spi: sprd: adi: Change hwlock to be optional
[linux/fpc-iii.git] / net / mac80211 / sta_info.c
blob95eb8220e2e47def69ad381539330ec1d47bd599
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2002-2005, Instant802 Networks, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2013-2014 Intel Mobile Communications GmbH
6 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH
7 * Copyright (C) 2018-2019 Intel Corporation
8 */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/etherdevice.h>
13 #include <linux/netdevice.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/skbuff.h>
17 #include <linux/if_arp.h>
18 #include <linux/timer.h>
19 #include <linux/rtnetlink.h>
21 #include <net/codel.h>
22 #include <net/mac80211.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "rate.h"
26 #include "sta_info.h"
27 #include "debugfs_sta.h"
28 #include "mesh.h"
29 #include "wme.h"
31 /**
32 * DOC: STA information lifetime rules
34 * STA info structures (&struct sta_info) are managed in a hash table
35 * for faster lookup and a list for iteration. They are managed using
36 * RCU, i.e. access to the list and hash table is protected by RCU.
38 * Upon allocating a STA info structure with sta_info_alloc(), the caller
39 * owns that structure. It must then insert it into the hash table using
40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
41 * case (which acquires an rcu read section but must not be called from
42 * within one) will the pointer still be valid after the call. Note that
43 * the caller may not do much with the STA info before inserting it, in
44 * particular, it may not start any mesh peer link management or add
45 * encryption keys.
47 * When the insertion fails (sta_info_insert()) returns non-zero), the
48 * structure will have been freed by sta_info_insert()!
50 * Station entries are added by mac80211 when you establish a link with a
51 * peer. This means different things for the different type of interfaces
52 * we support. For a regular station this mean we add the AP sta when we
53 * receive an association response from the AP. For IBSS this occurs when
54 * get to know about a peer on the same IBSS. For WDS we add the sta for
55 * the peer immediately upon device open. When using AP mode we add stations
56 * for each respective station upon request from userspace through nl80211.
58 * In order to remove a STA info structure, various sta_info_destroy_*()
59 * calls are available.
61 * There is no concept of ownership on a STA entry, each structure is
62 * owned by the global hash table/list until it is removed. All users of
63 * the structure need to be RCU protected so that the structure won't be
64 * freed before they are done using it.
67 static const struct rhashtable_params sta_rht_params = {
68 .nelem_hint = 3, /* start small */
69 .automatic_shrinking = true,
70 .head_offset = offsetof(struct sta_info, hash_node),
71 .key_offset = offsetof(struct sta_info, addr),
72 .key_len = ETH_ALEN,
73 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
76 /* Caller must hold local->sta_mtx */
77 static int sta_info_hash_del(struct ieee80211_local *local,
78 struct sta_info *sta)
80 return rhltable_remove(&local->sta_hash, &sta->hash_node,
81 sta_rht_params);
84 static void __cleanup_single_sta(struct sta_info *sta)
86 int ac, i;
87 struct tid_ampdu_tx *tid_tx;
88 struct ieee80211_sub_if_data *sdata = sta->sdata;
89 struct ieee80211_local *local = sdata->local;
90 struct ps_data *ps;
92 if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
93 test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
94 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
95 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
96 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
97 ps = &sdata->bss->ps;
98 else if (ieee80211_vif_is_mesh(&sdata->vif))
99 ps = &sdata->u.mesh.ps;
100 else
101 return;
103 clear_sta_flag(sta, WLAN_STA_PS_STA);
104 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
105 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
107 atomic_dec(&ps->num_sta_ps);
110 if (sta->sta.txq[0]) {
111 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
112 struct txq_info *txqi;
114 if (!sta->sta.txq[i])
115 continue;
117 txqi = to_txq_info(sta->sta.txq[i]);
119 ieee80211_txq_purge(local, txqi);
123 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
124 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
125 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
126 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
129 if (ieee80211_vif_is_mesh(&sdata->vif))
130 mesh_sta_cleanup(sta);
132 cancel_work_sync(&sta->drv_deliver_wk);
135 * Destroy aggregation state here. It would be nice to wait for the
136 * driver to finish aggregation stop and then clean up, but for now
137 * drivers have to handle aggregation stop being requested, followed
138 * directly by station destruction.
140 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
141 kfree(sta->ampdu_mlme.tid_start_tx[i]);
142 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
143 if (!tid_tx)
144 continue;
145 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
146 kfree(tid_tx);
150 static void cleanup_single_sta(struct sta_info *sta)
152 struct ieee80211_sub_if_data *sdata = sta->sdata;
153 struct ieee80211_local *local = sdata->local;
155 __cleanup_single_sta(sta);
156 sta_info_free(local, sta);
159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local,
160 const u8 *addr)
162 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params);
165 /* protected by RCU */
166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
167 const u8 *addr)
169 struct ieee80211_local *local = sdata->local;
170 struct rhlist_head *tmp;
171 struct sta_info *sta;
173 rcu_read_lock();
174 for_each_sta_info(local, addr, sta, tmp) {
175 if (sta->sdata == sdata) {
176 rcu_read_unlock();
177 /* this is safe as the caller must already hold
178 * another rcu read section or the mutex
180 return sta;
183 rcu_read_unlock();
184 return NULL;
188 * Get sta info either from the specified interface
189 * or from one of its vlans
191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
192 const u8 *addr)
194 struct ieee80211_local *local = sdata->local;
195 struct rhlist_head *tmp;
196 struct sta_info *sta;
198 rcu_read_lock();
199 for_each_sta_info(local, addr, sta, tmp) {
200 if (sta->sdata == sdata ||
201 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
202 rcu_read_unlock();
203 /* this is safe as the caller must already hold
204 * another rcu read section or the mutex
206 return sta;
209 rcu_read_unlock();
210 return NULL;
213 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
214 int idx)
216 struct ieee80211_local *local = sdata->local;
217 struct sta_info *sta;
218 int i = 0;
220 list_for_each_entry_rcu(sta, &local->sta_list, list) {
221 if (sdata != sta->sdata)
222 continue;
223 if (i < idx) {
224 ++i;
225 continue;
227 return sta;
230 return NULL;
234 * sta_info_free - free STA
236 * @local: pointer to the global information
237 * @sta: STA info to free
239 * This function must undo everything done by sta_info_alloc()
240 * that may happen before sta_info_insert(). It may only be
241 * called when sta_info_insert() has not been attempted (and
242 * if that fails, the station is freed anyway.)
244 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
246 if (sta->rate_ctrl)
247 rate_control_free_sta(sta);
249 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
251 if (sta->sta.txq[0])
252 kfree(to_txq_info(sta->sta.txq[0]));
253 kfree(rcu_dereference_raw(sta->sta.rates));
254 #ifdef CONFIG_MAC80211_MESH
255 kfree(sta->mesh);
256 #endif
257 free_percpu(sta->pcpu_rx_stats);
258 kfree(sta);
261 /* Caller must hold local->sta_mtx */
262 static int sta_info_hash_add(struct ieee80211_local *local,
263 struct sta_info *sta)
265 return rhltable_insert(&local->sta_hash, &sta->hash_node,
266 sta_rht_params);
269 static void sta_deliver_ps_frames(struct work_struct *wk)
271 struct sta_info *sta;
273 sta = container_of(wk, struct sta_info, drv_deliver_wk);
275 if (sta->dead)
276 return;
278 local_bh_disable();
279 if (!test_sta_flag(sta, WLAN_STA_PS_STA))
280 ieee80211_sta_ps_deliver_wakeup(sta);
281 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
282 ieee80211_sta_ps_deliver_poll_response(sta);
283 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
284 ieee80211_sta_ps_deliver_uapsd(sta);
285 local_bh_enable();
288 static int sta_prepare_rate_control(struct ieee80211_local *local,
289 struct sta_info *sta, gfp_t gfp)
291 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
292 return 0;
294 sta->rate_ctrl = local->rate_ctrl;
295 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
296 sta, gfp);
297 if (!sta->rate_ctrl_priv)
298 return -ENOMEM;
300 return 0;
303 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
304 const u8 *addr, gfp_t gfp)
306 struct ieee80211_local *local = sdata->local;
307 struct ieee80211_hw *hw = &local->hw;
308 struct sta_info *sta;
309 int i;
311 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
312 if (!sta)
313 return NULL;
315 if (ieee80211_hw_check(hw, USES_RSS)) {
316 sta->pcpu_rx_stats =
317 alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp);
318 if (!sta->pcpu_rx_stats)
319 goto free;
322 spin_lock_init(&sta->lock);
323 spin_lock_init(&sta->ps_lock);
324 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
325 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
326 mutex_init(&sta->ampdu_mlme.mtx);
327 #ifdef CONFIG_MAC80211_MESH
328 if (ieee80211_vif_is_mesh(&sdata->vif)) {
329 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
330 if (!sta->mesh)
331 goto free;
332 sta->mesh->plink_sta = sta;
333 spin_lock_init(&sta->mesh->plink_lock);
334 if (ieee80211_vif_is_mesh(&sdata->vif) &&
335 !sdata->u.mesh.user_mpm)
336 timer_setup(&sta->mesh->plink_timer, mesh_plink_timer,
338 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
340 #endif
342 memcpy(sta->addr, addr, ETH_ALEN);
343 memcpy(sta->sta.addr, addr, ETH_ALEN);
344 sta->sta.max_rx_aggregation_subframes =
345 local->hw.max_rx_aggregation_subframes;
347 /* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only.
