2 * Copyright (C) ST-Ericsson AB 2012
4 * Main and Back-up battery management driver.
6 * Note: Backup battery management is required in case of Li-Ion battery and not
7 * for capacitive battery. HREF boards have capacitive battery and hence backup
8 * battery management is not used and the supported code is available in this
11 * License Terms: GNU General Public License v2
13 * Johan Palsson <johan.palsson@stericsson.com>
14 * Karl Komierowski <karl.komierowski@stericsson.com>
15 * Arun R Murthy <arun.murthy@stericsson.com>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/platform_device.h>
23 #include <linux/power_supply.h>
24 #include <linux/kobject.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/time.h>
28 #include <linux/time64.h>
30 #include <linux/completion.h>
31 #include <linux/mfd/core.h>
32 #include <linux/mfd/abx500.h>
33 #include <linux/mfd/abx500/ab8500.h>
34 #include <linux/mfd/abx500/ab8500-bm.h>
35 #include <linux/mfd/abx500/ab8500-gpadc.h>
36 #include <linux/kernel.h>
38 #define MILLI_TO_MICRO 1000
39 #define FG_LSB_IN_MA 1627
40 #define QLSB_NANO_AMP_HOURS_X10 1071
41 #define INS_CURR_TIMEOUT (3 * HZ)
43 #define SEC_TO_SAMPLE(S) (S * 4)
45 #define NBR_AVG_SAMPLES 20
47 #define LOW_BAT_CHECK_INTERVAL (HZ / 16) /* 62.5 ms */
49 #define VALID_CAPACITY_SEC (45 * 60) /* 45 minutes */
50 #define BATT_OK_MIN 2360 /* mV */
51 #define BATT_OK_INCREMENT 50 /* mV */
52 #define BATT_OK_MAX_NR_INCREMENTS 0xE
57 #define interpolate(x, x1, y1, x2, y2) \
58 ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
60 #define to_ab8500_fg_device_info(x) container_of((x), \
61 struct ab8500_fg, fg_psy);
64 * struct ab8500_fg_interrupts - ab8500 fg interupts
65 * @name: name of the interrupt
66 * @isr function pointer to the isr
68 struct ab8500_fg_interrupts
{
70 irqreturn_t (*isr
)(int irq
, void *data
);
73 enum ab8500_fg_discharge_state
{
74 AB8500_FG_DISCHARGE_INIT
,
75 AB8500_FG_DISCHARGE_INITMEASURING
,
76 AB8500_FG_DISCHARGE_INIT_RECOVERY
,
77 AB8500_FG_DISCHARGE_RECOVERY
,
78 AB8500_FG_DISCHARGE_READOUT_INIT
,
79 AB8500_FG_DISCHARGE_READOUT
,
80 AB8500_FG_DISCHARGE_WAKEUP
,
83 static char *discharge_state
[] = {
85 "DISCHARGE_INITMEASURING",
86 "DISCHARGE_INIT_RECOVERY",
88 "DISCHARGE_READOUT_INIT",
93 enum ab8500_fg_charge_state
{
94 AB8500_FG_CHARGE_INIT
,
95 AB8500_FG_CHARGE_READOUT
,
98 static char *charge_state
[] = {
103 enum ab8500_fg_calibration_state
{
104 AB8500_FG_CALIB_INIT
,
105 AB8500_FG_CALIB_WAIT
,
109 struct ab8500_fg_avg_cap
{
111 int samples
[NBR_AVG_SAMPLES
];
112 time64_t time_stamps
[NBR_AVG_SAMPLES
];
118 struct ab8500_fg_cap_scaling
{
121 int disable_cap_level
;
125 struct ab8500_fg_battery_capacity
{
135 struct ab8500_fg_cap_scaling cap_scale
;
138 struct ab8500_fg_flags
{
150 bool batt_id_received
;
153 struct inst_curr_result_list
{
154 struct list_head list
;
159 * struct ab8500_fg - ab8500 FG device information
160 * @dev: Pointer to the structure device
161 * @node: a list of AB8500 FGs, hence prepared for reentrance
162 * @irq holds the CCEOC interrupt number
163 * @vbat: Battery voltage in mV
164 * @vbat_nom: Nominal battery voltage in mV
165 * @inst_curr: Instantenous battery current in mA
166 * @avg_curr: Average battery current in mA
167 * @bat_temp battery temperature
168 * @fg_samples: Number of samples used in the FG accumulation
169 * @accu_charge: Accumulated charge from the last conversion
170 * @recovery_cnt: Counter for recovery mode
171 * @high_curr_cnt: Counter for high current mode
172 * @init_cnt: Counter for init mode
173 * @low_bat_cnt Counter for number of consecutive low battery measures
174 * @nbr_cceoc_irq_cnt Counter for number of CCEOC irqs received since enabled
175 * @recovery_needed: Indicate if recovery is needed
176 * @high_curr_mode: Indicate if we're in high current mode
177 * @init_capacity: Indicate if initial capacity measuring should be done
178 * @turn_off_fg: True if fg was off before current measurement
179 * @calib_state State during offset calibration
180 * @discharge_state: Current discharge state
181 * @charge_state: Current charge state
182 * @ab8500_fg_started Completion struct used for the instant current start
183 * @ab8500_fg_complete Completion struct used for the instant current reading
184 * @flags: Structure for information about events triggered
185 * @bat_cap: Structure for battery capacity specific parameters
186 * @avg_cap: Average capacity filter
187 * @parent: Pointer to the struct ab8500
188 * @gpadc: Pointer to the struct gpadc
189 * @bm: Platform specific battery management information
190 * @fg_psy: Structure that holds the FG specific battery properties
191 * @fg_wq: Work queue for running the FG algorithm
192 * @fg_periodic_work: Work to run the FG algorithm periodically
193 * @fg_low_bat_work: Work to check low bat condition
194 * @fg_reinit_work Work used to reset and reinitialise the FG algorithm
195 * @fg_work: Work to run the FG algorithm instantly
196 * @fg_acc_cur_work: Work to read the FG accumulator
197 * @fg_check_hw_failure_work: Work for checking HW state
198 * @cc_lock: Mutex for locking the CC
199 * @fg_kobject: Structure of type kobject
203 struct list_head node
;
216 int nbr_cceoc_irq_cnt
;
217 bool recovery_needed
;
221 enum ab8500_fg_calibration_state calib_state
;
222 enum ab8500_fg_discharge_state discharge_state
;
223 enum ab8500_fg_charge_state charge_state
;
224 struct completion ab8500_fg_started
;
225 struct completion ab8500_fg_complete
;
226 struct ab8500_fg_flags flags
;
227 struct ab8500_fg_battery_capacity bat_cap
;
228 struct ab8500_fg_avg_cap avg_cap
;
229 struct ab8500
*parent
;
230 struct ab8500_gpadc
*gpadc
;
231 struct abx500_bm_data
*bm
;
232 struct power_supply fg_psy
;
233 struct workqueue_struct
*fg_wq
;
234 struct delayed_work fg_periodic_work
;
235 struct delayed_work fg_low_bat_work
;
236 struct delayed_work fg_reinit_work
;
237 struct work_struct fg_work
;
238 struct work_struct fg_acc_cur_work
;
239 struct delayed_work fg_check_hw_failure_work
;
240 struct mutex cc_lock
;
241 struct kobject fg_kobject
;
243 static LIST_HEAD(ab8500_fg_list
);
246 * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
247 * (i.e. the first fuel gauge in the instance list)
249 struct ab8500_fg
*ab8500_fg_get(void)
251 struct ab8500_fg
*fg
;
253 if (list_empty(&ab8500_fg_list
))
256 fg
= list_first_entry(&ab8500_fg_list
, struct ab8500_fg
, node
);
260 /* Main battery properties */
261 static enum power_supply_property ab8500_fg_props
[] = {
262 POWER_SUPPLY_PROP_VOLTAGE_NOW
,
263 POWER_SUPPLY_PROP_CURRENT_NOW
,
264 POWER_SUPPLY_PROP_CURRENT_AVG
,
265 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN
,
266 POWER_SUPPLY_PROP_ENERGY_FULL
,
267 POWER_SUPPLY_PROP_ENERGY_NOW
,
268 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN
,
269 POWER_SUPPLY_PROP_CHARGE_FULL
,
270 POWER_SUPPLY_PROP_CHARGE_NOW
,
271 POWER_SUPPLY_PROP_CAPACITY
,
272 POWER_SUPPLY_PROP_CAPACITY_LEVEL
,
276 * This array maps the raw hex value to lowbat voltage used by the AB8500
277 * Values taken from the UM0836
279 static int ab8500_fg_lowbat_voltage_map
[] = {
346 static u8
ab8500_volt_to_regval(int voltage
)
350 if (voltage
< ab8500_fg_lowbat_voltage_map
[0])
353 for (i
= 0; i
< ARRAY_SIZE(ab8500_fg_lowbat_voltage_map
); i
++) {
354 if (voltage
< ab8500_fg_lowbat_voltage_map
[i
])
358 /* If not captured above, return index of last element */
359 return (u8
) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map
) - 1;
363 * ab8500_fg_is_low_curr() - Low or high current mode
364 * @di: pointer to the ab8500_fg structure
365 * @curr: the current to base or our decision on
367 * Low current mode if the current consumption is below a certain threshold
369 static int ab8500_fg_is_low_curr(struct ab8500_fg
*di
, int curr
)
372 * We want to know if we're in low current mode
374 if (curr
> -di
->bm
->fg_params
->high_curr_threshold
)
381 * ab8500_fg_add_cap_sample() - Add capacity to average filter
382 * @di: pointer to the ab8500_fg structure
383 * @sample: the capacity in mAh to add to the filter
385 * A capacity is added to the filter and a new mean capacity is calculated and
388 static int ab8500_fg_add_cap_sample(struct ab8500_fg
*di
, int sample
)
390 struct timespec64 ts64
;
391 struct ab8500_fg_avg_cap
*avg
= &di
->avg_cap
;
393 getnstimeofday64(&ts64
);
396 avg
->sum
+= sample
- avg
->samples
[avg
->pos
];
397 avg
->samples
[avg
->pos
] = sample
;
398 avg
->time_stamps
[avg
->pos
] = ts64
.tv_sec
;
401 if (avg
->pos
== NBR_AVG_SAMPLES
)
404 if (avg
->nbr_samples
< NBR_AVG_SAMPLES
)
408 * Check the time stamp for each sample. If too old,
409 * replace with latest sample
411 } while (ts64
.tv_sec
- VALID_CAPACITY_SEC
> avg
->time_stamps
[avg
->pos
]);
413 avg
->avg
= avg
->sum
/ avg
->nbr_samples
;
419 * ab8500_fg_clear_cap_samples() - Clear average filter
420 * @di: pointer to the ab8500_fg structure
422 * The capacity filter is is reset to zero.
424 static void ab8500_fg_clear_cap_samples(struct ab8500_fg
*di
)
427 struct ab8500_fg_avg_cap
*avg
= &di
->avg_cap
;
430 avg
->nbr_samples
= 0;
434 for (i
= 0; i
< NBR_AVG_SAMPLES
; i
++) {
436 avg
->time_stamps
[i
] = 0;
441 * ab8500_fg_fill_cap_sample() - Fill average filter
442 * @di: pointer to the ab8500_fg structure
443 * @sample: the capacity in mAh to fill the filter with
445 * The capacity filter is filled with a capacity in mAh
447 static void ab8500_fg_fill_cap_sample(struct ab8500_fg
*di
, int sample
)
450 struct timespec64 ts64
;
451 struct ab8500_fg_avg_cap
*avg
= &di
->avg_cap
;
453 getnstimeofday64(&ts64
);
455 for (i
= 0; i
< NBR_AVG_SAMPLES
; i
++) {
456 avg
->samples
[i
] = sample
;
457 avg
->time_stamps
[i
] = ts64
.tv_sec
;
461 avg
->nbr_samples
= NBR_AVG_SAMPLES
;
462 avg
->sum
= sample
* NBR_AVG_SAMPLES
;
467 * ab8500_fg_coulomb_counter() - enable coulomb counter
468 * @di: pointer to the ab8500_fg structure
469 * @enable: enable/disable
471 * Enable/Disable coulomb counter.
472 * On failure returns negative value.
