON(is_huge_zero_page(page));
1936 BUG_ON(!PageAnon(page));
1939 * The caller does not necessarily hold an mmap_sem that would prevent
1940 * the anon_vma disappearing so we first we take a reference to it
1941 * and then lock the anon_vma for write. This is similar to
1942 * page_lock_anon_vma_read except the write lock is taken to serialise
1943 * against parallel split or collapse operations.
1945 anon_vma = page_get_anon_vma(page);
1946 if (!anon_vma)
1947 goto out;
1948 anon_vma_lock_write(anon_vma);
1950 ret = 0;
1951 if (!PageCompound(page))
1952 goto out_unlock;
1954 BUG_ON(!PageSwapBacked(page));
1955 __split_huge_page(page, anon_vma, list);
1956 count_vm_event(THP_SPLIT);
1958 BUG_ON(PageCompound(page));
1959 out_unlock:
1960 anon_vma_unlock_write(anon_vma);
1961 put_anon_vma(anon_vma);
1962 out:
1963 return ret;
1966 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1968 int hugepage_madvise(struct vm_area_struct *vma,
1969 unsigned long *vm_flags, int advice)
1971 struct mm_struct *mm = vma->vm_mm;
1973 switch (advice) {
1974 case MADV_HUGEPAGE:
1976 * Be somewhat over-protective like KSM for now!
1978 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1979 return -EINVAL;
1980 if (mm->def_flags & VM_NOHUGEPAGE)
1981 return -EINVAL;
1982 *vm_flags &= ~VM_NOHUGEPAGE;
1983 *vm_flags |= VM_HUGEPAGE;
1985 * If the vma become good for khugepaged to scan,
1986 * register it here without waiting a page fault that
1987 * may not happen any time soon.
1989 if (unlikely(khugepaged_enter_vma_merge(vma)))
1990 return -ENOMEM;
1991 break;
1992 case MADV_NOHUGEPAGE:
1994 * Be somewhat over-protective like KSM for now!
1996 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1997 return -EINVAL;
1998 *vm_flags &= ~VM_HUGEPAGE;
1999 *vm_flags |= VM_NOHUGEPAGE;
2001 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
2002 * this vma even if we leave the mm registered in khugepaged if
2003 * it got registered before VM_NOHUGEPAGE was set.
2005 break;
2008 return 0;
2011 static int __init khugepaged_slab_init(void)
2013 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
2014 sizeof(struct mm_slot),
2015 __alignof__(struct mm_slot), 0, NULL);
2016 if (!mm_slot_cache)
2017 return -ENOMEM;
2019 return 0;
2022 static inline struct mm_slot *alloc_mm_slot(void)
2024 if (!mm_slot_cache) /* initialization failed */
2025 return NULL;
2026 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2029 static inline void free_mm_slot(struct mm_slot *mm_slot)
2031 kmem_cache_free(mm_slot_cache, mm_slot);
2034 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2036 struct mm_slot *mm_slot;
2038 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2039 if (mm == mm_slot->mm)
2040 return mm_slot;
2042 return NULL;
2045 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2046 struct mm_slot *mm_slot)
2048 mm_slot->mm = mm;
2049 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2052 static inline int khugepaged_test_exit(struct mm_struct *mm)
2054 return atomic_read(&mm->mm_users) == 0;
2057 int __khugepaged_enter(struct mm_struct *mm)
2059 struct mm_slot *mm_slot;
2060 int wakeup;
2062 mm_slot = alloc_mm_slot();
2063 if (!mm_slot)
2064 return -ENOMEM;
2066 /* __khugepaged_exit() must not run from under us */
2067 VM_BUG_ON(khugepaged_test_exit(mm));
2068 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2069 free_mm_slot(mm_slot);
2070 return 0;
2073 spin_lock(&khugepaged_mm_lock);
2074 insert_to_mm_slots_hash(mm, mm_slot);
2076 * Insert just behind the scanning cursor, to let the area settle
2077 * down a little.
2079 wakeup = list_empty(&khugepaged_scan.mm_head);
2080 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2081 spin_unlock(&khugepaged_mm_lock);
2083 atomic_inc(&mm->mm_count);
2084 if (wakeup)
2085 wake_up_interruptible(&khugepaged_wait);
2087 return 0;
2090 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2092 unsigned long hstart, hend;
2093 if (!vma->anon_vma)
2095 * Not yet faulted in so we will register later in the
2096 * page fault if needed.