348 * The Tx path starts to use a key as soon as the key slot ptk_idx
349 * references to is not NULL. To not use the initial Rx-only key
350 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid
351 * which always will refer to a NULL key.
353 BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX);
354 sta->ptk_idx = INVALID_PTK_KEYIDX;
356 sta->local = local;
357 sta->sdata = sdata;
358 sta->rx_stats.last_rx = jiffies;
360 u64_stats_init(&sta->rx_stats.syncp);
362 sta->sta_state = IEEE80211_STA_NONE;
364 /* Mark TID as unreserved */
365 sta->reserved_tid = IEEE80211_TID_UNRESERVED;
367 sta->last_connected = ktime_get_seconds();
368 ewma_signal_init(&sta->rx_stats_avg.signal);
369 ewma_avg_signal_init(&sta->status_stats.avg_ack_signal);
370 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++)
371 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]);
373 if (local->ops->wake_tx_queue) {
374 void *txq_data;
375 int size = sizeof(struct txq_info) +
376 ALIGN(hw->txq_data_size, sizeof(void *));
378 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
379 if (!txq_data)
380 goto free;
382 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
383 struct txq_info *txq = txq_data + i * size;
385 /* might not do anything for the bufferable MMPDU TXQ */
386 ieee80211_txq_init(sdata, sta, txq, i);
390 if (sta_prepare_rate_control(local, sta, gfp))
391 goto free_txq;
393 sta->airtime_weight = IEEE80211_DEFAULT_AIRTIME_WEIGHT;
395 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
396 skb_queue_head_init(&sta->ps_tx_buf[i]);
397 skb_queue_head_init(&sta->tx_filtered[i]);
398 sta->airtime[i].deficit = sta->airtime_weight;
401 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
402 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
404 for (i = 0; i < NUM_NL80211_BANDS; i++) {
405 u32 mandatory = 0;
406 int r;
408 if (!hw->wiphy->bands[i])
409 continue;
411 switch (i) {
412 case NL80211_BAND_2GHZ:
414 * We use both here, even if we cannot really know for
415 * sure the station will support both, but the only use
416 * for this is when we don't know anything yet and send
417 * management frames, and then we'll pick the lowest
418 * possible rate anyway.
419 * If we don't include _G here, we cannot find a rate
420 * in P2P, and thus trigger the WARN_ONCE() in rate.c
422 mandatory = IEEE80211_RATE_MANDATORY_B |
423 IEEE80211_RATE_MANDATORY_G;
424 break;
425 case NL80211_BAND_5GHZ:
426 mandatory = IEEE80211_RATE_MANDATORY_A;
427 break;
428 case NL80211_BAND_60GHZ:
429 WARN_ON(1);
430 mandatory = 0;
431 break;
434 for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) {
435 struct ieee80211_rate *rate;
437 rate = &hw->wiphy->bands[i]->bitrates[r];
439 if (!(rate->flags & mandatory))
440 continue;
441 sta->sta.supp_rates[i] |= BIT(r);
445 sta->sta.smps_mode = IEEE80211_SMPS_OFF;
446 if (sdata->vif.type == NL80211_IFTYPE_AP ||
447 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
448 struct ieee80211_supported_band *sband;
449 u8 smps;
451 sband = ieee80211_get_sband(sdata);
452 if (!sband)
453 goto free_txq;
455 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
456 IEEE80211_HT_CAP_SM_PS_SHIFT;
458 * Assume that hostapd advertises our caps in the beacon and
459 * this is the known_smps_mode for a station that just assciated
461 switch (smps) {
462 case WLAN_HT_SMPS_CONTROL_DISABLED:
463 sta->known_smps_mode = IEEE80211_SMPS_OFF;
464 break;
465 case WLAN_HT_SMPS_CONTROL_STATIC:
466 sta->known_smps_mode = IEEE80211_SMPS_STATIC;
467 break;
468 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
469 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
470 break;
471 default:
472 WARN_ON(1);
476 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
478 sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD;
479 sta->cparams.target = MS2TIME(20);
480 sta->cparams.interval = MS2TIME(100);
481 sta->cparams.ecn = true;
483 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
485 return sta;
487 free_txq:
488 if (sta->sta.txq[0])
489 kfree(to_txq_info(sta->sta.txq[0]));
490 free:
491 free_percpu(sta->pcpu_rx_stats);
492 #ifdef CONFIG_MAC80211_MESH
493 kfree(sta->mesh);
494 #endif
495 kfree(sta);
496 return NULL;
499 static int sta_info_insert_check(struct sta_info *sta)
501 struct ieee80211_sub_if_data *sdata = sta->sdata;
504 * Can't be a WARN_ON because it can be triggered through a race:
505 * something inserts a STA (on one CPU) without holding the RTNL
506 * and another CPU turns off the net device.
508 if (unlikely(!ieee80211_sdata_running(sdata)))
509 return -ENETDOWN;
511 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
512 is_multicast_ether_addr(sta->sta.addr)))
513 return -EINVAL;
515 /* The RCU read lock is required by rhashtable due to
516 * asynchronous resize/rehash. We also require the mutex
517 * for correctness.
519 rcu_read_lock();
520 lockdep_assert_held(&sdata->local->sta_mtx);
521 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
522 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
523 rcu_read_unlock();
524 return -ENOTUNIQ;
526 rcu_read_unlock();
528 return 0;
531 static int sta_info_insert_drv_state(struct ieee80211_local *local,
532 struct ieee80211_sub_if_data *sdata,
533 struct sta_info *sta)
535 enum ieee80211_sta_state state;
536 int err = 0;
538 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
539 err = drv_sta_state(local, sdata, sta, state, state + 1);
540 if (err)
541 break;
544 if (!err) {
546 * Drivers using legacy sta_add/sta_remove callbacks only
547 * get uploaded set to true after sta_add is called.
