Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux/fpc-iii.git] / mm / memory.c
blobbe6a0c0d4ae081d48edd26f09d37f67cc70b1c52
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
64 #include <asm/io.h>
65 #include <asm/pgalloc.h>
66 #include <asm/uaccess.h>
67 #include <asm/tlb.h>
68 #include <asm/tlbflush.h>
69 #include <asm/pgtable.h>
71 #include "internal.h"
73 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
74 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75 #endif
77 #ifndef CONFIG_NEED_MULTIPLE_NODES
78 /* use the per-pgdat data instead for discontigmem - mbligh */
79 unsigned long max_mapnr;
80 struct page *mem_map;
82 EXPORT_SYMBOL(max_mapnr);
83 EXPORT_SYMBOL(mem_map);
84 #endif
87 * A number of key systems in x86 including ioremap() rely on the assumption
88 * that high_memory defines the upper bound on direct map memory, then end
89 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
90 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
91 * and ZONE_HIGHMEM.
93 void * high_memory;
95 EXPORT_SYMBOL(high_memory);
98 * Randomize the address space (stacks, mmaps, brk, etc.).
100 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
101 * as ancient (libc5 based) binaries can segfault. )
103 int randomize_va_space __read_mostly =
104 #ifdef CONFIG_COMPAT_BRK
106 #else
108 #endif
110 static int __init disable_randmaps(char *s)
112 randomize_va_space = 0;
113 return 1;
115 __setup("norandmaps", disable_randmaps);
117 unsigned long zero_pfn __read_mostly;
118 unsigned long highest_memmap_pfn __read_mostly;
121 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
123 static int __init init_zero_pfn(void)
125 zero_pfn = page_to_pfn(ZERO_PAGE(0));
126 return 0;
128 core_initcall(init_zero_pfn);
131 #if defined(SPLIT_RSS_COUNTING)
133 void sync_mm_rss(struct mm_struct *mm)
135 int i;
137 for (i = 0; i < NR_MM_COUNTERS; i++) {
138 if (current->rss_stat.count[i]) {
139 add_mm_counter(mm, i, current->rss_stat.count[i]);
140 current->rss_stat.count[i] = 0;
143 current->rss_stat.events = 0;
146 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
148 struct task_struct *task = current;
150 if (likely(task->mm == mm))
151 task->rss_stat.count[member] += val;
152 else
153 add_mm_counter(mm, member, val);
155 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
156 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
158 /* sync counter once per 64 page faults */
159 #define TASK_RSS_EVENTS_THRESH (64)
160 static void check_sync_rss_stat(struct task_struct *task)
162 if (unlikely(task != current))
163 return;
164 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
165 sync_mm_rss(task->mm);
167 #else /* SPLIT_RSS_COUNTING */
169 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
170 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
172 static void check_sync_rss_stat(struct task_struct *task)
176 #endif /* SPLIT_RSS_COUNTING */
178 #ifdef HAVE_GENERIC_MMU_GATHER
180 static int tlb_next_batch(struct mmu_gather *tlb)
182 struct mmu_gather_batch *batch;
184 batch = tlb->active;
185 if (batch->next) {
186 tlb->active = batch->next;
187 return 1;
190 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
191 return 0;
193 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
194 if (!batch)
195 return 0;
197 tlb->batch_count++;
198 batch->next = NULL;
199 batch->nr = 0;
200 batch->max = MAX_GATHER_BATCH;
202 tlb->active->next = batch;
203 tlb->active = batch;
205 return 1;
208 /* tlb_gather_mmu
209 * Called to initialize an (on-stack) mmu_gather structure for page-table
210 * tear-down from @mm. The @fullmm argument is used when @mm is without
211 * users and we're going to destroy the full address space (exit/execve).
213 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
215 tlb->mm = mm;
217 /* Is it from 0 to ~0? */
218 tlb->fullmm = !(start | (end+1));
219 tlb->need_flush_all = 0;
220 tlb->start = start;
221 tlb->end = end;
222 tlb->need_flush = 0;
223 tlb->local.next = NULL;
224 tlb->local.nr = 0;
225 tlb->local.max = ARRAY_SIZE(tlb->__pages);
226 tlb->active = &tlb->local;
227 tlb->batch_count = 0;
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 tlb->batch = NULL;
231 #endif
234 void tlb_flush_mmu(struct mmu_gather *tlb)
236 struct mmu_gather_batch *batch;
238 if (!tlb->need_flush)
239 return;
240 tlb->need_flush = 0;
241 tlb_flush(tlb);
242 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
243 tlb_table_flush(tlb);
244 #endif
246 for (batch = &tlb->local; batch; batch = batch->next) {
247 free_pages_and_swap_cache(batch->pages, batch->nr);
248 batch->nr = 0;
250 tlb->active = &tlb->local;
253 /* tlb_finish_mmu
254 * Called at the end of the shootdown operation to free up any resources
255 * that were required.
257 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
259 struct mmu_gather_batch *batch, *next;
261 tlb_flush_mmu(tlb);
263 /* keep the page table cache within bounds */
264 check_pgt_cache();
266 for (batch = tlb->local.next; batch; batch = next) {
267 next = batch->next;
268 free_pages((unsigned long)batch, 0);
270 tlb->local.next = NULL;
273 /* __tlb_remove_page
274 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
275 * handling the additional races in SMP caused by other CPUs caching valid
276 * mappings in their TLBs. Returns the number of free page slots left.
277 * When out of page slots we must call tlb_flush_mmu().
279 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
281 struct mmu_gather_batch *batch;
283 VM_BUG_ON(!tlb->need_flush);
285 batch = tlb->active;
286 batch->pages[batch->nr++] = page;
287 if (batch->nr == batch->max) {
288 if (!tlb_next_batch(tlb))
289 return 0;
290 batch = tlb->active;
292 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
294 return batch->max - batch->nr;
297 #endif /* HAVE_GENERIC_MMU_GATHER */
299 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
302 * See the comment near struct mmu_table_batch.
305 static void tlb_remove_table_smp_sync(void *arg)
307 /* Simply deliver the interrupt */
310 static void tlb_remove_table_one(void *table)
313 * This isn't an RCU grace period and hence the page-tables cannot be
314 * assumed to be actually RCU-freed.
316 * It is however sufficient for software page-table walkers that rely on
317 * IRQ disabling. See the comment near struct mmu_table_batch.
319 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
320 __tlb_remove_table(table);
323 static void tlb_remove_table_rcu(struct rcu_head *head)
325 struct mmu_table_batch *batch;
326 int i;
328 batch = container_of(head, struct mmu_table_batch, rcu);
330 for (i = 0; i < batch->nr; i++)
331 __tlb_remove_table(batch->tables[i]);
333 free_page((unsigned long)batch);
336 void tlb_table_flush(struct mmu_gather *tlb)
338 struct mmu_table_batch **batch = &tlb->batch;
340 if (*batch) {
341 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
342 *batch = NULL;
346 void tlb_remove_table(struct mmu_gather *tlb, void *table)
348 struct mmu_table_batch **batch = &tlb->batch;
350 tlb->need_flush = 1;
353 * When there's less then two users of this mm there cannot be a
354 * concurrent page-table walk.
356 if (atomic_read(&tlb->mm->mm_users) < 2) {
357 __tlb_remove_table(table);
358 return;
361 if (*batch == NULL) {
362 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
363 if (*batch == NULL) {
364 tlb_remove_table_one(table);
365 return;
367 (*batch)->nr = 0;
369 (*batch)->tables[(*batch)->nr++] = table;
370 if ((*batch)->nr == MAX_TABLE_BATCH)
371 tlb_table_flush(tlb);
374 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
377 * Note: this doesn't free the actual pages themselves. That
378 * has been handled earlier when unmapping all the memory regions.
380 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
381 unsigned long addr)
383 pgtable_t token = pmd_pgtable(*pmd);
384 pmd_clear(pmd);
385 pte_free_tlb(tlb, token, addr);
386 atomic_long_dec(&tlb->mm->nr_ptes);
389 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
390 unsigned long addr, unsigned long end,
391 unsigned long floor, unsigned long ceiling)
393 pmd_t *pmd;
394 unsigned long next;
395 unsigned long start;
397 start = addr;
398 pmd = pmd_offset(pud, addr);
399 do {
400 next = pmd_addr_end(addr, end);
401 if (pmd_none_or_clear_bad(pmd))
402 continue;
403 free_pte_range(tlb, pmd, addr);
404 } while (pmd++, addr = next, addr != end);
406 start &= PUD_MASK;
407 if (start < floor)
408 return;
409 if (ceiling) {
410 ceiling &= PUD_MASK;
411 if (!ceiling)
412 return;
414 if (end - 1 > ceiling - 1)
415 return;
417 pmd = pmd_offset(pud, start);
418 pud_clear(pud);
419 pmd_free_tlb(tlb, pmd, start);
422 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
423 unsigned long addr, unsigned long end,
424 unsigned long floor, unsigned long ceiling)
426 pud_t *pud;
427 unsigned long next;
428 unsigned long start;
430 start = addr;
431 pud = pud_offset(pgd, addr);
432 do {
433 next = pud_addr_end(addr, end);
434 if (pud_none_or_clear_bad(pud))
435 continue;
436 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
437 } while (pud++, addr = next, addr != end);
439 start &= PGDIR_MASK;
440 if (start < floor)
441 return;
442 if (ceiling) {
443 ceiling &= PGDIR_MASK;
444 if (!ceiling)
445 return;
447 if (end - 1 > ceiling - 1)
448 return;
450 pud = pud_offset(pgd, start);
451 pgd_clear(pgd);
452 pud_free_tlb(tlb, pud, start);
456 * This function frees user-level page tables of a process.
458 void free_pgd_range(struct mmu_gather *tlb,
459 unsigned long addr, unsigned long end,
460 unsigned long floor, unsigned long ceiling)
462 pgd_t *pgd;
463 unsigned long next;
466 * The next few lines have given us lots of grief...
468 * Why are we testing PMD* at this top level? Because often
469 * there will be no work to do at all, and we'd prefer not to
470 * go all the way down to the bottom just to discover that.
472 * Why all these "- 1"s? Because 0 represents both the bottom
473 * of the address space and the top of it (using -1 for the
474 * top wouldn't help much: the masks would do the wrong thing).
475 * The rule is that addr 0 and floor 0 refer to the bottom of
476 * the address space, but end 0 and ceiling 0 refer to the top
477 * Comparisons need to use "end - 1" and "ceiling - 1" (though
478 * that end 0 case should be mythical).
480 * Wherever addr is brought up or ceiling brought down, we must
481 * be careful to reject "the opposite 0" before it confuses the
482 * subsequent tests. But what about where end is brought down
483 * by PMD_SIZE below? no, end can't go down to 0 there.
485 * Whereas we round start (addr) and ceiling down, by different
486 * masks at different levels, in order to test whether a table
487 * now has no other vmas using it, so can be freed, we don't
488 * bother to round floor or end up - the tests don't need that.
491 addr &= PMD_MASK;
492 if (addr < floor) {
493 addr += PMD_SIZE;
494 if (!addr)
495 return;
497 if (ceiling) {
498 ceiling &= PMD_MASK;
499 if (!ceiling)
500 return;
502 if (end - 1 > ceiling - 1)
503 end -= PMD_SIZE;
504 if (addr > end - 1)
505 return;
507 pgd = pgd_offset(tlb->mm, addr);
508 do {
509 next = pgd_addr_end(addr, end);
510 if (pgd_none_or_clear_bad(pgd))
511 continue;
512 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
513 } while (pgd++, addr = next, addr != end);
516 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
517 unsigned long floor, unsigned long ceiling)
519 while (vma) {
520 struct vm_area_struct *next = vma->vm_next;
521 unsigned long addr = vma->vm_start;
524 * Hide vma from rmap and truncate_pagecache before freeing
525 * pgtables
527 unlink_anon_vmas(vma);
528 unlink_file_vma(vma);
530 if (is_vm_hugetlb_page(vma)) {
531 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
532 floor, next? next->vm_start: ceiling);
533 } else {
535 * Optimization: gather nearby vmas into one call down
537 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
538 && !is_vm_hugetlb_page(next)) {
539 vma = next;
540 next = vma->vm_next;
541 unlink_anon_vmas(vma);
542 unlink_file_vma(vma);
544 free_pgd_range(tlb, addr, vma->vm_end,
545 floor, next? next->vm_start: ceiling);
547 vma = next;
551 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
552 pmd_t *pmd, unsigned long address)
554 spinlock_t *ptl;
555 pgtable_t new = pte_alloc_one(mm, address);
556 int wait_split_huge_page;
557 if (!new)
558 return -ENOMEM;
561 * Ensure all pte setup (eg. pte page lock and page clearing) are
562 * visible before the pte is made visible to other CPUs by being
563 * put into page tables.
565 * The other side of the story is the pointer chasing in the page
566 * table walking code (when walking the page table without locking;
567 * ie. most of the time). Fortunately, these data accesses consist
568 * of a chain of data-dependent loads, meaning most CPUs (alpha
569 * being the notable exception) will already guarantee loads are
570 * seen in-order. See the alpha page table accessors for the
571 * smp_read_barrier_depends() barriers in page table walking code.
573 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
575 ptl = pmd_lock(mm, pmd);
576 wait_split_huge_page = 0;
577 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
578 atomic_long_inc(&mm->nr_ptes);
579 pmd_populate(mm, pmd, new);
580 new = NULL;
581 } else if (unlikely(pmd_trans_splitting(*pmd)))
582 wait_split_huge_page = 1;
583 spin_unlock(ptl);
584 if (new)
585 pte_free(mm, new);
586 if (wait_split_huge_page)
587 wait_split_huge_page(vma->anon_vma, pmd);
588 return 0;
591 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
593 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
594 if (!new)
595 return -ENOMEM;
597 smp_wmb(); /* See comment in __pte_alloc */
599 spin_lock(&init_mm.page_table_lock);
600 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
601 pmd_populate_kernel(&init_mm, pmd, new);
602 new = NULL;
603 } else
604 VM_BUG_ON(pmd_trans_splitting(*pmd));
605 spin_unlock(&init_mm.page_table_lock);
606 if (new)
607 pte_free_kernel(&init_mm, new);
608 return 0;
611 static inline void init_rss_vec(int *rss)
613 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
616 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
618 int i;
620 if (current->mm == mm)
621 sync_mm_rss(mm);
622 for (i = 0; i < NR_MM_COUNTERS; i++)
623 if (rss[i])
624 add_mm_counter(mm, i, rss[i]);
628 * This function is called to print an error when a bad pte
629 * is found. For example, we might have a PFN-mapped pte in
630 * a region that doesn't allow it.
632 * The calling function must still handle the error.
634 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
635 pte_t pte, struct page *page)
637 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
638 pud_t *pud = pud_offset(pgd, addr);
639 pmd_t *pmd = pmd_offset(pud, addr);
640 struct address_space *mapping;
641 pgoff_t index;
642 static unsigned long resume;
643 static unsigned long nr_shown;
644 static unsigned long nr_unshown;
647 * Allow a burst of 60 reports, then keep quiet for that minute;
648 * or allow a steady drip of one report per second.