474 static int ab8500_fg_coulomb_counter(struct ab8500_fg
*di
, bool enable
)
477 mutex_lock(&di
->cc_lock
);
479 /* To be able to reprogram the number of samples, we have to
480 * first stop the CC and then enable it again */
481 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
482 AB8500_RTC_CC_CONF_REG
, 0x00);
486 /* Program the samples */
487 ret
= abx500_set_register_interruptible(di
->dev
,
488 AB8500_GAS_GAUGE
, AB8500_GASG_CC_NCOV_ACCU
,
494 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
495 AB8500_RTC_CC_CONF_REG
,
496 (CC_DEEP_SLEEP_ENA
| CC_PWR_UP_ENA
));
500 di
->flags
.fg_enabled
= true;
502 /* Clear any pending read requests */
503 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
504 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
,
505 (RESET_ACCU
| READ_REQ
), 0);
509 ret
= abx500_set_register_interruptible(di
->dev
,
510 AB8500_GAS_GAUGE
, AB8500_GASG_CC_NCOV_ACCU_CTRL
, 0);
515 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
516 AB8500_RTC_CC_CONF_REG
, 0);
520 di
->flags
.fg_enabled
= false;
523 dev_dbg(di
->dev
, " CC enabled: %d Samples: %d\n",
524 enable
, di
->fg_samples
);
526 mutex_unlock(&di
->cc_lock
);
530 dev_err(di
->dev
, "%s Enabling coulomb counter failed\n", __func__
);
531 mutex_unlock(&di
->cc_lock
);
536 * ab8500_fg_inst_curr_start() - start battery instantaneous current
537 * @di: pointer to the ab8500_fg structure
539 * Returns 0 or error code
540 * Note: This is part "one" and has to be called before
541 * ab8500_fg_inst_curr_finalize()
543 int ab8500_fg_inst_curr_start(struct ab8500_fg
*di
)
548 mutex_lock(&di
->cc_lock
);
550 di
->nbr_cceoc_irq_cnt
= 0;
551 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
552 AB8500_RTC_CC_CONF_REG
, ®_val
);
556 if (!(reg_val
& CC_PWR_UP_ENA
)) {
557 dev_dbg(di
->dev
, "%s Enable FG\n", __func__
);
558 di
->turn_off_fg
= true;
560 /* Program the samples */
561 ret
= abx500_set_register_interruptible(di
->dev
,
562 AB8500_GAS_GAUGE
, AB8500_GASG_CC_NCOV_ACCU
,
568 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
569 AB8500_RTC_CC_CONF_REG
,
570 (CC_DEEP_SLEEP_ENA
| CC_PWR_UP_ENA
));
574 di
->turn_off_fg
= false;
578 reinit_completion(&di
->ab8500_fg_started
);
579 reinit_completion(&di
->ab8500_fg_complete
);
582 /* Note: cc_lock is still locked */
585 mutex_unlock(&di
->cc_lock
);
590 * ab8500_fg_inst_curr_started() - check if fg conversion has started
591 * @di: pointer to the ab8500_fg structure
593 * Returns 1 if conversion started, 0 if still waiting
595 int ab8500_fg_inst_curr_started(struct ab8500_fg
*di
)
597 return completion_done(&di
->ab8500_fg_started
);
601 * ab8500_fg_inst_curr_done() - check if fg conversion is done
602 * @di: pointer to the ab8500_fg structure
604 * Returns 1 if conversion done, 0 if still waiting
606 int ab8500_fg_inst_curr_done(struct ab8500_fg
*di
)
608 return completion_done(&di
->ab8500_fg_complete
);
612 * ab8500_fg_inst_curr_finalize() - battery instantaneous current
613 * @di: pointer to the ab8500_fg structure
614 * @res: battery instantenous current(on success)
616 * Returns 0 or an error code
617 * Note: This is part "two" and has to be called at earliest 250 ms
618 * after ab8500_fg_inst_curr_start()
620 int ab8500_fg_inst_curr_finalize(struct ab8500_fg
*di
, int *res
)
627 if (!completion_done(&di
->ab8500_fg_complete
)) {
628 timeout
= wait_for_completion_timeout(
629 &di
->ab8500_fg_complete
,
631 dev_dbg(di
->dev
, "Finalize time: %d ms\n",
632 ((INS_CURR_TIMEOUT
- timeout
) * 1000) / HZ
);
635 disable_irq(di
->irq
);
636 di
->nbr_cceoc_irq_cnt
= 0;
637 dev_err(di
->dev
, "completion timed out [%d]\n",
643 disable_irq(di
->irq
);
644 di
->nbr_cceoc_irq_cnt
= 0;
646 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
647 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
,
650 /* 100uS between read request and read is needed */
651 usleep_range(100, 100);
653 /* Read CC Sample conversion value Low and high */
654 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
655 AB8500_GASG_CC_SMPL_CNVL_REG
, &low
);
659 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
660 AB8500_GASG_CC_SMPL_CNVH_REG
, &high
);
665 * negative value for Discharging
666 * convert 2's compliment into decimal
669 val
= (low
| (high
<< 8) | 0xFFFFE000);
671 val
= (low
| (high
<< 8));
674 * Convert to unit value in mA
675 * Full scale input voltage is
676 * 63.160mV => LSB = 63.160mV/(4096*res) = 1.542mA
677 * Given a 250ms conversion cycle time the LSB corresponds
678 * to 107.1 nAh. Convert to current by dividing by the conversion
679 * time in hours (250ms = 1 / (3600 * 4)h)
680 * 107.1nAh assumes 10mOhm, but fg_res is in 0.1mOhm
682 val
= (val
* QLSB_NANO_AMP_HOURS_X10
* 36 * 4) /
683 (1000 * di
->bm
->fg_res
);
685 if (di
->turn_off_fg
) {
686 dev_dbg(di
->dev
, "%s Disable FG\n", __func__
);
688 /* Clear any pending read requests */
689 ret
= abx500_set_register_interruptible(di
->dev
,
690 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
, 0);
695 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
696 AB8500_RTC_CC_CONF_REG
, 0);
700 mutex_unlock(&di
->cc_lock
);
705 mutex_unlock(&di
->cc_lock
);
710 * ab8500_fg_inst_curr_blocking() - battery instantaneous current
711 * @di: pointer to the ab8500_fg structure
712 * @res: battery instantenous current(on success)
714 * Returns 0 else error code
716 int ab8500_fg_inst_curr_blocking(struct ab8500_fg
*di
)
722 ret
= ab8500_fg_inst_curr_start(di
);
724 dev_err(di
->dev
, "Failed to initialize fg_inst\n");
728 /* Wait for CC to actually start */
729 if (!completion_done(&di
->ab8500_fg_started
)) {
730 timeout
= wait_for_completion_timeout(
731 &di
->ab8500_fg_started
,
733 dev_dbg(di
->dev
, "Start time: %d ms\n",
734 ((INS_CURR_TIMEOUT
- timeout
) * 1000) / HZ
);
737 dev_err(di
->dev
, "completion timed out [%d]\n",
743 ret
= ab8500_fg_inst_curr_finalize(di
, &res
);
745 dev_err(di
->dev
, "Failed to finalize fg_inst\n");
749 dev_dbg(di
->dev
, "%s instant current: %d", __func__
, res
);
752 disable_irq(di
->irq
);
753 mutex_unlock(&di
->cc_lock
);
758 * ab8500_fg_acc_cur_work() - average battery current
759 * @work: pointer to the work_struct structure
761 * Updated the average battery current obtained from the
764 static void ab8500_fg_acc_cur_work(struct work_struct
*work
)
770 struct ab8500_fg
*di
= container_of(work
,
771 struct ab8500_fg
, fg_acc_cur_work
);
773 mutex_lock(&di
->cc_lock
);
774 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
775 AB8500_GASG_CC_NCOV_ACCU_CTRL
, RD_NCONV_ACCU_REQ
);
779 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
780 AB8500_GASG_CC_NCOV_ACCU_LOW
, &low
);
784 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
785 AB8500_GASG_CC_NCOV_ACCU_MED
, &med
);
789 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
790 AB8500_GASG_CC_NCOV_ACCU_HIGH
, &high
);
794 /* Check for sign bit in case of negative value, 2's compliment */
796 val
= (low
| (med
<< 8) | (high
<< 16) | 0xFFE00000);
798 val
= (low
| (med
<< 8) | (high
<< 16));
802 * Given a 250ms conversion cycle time the LSB corresponds
804 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
806 di
->accu_charge
= (val
* QLSB_NANO_AMP_HOURS_X10
) /
807 (100 * di
->bm
->fg_res
);
810 * Convert to unit value in mA
811 * by dividing by the conversion
812 * time in hours (= samples / (3600 * 4)h)
813 * and multiply with 1000
815 di
->avg_curr
= (val
* QLSB_NANO_AMP_HOURS_X10
* 36) /
816 (1000 * di
->bm
->fg_res
* (di
->fg_samples
/ 4));
818 di
->flags
.conv_done
= true;
820 mutex_unlock(&di
->cc_lock
);
822 queue_work(di
->fg_wq
, &di
->fg_work
);
824 dev_dbg(di
->dev
, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n",
825 di
->bm
->fg_res
, di
->fg_samples
, val
, di
->accu_charge
);
829 "Failed to read or write gas gauge registers\n");
830 mutex_unlock(&di
->cc_lock
);
831 queue_work(di
->fg_wq
, &di
->fg_work
);
835 * ab8500_fg_bat_voltage() - get battery voltage
836 * @di: pointer to the ab8500_fg structure
838 * Returns battery voltage(on success) else error code
840 static int ab8500_fg_bat_voltage(struct ab8500_fg
*di
)
845 vbat
= ab8500_gpadc_convert(di
->gpadc
, MAIN_BAT_V
);
848 "%s gpadc conversion failed, using previous value\n",
858 * ab8500_fg_volt_to_capacity() - Voltage based capacity
859 * @di: pointer to the ab8500_fg structure
860 * @voltage: The voltage to convert to a capacity
862 * Returns battery capacity in per mille based on voltage
864 static int ab8500_fg_volt_to_capacity(struct ab8500_fg
*di
, int voltage
)
867 const struct abx500_v_to_cap
*tbl
;
870 tbl
= di
->bm
->bat_type
[di
->bm
->batt_id
].v_to_cap_tbl
,
871 tbl_size
= di
->bm
->bat_type
[di
->bm
->batt_id
].n_v_cap_tbl_elements
;
873 for (i
= 0; i
< tbl_size
; ++i
) {
874 if (voltage
> tbl
[i
].voltage
)
878 if ((i
> 0) && (i
< tbl_size
)) {
879 cap
= interpolate(voltage
,
881 tbl
[i
].capacity
* 10,
883 tbl
[i
-1].capacity
* 10);
890 dev_dbg(di
->dev
, "%s Vbat: %d, Cap: %d per mille",
891 __func__
, voltage
, cap
);
897 * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
898 * @di: pointer to the ab8500_fg structure
900 * Returns battery capacity based on battery voltage that is not compensated
901 * for the voltage drop due to the load
903 static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg
*di
)
905 di
->vbat
= ab8500_fg_bat_voltage(di
);
906 return ab8500_fg_volt_to_capacity(di
, di
->vbat
);
910 * ab8500_fg_battery_resistance() - Returns the battery inner resistance
911 * @di: pointer to the ab8500_fg structure
913 * Returns battery inner resistance added with the fuel gauge resistor value
914 * to get the total resistance in the whole link from gnd to bat+ node.