549 if (!local->ops->sta_add)
550 sta->uploaded = true;
551 return 0;
554 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
555 sdata_info(sdata,
556 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
557 sta->sta.addr, state + 1, err);
558 err = 0;
561 /* unwind on error */
562 for (; state > IEEE80211_STA_NOTEXIST; state--)
563 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
565 return err;
568 static void
569 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
571 struct ieee80211_local *local = sdata->local;
572 bool allow_p2p_go_ps = sdata->vif.p2p;
573 struct sta_info *sta;
575 rcu_read_lock();
576 list_for_each_entry_rcu(sta, &local->sta_list, list) {
577 if (sdata != sta->sdata ||
578 !test_sta_flag(sta, WLAN_STA_ASSOC))
579 continue;
580 if (!sta->sta.support_p2p_ps) {
581 allow_p2p_go_ps = false;
582 break;
585 rcu_read_unlock();
587 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
588 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
589 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS);
594 * should be called with sta_mtx locked
595 * this function replaces the mutex lock
596 * with a RCU lock
598 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
600 struct ieee80211_local *local = sta->local;
601 struct ieee80211_sub_if_data *sdata = sta->sdata;
602 struct station_info *sinfo = NULL;
603 int err = 0;
605 lockdep_assert_held(&local->sta_mtx);
607 /* check if STA exists already */
608 if (sta_info_get_bss(sdata, sta->sta.addr)) {
609 err = -EEXIST;
610 goto out_err;
613 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
614 if (!sinfo) {
615 err = -ENOMEM;
616 goto out_err;
619 local->num_sta++;
620 local->sta_generation++;
621 smp_mb();
623 /* simplify things and don't accept BA sessions yet */
624 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
626 /* make the station visible */
627 err = sta_info_hash_add(local, sta);
628 if (err)
629 goto out_drop_sta;
631 list_add_tail_rcu(&sta->list, &local->sta_list);
633 /* notify driver */
634 err = sta_info_insert_drv_state(local, sdata, sta);
635 if (err)
636 goto out_remove;
638 set_sta_flag(sta, WLAN_STA_INSERTED);
640 if (sta->sta_state >= IEEE80211_STA_ASSOC) {
641 ieee80211_recalc_min_chandef(sta->sdata);
642 if (!sta->sta.support_p2p_ps)
643 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
646 /* accept BA sessions now */
647 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
649 ieee80211_sta_debugfs_add(sta);
650 rate_control_add_sta_debugfs(sta);
652 sinfo->generation = local->sta_generation;
653 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
654 kfree(sinfo);
656 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
658 /* move reference to rcu-protected */
659 rcu_read_lock();
660 mutex_unlock(&local->sta_mtx);
662 if (ieee80211_vif_is_mesh(&sdata->vif))
663 mesh_accept_plinks_update(sdata);
665 return 0;
666 out_remove:
667 sta_info_hash_del(local, sta);
668 list_del_rcu(&sta->list);
669 out_drop_sta:
670 local->num_sta--;
671 synchronize_net();
672 __cleanup_single_sta(sta);
673 out_err:
674 mutex_unlock(&local->sta_mtx);
675 kfree(sinfo);
676 rcu_read_lock();
677 return err;
680 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
682 struct ieee80211_local *local = sta->local;
683 int err;
685 might_sleep();
687 mutex_lock(&local->sta_mtx);
689 err = sta_info_insert_check(sta);
690 if (err) {
691 mutex_unlock(&local->sta_mtx);
692 rcu_read_lock();
693 goto out_free;
696 err = sta_info_insert_finish(sta);
697 if (err)
698 goto out_free;
700 return 0;
701 out_free:
702 sta_info_free(local, sta);
703 return err;
706 int sta_info_insert(struct sta_info *sta)
708 int err = sta_info_insert_rcu(sta);
710 rcu_read_unlock();
712 return err;
715 static inline void __bss_tim_set(u8 *tim, u16 id)
718 * This format has been mandated by the IEEE specifications,
719 * so this line may not be changed to use the __set_bit() format.
721 tim[id / 8] |= (1 << (id % 8));
724 static inline void __bss_tim_clear(u8 *tim, u16 id)
727 * This format has been mandated by the IEEE specifications,
728 * so this line may not be changed to use the __clear_bit() format.
730 tim[id / 8] &= ~(1 << (id % 8));
733 static inline bool __bss_tim_get(u8 *tim, u16 id)
736 * This format has been mandated by the IEEE specifications,
737 * so this line may not be changed to use the test_bit() format.
739 return tim[id / 8] & (1 << (id % 8));
742 static unsigned long ieee80211_tids_for_ac(int ac)
744 /* If we ever support TIDs > 7, this obviously needs to be adjusted */
745 switch (ac) {
746 case IEEE80211_AC_VO:
747 return BIT(6) | BIT(7);
748 case IEEE80211_AC_VI:
749 return BIT(4) | BIT(5);
750 case IEEE80211_AC_BE:
751 return BIT(0) | BIT(3);
752 case IEEE80211_AC_BK:
753 return BIT(1) | BIT(2);
754 default:
755 WARN_ON(1);
756 return 0;
760 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
762 struct ieee80211_local *local = sta->local;
763 struct ps_data *ps;
764 bool indicate_tim = false;
765 u8 ignore_for_tim = sta->sta.uapsd_queues;
766 int ac;
767 u16 id = sta->sta.aid;
769 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
770 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
771 if (WARN_ON_ONCE(!sta->sdata->bss))
772 return;
774 ps = &sta->sdata->bss->ps;
775 #ifdef CONFIG_MAC80211_MESH
776 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
777 ps = &sta->sdata->u.mesh.ps;
778 #endif
779 } else {
780 return;
783 /* No need to do anything if the driver does all */
784 if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim)
785 return;
787 if (sta->dead)
788 goto done;
791 * If all ACs are delivery-enabled then we should build
792 * the TIM bit for all ACs anyway; if only some are then
793 * we ignore those and build the TIM bit using only the
794 * non-enabled ones.
796 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
797 ignore_for_tim = 0;
799 if (ignore_pending)
800 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
802 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
803 unsigned long tids;
805 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac])
806 continue;
808 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
809 !skb_queue_empty(&sta->ps_tx_buf[ac]);
810 if (indicate_tim)
811 break;
813 tids = ieee80211_tids_for_ac(ac);
815 indicate_tim |=
816 sta->driver_buffered_tids & tids;
817 indicate_tim |=
818 sta->txq_buffered_tids & tids;
821 done:
822 spin_lock_bh(&local->tim_lock);
824 if (indicate_tim == __bss_tim_get(ps->tim, id))
825 goto out_unlock;
827 if (indicate_tim)
828 __bss_tim_set(ps->tim, id);
829 else
830 __bss_tim_clear(ps->tim, id);
832 if (local->ops->set_tim && !WARN_ON(sta->dead)) {
833 local->tim_in_locked_section = true;
834 drv_set_tim(local, &sta->sta, indicate_tim);
835 local->tim_in_locked_section = false;
838 out_unlock:
839 spin_unlock_bh(&local->tim_lock);
842 void sta_info_recalc_tim(struct sta_info *sta)
844 __sta_info_recalc_tim(sta, false);
847 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
849 struct ieee80211_tx_info *info;
850 int timeout;
852 if (!skb)
853 return false;
855 info = IEEE80211_SKB_CB(skb);
857 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
858 timeout = (sta->listen_interval *
859 sta->sdata->vif.bss_conf.beacon_int *
860 32 / 15625) * HZ;
861 if (timeout < STA_TX_BUFFER_EXPIRE)
862 timeout = STA_TX_BUFFER_EXPIRE;
863 return time_after(jiffies, info->control.jiffies + timeout);
867 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
868 struct sta_info *sta, int ac)
870 unsigned long flags;
871 struct sk_buff *skb;
874 * First check for frames that should expire on the filtered
875 * queue. Frames here were rejected by the driver and are on
876 * a separate queue to avoid reordering with normal PS-buffered
877 * frames. They also aren't accounted for right now in the
878 * total_ps_buffered counter.
880 for (;;) {
881 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
882 skb = skb_peek(&sta->tx_filtered[ac]);
883 if (sta_info_buffer_expired(sta, skb))
884 skb = __skb_dequeue(&sta->tx_filtered[ac]);
885 else
886 skb = NULL;
887 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
890 * Frames are queued in order, so if this one
891 * hasn't expired yet we can stop testing. If
892 * we actually reached the end of the queue we
893 * also need to stop, of course.
895 if (!skb)
896 break;
897 ieee80211_free_txskb(&local->hw, skb);
901 * Now also check the normal PS-buffered queue, this will
902 * only find something if the filtered queue was emptied
903 * since the filtered frames are all before the normal PS
904 * buffered frames.
906 for (;;) {
907 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
908 skb = skb_peek(&sta->ps_tx_buf[ac]);
909 if (sta_info_buffer_expired(sta, skb))
910 skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
911 else
912 skb = NULL;
913 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
916 * frames are queued in order, so if this one
917 * hasn't expired yet (or we reached the end of
918 * the queue) we can stop testing
920 if (!skb)
921 break;
923 local->total_ps_buffered--;
924 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
925 sta->sta.addr);
926 ieee80211_free_txskb(&local->hw, skb);
930 * Finally, recalculate the TIM bit for this station -- it might
931 * now be clear because the station was too slow to retrieve its
932 * frames.
934 sta_info_recalc_tim(sta);
937 * Return whether there are any frames still buffered, this is
938 * used to check whether the cleanup timer still needs to run,
939 * if there are no frames we don't need to rearm the timer.
