2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
54 #include "inode-map.h"
56 #include "rcu-string.h"
58 #include "dev-replace.h"
60 /* Mask out flags that are inappropriate for the given type of inode. */
61 static inline __u32
btrfs_mask_flags(umode_t mode
, __u32 flags
)
65 else if (S_ISREG(mode
))
66 return flags
& ~FS_DIRSYNC_FL
;
68 return flags
& (FS_NODUMP_FL
| FS_NOATIME_FL
);
72 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
74 static unsigned int btrfs_flags_to_ioctl(unsigned int flags
)
76 unsigned int iflags
= 0;
78 if (flags
& BTRFS_INODE_SYNC
)
80 if (flags
& BTRFS_INODE_IMMUTABLE
)
81 iflags
|= FS_IMMUTABLE_FL
;
82 if (flags
& BTRFS_INODE_APPEND
)
83 iflags
|= FS_APPEND_FL
;
84 if (flags
& BTRFS_INODE_NODUMP
)
85 iflags
|= FS_NODUMP_FL
;
86 if (flags
& BTRFS_INODE_NOATIME
)
87 iflags
|= FS_NOATIME_FL
;
88 if (flags
& BTRFS_INODE_DIRSYNC
)
89 iflags
|= FS_DIRSYNC_FL
;
90 if (flags
& BTRFS_INODE_NODATACOW
)
91 iflags
|= FS_NOCOW_FL
;
93 if ((flags
& BTRFS_INODE_COMPRESS
) && !(flags
& BTRFS_INODE_NOCOMPRESS
))
94 iflags
|= FS_COMPR_FL
;
95 else if (flags
& BTRFS_INODE_NOCOMPRESS
)
96 iflags
|= FS_NOCOMP_FL
;
102 * Update inode->i_flags based on the btrfs internal flags.
104 void btrfs_update_iflags(struct inode
*inode
)
106 struct btrfs_inode
*ip
= BTRFS_I(inode
);
108 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
110 if (ip
->flags
& BTRFS_INODE_SYNC
)
111 inode
->i_flags
|= S_SYNC
;
112 if (ip
->flags
& BTRFS_INODE_IMMUTABLE
)
113 inode
->i_flags
|= S_IMMUTABLE
;
114 if (ip
->flags
& BTRFS_INODE_APPEND
)
115 inode
->i_flags
|= S_APPEND
;
116 if (ip
->flags
& BTRFS_INODE_NOATIME
)
117 inode
->i_flags
|= S_NOATIME
;
118 if (ip
->flags
& BTRFS_INODE_DIRSYNC
)
119 inode
->i_flags
|= S_DIRSYNC
;
123 * Inherit flags from the parent inode.
125 * Currently only the compression flags and the cow flags are inherited.
127 void btrfs_inherit_iflags(struct inode
*inode
, struct inode
*dir
)
134 flags
= BTRFS_I(dir
)->flags
;
136 if (flags
& BTRFS_INODE_NOCOMPRESS
) {
137 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_COMPRESS
;
138 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
139 } else if (flags
& BTRFS_INODE_COMPRESS
) {
140 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
141 BTRFS_I(inode
)->flags
|= BTRFS_INODE_COMPRESS
;
144 if (flags
& BTRFS_INODE_NODATACOW
) {
145 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
146 if (S_ISREG(inode
->i_mode
))
147 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
150 btrfs_update_iflags(inode
);
153 static int btrfs_ioctl_getflags(struct file
*file
, void __user
*arg
)
155 struct btrfs_inode
*ip
= BTRFS_I(file_inode(file
));
156 unsigned int flags
= btrfs_flags_to_ioctl(ip
->flags
);
158 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
163 static int check_flags(unsigned int flags
)
165 if (flags
& ~(FS_IMMUTABLE_FL
| FS_APPEND_FL
| \
166 FS_NOATIME_FL
| FS_NODUMP_FL
| \
167 FS_SYNC_FL
| FS_DIRSYNC_FL
| \
168 FS_NOCOMP_FL
| FS_COMPR_FL
|
172 if ((flags
& FS_NOCOMP_FL
) && (flags
& FS_COMPR_FL
))
178 static int btrfs_ioctl_setflags(struct file
*file
, void __user
*arg
)
180 struct inode
*inode
= file_inode(file
);
181 struct btrfs_inode
*ip
= BTRFS_I(inode
);
182 struct btrfs_root
*root
= ip
->root
;
183 struct btrfs_trans_handle
*trans
;
184 unsigned int flags
, oldflags
;
187 unsigned int i_oldflags
;
190 if (btrfs_root_readonly(root
))
193 if (copy_from_user(&flags
, arg
, sizeof(flags
)))
196 ret
= check_flags(flags
);
200 if (!inode_owner_or_capable(inode
))
203 ret
= mnt_want_write_file(file
);
207 mutex_lock(&inode
->i_mutex
);
209 ip_oldflags
= ip
->flags
;
210 i_oldflags
= inode
->i_flags
;
211 mode
= inode
->i_mode
;
213 flags
= btrfs_mask_flags(inode
->i_mode
, flags
);
214 oldflags
= btrfs_flags_to_ioctl(ip
->flags
);
215 if ((flags
^ oldflags
) & (FS_APPEND_FL
| FS_IMMUTABLE_FL
)) {
216 if (!capable(CAP_LINUX_IMMUTABLE
)) {
222 if (flags
& FS_SYNC_FL
)
223 ip
->flags
|= BTRFS_INODE_SYNC
;
225 ip
->flags
&= ~BTRFS_INODE_SYNC
;
226 if (flags
& FS_IMMUTABLE_FL
)
227 ip
->flags
|= BTRFS_INODE_IMMUTABLE
;
229 ip
->flags
&= ~BTRFS_INODE_IMMUTABLE
;
230 if (flags
& FS_APPEND_FL
)
231 ip
->flags
|= BTRFS_INODE_APPEND
;
233 ip
->flags
&= ~BTRFS_INODE_APPEND
;
234 if (flags
& FS_NODUMP_FL
)
235 ip
->flags
|= BTRFS_INODE_NODUMP
;
237 ip
->flags
&= ~BTRFS_INODE_NODUMP
;
238 if (flags
& FS_NOATIME_FL
)
239 ip
->flags
|= BTRFS_INODE_NOATIME
;
241 ip
->flags
&= ~BTRFS_INODE_NOATIME
;
242 if (flags
& FS_DIRSYNC_FL
)
243 ip
->flags
|= BTRFS_INODE_DIRSYNC
;
245 ip
->flags
&= ~BTRFS_INODE_DIRSYNC
;
246 if (flags
& FS_NOCOW_FL
) {
249 * It's safe to turn csums off here, no extents exist.
250 * Otherwise we want the flag to reflect the real COW
251 * status of the file and will not set it.
253 if (inode
->i_size
== 0)
254 ip
->flags
|= BTRFS_INODE_NODATACOW
255 | BTRFS_INODE_NODATASUM
;
257 ip
->flags
|= BTRFS_INODE_NODATACOW
;
261 * Revert back under same assuptions as above
264 if (inode
->i_size
== 0)
265 ip
->flags
&= ~(BTRFS_INODE_NODATACOW
266 | BTRFS_INODE_NODATASUM
);
268 ip
->flags
&= ~BTRFS_INODE_NODATACOW
;
273 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
274 * flag may be changed automatically if compression code won't make
277 if (flags
& FS_NOCOMP_FL
) {
278 ip
->flags
&= ~BTRFS_INODE_COMPRESS
;
279 ip
->flags
|= BTRFS_INODE_NOCOMPRESS
;
280 } else if (flags
& FS_COMPR_FL
) {
281 ip
->flags
|= BTRFS_INODE_COMPRESS
;
282 ip
->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
284 ip
->flags
&= ~(BTRFS_INODE_COMPRESS
| BTRFS_INODE_NOCOMPRESS
);
287 trans
= btrfs_start_transaction(root
, 1);
289 ret
= PTR_ERR(trans
);
293 btrfs_update_iflags(inode
);
294 inode_inc_iversion(inode
);
295 inode
->i_ctime
= CURRENT_TIME
;
296 ret
= btrfs_update_inode(trans
, root
, inode
);
298 btrfs_end_transaction(trans
, root
);
301 ip
->flags
= ip_oldflags
;
302 inode
->i_flags
= i_oldflags
;
306 mutex_unlock(&inode
->i_mutex
);
307 mnt_drop_write_file(file
);
311 static int btrfs_ioctl_getversion(struct file
*file
, int __user
*arg
)
313 struct inode
*inode
= file_inode(file
);
315 return put_user(inode
->i_generation
, arg
);
318 static noinline
int btrfs_ioctl_fitrim(struct file
*file
, void __user
*arg
)
320 struct btrfs_fs_info
*fs_info
= btrfs_sb(fdentry(file
)->d_sb
);
321 struct btrfs_device
*device
;
322 struct request_queue
*q
;
323 struct fstrim_range range
;
324 u64 minlen
= ULLONG_MAX
;
326 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
329 if (!capable(CAP_SYS_ADMIN
))
333 list_for_each_entry_rcu(device
, &fs_info
->fs_devices
->devices
,
337 q
= bdev_get_queue(device
->bdev
);
338 if (blk_queue_discard(q
)) {
340 minlen
= min((u64
)q
->limits
.discard_granularity
,
348 if (copy_from_user(&range
, arg
, sizeof(range
)))
350 if (range
.start
> total_bytes
||
351 range
.len
< fs_info
->sb
->s_blocksize
)
354 range
.len
= min(range
.len
, total_bytes
- range
.start
);
355 range
.minlen
= max(range
.minlen
, minlen
);
356 ret
= btrfs_trim_fs(fs_info
->tree_root
, &range
);
360 if (copy_to_user(arg
, &range
, sizeof(range
)))
366 static noinline
int create_subvol(struct inode
*dir
,
367 struct dentry
*dentry
,
368 char *name
, int namelen
,
370 struct btrfs_qgroup_inherit
*inherit
)
372 struct btrfs_trans_handle
*trans
;
373 struct btrfs_key key
;
374 struct btrfs_root_item root_item
;
375 struct btrfs_inode_item
*inode_item
;
376 struct extent_buffer
*leaf
;
377 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
378 struct btrfs_root
*new_root
;
379 struct btrfs_block_rsv block_rsv
;
380 struct timespec cur_time
= CURRENT_TIME
;
384 u64 new_dirid
= BTRFS_FIRST_FREE_OBJECTID
;
389 ret
= btrfs_find_free_objectid(root
->fs_info
->tree_root
, &objectid
);
393 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
395 * The same as the snapshot creation, please see the comment
396 * of create_snapshot().