650 if (nr_shown == 60) {
651 if (time_before(jiffies, resume)) {
652 nr_unshown++;
653 return;
655 if (nr_unshown) {
656 printk(KERN_ALERT
657 "BUG: Bad page map: %lu messages suppressed\n",
658 nr_unshown);
659 nr_unshown = 0;
661 nr_shown = 0;
663 if (nr_shown++ == 0)
664 resume = jiffies + 60 * HZ;
666 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
667 index = linear_page_index(vma, addr);
669 printk(KERN_ALERT
670 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
671 current->comm,
672 (long long)pte_val(pte), (long long)pmd_val(*pmd));
673 if (page)
674 dump_page(page, "bad pte");
675 printk(KERN_ALERT
676 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
677 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
679 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
681 if (vma->vm_ops)
682 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
683 vma->vm_ops->fault);
684 if (vma->vm_file)
685 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
686 vma->vm_file->f_op->mmap);
687 dump_stack();
688 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
691 static inline bool is_cow_mapping(vm_flags_t flags)
693 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
697 * vm_normal_page -- This function gets the "struct page" associated with a pte.
699 * "Special" mappings do not wish to be associated with a "struct page" (either
700 * it doesn't exist, or it exists but they don't want to touch it). In this
701 * case, NULL is returned here. "Normal" mappings do have a struct page.
703 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
704 * pte bit, in which case this function is trivial. Secondly, an architecture
705 * may not have a spare pte bit, which requires a more complicated scheme,
706 * described below.
708 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
709 * special mapping (even if there are underlying and valid "struct pages").
710 * COWed pages of a VM_PFNMAP are always normal.
712 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
713 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
714 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
715 * mapping will always honor the rule
717 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
719 * And for normal mappings this is false.
721 * This restricts such mappings to be a linear translation from virtual address
722 * to pfn. To get around this restriction, we allow arbitrary mappings so long
723 * as the vma is not a COW mapping; in that case, we know that all ptes are
724 * special (because none can have been COWed).
727 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
729 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
730 * page" backing, however the difference is that _all_ pages with a struct
731 * page (that is, those where pfn_valid is true) are refcounted and considered
732 * normal pages by the VM. The disadvantage is that pages are refcounted
733 * (which can be slower and simply not an option for some PFNMAP users). The
734 * advantage is that we don't have to follow the strict linearity rule of
735 * PFNMAP mappings in order to support COWable mappings.
738 #ifdef __HAVE_ARCH_PTE_SPECIAL
739 # define HAVE_PTE_SPECIAL 1
740 #else
741 # define HAVE_PTE_SPECIAL 0
742 #endif
743 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
744 pte_t pte)
746 unsigned long pfn = pte_pfn(pte);
748 if (HAVE_PTE_SPECIAL) {
749 if (likely(!pte_special(pte)))
750 goto check_pfn;
751 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
752 return NULL;
753 if (!is_zero_pfn(pfn))
754 print_bad_pte(vma, addr, pte, NULL);
755 return NULL;
758 /* !HAVE_PTE_SPECIAL case follows: */
760 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
761 if (vma->vm_flags & VM_MIXEDMAP) {
762 if (!pfn_valid(pfn))
763 return NULL;
764 goto out;
765 } else {
766 unsigned long off;
767 off = (addr - vma->vm_start) >> PAGE_SHIFT;
768 if (pfn == vma->vm_pgoff + off)
769 return NULL;
770 if (!is_cow_mapping(vma->vm_flags))
771 return NULL;
775 if (is_zero_pfn(pfn))
776 return NULL;
777 check_pfn:
778 if (unlikely(pfn > highest_memmap_pfn)) {
779 print_bad_pte(vma, addr, pte, NULL);
780 return NULL;
784 * NOTE! We still have PageReserved() pages in the page tables.
785 * eg. VDSO mappings can cause them to exist.
787 out:
788 return pfn_to_page(pfn);
792 * copy one vm_area from one task to the other. Assumes the page tables
793 * already present in the new task to be cleared in the whole range
794 * covered by this vma.
797 static inline unsigned long
798 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
799 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
800 unsigned long addr, int *rss)
802 unsigned long vm_flags = vma->vm_flags;
803 pte_t pte = *src_pte;
804 struct page *page;
806 /* pte contains position in swap or file, so copy. */
807 if (unlikely(!pte_present(pte))) {
808 if (!pte_file(pte)) {
809 swp_entry_t entry = pte_to_swp_entry(pte);
811 if (swap_duplicate(entry) < 0)
812 return entry.val;
814 /* make sure dst_mm is on swapoff's mmlist. */
815 if (unlikely(list_empty(&dst_mm->mmlist))) {
816 spin_lock(&mmlist_lock);
817 if (list_empty(&dst_mm->mmlist))
818 list_add(&dst_mm->mmlist,
819 &src_mm->mmlist);
820 spin_unlock(&mmlist_lock);
822 if (likely(!non_swap_entry(entry)))
823 rss[MM_SWAPENTS]++;
824 else if (is_migration_entry(entry)) {
825 page = migration_entry_to_page(entry);
827 if (PageAnon(page))
828 rss[MM_ANONPAGES]++;
829 else
830 rss[MM_FILEPAGES]++;
832 if (is_write_migration_entry(entry) &&
833 is_cow_mapping(vm_flags)) {
835 * COW mappings require pages in both
836 * parent and child to be set to read.
838 make_migration_entry_read(&entry);
839 pte = swp_entry_to_pte(entry);
840 if (pte_swp_soft_dirty(*src_pte))
841 pte = pte_swp_mksoft_dirty(pte);
842 set_pte_at(src_mm, addr, src_pte, pte);
846 goto out_set_pte;
850 * If it's a COW mapping, write protect it both
851 * in the parent and the child
853 if (is_cow_mapping(vm_flags)) {
854 ptep_set_wrprotect(src_mm, addr, src_pte);
855 pte = pte_wrprotect(pte);
859 * If it's a shared mapping, mark it clean in
860 * the child
862 if (vm_flags & VM_SHARED)
863 pte = pte_mkclean(pte);
864 pte = pte_mkold(pte);
866 page = vm_normal_page(vma, addr, pte);
867 if (page) {
868 get_page(page);
869 page_dup_rmap(page);
870 if (PageAnon(page))
871 rss[MM_ANONPAGES]++;
872 else
873 rss[MM_FILEPAGES]++;
876 out_set_pte:
877 set_pte_at(dst_mm, addr, dst_pte, pte);
878 return 0;
881 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
882 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
883 unsigned long addr, unsigned long end)
885 pte_t *orig_src_pte, *orig_dst_pte;
886 pte_t *src_pte, *dst_pte;
887 spinlock_t *src_ptl, *dst_ptl;
888 int progress = 0;
889 int rss[NR_MM_COUNTERS];
890 swp_entry_t entry = (swp_entry_t){0};
892 again:
893 init_rss_vec(rss);
895 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
896 if (!dst_pte)
897 return -ENOMEM;
898 src_pte = pte_offset_map(src_pmd, addr);
899 src_ptl = pte_lockptr(src_mm, src_pmd);
900 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
901 orig_src_pte = src_pte;
902 orig_dst_pte = dst_pte;
903 arch_enter_lazy_mmu_mode();
905 do {
907 * We are holding two locks at this point - either of them
908 * could generate latencies in another task on another CPU.
910 if (progress >= 32) {
911 progress = 0;
912 if (need_resched() ||
913 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
914 break;
916 if (pte_none(*src_pte)) {
917 progress++;
918 continue;
920 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
921 vma, addr, rss);
922 if (entry.val)
923 break;
924 progress += 8;
925 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
927 arch_leave_lazy_mmu_mode();
928 spin_unlock(src_ptl);
929 pte_unmap(orig_src_pte);
930 add_mm_rss_vec(dst_mm, rss);
931 pte_unmap_unlock(orig_dst_pte, dst_ptl);
932 cond_resched();
934 if (entry.val) {
935 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
936 return -ENOMEM;
937 progress = 0;
939 if (addr != end)
940 goto again;
941 return 0;
944 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
945 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
946 unsigned long addr, unsigned long end)
948 pmd_t *src_pmd, *dst_pmd;
949 unsigned long next;
951 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
952 if (!dst_pmd)
953 return -ENOMEM;
954 src_pmd = pmd_offset(src_pud, addr);
955 do {
956 next = pmd_addr_end(addr, end);
957 if (pmd_trans_huge(*src_pmd)) {
958 int err;
959 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
960 err = copy_huge_pmd(dst_mm, src_mm,
961 dst_pmd, src_pmd, addr, vma);
962 if (err == -ENOMEM)
963 return -ENOMEM;
964 if (!err)
965 continue;
966 /* fall through */
968 if (pmd_none_or_clear_bad(src_pmd))
969 continue;
970 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
971 vma, addr, next))
972 return -ENOMEM;
973 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
974 return 0;
977 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
978 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
979 unsigned long addr, unsigned long end)
981 pud_t *src_pud, *dst_pud;
982 unsigned long next;
984 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
985 if (!dst_pud)
986 return -ENOMEM;
987 src_pud = pud_offset(src_pgd, addr);
988 do {
989 next = pud_addr_end(addr, end);
990 if (pud_none_or_clear_bad(src_pud))
991 continue;
992 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
993 vma, addr, next))
994 return -ENOMEM;
995 } while (dst_pud++, src_pud++, addr = next, addr != end);
996 return 0;
999 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1000 struct vm_area_struct *vma)
1002 pgd_t *src_pgd, *dst_pgd;
1003 unsigned long next;
1004 unsigned long addr = vma->vm_start;
1005 unsigned long end = vma->vm_end;
1006 unsigned long mmun_start; /* For mmu_notifiers */
1007 unsigned long mmun_end; /* For mmu_notifiers */
1008 bool is_cow;
1009 int ret;
1012 * Don't copy ptes where a page fault will fill them correctly.
1013 * Fork becomes much lighter when there are big shared or private
1014 * readonly mappings. The tradeoff is that copy_page_range is more
1015 * efficient than faulting.
1017 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1018 VM_PFNMAP | VM_MIXEDMAP))) {
1019 if (!vma->anon_vma)
1020 return 0;
1023 if (is_vm_hugetlb_page(vma))
1024 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1026 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1028 * We do not free on error cases below as remove_vma
1029 * gets called on error from higher level routine
1031 ret = track_pfn_copy(vma);
1032 if (ret)
1033 return ret;
1037 * We need to invalidate the secondary MMU mappings only when
1038 * there could be a permission downgrade on the ptes of the
1039 * parent mm. And a permission downgrade will only happen if
1040 * is_cow_mapping() returns true.
1042 is_cow = is_cow_mapping(vma->vm_flags);
1043 mmun_start = addr;
1044 mmun_end = end;
1045 if (is_cow)
1046 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1047 mmun_end);
1049 ret = 0;
1050 dst_pgd = pgd_offset(dst_mm, addr);
1051 src_pgd = pgd_offset(src_mm, addr);
1052 do {
1053 next = pgd_addr_end(addr, end);
1054 if (pgd_none_or_clear_bad(src_pgd))
1055 continue;
1056 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1057 vma, addr, next))) {
1058 ret = -ENOMEM;
1059 break;
1061 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1063 if (is_cow)
1064 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1065 return ret;
1068 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1069 struct vm_area_struct *vma, pmd_t *pmd,
1070 unsigned long addr, unsigned long end,
1071 struct zap_details *details)
1073 struct mm_struct *mm = tlb->mm;
1074 int force_flush = 0;
1075 int rss[NR_MM_COUNTERS];
1076 spinlock_t *ptl;
1077 pte_t *start_pte;
1078 pte_t *pte;
1080 again:
1081 init_rss_vec(rss);
1082 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1083 pte = start_pte;
1084 arch_enter_lazy_mmu_mode();
1085 do {
1086 pte_t ptent = *pte;
1087 if (pte_none(ptent)) {
1088 continue;
1091 if (pte_present(ptent)) {
1092 struct page *page;
1094 page = vm_normal_page(vma, addr, ptent);
1095 if (unlikely(details) && page) {
1097 * unmap_shared_mapping_pages() wants to
1098 * invalidate cache without truncating:
1099 * unmap shared but keep private pages.
1101 if (details->check_mapping &&
1102 details->check_mapping != page->mapping)
1103 continue;
1105 * Each page->index must be checked when
1106 * invalidating or truncating nonlinear.
1108 if (details->nonlinear_vma &&
1109 (page->index < details->first_index ||
1110 page->index > details->last_index))
1111 continue;
1113 ptent = ptep_get_and_clear_full(mm, addr, pte,
1114 tlb->fullmm);
1115 tlb_remove_tlb_entry(tlb, pte, addr);
1116 if (unlikely(!page))
1117 continue;
1118 if (unlikely(details) && details->nonlinear_vma
1119 && linear_page_index(details->nonlinear_vma,
1120 addr) != page->index) {
1121 pte_t ptfile = pgoff_to_pte(page->index);
1122 if (pte_soft_dirty(ptent))
1123 pte_file_mksoft_dirty(ptfile);
1124 set_pte_at(mm, addr, pte, ptfile);
1126 if (PageAnon(page))
1127 rss[MM_ANONPAGES]--;
1128 else {
1129 if (pte_dirty(ptent))
1130 set_page_dirty(page);
1131 if (pte_young(ptent) &&
1132 likely(!(vma->vm_flags & VM_SEQ_READ)))
1133 mark_page_accessed(page);
1134 rss[MM_FILEPAGES]--;
1136 page_remove_rmap(page);
1137 if (unlikely(page_mapcount(page) < 0))
1138 print_bad_pte(vma, addr, ptent, page);
1139 force_flush = !__tlb_remove_page(tlb, page);
1140 if (force_flush)
1141 break;
1142 continue;
1145 * If details->check_mapping, we leave swap entries;
1146 * if details->nonlinear_vma, we leave file entries.
1148 if (unlikely(details))
1149 continue;
1150 if (pte_file(ptent)) {
1151 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1152 print_bad_pte(vma, addr, ptent, NULL);
1153 } else {
1154 swp_entry_t entry = pte_to_swp_entry(ptent);
1156 if (!non_swap_entry(entry))
1157 rss[MM_SWAPENTS]--;
1158 else if (is_migration_entry(entry)) {
1159 struct page *page;
1161 page = migration_entry_to_page(entry);
1163 if (PageAnon(page))
1164 rss[MM_ANONPAGES]--;
1165 else
1166 rss[MM_FILEPAGES]--;
1168 if (unlikely(!free_swap_and_cache(entry)))
1169 print_bad_pte(vma, addr, ptent, NULL);
1171 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1172 } while (pte++, addr += PAGE_SIZE, addr != end);
1174 add_mm_rss_vec(mm, rss);
1175 arch_leave_lazy_mmu_mode();
1176 pte_unmap_unlock(start_pte, ptl);
1179 * mmu_gather ran out of room to batch pages, we break out of
1180 * the PTE lock to avoid doing the potential expensive TLB invalidate
1181 * and page-free while holding it.
1183 if (force_flush) {
1184 unsigned long old_end;
1186 force_flush = 0;
1189 * Flush the TLB just for the previous segment,
1190 * then update the range to be the remaining
1191 * TLB range.