941 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
942 skb_queue_empty(&sta->tx_filtered[ac]));
945 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
946 struct sta_info *sta)
948 bool have_buffered = false;
949 int ac;
951 /* This is only necessary for stations on BSS/MBSS interfaces */
952 if (!sta->sdata->bss &&
953 !ieee80211_vif_is_mesh(&sta->sdata->vif))
954 return false;
956 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
957 have_buffered |=
958 sta_info_cleanup_expire_buffered_ac(local, sta, ac);
960 return have_buffered;
963 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
965 struct ieee80211_local *local;
966 struct ieee80211_sub_if_data *sdata;
967 int ret;
969 might_sleep();
971 if (!sta)
972 return -ENOENT;
974 local = sta->local;
975 sdata = sta->sdata;
977 lockdep_assert_held(&local->sta_mtx);
980 * Before removing the station from the driver and
981 * rate control, it might still start new aggregation
982 * sessions -- block that to make sure the tear-down
983 * will be sufficient.
985 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
986 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
989 * Before removing the station from the driver there might be pending
990 * rx frames on RSS queues sent prior to the disassociation - wait for
991 * all such frames to be processed.
993 drv_sync_rx_queues(local, sta);
995 ret = sta_info_hash_del(local, sta);
996 if (WARN_ON(ret))
997 return ret;
1000 * for TDLS peers, make sure to return to the base channel before
1001 * removal.
1003 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
1004 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
1005 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
1008 list_del_rcu(&sta->list);
1009 sta->removed = true;
1011 drv_sta_pre_rcu_remove(local, sta->sdata, sta);
1013 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1014 rcu_access_pointer(sdata->u.vlan.sta) == sta)
1015 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
1017 return 0;
1020 static void __sta_info_destroy_part2(struct sta_info *sta)
1022 struct ieee80211_local *local = sta->local;
1023 struct ieee80211_sub_if_data *sdata = sta->sdata;
1024 struct station_info *sinfo;
1025 int ret;
1028 * NOTE: This assumes at least synchronize_net() was done
1029 * after _part1 and before _part2!
1032 might_sleep();
1033 lockdep_assert_held(&local->sta_mtx);
1035 /* now keys can no longer be reached */
1036 ieee80211_free_sta_keys(local, sta);
1038 /* disable TIM bit - last chance to tell driver */
1039 __sta_info_recalc_tim(sta, true);
1041 sta->dead = true;
1043 local->num_sta--;
1044 local->sta_generation++;
1046 while (sta->sta_state > IEEE80211_STA_NONE) {
1047 ret = sta_info_move_state(sta, sta->sta_state - 1);
1048 if (ret) {
1049 WARN_ON_ONCE(1);
1050 break;
1054 if (sta->uploaded) {
1055 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
1056 IEEE80211_STA_NOTEXIST);
1057 WARN_ON_ONCE(ret != 0);
1060 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
1062 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
1063 if (sinfo)
1064 sta_set_sinfo(sta, sinfo, true);
1065 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
1066 kfree(sinfo);
1068 rate_control_remove_sta_debugfs(sta);
1069 ieee80211_sta_debugfs_remove(sta);
1071 cleanup_single_sta(sta);
1074 int __must_check __sta_info_destroy(struct sta_info *sta)
1076 int err = __sta_info_destroy_part1(sta);
1078 if (err)
1079 return err;
1081 synchronize_net();
1083 __sta_info_destroy_part2(sta);
1085 return 0;
1088 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
1090 struct sta_info *sta;
1091 int ret;
1093 mutex_lock(&sdata->local->sta_mtx);
1094 sta = sta_info_get(sdata, addr);
1095 ret = __sta_info_destroy(sta);
1096 mutex_unlock(&sdata->local->sta_mtx);
1098 return ret;
1101 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1102 const u8 *addr)
1104 struct sta_info *sta;
1105 int ret;
1107 mutex_lock(&sdata->local->sta_mtx);
1108 sta = sta_info_get_bss(sdata, addr);
1109 ret = __sta_info_destroy(sta);
1110 mutex_unlock(&sdata->local->sta_mtx);
1112 return ret;
1115 static void sta_info_cleanup(struct timer_list *t)
1117 struct ieee80211_local *local = from_timer(local, t, sta_cleanup);
1118 struct sta_info *sta;
1119 bool timer_needed = false;
1121 rcu_read_lock();
1122 list_for_each_entry_rcu(sta, &local->sta_list, list)
1123 if (sta_info_cleanup_expire_buffered(local, sta))
1124 timer_needed = true;
1125 rcu_read_unlock();
1127 if (local->quiescing)
1128 return;
1130 if (!timer_needed)
1131 return;
1133 mod_timer(&local->sta_cleanup,
1134 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1137 int sta_info_init(struct ieee80211_local *local)
1139 int err;
1141 err = rhltable_init(&local->sta_hash, &sta_rht_params);
1142 if (err)
1143 return err;
1145 spin_lock_init(&local->tim_lock);
1146 mutex_init(&local->sta_mtx);
1147 INIT_LIST_HEAD(&local->sta_list);
1149 timer_setup(&local->sta_cleanup, sta_info_cleanup, 0);
1150 return 0;
1153 void sta_info_stop(struct ieee80211_local *local)
1155 del_timer_sync(&local->sta_cleanup);
1156 rhltable_destroy(&local->sta_hash);
1160 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1162 struct ieee80211_local *local = sdata->local;
1163 struct sta_info *sta, *tmp;
1164 LIST_HEAD(free_list);
1165 int ret = 0;
1167 might_sleep();
1169 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1170 WARN_ON(vlans && !sdata->bss);
1172 mutex_lock(&local->sta_mtx);
1173 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1174 if (sdata == sta->sdata ||
1175 (vlans && sdata->bss == sta->sdata->bss)) {
1176 if (!WARN_ON(__sta_info_destroy_part1(sta)))
1177 list_add(&sta->free_list, &free_list);
1178 ret++;
1182 if (!list_empty(&free_list)) {
1183 synchronize_net();
1184 list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1185 __sta_info_destroy_part2(sta);
1187 mutex_unlock(&local->sta_mtx);
1189 return ret;
1192 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1193 unsigned long exp_time)
1195 struct ieee80211_local *local = sdata->local;
1196 struct sta_info *sta, *tmp;
1198 mutex_lock(&local->sta_mtx);
1200 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1201 unsigned long last_active = ieee80211_sta_last_active(sta);
1203 if (sdata != sta->sdata)
1204 continue;
1206 if (time_is_before_jiffies(last_active + exp_time)) {
1207 sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1208 sta->sta.addr);
1210 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1211 test_sta_flag(sta, WLAN_STA_PS_STA))
1212 atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1214 WARN_ON(__sta_info_destroy(sta));
1218 mutex_unlock(&local->sta_mtx);
1221 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1222 const u8 *addr,
1223 const u8 *localaddr)
1225 struct ieee80211_local *local = hw_to_local(hw);
1226 struct rhlist_head *tmp;
1227 struct sta_info *sta;
1230 * Just return a random station if localaddr is NULL
1231 * ... first in list.
1233 for_each_sta_info(local, addr, sta, tmp) {
1234 if (localaddr &&
1235 !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1236 continue;
1237 if (!sta->uploaded)
1238 return NULL;
1239 return &sta->sta;
1242 return NULL;
1244 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1246 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1247 const u8 *addr)
1249 struct sta_info *sta;
1251 if (!vif)
1252 return NULL;
1254 sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1255 if (!sta)
1256 return NULL;
1258 if (!sta->uploaded)
1259 return NULL;
1261 return &sta->sta;
1263 EXPORT_SYMBOL(ieee80211_find_sta);
1265 /* powersave support code */
1266 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1268 struct ieee80211_sub_if_data *sdata = sta->sdata;
1269 struct ieee80211_local *local = sdata->local;
1270 struct sk_buff_head pending;
1271 int filtered = 0, buffered = 0, ac, i;
1272 unsigned long flags;
1273 struct ps_data *ps;
1275 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1276 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1277 u.ap);
1279 if (sdata->vif.type == NL80211_IFTYPE_AP)
1280 ps = &sdata->bss->ps;
1281 else if (ieee80211_vif_is_mesh(&sdata->vif))
1282 ps = &sdata->u.mesh.ps;
1283 else
1284 return;
1286 clear_sta_flag(sta, WLAN_STA_SP);
1288 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1289 sta->driver_buffered_tids = 0;
1290 sta->txq_buffered_tids = 0;
1292 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1293 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1295 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1296 if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i]))
1297 continue;
1299 schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i]));
1302 skb_queue_head_init(&pending);
1304 /* sync with ieee80211_tx_h_unicast_ps_buf */
1305 spin_lock(&sta->ps_lock);
1306 /* Send all buffered frames to the station */
1307 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1308 int count = skb_queue_len(&pending), tmp;
1310 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1311 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1312 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1313 tmp = skb_queue_len(&pending);
1314 filtered += tmp - count;
1315 count = tmp;
1317 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1318 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1319 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1320 tmp = skb_queue_len(&pending);
1321 buffered += tmp - count;
1324 ieee80211_add_pending_skbs(local, &pending);
1326 /* now we're no longer in the deliver code */
1327 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1329 /* The station might have polled and then woken up before we responded,
1330 * so clear these flags now to avoid them sticking around.