2098 return 0;
2099 if (vma->vm_ops)
2100 /* khugepaged not yet working on file or special mappings */
2101 return 0;
2102 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2103 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2104 hend = vma->vm_end & HPAGE_PMD_MASK;
2105 if (hstart < hend)
2106 return khugepaged_enter(vma);
2107 return 0;
2110 void __khugepaged_exit(struct mm_struct *mm)
2112 struct mm_slot *mm_slot;
2113 int free = 0;
2115 spin_lock(&khugepaged_mm_lock);
2116 mm_slot = get_mm_slot(mm);
2117 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2118 hash_del(&mm_slot->hash);
2119 list_del(&mm_slot->mm_node);
2120 free = 1;
2122 spin_unlock(&khugepaged_mm_lock);
2124 if (free) {
2125 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2126 free_mm_slot(mm_slot);
2127 mmdrop(mm);
2128 } else if (mm_slot) {
2130 * This is required to serialize against
2131 * khugepaged_test_exit() (which is guaranteed to run
2132 * under mmap sem read mode). Stop here (after we
2133 * return all pagetables will be destroyed) until
2134 * khugepaged has finished working on the pagetables
2135 * under the mmap_sem.
2137 down_write(&mm->mmap_sem);
2138 up_write(&mm->mmap_sem);
2142 static void release_pte_page(struct page *page)
2144 /* 0 stands for page_is_file_cache(page) == false */
2145 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2146 unlock_page(page);
2147 putback_lru_page(page);
2150 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2152 while (--_pte >= pte) {
2153 pte_t pteval = *_pte;
2154 if (!pte_none(pteval))
2155 release_pte_page(pte_page(pteval));
2159 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2160 unsigned long address,
2161 pte_t *pte)
2163 struct page *page;
2164 pte_t *_pte;
2165 int referenced = 0, none = 0;
2166 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2167 _pte++, address += PAGE_SIZE) {
2168 pte_t pteval = *_pte;
2169 if (pte_none(pteval)) {
2170 if (++none <= khugepaged_max_ptes_none)
2171 continue;
2172 else
2173 goto out;
2175 if (!pte_present(pteval) || !pte_write(pteval))
2176 goto out;
2177 page = vm_normal_page(vma, address, pteval);
2178 if (unlikely(!page))
2179 goto out;
2181 VM_BUG_ON_PAGE(PageCompound(page), page);
2182 VM_BUG_ON_PAGE(!PageAnon(page), page);
2183 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2185 /* cannot use mapcount: can't collapse if there's a gup pin */
2186 if (page_count(page) != 1)
2187 goto out;
2189 * We can do it before isolate_lru_page because the
2190 * page can't be freed from under us. NOTE: PG_lock
2191 * is needed to serialize against split_huge_page
2192 * when invoked from the VM.
2194 if (!trylock_page(page))
2195 goto out;
2197 * Isolate the page to avoid collapsing an hugepage
2198 * currently in use by the VM.
2200 if (isolate_lru_page(page)) {
2201 unlock_page(page);
2202 goto out;
2204 /* 0 stands for page_is_file_cache(page) == false */
2205 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2206 VM_BUG_ON_PAGE(!PageLocked(page), page);
2207 VM_BUG_ON_PAGE(PageLRU(page), page);
2209 /* If there is no mapped pte young don't collapse the page */
2210 if (pte_young(pteval) || PageReferenced(page) ||
2211 mmu_notifier_test_young(vma->vm_mm, address))
2212 referenced = 1;
2214 if (likely(referenced))
2215 return 1;
2216 out:
2217 release_pte_pages(pte, _pte);
2218 return 0;
2221 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2222 struct vm_area_struct *vma,
2223 unsigned long address,
2224 spinlock_t *ptl)
2226 pte_t *_pte;
2227 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2228 pte_t pteval = *_pte;
2229 struct page *src_page;
2231 if (pte_none(pteval)) {
2232 clear_user_highpage(page, address);
2233 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2234 } else {
2235 src_page = pte_page(pteval);
2236 copy_user_highpage(page, src_page, address, vma);
2237 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2238 release_pte_page(src_page);
2240 * ptl mostly unnecessary, but preempt has to
2241 * be disabled to update the per-cpu stats
2242 * inside page_remove_rmap().