1193 old_end = tlb->end;
1194 tlb->end = addr;
1196 tlb_flush_mmu(tlb);
1198 tlb->start = addr;
1199 tlb->end = old_end;
1201 if (addr != end)
1202 goto again;
1205 return addr;
1208 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1209 struct vm_area_struct *vma, pud_t *pud,
1210 unsigned long addr, unsigned long end,
1211 struct zap_details *details)
1213 pmd_t *pmd;
1214 unsigned long next;
1216 pmd = pmd_offset(pud, addr);
1217 do {
1218 next = pmd_addr_end(addr, end);
1219 if (pmd_trans_huge(*pmd)) {
1220 if (next - addr != HPAGE_PMD_SIZE) {
1221 #ifdef CONFIG_DEBUG_VM
1222 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1223 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1224 __func__, addr, end,
1225 vma->vm_start,
1226 vma->vm_end);
1227 BUG();
1229 #endif
1230 split_huge_page_pmd(vma, addr, pmd);
1231 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1232 goto next;
1233 /* fall through */
1236 * Here there can be other concurrent MADV_DONTNEED or
1237 * trans huge page faults running, and if the pmd is
1238 * none or trans huge it can change under us. This is
1239 * because MADV_DONTNEED holds the mmap_sem in read
1240 * mode.
1242 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1243 goto next;
1244 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1245 next:
1246 cond_resched();
1247 } while (pmd++, addr = next, addr != end);
1249 return addr;
1252 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1253 struct vm_area_struct *vma, pgd_t *pgd,
1254 unsigned long addr, unsigned long end,
1255 struct zap_details *details)
1257 pud_t *pud;
1258 unsigned long next;
1260 pud = pud_offset(pgd, addr);
1261 do {
1262 next = pud_addr_end(addr, end);
1263 if (pud_none_or_clear_bad(pud))
1264 continue;
1265 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1266 } while (pud++, addr = next, addr != end);
1268 return addr;
1271 static void unmap_page_range(struct mmu_gather *tlb,
1272 struct vm_area_struct *vma,
1273 unsigned long addr, unsigned long end,
1274 struct zap_details *details)
1276 pgd_t *pgd;
1277 unsigned long next;
1279 if (details && !details->check_mapping && !details->nonlinear_vma)
1280 details = NULL;
1282 BUG_ON(addr >= end);
1283 mem_cgroup_uncharge_start();
1284 tlb_start_vma(tlb, vma);
1285 pgd = pgd_offset(vma->vm_mm, addr);
1286 do {
1287 next = pgd_addr_end(addr, end);
1288 if (pgd_none_or_clear_bad(pgd))
1289 continue;
1290 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1291 } while (pgd++, addr = next, addr != end);
1292 tlb_end_vma(tlb, vma);
1293 mem_cgroup_uncharge_end();
1297 static void unmap_single_vma(struct mmu_gather *tlb,
1298 struct vm_area_struct *vma, unsigned long start_addr,
1299 unsigned long end_addr,
1300 struct zap_details *details)
1302 unsigned long start = max(vma->vm_start, start_addr);
1303 unsigned long end;
1305 if (start >= vma->vm_end)
1306 return;
1307 end = min(vma->vm_end, end_addr);
1308 if (end <= vma->vm_start)
1309 return;
1311 if (vma->vm_file)
1312 uprobe_munmap(vma, start, end);
1314 if (unlikely(vma->vm_flags & VM_PFNMAP))
1315 untrack_pfn(vma, 0, 0);
1317 if (start != end) {
1318 if (unlikely(is_vm_hugetlb_page(vma))) {
1320 * It is undesirable to test vma->vm_file as it
1321 * should be non-null for valid hugetlb area.
1322 * However, vm_file will be NULL in the error
1323 * cleanup path of do_mmap_pgoff. When
1324 * hugetlbfs ->mmap method fails,
1325 * do_mmap_pgoff() nullifies vma->vm_file
1326 * before calling this function to clean up.
1327 * Since no pte has actually been setup, it is
1328 * safe to do nothing in this case.
1330 if (vma->vm_file) {
1331 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1332 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1333 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1335 } else
1336 unmap_page_range(tlb, vma, start, end, details);
1341 * unmap_vmas - unmap a range of memory covered by a list of vma's
1342 * @tlb: address of the caller's struct mmu_gather
1343 * @vma: the starting vma
1344 * @start_addr: virtual address at which to start unmapping
1345 * @end_addr: virtual address at which to end unmapping
1347 * Unmap all pages in the vma list.
1349 * Only addresses between `start' and `end' will be unmapped.
1351 * The VMA list must be sorted in ascending virtual address order.
1353 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1354 * range after unmap_vmas() returns. So the only responsibility here is to
1355 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1356 * drops the lock and schedules.
1358 void unmap_vmas(struct mmu_gather *tlb,
1359 struct vm_area_struct *vma, unsigned long start_addr,
1360 unsigned long end_addr)
1362 struct mm_struct *mm = vma->vm_mm;
1364 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1365 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1366 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1367 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1371 * zap_page_range - remove user pages in a given range
1372 * @vma: vm_area_struct holding the applicable pages
1373 * @start: starting address of pages to zap
1374 * @size: number of bytes to zap
1375 * @details: details of nonlinear truncation or shared cache invalidation
1377 * Caller must protect the VMA list
1379 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1380 unsigned long size, struct zap_details *details)
1382 struct mm_struct *mm = vma->vm_mm;
1383 struct mmu_gather tlb;
1384 unsigned long end = start + size;
1386 lru_add_drain();
1387 tlb_gather_mmu(&tlb, mm, start, end);
1388 update_hiwater_rss(mm);
1389 mmu_notifier_invalidate_range_start(mm, start, end);
1390 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1391 unmap_single_vma(&tlb, vma, start, end, details);
1392 mmu_notifier_invalidate_range_end(mm, start, end);
1393 tlb_finish_mmu(&tlb, start, end);
1397 * zap_page_range_single - remove user pages in a given range
1398 * @vma: vm_area_struct holding the applicable pages
1399 * @address: starting address of pages to zap
1400 * @size: number of bytes to zap
1401 * @details: details of nonlinear truncation or shared cache invalidation
1403 * The range must fit into one VMA.
1405 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1406 unsigned long size, struct zap_details *details)
1408 struct mm_struct *mm = vma->vm_mm;
1409 struct mmu_gather tlb;
1410 unsigned long end = address + size;
1412 lru_add_drain();
1413 tlb_gather_mmu(&tlb, mm, address, end);
1414 update_hiwater_rss(mm);
1415 mmu_notifier_invalidate_range_start(mm, address, end);
1416 unmap_single_vma(&tlb, vma, address, end, details);
1417 mmu_notifier_invalidate_range_end(mm, address, end);
1418 tlb_finish_mmu(&tlb, address, end);
1422 * zap_vma_ptes - remove ptes mapping the vma
1423 * @vma: vm_area_struct holding ptes to be zapped
1424 * @address: starting address of pages to zap
1425 * @size: number of bytes to zap
1427 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1429 * The entire address range must be fully contained within the vma.
1431 * Returns 0 if successful.
1433 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1434 unsigned long size)
1436 if (address < vma->vm_start || address + size > vma->vm_end ||
1437 !(vma->vm_flags & VM_PFNMAP))
1438 return -1;
1439 zap_page_range_single(vma, address, size, NULL);
1440 return 0;
1442 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1445 * follow_page_mask - look up a page descriptor from a user-virtual address
1446 * @vma: vm_area_struct mapping @address
1447 * @address: virtual address to look up
1448 * @flags: flags modifying lookup behaviour
1449 * @page_mask: on output, *page_mask is set according to the size of the page
1451 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1453 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1454 * an error pointer if there is a mapping to something not represented
1455 * by a page descriptor (see also vm_normal_page()).
1457 struct page *follow_page_mask(struct vm_area_struct *vma,
1458 unsigned long address, unsigned int flags,
1459 unsigned int *page_mask)
1461 pgd_t *pgd;
1462 pud_t *pud;
1463 pmd_t *pmd;
1464 pte_t *ptep, pte;
1465 spinlock_t *ptl;
1466 struct page *page;
1467 struct mm_struct *mm = vma->vm_mm;
1469 *page_mask = 0;
1471 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1472 if (!IS_ERR(page)) {
1473 BUG_ON(flags & FOLL_GET);
1474 goto out;
1477 page = NULL;
1478 pgd = pgd_offset(mm, address);
1479 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1480 goto no_page_table;
1482 pud = pud_offset(pgd, address);
1483 if (pud_none(*pud))
1484 goto no_page_table;
1485 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1486 if (flags & FOLL_GET)
1487 goto out;
1488 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1489 goto out;
1491 if (unlikely(pud_bad(*pud)))
1492 goto no_page_table;
1494 pmd = pmd_offset(pud, address);
1495 if (pmd_none(*pmd))
1496 goto no_page_table;
1497 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1498 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1499 if (flags & FOLL_GET) {
1501 * Refcount on tail pages are not well-defined and
1502 * shouldn't be taken. The caller should handle a NULL
1503 * return when trying to follow tail pages.
1505 if (PageHead(page))
1506 get_page(page);
1507 else {
1508 page = NULL;
1509 goto out;
1512 goto out;
1514 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1515 goto no_page_table;
1516 if (pmd_trans_huge(*pmd)) {
1517 if (flags & FOLL_SPLIT) {
1518 split_huge_page_pmd(vma, address, pmd);
1519 goto split_fallthrough;
1521 ptl = pmd_lock(mm, pmd);
1522 if (likely(pmd_trans_huge(*pmd))) {
1523 if (unlikely(pmd_trans_splitting(*pmd))) {
1524 spin_unlock(ptl);
1525 wait_split_huge_page(vma->anon_vma, pmd);
1526 } else {
1527 page = follow_trans_huge_pmd(vma, address,
1528 pmd, flags);
1529 spin_unlock(ptl);
1530 *page_mask = HPAGE_PMD_NR - 1;
1531 goto out;
1533 } else
1534 spin_unlock(ptl);
1535 /* fall through */
1537 split_fallthrough:
1538 if (unlikely(pmd_bad(*pmd)))
1539 goto no_page_table;
1541 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1543 pte = *ptep;
1544 if (!pte_present(pte)) {
1545 swp_entry_t entry;
1547 * KSM's break_ksm() relies upon recognizing a ksm page
1548 * even while it is being migrated, so for that case we
1549 * need migration_entry_wait().
1551 if (likely(!(flags & FOLL_MIGRATION)))
1552 goto no_page;
1553 if (pte_none(pte) || pte_file(pte))
1554 goto no_page;
1555 entry = pte_to_swp_entry(pte);
1556 if (!is_migration_entry(entry))
1557 goto no_page;
1558 pte_unmap_unlock(ptep, ptl);
1559 migration_entry_wait(mm, pmd, address);
1560 goto split_fallthrough;
1562 if ((flags & FOLL_NUMA) && pte_numa(pte))
1563 goto no_page;
1564 if ((flags & FOLL_WRITE) && !pte_write(pte))
1565 goto unlock;
1567 page = vm_normal_page(vma, address, pte);
1568 if (unlikely(!page)) {
1569 if ((flags & FOLL_DUMP) ||
1570 !is_zero_pfn(pte_pfn(pte)))
1571 goto bad_page;
1572 page = pte_page(pte);
1575 if (flags & FOLL_GET)
1576 get_page_foll(page);
1577 if (flags & FOLL_TOUCH) {
1578 if ((flags & FOLL_WRITE) &&
1579 !pte_dirty(pte) && !PageDirty(page))
1580 set_page_dirty(page);
1582 * pte_mkyoung() would be more correct here, but atomic care
1583 * is needed to avoid losing the dirty bit: it is easier to use
1584 * mark_page_accessed().
1586 mark_page_accessed(page);
1588 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1590 * The preliminary mapping check is mainly to avoid the
1591 * pointless overhead of lock_page on the ZERO_PAGE
1592 * which might bounce very badly if there is contention.
1594 * If the page is already locked, we don't need to
1595 * handle it now - vmscan will handle it later if and
1596 * when it attempts to reclaim the page.
1598 if (page->mapping && trylock_page(page)) {
1599 lru_add_drain(); /* push cached pages to LRU */
1601 * Because we lock page here, and migration is
1602 * blocked by the pte's page reference, and we
1603 * know the page is still mapped, we don't even
1604 * need to check for file-cache page truncation.
1606 mlock_vma_page(page);
1607 unlock_page(page);
1610 unlock:
1611 pte_unmap_unlock(ptep, ptl);
1612 out:
1613 return page;
1615 bad_page:
1616 pte_unmap_unlock(ptep, ptl);
1617 return ERR_PTR(-EFAULT);
1619 no_page:
1620 pte_unmap_unlock(ptep, ptl);
1621 if (!pte_none(pte))
1622 return page;
1624 no_page_table:
1626 * When core dumping an enormous anonymous area that nobody
1627 * has touched so far, we don't want to allocate unnecessary pages or
1628 * page tables. Return error instead of NULL to skip handle_mm_fault,
1629 * then get_dump_page() will return NULL to leave a hole in the dump.
1630 * But we can only make this optimization where a hole would surely
1631 * be zero-filled if handle_mm_fault() actually did handle it.
1633 if ((flags & FOLL_DUMP) &&
1634 (!vma->vm_ops || !vma->vm_ops->fault))
1635 return ERR_PTR(-EFAULT);
1636 return page;
1639 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1641 return stack_guard_page_start(vma, addr) ||
1642 stack_guard_page_end(vma, addr+PAGE_SIZE);
1646 * __get_user_pages() - pin user pages in memory
1647 * @tsk: task_struct of target task
1648 * @mm: mm_struct of target mm
1649 * @start: starting user address
1650 * @nr_pages: number of pages from start to pin
1651 * @gup_flags: flags modifying pin behaviour
1652 * @pages: array that receives pointers to the pages pinned.
1653 * Should be at least nr_pages long. Or NULL, if caller
1654 * only intends to ensure the pages are faulted in.
1655 * @vmas: array of pointers to vmas corresponding to each page.
1656 * Or NULL if the caller does not require them.
1657 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1659 * Returns number of pages pinned. This may be fewer than the number
1660 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1661 * were pinned, returns -errno. Each page returned must be released
1662 * with a put_page() call when it is finished with. vmas will only
1663 * remain valid while mmap_sem is held.
1665 * Must be called with mmap_sem held for read or write.
1667 * __get_user_pages walks a process's page tables and takes a reference to
1668 * each struct page that each user address corresponds to at a given
1669 * instant. That is, it takes the page that would be accessed if a user
1670 * thread accesses the given user virtual address at that instant.
1672 * This does not guarantee that the page exists in the user mappings when
1673 * __get_user_pages returns, and there may even be a completely different
1674 * page there in some cases (eg. if mmapped pagecache has been invalidated
1675 * and subsequently re faulted). However it does guarantee that the page
1676 * won't be freed completely. And mostly callers simply care that the page
1677 * contains data that was valid *at some point in time*. Typically, an IO
1678 * or similar operation cannot guarantee anything stronger anyway because
1679 * locks can't be held over the syscall boundary.
1681 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1682 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1683 * appropriate) must be called after the page is finished with, and
1684 * before put_page is called.
1686 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1687 * or mmap_sem contention, and if waiting is needed to pin all pages,
1688 * *@nonblocking will be set to 0.