398 ret
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
,
399 7, &qgroup_reserved
);
403 trans
= btrfs_start_transaction(root
, 0);
405 ret
= PTR_ERR(trans
);
408 trans
->block_rsv
= &block_rsv
;
409 trans
->bytes_reserved
= block_rsv
.size
;
411 ret
= btrfs_qgroup_inherit(trans
, root
->fs_info
, 0, objectid
, inherit
);
415 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
,
416 0, objectid
, NULL
, 0, 0, 0);
422 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
423 btrfs_set_header_bytenr(leaf
, leaf
->start
);
424 btrfs_set_header_generation(leaf
, trans
->transid
);
425 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
426 btrfs_set_header_owner(leaf
, objectid
);
428 write_extent_buffer(leaf
, root
->fs_info
->fsid
,
429 (unsigned long)btrfs_header_fsid(leaf
),
431 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
432 (unsigned long)btrfs_header_chunk_tree_uuid(leaf
),
434 btrfs_mark_buffer_dirty(leaf
);
436 memset(&root_item
, 0, sizeof(root_item
));
438 inode_item
= &root_item
.inode
;
439 inode_item
->generation
= cpu_to_le64(1);
440 inode_item
->size
= cpu_to_le64(3);
441 inode_item
->nlink
= cpu_to_le32(1);
442 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
443 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
446 root_item
.byte_limit
= 0;
447 inode_item
->flags
= cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT
);
449 btrfs_set_root_bytenr(&root_item
, leaf
->start
);
450 btrfs_set_root_generation(&root_item
, trans
->transid
);
451 btrfs_set_root_level(&root_item
, 0);
452 btrfs_set_root_refs(&root_item
, 1);
453 btrfs_set_root_used(&root_item
, leaf
->len
);
454 btrfs_set_root_last_snapshot(&root_item
, 0);
456 btrfs_set_root_generation_v2(&root_item
,
457 btrfs_root_generation(&root_item
));
458 uuid_le_gen(&new_uuid
);
459 memcpy(root_item
.uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
460 root_item
.otime
.sec
= cpu_to_le64(cur_time
.tv_sec
);
461 root_item
.otime
.nsec
= cpu_to_le32(cur_time
.tv_nsec
);
462 root_item
.ctime
= root_item
.otime
;
463 btrfs_set_root_ctransid(&root_item
, trans
->transid
);
464 btrfs_set_root_otransid(&root_item
, trans
->transid
);
466 btrfs_tree_unlock(leaf
);
467 free_extent_buffer(leaf
);
470 btrfs_set_root_dirid(&root_item
, new_dirid
);
472 key
.objectid
= objectid
;
474 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
475 ret
= btrfs_insert_root(trans
, root
->fs_info
->tree_root
, &key
,
480 key
.offset
= (u64
)-1;
481 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
482 if (IS_ERR(new_root
)) {
483 btrfs_abort_transaction(trans
, root
, PTR_ERR(new_root
));
484 ret
= PTR_ERR(new_root
);
488 btrfs_record_root_in_trans(trans
, new_root
);
490 ret
= btrfs_create_subvol_root(trans
, new_root
, new_dirid
);
492 /* We potentially lose an unused inode item here */
493 btrfs_abort_transaction(trans
, root
, ret
);
498 * insert the directory item
500 ret
= btrfs_set_inode_index(dir
, &index
);
502 btrfs_abort_transaction(trans
, root
, ret
);
506 ret
= btrfs_insert_dir_item(trans
, root
,
507 name
, namelen
, dir
, &key
,
508 BTRFS_FT_DIR
, index
);
510 btrfs_abort_transaction(trans
, root
, ret
);
514 btrfs_i_size_write(dir
, dir
->i_size
+ namelen
* 2);
515 ret
= btrfs_update_inode(trans
, root
, dir
);
518 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
519 objectid
, root
->root_key
.objectid
,
520 btrfs_ino(dir
), index
, name
, namelen
);
525 trans
->block_rsv
= NULL
;
526 trans
->bytes_reserved
= 0;
528 *async_transid
= trans
->transid
;
529 err
= btrfs_commit_transaction_async(trans
, root
, 1);
531 err
= btrfs_commit_transaction(trans
, root
);
533 err
= btrfs_commit_transaction(trans
, root
);
539 d_instantiate(dentry
, btrfs_lookup_dentry(dir
, dentry
));
541 btrfs_subvolume_release_metadata(root
, &block_rsv
, qgroup_reserved
);
545 static int create_snapshot(struct btrfs_root
*root
, struct inode
*dir
,
546 struct dentry
*dentry
, char *name
, int namelen
,
547 u64
*async_transid
, bool readonly
,
548 struct btrfs_qgroup_inherit
*inherit
)
551 struct btrfs_pending_snapshot
*pending_snapshot
;
552 struct btrfs_trans_handle
*trans
;
558 pending_snapshot
= kzalloc(sizeof(*pending_snapshot
), GFP_NOFS
);
559 if (!pending_snapshot
)
562 btrfs_init_block_rsv(&pending_snapshot
->block_rsv
,
563 BTRFS_BLOCK_RSV_TEMP
);
565 * 1 - parent dir inode
568 * 2 - root ref/backref
569 * 1 - root of snapshot
571 ret
= btrfs_subvolume_reserve_metadata(BTRFS_I(dir
)->root
,
572 &pending_snapshot
->block_rsv
, 7,
573 &pending_snapshot
->qgroup_reserved
);
577 pending_snapshot
->dentry
= dentry
;
578 pending_snapshot
->root
= root
;
579 pending_snapshot
->readonly
= readonly
;
580 pending_snapshot
->dir
= dir
;
581 pending_snapshot
->inherit
= inherit
;
583 trans
= btrfs_start_transaction(root
, 0);
585 ret
= PTR_ERR(trans
);
589 spin_lock(&root
->fs_info
->trans_lock
);
590 list_add(&pending_snapshot
->list
,
591 &trans
->transaction
->pending_snapshots
);
592 spin_unlock(&root
->fs_info
->trans_lock
);
594 *async_transid
= trans
->transid
;
595 ret
= btrfs_commit_transaction_async(trans
,
596 root
->fs_info
->extent_root
, 1);
598 ret
= btrfs_commit_transaction(trans
, root
);
600 ret
= btrfs_commit_transaction(trans
,
601 root
->fs_info
->extent_root
);
606 ret
= pending_snapshot
->error
;
610 ret
= btrfs_orphan_cleanup(pending_snapshot
->snap
);
614 inode
= btrfs_lookup_dentry(dentry
->d_parent
->d_inode
, dentry
);
616 ret
= PTR_ERR(inode
);
620 d_instantiate(dentry
, inode
);
623 btrfs_subvolume_release_metadata(BTRFS_I(dir
)->root
,
624 &pending_snapshot
->block_rsv
,
625 pending_snapshot
->qgroup_reserved
);
627 kfree(pending_snapshot
);
631 /* copy of check_sticky in fs/namei.c()
632 * It's inline, so penalty for filesystems that don't use sticky bit is
635 static inline int btrfs_check_sticky(struct inode
*dir
, struct inode
*inode
)
637 kuid_t fsuid
= current_fsuid();
639 if (!(dir
->i_mode
& S_ISVTX
))
641 if (uid_eq(inode
->i_uid
, fsuid
))
643 if (uid_eq(dir
->i_uid
, fsuid
))
645 return !capable(CAP_FOWNER
);
648 /* copy of may_delete in fs/namei.c()
649 * Check whether we can remove a link victim from directory dir, check
650 * whether the type of victim is right.
651 * 1. We can't do it if dir is read-only (done in permission())
652 * 2. We should have write and exec permissions on dir
653 * 3. We can't remove anything from append-only dir
654 * 4. We can't do anything with immutable dir (done in permission())
655 * 5. If the sticky bit on dir is set we should either
656 * a. be owner of dir, or
657 * b. be owner of victim, or
658 * c. have CAP_FOWNER capability
659 * 6. If the victim is append-only or immutable we can't do antyhing with
660 * links pointing to it.
661 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
662 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
663 * 9. We can't remove a root or mountpoint.
664 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
665 * nfs_async_unlink().
668 static int btrfs_may_delete(struct inode
*dir
,struct dentry
*victim
,int isdir
)
672 if (!victim
->d_inode
)
675 BUG_ON(victim
->d_parent
->d_inode
!= dir
);
676 audit_inode_child(dir
, victim
, AUDIT_TYPE_CHILD_DELETE
);
678 error
= inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
683 if (btrfs_check_sticky(dir
, victim
->d_inode
)||
684 IS_APPEND(victim
->d_inode
)||
685 IS_IMMUTABLE(victim
->d_inode
) || IS_SWAPFILE(victim
->d_inode
))
688 if (!S_ISDIR(victim
->d_inode
->i_mode
))
692 } else if (S_ISDIR(victim
->d_inode
->i_mode
))
696 if (victim
->d_flags
& DCACHE_NFSFS_RENAMED
)
701 /* copy of may_create in fs/namei.c() */
702 static inline int btrfs_may_create(struct inode
*dir
, struct dentry
*child
)
708 return inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
712 * Create a new subvolume below @parent. This is largely modeled after
713 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
714 * inside this filesystem so it's quite a bit simpler.
716 static noinline
int btrfs_mksubvol(struct path
*parent
,
717 char *name
, int namelen
,
718 struct btrfs_root
*snap_src
,
719 u64
*async_transid
, bool readonly
,
720 struct btrfs_qgroup_inherit
*inherit
)
722 struct inode
*dir
= parent
->dentry
->d_inode
;
723 struct dentry
*dentry
;
726 mutex_lock_nested(&dir
->i_mutex
, I_MUTEX_PARENT
);
728 dentry
= lookup_one_len(name
, parent
->dentry
, namelen
);
729 error
= PTR_ERR(dentry
);
737 error
= btrfs_may_create(dir
, dentry
);
742 * even if this name doesn't exist, we may get hash collisions.
743 * check for them now when we can safely fail
745 error
= btrfs_check_dir_item_collision(BTRFS_I(dir
)->root
,
751 down_read(&BTRFS_I(dir
)->root
->fs_info
->subvol_sem
);
753 if (btrfs_root_refs(&BTRFS_I(dir
)->root
->root_item
) == 0)
757 error
= create_snapshot(snap_src
, dir
, dentry
, name
, namelen
,
758 async_transid
, readonly
, inherit
);
760 error
= create_subvol(dir
, dentry
, name
, namelen
,
761 async_transid
, inherit
);
764 fsnotify_mkdir(dir
, dentry
);
766 up_read(&BTRFS_I(dir
)->root
->fs_info
->subvol_sem
);
770 mutex_unlock(&dir
->i_mutex
);
775 * When we're defragging a range, we don't want to kick it off again
776 * if it is really just waiting for delalloc to send it down.
777 * If we find a nice big extent or delalloc range for the bytes in the
778 * file you want to defrag, we return 0 to let you know to skip this
781 static int check_defrag_in_cache(struct inode
*inode
, u64 offset
, int thresh
)
783 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
784 struct extent_map
*em
= NULL
;
785 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
788 read_lock(&em_tree
->lock
);
789 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_CACHE_SIZE
);
790 read_unlock(&em_tree
->lock
);
793 end
= extent_map_end(em
);
795 if (end
- offset
> thresh
)
798 /* if we already have a nice delalloc here, just stop */
800 end
= count_range_bits(io_tree
, &offset
, offset
+ thresh
,
801 thresh
, EXTENT_DELALLOC
, 1);
808 * helper function to walk through a file and find extents
809 * newer than a specific transid, and smaller than thresh.
811 * This is used by the defragging code to find new and small
814 static int find_new_extents(struct btrfs_root
*root
,
815 struct inode
*inode
, u64 newer_than
,
816 u64
*off
, int thresh
)
818 struct btrfs_path
*path
;
819 struct btrfs_key min_key
;
820 struct btrfs_key max_key
;
821 struct extent_buffer
*leaf
;
822 struct btrfs_file_extent_item
*extent
;
825 u64 ino
= btrfs_ino(inode
);
827 path
= btrfs_alloc_path();
831 min_key
.objectid
= ino
;
832 min_key
.type
= BTRFS_EXTENT_DATA_KEY
;
833 min_key
.offset
= *off
;
835 max_key
.objectid
= ino
;
836 max_key
.type
= (u8
)-1;
837 max_key
.offset
= (u64
)-1;
839 path
->keep_locks
= 1;
842 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
846 if (min_key
.objectid
!= ino
)
848 if (min_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
851 leaf
= path
->nodes
[0];
852 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
853 struct btrfs_file_extent_item
);
855 type
= btrfs_file_extent_type(leaf
, extent
);
856 if (type
== BTRFS_FILE_EXTENT_REG
&&
857 btrfs_file_extent_num_bytes(leaf
, extent
) < thresh
&&
858 check_defrag_in_cache(inode
, min_key
.offset
, thresh
)) {
859 *off
= min_key
.offset
;
860 btrfs_free_path(path
);
864 if (min_key
.offset
== (u64
)-1)
868 btrfs_release_path(path
);
871 btrfs_free_path(path
);
875 static struct extent_map
*defrag_lookup_extent(struct inode
*inode
, u64 start
)
877 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
878 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
879 struct extent_map
*em
;
880 u64 len
= PAGE_CACHE_SIZE
;
883 * hopefully we have this extent in the tree already, try without
884 * the full extent lock
886 read_lock(&em_tree
->lock
);
887 em
= lookup_extent_mapping(em_tree
, start
, len
);
888 read_unlock(&em_tree
->lock
);
891 /* get the big lock and read metadata off disk */
892 lock_extent(io_tree
, start
, start
+ len
- 1);
893 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
894 unlock_extent(io_tree
, start
, start
+ len
- 1);
903 static bool defrag_check_next_extent(struct inode
*inode
, struct extent_map
*em
)
905 struct extent_map
*next
;
908 /* this is the last extent */
909 if (em
->start
+ em
->len
>= i_size_read(inode
))
912 next
= defrag_lookup_extent(inode
, em
->start
+ em
->len
);
913 if (!next
|| next
->block_start
>= EXTENT_MAP_LAST_BYTE
)
916 free_extent_map(next
);
920 static int should_defrag_range(struct inode
*inode
, u64 start
, int thresh
,
921 u64
*last_len
, u64
*skip
, u64
*defrag_end
,
924 struct extent_map
*em
;
926 bool next_mergeable
= true;
929 * make sure that once we start defragging an extent, we keep on
932 if (start
< *defrag_end
)
937 em
= defrag_lookup_extent(inode
, start
);
941 /* this will cover holes, and inline extents */
942 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
947 next_mergeable
= defrag_check_next_extent(inode
, em
);
950 * we hit a real extent, if it is big or the next extent is not a
951 * real extent, don't bother defragging it
953 if (!compress
&& (*last_len
== 0 || *last_len
>= thresh
) &&
954 (em
->len
>= thresh
|| !next_mergeable
))
958 * last_len ends up being a counter of how many bytes we've defragged.
959 * every time we choose not to defrag an extent, we reset *last_len
960 * so that the next tiny extent will force a defrag.
962 * The end result of this is that tiny extents before a single big
963 * extent will force at least part of that big extent to be defragged.
966 *defrag_end
= extent_map_end(em
);
969 *skip
= extent_map_end(em
);
978 * it doesn't do much good to defrag one or two pages
979 * at a time. This pulls in a nice chunk of pages
982 * It also makes sure the delalloc code has enough
983 * dirty data to avoid making new small extents as part
986 * It's a good idea to start RA on this range
987 * before calling this.