1332 clear_sta_flag(sta, WLAN_STA_PSPOLL);
1333 clear_sta_flag(sta, WLAN_STA_UAPSD);
1334 spin_unlock(&sta->ps_lock);
1336 atomic_dec(&ps->num_sta_ps);
1338 /* This station just woke up and isn't aware of our SMPS state */
1339 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1340 !ieee80211_smps_is_restrictive(sta->known_smps_mode,
1341 sdata->smps_mode) &&
1342 sta->known_smps_mode != sdata->bss->req_smps &&
1343 sta_info_tx_streams(sta) != 1) {
1344 ht_dbg(sdata,
1345 "%pM just woke up and MIMO capable - update SMPS\n",
1346 sta->sta.addr);
1347 ieee80211_send_smps_action(sdata, sdata->bss->req_smps,
1348 sta->sta.addr,
1349 sdata->vif.bss_conf.bssid);
1352 local->total_ps_buffered -= buffered;
1354 sta_info_recalc_tim(sta);
1356 ps_dbg(sdata,
1357 "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n",
1358 sta->sta.addr, sta->sta.aid, filtered, buffered);
1360 ieee80211_check_fast_xmit(sta);
1363 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1364 enum ieee80211_frame_release_type reason,
1365 bool call_driver, bool more_data)
1367 struct ieee80211_sub_if_data *sdata = sta->sdata;
1368 struct ieee80211_local *local = sdata->local;
1369 struct ieee80211_qos_hdr *nullfunc;
1370 struct sk_buff *skb;
1371 int size = sizeof(*nullfunc);
1372 __le16 fc;
1373 bool qos = sta->sta.wme;
1374 struct ieee80211_tx_info *info;
1375 struct ieee80211_chanctx_conf *chanctx_conf;
1377 /* Don't send NDPs when STA is connected HE */
1378 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1379 !(sdata->u.mgd.flags & IEEE80211_STA_DISABLE_HE))
1380 return;
1382 if (qos) {
1383 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1384 IEEE80211_STYPE_QOS_NULLFUNC |
1385 IEEE80211_FCTL_FROMDS);
1386 } else {
1387 size -= 2;
1388 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1389 IEEE80211_STYPE_NULLFUNC |
1390 IEEE80211_FCTL_FROMDS);
1393 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1394 if (!skb)
1395 return;
1397 skb_reserve(skb, local->hw.extra_tx_headroom);
1399 nullfunc = skb_put(skb, size);
1400 nullfunc->frame_control = fc;
1401 nullfunc->duration_id = 0;
1402 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1403 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1404 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1405 nullfunc->seq_ctrl = 0;
1407 skb->priority = tid;
1408 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1409 if (qos) {
1410 nullfunc->qos_ctrl = cpu_to_le16(tid);
1412 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1413 nullfunc->qos_ctrl |=
1414 cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1415 if (more_data)
1416 nullfunc->frame_control |=
1417 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1421 info = IEEE80211_SKB_CB(skb);
1424 * Tell TX path to send this frame even though the
1425 * STA may still remain is PS mode after this frame
1426 * exchange. Also set EOSP to indicate this packet
1427 * ends the poll/service period.
1429 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1430 IEEE80211_TX_STATUS_EOSP |
1431 IEEE80211_TX_CTL_REQ_TX_STATUS;
1433 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1435 if (call_driver)
1436 drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1437 reason, false);
1439 skb->dev = sdata->dev;
1441 rcu_read_lock();
1442 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1443 if (WARN_ON(!chanctx_conf)) {
1444 rcu_read_unlock();
1445 kfree_skb(skb);
1446 return;
1449 info->band = chanctx_conf->def.chan->band;
1450 ieee80211_xmit(sdata, sta, skb, 0);
1451 rcu_read_unlock();
1454 static int find_highest_prio_tid(unsigned long tids)
1456 /* lower 3 TIDs aren't ordered perfectly */
1457 if (tids & 0xF8)
1458 return fls(tids) - 1;
1459 /* TID 0 is BE just like TID 3 */
1460 if (tids & BIT(0))
1461 return 0;
1462 return fls(tids) - 1;
1465 /* Indicates if the MORE_DATA bit should be set in the last
1466 * frame obtained by ieee80211_sta_ps_get_frames.
1467 * Note that driver_release_tids is relevant only if
1468 * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1470 static bool
1471 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1472 enum ieee80211_frame_release_type reason,
1473 unsigned long driver_release_tids)
1475 int ac;
1477 /* If the driver has data on more than one TID then
1478 * certainly there's more data if we release just a
1479 * single frame now (from a single TID). This will
1480 * only happen for PS-Poll.
1482 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1483 hweight16(driver_release_tids) > 1)
1484 return true;
1486 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1487 if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1488 continue;
1490 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1491 !skb_queue_empty(&sta->ps_tx_buf[ac]))
1492 return true;
1495 return false;
1498 static void
1499 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1500 enum ieee80211_frame_release_type reason,
1501 struct sk_buff_head *frames,
1502 unsigned long *driver_release_tids)
1504 struct ieee80211_sub_if_data *sdata = sta->sdata;
1505 struct ieee80211_local *local = sdata->local;
1506 int ac;
1508 /* Get response frame(s) and more data bit for the last one. */
1509 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1510 unsigned long tids;
1512 if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1513 continue;
1515 tids = ieee80211_tids_for_ac(ac);
1517 /* if we already have frames from software, then we can't also
1518 * release from hardware queues
1520 if (skb_queue_empty(frames)) {
1521 *driver_release_tids |=
1522 sta->driver_buffered_tids & tids;
1523 *driver_release_tids |= sta->txq_buffered_tids & tids;
1526 if (!*driver_release_tids) {
1527 struct sk_buff *skb;
1529 while (n_frames > 0) {
1530 skb = skb_dequeue(&sta->tx_filtered[ac]);
1531 if (!skb) {
1532 skb = skb_dequeue(
1533 &sta->ps_tx_buf[ac]);
1534 if (skb)
1535 local->total_ps_buffered--;
1537 if (!skb)
1538 break;
1539 n_frames--;
1540 __skb_queue_tail(frames, skb);
1544 /* If we have more frames buffered on this AC, then abort the
1545 * loop since we can't send more data from other ACs before
1546 * the buffered frames from this.
1548 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1549 !skb_queue_empty(&sta->ps_tx_buf[ac]))
1550 break;
1554 static void
1555 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1556 int n_frames, u8 ignored_acs,
1557 enum ieee80211_frame_release_type reason)
1559 struct ieee80211_sub_if_data *sdata = sta->sdata;
1560 struct ieee80211_local *local = sdata->local;
1561 unsigned long driver_release_tids = 0;
1562 struct sk_buff_head frames;
1563 bool more_data;
1565 /* Service or PS-Poll period starts */
1566 set_sta_flag(sta, WLAN_STA_SP);
1568 __skb_queue_head_init(&frames);
1570 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1571 &frames, &driver_release_tids);
1573 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1575 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1576 driver_release_tids =
1577 BIT(find_highest_prio_tid(driver_release_tids));
1579 if (skb_queue_empty(&frames) && !driver_release_tids) {
1580 int tid, ac;
1583 * For PS-Poll, this can only happen due to a race condition
1584 * when we set the TIM bit and the station notices it, but
1585 * before it can poll for the frame we expire it.