1690 * In most cases, get_user_pages or get_user_pages_fast should be used
1691 * instead of __get_user_pages. __get_user_pages should be used only if
1692 * you need some special @gup_flags.
1694 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1695 unsigned long start, unsigned long nr_pages,
1696 unsigned int gup_flags, struct page **pages,
1697 struct vm_area_struct **vmas, int *nonblocking)
1699 long i;
1700 unsigned long vm_flags;
1701 unsigned int page_mask;
1703 if (!nr_pages)
1704 return 0;
1706 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1709 * Require read or write permissions.
1710 * If FOLL_FORCE is set, we only require the "MAY" flags.
1712 vm_flags = (gup_flags & FOLL_WRITE) ?
1713 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1714 vm_flags &= (gup_flags & FOLL_FORCE) ?
1715 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1718 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1719 * would be called on PROT_NONE ranges. We must never invoke
1720 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1721 * page faults would unprotect the PROT_NONE ranges if
1722 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1723 * bitflag. So to avoid that, don't set FOLL_NUMA if
1724 * FOLL_FORCE is set.
1726 if (!(gup_flags & FOLL_FORCE))
1727 gup_flags |= FOLL_NUMA;
1729 i = 0;
1731 do {
1732 struct vm_area_struct *vma;
1734 vma = find_extend_vma(mm, start);
1735 if (!vma && in_gate_area(mm, start)) {
1736 unsigned long pg = start & PAGE_MASK;
1737 pgd_t *pgd;
1738 pud_t *pud;
1739 pmd_t *pmd;
1740 pte_t *pte;
1742 /* user gate pages are read-only */
1743 if (gup_flags & FOLL_WRITE)
1744 return i ? : -EFAULT;
1745 if (pg > TASK_SIZE)
1746 pgd = pgd_offset_k(pg);
1747 else
1748 pgd = pgd_offset_gate(mm, pg);
1749 BUG_ON(pgd_none(*pgd));
1750 pud = pud_offset(pgd, pg);
1751 BUG_ON(pud_none(*pud));
1752 pmd = pmd_offset(pud, pg);
1753 if (pmd_none(*pmd))
1754 return i ? : -EFAULT;
1755 VM_BUG_ON(pmd_trans_huge(*pmd));
1756 pte = pte_offset_map(pmd, pg);
1757 if (pte_none(*pte)) {
1758 pte_unmap(pte);
1759 return i ? : -EFAULT;
1761 vma = get_gate_vma(mm);
1762 if (pages) {
1763 struct page *page;
1765 page = vm_normal_page(vma, start, *pte);
1766 if (!page) {
1767 if (!(gup_flags & FOLL_DUMP) &&
1768 is_zero_pfn(pte_pfn(*pte)))
1769 page = pte_page(*pte);
1770 else {
1771 pte_unmap(pte);
1772 return i ? : -EFAULT;
1775 pages[i] = page;
1776 get_page(page);
1778 pte_unmap(pte);
1779 page_mask = 0;
1780 goto next_page;
1783 if (!vma ||
1784 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1785 !(vm_flags & vma->vm_flags))
1786 return i ? : -EFAULT;
1788 if (is_vm_hugetlb_page(vma)) {
1789 i = follow_hugetlb_page(mm, vma, pages, vmas,
1790 &start, &nr_pages, i, gup_flags);
1791 continue;
1794 do {
1795 struct page *page;
1796 unsigned int foll_flags = gup_flags;
1797 unsigned int page_increm;
1800 * If we have a pending SIGKILL, don't keep faulting
1801 * pages and potentially allocating memory.
1803 if (unlikely(fatal_signal_pending(current)))
1804 return i ? i : -ERESTARTSYS;
1806 cond_resched();
1807 while (!(page = follow_page_mask(vma, start,
1808 foll_flags, &page_mask))) {
1809 int ret;
1810 unsigned int fault_flags = 0;
1812 /* For mlock, just skip the stack guard page. */
1813 if (foll_flags & FOLL_MLOCK) {
1814 if (stack_guard_page(vma, start))
1815 goto next_page;
1817 if (foll_flags & FOLL_WRITE)
1818 fault_flags |= FAULT_FLAG_WRITE;
1819 if (nonblocking)
1820 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1821 if (foll_flags & FOLL_NOWAIT)
1822 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1824 ret = handle_mm_fault(mm, vma, start,
1825 fault_flags);
1827 if (ret & VM_FAULT_ERROR) {
1828 if (ret & VM_FAULT_OOM)
1829 return i ? i : -ENOMEM;
1830 if (ret & (VM_FAULT_HWPOISON |
1831 VM_FAULT_HWPOISON_LARGE)) {
1832 if (i)
1833 return i;
1834 else if (gup_flags & FOLL_HWPOISON)
1835 return -EHWPOISON;
1836 else
1837 return -EFAULT;
1839 if (ret & VM_FAULT_SIGBUS)
1840 return i ? i : -EFAULT;
1841 BUG();
1844 if (tsk) {
1845 if (ret & VM_FAULT_MAJOR)
1846 tsk->maj_flt++;
1847 else
1848 tsk->min_flt++;
1851 if (ret & VM_FAULT_RETRY) {
1852 if (nonblocking)
1853 *nonblocking = 0;
1854 return i;
1858 * The VM_FAULT_WRITE bit tells us that
1859 * do_wp_page has broken COW when necessary,
1860 * even if maybe_mkwrite decided not to set
1861 * pte_write. We can thus safely do subsequent
1862 * page lookups as if they were reads. But only
1863 * do so when looping for pte_write is futile:
1864 * in some cases userspace may also be wanting
1865 * to write to the gotten user page, which a
1866 * read fault here might prevent (a readonly
1867 * page might get reCOWed by userspace write).
1869 if ((ret & VM_FAULT_WRITE) &&
1870 !(vma->vm_flags & VM_WRITE))
1871 foll_flags &= ~FOLL_WRITE;
1873 cond_resched();
1875 if (IS_ERR(page))
1876 return i ? i : PTR_ERR(page);
1877 if (pages) {
1878 pages[i] = page;
1880 flush_anon_page(vma, page, start);
1881 flush_dcache_page(page);
1882 page_mask = 0;
1884 next_page:
1885 if (vmas) {
1886 vmas[i] = vma;
1887 page_mask = 0;
1889 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1890 if (page_increm > nr_pages)
1891 page_increm = nr_pages;
1892 i += page_increm;
1893 start += page_increm * PAGE_SIZE;
1894 nr_pages -= page_increm;
1895 } while (nr_pages && start < vma->vm_end);
1896 } while (nr_pages);
1897 return i;
1899 EXPORT_SYMBOL(__get_user_pages);
1902 * fixup_user_fault() - manually resolve a user page fault
1903 * @tsk: the task_struct to use for page fault accounting, or
1904 * NULL if faults are not to be recorded.
1905 * @mm: mm_struct of target mm
1906 * @address: user address
1907 * @fault_flags:flags to pass down to handle_mm_fault()
1909 * This is meant to be called in the specific scenario where for locking reasons
1910 * we try to access user memory in atomic context (within a pagefault_disable()
1911 * section), this returns -EFAULT, and we want to resolve the user fault before
1912 * trying again.
1914 * Typically this is meant to be used by the futex code.
1916 * The main difference with get_user_pages() is that this function will
1917 * unconditionally call handle_mm_fault() which will in turn perform all the
1918 * necessary SW fixup of the dirty and young bits in the PTE, while
1919 * handle_mm_fault() only guarantees to update these in the struct page.
1921 * This is important for some architectures where those bits also gate the
1922 * access permission to the page because they are maintained in software. On
1923 * such architectures, gup() will not be enough to make a subsequent access
1924 * succeed.
1926 * This should be called with the mm_sem held for read.
1928 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1929 unsigned long address, unsigned int fault_flags)
1931 struct vm_area_struct *vma;
1932 int ret;
1934 vma = find_extend_vma(mm, address);
1935 if (!vma || address < vma->vm_start)
1936 return -EFAULT;
1938 ret = handle_mm_fault(mm, vma, address, fault_flags);
1939 if (ret & VM_FAULT_ERROR) {
1940 if (ret & VM_FAULT_OOM)
1941 return -ENOMEM;
1942 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1943 return -EHWPOISON;
1944 if (ret & VM_FAULT_SIGBUS)
1945 return -EFAULT;
1946 BUG();
1948 if (tsk) {
1949 if (ret & VM_FAULT_MAJOR)
1950 tsk->maj_flt++;
1951 else
1952 tsk->min_flt++;
1954 return 0;
1958 * get_user_pages() - pin user pages in memory
1959 * @tsk: the task_struct to use for page fault accounting, or
1960 * NULL if faults are not to be recorded.
1961 * @mm: mm_struct of target mm
1962 * @start: starting user address
1963 * @nr_pages: number of pages from start to pin
1964 * @write: whether pages will be written to by the caller
1965 * @force: whether to force write access even if user mapping is
1966 * readonly. This will result in the page being COWed even
1967 * in MAP_SHARED mappings. You do not want this.
1968 * @pages: array that receives pointers to the pages pinned.
1969 * Should be at least nr_pages long. Or NULL, if caller
1970 * only intends to ensure the pages are faulted in.
1971 * @vmas: array of pointers to vmas corresponding to each page.
1972 * Or NULL if the caller does not require them.
1974 * Returns number of pages pinned. This may be fewer than the number
1975 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1976 * were pinned, returns -errno. Each page returned must be released
1977 * with a put_page() call when it is finished with. vmas will only
1978 * remain valid while mmap_sem is held.
1980 * Must be called with mmap_sem held for read or write.
1982 * get_user_pages walks a process's page tables and takes a reference to
1983 * each struct page that each user address corresponds to at a given
1984 * instant. That is, it takes the page that would be accessed if a user
1985 * thread accesses the given user virtual address at that instant.
1987 * This does not guarantee that the page exists in the user mappings when
1988 * get_user_pages returns, and there may even be a completely different
1989 * page there in some cases (eg. if mmapped pagecache has been invalidated
1990 * and subsequently re faulted). However it does guarantee that the page
1991 * won't be freed completely. And mostly callers simply care that the page
1992 * contains data that was valid *at some point in time*. Typically, an IO
1993 * or similar operation cannot guarantee anything stronger anyway because
1994 * locks can't be held over the syscall boundary.
1996 * If write=0, the page must not be written to. If the page is written to,
1997 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1998 * after the page is finished with, and before put_page is called.
2000 * get_user_pages is typically used for fewer-copy IO operations, to get a
2001 * handle on the memory by some means other than accesses via the user virtual
2002 * addresses. The pages may be submitted for DMA to devices or accessed via
2003 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2004 * use the correct cache flushing APIs.
2006 * See also get_user_pages_fast, for performance critical applications.
2008 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2009 unsigned long start, unsigned long nr_pages, int write,
2010 int force, struct page **pages, struct vm_area_struct **vmas)
2012 int flags = FOLL_TOUCH;
2014 if (pages)
2015 flags |= FOLL_GET;
2016 if (write)
2017 flags |= FOLL_WRITE;
2018 if (force)
2019 flags |= FOLL_FORCE;
2021 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2022 NULL);
2024 EXPORT_SYMBOL(get_user_pages);
2027 * get_dump_page() - pin user page in memory while writing it to core dump
2028 * @addr: user address
2030 * Returns struct page pointer of user page pinned for dump,
2031 * to be freed afterwards by page_cache_release() or put_page().
2033 * Returns NULL on any kind of failure - a hole must then be inserted into
2034 * the corefile, to preserve alignment with its headers; and also returns
2035 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2036 * allowing a hole to be left in the corefile to save diskspace.
2038 * Called without mmap_sem, but after all other threads have been killed.
2040 #ifdef CONFIG_ELF_CORE
2041 struct page *get_dump_page(unsigned long addr)
2043 struct vm_area_struct *vma;
2044 struct page *page;
2046 if (__get_user_pages(current, current->mm, addr, 1,
2047 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2048 NULL) < 1)
2049 return NULL;
2050 flush_cache_page(vma, addr, page_to_pfn(page));
2051 return page;
2053 #endif /* CONFIG_ELF_CORE */
2055 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2056 spinlock_t **ptl)
2058 pgd_t * pgd = pgd_offset(mm, addr);
2059 pud_t * pud = pud_alloc(mm, pgd, addr);
2060 if (pud) {
2061 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2062 if (pmd) {
2063 VM_BUG_ON(pmd_trans_huge(*pmd));
2064 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2067 return NULL;
2071 * This is the old fallback for page remapping.
2073 * For historical reasons, it only allows reserved pages. Only
2074 * old drivers should use this, and they needed to mark their
2075 * pages reserved for the old functions anyway.
2077 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2078 struct page *page, pgprot_t prot)
2080 struct mm_struct *mm = vma->vm_mm;
2081 int retval;
2082 pte_t *pte;
2083 spinlock_t *ptl;
2085 retval = -EINVAL;
2086 if (PageAnon(page))
2087 goto out;
2088 retval = -ENOMEM;
2089 flush_dcache_page(page);
2090 pte = get_locked_pte(mm, addr, &ptl);
2091 if (!pte)
2092 goto out;
2093 retval = -EBUSY;
2094 if (!pte_none(*pte))
2095 goto out_unlock;
2097 /* Ok, finally just insert the thing.. */
2098 get_page(page);
2099 inc_mm_counter_fast(mm, MM_FILEPAGES);
2100 page_add_file_rmap(page);
2101 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2103 retval = 0;
2104 pte_unmap_unlock(pte, ptl);
2105 return retval;
2106 out_unlock:
2107 pte_unmap_unlock(pte, ptl);
2108 out:
2109 return retval;
2113 * vm_insert_page - insert single page into user vma
2114 * @vma: user vma to map to
2115 * @addr: target user address of this page
2116 * @page: source kernel page
2118 * This allows drivers to insert individual pages they've allocated
2119 * into a user vma.
2121 * The page has to be a nice clean _individual_ kernel allocation.
2122 * If you allocate a compound page, you need to have marked it as
2123 * such (__GFP_COMP), or manually just split the page up yourself
2124 * (see split_page()).
2126 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2127 * took an arbitrary page protection parameter. This doesn't allow
2128 * that. Your vma protection will have to be set up correctly, which
2129 * means that if you want a shared writable mapping, you'd better
2130 * ask for a shared writable mapping!
2132 * The page does not need to be reserved.
2134 * Usually this function is called from f_op->mmap() handler
2135 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2136 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2137 * function from other places, for example from page-fault handler.