989 static int cluster_pages_for_defrag(struct inode
*inode
,
991 unsigned long start_index
,
994 unsigned long file_end
;
995 u64 isize
= i_size_read(inode
);
1002 struct btrfs_ordered_extent
*ordered
;
1003 struct extent_state
*cached_state
= NULL
;
1004 struct extent_io_tree
*tree
;
1005 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
1007 file_end
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1008 if (!isize
|| start_index
> file_end
)
1011 page_cnt
= min_t(u64
, (u64
)num_pages
, (u64
)file_end
- start_index
+ 1);
1013 ret
= btrfs_delalloc_reserve_space(inode
,
1014 page_cnt
<< PAGE_CACHE_SHIFT
);
1018 tree
= &BTRFS_I(inode
)->io_tree
;
1020 /* step one, lock all the pages */
1021 for (i
= 0; i
< page_cnt
; i
++) {
1024 page
= find_or_create_page(inode
->i_mapping
,
1025 start_index
+ i
, mask
);
1029 page_start
= page_offset(page
);
1030 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
1032 lock_extent(tree
, page_start
, page_end
);
1033 ordered
= btrfs_lookup_ordered_extent(inode
,
1035 unlock_extent(tree
, page_start
, page_end
);
1040 btrfs_start_ordered_extent(inode
, ordered
, 1);
1041 btrfs_put_ordered_extent(ordered
);
1044 * we unlocked the page above, so we need check if
1045 * it was released or not.
1047 if (page
->mapping
!= inode
->i_mapping
) {
1049 page_cache_release(page
);
1054 if (!PageUptodate(page
)) {
1055 btrfs_readpage(NULL
, page
);
1057 if (!PageUptodate(page
)) {
1059 page_cache_release(page
);
1065 if (page
->mapping
!= inode
->i_mapping
) {
1067 page_cache_release(page
);
1077 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
1081 * so now we have a nice long stream of locked
1082 * and up to date pages, lets wait on them
1084 for (i
= 0; i
< i_done
; i
++)
1085 wait_on_page_writeback(pages
[i
]);
1087 page_start
= page_offset(pages
[0]);
1088 page_end
= page_offset(pages
[i_done
- 1]) + PAGE_CACHE_SIZE
;
1090 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
1091 page_start
, page_end
- 1, 0, &cached_state
);
1092 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
,
1093 page_end
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
|
1094 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 0, 0,
1095 &cached_state
, GFP_NOFS
);
1097 if (i_done
!= page_cnt
) {
1098 spin_lock(&BTRFS_I(inode
)->lock
);
1099 BTRFS_I(inode
)->outstanding_extents
++;
1100 spin_unlock(&BTRFS_I(inode
)->lock
);
1101 btrfs_delalloc_release_space(inode
,
1102 (page_cnt
- i_done
) << PAGE_CACHE_SHIFT
);
1106 set_extent_defrag(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
- 1,
1107 &cached_state
, GFP_NOFS
);
1109 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1110 page_start
, page_end
- 1, &cached_state
,
1113 for (i
= 0; i
< i_done
; i
++) {
1114 clear_page_dirty_for_io(pages
[i
]);
1115 ClearPageChecked(pages
[i
]);
1116 set_page_extent_mapped(pages
[i
]);
1117 set_page_dirty(pages
[i
]);
1118 unlock_page(pages
[i
]);
1119 page_cache_release(pages
[i
]);
1123 for (i
= 0; i
< i_done
; i
++) {
1124 unlock_page(pages
[i
]);
1125 page_cache_release(pages
[i
]);
1127 btrfs_delalloc_release_space(inode
, page_cnt
<< PAGE_CACHE_SHIFT
);
1132 int btrfs_defrag_file(struct inode
*inode
, struct file
*file
,
1133 struct btrfs_ioctl_defrag_range_args
*range
,
1134 u64 newer_than
, unsigned long max_to_defrag
)
1136 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1137 struct file_ra_state
*ra
= NULL
;
1138 unsigned long last_index
;
1139 u64 isize
= i_size_read(inode
);
1143 u64 newer_off
= range
->start
;
1145 unsigned long ra_index
= 0;
1147 int defrag_count
= 0;
1148 int compress_type
= BTRFS_COMPRESS_ZLIB
;
1149 int extent_thresh
= range
->extent_thresh
;
1150 int max_cluster
= (256 * 1024) >> PAGE_CACHE_SHIFT
;
1151 int cluster
= max_cluster
;
1152 u64 new_align
= ~((u64
)128 * 1024 - 1);
1153 struct page
**pages
= NULL
;
1155 if (extent_thresh
== 0)
1156 extent_thresh
= 256 * 1024;
1158 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
) {
1159 if (range
->compress_type
> BTRFS_COMPRESS_TYPES
)
1161 if (range
->compress_type
)
1162 compress_type
= range
->compress_type
;
1169 * if we were not given a file, allocate a readahead
1173 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
1176 file_ra_state_init(ra
, inode
->i_mapping
);
1181 pages
= kmalloc(sizeof(struct page
*) * max_cluster
,
1188 /* find the last page to defrag */
1189 if (range
->start
+ range
->len
> range
->start
) {
1190 last_index
= min_t(u64
, isize
- 1,
1191 range
->start
+ range
->len
- 1) >> PAGE_CACHE_SHIFT
;
1193 last_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1197 ret
= find_new_extents(root
, inode
, newer_than
,
1198 &newer_off
, 64 * 1024);
1200 range
->start
= newer_off
;
1202 * we always align our defrag to help keep
1203 * the extents in the file evenly spaced
1205 i
= (newer_off
& new_align
) >> PAGE_CACHE_SHIFT
;
1209 i
= range
->start
>> PAGE_CACHE_SHIFT
;
1212 max_to_defrag
= last_index
+ 1;
1215 * make writeback starts from i, so the defrag range can be
1216 * written sequentially.
1218 if (i
< inode
->i_mapping
->writeback_index
)
1219 inode
->i_mapping
->writeback_index
= i
;
1221 while (i
<= last_index
&& defrag_count
< max_to_defrag
&&
1222 (i
< (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >>
1223 PAGE_CACHE_SHIFT
)) {
1225 * make sure we stop running if someone unmounts
1228 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
1231 if (btrfs_defrag_cancelled(root
->fs_info
)) {
1232 printk(KERN_DEBUG
"btrfs: defrag_file cancelled\n");
1237 if (!should_defrag_range(inode
, (u64
)i
<< PAGE_CACHE_SHIFT
,
1238 extent_thresh
, &last_len
, &skip
,
1239 &defrag_end
, range
->flags
&
1240 BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1243 * the should_defrag function tells us how much to skip
1244 * bump our counter by the suggested amount
1246 next
= (skip
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1247 i
= max(i
+ 1, next
);
1252 cluster
= (PAGE_CACHE_ALIGN(defrag_end
) >>
1253 PAGE_CACHE_SHIFT
) - i
;
1254 cluster
= min(cluster
, max_cluster
);
1256 cluster
= max_cluster
;
1259 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)
1260 BTRFS_I(inode
)->force_compress
= compress_type
;
1262 if (i
+ cluster
> ra_index
) {
1263 ra_index
= max(i
, ra_index
);
1264 btrfs_force_ra(inode
->i_mapping
, ra
, file
, ra_index
,
1266 ra_index
+= max_cluster
;
1269 mutex_lock(&inode
->i_mutex
);
1270 ret
= cluster_pages_for_defrag(inode
, pages
, i
, cluster
);
1272 mutex_unlock(&inode
->i_mutex
);
1276 defrag_count
+= ret
;
1277 balance_dirty_pages_ratelimited(inode
->i_mapping
);
1278 mutex_unlock(&inode
->i_mutex
);
1281 if (newer_off
== (u64
)-1)
1287 newer_off
= max(newer_off
+ 1,
1288 (u64
)i
<< PAGE_CACHE_SHIFT
);
1290 ret
= find_new_extents(root
, inode
,
1291 newer_than
, &newer_off
,
1294 range
->start
= newer_off
;
1295 i
= (newer_off
& new_align
) >> PAGE_CACHE_SHIFT
;
1302 last_len
+= ret
<< PAGE_CACHE_SHIFT
;
1310 if ((range
->flags
& BTRFS_DEFRAG_RANGE_START_IO
))
1311 filemap_flush(inode
->i_mapping
);
1313 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1314 /* the filemap_flush will queue IO into the worker threads, but
1315 * we have to make sure the IO is actually started and that
1316 * ordered extents get created before we return
1318 atomic_inc(&root
->fs_info
->async_submit_draining
);
1319 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
1320 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1321 wait_event(root
->fs_info
->async_submit_wait
,
1322 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
1323 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
1325 atomic_dec(&root
->fs_info
->async_submit_draining
);
1327 mutex_lock(&inode
->i_mutex
);
1328 BTRFS_I(inode
)->force_compress
= BTRFS_COMPRESS_NONE
;
1329 mutex_unlock(&inode
->i_mutex
);
1332 if (range
->compress_type
== BTRFS_COMPRESS_LZO
) {
1333 btrfs_set_fs_incompat(root
->fs_info
, COMPRESS_LZO
);
1345 static noinline
int btrfs_ioctl_resize(struct file
*file
,
1351 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
1352 struct btrfs_ioctl_vol_args
*vol_args
;
1353 struct btrfs_trans_handle
*trans
;
1354 struct btrfs_device
*device
= NULL
;
1356 char *devstr
= NULL
;
1360 if (!capable(CAP_SYS_ADMIN
))
1363 ret
= mnt_want_write_file(file
);
1367 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
1369 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
1370 mnt_drop_write_file(file
);
1374 mutex_lock(&root
->fs_info
->volume_mutex
);
1375 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1376 if (IS_ERR(vol_args
)) {
1377 ret
= PTR_ERR(vol_args
);
1381 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1383 sizestr
= vol_args
->name
;
1384 devstr
= strchr(sizestr
, ':');
1387 sizestr
= devstr
+ 1;
1389 devstr
= vol_args
->name
;
1390 devid
= simple_strtoull(devstr
, &end
, 10);
1395 printk(KERN_INFO
"btrfs: resizing devid %llu\n",
1396 (unsigned long long)devid
);
1399 device
= btrfs_find_device(root
->fs_info
, devid
, NULL
, NULL
);
1401 printk(KERN_INFO
"btrfs: resizer unable to find device %llu\n",
1402 (unsigned long long)devid
);
1407 if (!device
->writeable
) {
1408 printk(KERN_INFO
"btrfs: resizer unable to apply on "
1409 "readonly device %llu\n",
1410 (unsigned long long)devid
);
1415 if (!strcmp(sizestr
, "max"))
1416 new_size
= device
->bdev
->bd_inode
->i_size
;
1418 if (sizestr
[0] == '-') {
1421 } else if (sizestr
[0] == '+') {
1425 new_size
= memparse(sizestr
, NULL
);
1426 if (new_size
== 0) {
1432 if (device
->is_tgtdev_for_dev_replace
) {
1437 old_size
= device
->total_bytes
;
1440 if (new_size
> old_size
) {
1444 new_size
= old_size
- new_size
;
1445 } else if (mod
> 0) {
1446 new_size
= old_size
+ new_size
;
1449 if (new_size
< 256 * 1024 * 1024) {
1453 if (new_size
> device
->bdev
->bd_inode
->i_size
) {
1458 do_div(new_size
, root
->sectorsize
);
1459 new_size
*= root
->sectorsize
;
1461 printk_in_rcu(KERN_INFO
"btrfs: new size for %s is %llu\n",
1462 rcu_str_deref(device
->name
),
1463 (unsigned long long)new_size
);
1465 if (new_size
> old_size
) {
1466 trans
= btrfs_start_transaction(root
, 0);
1467 if (IS_ERR(trans
)) {
1468 ret
= PTR_ERR(trans
);
1471 ret
= btrfs_grow_device(trans
, device
, new_size
);
1472 btrfs_commit_transaction(trans
, root
);
1473 } else if (new_size
< old_size
) {
1474 ret
= btrfs_shrink_device(device
, new_size
);
1475 } /* equal, nothing need to do */
1480 mutex_unlock(&root
->fs_info
->volume_mutex
);
1481 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
1482 mnt_drop_write_file(file
);
1486 static noinline
int btrfs_ioctl_snap_create_transid(struct file
*file
,
1487 char *name
, unsigned long fd
, int subvol
,
1488 u64
*transid
, bool readonly
,
1489 struct btrfs_qgroup_inherit
*inherit
)
1494 ret
= mnt_want_write_file(file
);
1498 namelen
= strlen(name
);
1499 if (strchr(name
, '/')) {
1501 goto out_drop_write
;
1504 if (name
[0] == '.' &&
1505 (namelen
== 1 || (name
[1] == '.' && namelen
== 2))) {
1507 goto out_drop_write
;
1511 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1512 NULL
, transid
, readonly
, inherit
);
1514 struct fd src
= fdget(fd
);
1515 struct inode
*src_inode
;
1518 goto out_drop_write
;
1521 src_inode
= file_inode(src
.file
);
1522 if (src_inode
->i_sb
!= file_inode(file
)->i_sb
) {
1523 printk(KERN_INFO
"btrfs: Snapshot src from "
1527 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1528 BTRFS_I(src_inode
)->root
,
1529 transid