2244 spin_lock(ptl);
2246 * paravirt calls inside pte_clear here are
2247 * superfluous.
2249 pte_clear(vma->vm_mm, address, _pte);
2250 page_remove_rmap(src_page);
2251 spin_unlock(ptl);
2252 free_page_and_swap_cache(src_page);
2255 address += PAGE_SIZE;
2256 page++;
2260 static void khugepaged_alloc_sleep(void)
2262 wait_event_freezable_timeout(khugepaged_wait, false,
2263 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2266 static int khugepaged_node_load[MAX_NUMNODES];
2268 #ifdef CONFIG_NUMA
2269 static int khugepaged_find_target_node(void)
2271 static int last_khugepaged_target_node = NUMA_NO_NODE;
2272 int nid, target_node = 0, max_value = 0;
2274 /* find first node with max normal pages hit */
2275 for (nid = 0; nid < MAX_NUMNODES; nid++)
2276 if (khugepaged_node_load[nid] > max_value) {
2277 max_value = khugepaged_node_load[nid];
2278 target_node = nid;
2281 /* do some balance if several nodes have the same hit record */
2282 if (target_node <= last_khugepaged_target_node)
2283 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2284 nid++)
2285 if (max_value == khugepaged_node_load[nid]) {
2286 target_node = nid;
2287 break;
2290 last_khugepaged_target_node = target_node;
2291 return target_node;
2294 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2296 if (IS_ERR(*hpage)) {
2297 if (!*wait)
2298 return false;
2300 *wait = false;
2301 *hpage = NULL;
2302 khugepaged_alloc_sleep();
2303 } else if (*hpage) {
2304 put_page(*hpage);
2305 *hpage = NULL;
2308 return true;
2311 static struct page
2312 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2313 struct vm_area_struct *vma, unsigned long address,
2314 int node)
2316 VM_BUG_ON_PAGE(*hpage, *hpage);
2318 * Allocate the page while the vma is still valid and under
2319 * the mmap_sem read mode so there is no memory allocation
2320 * later when we take the mmap_sem in write mode. This is more
2321 * friendly behavior (OTOH it may actually hide bugs) to
2322 * filesystems in userland with daemons allocating memory in
2323 * the userland I/O paths. Allocating memory with the
2324 * mmap_sem in read mode is good idea also to allow greater
2325 * scalability.
2327 *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2328 khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2330 * After allocating the hugepage, release the mmap_sem read lock in
2331 * preparation for taking it in write mode.
2333 up_read(&mm->mmap_sem);
2334 if (unlikely(!*hpage)) {
2335 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2336 *hpage = ERR_PTR(-ENOMEM);
2337 return NULL;
2340 count_vm_event(THP_COLLAPSE_ALLOC);
2341 return *hpage;
2343 #else
2344 static int khugepaged_find_target_node(void)
2346 return 0;
2349 static inline struct page *alloc_hugepage(int defrag)
2351 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2352 HPAGE_PMD_ORDER);
2355 static struct page *khugepaged_alloc_hugepage(bool *wait)
2357 struct page *hpage;
2359 do {
2360 hpage = alloc_hugepage(khugepaged_defrag());
2361 if (!hpage) {
2362 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2363 if (!*wait)
2364 return NULL;
2366 *wait = false;
2367 khugepaged_alloc_sleep();
2368 } else
2369 count_vm_event(THP_COLLAPSE_ALLOC);
2370 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2372 return hpage;
2375 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2377 if (!*hpage)
2378 *hpage = khugepaged_alloc_hugepage(wait);
2380 if (unlikely(!*hpage))
2381 return false;
2383 return true;
2386 static struct page
2387 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2388 struct vm_area_struct *vma, unsigned long address,
2389 int node)
2391 up_read(&mm->mmap_sem);
2392 VM_BUG_ON(!*hpage);
2393 return *hpage;
2395 #endif
2397 static bool hugepage_vma_check(struct vm_area_struct *vma)
2399 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2400 (vma->vm_flags & VM_NOHUGEPAGE))
2401 return false;
2403 if (!vma->anon_vma || vma->vm_ops)
2404 return false;
2405 if (is_vma_temporary_stack(vma))
2406 return false;
2407 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2408 return true;
2411 static void collapse_huge_page(struct mm_struct *mm,
2412 unsigned long address,
2413 struct page **hpage,
2414 struct vm_area_struct *vma,
2415 int node)
2417 pmd_t *pmd, _pmd;
2418 pte_t *pte;
2419 pgtable_t pgtable;
2420 struct page *new_page;
2421 spinlock_t *pmd_ptl, *pte_ptl;
2422 int isolated;
2423 unsigned long hstart, hend;
2424 unsigned long mmun_start; /* For mmu_notifiers */
2425 unsigned long mmun_end; /* For mmu_notifiers */
2427 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2429 /* release the mmap_sem read lock. */
2430 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2431 if (!new_page)
2432 return;
2434 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2435 return;
2438 * Prevent all access to pagetables with the exception of
2439 * gup_fast later hanlded by the ptep_clear_flush and the VM
2440 * handled by the anon_vma lock + PG_lock.