2139 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2140 struct page *page)
2142 if (addr < vma->vm_start || addr >= vma->vm_end)
2143 return -EFAULT;
2144 if (!page_count(page))
2145 return -EINVAL;
2146 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2147 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2148 BUG_ON(vma->vm_flags & VM_PFNMAP);
2149 vma->vm_flags |= VM_MIXEDMAP;
2151 return insert_page(vma, addr, page, vma->vm_page_prot);
2153 EXPORT_SYMBOL(vm_insert_page);
2155 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2156 unsigned long pfn, pgprot_t prot)
2158 struct mm_struct *mm = vma->vm_mm;
2159 int retval;
2160 pte_t *pte, entry;
2161 spinlock_t *ptl;
2163 retval = -ENOMEM;
2164 pte = get_locked_pte(mm, addr, &ptl);
2165 if (!pte)
2166 goto out;
2167 retval = -EBUSY;
2168 if (!pte_none(*pte))
2169 goto out_unlock;
2171 /* Ok, finally just insert the thing.. */
2172 entry = pte_mkspecial(pfn_pte(pfn, prot));
2173 set_pte_at(mm, addr, pte, entry);
2174 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2176 retval = 0;
2177 out_unlock:
2178 pte_unmap_unlock(pte, ptl);
2179 out:
2180 return retval;
2184 * vm_insert_pfn - insert single pfn into user vma
2185 * @vma: user vma to map to
2186 * @addr: target user address of this page
2187 * @pfn: source kernel pfn
2189 * Similar to vm_insert_page, this allows drivers to insert individual pages
2190 * they've allocated into a user vma. Same comments apply.
2192 * This function should only be called from a vm_ops->fault handler, and
2193 * in that case the handler should return NULL.
2195 * vma cannot be a COW mapping.
2197 * As this is called only for pages that do not currently exist, we
2198 * do not need to flush old virtual caches or the TLB.
2200 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2201 unsigned long pfn)
2203 int ret;
2204 pgprot_t pgprot = vma->vm_page_prot;
2206 * Technically, architectures with pte_special can avoid all these
2207 * restrictions (same for remap_pfn_range). However we would like
2208 * consistency in testing and feature parity among all, so we should
2209 * try to keep these invariants in place for everybody.
2211 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2212 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2213 (VM_PFNMAP|VM_MIXEDMAP));
2214 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2215 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2217 if (addr < vma->vm_start || addr >= vma->vm_end)
2218 return -EFAULT;
2219 if (track_pfn_insert(vma, &pgprot, pfn))
2220 return -EINVAL;
2222 ret = insert_pfn(vma, addr, pfn, pgprot);
2224 return ret;
2226 EXPORT_SYMBOL(vm_insert_pfn);
2228 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2229 unsigned long pfn)
2231 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2233 if (addr < vma->vm_start || addr >= vma->vm_end)
2234 return -EFAULT;
2237 * If we don't have pte special, then we have to use the pfn_valid()
2238 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2239 * refcount the page if pfn_valid is true (hence insert_page rather
2240 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2241 * without pte special, it would there be refcounted as a normal page.
2243 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2244 struct page *page;
2246 page = pfn_to_page(pfn);
2247 return insert_page(vma, addr, page, vma->vm_page_prot);
2249 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2251 EXPORT_SYMBOL(vm_insert_mixed);
2254 * maps a range of physical memory into the requested pages. the old
2255 * mappings are removed. any references to nonexistent pages results
2256 * in null mappings (currently treated as "copy-on-access")
2258 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2259 unsigned long addr, unsigned long end,
2260 unsigned long pfn, pgprot_t prot)
2262 pte_t *pte;
2263 spinlock_t *ptl;
2265 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2266 if (!pte)
2267 return -ENOMEM;
2268 arch_enter_lazy_mmu_mode();
2269 do {
2270 BUG_ON(!pte_none(*pte));
2271 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2272 pfn++;
2273 } while (pte++, addr += PAGE_SIZE, addr != end);
2274 arch_leave_lazy_mmu_mode();
2275 pte_unmap_unlock(pte - 1, ptl);
2276 return 0;
2279 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2280 unsigned long addr, unsigned long end,
2281 unsigned long pfn, pgprot_t prot)
2283 pmd_t *pmd;
2284 unsigned long next;
2286 pfn -= addr >> PAGE_SHIFT;
2287 pmd = pmd_alloc(mm, pud, addr);
2288 if (!pmd)
2289 return -ENOMEM;
2290 VM_BUG_ON(pmd_trans_huge(*pmd));
2291 do {
2292 next = pmd_addr_end(addr, end);
2293 if (remap_pte_range(mm, pmd, addr, next,
2294 pfn + (addr >> PAGE_SHIFT), prot))
2295 return -ENOMEM;
2296 } while (pmd++, addr = next, addr != end);
2297 return 0;
2300 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2301 unsigned long addr, unsigned long end,
2302 unsigned long pfn, pgprot_t prot)
2304 pud_t *pud;
2305 unsigned long next;
2307 pfn -= addr >> PAGE_SHIFT;
2308 pud = pud_alloc(mm, pgd, addr);
2309 if (!pud)
2310 return -ENOMEM;
2311 do {
2312 next = pud_addr_end(addr, end);
2313 if (remap_pmd_range(mm, pud, addr, next,
2314 pfn + (addr >> PAGE_SHIFT), prot))
2315 return -ENOMEM;
2316 } while (pud++, addr = next, addr != end);
2317 return 0;
2321 * remap_pfn_range - remap kernel memory to userspace
2322 * @vma: user vma to map to
2323 * @addr: target user address to start at
2324 * @pfn: physical address of kernel memory
2325 * @size: size of map area
2326 * @prot: page protection flags for this mapping
2328 * Note: this is only safe if the mm semaphore is held when called.
2330 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2331 unsigned long pfn, unsigned long size, pgprot_t prot)
2333 pgd_t *pgd;
2334 unsigned long next;
2335 unsigned long end = addr + PAGE_ALIGN(size);
2336 struct mm_struct *mm = vma->vm_mm;
2337 int err;
2340 * Physically remapped pages are special. Tell the
2341 * rest of the world about it:
2342 * VM_IO tells people not to look at these pages
2343 * (accesses can have side effects).
2344 * VM_PFNMAP tells the core MM that the base pages are just
2345 * raw PFN mappings, and do not have a "struct page" associated
2346 * with them.
2347 * VM_DONTEXPAND
2348 * Disable vma merging and expanding with mremap().
2349 * VM_DONTDUMP
2350 * Omit vma from core dump, even when VM_IO turned off.
2352 * There's a horrible special case to handle copy-on-write
2353 * behaviour that some programs depend on. We mark the "original"
2354 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2355 * See vm_normal_page() for details.
2357 if (is_cow_mapping(vma->vm_flags)) {
2358 if (addr != vma->vm_start || end != vma->vm_end)
2359 return -EINVAL;
2360 vma->vm_pgoff = pfn;
2363 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2364 if (err)
2365 return -EINVAL;
2367 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2369 BUG_ON(addr >= end);
2370 pfn -= addr >> PAGE_SHIFT;
2371 pgd = pgd_offset(mm, addr);
2372 flush_cache_range(vma, addr, end);
2373 do {
2374 next = pgd_addr_end(addr, end);
2375 err = remap_pud_range(mm, pgd, addr, next,
2376 pfn + (addr >> PAGE_SHIFT), prot);
2377 if (err)
2378 break;
2379 } while (pgd++, addr = next, addr != end);
2381 if (err)
2382 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2384 return err;
2386 EXPORT_SYMBOL(remap_pfn_range);
2389 * vm_iomap_memory - remap memory to userspace
2390 * @vma: user vma to map to
2391 * @start: start of area
2392 * @len: size of area
2394 * This is a simplified io_remap_pfn_range() for common driver use. The
2395 * driver just needs to give us the physical memory range to be mapped,
2396 * we'll figure out the rest from the vma information.
2398 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2399 * whatever write-combining details or similar.
2401 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2403 unsigned long vm_len, pfn, pages;
2405 /* Check that the physical memory area passed in looks valid */
2406 if (start + len < start)
2407 return -EINVAL;
2409 * You *really* shouldn't map things that aren't page-aligned,
2410 * but we've historically allowed it because IO memory might
2411 * just have smaller alignment.
2413 len += start & ~PAGE_MASK;
2414 pfn = start >> PAGE_SHIFT;
2415 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2416 if (pfn + pages < pfn)
2417 return -EINVAL;
2419 /* We start the mapping 'vm_pgoff' pages into the area */
2420 if (vma->vm_pgoff > pages)
2421 return -EINVAL;
2422 pfn += vma->vm_pgoff;
2423 pages -= vma->vm_pgoff;
2425 /* Can we fit all of the mapping? */
2426 vm_len = vma->vm_end - vma->vm_start;
2427 if (vm_len >> PAGE_SHIFT > pages)
2428 return -EINVAL;
2430 /* Ok, let it rip */
2431 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2433 EXPORT_SYMBOL(vm_iomap_memory);
2435 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2436 unsigned long addr, unsigned long end,
2437 pte_fn_t fn, void *data)
2439 pte_t *pte;
2440 int err;
2441 pgtable_t token;
2442 spinlock_t *uninitialized_var(ptl);
2444 pte = (mm == &init_mm) ?
2445 pte_alloc_kernel(pmd, addr) :
2446 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2447 if (!pte)
2448 return -ENOMEM;
2450 BUG_ON(pmd_huge(*pmd));
2452 arch_enter_lazy_mmu_mode();
2454 token = pmd_pgtable(*pmd);
2456 do {
2457 err = fn(pte++, token, addr, data);
2458 if (err)
2459 break;
2460 } while (addr += PAGE_SIZE, addr != end);
2462 arch_leave_lazy_mmu_mode();
2464 if (mm != &init_mm)
2465 pte_unmap_unlock(pte-1, ptl);
2466 return err;
2469 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2470 unsigned long addr, unsigned long end,
2471 pte_fn_t fn, void *data)
2473 pmd_t *pmd;
2474 unsigned long next;
2475 int err;
2477 BUG_ON(pud_huge(*pud));
2479 pmd = pmd_alloc(mm, pud, addr);
2480 if (!pmd)
2481 return -ENOMEM;
2482 do {
2483 next = pmd_addr_end(addr, end);
2484 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2485 if (err)
2486 break;
2487 } while (pmd++, addr = next, addr != end);
2488 return err;
2491 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2492 unsigned long addr, unsigned long end,
2493 pte_fn_t fn, void *data)
2495 pud_t *pud;
2496 unsigned long next;
2497 int err;
2499 pud = pud_alloc(mm, pgd, addr);
2500 if (!pud)
2501 return -ENOMEM;
2502 do {
2503 next = pud_addr_end(addr, end);
2504 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2505 if (err)
2506 break;
2507 } while (pud++, addr = next, addr != end);
2508 return err;
2512 * Scan a region of virtual memory, filling in page tables as necessary
2513 * and calling a provided function on each leaf page table.
2515 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2516 unsigned long size, pte_fn_t fn, void *data)
2518 pgd_t *pgd;
2519 unsigned long next;
2520 unsigned long end = addr + size;
2521 int err;
2523 BUG_ON(addr >= end);
2524 pgd = pgd_offset(mm, addr);
2525 do {
2526 next = pgd_addr_end(addr, end);
2527 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2528 if (err)
2529 break;
2530 } while (pgd++, addr = next, addr != end);
2532 return err;
2534 EXPORT_SYMBOL_GPL(apply_to_page_range);
2537 * handle_pte_fault chooses page fault handler according to an entry
2538 * which was read non-atomically. Before making any commitment, on
2539 * those architectures or configurations (e.g. i386 with PAE) which
2540 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2541 * must check under lock before unmapping the pte and proceeding
2542 * (but do_wp_page is only called after already making such a check;
2543 * and do_anonymous_page can safely check later on).
2545 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2546 pte_t *page_table, pte_t orig_pte)
2548 int same = 1;
2549 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2550 if (sizeof(pte_t) > sizeof(unsigned long)) {
2551 spinlock_t *ptl = pte_lockptr(mm, pmd);
2552 spin_lock(ptl);
2553 same = pte_same(*page_table, orig_pte);
2554 spin_unlock(ptl);
2556 #endif
2557 pte_unmap(page_table);
2558 return same;
2561 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2563 debug_dma_assert_idle(src);
2566 * If the source page was a PFN mapping, we don't have
2567 * a "struct page" for it. We do a best-effort copy by
2568 * just copying from the original user address. If that
2569 * fails, we just zero-fill it. Live with it.
2571 if (unlikely(!src)) {
2572 void *kaddr = kmap_atomic(dst);
2573 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2576 * This really shouldn't fail, because the page is there
2577 * in the page tables. But it might just be unreadable,
2578 * in which case we just give up and fill the result with
2579 * zeroes.
2581 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2582 clear_page(kaddr);
2583 kunmap_atomic(kaddr);
2584 flush_dcache_page(dst);
2585 } else
2586 copy_user_highpage(dst, src, va, vma);
2590 * This routine handles present pages, when users try to write
2591 * to a shared page. It is done by copying the page to a new address
2592 * and decrementing the shared-page counter for the old page.
2594 * Note that this routine assumes that the protection checks have been
2595 * done by the caller (the low-level page fault routine in most cases).
2596 * Thus we can safely just mark it writable once we've done any necessary
2597 * COW.
2599 * We also mark the page dirty at this point even though the page will
2600 * change only once the write actually happens. This avoids a few races,
2601 * and potentially makes it more efficient.
2603 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2604 * but allow concurrent faults), with pte both mapped and locked.
2605 * We return with mmap_sem still held, but pte unmapped and unlocked.
2607 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2608 unsigned long address, pte_t *page_table, pmd_t *pmd,
2609 spinlock_t *ptl, pte_t orig_pte)
2610 __releases(ptl)
2612 struct page *old_page, *new_page = NULL;
2613 pte_t entry;
2614 int ret = 0;
2615 int page_mkwrite = 0;
2616 struct page *dirty_page = NULL;
2617 unsigned long mmun_start = 0; /* For mmu_notifiers */
2618 unsigned long mmun_end = 0; /* For mmu_notifiers */
2620 old_page = vm_normal_page(vma, address, orig_pte);
2621 if (!old_page) {
2623 * VM_MIXEDMAP !pfn_valid() case
2625 * We should not cow pages in a shared writeable mapping.
2626 * Just mark the pages writable as we can't do any dirty
2627 * accounting on raw pfn maps.
2629 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2630 (VM_WRITE|VM_SHARED))
2631 goto reuse;
2632 goto gotten;
2636 * Take out anonymous pages first, anonymous shared vmas are
2637 * not dirty accountable.
2639 if (PageAnon(old_page) && !PageKsm(old_page)) {
2640 if (!trylock_page(old_page)) {
2641 page_cache_get(old_page);
2642 pte_unmap_unlock(page_table, ptl);
2643 lock_page(old_page);
2644 page_table = pte_offset_map_lock(mm, pmd, address,
2645 &ptl);
2646 if (!pte_same(*page_table, orig_pte)) {
2647 unlock_page(old_page);
2648 goto unlock;
2650 page_cache_release(old_page);
2652 if (reuse_swap_page(old_page)) {
2654 * The page is all ours. Move it to our anon_vma so
2655 * the rmap code will not search our parent or siblings.
2656 * Protected against the rmap code by the page lock.
2658 page_move_anon_rmap(old_page, vma, address);
2659 unlock_page(old_page);
2660 goto reuse;
2662 unlock_page(old_page);
2663 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2664 (VM_WRITE|VM_SHARED))) {
2666 * Only catch write-faults on shared writable pages,
2667 * read-only shared pages can get COWed by
2668 * get_user_pages(.write=1, .force=1).
2670 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2671 struct vm_fault vmf;
2672 int tmp;
2674 vmf.virtual_address = (void __user *)(address &
2675 PAGE_MASK);
2676 vmf.pgoff = old_page->index;
2677 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2678 vmf.page = old_page;
2681 * Notify the address space that the page is about to
2682 * become writable so that it can prohibit this or wait
2683 * for the page to get into an appropriate state.