, readonly
, inherit
);
1534 mnt_drop_write_file(file
);
1539 static noinline
int btrfs_ioctl_snap_create(struct file
*file
,
1540 void __user
*arg
, int subvol
)
1542 struct btrfs_ioctl_vol_args
*vol_args
;
1545 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1546 if (IS_ERR(vol_args
))
1547 return PTR_ERR(vol_args
);
1548 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1550 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1551 vol_args
->fd
, subvol
,
1558 static noinline
int btrfs_ioctl_snap_create_v2(struct file
*file
,
1559 void __user
*arg
, int subvol
)
1561 struct btrfs_ioctl_vol_args_v2
*vol_args
;
1565 bool readonly
= false;
1566 struct btrfs_qgroup_inherit
*inherit
= NULL
;
1568 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1569 if (IS_ERR(vol_args
))
1570 return PTR_ERR(vol_args
);
1571 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
1573 if (vol_args
->flags
&
1574 ~(BTRFS_SUBVOL_CREATE_ASYNC
| BTRFS_SUBVOL_RDONLY
|
1575 BTRFS_SUBVOL_QGROUP_INHERIT
)) {
1580 if (vol_args
->flags
& BTRFS_SUBVOL_CREATE_ASYNC
)
1582 if (vol_args
->flags
& BTRFS_SUBVOL_RDONLY
)
1584 if (vol_args
->flags
& BTRFS_SUBVOL_QGROUP_INHERIT
) {
1585 if (vol_args
->size
> PAGE_CACHE_SIZE
) {
1589 inherit
= memdup_user(vol_args
->qgroup_inherit
, vol_args
->size
);
1590 if (IS_ERR(inherit
)) {
1591 ret
= PTR_ERR(inherit
);
1596 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1597 vol_args
->fd
, subvol
, ptr
,
1600 if (ret
== 0 && ptr
&&
1602 offsetof(struct btrfs_ioctl_vol_args_v2
,
1603 transid
), ptr
, sizeof(*ptr
)))
1611 static noinline
int btrfs_ioctl_subvol_getflags(struct file
*file
,
1614 struct inode
*inode
= file_inode(file
);
1615 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1619 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
)
1622 down_read(&root
->fs_info
->subvol_sem
);
1623 if (btrfs_root_readonly(root
))
1624 flags
|= BTRFS_SUBVOL_RDONLY
;
1625 up_read(&root
->fs_info
->subvol_sem
);
1627 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
1633 static noinline
int btrfs_ioctl_subvol_setflags(struct file
*file
,
1636 struct inode
*inode
= file_inode(file
);
1637 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1638 struct btrfs_trans_handle
*trans
;
1643 ret
= mnt_want_write_file(file
);
1647 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
1649 goto out_drop_write
;
1652 if (copy_from_user(&flags
, arg
, sizeof(flags
))) {
1654 goto out_drop_write
;
1657 if (flags
& BTRFS_SUBVOL_CREATE_ASYNC
) {
1659 goto out_drop_write
;
1662 if (flags
& ~BTRFS_SUBVOL_RDONLY
) {
1664 goto out_drop_write
;
1667 if (!inode_owner_or_capable(inode
)) {
1669 goto out_drop_write
;
1672 down_write(&root
->fs_info
->subvol_sem
);
1675 if (!!(flags
& BTRFS_SUBVOL_RDONLY
) == btrfs_root_readonly(root
))
1678 root_flags
= btrfs_root_flags(&root
->root_item
);
1679 if (flags
& BTRFS_SUBVOL_RDONLY
)
1680 btrfs_set_root_flags(&root
->root_item
,
1681 root_flags
| BTRFS_ROOT_SUBVOL_RDONLY
);
1683 btrfs_set_root_flags(&root
->root_item
,
1684 root_flags
& ~BTRFS_ROOT_SUBVOL_RDONLY
);
1686 trans
= btrfs_start_transaction(root
, 1);
1687 if (IS_ERR(trans
)) {
1688 ret
= PTR_ERR(trans
);
1692 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
1693 &root
->root_key
, &root
->root_item
);
1695 btrfs_commit_transaction(trans
, root
);
1698 btrfs_set_root_flags(&root
->root_item
, root_flags
);
1700 up_write(&root
->fs_info
->subvol_sem
);
1702 mnt_drop_write_file(file
);
1708 * helper to check if the subvolume references other subvolumes
1710 static noinline
int may_destroy_subvol(struct btrfs_root
*root
)
1712 struct btrfs_path
*path
;
1713 struct btrfs_key key
;
1716 path
= btrfs_alloc_path();
1720 key
.objectid
= root
->root_key
.objectid
;
1721 key
.type
= BTRFS_ROOT_REF_KEY
;
1722 key
.offset
= (u64
)-1;
1724 ret
= btrfs_search_slot(NULL
, root
->fs_info
->tree_root
,
1731 if (path
->slots
[0] > 0) {
1733 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1734 if (key
.objectid
== root
->root_key
.objectid
&&
1735 key
.type
== BTRFS_ROOT_REF_KEY
)
1739 btrfs_free_path(path
);
1743 static noinline
int key_in_sk(struct btrfs_key
*key
,
1744 struct btrfs_ioctl_search_key
*sk
)
1746 struct btrfs_key test
;
1749 test
.objectid
= sk
->min_objectid
;
1750 test
.type
= sk
->min_type
;
1751 test
.offset
= sk
->min_offset
;
1753 ret
= btrfs_comp_cpu_keys(key
, &test
);
1757 test
.objectid
= sk
->max_objectid
;
1758 test
.type
= sk
->max_type
;
1759 test
.offset
= sk
->max_offset
;
1761 ret
= btrfs_comp_cpu_keys(key
, &test
);
1767 static noinline
int copy_to_sk(struct btrfs_root
*root
,
1768 struct btrfs_path
*path
,
1769 struct btrfs_key
*key
,
1770 struct btrfs_ioctl_search_key
*sk
,
1772 unsigned long *sk_offset
,
1776 struct extent_buffer
*leaf
;
1777 struct btrfs_ioctl_search_header sh
;
1778 unsigned long item_off
;
1779 unsigned long item_len
;
1785 leaf
= path
->nodes
[0];
1786 slot
= path
->slots
[0];
1787 nritems
= btrfs_header_nritems(leaf
);
1789 if (btrfs_header_generation(leaf
) > sk
->max_transid
) {
1793 found_transid
= btrfs_header_generation(leaf
);
1795 for (i
= slot
; i
< nritems
; i
++) {
1796 item_off
= btrfs_item_ptr_offset(leaf
, i
);
1797 item_len
= btrfs_item_size_nr(leaf
, i
);
1799 if (item_len
> BTRFS_SEARCH_ARGS_BUFSIZE
)
1802 if (sizeof(sh
) + item_len
+ *sk_offset
>
1803 BTRFS_SEARCH_ARGS_BUFSIZE
) {
1808 btrfs_item_key_to_cpu(leaf
, key
, i
);
1809 if (!key_in_sk(key
, sk
))
1812 sh
.objectid
= key
->objectid
;
1813 sh
.offset
= key
->offset
;
1814 sh
.type
= key
->type
;
1816 sh
.transid
= found_transid
;
1818 /* copy search result header */
1819 memcpy(buf
+ *sk_offset
, &sh
, sizeof(sh
));
1820 *sk_offset
+= sizeof(sh
);
1823 char *p
= buf
+ *sk_offset
;
1825 read_extent_buffer(leaf
, p
,
1826 item_off
, item_len
);
1827 *sk_offset
+= item_len
;
1831 if (*num_found
>= sk
->nr_items
)
1836 if (key
->offset
< (u64
)-1 && key
->offset
< sk
->max_offset
)
1838 else if (key
->type
< (u8
)-1 && key
->type
< sk
->max_type
) {
1841 } else if (key
->objectid
< (u64
)-1 && key
->objectid
< sk
->max_objectid
) {
1851 static noinline
int search_ioctl(struct inode
*inode
,
1852 struct btrfs_ioctl_search_args
*args
)
1854 struct btrfs_root
*root
;
1855 struct btrfs_key key
;
1856 struct btrfs_key max_key
;
1857 struct btrfs_path
*path
;
1858 struct btrfs_ioctl_search_key
*sk
= &args
->key
;
1859 struct btrfs_fs_info
*info
= BTRFS_I(inode
)->root
->fs_info
;
1862 unsigned long sk_offset
= 0;
1864 path
= btrfs_alloc_path();
1868 if (sk
->tree_id
== 0) {
1869 /* search the root of the inode that was passed */
1870 root
= BTRFS_I(inode
)->root
;
1872 key
.objectid
= sk
->tree_id
;
1873 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1874 key
.offset
= (u64
)-1;
1875 root
= btrfs_read_fs_root_no_name(info
, &key
);
1877 printk(KERN_ERR
"could not find root %llu\n",
1879 btrfs_free_path(path
);
1884 key
.objectid
= sk
->min_objectid
;
1885 key
.type
= sk
->min_type
;
1886 key
.offset
= sk
->min_offset
;
1888 max_key
.objectid
= sk
->max_objectid
;
1889 max_key
.type
= sk
->max_type
;
1890 max_key
.offset
= sk
->max_offset
;
1892 path
->keep_locks
= 1;
1895 ret
= btrfs_search_forward(root
, &key
, &max_key
, path
,
1902 ret
= copy_to_sk(root
, path
, &key
, sk
, args
->buf
,
1903 &sk_offset
, &num_found
);
1904 btrfs_release_path(path
);
1905 if (ret
|| num_found
>= sk
->nr_items
)
1911 sk
->nr_items
= num_found
;
1912 btrfs_free_path(path
);
1916 static noinline
int btrfs_ioctl_tree_search(struct file
*file
,
1919 struct btrfs_ioctl_search_args
*args
;
1920 struct inode
*inode
;
1923 if (!capable(CAP_SYS_ADMIN
))
1926 args
= memdup_user(argp
, sizeof(*args
));
1928 return PTR_ERR(args
);
1930 inode
= file_inode(file
);
1931 ret
= search_ioctl(inode
, args
);
1932 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
1939 * Search INODE_REFs to identify path name of 'dirid' directory
1940 * in a 'tree_id' tree. and sets path name to 'name'.
1942 static noinline
int btrfs_search_path_in_tree(struct btrfs_fs_info
*info
,
1943 u64 tree_id
, u64 dirid
, char *name
)
1945 struct btrfs_root
*root
;
1946 struct btrfs_key key
;
1952 struct btrfs_inode_ref
*iref
;
1953 struct extent_buffer
*l
;
1954 struct btrfs_path
*path
;
1956 if (dirid
== BTRFS_FIRST_FREE_OBJECTID
) {
1961 path
= btrfs_alloc_path();
1965 ptr
= &name
[BTRFS_INO_LOOKUP_PATH_MAX
];
1967 key
.objectid
= tree_id
;
1968 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1969 key
.offset
= (u64
)-1;
1970 root
= btrfs_read_fs_root_no_name(info
, &key
);
1972 printk(KERN_ERR
"could not find root %llu\n", tree_id
);
1977 key
.objectid
= dirid
;
1978 key
.type
= BTRFS_INODE_REF_KEY
;
1979 key
.offset
= (u64
)-1;
1982 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1987 slot
= path
->slots
[0];
1988 if (ret
> 0 && slot
> 0)
1990 btrfs_item_key_to_cpu(l
, &key
, slot
);
1992 if (ret
> 0 && (key
.objectid
!= dirid
||
1993 key
.type
!= BTRFS_INODE_REF_KEY
)) {
1998 iref
= btrfs_item_ptr(l
, slot
, struct btrfs_inode_ref
);
1999 len
= btrfs_inode_ref_name_len(l
, iref
);
2001 total_len
+= len
+ 1;
2006 read_extent_buffer(l
, ptr
,(unsigned long)(iref
+ 1), len
);
2008 if (key
.offset
== BTRFS_FIRST_FREE_OBJECTID
)
2011 btrfs_release_path(path
);
2012 key
.objectid
= key
.offset
;
2013 key
.offset
= (u64
)-1;
2014 dirid
= key
.objectid
;
2018 memmove(name
, ptr
, total_len
);
2019 name
[total_len
]='\0';
2022 btrfs_free_path(path
);
2026 static noinline
int btrfs_ioctl_ino_lookup(struct file
*file
,
2029 struct btrfs_ioctl_ino_lookup_args
*args
;
2030 struct inode
*inode
;
2033 if (!capable(CAP_SYS_ADMIN
))
2036 args
= memdup_user(argp
, sizeof(*args
));
2038 return PTR_ERR(args
);
2040 inode
= file_inode(file
);
2042 if (args
->treeid
== 0)
2043 args
->treeid
= BTRFS_I(inode
)->root
->root_key
.objectid
;
2045 ret
= btrfs_search_path_in_tree(BTRFS_I(inode
)->root
->fs_info
,
2046 args
->treeid
, args
->objectid
,
2049 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
2056 static noinline
int btrfs_ioctl_snap_destroy(struct file
*file
,
2059 struct dentry
*parent
= fdentry(file
);
2060 struct dentry
*dentry
;
2061 struct inode
*dir
= parent
->d_inode
;
2062 struct inode
*inode
;
2063 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2064 struct btrfs_root
*dest
= NULL
;
2065 struct btrfs_ioctl_vol_args
*vol_args
;
2066 struct btrfs_trans_handle
*trans
;
2067 struct btrfs_block_rsv block_rsv
;
2068 u64 qgroup_reserved
;
2073 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2074 if (IS_ERR(vol_args
))
2075 return PTR_ERR(vol_args
);
2077 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2078 namelen
= strlen(vol_args
->name
);
2079 if (strchr(vol_args
->name
, '/') ||
2080 strncmp(vol_args
->name
, "..", namelen
) == 0) {
2085 err
= mnt_want_write_file(file
);
2089 mutex_lock_nested(&dir
->i_mutex
, I_MUTEX_PARENT
);
2090 dentry
= lookup_one_len(vol_args
->name
, parent
, namelen
);
2091 if (IS_ERR(dentry
)) {
2092 err
= PTR_ERR(dentry
);
2093 goto out_unlock_dir
;
2096 if (!dentry
->d_inode
) {
2101 inode
= dentry
->d_inode
;
2102 dest
= BTRFS_I(inode
)->root
;
2103 if (!capable(CAP_SYS_ADMIN
)){
2105 * Regular user. Only allow this with a special mount
2106 * option, when the user has write+exec access to the
2107 * subvol root, and when rmdir(2) would have been
2110 * Note that this is _not_ check that the subvol is
2111 * empty or doesn't contain data that we wouldn't
2112 * otherwise be able to delete.