2442 down_write(&mm->mmap_sem);
2443 if (unlikely(khugepaged_test_exit(mm)))
2444 goto out;
2446 vma = find_vma(mm, address);
2447 if (!vma)
2448 goto out;
2449 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2450 hend = vma->vm_end & HPAGE_PMD_MASK;
2451 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2452 goto out;
2453 if (!hugepage_vma_check(vma))
2454 goto out;
2455 pmd = mm_find_pmd(mm, address);
2456 if (!pmd)
2457 goto out;
2458 if (pmd_trans_huge(*pmd))
2459 goto out;
2461 anon_vma_lock_write(vma->anon_vma);
2463 pte = pte_offset_map(pmd, address);
2464 pte_ptl = pte_lockptr(mm, pmd);
2466 mmun_start = address;
2467 mmun_end = address + HPAGE_PMD_SIZE;
2468 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2469 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2471 * After this gup_fast can't run anymore. This also removes
2472 * any huge TLB entry from the CPU so we won't allow
2473 * huge and small TLB entries for the same virtual address
2474 * to avoid the risk of CPU bugs in that area.
2476 _pmd = pmdp_clear_flush(vma, address, pmd);
2477 spin_unlock(pmd_ptl);
2478 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2480 spin_lock(pte_ptl);
2481 isolated = __collapse_huge_page_isolate(vma, address, pte);
2482 spin_unlock(pte_ptl);
2484 if (unlikely(!isolated)) {
2485 pte_unmap(pte);
2486 spin_lock(pmd_ptl);
2487 BUG_ON(!pmd_none(*pmd));
2489 * We can only use set_pmd_at when establishing
2490 * hugepmds and never for establishing regular pmds that
2491 * points to regular pagetables. Use pmd_populate for that
2493 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2494 spin_unlock(pmd_ptl);
2495 anon_vma_unlock_write(vma->anon_vma);
2496 goto out;
2500 * All pages are isolated and locked so anon_vma rmap
2501 * can't run anymore.
2503 anon_vma_unlock_write(vma->anon_vma);
2505 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2506 pte_unmap(pte);
2507 __SetPageUptodate(new_page);
2508 pgtable = pmd_pgtable(_pmd);
2510 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2511 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2514 * spin_lock() below is not the equivalent of smp_wmb(), so
2515 * this is needed to avoid the copy_huge_page writes to become
2516 * visible after the set_pmd_at() write.