2685 * We do this without the lock held, so that it can
2686 * sleep if it needs to.
2688 page_cache_get(old_page);
2689 pte_unmap_unlock(page_table, ptl);
2691 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2692 if (unlikely(tmp &
2693 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2694 ret = tmp;
2695 goto unwritable_page;
2697 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2698 lock_page(old_page);
2699 if (!old_page->mapping) {
2700 ret = 0; /* retry the fault */
2701 unlock_page(old_page);
2702 goto unwritable_page;
2704 } else
2705 VM_BUG_ON_PAGE(!PageLocked(old_page), old_page);
2708 * Since we dropped the lock we need to revalidate
2709 * the PTE as someone else may have changed it. If
2710 * they did, we just return, as we can count on the
2711 * MMU to tell us if they didn't also make it writable.
2713 page_table = pte_offset_map_lock(mm, pmd, address,
2714 &ptl);
2715 if (!pte_same(*page_table, orig_pte)) {
2716 unlock_page(old_page);
2717 goto unlock;
2720 page_mkwrite = 1;
2722 dirty_page = old_page;
2723 get_page(dirty_page);
2725 reuse:
2727 * Clear the pages cpupid information as the existing
2728 * information potentially belongs to a now completely
2729 * unrelated process.
2731 if (old_page)
2732 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2734 flush_cache_page(vma, address, pte_pfn(orig_pte));
2735 entry = pte_mkyoung(orig_pte);
2736 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2737 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2738 update_mmu_cache(vma, address, page_table);
2739 pte_unmap_unlock(page_table, ptl);
2740 ret |= VM_FAULT_WRITE;
2742 if (!dirty_page)
2743 return ret;
2746 * Yes, Virginia, this is actually required to prevent a race
2747 * with clear_page_dirty_for_io() from clearing the page dirty
2748 * bit after it clear all dirty ptes, but before a racing
2749 * do_wp_page installs a dirty pte.
2751 * __do_fault is protected similarly.
2753 if (!page_mkwrite) {
2754 wait_on_page_locked(dirty_page);
2755 set_page_dirty_balance(dirty_page, page_mkwrite);
2756 /* file_update_time outside page_lock */
2757 if (vma->vm_file)
2758 file_update_time(vma->vm_file);
2760 put_page(dirty_page);
2761 if (page_mkwrite) {
2762 struct address_space *mapping = dirty_page->mapping;
2764 set_page_dirty(dirty_page);
2765 unlock_page(dirty_page);
2766 page_cache_release(dirty_page);
2767 if (mapping) {
2769 * Some device drivers do not set page.mapping
2770 * but still dirty their pages
2772 balance_dirty_pages_ratelimited(mapping);
2776 return ret;
2780 * Ok, we need to copy. Oh, well..
2782 page_cache_get(old_page);
2783 gotten:
2784 pte_unmap_unlock(page_table, ptl);
2786 if (unlikely(anon_vma_prepare(vma)))
2787 goto oom;
2789 if (is_zero_pfn(pte_pfn(orig_pte))) {
2790 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2791 if (!new_page)
2792 goto oom;
2793 } else {
2794 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2795 if (!new_page)
2796 goto oom;
2797 cow_user_page(new_page, old_page, address, vma);
2799 __SetPageUptodate(new_page);
2801 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2802 goto oom_free_new;
2804 mmun_start = address & PAGE_MASK;
2805 mmun_end = mmun_start + PAGE_SIZE;
2806 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2809 * Re-check the pte - we dropped the lock
2811 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2812 if (likely(pte_same(*page_table, orig_pte))) {
2813 if (old_page) {
2814 if (!PageAnon(old_page)) {
2815 dec_mm_counter_fast(mm, MM_FILEPAGES);
2816 inc_mm_counter_fast(mm, MM_ANONPAGES);
2818 } else
2819 inc_mm_counter_fast(mm, MM_ANONPAGES);
2820 flush_cache_page(vma, address, pte_pfn(orig_pte));
2821 entry = mk_pte(new_page, vma->vm_page_prot);
2822 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2824 * Clear the pte entry and flush it first, before updating the
2825 * pte with the new entry. This will avoid a race condition
2826 * seen in the presence of one thread doing SMC and another
2827 * thread doing COW.
2829 ptep_clear_flush(vma, address, page_table);
2830 page_add_new_anon_rmap(new_page, vma, address);
2832 * We call the notify macro here because, when using secondary
2833 * mmu page tables (such as kvm shadow page tables), we want the
2834 * new page to be mapped directly into the secondary page table.
2836 set_pte_at_notify(mm, address, page_table, entry);
2837 update_mmu_cache(vma, address, page_table);
2838 if (old_page) {
2840 * Only after switching the pte to the new page may
2841 * we remove the mapcount here. Otherwise another
2842 * process may come and find the rmap count decremented
2843 * before the pte is switched to the new page, and
2844 * "reuse" the old page writing into it while our pte
2845 * here still points into it and can be read by other
2846 * threads.
2848 * The critical issue is to order this
2849 * page_remove_rmap with the ptp_clear_flush above.
2850 * Those stores are ordered by (if nothing else,)
2851 * the barrier present in the atomic_add_negative
2852 * in page_remove_rmap.
2854 * Then the TLB flush in ptep_clear_flush ensures that
2855 * no process can access the old page before the
2856 * decremented mapcount is visible. And the old page
2857 * cannot be reused until after the decremented
2858 * mapcount is visible. So transitively, TLBs to
2859 * old page will be flushed before it can be reused.
2861 page_remove_rmap(old_page);
2864 /* Free the old page.. */
2865 new_page = old_page;
2866 ret |= VM_FAULT_WRITE;
2867 } else
2868 mem_cgroup_uncharge_page(new_page);
2870 if (new_page)
2871 page_cache_release(new_page);
2872 unlock:
2873 pte_unmap_unlock(page_table, ptl);
2874 if (mmun_end > mmun_start)
2875 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2876 if (old_page) {
2878 * Don't let another task, with possibly unlocked vma,
2879 * keep the mlocked page.
2881 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2882 lock_page(old_page); /* LRU manipulation */
2883 munlock_vma_page(old_page);
2884 unlock_page(old_page);
2886 page_cache_release(old_page);
2888 return ret;
2889 oom_free_new:
2890 page_cache_release(new_page);
2891 oom:
2892 if (old_page)
2893 page_cache_release(old_page);
2894 return VM_FAULT_OOM;
2896 unwritable_page:
2897 page_cache_release(old_page);
2898 return ret;
2901 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2902 unsigned long start_addr, unsigned long end_addr,
2903 struct zap_details *details)
2905 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2908 static inline void unmap_mapping_range_tree(struct rb_root *root,
2909 struct zap_details *details)
2911 struct vm_area_struct *vma;
2912 pgoff_t vba, vea, zba, zea;
2914 vma_interval_tree_foreach(vma, root,
2915 details->first_index, details->last_index) {
2917 vba = vma->vm_pgoff;
2918 vea = vba + vma_pages(vma) - 1;
2919 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2920 zba = details->first_index;
2921 if (zba < vba)
2922 zba = vba;
2923 zea = details->last_index;
2924 if (zea > vea)
2925 zea = vea;
2927 unmap_mapping_range_vma(vma,
2928 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2929 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2930 details);
2934 static inline void unmap_mapping_range_list(struct list_head *head,
2935 struct zap_details *details)
2937 struct vm_area_struct *vma;
2940 * In nonlinear VMAs there is no correspondence between virtual address
2941 * offset and file offset. So we must perform an exhaustive search
2942 * across *all* the pages in each nonlinear VMA, not just the pages
2943 * whose virtual address lies outside the file truncation point.
2945 list_for_each_entry(vma, head, shared.nonlinear) {
2946 details->nonlinear_vma = vma;
2947 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2952 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2953 * @mapping: the address space containing mmaps to be unmapped.
2954 * @holebegin: byte in first page to unmap, relative to the start of
2955 * the underlying file. This will be rounded down to a PAGE_SIZE
2956 * boundary. Note that this is different from truncate_pagecache(), which
2957 * must keep the partial page. In contrast, we must get rid of
2958 * partial pages.
2959 * @holelen: size of prospective hole in bytes. This will be rounded
2960 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2961 * end of the file.
2962 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2963 * but 0 when invalidating pagecache, don't throw away private data.
2965 void unmap_mapping_range(struct address_space *mapping,
2966 loff_t const holebegin, loff_t const holelen, int even_cows)
2968 struct zap_details details;
2969 pgoff_t hba = holebegin >> PAGE_SHIFT;
2970 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2972 /* Check for overflow. */
2973 if (sizeof(holelen) > sizeof(hlen)) {
2974 long long holeend =
2975 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2976 if (holeend & ~(long long)ULONG_MAX)
2977 hlen = ULONG_MAX - hba + 1;
2980 details.check_mapping = even_cows? NULL: mapping;
2981 details.nonlinear_vma = NULL;
2982 details.first_index = hba;
2983 details.last_index = hba + hlen - 1;
2984 if (details.last_index < details.first_index)
2985 details.last_index = ULONG_MAX;
2988 mutex_lock(&mapping->i_mmap_mutex);
2989 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2990 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2991 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2992 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2993 mutex_unlock(&mapping->i_mmap_mutex);
2995 EXPORT_SYMBOL(unmap_mapping_range);
2998 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2999 * but allow concurrent faults), and pte mapped but not yet locked.
3000 * We return with mmap_sem still held, but pte unmapped and unlocked.
3002 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3003 unsigned long address, pte_t *page_table, pmd_t *pmd,
3004 unsigned int flags, pte_t orig_pte)
3006 spinlock_t *ptl;
3007 struct page *page, *swapcache;
3008 swp_entry_t entry;
3009 pte_t pte;
3010 int locked;
3011 struct mem_cgroup *ptr;
3012 int exclusive = 0;
3013 int ret = 0;
3015 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3016 goto out;
3018 entry = pte_to_swp_entry(orig_pte);
3019 if (unlikely(non_swap_entry(entry))) {
3020 if (is_migration_entry(entry)) {
3021 migration_entry_wait(mm, pmd, address);
3022 } else if (is_hwpoison_entry(entry)) {
3023 ret = VM_FAULT_HWPOISON;
3024 } else {
3025 print_bad_pte(vma, address, orig_pte, NULL);
3026 ret = VM_FAULT_SIGBUS;
3028 goto out;
3030 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3031 page = lookup_swap_cache(entry);
3032 if (!page) {
3033 page = swapin_readahead(entry,
3034 GFP_HIGHUSER_MOVABLE, vma, address);
3035 if (!page) {
3037 * Back out if somebody else faulted in this pte
3038 * while we released the pte lock.
3040 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3041 if (likely(pte_same(*page_table, orig_pte)))
3042 ret = VM_FAULT_OOM;
3043 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3044 goto unlock;
3047 /* Had to read the page from swap area: Major fault */
3048 ret = VM_FAULT_MAJOR;
3049 count_vm_event(PGMAJFAULT);
3050 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3051 } else if (PageHWPoison(page)) {
3053 * hwpoisoned dirty swapcache pages are kept for killing
3054 * owner processes (which may be unknown at hwpoison time)
3056 ret = VM_FAULT_HWPOISON;
3057 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3058 swapcache = page;
3059 goto out_release;
3062 swapcache = page;
3063 locked = lock_page_or_retry(page, mm, flags);
3065 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3066 if (!locked) {
3067 ret |= VM_FAULT_RETRY;
3068 goto out_release;
3072 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3073 * release the swapcache from under us. The page pin, and pte_same
3074 * test below, are not enough to exclude that. Even if it is still
3075 * swapcache, we need to check that the page's swap has not changed.
3077 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3078 goto out_page;
3080 page = ksm_might_need_to_copy(page, vma, address);
3081 if (unlikely(!page)) {
3082 ret = VM_FAULT_OOM;
3083 page = swapcache;
3084 goto out_page;
3087 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3088 ret = VM_FAULT_OOM;
3089 goto out_page;
3093 * Back out if somebody else already faulted in this pte.
3095 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3096 if (unlikely(!pte_same(*page_table, orig_pte)))
3097 goto out_nomap;
3099 if (unlikely(!PageUptodate(page))) {
3100 ret = VM_FAULT_SIGBUS;
3101 goto out_nomap;
3105 * The page isn't present yet, go ahead with the fault.
3107 * Be careful about the sequence of operations here.
3108 * To get its accounting right, reuse_swap_page() must be called
3109 * while the page is counted on swap but not yet in mapcount i.e.
3110 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3111 * must be called after the swap_free(), or it will never succeed.
3112 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3113 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3114 * in page->private. In this case, a record in swap_cgroup is silently
3115 * discarded at swap_free().
3118 inc_mm_counter_fast(mm, MM_ANONPAGES);
3119 dec_mm_counter_fast(mm, MM_SWAPENTS);
3120 pte = mk_pte(page, vma->vm_page_prot);
3121 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3122 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3123 flags &= ~FAULT_FLAG_WRITE;
3124 ret |= VM_FAULT_WRITE;
3125 exclusive = 1;
3127 flush_icache_page(vma, page);
3128 if (pte_swp_soft_dirty(orig_pte))
3129 pte = pte_mksoft_dirty(pte);
3130 set_pte_at(mm, address, page_table, pte);
3131 if (page == swapcache)
3132 do_page_add_anon_rmap(page, vma, address, exclusive);
3133 else /* ksm created a completely new copy */
3134 page_add_new_anon_rmap(page, vma, address);
3135 /* It's better to call commit-charge after rmap is established */
3136 mem_cgroup_commit_charge_swapin(page, ptr);
3138 swap_free(entry);
3139 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3140 try_to_free_swap(page);
3141 unlock_page(page);
3142 if (page != swapcache) {
3144 * Hold the lock to avoid the swap entry to be reused
3145 * until we take the PT lock for the pte_same() check
3146 * (to avoid false positives from pte_same). For
3147 * further safety release the lock after the swap_free
3148 * so that the swap count won't change under a
3149 * parallel locked swapcache.
3151 unlock_page(swapcache);
3152 page_cache_release(swapcache);
3155 if (flags & FAULT_FLAG_WRITE) {
3156 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3157 if (ret & VM_FAULT_ERROR)
3158 ret &= VM_FAULT_ERROR;
3159 goto out;
3162 /* No need to invalidate - it was non-present before */
3163 update_mmu_cache(vma, address, page_table);
3164 unlock:
3165 pte_unmap_unlock(page_table, ptl);
3166 out:
3167 return ret;
3168 out_nomap:
3169 mem_cgroup_cancel_charge_swapin(ptr);
3170 pte_unmap_unlock(page_table, ptl);
3171 out_page:
3172 unlock_page(page);
3173 out_release:
3174 page_cache_release(page);
3175 if (page != swapcache) {
3176 unlock_page(swapcache);
3177 page_cache_release(swapcache);
3179 return ret;
3183 * This is like a special single-page "expand_{down|up}wards()",
3184 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3185 * doesn't hit another vma.
3187 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3189 address &= PAGE_MASK;
3190 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3191 struct vm_area_struct *prev = vma->vm_prev;
3194 * Is there a mapping abutting this one below?