2114 * Users who want to delete empty subvols should try
2118 if (!btrfs_test_opt(root
, USER_SUBVOL_RM_ALLOWED
))
2122 * Do not allow deletion if the parent dir is the same
2123 * as the dir to be deleted. That means the ioctl
2124 * must be called on the dentry referencing the root
2125 * of the subvol, not a random directory contained
2132 err
= inode_permission(inode
, MAY_WRITE
| MAY_EXEC
);
2137 /* check if subvolume may be deleted by a user */
2138 err
= btrfs_may_delete(dir
, dentry
, 1);
2142 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
2147 mutex_lock(&inode
->i_mutex
);
2148 err
= d_invalidate(dentry
);
2152 down_write(&root
->fs_info
->subvol_sem
);
2154 err
= may_destroy_subvol(dest
);
2158 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
2160 * One for dir inode, two for dir entries, two for root
2163 err
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
,
2164 5, &qgroup_reserved
);
2168 trans
= btrfs_start_transaction(root
, 0);
2169 if (IS_ERR(trans
)) {
2170 err
= PTR_ERR(trans
);
2173 trans
->block_rsv
= &block_rsv
;
2174 trans
->bytes_reserved
= block_rsv
.size
;
2176 ret
= btrfs_unlink_subvol(trans
, root
, dir
,
2177 dest
->root_key
.objectid
,
2178 dentry
->d_name
.name
,
2179 dentry
->d_name
.len
);
2182 btrfs_abort_transaction(trans
, root
, ret
);
2186 btrfs_record_root_in_trans(trans
, dest
);
2188 memset(&dest
->root_item
.drop_progress
, 0,
2189 sizeof(dest
->root_item
.drop_progress
));
2190 dest
->root_item
.drop_level
= 0;
2191 btrfs_set_root_refs(&dest
->root_item
, 0);
2193 if (!xchg(&dest
->orphan_item_inserted
, 1)) {
2194 ret
= btrfs_insert_orphan_item(trans
,
2195 root
->fs_info
->tree_root
,
2196 dest
->root_key
.objectid
);
2198 btrfs_abort_transaction(trans
, root
, ret
);
2204 trans
->block_rsv
= NULL
;
2205 trans
->bytes_reserved
= 0;
2206 ret
= btrfs_end_transaction(trans
, root
);
2209 inode
->i_flags
|= S_DEAD
;
2211 btrfs_subvolume_release_metadata(root
, &block_rsv
, qgroup_reserved
);
2213 up_write(&root
->fs_info
->subvol_sem
);
2215 mutex_unlock(&inode
->i_mutex
);
2217 shrink_dcache_sb(root
->fs_info
->sb
);
2218 btrfs_invalidate_inodes(dest
);
2222 if (dest
->cache_inode
) {
2223 iput(dest
->cache_inode
);
2224 dest
->cache_inode
= NULL
;
2230 mutex_unlock(&dir
->i_mutex
);
2231 mnt_drop_write_file(file
);
2237 static int btrfs_ioctl_defrag(struct file
*file
, void __user
*argp
)
2239 struct inode
*inode
= file_inode(file
);
2240 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2241 struct btrfs_ioctl_defrag_range_args
*range
;
2244 ret
= mnt_want_write_file(file
);
2248 if (btrfs_root_readonly(root
)) {
2253 switch (inode
->i_mode
& S_IFMT
) {
2255 if (!capable(CAP_SYS_ADMIN
)) {
2259 ret
= btrfs_defrag_root(root
);
2262 ret
= btrfs_defrag_root(root
->fs_info
->extent_root
);
2265 if (!(file
->f_mode
& FMODE_WRITE
)) {
2270 range
= kzalloc(sizeof(*range
), GFP_KERNEL
);
2277 if (copy_from_user(range
, argp
,
2283 /* compression requires us to start the IO */
2284 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
2285 range
->flags
|= BTRFS_DEFRAG_RANGE_START_IO
;
2286 range
->extent_thresh
= (u32
)-1;
2289 /* the rest are all set to zero by kzalloc */
2290 range
->len
= (u64
)-1;
2292 ret
= btrfs_defrag_file(file_inode(file
), file
,
2302 mnt_drop_write_file(file
);
2306 static long btrfs_ioctl_add_dev(struct btrfs_root
*root
, void __user
*arg
)
2308 struct btrfs_ioctl_vol_args
*vol_args
;
2311 if (!capable(CAP_SYS_ADMIN
))
2314 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
2316 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
2320 mutex_lock(&root
->fs_info
->volume_mutex
);
2321 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2322 if (IS_ERR(vol_args
)) {
2323 ret
= PTR_ERR(vol_args
);
2327 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2328 ret
= btrfs_init_new_device(root
, vol_args
->name
);
2332 mutex_unlock(&root
->fs_info
->volume_mutex
);
2333 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
2337 static long btrfs_ioctl_rm_dev(struct file
*file
, void __user
*arg
)
2339 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
2340 struct btrfs_ioctl_vol_args
*vol_args
;
2343 if (!capable(CAP_SYS_ADMIN
))
2346 ret
= mnt_want_write_file(file
);
2350 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
2352 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
2353 mnt_drop_write_file(file
);
2357 mutex_lock(&root
->fs_info
->volume_mutex
);
2358 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2359 if (IS_ERR(vol_args
)) {
2360 ret
= PTR_ERR(vol_args
);
2364 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2365 ret
= btrfs_rm_device(root
, vol_args
->name
);
2369 mutex_unlock(&root
->fs_info
->volume_mutex
);
2370 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
2371 mnt_drop_write_file(file
);
2375 static long btrfs_ioctl_fs_info(struct btrfs_root
*root
, void __user
*arg
)
2377 struct btrfs_ioctl_fs_info_args
*fi_args
;
2378 struct btrfs_device
*device
;
2379 struct btrfs_device
*next
;
2380 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2383 if (!capable(CAP_SYS_ADMIN
))
2386 fi_args
= kzalloc(sizeof(*fi_args
), GFP_KERNEL
);
2390 fi_args
->num_devices
= fs_devices
->num_devices
;
2391 memcpy(&fi_args
->fsid
, root
->fs_info
->fsid
, sizeof(fi_args
->fsid
));
2393 mutex_lock(&fs_devices
->device_list_mutex
);
2394 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
2395 if (device
->devid
> fi_args
->max_id
)
2396 fi_args
->max_id
= device
->devid
;
2398 mutex_unlock(&fs_devices
->device_list_mutex
);
2400 if (copy_to_user(arg
, fi_args
, sizeof(*fi_args
)))
2407 static long btrfs_ioctl_dev_info(struct btrfs_root
*root
, void __user
*arg
)
2409 struct btrfs_ioctl_dev_info_args
*di_args
;
2410 struct btrfs_device
*dev
;
2411 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2413 char *s_uuid
= NULL
;
2414 char empty_uuid
[BTRFS_UUID_SIZE
] = {0};
2416 if (!capable(CAP_SYS_ADMIN
))
2419 di_args
= memdup_user(arg
, sizeof(*di_args
));
2420 if (IS_ERR(di_args
))
2421 return PTR_ERR(di_args
);
2423 if (memcmp(empty_uuid
, di_args
->uuid
, BTRFS_UUID_SIZE
) != 0)
2424 s_uuid
= di_args
->uuid
;
2426 mutex_lock(&fs_devices
->device_list_mutex
);
2427 dev
= btrfs_find_device(root
->fs_info
, di_args
->devid
, s_uuid
, NULL
);
2428 mutex_unlock(&fs_devices
->device_list_mutex
);
2435 di_args
->devid
= dev
->devid
;
2436 di_args
->bytes_used
= dev
->bytes_used
;
2437 di_args
->total_bytes
= dev
->total_bytes
;
2438 memcpy(di_args
->uuid
, dev
->uuid
, sizeof(di_args
->uuid
));
2440 struct rcu_string
*name
;
2443 name
= rcu_dereference(dev
->name
);
2444 strncpy(di_args
->path
, name
->str
, sizeof(di_args
->path
));
2446 di_args
->path
[sizeof(di_args
->path
) - 1] = 0;
2448 di_args
->path
[0] = '\0';
2452 if (ret
== 0 && copy_to_user(arg
, di_args
, sizeof(*di_args
)))
2459 static noinline
long btrfs_ioctl_clone(struct file
*file
, unsigned long srcfd
,
2460 u64 off
, u64 olen
, u64 destoff
)
2462 struct inode
*inode
= file_inode(file
);
2463 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2466 struct btrfs_trans_handle
*trans
;
2467 struct btrfs_path
*path
;
2468 struct extent_buffer
*leaf
;
2470 struct btrfs_key key
;
2475 u64 bs
= root
->fs_info
->sb
->s_blocksize
;
2479 * - split compressed inline extents. annoying: we need to
2480 * decompress into destination's address_space (the file offset
2481 * may change, so source mapping won't do), then recompress (or
2482 * otherwise reinsert) a subrange.
2483 * - allow ranges within the same file to be cloned (provided
2484 * they don't overlap)?