1587 * For uAPSD, this is said in the standard (11.2.1.5 h):
1588 * At each unscheduled SP for a non-AP STA, the AP shall
1589 * attempt to transmit at least one MSDU or MMPDU, but no
1590 * more than the value specified in the Max SP Length field
1591 * in the QoS Capability element from delivery-enabled ACs,
1592 * that are destined for the non-AP STA.
1594 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1597 /* This will evaluate to 1, 3, 5 or 7. */
1598 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++)
1599 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac]))
1600 break;
1601 tid = 7 - 2 * ac;
1603 ieee80211_send_null_response(sta, tid, reason, true, false);
1604 } else if (!driver_release_tids) {
1605 struct sk_buff_head pending;
1606 struct sk_buff *skb;
1607 int num = 0;
1608 u16 tids = 0;
1609 bool need_null = false;
1611 skb_queue_head_init(&pending);
1613 while ((skb = __skb_dequeue(&frames))) {
1614 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1615 struct ieee80211_hdr *hdr = (void *) skb->data;
1616 u8 *qoshdr = NULL;
1618 num++;
1621 * Tell TX path to send this frame even though the
1622 * STA may still remain is PS mode after this frame
1623 * exchange.
1625 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1626 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1629 * Use MoreData flag to indicate whether there are
1630 * more buffered frames for this STA
1632 if (more_data || !skb_queue_empty(&frames))
1633 hdr->frame_control |=
1634 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1635 else
1636 hdr->frame_control &=
1637 cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1639 if (ieee80211_is_data_qos(hdr->frame_control) ||
1640 ieee80211_is_qos_nullfunc(hdr->frame_control))
1641 qoshdr = ieee80211_get_qos_ctl(hdr);
1643 tids |= BIT(skb->priority);
1645 __skb_queue_tail(&pending, skb);
1647 /* end service period after last frame or add one */
1648 if (!skb_queue_empty(&frames))
1649 continue;
1651 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1652 /* for PS-Poll, there's only one frame */
1653 info->flags |= IEEE80211_TX_STATUS_EOSP |
1654 IEEE80211_TX_CTL_REQ_TX_STATUS;
1655 break;
1658 /* For uAPSD, things are a bit more complicated. If the
1659 * last frame has a QoS header (i.e. is a QoS-data or
1660 * QoS-nulldata frame) then just set the EOSP bit there
1661 * and be done.
1662 * If the frame doesn't have a QoS header (which means
1663 * it should be a bufferable MMPDU) then we can't set
1664 * the EOSP bit in the QoS header; add a QoS-nulldata
1665 * frame to the list to send it after the MMPDU.
1667 * Note that this code is only in the mac80211-release
1668 * code path, we assume that the driver will not buffer
1669 * anything but QoS-data frames, or if it does, will
1670 * create the QoS-nulldata frame by itself if needed.
1672 * Cf. 802.11-2012 10.2.1.10 (c).
1674 if (qoshdr) {
1675 *qoshdr |= IEEE80211_QOS_CTL_EOSP;
1677 info->flags |= IEEE80211_TX_STATUS_EOSP |
1678 IEEE80211_TX_CTL_REQ_TX_STATUS;
1679 } else {
1680 /* The standard isn't completely clear on this
1681 * as it says the more-data bit should be set
1682 * if there are more BUs. The QoS-Null frame
1683 * we're about to send isn't buffered yet, we
1684 * only create it below, but let's pretend it
1685 * was buffered just in case some clients only
1686 * expect more-data=0 when eosp=1.
1688 hdr->frame_control |=
1689 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1690 need_null = true;
1691 num++;
1693 break;
1696 drv_allow_buffered_frames(local, sta, tids, num,
1697 reason, more_data);
1699 ieee80211_add_pending_skbs(local, &pending);
1701 if (need_null)
1702 ieee80211_send_null_response(
1703 sta, find_highest_prio_tid(tids),
1704 reason, false, false);
1706 sta_info_recalc_tim(sta);
1707 } else {
1708 int tid;
1711 * We need to release a frame that is buffered somewhere in the
1712 * driver ... it'll have to handle that.
1713 * Note that the driver also has to check the number of frames
1714 * on the TIDs we're releasing from - if there are more than
1715 * n_frames it has to set the more-data bit (if we didn't ask
1716 * it to set it anyway due to other buffered frames); if there
1717 * are fewer than n_frames it has to make sure to adjust that
1718 * to allow the service period to end properly.
1720 drv_release_buffered_frames(local, sta, driver_release_tids,
1721 n_frames, reason, more_data);
1724 * Note that we don't recalculate the TIM bit here as it would
1725 * most likely have no effect at all unless the driver told us
1726 * that the TID(s) became empty before returning here from the
1727 * release function.
1728 * Either way, however, when the driver tells us that the TID(s)
1729 * became empty or we find that a txq became empty, we'll do the
1730 * TIM recalculation.
1733 if (!sta->sta.txq[0])
1734 return;
1736 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1737 if (!sta->sta.txq[tid] ||
1738 !(driver_release_tids & BIT(tid)) ||
1739 txq_has_queue(sta->sta.txq[tid]))
1740 continue;
1742 sta_info_recalc_tim(sta);
1743 break;
1748 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1750 u8 ignore_for_response = sta->sta.uapsd_queues;
1753 * If all ACs are delivery-enabled then we should reply
1754 * from any of them, if only some are enabled we reply
1755 * only from the non-enabled ones.
1757 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1758 ignore_for_response = 0;
1760 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1761 IEEE80211_FRAME_RELEASE_PSPOLL);
1764 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1766 int n_frames = sta->sta.max_sp;
1767 u8 delivery_enabled = sta->sta.uapsd_queues;
1770 * If we ever grow support for TSPEC this might happen if
1771 * the TSPEC update from hostapd comes in between a trigger
1772 * frame setting WLAN_STA_UAPSD in the RX path and this
1773 * actually getting called.