916 static int ab8500_fg_battery_resistance(struct ab8500_fg
*di
)
919 const struct batres_vs_temp
*tbl
;
922 tbl
= di
->bm
->bat_type
[di
->bm
->batt_id
].batres_tbl
;
923 tbl_size
= di
->bm
->bat_type
[di
->bm
->batt_id
].n_batres_tbl_elements
;
925 for (i
= 0; i
< tbl_size
; ++i
) {
926 if (di
->bat_temp
/ 10 > tbl
[i
].temp
)
930 if ((i
> 0) && (i
< tbl_size
)) {
931 resist
= interpolate(di
->bat_temp
/ 10,
937 resist
= tbl
[0].resist
;
939 resist
= tbl
[tbl_size
- 1].resist
;
942 dev_dbg(di
->dev
, "%s Temp: %d battery internal resistance: %d"
943 " fg resistance %d, total: %d (mOhm)\n",
944 __func__
, di
->bat_temp
, resist
, di
->bm
->fg_res
/ 10,
945 (di
->bm
->fg_res
/ 10) + resist
);
947 /* fg_res variable is in 0.1mOhm */
948 resist
+= di
->bm
->fg_res
/ 10;
954 * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
955 * @di: pointer to the ab8500_fg structure
957 * Returns battery capacity based on battery voltage that is load compensated
958 * for the voltage drop
960 static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg
*di
)
966 ab8500_fg_inst_curr_start(di
);
969 vbat
+= ab8500_fg_bat_voltage(di
);
971 usleep_range(5000, 6000);
972 } while (!ab8500_fg_inst_curr_done(di
));
974 ab8500_fg_inst_curr_finalize(di
, &di
->inst_curr
);
977 res
= ab8500_fg_battery_resistance(di
);
979 /* Use Ohms law to get the load compensated voltage */
980 vbat_comp
= di
->vbat
- (di
->inst_curr
* res
) / 1000;
982 dev_dbg(di
->dev
, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
983 "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
984 __func__
, di
->vbat
, vbat_comp
, res
, di
->inst_curr
, i
);
986 return ab8500_fg_volt_to_capacity(di
, vbat_comp
);
990 * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
991 * @di: pointer to the ab8500_fg structure
992 * @cap_mah: capacity in mAh
994 * Converts capacity in mAh to capacity in permille
996 static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg
*di
, int cap_mah
)
998 return (cap_mah
* 1000) / di
->bat_cap
.max_mah_design
;
1002 * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
1003 * @di: pointer to the ab8500_fg structure
1004 * @cap_pm: capacity in permille
1006 * Converts capacity in permille to capacity in mAh
1008 static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg
*di
, int cap_pm
)
1010 return cap_pm
* di
->bat_cap
.max_mah_design
/ 1000;
1014 * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1015 * @di: pointer to the ab8500_fg structure
1016 * @cap_mah: capacity in mAh
1018 * Converts capacity in mAh to capacity in uWh
1020 static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg
*di
, int cap_mah
)
1025 div_res
= ((u64
) cap_mah
) * ((u64
) di
->vbat_nom
);
1026 div_rem
= do_div(div_res
, 1000);
1028 /* Make sure to round upwards if necessary */
1029 if (div_rem
>= 1000 / 2)
1032 return (int) div_res
;
1036 * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1037 * @di: pointer to the ab8500_fg structure
1039 * Return the capacity in mAh based on previous calculated capcity and the FG
1040 * accumulator register value. The filter is filled with this capacity
1042 static int ab8500_fg_calc_cap_charging(struct ab8500_fg
*di
)
1044 dev_dbg(di
->dev
, "%s cap_mah %d accu_charge %d\n",
1049 /* Capacity should not be less than 0 */
1050 if (di
->bat_cap
.mah
+ di
->accu_charge
> 0)
1051 di
->bat_cap
.mah
+= di
->accu_charge
;
1053 di
->bat_cap
.mah
= 0;
1055 * We force capacity to 100% once when the algorithm
1056 * reports that it's full.
1058 if (di
->bat_cap
.mah
>= di
->bat_cap
.max_mah_design
||
1059 di
->flags
.force_full
) {
1060 di
->bat_cap
.mah
= di
->bat_cap
.max_mah_design
;
1063 ab8500_fg_fill_cap_sample(di
, di
->bat_cap
.mah
);
1064 di
->bat_cap
.permille
=
1065 ab8500_fg_convert_mah_to_permille(di
, di
->bat_cap
.mah
);
1067 /* We need to update battery voltage and inst current when charging */
1068 di
->vbat
= ab8500_fg_bat_voltage(di
);
1069 di
->inst_curr
= ab8500_fg_inst_curr_blocking(di
);
1071 return di
->bat_cap
.mah
;
1075 * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1076 * @di: pointer to the ab8500_fg structure
1077 * @comp: if voltage should be load compensated before capacity calc
1079 * Return the capacity in mAh based on the battery voltage. The voltage can
1080 * either be load compensated or not. This value is added to the filter and a
1081 * new mean value is calculated and returned.
1083 static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg
*di
, bool comp
)
1088 permille
= ab8500_fg_load_comp_volt_to_capacity(di
);
1090 permille
= ab8500_fg_uncomp_volt_to_capacity(di
);
1092 mah
= ab8500_fg_convert_permille_to_mah(di
, permille
);
1094 di
->bat_cap
.mah
= ab8500_fg_add_cap_sample(di
, mah
);
1095 di
->bat_cap
.permille
=
1096 ab8500_fg_convert_mah_to_permille(di
, di
->bat_cap
.mah
);
1098 return di
->bat_cap
.mah
;
1102 * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1103 * @di: pointer to the ab8500_fg structure
1105 * Return the capacity in mAh based on previous calculated capcity and the FG
1106 * accumulator register value. This value is added to the filter and a
1107 * new mean value is calculated and returned.
1109 static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg
*di
)
1111 int permille_volt
, permille
;
1113 dev_dbg(di
->dev
, "%s cap_mah %d accu_charge %d\n",
1118 /* Capacity should not be less than 0 */
1119 if (di
->bat_cap
.mah
+ di
->accu_charge
> 0)
1120 di
->bat_cap
.mah
+= di
->accu_charge
;
1122 di
->bat_cap
.mah
= 0;
1124 if (di
->bat_cap
.mah
>= di
->bat_cap
.max_mah_design
)
1125 di
->bat_cap
.mah
= di
->bat_cap
.max_mah_design
;
1128 * Check against voltage based capacity. It can not be lower
1129 * than what the uncompensated voltage says
1131 permille
= ab8500_fg_convert_mah_to_permille(di
, di
->bat_cap
.mah
);
1132 permille_volt
= ab8500_fg_uncomp_volt_to_capacity(di
);
1134 if (permille
< permille_volt
) {
1135 di
->bat_cap
.permille
= permille_volt
;
1136 di
->bat_cap
.mah
= ab8500_fg_convert_permille_to_mah(di
,
1137 di
->bat_cap
.permille
);
1139 dev_dbg(di
->dev
, "%s voltage based: perm %d perm_volt %d\n",
1144 ab8500_fg_fill_cap_sample(di
, di
->bat_cap
.mah
);
1146 ab8500_fg_fill_cap_sample(di
, di
->bat_cap
.mah
);
1147 di
->bat_cap
.permille
=
1148 ab8500_fg_convert_mah_to_permille(di
, di
->bat_cap
.mah
);
1151 return di
->bat_cap
.mah
;
1155 * ab8500_fg_capacity_level() - Get the battery capacity level
1156 * @di: pointer to the ab8500_fg structure
1158 * Get the battery capacity level based on the capacity in percent
1160 static int ab8500_fg_capacity_level(struct ab8500_fg
*di
)
1164 percent
= DIV_ROUND_CLOSEST(di
->bat_cap
.permille
, 10);
1166 if (percent
<= di
->bm
->cap_levels
->critical
||
1168 ret
= POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL
;
1169 else if (percent
<= di
->bm
->cap_levels
->low
)
1170 ret
= POWER_SUPPLY_CAPACITY_LEVEL_LOW
;
1171 else if (percent
<= di
->bm
->cap_levels
->normal
)
1172 ret
= POWER_SUPPLY_CAPACITY_LEVEL_NORMAL
;
1173 else if (percent
<= di
->bm
->cap_levels
->high
)
1174 ret
= POWER_SUPPLY_CAPACITY_LEVEL_HIGH
;
1176 ret
= POWER_SUPPLY_CAPACITY_LEVEL_FULL
;
1182 * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1183 * @di: pointer to the ab8500_fg structure
1185 * Calculates the capacity to be shown to upper layers. Scales the capacity
1186 * to have 100% as a reference from the actual capacity upon removal of charger
1187 * when charging is in maintenance mode.
1189 static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg
*di
)
1191 struct ab8500_fg_cap_scaling
*cs
= &di
->bat_cap
.cap_scale
;
1192 int capacity
= di
->bat_cap
.prev_percent
;
1198 * As long as we are in fully charge mode scale the capacity
1201 if (di
->flags
.fully_charged
) {
1202 cs
->cap_to_scale
[0] = 100;
1203 cs
->cap_to_scale
[1] =
1204 max(capacity
, di
->bm
->fg_params
->maint_thres
);
1205 dev_dbg(di
->dev
, "Scale cap with %d/%d\n",
1206 cs
->cap_to_scale
[0], cs
->cap_to_scale
[1]);
1209 /* Calculates the scaled capacity. */
1210 if ((cs
->cap_to_scale
[0] != cs
->cap_to_scale
[1])
1211 && (cs
->cap_to_scale
[1] > 0))
1213 DIV_ROUND_CLOSEST(di
->bat_cap
.prev_percent
*
1214 cs
->cap_to_scale
[0],
1215 cs
->cap_to_scale
[1]));
1217 if (di
->flags
.charging
) {
1218 if (capacity
< cs
->disable_cap_level
) {
1219 cs
->disable_cap_level
= capacity
;
1220 dev_dbg(di
->dev
, "Cap to stop scale lowered %d%%\n",
1221 cs
->disable_cap_level
);
1222 } else if (!di
->flags
.fully_charged
) {
1223 if (di
->bat_cap
.prev_percent
>=
1224 cs
->disable_cap_level
) {
1225 dev_dbg(di
->dev
, "Disabling scaled capacity\n");
1227 capacity
= di
->bat_cap
.prev_percent
;
1230 "Waiting in cap to level %d%%\n",
1231 cs
->disable_cap_level
);
1232 capacity
= cs
->disable_cap_level
;
1241 * ab8500_fg_update_cap_scalers() - Capacity scaling
1242 * @di: pointer to the ab8500_fg structure
1244 * To be called when state change from charge<->discharge to update
1245 * the capacity scalers.
1247 static void ab8500_fg_update_cap_scalers(struct ab8500_fg
*di
)
1249 struct ab8500_fg_cap_scaling
*cs
= &di
->bat_cap
.cap_scale
;
1253 if (di
->flags
.charging
) {
1254 di
->bat_cap
.cap_scale
.disable_cap_level
=
1255 di
->bat_cap
.cap_scale
.scaled_cap
;
1256 dev_dbg(di
->dev
, "Cap to stop scale at charge %d%%\n",
1257 di
->bat_cap
.cap_scale
.disable_cap_level
);
1259 if (cs
->scaled_cap
!= 100) {
1260 cs
->cap_to_scale
[0] = cs
->scaled_cap
;
1261 cs
->cap_to_scale
[1] = di
->bat_cap
.prev_percent
;
1263 cs
->cap_to_scale
[0] = 100;
1264 cs
->cap_to_scale
[1] =
1265 max(di
->bat_cap
.prev_percent
,
1266 di
->bm
->fg_params
->maint_thres
);
1269 dev_dbg(di
->dev
, "Cap to scale at discharge %d/%d\n",
1270 cs
->cap_to_scale
[0], cs
->cap_to_scale
[1]);
1275 * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1276 * @di: pointer to the ab8500_fg structure
1277 * @init: capacity is allowed to go up in init mode
1279 * Check if capacity or capacity limit has changed and notify the system
1280 * about it using the power_supply framework
1282 static void ab8500_fg_check_capacity_limits(struct ab8500_fg
*di
, bool init
)
1284 bool changed
= false;
1285 int percent
= DIV_ROUND_CLOSEST(di
->bat_cap
.permille
, 10);
1287 di
->bat_cap
.level
= ab8500_fg_capacity_level(di
);
1289 if (di
->bat_cap
.level
!= di
->bat_cap
.prev_level
) {
1291 * We do not allow reported capacity level to go up
1292 * unless we're charging or if we're in init
1294 if (!(!di
->flags
.charging
&& di
->bat_cap
.level
>
1295 di
->bat_cap
.prev_level
) || init
) {
1296 dev_dbg(di
->dev
, "level changed from %d to %d\n",
1297 di
->bat_cap
.prev_level
,
1299 di
->bat_cap
.prev_level
= di
->bat_cap
.level
;
1302 dev_dbg(di
->dev
, "level not allowed to go up "
1303 "since no charger is connected: %d to %d\n",
1304 di
->bat_cap
.prev_level
,
1310 * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1313 if (di
->flags
.low_bat
) {
1314 dev_dbg(di
->dev
, "Battery low, set capacity to 0\n");
1315 di
->bat_cap
.prev_percent
= 0;
1316 di
->bat_cap
.permille
= 0;
1318 di
->bat_cap
.prev_mah
= 0;
1319 di
->bat_cap
.mah
= 0;
1321 } else if (di
->flags
.fully_charged
) {
1323 * We report 100% if algorithm reported fully charged
1324 * and show 100% during maintenance charging (scaling).