2487 /* the destination must be opened for writing */
2488 if (!(file
->f_mode
& FMODE_WRITE
) || (file
->f_flags
& O_APPEND
))
2491 if (btrfs_root_readonly(root
))
2494 ret
= mnt_want_write_file(file
);
2498 src_file
= fdget(srcfd
);
2499 if (!src_file
.file
) {
2501 goto out_drop_write
;
2505 if (src_file
.file
->f_path
.mnt
!= file
->f_path
.mnt
)
2508 src
= file_inode(src_file
.file
);
2514 /* the src must be open for reading */
2515 if (!(src_file
.file
->f_mode
& FMODE_READ
))
2518 /* don't make the dst file partly checksummed */
2519 if ((BTRFS_I(src
)->flags
& BTRFS_INODE_NODATASUM
) !=
2520 (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
))
2524 if (S_ISDIR(src
->i_mode
) || S_ISDIR(inode
->i_mode
))
2528 if (src
->i_sb
!= inode
->i_sb
)
2532 buf
= vmalloc(btrfs_level_size(root
, 0));
2536 path
= btrfs_alloc_path();
2544 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_PARENT
);
2545 mutex_lock_nested(&src
->i_mutex
, I_MUTEX_CHILD
);
2547 mutex_lock_nested(&src
->i_mutex
, I_MUTEX_PARENT
);
2548 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
2551 /* determine range to clone */
2553 if (off
+ len
> src
->i_size
|| off
+ len
< off
)
2556 olen
= len
= src
->i_size
- off
;
2557 /* if we extend to eof, continue to block boundary */
2558 if (off
+ len
== src
->i_size
)
2559 len
= ALIGN(src
->i_size
, bs
) - off
;
2561 /* verify the end result is block aligned */
2562 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
) ||
2563 !IS_ALIGNED(destoff
, bs
))
2566 if (destoff
> inode
->i_size
) {
2567 ret
= btrfs_cont_expand(inode
, inode
->i_size
, destoff
);
2572 /* truncate page cache pages from target inode range */
2573 truncate_inode_pages_range(&inode
->i_data
, destoff
,
2574 PAGE_CACHE_ALIGN(destoff
+ len
) - 1);
2576 /* do any pending delalloc/csum calc on src, one way or
2577 another, and lock file content */
2579 struct btrfs_ordered_extent
*ordered
;
2580 lock_extent(&BTRFS_I(src
)->io_tree
, off
, off
+ len
- 1);
2581 ordered
= btrfs_lookup_first_ordered_extent(src
, off
+ len
- 1);
2583 !test_range_bit(&BTRFS_I(src
)->io_tree
, off
, off
+ len
- 1,
2584 EXTENT_DELALLOC
, 0, NULL
))
2586 unlock_extent(&BTRFS_I(src
)->io_tree
, off
, off
+ len
- 1);
2588 btrfs_put_ordered_extent(ordered
);
2589 btrfs_wait_ordered_range(src
, off
, len
);
2593 key
.objectid
= btrfs_ino(src
);
2594 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2599 * note the key will change type as we walk through the
2602 ret
= btrfs_search_slot(NULL
, BTRFS_I(src
)->root
, &key
, path
,
2607 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2608 if (path
->slots
[0] >= nritems
) {
2609 ret
= btrfs_next_leaf(BTRFS_I(src
)->root
, path
);
2614 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2616 leaf
= path
->nodes
[0];
2617 slot
= path
->slots
[0];
2619 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2620 if (btrfs_key_type(&key
) > BTRFS_EXTENT_DATA_KEY
||
2621 key
.objectid
!= btrfs_ino(src
))
2624 if (btrfs_key_type(&key
) == BTRFS_EXTENT_DATA_KEY
) {
2625 struct btrfs_file_extent_item
*extent
;
2628 struct btrfs_key new_key
;
2629 u64 disko
= 0, diskl
= 0;
2630 u64 datao
= 0, datal
= 0;
2634 size
= btrfs_item_size_nr(leaf
, slot
);
2635 read_extent_buffer(leaf
, buf
,
2636 btrfs_item_ptr_offset(leaf
, slot
),
2639 extent
= btrfs_item_ptr(leaf
, slot
,
2640 struct btrfs_file_extent_item
);
2641 comp
= btrfs_file_extent_compression(leaf
, extent
);
2642 type
= btrfs_file_extent_type(leaf
, extent
);
2643 if (type
== BTRFS_FILE_EXTENT_REG
||
2644 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2645 disko
= btrfs_file_extent_disk_bytenr(leaf
,
2647 diskl
= btrfs_file_extent_disk_num_bytes(leaf
,
2649 datao
= btrfs_file_extent_offset(leaf
, extent
);
2650 datal
= btrfs_file_extent_num_bytes(leaf
,
2652 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
2653 /* take upper bound, may be compressed */
2654 datal
= btrfs_file_extent_ram_bytes(leaf
,
2657 btrfs_release_path(path
);
2659 if (key
.offset
+ datal
<= off
||
2660 key
.offset
>= off
+ len
- 1)
2663 memcpy(&new_key
, &key
, sizeof(new_key
));
2664 new_key
.objectid
= btrfs_ino(inode
);
2665 if (off
<= key
.offset
)
2666 new_key
.offset
= key
.offset
+ destoff
- off
;
2668 new_key
.offset
= destoff
;
2671 * 1 - adjusting old extent (we may have to split it)
2672 * 1 - add new extent
2675 trans
= btrfs_start_transaction(root
, 3);
2676 if (IS_ERR(trans
)) {
2677 ret
= PTR_ERR(trans
);
2681 if (type
== BTRFS_FILE_EXTENT_REG
||
2682 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2684 * a | --- range to clone ---| b
2685 * | ------------- extent ------------- |
2688 /* substract range b */
2689 if (key
.offset
+ datal
> off
+ len
)
2690 datal
= off
+ len
- key
.offset
;
2692 /* substract range a */
2693 if (off
> key
.offset
) {
2694 datao
+= off
- key
.offset
;
2695 datal
-= off
- key
.offset
;
2698 ret
= btrfs_drop_extents(trans
, root
, inode
,
2700 new_key
.offset
+ datal
,
2703 btrfs_abort_transaction(trans
, root
,
2705 btrfs_end_transaction(trans
, root
);
2709 ret
= btrfs_insert_empty_item(trans
, root
, path
,
2712 btrfs_abort_transaction(trans
, root
,
2714 btrfs_end_transaction(trans
, root
);
2718 leaf
= path
->nodes
[0];
2719 slot
= path
->slots
[0];
2720 write_extent_buffer(leaf
, buf
,
2721 btrfs_item_ptr_offset(leaf
, slot
),
2724 extent
= btrfs_item_ptr(leaf
, slot
,
2725 struct btrfs_file_extent_item
);
2727 /* disko == 0 means it's a hole */
2731 btrfs_set_file_extent_offset(leaf
, extent
,
2733 btrfs_set_file_extent_num_bytes(leaf
, extent
,
2736 inode_add_bytes(inode
, datal
);
2737 ret
= btrfs_inc_extent_ref(trans
, root
,
2739 root
->root_key
.objectid
,
2741 new_key
.offset
- datao
,
2744 btrfs_abort_transaction(trans
,
2747 btrfs_end_transaction(trans
,
2753 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
2756 if (off
> key
.offset
) {
2757 skip
= off
- key
.offset
;
2758 new_key
.offset
+= skip
;
2761 if (key
.offset
+ datal
> off
+ len
)
2762 trim
= key
.offset
+ datal
- (off
+ len
);
2764 if (comp
&& (skip
|| trim
)) {
2766 btrfs_end_transaction(trans
, root
);
2769 size
-= skip
+ trim
;
2770 datal
-= skip
+ trim
;
2772 ret
= btrfs_drop_extents(trans
, root
, inode
,
2774 new_key
.offset
+ datal
,
2777 btrfs_abort_transaction(trans
, root
,
2779 btrfs_end_transaction(trans
, root
);
2783 ret
= btrfs_insert_empty_item(trans
, root
, path
,
2786 btrfs_abort_transaction(trans
, root
,
2788 btrfs_end_transaction(trans
, root
);
2794 btrfs_file_extent_calc_inline_size(0);
2795 memmove(buf
+start
, buf
+start
+skip
,
2799 leaf
= path
->nodes
[0];
2800 slot
= path
->slots
[0];
2801 write_extent_buffer(leaf
, buf
,
2802 btrfs_item_ptr_offset(leaf
, slot
),
2804 inode_add_bytes(inode
, datal
);
2807 btrfs_mark_buffer_dirty(leaf
);
2808 btrfs_release_path(path
);
2810 inode_inc_iversion(inode
);
2811 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
2814 * we round up to the block size at eof when
2815 * determining which extents to clone above,
2816 * but shouldn't round up the file size
2818 endoff
= new_key
.offset
+ datal
;
2819 if (endoff
> destoff
+olen
)
2820 endoff
= destoff
+olen
;
2821 if (endoff
> inode
->i_size
)
2822 btrfs_i_size_write(inode
, endoff
);
2824 ret
= btrfs_update_inode(trans
, root
, inode
);
2826 btrfs_abort_transaction(trans
, root
, ret
);
2827 btrfs_end_transaction(trans
, root
);
2830 ret
= btrfs_end_transaction(trans
, root
);
2833 btrfs_release_path(path
);
2838 btrfs_release_path(path
);
2839 unlock_extent(&BTRFS_I(src
)->io_tree
, off
, off
+ len
- 1);
2841 mutex_unlock(&src
->i_mutex
);
2842 mutex_unlock(&inode
->i_mutex
);
2844 btrfs_free_path(path
);
2848 mnt_drop_write_file(file
);
2852 static long btrfs_ioctl_clone_range(struct file
*file
, void __user
*argp
)
2854 struct btrfs_ioctl_clone_range_args args
;
2856 if (copy_from_user(&args
, argp
, sizeof(args
)))
2858 return btrfs_ioctl_clone(file
, args
.src_fd
, args
.src_offset
,
2859 args
.src_length
, args
.dest_offset
);
2863 * there are many ways the trans_start and trans_end ioctls can lead
2864 * to deadlocks. They should only be used by applications that
2865 * basically own the machine, and have a very in depth understanding
2866 * of all the possible deadlocks and enospc problems.
2868 static long btrfs_ioctl_trans_start(struct file
*file
)
2870 struct inode
*inode
= file_inode(file
);
2871 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2872 struct btrfs_trans_handle
*trans
;
2876 if (!capable(CAP_SYS_ADMIN
))
2880 if (file
->private_data
)
2884 if (btrfs_root_readonly(root
))
2887 ret
= mnt_want_write_file(file
);
2891 atomic_inc(&root
->fs_info
->open_ioctl_trans
);
2894 trans
= btrfs_start_ioctl_transaction(root
);
2898 file
->private_data
= trans
;
2902 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
2903 mnt_drop_write_file(file
);
2908 static long btrfs_ioctl_default_subvol(struct file
*file
, void __user
*argp
)
2910 struct inode
*inode
= file_inode(file
);
2911 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2912 struct btrfs_root
*new_root
;
2913 struct btrfs_dir_item
*di
;
2914 struct btrfs_trans_handle
*trans
;
2915 struct btrfs_path
*path
;
2916 struct btrfs_key location
;
2917 struct btrfs_disk_key disk_key
;
2922 if (!capable(CAP_SYS_ADMIN
))
2925 ret
= mnt_want_write_file(file
);
2929 if (copy_from_user(&objectid
, argp
, sizeof(objectid
))) {
2935 objectid
= root
->root_key
.objectid
;
2937 location
.objectid
= objectid
;
2938 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2939 location
.offset
= (u64
)-1;
2941 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &location
);
2942 if (IS_ERR(new_root
)) {
2943 ret
= PTR_ERR(new_root
);
2947 if (btrfs_root_refs(&new_root
->root_item
) == 0) {
2952 path
= btrfs_alloc_path();
2957 path
->leave_spinning
= 1;
2959 trans
= btrfs_start_transaction(root
, 1);
2960 if (IS_ERR(trans
)) {
2961 btrfs_free_path(path
);
2962 ret
= PTR_ERR(trans
);
2966 dir_id
= btrfs_super_root_dir(root
->fs_info
->super_copy
);
2967 di
= btrfs_lookup_dir_item(trans
, root
->fs_info
->tree_root
, path
,
2968 dir_id
, "default", 7, 1);
2969 if (IS_ERR_OR_NULL(di
)) {
2970 btrfs_free_path(path
);
2971 btrfs_end_transaction(trans
, root
);
2972 printk(KERN_ERR
"Umm, you don't have the default dir item, "
2973 "this isn't going to work\n");
2978 btrfs_cpu_key_to_disk(&disk_key
, &new_root
->root_key
);
2979 btrfs_set_dir_item_key(path
->nodes
[0], di
, &disk_key
);
2980 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2981 btrfs_free_path(path
);
2983 btrfs_set_fs_incompat(root
->fs_info
, DEFAULT_SUBVOL
);
2984 btrfs_end_transaction(trans
, root
);
2986 mnt_drop_write_file(file
);
2990 void btrfs_get_block_group_info(struct list_head
*groups_list
,
2991 struct btrfs_ioctl_space_info
*space
)
2993 struct btrfs_block_group_cache
*block_group
;
2995 space
->total_bytes
= 0;
2996 space
->used_bytes
= 0;
2998 list_for_each_entry(block_group
, groups_list
, list
) {
2999 space
->flags
= block_group
->flags
;
3000 space
->total_bytes
+= block_group
->key
.offset
;
3001 space
->used_bytes
+=
3002 btrfs_block_group_used(&block_group
->item
);
3006 long btrfs_ioctl_space_info(struct btrfs_root
*root
, void __user
*arg
)
3008 struct btrfs_ioctl_space_args space_args
;
3009 struct btrfs_ioctl_space_info space
;
3010 struct btrfs_ioctl_space_info
*dest
;
3011 struct btrfs_ioctl_space_info
*dest_orig
;
3012 struct btrfs_ioctl_space_info __user
*user_dest
;
3013 struct btrfs_space_info
*info
;
3014 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
3015 BTRFS_BLOCK_GROUP_SYSTEM
,
3016 BTRFS_BLOCK_GROUP_METADATA
,
3017 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
3024 if (copy_from_user(&space_args
,
3025 (struct btrfs_ioctl_space_args __user
*)arg
,
3026 sizeof(space_args
)))
3029 for (i
= 0; i
< num_types
; i
++) {
3030 struct btrfs_space_info
*tmp
;
3034 list_for_each_entry_rcu(tmp
, &root
->fs_info
->space_info
,
3036 if (tmp
->flags
== types
[i
]) {
3046 down_read(&info
->groups_sem
);
3047 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
3048 if (!list_empty(&info
->block_groups
[c
]))
3051 up_read(&info
->groups_sem
);
3054 /* space_slots == 0 means they are asking for a count */
3055 if (space_args
.space_slots
== 0) {
3056 space_args
.total_spaces
= slot_count
;
3060 slot_count
= min_t(u64
, space_args
.space_slots
, slot_count
);
3062 alloc_size
= sizeof(*dest
) * slot_count
;
3064 /* we generally have at most 6 or so space infos, one for each raid
3065 * level. So, a whole page should be more than enough for everyone
3067 if (alloc_size
> PAGE_CACHE_SIZE
)
3070 space_args
.total_spaces
= 0;
3071 dest
= kmalloc(alloc_size
, GFP_NOFS
);
3076 /* now we have a buffer to copy into */
3077 for (i
= 0; i
< num_types
; i
++) {
3078 struct btrfs_space_info
*tmp
;
3085 list_for_each_entry_rcu(tmp
, &root
->fs_info
->space_info
,
3087 if (tmp
->flags
== types
[i
]) {
3096 down_read(&info
->groups_sem
);
3097 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
3098 if (!list_empty(&info
->block_groups
[c
])) {
3099 btrfs_get_block_group_info(
3100 &info
->block_groups
[c
], &space
);
3101 memcpy(dest
, &space
, sizeof(space
));
3103 space_args
.total_spaces
++;
3109 up_read(&info
->groups_sem
);
3112 user_dest
= (struct btrfs_ioctl_space_info __user
*)
3113 (arg
+ sizeof(struct btrfs_ioctl_space_args
));
3115 if (copy_to_user(user_dest
, dest_orig
, alloc_size
))
3120 if (ret
== 0 && copy_to_user(arg
, &space_args
, sizeof(space_args
)))
3127 * there are many ways the trans_start and trans_end ioctls can lead
3128 * to deadlocks. They should only be used by applications that
3129 * basically own the machine, and have a very in depth understanding
3130 * of all the possible deadlocks and enospc problems.