2518 smp_wmb();
2520 spin_lock(pmd_ptl);
2521 BUG_ON(!pmd_none(*pmd));
2522 page_add_new_anon_rmap(new_page, vma, address);
2523 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2524 set_pmd_at(mm, address, pmd, _pmd);
2525 update_mmu_cache_pmd(vma, address, pmd);
2526 spin_unlock(pmd_ptl);
2528 *hpage = NULL;
2530 khugepaged_pages_collapsed++;
2531 out_up_write:
2532 up_write(&mm->mmap_sem);
2533 return;
2535 out:
2536 mem_cgroup_uncharge_page(new_page);
2537 goto out_up_write;
2540 static int khugepaged_scan_pmd(struct mm_struct *mm,
2541 struct vm_area_struct *vma,
2542 unsigned long address,
2543 struct page **hpage)
2545 pmd_t *pmd;
2546 pte_t *pte, *_pte;
2547 int ret = 0, referenced = 0, none = 0;
2548 struct page *page;
2549 unsigned long _address;
2550 spinlock_t *ptl;
2551 int node = NUMA_NO_NODE;
2553 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2555 pmd = mm_find_pmd(mm, address);
2556 if (!pmd)
2557 goto out;
2558 if (pmd_trans_huge(*pmd))
2559 goto out;
2561 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2562 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2563 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2564 _pte++, _address += PAGE_SIZE) {
2565 pte_t pteval = *_pte;
2566 if (pte_none(pteval)) {
2567 if (++none <= khugepaged_max_ptes_none)
2568 continue;
2569 else
2570 goto out_unmap;
2572 if (!pte_present(pteval) || !pte_write(pteval))
2573 goto out_unmap;
2574 page = vm_normal_page(vma, _address, pteval);
2575 if (unlikely(!page))
2576 goto out_unmap;
2578 * Record which node the original page is from and save this
2579 * information to khugepaged_node_load[].
2580 * Khupaged will allocate hugepage from the node has the max
2581 * hit record.
2583 node = page_to_nid(page);
2584 khugepaged_node_load[node]++;
2585 VM_BUG_ON_PAGE(PageCompound(page), page);
2586 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2587 goto out_unmap;
2588 /* cannot use mapcount: can't collapse if there's a gup pin */
2589 if (page_count(page) != 1)
2590 goto out_unmap;
2591 if (pte_young(pteval) || PageReferenced(page) ||
2592 mmu_notifier_test_young(vma->vm_mm, address))
2593 referenced = 1;
2595 if (referenced)
2596 ret = 1;
2597 out_unmap:
2598 pte_unmap_unlock(pte, ptl);
2599 if (ret) {
2600 node = khugepaged_find_target_node();
2601 /* collapse_huge_page will return with the mmap_sem released */
2602 collapse_huge_page(mm, address, hpage, vma, node);
2604 out:
2605 return ret;
2608 static void collect_mm_slot(struct mm_slot *mm_slot)
2610 struct mm_struct *mm = mm_slot->mm;
2612 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2614 if (khugepaged_test_exit(mm)) {
2615 /* free mm_slot */
2616 hash_del(&mm_slot->hash);
2617 list_del(&mm_slot->mm_node);
2620 * Not strictly needed because the mm exited already.
2622 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2625 /* khugepaged_mm_lock actually not necessary for the below */
2626 free_mm_slot(mm_slot);
2627 mmdrop(mm);
2631 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2632 struct page **hpage)
2633 __releases(&khugepaged_mm_lock)
2634 __acquires(&khugepaged_mm_lock)
2636 struct mm_slot *mm_slot;
2637 struct mm_struct *mm;
2638 struct vm_area_struct *vma;
2639 int progress = 0;
2641 VM_BUG_ON(!pages);
2642 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2644 if (khugepaged_scan.mm_slot)
2645 mm_slot = khugepaged_scan.mm_slot;
2646 else {
2647 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2648 struct mm_slot, mm_node);
2649 khugepaged_scan.address = 0;
2650 khugepaged_scan.mm_slot = mm_slot;
2652 spin_unlock(&khugepaged_mm_lock);
2654 mm = mm_slot->mm;
2655 down_read(&mm->mmap_sem);
2656 if (unlikely(khugepaged_test_exit(mm)))
2657 vma = NULL;
2658 else
2659 vma = find_vma(mm, khugepaged_scan.address);
2661 progress++;
2662 for (; vma; vma = vma->vm_next) {
2663 unsigned long hstart, hend;
2665 cond_resched();
2666 if (unlikely(khugepaged_test_exit(mm))) {
2667 progress++;