1326 if (di
->flags
.force_full
) {
1327 di
->bat_cap
.prev_percent
= percent
;
1328 di
->bat_cap
.prev_mah
= di
->bat_cap
.mah
;
1332 if (!di
->bat_cap
.cap_scale
.enable
&&
1333 di
->bm
->capacity_scaling
) {
1334 di
->bat_cap
.cap_scale
.enable
= true;
1335 di
->bat_cap
.cap_scale
.cap_to_scale
[0] = 100;
1336 di
->bat_cap
.cap_scale
.cap_to_scale
[1] =
1337 di
->bat_cap
.prev_percent
;
1338 di
->bat_cap
.cap_scale
.disable_cap_level
= 100;
1340 } else if (di
->bat_cap
.prev_percent
!= percent
) {
1342 "battery reported full "
1343 "but capacity dropping: %d\n",
1345 di
->bat_cap
.prev_percent
= percent
;
1346 di
->bat_cap
.prev_mah
= di
->bat_cap
.mah
;
1350 } else if (di
->bat_cap
.prev_percent
!= percent
) {
1353 * We will not report 0% unless we've got
1354 * the LOW_BAT IRQ, no matter what the FG
1357 di
->bat_cap
.prev_percent
= 1;
1361 } else if (!(!di
->flags
.charging
&&
1362 percent
> di
->bat_cap
.prev_percent
) || init
) {
1364 * We do not allow reported capacity to go up
1365 * unless we're charging or if we're in init
1368 "capacity changed from %d to %d (%d)\n",
1369 di
->bat_cap
.prev_percent
,
1371 di
->bat_cap
.permille
);
1372 di
->bat_cap
.prev_percent
= percent
;
1373 di
->bat_cap
.prev_mah
= di
->bat_cap
.mah
;
1377 dev_dbg(di
->dev
, "capacity not allowed to go up since "
1378 "no charger is connected: %d to %d (%d)\n",
1379 di
->bat_cap
.prev_percent
,
1381 di
->bat_cap
.permille
);
1386 if (di
->bm
->capacity_scaling
) {
1387 di
->bat_cap
.cap_scale
.scaled_cap
=
1388 ab8500_fg_calculate_scaled_capacity(di
);
1390 dev_info(di
->dev
, "capacity=%d (%d)\n",
1391 di
->bat_cap
.prev_percent
,
1392 di
->bat_cap
.cap_scale
.scaled_cap
);
1394 power_supply_changed(&di
->fg_psy
);
1395 if (di
->flags
.fully_charged
&& di
->flags
.force_full
) {
1396 dev_dbg(di
->dev
, "Battery full, notifying.\n");
1397 di
->flags
.force_full
= false;
1398 sysfs_notify(&di
->fg_kobject
, NULL
, "charge_full");
1400 sysfs_notify(&di
->fg_kobject
, NULL
, "charge_now");
1404 static void ab8500_fg_charge_state_to(struct ab8500_fg
*di
,
1405 enum ab8500_fg_charge_state new_state
)
1407 dev_dbg(di
->dev
, "Charge state from %d [%s] to %d [%s]\n",
1409 charge_state
[di
->charge_state
],
1411 charge_state
[new_state
]);
1413 di
->charge_state
= new_state
;
1416 static void ab8500_fg_discharge_state_to(struct ab8500_fg
*di
,
1417 enum ab8500_fg_discharge_state new_state
)
1419 dev_dbg(di
->dev
, "Disharge state from %d [%s] to %d [%s]\n",
1420 di
->discharge_state
,
1421 discharge_state
[di
->discharge_state
],
1423 discharge_state
[new_state
]);
1425 di
->discharge_state
= new_state
;
1429 * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1430 * @di: pointer to the ab8500_fg structure
1432 * Battery capacity calculation state machine for when we're charging
1434 static void ab8500_fg_algorithm_charging(struct ab8500_fg
*di
)
1437 * If we change to discharge mode
1438 * we should start with recovery
1440 if (di
->discharge_state
!= AB8500_FG_DISCHARGE_INIT_RECOVERY
)
1441 ab8500_fg_discharge_state_to(di
,
1442 AB8500_FG_DISCHARGE_INIT_RECOVERY
);
1444 switch (di
->charge_state
) {
1445 case AB8500_FG_CHARGE_INIT
:
1446 di
->fg_samples
= SEC_TO_SAMPLE(
1447 di
->bm
->fg_params
->accu_charging
);
1449 ab8500_fg_coulomb_counter(di
, true);
1450 ab8500_fg_charge_state_to(di
, AB8500_FG_CHARGE_READOUT
);
1454 case AB8500_FG_CHARGE_READOUT
:
1456 * Read the FG and calculate the new capacity
1458 mutex_lock(&di
->cc_lock
);
1459 if (!di
->flags
.conv_done
&& !di
->flags
.force_full
) {
1460 /* Wasn't the CC IRQ that got us here */
1461 mutex_unlock(&di
->cc_lock
);
1462 dev_dbg(di
->dev
, "%s CC conv not done\n",
1467 di
->flags
.conv_done
= false;
1468 mutex_unlock(&di
->cc_lock
);
1470 ab8500_fg_calc_cap_charging(di
);
1478 /* Check capacity limits */
1479 ab8500_fg_check_capacity_limits(di
, false);
1482 static void force_capacity(struct ab8500_fg
*di
)
1486 ab8500_fg_clear_cap_samples(di
);
1487 cap
= di
->bat_cap
.user_mah
;
1488 if (cap
> di
->bat_cap
.max_mah_design
) {
1489 dev_dbg(di
->dev
, "Remaining cap %d can't be bigger than total"
1490 " %d\n", cap
, di
->bat_cap
.max_mah_design
);
1491 cap
= di
->bat_cap
.max_mah_design
;
1493 ab8500_fg_fill_cap_sample(di
, di
->bat_cap
.user_mah
);
1494 di
->bat_cap
.permille
= ab8500_fg_convert_mah_to_permille(di
, cap
);
1495 di
->bat_cap
.mah
= cap
;
1496 ab8500_fg_check_capacity_limits(di
, true);
1499 static bool check_sysfs_capacity(struct ab8500_fg
*di
)
1501 int cap
, lower
, upper
;
1504 cap
= di
->bat_cap
.user_mah
;
1506 cap_permille
= ab8500_fg_convert_mah_to_permille(di
,
1507 di
->bat_cap
.user_mah
);
1509 lower
= di
->bat_cap
.permille
- di
->bm
->fg_params
->user_cap_limit
* 10;
1510 upper
= di
->bat_cap
.permille
+ di
->bm
->fg_params
->user_cap_limit
* 10;
1514 /* 1000 is permille, -> 100 percent */
1518 dev_dbg(di
->dev
, "Capacity limits:"
1519 " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1520 lower
, cap_permille
, upper
, cap
, di
->bat_cap
.mah
);
1522 /* If within limits, use the saved capacity and exit estimation...*/
1523 if (cap_permille
> lower
&& cap_permille
< upper
) {
1524 dev_dbg(di
->dev
, "OK! Using users cap %d uAh now\n", cap
);
1528 dev_dbg(di
->dev
, "Capacity from user out of limits, ignoring");
1533 * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1534 * @di: pointer to the ab8500_fg structure
1536 * Battery capacity calculation state machine for when we're discharging
1538 static void ab8500_fg_algorithm_discharging(struct ab8500_fg
*di
)
1542 /* If we change to charge mode we should start with init */
1543 if (di
->charge_state
!= AB8500_FG_CHARGE_INIT
)
1544 ab8500_fg_charge_state_to(di
, AB8500_FG_CHARGE_INIT
);
1546 switch (di
->discharge_state
) {
1547 case AB8500_FG_DISCHARGE_INIT
:
1548 /* We use the FG IRQ to work on */
1550 di
->fg_samples
= SEC_TO_SAMPLE(di
->bm
->fg_params
->init_timer
);
1551 ab8500_fg_coulomb_counter(di
, true);
1552 ab8500_fg_discharge_state_to(di
,
1553 AB8500_FG_DISCHARGE_INITMEASURING
);
1555 /* Intentional fallthrough */
1556 case AB8500_FG_DISCHARGE_INITMEASURING
:
1558 * Discard a number of samples during startup.
1559 * After that, use compensated voltage for a few
1560 * samples to get an initial capacity.
1561 * Then go to READOUT
1563 sleep_time
= di
->bm
->fg_params
->init_timer
;
1565 /* Discard the first [x] seconds */
1566 if (di
->init_cnt
> di
->bm
->fg_params
->init_discard_time
) {
1567 ab8500_fg_calc_cap_discharge_voltage(di
, true);
1569 ab8500_fg_check_capacity_limits(di
, true);
1572 di
->init_cnt
+= sleep_time
;
1573 if (di
->init_cnt
> di
->bm
->fg_params
->init_total_time
)
1574 ab8500_fg_discharge_state_to(di
,
1575 AB8500_FG_DISCHARGE_READOUT_INIT
);
1579 case AB8500_FG_DISCHARGE_INIT_RECOVERY
:
1580 di
->recovery_cnt
= 0;
1581 di
->recovery_needed
= true;
1582 ab8500_fg_discharge_state_to(di
,
1583 AB8500_FG_DISCHARGE_RECOVERY
);
1585 /* Intentional fallthrough */
1587 case AB8500_FG_DISCHARGE_RECOVERY
:
1588 sleep_time
= di
->bm
->fg_params
->recovery_sleep_timer
;
1591 * We should check the power consumption
1592 * If low, go to READOUT (after x min) or
1593 * RECOVERY_SLEEP if time left.
1594 * If high, go to READOUT
1596 di
->inst_curr
= ab8500_fg_inst_curr_blocking(di
);
1598 if (ab8500_fg_is_low_curr(di
, di
->inst_curr
)) {
1599 if (di
->recovery_cnt
>
1600 di
->bm
->fg_params
->recovery_total_time
) {
1601 di
->fg_samples
= SEC_TO_SAMPLE(
1602 di
->bm
->fg_params
->accu_high_curr
);
1603 ab8500_fg_coulomb_counter(di
, true);
1604 ab8500_fg_discharge_state_to(di
,
1605 AB8500_FG_DISCHARGE_READOUT
);
1606 di
->recovery_needed
= false;
1608 queue_delayed_work(di
->fg_wq
,
1609 &di
->fg_periodic_work
,
1612 di
->recovery_cnt
+= sleep_time
;
1614 di
->fg_samples
= SEC_TO_SAMPLE(
1615 di
->bm
->fg_params
->accu_high_curr
);
1616 ab8500_fg_coulomb_counter(di
, true);
1617 ab8500_fg_discharge_state_to(di
,
1618 AB8500_FG_DISCHARGE_READOUT
);
1622 case AB8500_FG_DISCHARGE_READOUT_INIT
:
1623 di
->fg_samples
= SEC_TO_SAMPLE(
1624 di
->bm
->fg_params
->accu_high_curr
);
1625 ab8500_fg_coulomb_counter(di
, true);
1626 ab8500_fg_discharge_state_to(di
,
1627 AB8500_FG_DISCHARGE_READOUT
);
1630 case AB8500_FG_DISCHARGE_READOUT
:
1631 di
->inst_curr
= ab8500_fg_inst_curr_blocking(di
);
1633 if (ab8500_fg_is_low_curr(di
, di
->inst_curr
)) {
1634 /* Detect mode change */
1635 if (di
->high_curr_mode
) {
1636 di
->high_curr_mode
= false;
1637 di
->high_curr_cnt
= 0;
1640 if (di
->recovery_needed
) {
1641 ab8500_fg_discharge_state_to(di
,
1642 AB8500_FG_DISCHARGE_INIT_RECOVERY
);
1644 queue_delayed_work(di
->fg_wq
,
1645 &di
->fg_periodic_work
, 0);
1650 ab8500_fg_calc_cap_discharge_voltage(di
, true);
1652 mutex_lock(&di
->cc_lock
);
1653 if (!di
->flags
.conv_done
) {
1654 /* Wasn't the CC IRQ that got us here */
1655 mutex_unlock(&di
->cc_lock
);
1656 dev_dbg(di
->dev
, "%s CC conv not done\n",
1661 di
->flags
.conv_done
= false;
1662 mutex_unlock(&di
->cc_lock
);
1664 /* Detect mode change */
1665 if (!di
->high_curr_mode
) {
1666 di
->high_curr_mode
= true;
1667 di
->high_curr_cnt
= 0;
1670 di
->high_curr_cnt
+=
1671 di
->bm
->fg_params
->accu_high_curr
;
1672 if (di
->high_curr_cnt
>
1673 di
->bm
->fg_params
->high_curr_time
)
1674 di
->recovery_needed
= true;
1676 ab8500_fg_calc_cap_discharge_fg(di
);
1679 ab8500_fg_check_capacity_limits(di
, false);
1683 case AB8500_FG_DISCHARGE_WAKEUP
:
1684 ab8500_fg_calc_cap_discharge_voltage(di
, true);
1686 di
->fg_samples
= SEC_TO_SAMPLE(
1687 di
->bm
->fg_params
->accu_high_curr
);
1688 ab8500_fg_coulomb_counter(di
, true);
1689 ab8500_fg_discharge_state_to(di
,
1690 AB8500_FG_DISCHARGE_READOUT
);
1692 ab8500_fg_check_capacity_limits(di
, false);
1702 * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1703 * @di: pointer to the ab8500_fg structure
1706 static void ab8500_fg_algorithm_calibrate(struct ab8500_fg
*di
)