3132 long btrfs_ioctl_trans_end(struct file
*file
)
3134 struct inode
*inode
= file_inode(file
);
3135 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3136 struct btrfs_trans_handle
*trans
;
3138 trans
= file
->private_data
;
3141 file
->private_data
= NULL
;
3143 btrfs_end_transaction(trans
, root
);
3145 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
3147 mnt_drop_write_file(file
);
3151 static noinline
long btrfs_ioctl_start_sync(struct btrfs_root
*root
,
3154 struct btrfs_trans_handle
*trans
;
3158 trans
= btrfs_attach_transaction_barrier(root
);
3159 if (IS_ERR(trans
)) {
3160 if (PTR_ERR(trans
) != -ENOENT
)
3161 return PTR_ERR(trans
);
3163 /* No running transaction, don't bother */
3164 transid
= root
->fs_info
->last_trans_committed
;
3167 transid
= trans
->transid
;
3168 ret
= btrfs_commit_transaction_async(trans
, root
, 0);
3170 btrfs_end_transaction(trans
, root
);
3175 if (copy_to_user(argp
, &transid
, sizeof(transid
)))
3180 static noinline
long btrfs_ioctl_wait_sync(struct btrfs_root
*root
,
3186 if (copy_from_user(&transid
, argp
, sizeof(transid
)))
3189 transid
= 0; /* current trans */
3191 return btrfs_wait_for_commit(root
, transid
);
3194 static long btrfs_ioctl_scrub(struct file
*file
, void __user
*arg
)
3196 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
3197 struct btrfs_ioctl_scrub_args
*sa
;
3200 if (!capable(CAP_SYS_ADMIN
))
3203 sa
= memdup_user(arg
, sizeof(*sa
));
3207 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
)) {
3208 ret
= mnt_want_write_file(file
);
3213 ret
= btrfs_scrub_dev(root
->fs_info
, sa
->devid
, sa
->start
, sa
->end
,
3214 &sa
->progress
, sa
->flags
& BTRFS_SCRUB_READONLY
,
3217 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
3220 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
))
3221 mnt_drop_write_file(file
);
3227 static long btrfs_ioctl_scrub_cancel(struct btrfs_root
*root
, void __user
*arg
)
3229 if (!capable(CAP_SYS_ADMIN
))
3232 return btrfs_scrub_cancel(root
->fs_info
);
3235 static long btrfs_ioctl_scrub_progress(struct btrfs_root
*root
,
3238 struct btrfs_ioctl_scrub_args
*sa
;
3241 if (!capable(CAP_SYS_ADMIN
))
3244 sa
= memdup_user(arg
, sizeof(*sa
));
3248 ret
= btrfs_scrub_progress(root
, sa
->devid
, &sa
->progress
);
3250 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
3257 static long btrfs_ioctl_get_dev_stats(struct btrfs_root
*root
,
3260 struct btrfs_ioctl_get_dev_stats
*sa
;
3263 sa
= memdup_user(arg
, sizeof(*sa
));
3267 if ((sa
->flags
& BTRFS_DEV_STATS_RESET
) && !capable(CAP_SYS_ADMIN
)) {
3272 ret
= btrfs_get_dev_stats(root
, sa
);
3274 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
3281 static long btrfs_ioctl_dev_replace(struct btrfs_root
*root
, void __user
*arg
)
3283 struct btrfs_ioctl_dev_replace_args
*p
;
3286 if (!capable(CAP_SYS_ADMIN
))
3289 p
= memdup_user(arg
, sizeof(*p
));
3294 case BTRFS_IOCTL_DEV_REPLACE_CMD_START
:
3296 &root
->fs_info
->mutually_exclusive_operation_running
,
3298 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
3301 ret
= btrfs_dev_replace_start(root
, p
);
3303 &root
->fs_info
->mutually_exclusive_operation_running
,
3307 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS
:
3308 btrfs_dev_replace_status(root
->fs_info
, p
);
3311 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL
:
3312 ret
= btrfs_dev_replace_cancel(root
->fs_info
, p
);
3319 if (copy_to_user(arg
, p
, sizeof(*p
)))
3326 static long btrfs_ioctl_ino_to_path(struct btrfs_root
*root
, void __user
*arg
)
3332 struct btrfs_ioctl_ino_path_args
*ipa
= NULL
;
3333 struct inode_fs_paths
*ipath
= NULL
;
3334 struct btrfs_path
*path
;
3336 if (!capable(CAP_DAC_READ_SEARCH
))
3339 path
= btrfs_alloc_path();
3345 ipa
= memdup_user(arg
, sizeof(*ipa
));
3352 size
= min_t(u32
, ipa
->size
, 4096);
3353 ipath
= init_ipath(size
, root
, path
);
3354 if (IS_ERR(ipath
)) {
3355 ret
= PTR_ERR(ipath
);
3360 ret
= paths_from_inode(ipa
->inum
, ipath
);
3364 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
) {
3365 rel_ptr
= ipath
->fspath
->val
[i
] -
3366 (u64
)(unsigned long)ipath
->fspath
->val
;
3367 ipath
->fspath
->val
[i
] = rel_ptr
;
3370 ret
= copy_to_user((void *)(unsigned long)ipa
->fspath
,
3371 (void *)(unsigned long)ipath
->fspath
, size
);
3378 btrfs_free_path(path
);
3385 static int build_ino_list(u64 inum
, u64 offset
, u64 root
, void *ctx
)
3387 struct btrfs_data_container
*inodes
= ctx
;
3388 const size_t c
= 3 * sizeof(u64
);
3390 if (inodes
->bytes_left
>= c
) {
3391 inodes
->bytes_left
-= c
;
3392 inodes
->val
[inodes
->elem_cnt
] = inum
;
3393 inodes
->val
[inodes
->elem_cnt
+ 1] = offset
;
3394 inodes
->val
[inodes
->elem_cnt
+ 2] = root
;
3395 inodes
->elem_cnt
+= 3;
3397 inodes
->bytes_missing
+= c
- inodes
->bytes_left
;
3398 inodes
->bytes_left
= 0;
3399 inodes
->elem_missed
+= 3;
3405 static long btrfs_ioctl_logical_to_ino(struct btrfs_root
*root
,
3410 struct btrfs_ioctl_logical_ino_args
*loi
;
3411 struct btrfs_data_container
*inodes
= NULL
;
3412 struct btrfs_path
*path
= NULL
;
3414 if (!capable(CAP_SYS_ADMIN
))
3417 loi
= memdup_user(arg
, sizeof(*loi
));
3424 path
= btrfs_alloc_path();
3430 size
= min_t(u32
, loi
->size
, 64 * 1024);
3431 inodes
= init_data_container(size
);
3432 if (IS_ERR(inodes
)) {
3433 ret
= PTR_ERR(inodes
);
3438 ret
= iterate_inodes_from_logical(loi
->logical
, root
->fs_info
, path
,
3439 build_ino_list
, inodes
);
3445 ret
= copy_to_user((void *)(unsigned long)loi
->inodes
,
3446 (void *)(unsigned long)inodes
, size
);
3451 btrfs_free_path(path
);
3458 void update_ioctl_balance_args(struct btrfs_fs_info
*fs_info
, int lock
,
3459 struct btrfs_ioctl_balance_args
*bargs
)
3461 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3463 bargs
->flags
= bctl
->flags
;
3465 if (atomic_read(&fs_info
->balance_running
))
3466 bargs
->state
|= BTRFS_BALANCE_STATE_RUNNING
;
3467 if (atomic_read(&fs_info
->balance_pause_req
))
3468 bargs
->state
|= BTRFS_BALANCE_STATE_PAUSE_REQ
;
3469 if (atomic_read(&fs_info
->balance_cancel_req
))
3470 bargs
->state
|= BTRFS_BALANCE_STATE_CANCEL_REQ
;
3472 memcpy(&bargs
->data
, &bctl
->data
, sizeof(bargs
->data
));
3473 memcpy(&bargs
->meta
, &bctl
->meta
, sizeof(bargs
->meta
));
3474 memcpy(&bargs
->sys
, &bctl
->sys
, sizeof(bargs
->sys
));
3477 spin_lock(&fs_info
->balance_lock
);
3478 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
3479 spin_unlock(&fs_info
->balance_lock
);
3481 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
3485 static long btrfs_ioctl_balance(struct file
*file
, void __user
*arg
)
3487 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
3488 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3489 struct btrfs_ioctl_balance_args
*bargs
;
3490 struct btrfs_balance_control
*bctl
;
3491 bool need_unlock
; /* for mut. excl. ops lock */
3494 if (!capable(CAP_SYS_ADMIN
))
3497 ret
= mnt_want_write_file(file
);
3502 if (!atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1)) {
3503 mutex_lock(&fs_info
->volume_mutex
);
3504 mutex_lock(&fs_info
->balance_mutex
);
3510 * mut. excl. ops lock is locked. Three possibilites:
3511 * (1) some other op is running
3512 * (2) balance is running
3513 * (3) balance is paused -- special case (think resume)
3515 mutex_lock(&fs_info
->balance_mutex
);
3516 if (fs_info
->balance_ctl
) {
3517 /* this is either (2) or (3) */
3518 if (!atomic_read(&fs_info
->balance_running
)) {
3519 mutex_unlock(&fs_info
->balance_mutex
);
3520 if (!mutex_trylock(&fs_info
->volume_mutex
))
3522 mutex_lock(&fs_info
->balance_mutex
);
3524 if (fs_info
->balance_ctl
&&
3525 !atomic_read(&fs_info
->balance_running
)) {
3527 need_unlock
= false;
3531 mutex_unlock(&fs_info
->balance_mutex
);
3532 mutex_unlock(&fs_info
->volume_mutex
);
3536 mutex_unlock(&fs_info
->balance_mutex
);
3542 mutex_unlock(&fs_info
->balance_mutex
);
3543 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
3549 BUG_ON(!atomic_read(&fs_info
->mutually_exclusive_operation_running
));
3552 bargs
= memdup_user(arg
, sizeof(*bargs
));
3553 if (IS_ERR(bargs
)) {
3554 ret
= PTR_ERR(bargs
);
3558 if (bargs
->flags
& BTRFS_BALANCE_RESUME
) {
3559 if (!fs_info
->balance_ctl
) {
3564 bctl
= fs_info
->balance_ctl
;
3565 spin_lock(&fs_info
->balance_lock
);
3566 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
3567 spin_unlock(&fs_info
->balance_lock
);
3575 if (fs_info
->balance_ctl
) {
3580 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
3586 bctl
->fs_info
= fs_info
;
3588 memcpy(&bctl
->data
, &bargs
->data
, sizeof(bctl
->data
));
3589 memcpy(&bctl
->meta
, &bargs
->meta
, sizeof(bctl
->meta
));
3590 memcpy(&bctl
->sys
, &bargs
->sys
, sizeof(bctl
->sys
));
3592 bctl
->flags
= bargs
->flags
;
3594 /* balance everything - no filters */
3595 bctl
->flags
|= BTRFS_BALANCE_TYPE_MASK
;
3600 * Ownership of bctl and mutually_exclusive_operation_running
3601 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
3602 * or, if restriper was paused all the way until unmount, in
3603 * free_fs_info. mutually_exclusive_operation_running is
3604 * cleared in __cancel_balance.