1775 if (!delivery_enabled)
1776 return;
1778 switch (sta->sta.max_sp) {
1779 case 1:
1780 n_frames = 2;
1781 break;
1782 case 2:
1783 n_frames = 4;
1784 break;
1785 case 3:
1786 n_frames = 6;
1787 break;
1788 case 0:
1789 /* XXX: what is a good value? */
1790 n_frames = 128;
1791 break;
1794 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1795 IEEE80211_FRAME_RELEASE_UAPSD);
1798 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1799 struct ieee80211_sta *pubsta, bool block)
1801 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1803 trace_api_sta_block_awake(sta->local, pubsta, block);
1805 if (block) {
1806 set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1807 ieee80211_clear_fast_xmit(sta);
1808 return;
1811 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1812 return;
1814 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1815 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1816 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1817 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1818 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1819 test_sta_flag(sta, WLAN_STA_UAPSD)) {
1820 /* must be asleep in this case */
1821 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1822 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1823 } else {
1824 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1825 ieee80211_check_fast_xmit(sta);
1828 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1830 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1832 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1833 struct ieee80211_local *local = sta->local;
1835 trace_api_eosp(local, pubsta);
1837 clear_sta_flag(sta, WLAN_STA_SP);
1839 EXPORT_SYMBOL(ieee80211_sta_eosp);
1841 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
1843 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1844 enum ieee80211_frame_release_type reason;
1845 bool more_data;
1847 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
1849 reason = IEEE80211_FRAME_RELEASE_UAPSD;
1850 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
1851 reason, 0);
1853 ieee80211_send_null_response(sta, tid, reason, false, more_data);
1855 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
1857 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1858 u8 tid, bool buffered)
1860 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1862 if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1863 return;
1865 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1867 if (buffered)
1868 set_bit(tid, &sta->driver_buffered_tids);
1869 else
1870 clear_bit(tid, &sta->driver_buffered_tids);
1872 sta_info_recalc_tim(sta);
1874 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1876 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid,
1877 u32 tx_airtime, u32 rx_airtime)
1879 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1880 struct ieee80211_local *local = sta->sdata->local;
1881 u8 ac = ieee80211_ac_from_tid(tid);
1882 u32 airtime = 0;
1884 if (sta->local->airtime_flags & AIRTIME_USE_TX)
1885 airtime += tx_airtime;
1886 if (sta->local->airtime_flags & AIRTIME_USE_RX)
1887 airtime += rx_airtime;
1889 spin_lock_bh(&local->active_txq_lock[ac]);
1890 sta->airtime[ac].tx_airtime += tx_airtime;
1891 sta->airtime[ac].rx_airtime += rx_airtime;
1892 sta->airtime[ac].deficit -= airtime;
1893 spin_unlock_bh(&local->active_txq_lock[ac]);
1895 EXPORT_SYMBOL(ieee80211_sta_register_airtime);
1897 int sta_info_move_state(struct sta_info *sta,
1898 enum ieee80211_sta_state new_state)
1900 might_sleep();
1902 if (sta->sta_state == new_state)
1903 return 0;
1905 /* check allowed transitions first */
1907 switch (new_state) {
1908 case IEEE80211_STA_NONE:
1909 if (sta->sta_state != IEEE80211_STA_AUTH)
1910 return -EINVAL;
1911 break;
1912 case IEEE80211_STA_AUTH:
1913 if (sta->sta_state != IEEE80211_STA_NONE &&
1914 sta->sta_state != IEEE80211_STA_ASSOC)
1915 return -EINVAL;
1916 break;
1917 case IEEE80211_STA_ASSOC:
1918 if (sta->sta_state != IEEE80211_STA_AUTH &&
1919 sta->sta_state != IEEE80211_STA_AUTHORIZED)
1920 return -EINVAL;
1921 break;
1922 case IEEE80211_STA_AUTHORIZED:
1923 if (sta->sta_state != IEEE80211_STA_ASSOC)
1924 return -EINVAL;
1925 break;
1926 default:
1927 WARN(1, "invalid state %d", new_state);
1928 return -EINVAL;
1931 sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1932 sta->sta.addr, new_state);
1935 * notify the driver before the actual changes so it can
1936 * fail the transition
1938 if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1939 int err = drv_sta_state(sta->local, sta->sdata, sta,
1940 sta->sta_state, new_state);
1941 if (err)
1942 return err;
1945 /* reflect the change in all state variables */
1947 switch (new_state) {
1948 case IEEE80211_STA_NONE:
1949 if (sta->sta_state == IEEE80211_STA_AUTH)
1950 clear_bit(WLAN_STA_AUTH, &sta->_flags);
1951 break;
1952 case IEEE80211_STA_AUTH:
1953 if (sta->sta_state == IEEE80211_STA_NONE) {
1954 set_bit(WLAN_STA_AUTH, &sta->_flags);
1955 } else if (sta->sta_state == IEEE80211_STA_ASSOC) {
1956 clear_bit(WLAN_STA_ASSOC, &sta->_flags);
1957 ieee80211_recalc_min_chandef(sta->sdata);
1958 if (!sta->sta.support_p2p_ps)
1959 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
1961 break;
1962 case IEEE80211_STA_ASSOC:
1963 if (sta->sta_state == IEEE80211_STA_AUTH) {
1964 set_bit(WLAN_STA_ASSOC, &sta->_flags);
1965 ieee80211_recalc_min_chandef(sta->sdata);
1966 if (!sta->sta.support_p2p_ps)
1967 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
1968 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1969 ieee80211_vif_dec_num_mcast(sta->sdata);
1970 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1971 ieee80211_clear_fast_xmit(sta);
1972 ieee80211_clear_fast_rx(sta);
1974 break;
1975 case IEEE80211_STA_AUTHORIZED:
1976 if (sta->sta_state == IEEE80211_STA_ASSOC) {
1977 ieee80211_vif_inc_num_mcast(sta->sdata);
1978 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1979 ieee80211_check_fast_xmit(sta);
1980 ieee80211_check_fast_rx(sta);
1982 break;
1983 default:
1984 break;
1987 sta->sta_state = new_state;
1989 return 0;
1992 u8 sta_info_tx_streams(struct sta_info *sta)
1994 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
1995 u8 rx_streams;
1997 if (!sta->sta.ht_cap.ht_supported)
1998 return 1;
2000 if (sta->sta.vht_cap.vht_supported) {
2001 int i;
2002 u16 tx_mcs_map =
2003 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
2005 for (i = 7; i >= 0; i--)
2006 if ((tx_mcs_map & (0x3 << (i * 2))) !=
2007 IEEE80211_VHT_MCS_NOT_SUPPORTED)
2008 return i + 1;
2011 if (ht_cap->mcs.rx_mask[3])
2012 rx_streams = 4;
2013 else if (ht_cap->mcs.rx_mask[2])
2014 rx_streams = 3;
2015 else if (ht_cap->mcs.rx_mask[1])
2016 rx_streams = 2;
2017 else
2018 rx_streams = 1;
2020 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
2021 return rx_streams;
2023 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
2024 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
2027 static struct ieee80211_sta_rx_stats *
2028 sta_get_last_rx_stats(struct sta_info *sta)
2030 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
2031 struct ieee80211_local *local = sta->local;
2032 int cpu;
2034 if (!ieee80211_hw_check(&local->hw, USES_RSS))
2035 return stats;
2037 for_each_possible_cpu(cpu) {
2038 struct ieee80211_sta_rx_stats *cpustats;
2040 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2042 if (time_after(cpustats->last_rx, stats->last_rx))
2043 stats = cpustats;
2046 return stats;
2049 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate,
2050 struct rate_info *rinfo)
2052 rinfo->bw = STA_STATS_GET(BW, rate);
2054 switch (STA_STATS_GET(TYPE, rate)) {
2055 case STA_STATS_RATE_TYPE_VHT:
2056 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
2057 rinfo->mcs = STA_STATS_GET(VHT_MCS, rate);
2058 rinfo->nss = STA_STATS_GET(VHT_NSS, rate);
2059 if (STA_STATS_GET(SGI, rate))
2060 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2061 break;
2062 case STA_STATS_RATE_TYPE_HT:
2063 rinfo->flags = RATE_INFO_FLAGS_MCS;
2064 rinfo->mcs = STA_STATS_GET(HT_MCS, rate);
2065 if (STA_STATS_GET(SGI, rate))
2066 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2067 break;
2068 case STA_STATS_RATE_TYPE_LEGACY: {
2069 struct ieee80211_supported_band *sband;
2070 u16 brate;
2071 unsigned int shift;
2072 int band = STA_STATS_GET(LEGACY_BAND, rate);
2073 int rate_idx = STA_STATS_GET(LEGACY_IDX, rate);
2075 sband = local->hw.wiphy->bands[band];
2076 brate = sband->bitrates[rate_idx].bitrate;
2077 if (rinfo->bw == RATE_INFO_BW_5)
2078 shift = 2;
2079 else if (rinfo->bw == RATE_INFO_BW_10)
2080 shift = 1;
2081 else
2082 shift = 0;
2083 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
2084 break;
2086 case STA_STATS_RATE_TYPE_HE:
2087 rinfo->flags = RATE_INFO_FLAGS_HE_MCS;
2088 rinfo->mcs = STA_STATS_GET(HE_MCS, rate);
2089 rinfo->nss = STA_STATS_GET(HE_NSS, rate);
2090 rinfo->he_gi = STA_STATS_GET(HE_GI, rate);
2091 rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate);
2092 rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate);
2093 break;
2097 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
2099 u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate);
2101 if (rate == STA_STATS_RATE_INVALID)
2102 return -EINVAL;
2104 sta_stats_decode_rate(sta->local, rate, rinfo);
2105 return 0;
2108 static void sta_set_tidstats(struct sta_info *sta,
2109 struct cfg80211_tid_stats *tidstats,
2110 int tid)
2112 struct ieee80211_local *local = sta->local;
2114 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2115 unsigned int start;
2117 do {
2118 start = u64_stats_fetch_begin(&sta->rx_stats.syncp);
2119 tidstats->rx_msdu = sta->rx_stats.msdu[tid];
2120 } while (u64_stats_fetch_retry(&sta->rx_stats.syncp, start));
2122 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2125 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2126 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2127 tidstats->tx_msdu = sta->tx_stats.msdu[tid];
2130 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2131 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2132 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2133 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid];
2136 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2137 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2138 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2139 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid];
2142 if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) {
2143 spin_lock_bh(&local->fq.lock);
2144 rcu_read_lock();
2146 tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS);
2147 ieee80211_fill_txq_stats(&tidstats->txq_stats,
2148 to_txq_info(sta->sta.txq[tid]));
2150 rcu_read_unlock();
2151 spin_unlock_bh(&local->fq.lock);
2155 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2157 unsigned int start;
2158 u64 value;
2160 do {
2161 start = u64_stats_fetch_begin(&rxstats->syncp);
2162 value = rxstats->bytes;
2163 } while (u64_stats_fetch_retry(&rxstats->syncp, start));