1710 switch (di
->calib_state
) {
1711 case AB8500_FG_CALIB_INIT
:
1712 dev_dbg(di
->dev
, "Calibration ongoing...\n");
1714 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
1715 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
,
1716 CC_INT_CAL_N_AVG_MASK
, CC_INT_CAL_SAMPLES_8
);
1720 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
1721 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
,
1722 CC_INTAVGOFFSET_ENA
, CC_INTAVGOFFSET_ENA
);
1725 di
->calib_state
= AB8500_FG_CALIB_WAIT
;
1727 case AB8500_FG_CALIB_END
:
1728 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
1729 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
,
1730 CC_MUXOFFSET
, CC_MUXOFFSET
);
1733 di
->flags
.calibrate
= false;
1734 dev_dbg(di
->dev
, "Calibration done...\n");
1735 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
1737 case AB8500_FG_CALIB_WAIT
:
1738 dev_dbg(di
->dev
, "Calibration WFI\n");
1744 /* Something went wrong, don't calibrate then */
1745 dev_err(di
->dev
, "failed to calibrate the CC\n");
1746 di
->flags
.calibrate
= false;
1747 di
->calib_state
= AB8500_FG_CALIB_INIT
;
1748 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
1752 * ab8500_fg_algorithm() - Entry point for the FG algorithm
1753 * @di: pointer to the ab8500_fg structure
1755 * Entry point for the battery capacity calculation state machine
1757 static void ab8500_fg_algorithm(struct ab8500_fg
*di
)
1759 if (di
->flags
.calibrate
)
1760 ab8500_fg_algorithm_calibrate(di
);
1762 if (di
->flags
.charging
)
1763 ab8500_fg_algorithm_charging(di
);
1765 ab8500_fg_algorithm_discharging(di
);
1768 dev_dbg(di
->dev
, "[FG_DATA] %d %d %d %d %d %d %d %d %d %d "
1769 "%d %d %d %d %d %d %d\n",
1770 di
->bat_cap
.max_mah_design
,
1771 di
->bat_cap
.max_mah
,
1773 di
->bat_cap
.permille
,
1775 di
->bat_cap
.prev_mah
,
1776 di
->bat_cap
.prev_percent
,
1777 di
->bat_cap
.prev_level
,
1784 di
->discharge_state
,
1786 di
->recovery_needed
);
1790 * ab8500_fg_periodic_work() - Run the FG state machine periodically
1791 * @work: pointer to the work_struct structure
1793 * Work queue function for periodic work
1795 static void ab8500_fg_periodic_work(struct work_struct
*work
)
1797 struct ab8500_fg
*di
= container_of(work
, struct ab8500_fg
,
1798 fg_periodic_work
.work
);
1800 if (di
->init_capacity
) {
1801 /* Get an initial capacity calculation */
1802 ab8500_fg_calc_cap_discharge_voltage(di
, true);
1803 ab8500_fg_check_capacity_limits(di
, true);
1804 di
->init_capacity
= false;
1806 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
1807 } else if (di
->flags
.user_cap
) {
1808 if (check_sysfs_capacity(di
)) {
1809 ab8500_fg_check_capacity_limits(di
, true);
1810 if (di
->flags
.charging
)
1811 ab8500_fg_charge_state_to(di
,
1812 AB8500_FG_CHARGE_INIT
);
1814 ab8500_fg_discharge_state_to(di
,
1815 AB8500_FG_DISCHARGE_READOUT_INIT
);
1817 di
->flags
.user_cap
= false;
1818 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
1820 ab8500_fg_algorithm(di
);
1825 * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1826 * @work: pointer to the work_struct structure
1828 * Work queue function for checking the OVV_BAT condition
1830 static void ab8500_fg_check_hw_failure_work(struct work_struct
*work
)
1835 struct ab8500_fg
*di
= container_of(work
, struct ab8500_fg
,
1836 fg_check_hw_failure_work
.work
);
1839 * If we have had a battery over-voltage situation,
1840 * check ovv-bit to see if it should be reset.
1842 ret
= abx500_get_register_interruptible(di
->dev
,
1843 AB8500_CHARGER
, AB8500_CH_STAT_REG
,
1846 dev_err(di
->dev
, "%s ab8500 read failed\n", __func__
);
1849 if ((reg_value
& BATT_OVV
) == BATT_OVV
) {
1850 if (!di
->flags
.bat_ovv
) {
1851 dev_dbg(di
->dev
, "Battery OVV\n");
1852 di
->flags
.bat_ovv
= true;
1853 power_supply_changed(&di
->fg_psy
);
1855 /* Not yet recovered from ovv, reschedule this test */
1856 queue_delayed_work(di
->fg_wq
, &di
->fg_check_hw_failure_work
,
1859 dev_dbg(di
->dev
, "Battery recovered from OVV\n");
1860 di
->flags
.bat_ovv
= false;
1861 power_supply_changed(&di
->fg_psy
);
1866 * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1867 * @work: pointer to the work_struct structure
1869 * Work queue function for checking the LOW_BAT condition
1871 static void ab8500_fg_low_bat_work(struct work_struct
*work
)
1875 struct ab8500_fg
*di
= container_of(work
, struct ab8500_fg
,
1876 fg_low_bat_work
.work
);
1878 vbat
= ab8500_fg_bat_voltage(di
);
1880 /* Check if LOW_BAT still fulfilled */
1881 if (vbat
< di
->bm
->fg_params
->lowbat_threshold
) {
1882 /* Is it time to shut down? */
1883 if (di
->low_bat_cnt
< 1) {
1884 di
->flags
.low_bat
= true;
1885 dev_warn(di
->dev
, "Shut down pending...\n");
1888 * Else we need to re-schedule this check to be able to detect
1889 * if the voltage increases again during charging or
1890 * due to decreasing load.
1893 dev_warn(di
->dev
, "Battery voltage still LOW\n");
1894 queue_delayed_work(di
->fg_wq
, &di
->fg_low_bat_work
,
1895 round_jiffies(LOW_BAT_CHECK_INTERVAL
));
1898 di
->flags
.low_bat_delay
= false;
1899 di
->low_bat_cnt
= 10;
1900 dev_warn(di
->dev
, "Battery voltage OK again\n");
1903 /* This is needed to dispatch LOW_BAT */
1904 ab8500_fg_check_capacity_limits(di
, false);
1908 * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1909 * to the target voltage.
1910 * @di: pointer to the ab8500_fg structure
1911 * @target target voltage
1913 * Returns bit pattern closest to the target voltage
1914 * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1917 static int ab8500_fg_battok_calc(struct ab8500_fg
*di
, int target
)
1919 if (target
> BATT_OK_MIN
+
1920 (BATT_OK_INCREMENT
* BATT_OK_MAX_NR_INCREMENTS
))
1921 return BATT_OK_MAX_NR_INCREMENTS
;
1922 if (target
< BATT_OK_MIN
)
1924 return (target
- BATT_OK_MIN
) / BATT_OK_INCREMENT
;
1928 * ab8500_fg_battok_init_hw_register - init battok levels
1929 * @di: pointer to the ab8500_fg structure
1933 static int ab8500_fg_battok_init_hw_register(struct ab8500_fg
*di
)
1943 sel0
= di
->bm
->fg_params
->battok_falling_th_sel0
;
1944 sel1
= di
->bm
->fg_params
->battok_raising_th_sel1
;
1946 cbp_sel0
= ab8500_fg_battok_calc(di
, sel0
);
1947 cbp_sel1
= ab8500_fg_battok_calc(di
, sel1
);
1949 selected
= BATT_OK_MIN
+ cbp_sel0
* BATT_OK_INCREMENT
;
1951 if (selected
!= sel0
)
1952 dev_warn(di
->dev
, "Invalid voltage step:%d, using %d %d\n",
1953 sel0
, selected
, cbp_sel0
);
1955 selected
= BATT_OK_MIN
+ cbp_sel1
* BATT_OK_INCREMENT
;
1957 if (selected
!= sel1
)
1958 dev_warn(di
->dev
, "Invalid voltage step:%d, using %d %d\n",
1959 sel1
, selected
, cbp_sel1
);
1961 new_val
= cbp_sel0
| (cbp_sel1
<< 4);
1963 dev_dbg(di
->dev
, "using: %x %d %d\n", new_val
, cbp_sel0
, cbp_sel1
);
1964 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_SYS_CTRL2_BLOCK
,
1965 AB8500_BATT_OK_REG
, new_val
);
1970 * ab8500_fg_instant_work() - Run the FG state machine instantly
1971 * @work: pointer to the work_struct structure
1973 * Work queue function for instant work
1975 static void ab8500_fg_instant_work(struct work_struct
*work
)
1977 struct ab8500_fg
*di
= container_of(work
, struct ab8500_fg
, fg_work
);
1979 ab8500_fg_algorithm(di
);
1983 * ab8500_fg_cc_data_end_handler() - end of data conversion isr.
1984 * @irq: interrupt number
1985 * @_di: pointer to the ab8500_fg structure
1987 * Returns IRQ status(IRQ_HANDLED)
1989 static irqreturn_t
ab8500_fg_cc_data_end_handler(int irq
, void *_di
)
1991 struct ab8500_fg
*di
= _di
;
1992 if (!di
->nbr_cceoc_irq_cnt
) {
1993 di
->nbr_cceoc_irq_cnt
++;
1994 complete(&di
->ab8500_fg_started
);
1996 di
->nbr_cceoc_irq_cnt
= 0;
1997 complete(&di
->ab8500_fg_complete
);
2003 * ab8500_fg_cc_int_calib_handler () - end of calibration isr.
2004 * @irq: interrupt number
2005 * @_di: pointer to the ab8500_fg structure
2007 * Returns IRQ status(IRQ_HANDLED)
2009 static irqreturn_t
ab8500_fg_cc_int_calib_handler(int irq
, void *_di
)
2011 struct ab8500_fg
*di
= _di
;
2012 di
->calib_state
= AB8500_FG_CALIB_END
;
2013 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
2018 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2019 * @irq: interrupt number
2020 * @_di: pointer to the ab8500_fg structure
2022 * Returns IRQ status(IRQ_HANDLED)
2024 static irqreturn_t
ab8500_fg_cc_convend_handler(int irq
, void *_di
)
2026 struct ab8500_fg
*di
= _di
;
2028 queue_work(di
->fg_wq
, &di
->fg_acc_cur_work
);
2034 * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2035 * @irq: interrupt number
2036 * @_di: pointer to the ab8500_fg structure
2038 * Returns IRQ status(IRQ_HANDLED)
2040 static irqreturn_t
ab8500_fg_batt_ovv_handler(int irq
, void *_di
)
2042 struct ab8500_fg
*di
= _di
;
2044 dev_dbg(di
->dev
, "Battery OVV\n");
2046 /* Schedule a new HW failure check */
2047 queue_delayed_work(di
->fg_wq
, &di
->fg_check_hw_failure_work
, 0);
2053 * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2054 * @irq: interrupt number
2055 * @_di: pointer to the ab8500_fg structure
2057 * Returns IRQ status(IRQ_HANDLED)
2059 static irqreturn_t
ab8500_fg_lowbatf_handler(int irq
, void *_di
)
2061 struct ab8500_fg
*di
= _di
;
2063 /* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */
2064 if (!di
->flags
.low_bat_delay
) {
2065 dev_warn(di
->dev
, "Battery voltage is below LOW threshold\n");
2066 di
->flags
.low_bat_delay
= true;
2068 * Start a timer to check LOW_BAT again after some time
2069 * This is done to avoid shutdown on single voltage dips
2071 queue_delayed_work(di
->fg_wq
, &di
->fg_low_bat_work
,
2072 round_jiffies(LOW_BAT_CHECK_INTERVAL
));
2078 * ab8500_fg_get_property() - get the fg properties
2079 * @psy: pointer to the power_supply structure
2080 * @psp: pointer to the power_supply_property structure
2081 * @val: pointer to the power_supply_propval union
2083 * This function gets called when an application tries to get the
2084 * fg properties by reading the sysfs files.