2668 break;
2670 if (!hugepage_vma_check(vma)) {
2671 skip:
2672 progress++;
2673 continue;
2675 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2676 hend = vma->vm_end & HPAGE_PMD_MASK;
2677 if (hstart >= hend)
2678 goto skip;
2679 if (khugepaged_scan.address > hend)
2680 goto skip;
2681 if (khugepaged_scan.address < hstart)
2682 khugepaged_scan.address = hstart;
2683 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2685 while (khugepaged_scan.address < hend) {
2686 int ret;
2687 cond_resched();
2688 if (unlikely(khugepaged_test_exit(mm)))
2689 goto breakouterloop;
2691 VM_BUG_ON(khugepaged_scan.address < hstart ||
2692 khugepaged_scan.address + HPAGE_PMD_SIZE >
2693 hend);
2694 ret = khugepaged_scan_pmd(mm, vma,
2695 khugepaged_scan.address,
2696 hpage);
2697 /* move to next address */
2698 khugepaged_scan.address += HPAGE_PMD_SIZE;
2699 progress += HPAGE_PMD_NR;
2700 if (ret)
2701 /* we released mmap_sem so break loop */
2702 goto breakouterloop_mmap_sem;
2703 if (progress >= pages)
2704 goto breakouterloop;
2707 breakouterloop:
2708 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2709 breakouterloop_mmap_sem:
2711 spin_lock(&khugepaged_mm_lock);
2712 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2714 * Release the current mm_slot if this mm is about to die, or
2715 * if we scanned all vmas of this mm.
2717 if (khugepaged_test_exit(mm) || !vma) {
2719 * Make sure that if mm_users is reaching zero while
2720 * khugepaged runs here, khugepaged_exit will find
2721 * mm_slot not pointing to the exiting mm.
2723 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2724 khugepaged_scan.mm_slot = list_entry(
2725 mm_slot->mm_node.next,
2726 struct mm_slot, mm_node);
2727 khugepaged_scan.address = 0;
2728 } else {
2729 khugepaged_scan.mm_slot = NULL;
2730 khugepaged_full_scans++;
2733 collect_mm_slot(mm_slot);
2736 return progress;
2739 static int khugepaged_has_work(void)
2741 return !list_empty(&khugepaged_scan.mm_head) &&
2742 khugepaged_enabled();
2745 static int khugepaged_wait_event(void)
2747 return !list_empty(&khugepaged_scan.mm_head) ||
2748 kthread_should_stop();
2751 static void khugepaged_do_scan(void)
2753 struct page *hpage = NULL;
2754 unsigned int progress = 0, pass_through_head = 0;
2755 unsigned int pages = khugepaged_pages_to_scan;
2756 bool wait = true;
2758 barrier(); /* write khugepaged_pages_to_scan to local stack */
2760 while (progress < pages) {
2761 if (!khugepaged_prealloc_page(&hpage, &wait))
2762 break;
2764 cond_resched();
2766 if (unlikely(kthread_should_stop() || freezing(current)))
2767 break;
2769 spin_lock(&khugepaged_mm_lock);
2770 if (!khugepaged_scan.mm_slot)
2771 pass_through_head++;
2772 if (khugepaged_has_work() &&
2773 pass_through_head < 2)
2774 progress += khugepaged_scan_mm_slot(pages - progress,
2775 &hpage);
2776 else
2777 progress = pages;
2778 spin_unlock(&khugepaged_mm_lock);
2781 if (!IS_ERR_OR_NULL(hpage))
2782 put_page(hpage);
2785 static void khugepaged_wait_work(void)
2787 try_to_freeze();
2789 if (khugepaged_has_work()) {
2790 if (!khugepaged_scan_sleep_millisecs)
2791 return;
2793 wait_event_freezable_timeout(khugepaged_wait,
2794 kthread_should_stop(),
2795 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2796 return;
2799 if (khugepaged_enabled())
2800 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2803 static int khugepaged(void *none)
2805 struct mm_slot *mm_slot;
2807 set_freezable();
2808 set_user_nice(current, 19);
2810 while (!kthread_should_stop()) {
2811 khugepaged_do_scan();
2812 khugepaged_wait_work();
2815 spin_lock(&khugepaged_mm_lock);
2816 mm_slot = khugepaged_scan.mm_slot;
2817 khugepaged_scan.mm_slot = NULL;
2818 if (mm_slot)
2819 collect_mm_slot(mm_slot);
2820 spin_unlock(&khugepaged_mm_lock);
2821 return 0;
2824 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2825 unsigned long haddr, pmd_t *pmd)
2827 struct mm_struct *mm = vma->vm_mm;
2828 pgtable_t pgtable;
2829 pmd_t _pmd;