3196 * That's only ok if it's the same stack mapping
3197 * that has gotten split..
3199 if (prev && prev->vm_end == address)
3200 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3202 expand_downwards(vma, address - PAGE_SIZE);
3204 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3205 struct vm_area_struct *next = vma->vm_next;
3207 /* As VM_GROWSDOWN but s/below/above/ */
3208 if (next && next->vm_start == address + PAGE_SIZE)
3209 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3211 expand_upwards(vma, address + PAGE_SIZE);
3213 return 0;
3217 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3218 * but allow concurrent faults), and pte mapped but not yet locked.
3219 * We return with mmap_sem still held, but pte unmapped and unlocked.
3221 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3222 unsigned long address, pte_t *page_table, pmd_t *pmd,
3223 unsigned int flags)
3225 struct page *page;
3226 spinlock_t *ptl;
3227 pte_t entry;
3229 pte_unmap(page_table);
3231 /* Check if we need to add a guard page to the stack */
3232 if (check_stack_guard_page(vma, address) < 0)
3233 return VM_FAULT_SIGBUS;
3235 /* Use the zero-page for reads */
3236 if (!(flags & FAULT_FLAG_WRITE)) {
3237 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3238 vma->vm_page_prot));
3239 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3240 if (!pte_none(*page_table))
3241 goto unlock;
3242 goto setpte;
3245 /* Allocate our own private page. */
3246 if (unlikely(anon_vma_prepare(vma)))
3247 goto oom;
3248 page = alloc_zeroed_user_highpage_movable(vma, address);
3249 if (!page)
3250 goto oom;
3252 * The memory barrier inside __SetPageUptodate makes sure that
3253 * preceeding stores to the page contents become visible before
3254 * the set_pte_at() write.
3256 __SetPageUptodate(page);
3258 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3259 goto oom_free_page;
3261 entry = mk_pte(page, vma->vm_page_prot);
3262 if (vma->vm_flags & VM_WRITE)
3263 entry = pte_mkwrite(pte_mkdirty(entry));
3265 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3266 if (!pte_none(*page_table))
3267 goto release;
3269 inc_mm_counter_fast(mm, MM_ANONPAGES);
3270 page_add_new_anon_rmap(page, vma, address);
3271 setpte:
3272 set_pte_at(mm, address, page_table, entry);
3274 /* No need to invalidate - it was non-present before */
3275 update_mmu_cache(vma, address, page_table);
3276 unlock:
3277 pte_unmap_unlock(page_table, ptl);
3278 return 0;
3279 release:
3280 mem_cgroup_uncharge_page(page);
3281 page_cache_release(page);
3282 goto unlock;
3283 oom_free_page:
3284 page_cache_release(page);
3285 oom:
3286 return VM_FAULT_OOM;
3290 * __do_fault() tries to create a new page mapping. It aggressively
3291 * tries to share with existing pages, but makes a separate copy if
3292 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3293 * the next page fault.
3295 * As this is called only for pages that do not currently exist, we
3296 * do not need to flush old virtual caches or the TLB.
3298 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3299 * but allow concurrent faults), and pte neither mapped nor locked.
3300 * We return with mmap_sem still held, but pte unmapped and unlocked.
3302 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3303 unsigned long address, pmd_t *pmd,
3304 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3306 pte_t *page_table;
3307 spinlock_t *ptl;
3308 struct page *page;
3309 struct page *cow_page;
3310 pte_t entry;
3311 int anon = 0;
3312 struct page *dirty_page = NULL;
3313 struct vm_fault vmf;
3314 int ret;
3315 int page_mkwrite = 0;
3318 * If we do COW later, allocate page befor taking lock_page()
3319 * on the file cache page. This will reduce lock holding time.
3321 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3323 if (unlikely(anon_vma_prepare(vma)))
3324 return VM_FAULT_OOM;
3326 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3327 if (!cow_page)
3328 return VM_FAULT_OOM;
3330 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3331 page_cache_release(cow_page);
3332 return VM_FAULT_OOM;
3334 } else
3335 cow_page = NULL;
3337 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3338 vmf.pgoff = pgoff;
3339 vmf.flags = flags;
3340 vmf.page = NULL;
3342 ret = vma->vm_ops->fault(vma, &vmf);
3343 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3344 VM_FAULT_RETRY)))
3345 goto uncharge_out;
3347 if (unlikely(PageHWPoison(vmf.page))) {
3348 if (ret & VM_FAULT_LOCKED)
3349 unlock_page(vmf.page);
3350 ret = VM_FAULT_HWPOISON;
3351 goto uncharge_out;
3355 * For consistency in subsequent calls, make the faulted page always
3356 * locked.
3358 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3359 lock_page(vmf.page);
3360 else
3361 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
3364 * Should we do an early C-O-W break?
3366 page = vmf.page;
3367 if (flags & FAULT_FLAG_WRITE) {
3368 if (!(vma->vm_flags & VM_SHARED)) {
3369 page = cow_page;
3370 anon = 1;
3371 copy_user_highpage(page, vmf.page, address, vma);
3372 __SetPageUptodate(page);
3373 } else {
3375 * If the page will be shareable, see if the backing
3376 * address space wants to know that the page is about
3377 * to become writable
3379 if (vma->vm_ops->page_mkwrite) {
3380 int tmp;
3382 unlock_page(page);
3383 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3384 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3385 if (unlikely(tmp &
3386 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3387 ret = tmp;
3388 goto unwritable_page;
3390 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3391 lock_page(page);
3392 if (!page->mapping) {
3393 ret = 0; /* retry the fault */
3394 unlock_page(page);
3395 goto unwritable_page;
3397 } else
3398 VM_BUG_ON_PAGE(!PageLocked(page), page);
3399 page_mkwrite = 1;
3405 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3408 * This silly early PAGE_DIRTY setting removes a race
3409 * due to the bad i386 page protection. But it's valid
3410 * for other architectures too.
3412 * Note that if FAULT_FLAG_WRITE is set, we either now have
3413 * an exclusive copy of the page, or this is a shared mapping,
3414 * so we can make it writable and dirty to avoid having to
3415 * handle that later.
3417 /* Only go through if we didn't race with anybody else... */
3418 if (likely(pte_same(*page_table, orig_pte))) {
3419 flush_icache_page(vma, page);
3420 entry = mk_pte(page, vma->vm_page_prot);
3421 if (flags & FAULT_FLAG_WRITE)
3422 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3423 else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte))
3424 pte_mksoft_dirty(entry);
3425 if (anon) {
3426 inc_mm_counter_fast(mm, MM_ANONPAGES);
3427 page_add_new_anon_rmap(page, vma, address);
3428 } else {
3429 inc_mm_counter_fast(mm, MM_FILEPAGES);
3430 page_add_file_rmap(page);
3431 if (flags & FAULT_FLAG_WRITE) {
3432 dirty_page = page;
3433 get_page(dirty_page);
3436 set_pte_at(mm, address, page_table, entry);
3438 /* no need to invalidate: a not-present page won't be cached */
3439 update_mmu_cache(vma, address, page_table);
3440 } else {
3441 if (cow_page)
3442 mem_cgroup_uncharge_page(cow_page);
3443 if (anon)
3444 page_cache_release(page);
3445 else
3446 anon = 1; /* no anon but release faulted_page */
3449 pte_unmap_unlock(page_table, ptl);
3451 if (dirty_page) {
3452 struct address_space *mapping = page->mapping;
3453 int dirtied = 0;
3455 if (set_page_dirty(dirty_page))
3456 dirtied = 1;
3457 unlock_page(dirty_page);
3458 put_page(dirty_page);
3459 if ((dirtied || page_mkwrite) && mapping) {
3461 * Some device drivers do not set page.mapping but still
3462 * dirty their pages
3464 balance_dirty_pages_ratelimited(mapping);
3467 /* file_update_time outside page_lock */
3468 if (vma->vm_file && !page_mkwrite)
3469 file_update_time(vma->vm_file);
3470 } else {
3471 unlock_page(vmf.page);
3472 if (anon)
3473 page_cache_release(vmf.page);
3476 return ret;
3478 unwritable_page:
3479 page_cache_release(page);
3480 return ret;
3481 uncharge_out:
3482 /* fs's fault handler get error */
3483 if (cow_page) {
3484 mem_cgroup_uncharge_page(cow_page);
3485 page_cache_release(cow_page);
3487 return ret;
3490 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3491 unsigned long address, pte_t *page_table, pmd_t *pmd,
3492 unsigned int flags, pte_t orig_pte)
3494 pgoff_t pgoff = (((address & PAGE_MASK)
3495 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3497 pte_unmap(page_table);
3498 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3502 * Fault of a previously existing named mapping. Repopulate the pte
3503 * from the encoded file_pte if possible. This enables swappable
3504 * nonlinear vmas.
3506 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3507 * but allow concurrent faults), and pte mapped but not yet locked.
3508 * We return with mmap_sem still held, but pte unmapped and unlocked.
3510 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3511 unsigned long address, pte_t *page_table, pmd_t *pmd,
3512 unsigned int flags, pte_t orig_pte)
3514 pgoff_t pgoff;
3516 flags |= FAULT_FLAG_NONLINEAR;
3518 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3519 return 0;
3521 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3523 * Page table corrupted: show pte and kill process.
3525 print_bad_pte(vma, address, orig_pte, NULL);
3526 return VM_FAULT_SIGBUS;
3529 pgoff = pte_to_pgoff(orig_pte);
3530 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3533 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3534 unsigned long addr, int page_nid,
3535 int *flags)
3537 get_page(page);
3539 count_vm_numa_event(NUMA_HINT_FAULTS);
3540 if (page_nid == numa_node_id()) {
3541 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3542 *flags |= TNF_FAULT_LOCAL;
3545 return mpol_misplaced(page, vma, addr);
3548 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3549 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3551 struct page *page = NULL;
3552 spinlock_t *ptl;
3553 int page_nid = -1;
3554 int last_cpupid;
3555 int target_nid;
3556 bool migrated = false;
3557 int flags = 0;
3560 * The "pte" at this point cannot be used safely without
3561 * validation through pte_unmap_same(). It's of NUMA type but
3562 * the pfn may be screwed if the read is non atomic.
3564 * ptep_modify_prot_start is not called as this is clearing
3565 * the _PAGE_NUMA bit and it is not really expected that there
3566 * would be concurrent hardware modifications to the PTE.
3568 ptl = pte_lockptr(mm, pmd);
3569 spin_lock(ptl);
3570 if (unlikely(!pte_same(*ptep, pte))) {
3571 pte_unmap_unlock(ptep, ptl);
3572 goto out;
3575 pte = pte_mknonnuma(pte);
3576 set_pte_at(mm, addr, ptep, pte);
3577 update_mmu_cache(vma, addr, ptep);
3579 page = vm_normal_page(vma, addr, pte);
3580 if (!page) {
3581 pte_unmap_unlock(ptep, ptl);
3582 return 0;
3584 BUG_ON(is_zero_pfn(page_to_pfn(page)));
3587 * Avoid grouping on DSO/COW pages in specific and RO pages
3588 * in general, RO pages shouldn't hurt as much anyway since
3589 * they can be in shared cache state.
3591 if (!pte_write(pte))
3592 flags |= TNF_NO_GROUP;
3595 * Flag if the page is shared between multiple address spaces. This
3596 * is later used when determining whether to group tasks together
3598 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3599 flags |= TNF_SHARED;
3601 last_cpupid = page_cpupid_last(page);
3602 page_nid = page_to_nid(page);
3603 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3604 pte_unmap_unlock(ptep, ptl);
3605 if (target_nid == -1) {
3606 put_page(page);
3607 goto out;
3610 /* Migrate to the requested node */
3611 migrated = migrate_misplaced_page(page, vma, target_nid);
3612 if (migrated) {
3613 page_nid = target_nid;
3614 flags |= TNF_MIGRATED;
3617 out:
3618 if (page_nid != -1)
3619 task_numa_fault(last_cpupid, page_nid, 1, flags);
3620 return 0;
3624 * These routines also need to handle stuff like marking pages dirty
3625 * and/or accessed for architectures that don't do it in hardware (most
3626 * RISC architectures). The early dirtying is also good on the i386.
3628 * There is also a hook called "update_mmu_cache()" that architectures
3629 * with external mmu caches can use to update those (ie the Sparc or
3630 * PowerPC hashed page tables that act as extended TLBs).
3632 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3633 * but allow concurrent faults), and pte mapped but not yet locked.
3634 * We return with mmap_sem still held, but pte unmapped and unlocked.
3636 static int handle_pte_fault(struct mm_struct *mm,
3637 struct vm_area_struct *vma, unsigned long address,
3638 pte_t *pte, pmd_t *pmd, unsigned int flags)
3640 pte_t entry;
3641 spinlock_t *ptl;
3643 entry = *pte;
3644 if (!pte_present(entry)) {
3645 if (pte_none(entry)) {
3646 if (vma->vm_ops) {
3647 if (likely(vma->vm_ops->fault))
3648 return do_linear_fault(mm, vma, address,
3649 pte, pmd, flags, entry);
3651 return do_anonymous_page(mm, vma, address,
3652 pte, pmd, flags);
3654 if (pte_file(entry))
3655 return do_nonlinear_fault(mm, vma, address,
3656 pte, pmd, flags, entry);
3657 return do_swap_page(mm, vma, address,
3658 pte, pmd, flags, entry);
3661 if (pte_numa(entry))
3662 return do_numa_page(mm, vma, address, entry, pte, pmd);
3664 ptl = pte_lockptr(mm, pmd);
3665 spin_lock(ptl);
3666 if (unlikely(!pte_same(*pte, entry)))
3667 goto unlock;
3668 if (flags & FAULT_FLAG_WRITE) {
3669 if (!pte_write(entry))
3670 return do_wp_page(mm, vma, address,
3671 pte, pmd, ptl, entry);
3672 entry = pte_mkdirty(entry);
3674 entry = pte_mkyoung(entry);
3675 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3676 update_mmu_cache(vma, address, pte);
3677 } else {
3679 * This is needed only for protection faults but the arch code
3680 * is not yet telling us if this is a protection fault or not.
3681 * This still avoids useless tlb flushes for .text page faults
3682 * with threads.
3684 if (flags & FAULT_FLAG_WRITE)
3685 flush_tlb_fix_spurious_fault(vma, address);
3687 unlock:
3688 pte_unmap_unlock(pte, ptl);
3689 return 0;
3693 * By the time we get here, we already hold the mm semaphore
3695 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3696 unsigned long address, unsigned int flags)
3698 pgd_t *pgd;
3699 pud_t *pud;
3700 pmd_t *pmd;
3701 pte_t *pte;
3703 if (unlikely(is_vm_hugetlb_page(vma)))
3704 return hugetlb_fault(mm, vma, address, flags);
3706 retry:
3707 pgd = pgd_offset(mm, address);
3708 pud = pud_alloc(mm, pgd, address);
3709 if (!pud)
3710 return VM_FAULT_OOM;
3711 pmd = pmd_alloc(mm, pud, address);
3712 if (!pmd)
3713 return VM_FAULT_OOM;
3714 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3715 int ret = VM_FAULT_FALLBACK;
3716 if (!vma->vm_ops)
3717 ret = do_huge_pmd_anonymous_page(mm, vma, address,
3718 pmd, flags);
3719 if (!(ret & VM_FAULT_FALLBACK))
3720 return ret;
3721 } else {
3722 pmd_t orig_pmd = *pmd;
3723 int ret;
3725 barrier();
3726 if (pmd_trans_huge(orig_pmd)) {
3727 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3730 * If the pmd is splitting, return and retry the
3731 * the fault. Alternative: wait until the split
3732 * is done, and goto retry.