3606 need_unlock
= false;
3608 ret
= btrfs_balance(bctl
, bargs
);
3611 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
3618 mutex_unlock(&fs_info
->balance_mutex
);
3619 mutex_unlock(&fs_info
->volume_mutex
);
3621 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3623 mnt_drop_write_file(file
);
3627 static long btrfs_ioctl_balance_ctl(struct btrfs_root
*root
, int cmd
)
3629 if (!capable(CAP_SYS_ADMIN
))
3633 case BTRFS_BALANCE_CTL_PAUSE
:
3634 return btrfs_pause_balance(root
->fs_info
);
3635 case BTRFS_BALANCE_CTL_CANCEL
:
3636 return btrfs_cancel_balance(root
->fs_info
);
3642 static long btrfs_ioctl_balance_progress(struct btrfs_root
*root
,
3645 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3646 struct btrfs_ioctl_balance_args
*bargs
;
3649 if (!capable(CAP_SYS_ADMIN
))
3652 mutex_lock(&fs_info
->balance_mutex
);
3653 if (!fs_info
->balance_ctl
) {
3658 bargs
= kzalloc(sizeof(*bargs
), GFP_NOFS
);
3664 update_ioctl_balance_args(fs_info
, 1, bargs
);
3666 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
3671 mutex_unlock(&fs_info
->balance_mutex
);
3675 static long btrfs_ioctl_quota_ctl(struct file
*file
, void __user
*arg
)
3677 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
3678 struct btrfs_ioctl_quota_ctl_args
*sa
;
3679 struct btrfs_trans_handle
*trans
= NULL
;
3683 if (!capable(CAP_SYS_ADMIN
))
3686 ret
= mnt_want_write_file(file
);
3690 sa
= memdup_user(arg
, sizeof(*sa
));
3696 if (sa
->cmd
!= BTRFS_QUOTA_CTL_RESCAN
) {
3697 trans
= btrfs_start_transaction(root
, 2);
3698 if (IS_ERR(trans
)) {
3699 ret
= PTR_ERR(trans
);
3705 case BTRFS_QUOTA_CTL_ENABLE
:
3706 ret
= btrfs_quota_enable(trans
, root
->fs_info
);
3708 case BTRFS_QUOTA_CTL_DISABLE
:
3709 ret
= btrfs_quota_disable(trans
, root
->fs_info
);
3711 case BTRFS_QUOTA_CTL_RESCAN
:
3712 ret
= btrfs_quota_rescan(root
->fs_info
);
3719 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
3723 err
= btrfs_commit_transaction(trans
, root
);
3730 mnt_drop_write_file(file
);
3734 static long btrfs_ioctl_qgroup_assign(struct file
*file
, void __user
*arg
)
3736 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
3737 struct btrfs_ioctl_qgroup_assign_args
*sa
;
3738 struct btrfs_trans_handle
*trans
;
3742 if (!capable(CAP_SYS_ADMIN
))
3745 ret
= mnt_want_write_file(file
);
3749 sa
= memdup_user(arg
, sizeof(*sa
));
3755 trans
= btrfs_join_transaction(root
);
3756 if (IS_ERR(trans
)) {
3757 ret
= PTR_ERR(trans
);
3761 /* FIXME: check if the IDs really exist */
3763 ret
= btrfs_add_qgroup_relation(trans
, root
->fs_info
,
3766 ret
= btrfs_del_qgroup_relation(trans
, root
->fs_info
,
3770 err
= btrfs_end_transaction(trans
, root
);
3777 mnt_drop_write_file(file
);
3781 static long btrfs_ioctl_qgroup_create(struct file
*file
, void __user
*arg
)
3783 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
3784 struct btrfs_ioctl_qgroup_create_args
*sa
;
3785 struct btrfs_trans_handle
*trans
;
3789 if (!capable(CAP_SYS_ADMIN
))
3792 ret
= mnt_want_write_file(file
);
3796 sa
= memdup_user(arg
, sizeof(*sa
));
3802 if (!sa
->qgroupid
) {
3807 trans
= btrfs_join_transaction(root
);
3808 if (IS_ERR(trans
)) {
3809 ret
= PTR_ERR(trans
);
3813 /* FIXME: check if the IDs really exist */
3815 ret
= btrfs_create_qgroup(trans
, root
->fs_info
, sa
->qgroupid
,
3818 ret
= btrfs_remove_qgroup(trans
, root
->fs_info
, sa
->qgroupid
);
3821 err
= btrfs_end_transaction(trans
, root
);
3828 mnt_drop_write_file(file
);
3832 static long btrfs_ioctl_qgroup_limit(struct file
*file
, void __user
*arg
)
3834 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
3835 struct btrfs_ioctl_qgroup_limit_args
*sa
;
3836 struct btrfs_trans_handle
*trans
;
3841 if (!capable(CAP_SYS_ADMIN
))
3844 ret
= mnt_want_write_file(file
);
3848 sa
= memdup_user(arg
, sizeof(*sa
));
3854 trans
= btrfs_join_transaction(root
);
3855 if (IS_ERR(trans
)) {
3856 ret
= PTR_ERR(trans
);
3860 qgroupid
= sa
->qgroupid
;
3862 /* take the current subvol as qgroup */
3863 qgroupid
= root
->root_key
.objectid
;
3866 /* FIXME: check if the IDs really exist */
3867 ret
= btrfs_limit_qgroup(trans
, root
->fs_info
, qgroupid
, &sa
->lim
);
3869 err
= btrfs_end_transaction(trans
, root
);
3876 mnt_drop_write_file(file
);
3880 static long btrfs_ioctl_set_received_subvol(struct file
*file
,
3883 struct btrfs_ioctl_received_subvol_args
*sa
= NULL
;
3884 struct inode
*inode
= file_inode(file
);
3885 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3886 struct btrfs_root_item
*root_item
= &root
->root_item
;
3887 struct btrfs_trans_handle
*trans
;
3888 struct timespec ct
= CURRENT_TIME
;
3891 ret
= mnt_want_write_file(file
);
3895 down_write(&root
->fs_info
->subvol_sem
);
3897 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
3902 if (btrfs_root_readonly(root
)) {
3907 if (!inode_owner_or_capable(inode
)) {
3912 sa
= memdup_user(arg
, sizeof(*sa
));
3919 trans
= btrfs_start_transaction(root
, 1);
3920 if (IS_ERR(trans
)) {
3921 ret
= PTR_ERR(trans
);
3926 sa
->rtransid
= trans
->transid
;
3927 sa
->rtime
.sec
= ct
.tv_sec
;
3928 sa
->rtime
.nsec
= ct
.tv_nsec
;
3930 memcpy(root_item
->received_uuid
, sa
->uuid
, BTRFS_UUID_SIZE
);
3931 btrfs_set_root_stransid(root_item
, sa
->stransid
);
3932 btrfs_set_root_rtransid(root_item
, sa
->rtransid
);
3933 root_item
->stime
.sec
= cpu_to_le64(sa
->stime
.sec
);
3934 root_item
->stime
.nsec
= cpu_to_le32(sa
->stime
.nsec
);
3935 root_item
->rtime
.sec
= cpu_to_le64(sa
->rtime
.sec
);
3936 root_item
->rtime
.nsec
= cpu_to_le32(sa
->rtime
.nsec
);
3938 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
3939 &root
->root_key
, &root
->root_item
);
3941 btrfs_end_transaction(trans
, root
);
3945 ret
= btrfs_commit_transaction(trans
, root
);
3950 ret
= copy_to_user(arg
, sa
, sizeof(*sa
));
3956 up_write(&root
->fs_info
->subvol_sem
);
3957 mnt_drop_write_file(file
);
3961 static int btrfs_ioctl_get_fslabel(struct file
*file
, void __user
*arg
)
3963 struct btrfs_root
*root
= BTRFS_I(fdentry(file
)->d_inode
)->root
;
3964 const char *label
= root
->fs_info
->super_copy
->label
;
3965 size_t len
= strnlen(label
, BTRFS_LABEL_SIZE
);
3968 if (len
== BTRFS_LABEL_SIZE
) {
3969 pr_warn("btrfs: label is too long, return the first %zu bytes\n",
3973 mutex_lock(&root
->fs_info
->volume_mutex
);
3974 ret
= copy_to_user(arg
, label
, len
);
3975 mutex_unlock(&root
->fs_info
->volume_mutex
);
3977 return ret
? -EFAULT
: 0;
3980 static int btrfs_ioctl_set_fslabel(struct file
*file
, void __user
*arg
)
3982 struct btrfs_root
*root
= BTRFS_I(fdentry(file
)->d_inode
)->root
;
3983 struct btrfs_super_block
*super_block
= root
->fs_info
->super_copy
;
3984 struct btrfs_trans_handle
*trans
;
3985 char label
[BTRFS_LABEL_SIZE
];
3988 if (!capable(CAP_SYS_ADMIN
))
3991 if (copy_from_user(label
, arg
, sizeof(label
)))
3994 if (strnlen(label
, BTRFS_LABEL_SIZE
) == BTRFS_LABEL_SIZE
) {
3995 pr_err("btrfs: unable to set label with more than %d bytes\n",
3996 BTRFS_LABEL_SIZE
- 1);
4000 ret
= mnt_want_write_file(file
);
4004 mutex_lock(&root
->fs_info
->volume_mutex
);
4005 trans
= btrfs_start_transaction(root
, 0);
4006 if (IS_ERR(trans
)) {
4007 ret
= PTR_ERR(trans
);
4011 strcpy(super_block
->label
, label
);
4012 ret
= btrfs_end_transaction(trans
, root
);
4015 mutex_unlock(&root
->fs_info
->volume_mutex
);
4016 mnt_drop_write_file(file
);
4020 long btrfs_ioctl(struct file
*file
, unsigned int
4021 cmd
, unsigned long arg
)
4023 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4024 void __user
*argp
= (void __user
*)arg
;
4027 case FS_IOC_GETFLAGS
:
4028 return btrfs_ioctl_getflags(file
, argp
);
4029 case FS_IOC_SETFLAGS
:
4030 return btrfs_ioctl_setflags(file
, argp
);
4031 case FS_IOC_GETVERSION
:
4032 return btrfs_ioctl_getversion(file
, argp
);
4034 return btrfs_ioctl_fitrim(file
, argp
);
4035 case BTRFS_IOC_SNAP_CREATE
:
4036 return btrfs_ioctl_snap_create(file
, argp
, 0);
4037 case BTRFS_IOC_SNAP_CREATE_V2
:
4038 return btrfs_ioctl_snap_create_v2(file
, argp
, 0);
4039 case BTRFS_IOC_SUBVOL_CREATE
:
4040 return btrfs_ioctl_snap_create(file
, argp
, 1);
4041 case BTRFS_IOC_SUBVOL_CREATE_V2
:
4042 return btrfs_ioctl_snap_create_v2(file
, argp
, 1);
4043 case BTRFS_IOC_SNAP_DESTROY
:
4044 return btrfs_ioctl_snap_destroy(file
, argp
);
4045 case BTRFS_IOC_SUBVOL_GETFLAGS
:
4046 return btrfs_ioctl_subvol_getflags(file
, argp
);
4047 case BTRFS_IOC_SUBVOL_SETFLAGS
:
4048 return btrfs_ioctl_subvol_setflags(file
, argp
);
4049 case BTRFS_IOC_DEFAULT_SUBVOL
:
4050 return btrfs_ioctl_default_subvol(file
, argp
);
4051 case BTRFS_IOC_DEFRAG
:
4052 return btrfs_ioctl_defrag(file
, NULL
);
4053 case BTRFS_IOC_DEFRAG_RANGE
:
4054 return btrfs_ioctl_defrag(file
, argp
);
4055 case BTRFS_IOC_RESIZE
:
4056 return btrfs_ioctl_resize(file
, argp
);
4057 case BTRFS_IOC_ADD_DEV
:
4058 return btrfs_ioctl_add_dev(root
, argp
);
4059 case BTRFS_IOC_RM_DEV
:
4060 return btrfs_ioctl_rm_dev(file
, argp
);
4061 case BTRFS_IOC_FS_INFO
:
4062 return btrfs_ioctl_fs_info(root
, argp
);
4063 case BTRFS_IOC_DEV_INFO
:
4064 return btrfs_ioctl_dev_info(root
, argp
);
4065 case BTRFS_IOC_BALANCE
:
4066 return btrfs_ioctl_balance(file
, NULL
);
4067 case BTRFS_IOC_CLONE
:
4068 return btrfs_ioctl_clone(file
, arg
, 0, 0, 0);
4069 case BTRFS_IOC_CLONE_RANGE
:
4070 return btrfs_ioctl_clone_range(file
, argp
);
4071 case BTRFS_IOC_TRANS_START
:
4072 return btrfs_ioctl_trans_start(file
);
4073 case BTRFS_IOC_TRANS_END
:
4074 return btrfs_ioctl_trans_end(file
);
4075 case BTRFS_IOC_TREE_SEARCH
:
4076 return btrfs_ioctl_tree_search(file
, argp
);
4077 case BTRFS_IOC_INO_LOOKUP
:
4078 return btrfs_ioctl_ino_lookup(file
, argp
);
4079 case BTRFS_IOC_INO_PATHS
:
4080 return btrfs_ioctl_ino_to_path(root
, argp
);
4081 case BTRFS_IOC_LOGICAL_INO
:
4082 return btrfs_ioctl_logical_to_ino(root
, argp
);
4083 case BTRFS_IOC_SPACE_INFO
:
4084 return btrfs_ioctl_space_info(root
, argp
);
4085 case BTRFS_IOC_SYNC
:
4086 btrfs_sync_fs(file
->f_dentry
->d_sb
, 1);
4088 case BTRFS_IOC_START_SYNC
:
4089 return btrfs_ioctl_start_sync(root
, argp
);
4090 case BTRFS_IOC_WAIT_SYNC
:
4091 return btrfs_ioctl_wait_sync(root
, argp
);
4092 case BTRFS_IOC_SCRUB
:
4093 return btrfs_ioctl_scrub(file
, argp
);
4094 case BTRFS_IOC_SCRUB_CANCEL
:
4095 return btrfs_ioctl_scrub_cancel(root
, argp
);
4096 case BTRFS_IOC_SCRUB_PROGRESS
:
4097 return btrfs_ioctl_scrub_progress(root
, argp
);
4098 case BTRFS_IOC_BALANCE_V2
:
4099 return btrfs_ioctl_balance(file
, argp
);
4100 case BTRFS_IOC_BALANCE_CTL
:
4101 return btrfs_ioctl_balance_ctl(root
, arg
);
4102 case BTRFS_IOC_BALANCE_PROGRESS
:
4103 return btrfs_ioctl_balance_progress(root
, argp
);
4104 case BTRFS_IOC_SET_RECEIVED_SUBVOL
:
4105 return btrfs_ioctl_set_received_subvol(file
, argp
);
4106 case BTRFS_IOC_SEND
:
4107 return btrfs_ioctl_send(file
, argp
);
4108 case BTRFS_IOC_GET_DEV_STATS
:
4109 return btrfs_ioctl_get_dev_stats(root
, argp
);
4110 case BTRFS_IOC_QUOTA_CTL
:
4111 return btrfs_ioctl_quota_ctl(file
, argp
);
4112 case BTRFS_IOC_QGROUP_ASSIGN
:
4113 return btrfs_ioctl_qgroup_assign(file
, argp
);
4114 case BTRFS_IOC_QGROUP_CREATE
:
4115 return btrfs_ioctl_qgroup_create(file
, argp
);
4116 case BTRFS_IOC_QGROUP_LIMIT
:
4117 return btrfs_ioctl_qgroup_limit(file
, argp
);
4118 case BTRFS_IOC_DEV_REPLACE
:
4119 return btrfs_ioctl_dev_replace(root
, argp
);
4120 case BTRFS_IOC_GET_FSLABEL
:
4121 return btrfs_ioctl_get_fslabel(file
, argp
);
4122 case BTRFS_IOC_SET_FSLABEL
:
4123 return btrfs_ioctl_set_fslabel(file
, argp
);