2085 * voltage_now: battery voltage
2086 * current_now: battery instant current
2087 * current_avg: battery average current
2088 * charge_full_design: capacity where battery is considered full
2089 * charge_now: battery capacity in nAh
2090 * capacity: capacity in percent
2091 * capacity_level: capacity level
2093 * Returns error code in case of failure else 0 on success
2095 static int ab8500_fg_get_property(struct power_supply
*psy
,
2096 enum power_supply_property psp
,
2097 union power_supply_propval
*val
)
2099 struct ab8500_fg
*di
;
2101 di
= to_ab8500_fg_device_info(psy
);
2104 * If battery is identified as unknown and charging of unknown
2105 * batteries is disabled, we always report 100% capacity and
2106 * capacity level UNKNOWN, since we can't calculate
2107 * remaining capacity
2111 case POWER_SUPPLY_PROP_VOLTAGE_NOW
:
2112 if (di
->flags
.bat_ovv
)
2113 val
->intval
= BATT_OVV_VALUE
* 1000;
2115 val
->intval
= di
->vbat
* 1000;
2117 case POWER_SUPPLY_PROP_CURRENT_NOW
:
2118 val
->intval
= di
->inst_curr
* 1000;
2120 case POWER_SUPPLY_PROP_CURRENT_AVG
:
2121 val
->intval
= di
->avg_curr
* 1000;
2123 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN
:
2124 val
->intval
= ab8500_fg_convert_mah_to_uwh(di
,
2125 di
->bat_cap
.max_mah_design
);
2127 case POWER_SUPPLY_PROP_ENERGY_FULL
:
2128 val
->intval
= ab8500_fg_convert_mah_to_uwh(di
,
2129 di
->bat_cap
.max_mah
);
2131 case POWER_SUPPLY_PROP_ENERGY_NOW
:
2132 if (di
->flags
.batt_unknown
&& !di
->bm
->chg_unknown_bat
&&
2133 di
->flags
.batt_id_received
)
2134 val
->intval
= ab8500_fg_convert_mah_to_uwh(di
,
2135 di
->bat_cap
.max_mah
);
2137 val
->intval
= ab8500_fg_convert_mah_to_uwh(di
,
2138 di
->bat_cap
.prev_mah
);
2140 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN
:
2141 val
->intval
= di
->bat_cap
.max_mah_design
;
2143 case POWER_SUPPLY_PROP_CHARGE_FULL
:
2144 val
->intval
= di
->bat_cap
.max_mah
;
2146 case POWER_SUPPLY_PROP_CHARGE_NOW
:
2147 if (di
->flags
.batt_unknown
&& !di
->bm
->chg_unknown_bat
&&
2148 di
->flags
.batt_id_received
)
2149 val
->intval
= di
->bat_cap
.max_mah
;
2151 val
->intval
= di
->bat_cap
.prev_mah
;
2153 case POWER_SUPPLY_PROP_CAPACITY
:
2154 if (di
->flags
.batt_unknown
&& !di
->bm
->chg_unknown_bat
&&
2155 di
->flags
.batt_id_received
)
2158 val
->intval
= di
->bat_cap
.prev_percent
;
2160 case POWER_SUPPLY_PROP_CAPACITY_LEVEL
:
2161 if (di
->flags
.batt_unknown
&& !di
->bm
->chg_unknown_bat
&&
2162 di
->flags
.batt_id_received
)
2163 val
->intval
= POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN
;
2165 val
->intval
= di
->bat_cap
.prev_level
;
2173 static int ab8500_fg_get_ext_psy_data(struct device
*dev
, void *data
)
2175 struct power_supply
*psy
;
2176 struct power_supply
*ext
;
2177 struct ab8500_fg
*di
;
2178 union power_supply_propval ret
;
2180 bool psy_found
= false;
2182 psy
= (struct power_supply
*)data
;
2183 ext
= dev_get_drvdata(dev
);
2184 di
= to_ab8500_fg_device_info(psy
);
2187 * For all psy where the name of your driver
2188 * appears in any supplied_to
2190 for (i
= 0; i
< ext
->num_supplicants
; i
++) {
2191 if (!strcmp(ext
->supplied_to
[i
], psy
->name
))
2198 /* Go through all properties for the psy */
2199 for (j
= 0; j
< ext
->num_properties
; j
++) {
2200 enum power_supply_property prop
;
2201 prop
= ext
->properties
[j
];
2203 if (ext
->get_property(ext
, prop
, &ret
))
2207 case POWER_SUPPLY_PROP_STATUS
:
2208 switch (ext
->type
) {
2209 case POWER_SUPPLY_TYPE_BATTERY
:
2210 switch (ret
.intval
) {
2211 case POWER_SUPPLY_STATUS_UNKNOWN
:
2212 case POWER_SUPPLY_STATUS_DISCHARGING
:
2213 case POWER_SUPPLY_STATUS_NOT_CHARGING
:
2214 if (!di
->flags
.charging
)
2216 di
->flags
.charging
= false;
2217 di
->flags
.fully_charged
= false;
2218 if (di
->bm
->capacity_scaling
)
2219 ab8500_fg_update_cap_scalers(di
);
2220 queue_work(di
->fg_wq
, &di
->fg_work
);
2222 case POWER_SUPPLY_STATUS_FULL
:
2223 if (di
->flags
.fully_charged
)
2225 di
->flags
.fully_charged
= true;
2226 di
->flags
.force_full
= true;
2227 /* Save current capacity as maximum */
2228 di
->bat_cap
.max_mah
= di
->bat_cap
.mah
;
2229 queue_work(di
->fg_wq
, &di
->fg_work
);
2231 case POWER_SUPPLY_STATUS_CHARGING
:
2232 if (di
->flags
.charging
&&
2233 !di
->flags
.fully_charged
)
2235 di
->flags
.charging
= true;
2236 di
->flags
.fully_charged
= false;
2237 if (di
->bm
->capacity_scaling
)
2238 ab8500_fg_update_cap_scalers(di
);
2239 queue_work(di
->fg_wq
, &di
->fg_work
);
2246 case POWER_SUPPLY_PROP_TECHNOLOGY
:
2247 switch (ext
->type
) {
2248 case POWER_SUPPLY_TYPE_BATTERY
:
2249 if (!di
->flags
.batt_id_received
&&
2250 di
->bm
->batt_id
!= BATTERY_UNKNOWN
) {
2251 const struct abx500_battery_type
*b
;
2253 b
= &(di
->bm
->bat_type
[di
->bm
->batt_id
]);
2255 di
->flags
.batt_id_received
= true;
2257 di
->bat_cap
.max_mah_design
=
2259 b
->charge_full_design
;
2261 di
->bat_cap
.max_mah
=
2262 di
->bat_cap
.max_mah_design
;
2264 di
->vbat_nom
= b
->nominal_voltage
;
2268 di
->flags
.batt_unknown
= false;
2270 di
->flags
.batt_unknown
= true;
2276 case POWER_SUPPLY_PROP_TEMP
:
2277 switch (ext
->type
) {
2278 case POWER_SUPPLY_TYPE_BATTERY
:
2279 if (di
->flags
.batt_id_received
)
2280 di
->bat_temp
= ret
.intval
;
2294 * ab8500_fg_init_hw_registers() - Set up FG related registers
2295 * @di: pointer to the ab8500_fg structure
2297 * Set up battery OVV, low battery voltage registers
2299 static int ab8500_fg_init_hw_registers(struct ab8500_fg
*di
)
2303 /* Set VBAT OVV threshold */
2304 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
2310 dev_err(di
->dev
, "failed to set BATT_OVV\n");
2314 /* Enable VBAT OVV detection */
2315 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
2321 dev_err(di
->dev
, "failed to enable BATT_OVV\n");
2325 /* Low Battery Voltage */
2326 ret
= abx500_set_register_interruptible(di
->dev
,
2327 AB8500_SYS_CTRL2_BLOCK
,
2329 ab8500_volt_to_regval(
2330 di
->bm
->fg_params
->lowbat_threshold
) << 1 |
2333 dev_err(di
->dev
, "%s write failed\n", __func__
);
2337 /* Battery OK threshold */
2338 ret
= ab8500_fg_battok_init_hw_register(di
);
2340 dev_err(di
->dev
, "BattOk init write failed.\n");
2344 if (((is_ab8505(di
->parent
) || is_ab9540(di
->parent
)) &&
2345 abx500_get_chip_id(di
->dev
) >= AB8500_CUT2P0
)
2346 || is_ab8540(di
->parent
)) {
2347 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2348 AB8505_RTC_PCUT_MAX_TIME_REG
, di
->bm
->fg_params
->pcut_max_time
);
2351 dev_err(di
->dev
, "%s write failed AB8505_RTC_PCUT_MAX_TIME_REG\n", __func__
);
2355 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2356 AB8505_RTC_PCUT_FLAG_TIME_REG
, di
->bm
->fg_params
->pcut_flag_time
);
2359 dev_err(di
->dev
, "%s write failed AB8505_RTC_PCUT_FLAG_TIME_REG\n", __func__
);
2363 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2364 AB8505_RTC_PCUT_RESTART_REG
, di
->bm
->fg_params
->pcut_max_restart
);
2367 dev_err(di
->dev
, "%s write failed AB8505_RTC_PCUT_RESTART_REG\n", __func__
);
2371 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2372 AB8505_RTC_PCUT_DEBOUNCE_REG
, di
->bm
->fg_params
->pcut_debounce_time
);
2375 dev_err(di
->dev
, "%s write failed AB8505_RTC_PCUT_DEBOUNCE_REG\n", __func__
);
2379 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2380 AB8505_RTC_PCUT_CTL_STATUS_REG
, di
->bm
->fg_params
->pcut_enable
);
2383 dev_err(di
->dev
, "%s write failed AB8505_RTC_PCUT_CTL_STATUS_REG\n", __func__
);
2392 * ab8500_fg_external_power_changed() - callback for power supply changes
2393 * @psy: pointer to the structure power_supply
2395 * This function is the entry point of the pointer external_power_changed
2396 * of the structure power_supply.
2397 * This function gets executed when there is a change in any external power
2398 * supply that this driver needs to be notified of.
2400 static void ab8500_fg_external_power_changed(struct power_supply
*psy
)
2402 struct ab8500_fg
*di
= to_ab8500_fg_device_info(psy
);
2404 class_for_each_device(power_supply_class
, NULL
,
2405 &di
->fg_psy
, ab8500_fg_get_ext_psy_data
);
2409 * abab8500_fg_reinit_work() - work to reset the FG algorithm
2410 * @work: pointer to the work_struct structure
2412 * Used to reset the current battery capacity to be able to
2413 * retrigger a new voltage base capacity calculation. For
2414 * test and verification purpose.
2416 static void ab8500_fg_reinit_work(struct work_struct
*work
)
2418 struct ab8500_fg
*di
= container_of(work
, struct ab8500_fg
,
2419 fg_reinit_work
.work
);
2421 if (di
->flags
.calibrate
== false) {
2422 dev_dbg(di
->dev
, "Resetting FG state machine to init.\n");
2423 ab8500_fg_clear_cap_samples(di
);
2424 ab8500_fg_calc_cap_discharge_voltage(di
, true);
2425 ab8500_fg_charge_state_to(di
, AB8500_FG_CHARGE_INIT
);
2426 ab8500_fg_discharge_state_to(di
, AB8500_FG_DISCHARGE_INIT
);
2427 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
2430 dev_err(di
->dev
, "Residual offset calibration ongoing "
2432 /* Wait one second until next try*/
2433 queue_delayed_work(di
->fg_wq
, &di
->fg_reinit_work
,
2439 * ab8500_fg_reinit() - forces FG algorithm to reinitialize with current values
2441 * This function can be used to force the FG algorithm to recalculate a new
2442 * voltage based battery capacity.