2830 int i;
2832 pmdp_clear_flush(vma, haddr, pmd);
2833 /* leave pmd empty until pte is filled */
2835 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2836 pmd_populate(mm, &_pmd, pgtable);
2838 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2839 pte_t *pte, entry;
2840 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2841 entry = pte_mkspecial(entry);
2842 pte = pte_offset_map(&_pmd, haddr);
2843 VM_BUG_ON(!pte_none(*pte));
2844 set_pte_at(mm, haddr, pte, entry);
2845 pte_unmap(pte);
2847 smp_wmb(); /* make pte visible before pmd */
2848 pmd_populate(mm, pmd, pgtable);
2849 put_huge_zero_page();
2852 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2853 pmd_t *pmd)
2855 spinlock_t *ptl;
2856 struct page *page;
2857 struct mm_struct *mm = vma->vm_mm;
2858 unsigned long haddr = address & HPAGE_PMD_MASK;
2859 unsigned long mmun_start; /* For mmu_notifiers */
2860 unsigned long mmun_end; /* For mmu_notifiers */
2862 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2864 mmun_start = haddr;
2865 mmun_end = haddr + HPAGE_PMD_SIZE;
2866 again:
2867 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2868 ptl = pmd_lock(mm, pmd);
2869 if (unlikely(!pmd_trans_huge(*pmd))) {
2870 spin_unlock(ptl);
2871 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2872 return;
2874 if (is_huge_zero_pmd(*pmd)) {
2875 __split_huge_zero_page_pmd(vma, haddr, pmd);
2876 spin_unlock(ptl);
2877 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2878 return;
2880 page = pmd_page(*pmd);
2881 VM_BUG_ON_PAGE(!page_count(page), page);
2882 get_page(page);
2883 spin_unlock(ptl);
2884 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2886 split_huge_page(page);
2888 put_page(page);
2891 * We don't always have down_write of mmap_sem here: a racing
2892 * do_huge_pmd_wp_page() might have copied-on-write to another
2893 * huge page before our split_huge_page() got the anon_vma lock.
2895 if (unlikely(pmd_trans_huge(*pmd)))
2896 goto again;
2899 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2900 pmd_t *pmd)
2902 struct vm_area_struct *vma;
2904 vma = find_vma(mm, address);
2905 BUG_ON(vma == NULL);
2906 split_huge_page_pmd(vma, address, pmd);
2909 static void split_huge_page_address(struct mm_struct *mm,
2910 unsigned long address)
2912 pmd_t *pmd;
2914 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2916 pmd = mm_find_pmd(mm, address);
2917 if (!pmd)
2918 return;
2920 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2921 * materialize from under us.
2923 split_huge_page_pmd_mm(mm, address, pmd);
2926 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2927 unsigned long start,
2928 unsigned long end,
2929 long adjust_next)
2932 * If the new start address isn't hpage aligned and it could
2933 * previously contain an hugepage: check if we need to split
2934 * an huge pmd.
2936 if (start & ~HPAGE_PMD_MASK &&
2937 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2938 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2939 split_huge_page_address(vma->vm_mm, start);
2942 * If the new end address isn't hpage aligned and it could
2943 * previously contain an hugepage: check if we need to split
2944 * an huge pmd.
2946 if (end & ~HPAGE_PMD_MASK &&
2947 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2948 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2949 split_huge_page_address(vma->vm_mm, end);
2952 * If we're also updating the vma->vm_next->vm_start, if the new
2953 * vm_next->vm_start isn't page aligned and it could previously
2954 * contain an hugepage: check if we need to split an huge pmd.
2956 if (adjust_next > 0) {
2957 struct vm_area_struct *next = vma->vm_next;
2958 unsigned long nstart = next->vm_start;
2959 nstart += adjust_next << PAGE_SHIFT;
2960 if (nstart & ~HPAGE_PMD_MASK &&
2961 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2962 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2963 split_huge_page_address(next->vm_mm, nstart);