3734 if (pmd_trans_splitting(orig_pmd))
3735 return 0;
3737 if (pmd_numa(orig_pmd))
3738 return do_huge_pmd_numa_page(mm, vma, address,
3739 orig_pmd, pmd);
3741 if (dirty && !pmd_write(orig_pmd)) {
3742 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3743 orig_pmd);
3745 * If COW results in an oom, the huge pmd will
3746 * have been split, so retry the fault on the
3747 * pte for a smaller charge.
3749 if (unlikely(ret & VM_FAULT_OOM))
3750 goto retry;
3751 return ret;
3752 } else {
3753 huge_pmd_set_accessed(mm, vma, address, pmd,
3754 orig_pmd, dirty);
3757 return 0;
3761 /* THP should already have been handled */
3762 BUG_ON(pmd_numa(*pmd));
3765 * Use __pte_alloc instead of pte_alloc_map, because we can't
3766 * run pte_offset_map on the pmd, if an huge pmd could
3767 * materialize from under us from a different thread.
3769 if (unlikely(pmd_none(*pmd)) &&
3770 unlikely(__pte_alloc(mm, vma, pmd, address)))
3771 return VM_FAULT_OOM;
3772 /* if an huge pmd materialized from under us just retry later */
3773 if (unlikely(pmd_trans_huge(*pmd)))
3774 return 0;
3776 * A regular pmd is established and it can't morph into a huge pmd
3777 * from under us anymore at this point because we hold the mmap_sem
3778 * read mode and khugepaged takes it in write mode. So now it's
3779 * safe to run pte_offset_map().
3781 pte = pte_offset_map(pmd, address);
3783 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3786 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3787 unsigned long address, unsigned int flags)
3789 int ret;
3791 __set_current_state(TASK_RUNNING);
3793 count_vm_event(PGFAULT);
3794 mem_cgroup_count_vm_event(mm, PGFAULT);
3796 /* do counter updates before entering really critical section. */
3797 check_sync_rss_stat(current);
3800 * Enable the memcg OOM handling for faults triggered in user
3801 * space. Kernel faults are handled more gracefully.
3803 if (flags & FAULT_FLAG_USER)
3804 mem_cgroup_oom_enable();
3806 ret = __handle_mm_fault(mm, vma, address, flags);
3808 if (flags & FAULT_FLAG_USER) {
3809 mem_cgroup_oom_disable();
3811 * The task may have entered a memcg OOM situation but
3812 * if the allocation error was handled gracefully (no
3813 * VM_FAULT_OOM), there is no need to kill anything.
3814 * Just clean up the OOM state peacefully.
3816 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3817 mem_cgroup_oom_synchronize(false);
3820 return ret;
3823 #ifndef __PAGETABLE_PUD_FOLDED
3825 * Allocate page upper directory.
3826 * We've already handled the fast-path in-line.
3828 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3830 pud_t *new = pud_alloc_one(mm, address);
3831 if (!new)
3832 return -ENOMEM;
3834 smp_wmb(); /* See comment in __pte_alloc */
3836 spin_lock(&mm->page_table_lock);
3837 if (pgd_present(*pgd)) /* Another has populated it */
3838 pud_free(mm, new);
3839 else
3840 pgd_populate(mm, pgd, new);
3841 spin_unlock(&mm->page_table_lock);
3842 return 0;
3844 #endif /* __PAGETABLE_PUD_FOLDED */
3846 #ifndef __PAGETABLE_PMD_FOLDED
3848 * Allocate page middle directory.
3849 * We've already handled the fast-path in-line.
3851 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3853 pmd_t *new = pmd_alloc_one(mm, address);
3854 if (!new)
3855 return -ENOMEM;
3857 smp_wmb(); /* See comment in __pte_alloc */
3859 spin_lock(&mm->page_table_lock);
3860 #ifndef __ARCH_HAS_4LEVEL_HACK
3861 if (pud_present(*pud)) /* Another has populated it */
3862 pmd_free(mm, new);
3863 else
3864 pud_populate(mm, pud, new);
3865 #else
3866 if (pgd_present(*pud)) /* Another has populated it */
3867 pmd_free(mm, new);
3868 else
3869 pgd_populate(mm, pud, new);
3870 #endif /* __ARCH_HAS_4LEVEL_HACK */
3871 spin_unlock(&mm->page_table_lock);
3872 return 0;
3874 #endif /* __PAGETABLE_PMD_FOLDED */
3876 #if !defined(__HAVE_ARCH_GATE_AREA)
3878 #if defined(AT_SYSINFO_EHDR)
3879 static struct vm_area_struct gate_vma;
3881 static int __init gate_vma_init(void)
3883 gate_vma.vm_mm = NULL;
3884 gate_vma.vm_start = FIXADDR_USER_START;
3885 gate_vma.vm_end = FIXADDR_USER_END;
3886 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3887 gate_vma.vm_page_prot = __P101;
3889 return 0;
3891 __initcall(gate_vma_init);
3892 #endif
3894 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3896 #ifdef AT_SYSINFO_EHDR
3897 return &gate_vma;
3898 #else
3899 return NULL;
3900 #endif
3903 int in_gate_area_no_mm(unsigned long addr)
3905 #ifdef AT_SYSINFO_EHDR
3906 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3907 return 1;
3908 #endif
3909 return 0;
3912 #endif /* __HAVE_ARCH_GATE_AREA */
3914 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3915 pte_t **ptepp, spinlock_t **ptlp)
3917 pgd_t *pgd;
3918 pud_t *pud;
3919 pmd_t *pmd;
3920 pte_t *ptep;
3922 pgd = pgd_offset(mm, address);
3923 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3924 goto out;
3926 pud = pud_offset(pgd, address);
3927 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3928 goto out;
3930 pmd = pmd_offset(pud, address);
3931 VM_BUG_ON(pmd_trans_huge(*pmd));
3932 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3933 goto out;
3935 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3936 if (pmd_huge(*pmd))
3937 goto out;
3939 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3940 if (!ptep)
3941 goto out;
3942 if (!pte_present(*ptep))
3943 goto unlock;
3944 *ptepp = ptep;
3945 return 0;
3946 unlock:
3947 pte_unmap_unlock(ptep, *ptlp);
3948 out:
3949 return -EINVAL;
3952 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3953 pte_t **ptepp, spinlock_t **ptlp)
3955 int res;
3957 /* (void) is needed to make gcc happy */
3958 (void) __cond_lock(*ptlp,
3959 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3960 return res;
3964 * follow_pfn - look up PFN at a user virtual address
3965 * @vma: memory mapping
3966 * @address: user virtual address
3967 * @pfn: location to store found PFN
3969 * Only IO mappings and raw PFN mappings are allowed.
3971 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3973 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3974 unsigned long *pfn)
3976 int ret = -EINVAL;
3977 spinlock_t *ptl;
3978 pte_t *ptep;
3980 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3981 return ret;
3983 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3984 if (ret)
3985 return ret;
3986 *pfn = pte_pfn(*ptep);
3987 pte_unmap_unlock(ptep, ptl);
3988 return 0;
3990 EXPORT_SYMBOL(follow_pfn);
3992 #ifdef CONFIG_HAVE_IOREMAP_PROT
3993 int follow_phys(struct vm_area_struct *vma,
3994 unsigned long address, unsigned int flags,
3995 unsigned long *prot, resource_size_t *phys)
3997 int ret = -EINVAL;
3998 pte_t *ptep, pte;
3999 spinlock_t *ptl;
4001 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4002 goto out;
4004 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4005 goto out;
4006 pte = *ptep;
4008 if ((flags & FOLL_WRITE) && !pte_write(pte))
4009 goto unlock;
4011 *prot = pgprot_val(pte_pgprot(pte));
4012 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4014 ret = 0;
4015 unlock:
4016 pte_unmap_unlock(ptep, ptl);
4017 out:
4018 return ret;
4021 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4022 void *buf, int len, int write)
4024 resource_size_t phys_addr;
4025 unsigned long prot = 0;
4026 void __iomem *maddr;
4027 int offset = addr & (PAGE_SIZE-1);
4029 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4030 return -EINVAL;
4032 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4033 if (write)
4034 memcpy_toio(maddr + offset, buf, len);
4035 else
4036 memcpy_fromio(buf, maddr + offset, len);
4037 iounmap(maddr);
4039 return len;
4041 EXPORT_SYMBOL_GPL(generic_access_phys);
4042 #endif
4045 * Access another process' address space as given in mm. If non-NULL, use the
4046 * given task for page fault accounting.
4048 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4049 unsigned long addr, void *buf, int len, int write)
4051 struct vm_area_struct *vma;
4052 void *old_buf = buf;
4054 down_read(&mm->mmap_sem);
4055 /* ignore errors, just check how much was successfully transferred */
4056 while (len) {
4057 int bytes, ret, offset;
4058 void *maddr;
4059 struct page *page = NULL;
4061 ret = get_user_pages(tsk, mm, addr, 1,
4062 write, 1, &page, &vma);
4063 if (ret <= 0) {
4065 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4066 * we can access using slightly different code.
4068 #ifdef CONFIG_HAVE_IOREMAP_PROT
4069 vma = find_vma(mm, addr);
4070 if (!vma || vma->vm_start > addr)
4071 break;
4072 if (vma->vm_ops && vma->vm_ops->access)
4073 ret = vma->vm_ops->access(vma, addr, buf,
4074 len, write);
4075 if (ret <= 0)
4076 #endif
4077 break;
4078 bytes = ret;
4079 } else {
4080 bytes = len;
4081 offset = addr & (PAGE_SIZE-1);
4082 if (bytes > PAGE_SIZE-offset)
4083 bytes = PAGE_SIZE-offset;
4085 maddr = kmap(page);
4086 if (write) {
4087 copy_to_user_page(vma, page, addr,
4088 maddr + offset, buf, bytes);
4089 set_page_dirty_lock(page);
4090 } else {
4091 copy_from_user_page(vma, page, addr,
4092 buf, maddr + offset, bytes);
4094 kunmap(page);
4095 page_cache_release(page);
4097 len -= bytes;
4098 buf += bytes;
4099 addr += bytes;
4101 up_read(&mm->mmap_sem);
4103 return buf - old_buf;
4107 * access_remote_vm - access another process' address space
4108 * @mm: the mm_struct of the target address space
4109 * @addr: start address to access
4110 * @buf: source or destination buffer
4111 * @len: number of bytes to transfer
4112 * @write: whether the access is a write
4114 * The caller must hold a reference on @mm.
4116 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4117 void *buf, int len, int write)
4119 return __access_remote_vm(NULL, mm, addr, buf, len, write);
4123 * Access another process' address space.
4124 * Source/target buffer must be kernel space,
4125 * Do not walk the page table directly, use get_user_pages
4127 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4128 void *buf, int len, int write)
4130 struct mm_struct *mm;
4131 int ret;
4133 mm = get_task_mm(tsk);
4134 if (!mm)
4135 return 0;
4137 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4138 mmput(mm);
4140 return ret;
4144 * Print the name of a VMA.
4146 void print_vma_addr(char *prefix, unsigned long ip)
4148 struct mm_struct *mm = current->mm;
4149 struct vm_area_struct *vma;
4152 * Do not print if we are in atomic
4153 * contexts (in exception stacks, etc.):
4155 if (preempt_count())
4156 return;
4158 down_read(&mm->mmap_sem);
4159 vma = find_vma(mm, ip);
4160 if (vma && vma->vm_file) {
4161 struct file *f = vma->vm_file;
4162 char *buf = (char *)__get_free_page(GFP_KERNEL);
4163 if (buf) {
4164 char *p;
4166 p = d_path(&f->f_path, buf, PAGE_SIZE);
4167 if (IS_ERR(p))
4168 p = "?";
4169 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4170 vma->vm_start,
4171 vma->vm_end - vma->vm_start);
4172 free_page((unsigned long)buf);
4175 up_read(&mm->mmap_sem);
4178 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4179 void might_fault(void)
4182 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4183 * holding the mmap_sem, this is safe because kernel memory doesn't
4184 * get paged out, therefore we'll never actually fault, and the
4185 * below annotations will generate false positives.
4187 if (segment_eq(get_fs(), KERNEL_DS))
4188 return;
4191 * it would be nicer only to annotate paths which are not under
4192 * pagefault_disable, however that requires a larger audit and
4193 * providing helpers like get_user_atomic.
4195 if (in_atomic())
4196 return;
4198 __might_sleep(__FILE__, __LINE__, 0);
4200 if (current->mm)
4201 might_lock_read(&current->mm->mmap_sem);
4203 EXPORT_SYMBOL(might_fault);
4204 #endif
4206 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4207 static void clear_gigantic_page(struct page *page,
4208 unsigned long addr,
4209 unsigned int pages_per_huge_page)
4211 int i;
4212 struct page *p = page;
4214 might_sleep();
4215 for (i = 0; i < pages_per_huge_page;
4216 i++, p = mem_map_next(p, page, i)) {
4217 cond_resched();
4218 clear_user_highpage(p, addr + i * PAGE_SIZE);
4221 void clear_huge_page(struct page *page,
4222 unsigned long addr, unsigned int pages_per_huge_page)
4224 int i;
4226 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4227 clear_gigantic_page(page, addr, pages_per_huge_page);
4228 return;
4231 might_sleep();
4232 for (i = 0; i < pages_per_huge_page; i++) {
4233 cond_resched();
4234 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4238 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4239 unsigned long addr,
4240 struct vm_area_struct *vma,
4241 unsigned int pages_per_huge_page)
4243 int i;
4244 struct page *dst_base = dst;
4245 struct page *src_base = src;
4247 for (i = 0; i < pages_per_huge_page; ) {
4248 cond_resched();
4249 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4251 i++;
4252 dst = mem_map_next(dst, dst_base, i);
4253 src = mem_map_next(src, src_base, i);
4257 void copy_user_huge_page(struct page *dst, struct page *src,
4258 unsigned long addr, struct vm_area_struct *vma,
4259 unsigned int pages_per_huge_page)
4261 int i;
4263 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4264 copy_user_gigantic_page(dst, src, addr, vma,
4265 pages_per_huge_page);
4266 return;
4269 might_sleep();
4270 for (i = 0; i < pages_per_huge_page; i++) {
4271 cond_resched();
4272 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4275 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4277 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4279 static struct kmem_cache *page_ptl_cachep;
4281 void __init ptlock_cache_init(void)
4283 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4284 SLAB_PANIC, NULL);
4287 bool ptlock_alloc(struct page *page)
4289 spinlock_t *ptl;
4291 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4292 if (!ptl)
4293 return false;
4294 page->ptl = ptl;
4295 return true;
4298 void ptlock_free(struct page *page)
4300 kmem_cache_free(page_ptl_cachep, page->ptl);
4302 #endif