2444 void ab8500_fg_reinit(void)
2446 struct ab8500_fg
*di
= ab8500_fg_get();
2447 /* User won't be notified if a null pointer returned. */
2449 queue_delayed_work(di
->fg_wq
, &di
->fg_reinit_work
, 0);
2452 /* Exposure to the sysfs interface */
2454 struct ab8500_fg_sysfs_entry
{
2455 struct attribute attr
;
2456 ssize_t (*show
)(struct ab8500_fg
*, char *);
2457 ssize_t (*store
)(struct ab8500_fg
*, const char *, size_t);
2460 static ssize_t
charge_full_show(struct ab8500_fg
*di
, char *buf
)
2462 return sprintf(buf
, "%d\n", di
->bat_cap
.max_mah
);
2465 static ssize_t
charge_full_store(struct ab8500_fg
*di
, const char *buf
,
2468 unsigned long charge_full
;
2471 ret
= kstrtoul(buf
, 10, &charge_full
);
2473 dev_dbg(di
->dev
, "Ret %zd charge_full %lu", ret
, charge_full
);
2476 di
->bat_cap
.max_mah
= (int) charge_full
;
2482 static ssize_t
charge_now_show(struct ab8500_fg
*di
, char *buf
)
2484 return sprintf(buf
, "%d\n", di
->bat_cap
.prev_mah
);
2487 static ssize_t
charge_now_store(struct ab8500_fg
*di
, const char *buf
,
2490 unsigned long charge_now
;
2493 ret
= kstrtoul(buf
, 10, &charge_now
);
2495 dev_dbg(di
->dev
, "Ret %zd charge_now %lu was %d",
2496 ret
, charge_now
, di
->bat_cap
.prev_mah
);
2499 di
->bat_cap
.user_mah
= (int) charge_now
;
2500 di
->flags
.user_cap
= true;
2502 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
2507 static struct ab8500_fg_sysfs_entry charge_full_attr
=
2508 __ATTR(charge_full
, 0644, charge_full_show
, charge_full_store
);
2510 static struct ab8500_fg_sysfs_entry charge_now_attr
=
2511 __ATTR(charge_now
, 0644, charge_now_show
, charge_now_store
);
2514 ab8500_fg_show(struct kobject
*kobj
, struct attribute
*attr
, char *buf
)
2516 struct ab8500_fg_sysfs_entry
*entry
;
2517 struct ab8500_fg
*di
;
2519 entry
= container_of(attr
, struct ab8500_fg_sysfs_entry
, attr
);
2520 di
= container_of(kobj
, struct ab8500_fg
, fg_kobject
);
2525 return entry
->show(di
, buf
);
2528 ab8500_fg_store(struct kobject
*kobj
, struct attribute
*attr
, const char *buf
,
2531 struct ab8500_fg_sysfs_entry
*entry
;
2532 struct ab8500_fg
*di
;
2534 entry
= container_of(attr
, struct ab8500_fg_sysfs_entry
, attr
);
2535 di
= container_of(kobj
, struct ab8500_fg
, fg_kobject
);
2540 return entry
->store(di
, buf
, count
);
2543 static const struct sysfs_ops ab8500_fg_sysfs_ops
= {
2544 .show
= ab8500_fg_show
,
2545 .store
= ab8500_fg_store
,
2548 static struct attribute
*ab8500_fg_attrs
[] = {
2549 &charge_full_attr
.attr
,
2550 &charge_now_attr
.attr
,
2554 static struct kobj_type ab8500_fg_ktype
= {
2555 .sysfs_ops
= &ab8500_fg_sysfs_ops
,
2556 .default_attrs
= ab8500_fg_attrs
,
2560 * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry
2561 * @di: pointer to the struct ab8500_chargalg
2563 * This function removes the entry in sysfs.
2565 static void ab8500_fg_sysfs_exit(struct ab8500_fg
*di
)
2567 kobject_del(&di
->fg_kobject
);
2571 * ab8500_chargalg_sysfs_init() - init of sysfs entry
2572 * @di: pointer to the struct ab8500_chargalg
2574 * This function adds an entry in sysfs.
2575 * Returns error code in case of failure else 0(on success)
2577 static int ab8500_fg_sysfs_init(struct ab8500_fg
*di
)
2581 ret
= kobject_init_and_add(&di
->fg_kobject
,
2585 dev_err(di
->dev
, "failed to create sysfs entry\n");
2590 static ssize_t
ab8505_powercut_flagtime_read(struct device
*dev
,
2591 struct device_attribute
*attr
,
2596 struct power_supply
*psy
= dev_get_drvdata(dev
);
2597 struct ab8500_fg
*di
;
2599 di
= to_ab8500_fg_device_info(psy
);
2601 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2602 AB8505_RTC_PCUT_FLAG_TIME_REG
, ®_value
);
2605 dev_err(dev
, "Failed to read AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2609 return scnprintf(buf
, PAGE_SIZE
, "%d\n", (reg_value
& 0x7F));
2615 static ssize_t
ab8505_powercut_flagtime_write(struct device
*dev
,
2616 struct device_attribute
*attr
,
2617 const char *buf
, size_t count
)
2620 long unsigned reg_value
;
2621 struct power_supply
*psy
= dev_get_drvdata(dev
);
2622 struct ab8500_fg
*di
;
2624 di
= to_ab8500_fg_device_info(psy
);
2626 reg_value
= simple_strtoul(buf
, NULL
, 10);
2628 if (reg_value
> 0x7F) {
2629 dev_err(dev
, "Incorrect parameter, echo 0 (1.98s) - 127 (15.625ms) for flagtime\n");
2633 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2634 AB8505_RTC_PCUT_FLAG_TIME_REG
, (u8
)reg_value
);
2637 dev_err(dev
, "Failed to set AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2643 static ssize_t
ab8505_powercut_maxtime_read(struct device
*dev
,
2644 struct device_attribute
*attr
,
2649 struct power_supply
*psy
= dev_get_drvdata(dev
);
2650 struct ab8500_fg
*di
;
2652 di
= to_ab8500_fg_device_info(psy
);
2654 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2655 AB8505_RTC_PCUT_MAX_TIME_REG
, ®_value
);
2658 dev_err(dev
, "Failed to read AB8505_RTC_PCUT_MAX_TIME_REG\n");
2662 return scnprintf(buf
, PAGE_SIZE
, "%d\n", (reg_value
& 0x7F));
2669 static ssize_t
ab8505_powercut_maxtime_write(struct device
*dev
,
2670 struct device_attribute
*attr
,
2671 const char *buf
, size_t count
)
2675 struct power_supply
*psy
= dev_get_drvdata(dev
);
2676 struct ab8500_fg
*di
;
2678 di
= to_ab8500_fg_device_info(psy
);
2680 reg_value
= simple_strtoul(buf
, NULL
, 10);
2681 if (reg_value
> 0x7F) {
2682 dev_err(dev
, "Incorrect parameter, echo 0 (0.0s) - 127 (1.98s) for maxtime\n");
2686 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2687 AB8505_RTC_PCUT_MAX_TIME_REG
, (u8
)reg_value
);
2690 dev_err(dev
, "Failed to set AB8505_RTC_PCUT_MAX_TIME_REG\n");
2696 static ssize_t
ab8505_powercut_restart_read(struct device
*dev
,
2697 struct device_attribute
*attr
,
2702 struct power_supply
*psy
= dev_get_drvdata(dev
);
2703 struct ab8500_fg
*di
;
2705 di
= to_ab8500_fg_device_info(psy
);
2707 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2708 AB8505_RTC_PCUT_RESTART_REG
, ®_value
);
2711 dev_err(dev
, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2715 return scnprintf(buf
, PAGE_SIZE
, "%d\n", (reg_value
& 0xF));
2721 static ssize_t
ab8505_powercut_restart_write(struct device
*dev
,
2722 struct device_attribute
*attr
,
2723 const char *buf
, size_t count
)
2727 struct power_supply
*psy
= dev_get_drvdata(dev
);
2728 struct ab8500_fg
*di
;
2730 di
= to_ab8500_fg_device_info(psy
);
2732 reg_value
= simple_strtoul(buf
, NULL
, 10);
2733 if (reg_value
> 0xF) {
2734 dev_err(dev
, "Incorrect parameter, echo 0 - 15 for number of restart\n");
2738 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2739 AB8505_RTC_PCUT_RESTART_REG
, (u8
)reg_value
);
2742 dev_err(dev
, "Failed to set AB8505_RTC_PCUT_RESTART_REG\n");
2749 static ssize_t
ab8505_powercut_timer_read(struct device
*dev
,
2750 struct device_attribute
*attr
,
2755 struct power_supply
*psy
= dev_get_drvdata(dev
);
2756 struct ab8500_fg
*di
;
2758 di
= to_ab8500_fg_device_info(psy
);
2760 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2761 AB8505_RTC_PCUT_TIME_REG
, ®_value
);
2764 dev_err(dev
, "Failed to read AB8505_RTC_PCUT_TIME_REG\n");
2768 return scnprintf(buf
, PAGE_SIZE
, "%d\n", (reg_value
& 0x7F));
2774 static ssize_t
ab8505_powercut_restart_counter_read(struct device
*dev
,
2775 struct device_attribute
*attr
,
2780 struct power_supply
*psy
= dev_get_drvdata(dev
);
2781 struct ab8500_fg
*di
;
2783 di
= to_ab8500_fg_device_info(psy
);
2785 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2786 AB8505_RTC_PCUT_RESTART_REG
, ®_value
);
2789 dev_err(dev
, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2793 return scnprintf(buf
, PAGE_SIZE
, "%d\n", (reg_value
& 0xF0) >> 4);
2799 static ssize_t
ab8505_powercut_read(struct device
*dev
,
2800 struct device_attribute
*attr
,
2805 struct power_supply
*psy
= dev_get_drvdata(dev
);
2806 struct ab8500_fg
*di
;
2808 di
= to_ab8500_fg_device_info(psy
);
2810 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2811 AB8505_RTC_PCUT_CTL_STATUS_REG
, ®_value
);
2816 return scnprintf(buf
, PAGE_SIZE
, "%d\n", (reg_value
& 0x1));
2822 static ssize_t
ab8505_powercut_write(struct device
*dev
,
2823 struct device_attribute
*attr
,
2824 const char *buf
, size_t count
)
2828 struct power_supply
*psy
= dev_get_drvdata(dev
);
2829 struct ab8500_fg
*di
;
2831 di
= to_ab8500_fg_device_info(psy
);
2833 reg_value
= simple_strtoul(buf
, NULL
, 10);
2834 if (reg_value
> 0x1) {
2835 dev_err(dev
, "Incorrect parameter, echo 0/1 to disable/enable Pcut feature\n");
2839 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2840 AB8505_RTC_PCUT_CTL_STATUS_REG
, (u8
)reg_value
);
2843 dev_err(dev
, "Failed to set AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2849 static ssize_t
ab8505_powercut_flag_read(struct device
*dev
,
2850 struct device_attribute
*attr
,
2856 struct power_supply
*psy
= dev_get_drvdata(dev
);
2857 struct ab8500_fg
*di
;
2859 di
= to_ab8500_fg_device_info(psy
);
2861 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2862 AB8505_RTC_PCUT_CTL_STATUS_REG
, ®_value
);
2865 dev_err(dev
, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2869 return scnprintf(buf
, PAGE_SIZE
, "%d\n", ((reg_value
& 0x10) >> 4));
2875 static ssize_t
ab8505_powercut_debounce_read(struct device
*dev
,
2876 struct device_attribute
*attr
,
2881 struct power_supply
*psy
= dev_get_drvdata(dev
);
2882 struct ab8500_fg
*di
;
2884 di
= to_ab8500_fg_device_info(psy
);
2886 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2887 AB8505_RTC_PCUT_DEBOUNCE_REG
, ®_value
);
2890 dev_err(dev
, "Failed to read AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2894 return scnprintf(buf
, PAGE_SIZE
, "%d\n", (reg_value
& 0x7));
2900 static ssize_t
ab8505_powercut_debounce_write(struct device
*dev
,
2901 struct device_attribute
*attr
,
2902 const char *buf
, size_t count
)
2906 struct power_supply
*psy
= dev_get_drvdata(dev
);
2907 struct ab8500_fg
*di
;
2909 di
= to_ab8500_fg_device_info(psy
);
2911 reg_value
= simple_strtoul(buf
, NULL
, 10);
2912 if (reg_value
> 0x7) {
2913 dev_err(dev
, "Incorrect parameter, echo 0 to 7 for debounce setting\n");
2917 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2918 AB8505_RTC_PCUT_DEBOUNCE_REG
, (u8
)reg_value
);
2921 dev_err(dev
, "Failed to set AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2927 static ssize_t
ab8505_powercut_enable_status_read(struct device
*dev
,
2928 struct device_attribute
*attr
,
2933 struct power_supply
*psy
= dev_get_drvdata(dev
);
2934 struct ab8500_fg
*di
;
2936 di
= to_ab8500_fg_device_info(psy
);