2165 return value;
2168 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo,
2169 bool tidstats)
2171 struct ieee80211_sub_if_data *sdata = sta->sdata;
2172 struct ieee80211_local *local = sdata->local;
2173 u32 thr = 0;
2174 int i, ac, cpu;
2175 struct ieee80211_sta_rx_stats *last_rxstats;
2177 last_rxstats = sta_get_last_rx_stats(sta);
2179 sinfo->generation = sdata->local->sta_generation;
2181 /* do before driver, so beacon filtering drivers have a
2182 * chance to e.g. just add the number of filtered beacons
2183 * (or just modify the value entirely, of course)
2185 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2186 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
2188 drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2190 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) |
2191 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) |
2192 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) |
2193 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) |
2194 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC);
2196 if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2197 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
2198 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS);
2201 sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2202 sinfo->inactive_time =
2203 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2205 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) |
2206 BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) {
2207 sinfo->tx_bytes = 0;
2208 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2209 sinfo->tx_bytes += sta->tx_stats.bytes[ac];
2210 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64);
2213 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) {
2214 sinfo->tx_packets = 0;
2215 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2216 sinfo->tx_packets += sta->tx_stats.packets[ac];
2217 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS);
2220 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) |
2221 BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) {
2222 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats);
2224 if (sta->pcpu_rx_stats) {
2225 for_each_possible_cpu(cpu) {
2226 struct ieee80211_sta_rx_stats *cpurxs;
2228 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2229 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2233 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64);
2236 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) {
2237 sinfo->rx_packets = sta->rx_stats.packets;
2238 if (sta->pcpu_rx_stats) {
2239 for_each_possible_cpu(cpu) {
2240 struct ieee80211_sta_rx_stats *cpurxs;
2242 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2243 sinfo->rx_packets += cpurxs->packets;
2246 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS);
2249 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) {
2250 sinfo->tx_retries = sta->status_stats.retry_count;
2251 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES);
2254 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) {
2255 sinfo->tx_failed = sta->status_stats.retry_failed;
2256 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED);
2259 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) {
2260 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2261 sinfo->rx_duration += sta->airtime[ac].rx_airtime;
2262 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION);
2265 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) {
2266 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2267 sinfo->tx_duration += sta->airtime[ac].tx_airtime;
2268 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION);
2271 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) {
2272 sinfo->airtime_weight = sta->airtime_weight;
2273 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT);
2276 sinfo->rx_dropped_misc = sta->rx_stats.dropped;
2277 if (sta->pcpu_rx_stats) {
2278 for_each_possible_cpu(cpu) {
2279 struct ieee80211_sta_rx_stats *cpurxs;
2281 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2282 sinfo->rx_dropped_misc += cpurxs->dropped;
2286 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2287 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2288 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) |
2289 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2290 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2293 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2294 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2295 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) {
2296 sinfo->signal = (s8)last_rxstats->last_signal;
2297 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL);
2300 if (!sta->pcpu_rx_stats &&
2301 !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) {
2302 sinfo->signal_avg =
2303 -ewma_signal_read(&sta->rx_stats_avg.signal);
2304 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG);
2308 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2309 * the sta->rx_stats struct, so the check here is fine with and without
2310 * pcpu statistics
2312 if (last_rxstats->chains &&
2313 !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) |
2314 BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2315 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL);
2316 if (!sta->pcpu_rx_stats)
2317 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2319 sinfo->chains = last_rxstats->chains;
2321 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2322 sinfo->chain_signal[i] =
2323 last_rxstats->chain_signal_last[i];
2324 sinfo->chain_signal_avg[i] =
2325 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]);
2329 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) {
2330 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate,
2331 &sinfo->txrate);
2332 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
2335 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) {
2336 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0)
2337 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE);
2340 if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) {
2341 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
2342 sta_set_tidstats(sta, &sinfo->pertid[i], i);
2345 if (ieee80211_vif_is_mesh(&sdata->vif)) {
2346 #ifdef CONFIG_MAC80211_MESH
2347 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) |
2348 BIT_ULL(NL80211_STA_INFO_PLID) |
2349 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) |
2350 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) |
2351 BIT_ULL(NL80211_STA_INFO_PEER_PM) |
2352 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) |
2353 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE);
2355 sinfo->llid = sta->mesh->llid;
2356 sinfo->plid = sta->mesh->plid;
2357 sinfo->plink_state = sta->mesh->plink_state;
2358 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2359 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET);
2360 sinfo->t_offset = sta->mesh->t_offset;
2362 sinfo->local_pm = sta->mesh->local_pm;
2363 sinfo->peer_pm = sta->mesh->peer_pm;
2364 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2365 sinfo->connected_to_gate = sta->mesh->connected_to_gate;
2366 #endif
2369 sinfo->bss_param.flags = 0;
2370 if (sdata->vif.bss_conf.use_cts_prot)
2371 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2372 if (sdata->vif.bss_conf.use_short_preamble)
2373 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2374 if (sdata->vif.bss_conf.use_short_slot)
2375 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2376 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2377 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2379 sinfo->sta_flags.set = 0;
2380 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2381 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2382 BIT(NL80211_STA_FLAG_WME) |
2383 BIT(NL80211_STA_FLAG_MFP) |
2384 BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2385 BIT(NL80211_STA_FLAG_ASSOCIATED) |
2386 BIT(NL80211_STA_FLAG_TDLS_PEER);
2387 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2388 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2389 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2390 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2391 if (sta->sta.wme)
2392 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2393 if (test_sta_flag(sta, WLAN_STA_MFP))
2394 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2395 if (test_sta_flag(sta, WLAN_STA_AUTH))
2396 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2397 if (test_sta_flag(sta, WLAN_STA_ASSOC))
2398 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2399 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2400 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2402 thr = sta_get_expected_throughput(sta);
2404 if (thr != 0) {
2405 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2406 sinfo->expected_throughput = thr;
2409 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) &&
2410 sta->status_stats.ack_signal_filled) {
2411 sinfo->ack_signal = sta->status_stats.last_ack_signal;
2412 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL);
2415 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) &&
2416 sta->status_stats.ack_signal_filled) {
2417 sinfo->avg_ack_signal =
2418 -(s8)ewma_avg_signal_read(
2419 &sta->status_stats.avg_ack_signal);
2420 sinfo->filled |=
2421 BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG);
2424 if (ieee80211_vif_is_mesh(&sdata->vif)) {
2425 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC);
2426 sinfo->airtime_link_metric =
2427 airtime_link_metric_get(local, sta);
2431 u32 sta_get_expected_throughput(struct sta_info *sta)
2433 struct ieee80211_sub_if_data *sdata = sta->sdata;
2434 struct ieee80211_local *local = sdata->local;
2435 struct rate_control_ref *ref = NULL;
2436 u32 thr = 0;
2438 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2439 ref = local->rate_ctrl;
2441 /* check if the driver has a SW RC implementation */
2442 if (ref && ref->ops->get_expected_throughput)
2443 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2444 else
2445 thr = drv_get_expected_throughput(local, sta);
2447 return thr;
2450 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2452 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2454 if (time_after(stats->last_rx, sta->status_stats.last_ack))
2455 return stats->last_rx;
2456 return sta->status_stats.last_ack;
2459 static void sta_update_codel_params(struct sta_info *sta, u32 thr)
2461 if (!sta->sdata->local->ops->wake_tx_queue)
2462 return;
2464 if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) {
2465 sta->cparams.target = MS2TIME(50);
2466 sta->cparams.interval = MS2TIME(300);
2467 sta->cparams.ecn = false;
2468 } else {
2469 sta->cparams.target = MS2TIME(20);
2470 sta->cparams.interval = MS2TIME(100);
2471 sta->cparams.ecn = true;
2475 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta,
2476 u32 thr)
2478 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2480 sta_update_codel_params(sta, thr);