2938 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2939 AB8505_RTC_PCUT_CTL_STATUS_REG
, ®_value
);
2942 dev_err(dev
, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2946 return scnprintf(buf
, PAGE_SIZE
, "%d\n", ((reg_value
& 0x20) >> 5));
2952 static struct device_attribute ab8505_fg_sysfs_psy_attrs
[] = {
2953 __ATTR(powercut_flagtime
, (S_IRUGO
| S_IWUSR
| S_IWGRP
),
2954 ab8505_powercut_flagtime_read
, ab8505_powercut_flagtime_write
),
2955 __ATTR(powercut_maxtime
, (S_IRUGO
| S_IWUSR
| S_IWGRP
),
2956 ab8505_powercut_maxtime_read
, ab8505_powercut_maxtime_write
),
2957 __ATTR(powercut_restart_max
, (S_IRUGO
| S_IWUSR
| S_IWGRP
),
2958 ab8505_powercut_restart_read
, ab8505_powercut_restart_write
),
2959 __ATTR(powercut_timer
, S_IRUGO
, ab8505_powercut_timer_read
, NULL
),
2960 __ATTR(powercut_restart_counter
, S_IRUGO
,
2961 ab8505_powercut_restart_counter_read
, NULL
),
2962 __ATTR(powercut_enable
, (S_IRUGO
| S_IWUSR
| S_IWGRP
),
2963 ab8505_powercut_read
, ab8505_powercut_write
),
2964 __ATTR(powercut_flag
, S_IRUGO
, ab8505_powercut_flag_read
, NULL
),
2965 __ATTR(powercut_debounce_time
, (S_IRUGO
| S_IWUSR
| S_IWGRP
),
2966 ab8505_powercut_debounce_read
, ab8505_powercut_debounce_write
),
2967 __ATTR(powercut_enable_status
, S_IRUGO
,
2968 ab8505_powercut_enable_status_read
, NULL
),
2971 static int ab8500_fg_sysfs_psy_create_attrs(struct device
*dev
)
2974 struct power_supply
*psy
= dev_get_drvdata(dev
);
2975 struct ab8500_fg
*di
;
2977 di
= to_ab8500_fg_device_info(psy
);
2979 if (((is_ab8505(di
->parent
) || is_ab9540(di
->parent
)) &&
2980 abx500_get_chip_id(dev
->parent
) >= AB8500_CUT2P0
)
2981 || is_ab8540(di
->parent
)) {
2982 for (i
= 0; i
< ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs
); i
++)
2983 if (device_create_file(dev
,
2984 &ab8505_fg_sysfs_psy_attrs
[i
]))
2985 goto sysfs_psy_create_attrs_failed_ab8505
;
2988 sysfs_psy_create_attrs_failed_ab8505
:
2989 dev_err(dev
, "Failed creating sysfs psy attrs for ab8505.\n");
2991 device_remove_file(dev
, &ab8505_fg_sysfs_psy_attrs
[i
]);
2996 static void ab8500_fg_sysfs_psy_remove_attrs(struct device
*dev
)
2999 struct power_supply
*psy
= dev_get_drvdata(dev
);
3000 struct ab8500_fg
*di
;
3002 di
= to_ab8500_fg_device_info(psy
);
3004 if (((is_ab8505(di
->parent
) || is_ab9540(di
->parent
)) &&
3005 abx500_get_chip_id(dev
->parent
) >= AB8500_CUT2P0
)
3006 || is_ab8540(di
->parent
)) {
3007 for (i
= 0; i
< ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs
); i
++)
3008 (void)device_remove_file(dev
, &ab8505_fg_sysfs_psy_attrs
[i
]);
3012 /* Exposure to the sysfs interface <<END>> */
3014 #if defined(CONFIG_PM)
3015 static int ab8500_fg_resume(struct platform_device
*pdev
)
3017 struct ab8500_fg
*di
= platform_get_drvdata(pdev
);
3020 * Change state if we're not charging. If we're charging we will wake
3023 if (!di
->flags
.charging
) {
3024 ab8500_fg_discharge_state_to(di
, AB8500_FG_DISCHARGE_WAKEUP
);
3025 queue_work(di
->fg_wq
, &di
->fg_work
);
3031 static int ab8500_fg_suspend(struct platform_device
*pdev
,
3034 struct ab8500_fg
*di
= platform_get_drvdata(pdev
);
3036 flush_delayed_work(&di
->fg_periodic_work
);
3037 flush_work(&di
->fg_work
);
3038 flush_work(&di
->fg_acc_cur_work
);
3039 flush_delayed_work(&di
->fg_reinit_work
);
3040 flush_delayed_work(&di
->fg_low_bat_work
);
3041 flush_delayed_work(&di
->fg_check_hw_failure_work
);
3044 * If the FG is enabled we will disable it before going to suspend
3045 * only if we're not charging
3047 if (di
->flags
.fg_enabled
&& !di
->flags
.charging
)
3048 ab8500_fg_coulomb_counter(di
, false);
3053 #define ab8500_fg_suspend NULL
3054 #define ab8500_fg_resume NULL
3057 static int ab8500_fg_remove(struct platform_device
*pdev
)
3060 struct ab8500_fg
*di
= platform_get_drvdata(pdev
);
3062 list_del(&di
->node
);
3064 /* Disable coulomb counter */
3065 ret
= ab8500_fg_coulomb_counter(di
, false);
3067 dev_err(di
->dev
, "failed to disable coulomb counter\n");
3069 destroy_workqueue(di
->fg_wq
);
3070 ab8500_fg_sysfs_exit(di
);
3072 flush_scheduled_work();
3073 ab8500_fg_sysfs_psy_remove_attrs(di
->fg_psy
.dev
);
3074 power_supply_unregister(&di
->fg_psy
);
3078 /* ab8500 fg driver interrupts and their respective isr */
3079 static struct ab8500_fg_interrupts ab8500_fg_irq
[] = {
3080 {"NCONV_ACCU", ab8500_fg_cc_convend_handler
},
3081 {"BATT_OVV", ab8500_fg_batt_ovv_handler
},
3082 {"LOW_BAT_F", ab8500_fg_lowbatf_handler
},
3083 {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler
},
3084 {"CCEOC", ab8500_fg_cc_data_end_handler
},
3087 static char *supply_interface
[] = {
3092 static int ab8500_fg_probe(struct platform_device
*pdev
)
3094 struct device_node
*np
= pdev
->dev
.of_node
;
3095 struct abx500_bm_data
*plat
= pdev
->dev
.platform_data
;
3096 struct ab8500_fg
*di
;
3100 di
= devm_kzalloc(&pdev
->dev
, sizeof(*di
), GFP_KERNEL
);
3102 dev_err(&pdev
->dev
, "%s no mem for ab8500_fg\n", __func__
);
3107 dev_err(&pdev
->dev
, "no battery management data supplied\n");
3113 ret
= ab8500_bm_of_probe(&pdev
->dev
, np
, di
->bm
);
3115 dev_err(&pdev
->dev
, "failed to get battery information\n");
3120 mutex_init(&di
->cc_lock
);
3122 /* get parent data */
3123 di
->dev
= &pdev
->dev
;
3124 di
->parent
= dev_get_drvdata(pdev
->dev
.parent
);
3125 di
->gpadc
= ab8500_gpadc_get("ab8500-gpadc.0");
3127 di
->fg_psy
.name
= "ab8500_fg";
3128 di
->fg_psy
.type
= POWER_SUPPLY_TYPE_BATTERY
;
3129 di
->fg_psy
.properties
= ab8500_fg_props
;
3130 di
->fg_psy
.num_properties
= ARRAY_SIZE(ab8500_fg_props
);
3131 di
->fg_psy
.get_property
= ab8500_fg_get_property
;
3132 di
->fg_psy
.supplied_to
= supply_interface
;
3133 di
->fg_psy
.num_supplicants
= ARRAY_SIZE(supply_interface
),
3134 di
->fg_psy
.external_power_changed
= ab8500_fg_external_power_changed
;
3136 di
->bat_cap
.max_mah_design
= MILLI_TO_MICRO
*
3137 di
->bm
->bat_type
[di
->bm
->batt_id
].charge_full_design
;
3139 di
->bat_cap
.max_mah
= di
->bat_cap
.max_mah_design
;
3141 di
->vbat_nom
= di
->bm
->bat_type
[di
->bm
->batt_id
].nominal_voltage
;
3143 di
->init_capacity
= true;
3145 ab8500_fg_charge_state_to(di
, AB8500_FG_CHARGE_INIT
);
3146 ab8500_fg_discharge_state_to(di
, AB8500_FG_DISCHARGE_INIT
);
3148 /* Create a work queue for running the FG algorithm */
3149 di
->fg_wq
= create_singlethread_workqueue("ab8500_fg_wq");
3150 if (di
->fg_wq
== NULL
) {
3151 dev_err(di
->dev
, "failed to create work queue\n");
3155 /* Init work for running the fg algorithm instantly */
3156 INIT_WORK(&di
->fg_work
, ab8500_fg_instant_work
);
3158 /* Init work for getting the battery accumulated current */
3159 INIT_WORK(&di
->fg_acc_cur_work
, ab8500_fg_acc_cur_work
);
3161 /* Init work for reinitialising the fg algorithm */
3162 INIT_DEFERRABLE_WORK(&di
->fg_reinit_work
,
3163 ab8500_fg_reinit_work
);
3165 /* Work delayed Queue to run the state machine */
3166 INIT_DEFERRABLE_WORK(&di
->fg_periodic_work
,
3167 ab8500_fg_periodic_work
);
3169 /* Work to check low battery condition */
3170 INIT_DEFERRABLE_WORK(&di
->fg_low_bat_work
,
3171 ab8500_fg_low_bat_work
);
3173 /* Init work for HW failure check */
3174 INIT_DEFERRABLE_WORK(&di
->fg_check_hw_failure_work
,
3175 ab8500_fg_check_hw_failure_work
);
3177 /* Reset battery low voltage flag */
3178 di
->flags
.low_bat
= false;
3180 /* Initialize low battery counter */
3181 di
->low_bat_cnt
= 10;
3183 /* Initialize OVV, and other registers */
3184 ret
= ab8500_fg_init_hw_registers(di
);
3186 dev_err(di
->dev
, "failed to initialize registers\n");
3187 goto free_inst_curr_wq
;
3190 /* Consider battery unknown until we're informed otherwise */
3191 di
->flags
.batt_unknown
= true;
3192 di
->flags
.batt_id_received
= false;
3194 /* Register FG power supply class */
3195 ret
= power_supply_register(di
->dev
, &di
->fg_psy
);
3197 dev_err(di
->dev
, "failed to register FG psy\n");
3198 goto free_inst_curr_wq
;
3201 di
->fg_samples
= SEC_TO_SAMPLE(di
->bm
->fg_params
->init_timer
);
3202 ab8500_fg_coulomb_counter(di
, true);
3205 * Initialize completion used to notify completion and start
3208 init_completion(&di
->ab8500_fg_started
);
3209 init_completion(&di
->ab8500_fg_complete
);
3211 /* Register interrupts */
3212 for (i
= 0; i
< ARRAY_SIZE(ab8500_fg_irq
); i
++) {
3213 irq
= platform_get_irq_byname(pdev
, ab8500_fg_irq
[i
].name
);
3214 ret
= request_threaded_irq(irq
, NULL
, ab8500_fg_irq
[i
].isr
,
3215 IRQF_SHARED
| IRQF_NO_SUSPEND
,
3216 ab8500_fg_irq
[i
].name
, di
);
3219 dev_err(di
->dev
, "failed to request %s IRQ %d: %d\n"
3220 , ab8500_fg_irq
[i
].name
, irq
, ret
);
3223 dev_dbg(di
->dev
, "Requested %s IRQ %d: %d\n",
3224 ab8500_fg_irq
[i
].name
, irq
, ret
);
3226 di
->irq
= platform_get_irq_byname(pdev
, "CCEOC");
3227 disable_irq(di
->irq
);
3228 di
->nbr_cceoc_irq_cnt
= 0;
3230 platform_set_drvdata(pdev
, di
);
3232 ret
= ab8500_fg_sysfs_init(di
);
3234 dev_err(di
->dev
, "failed to create sysfs entry\n");
3238 ret
= ab8500_fg_sysfs_psy_create_attrs(di
->fg_psy
.dev
);
3240 dev_err(di
->dev
, "failed to create FG psy\n");
3241 ab8500_fg_sysfs_exit(di
);
3245 /* Calibrate the fg first time */
3246 di
->flags
.calibrate
= true;
3247 di
->calib_state
= AB8500_FG_CALIB_INIT
;
3249 /* Use room temp as default value until we get an update from driver. */
3252 /* Run the FG algorithm */
3253 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
3255 list_add_tail(&di
->node
, &ab8500_fg_list
);
3260 power_supply_unregister(&di
->fg_psy
);
3262 /* We also have to free all successfully registered irqs */
3263 for (i
= i
- 1; i
>= 0; i
--) {
3264 irq
= platform_get_irq_byname(pdev
, ab8500_fg_irq
[i
].name
);
3268 destroy_workqueue(di
->fg_wq
);
3272 static const struct of_device_id ab8500_fg_match
[] = {
3273 { .compatible
= "stericsson,ab8500-fg", },
3277 static struct platform_driver ab8500_fg_driver
= {
3278 .probe
= ab8500_fg_probe
,
3279 .remove
= ab8500_fg_remove
,
3280 .suspend
= ab8500_fg_suspend
,
3281 .resume
= ab8500_fg_resume
,
3283 .name
= "ab8500-fg",
3284 .owner
= THIS_MODULE
,
3285 .of_match_table
= ab8500_fg_match
,
3289 static int __init
ab8500_fg_init(void)
3291 return platform_driver_register(&ab8500_fg_driver
);
3294 static void __exit
ab8500_fg_exit(void)
3296 platform_driver_unregister(&ab8500_fg_driver
);
3299 subsys_initcall_sync(ab8500_fg_init
);
3300 module_exit(ab8500_fg_exit
);
3302 MODULE_LICENSE("GPL v2");
3303 MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
3304 MODULE_ALIAS("platform:ab8500-fg");
3305 MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");