sysfs: group.c: add kerneldoc for sysfs_remove_group
[linux/fpc-iii.git] / fs / ext4 / ialloc.c
blobf03598c6ffd3a48282193a13ff30ab6e412e471b
1 /*
2 * linux/fs/ext4/ialloc.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * BSD ufs-inspired inode and directory allocation by
10 * Stephen Tweedie (sct@redhat.com), 1993
11 * Big-endian to little-endian byte-swapping/bitmaps by
12 * David S. Miller (davem@caip.rutgers.edu), 1995
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <asm/byteorder.h>
27 #include "ext4.h"
28 #include "ext4_jbd2.h"
29 #include "xattr.h"
30 #include "acl.h"
32 #include <trace/events/ext4.h>
35 * ialloc.c contains the inodes allocation and deallocation routines
39 * The free inodes are managed by bitmaps. A file system contains several
40 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
41 * block for inodes, N blocks for the inode table and data blocks.
43 * The file system contains group descriptors which are located after the
44 * super block. Each descriptor contains the number of the bitmap block and
45 * the free blocks count in the block.
49 * To avoid calling the atomic setbit hundreds or thousands of times, we only
50 * need to use it within a single byte (to ensure we get endianness right).
51 * We can use memset for the rest of the bitmap as there are no other users.
53 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
55 int i;
57 if (start_bit >= end_bit)
58 return;
60 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
61 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
62 ext4_set_bit(i, bitmap);
63 if (i < end_bit)
64 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
67 /* Initializes an uninitialized inode bitmap */
68 static unsigned ext4_init_inode_bitmap(struct super_block *sb,
69 struct buffer_head *bh,
70 ext4_group_t block_group,
71 struct ext4_group_desc *gdp)
73 J_ASSERT_BH(bh, buffer_locked(bh));
75 /* If checksum is bad mark all blocks and inodes use to prevent
76 * allocation, essentially implementing a per-group read-only flag. */
77 if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) {
78 ext4_error(sb, "Checksum bad for group %u", block_group);
79 ext4_free_group_clusters_set(sb, gdp, 0);
80 ext4_free_inodes_set(sb, gdp, 0);
81 ext4_itable_unused_set(sb, gdp, 0);
82 memset(bh->b_data, 0xff, sb->s_blocksize);
83 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
84 EXT4_INODES_PER_GROUP(sb) / 8);
85 return 0;
88 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
89 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
90 bh->b_data);
91 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
92 EXT4_INODES_PER_GROUP(sb) / 8);
93 ext4_group_desc_csum_set(sb, block_group, gdp);
95 return EXT4_INODES_PER_GROUP(sb);
98 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
100 if (uptodate) {
101 set_buffer_uptodate(bh);
102 set_bitmap_uptodate(bh);
104 unlock_buffer(bh);
105 put_bh(bh);
109 * Read the inode allocation bitmap for a given block_group, reading
110 * into the specified slot in the superblock's bitmap cache.
112 * Return buffer_head of bitmap on success or NULL.
114 static struct buffer_head *
115 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
117 struct ext4_group_desc *desc;
118 struct buffer_head *bh = NULL;
119 ext4_fsblk_t bitmap_blk;
121 desc = ext4_get_group_desc(sb, block_group, NULL);
122 if (!desc)
123 return NULL;
125 bitmap_blk = ext4_inode_bitmap(sb, desc);
126 bh = sb_getblk(sb, bitmap_blk);
127 if (unlikely(!bh)) {
128 ext4_error(sb, "Cannot read inode bitmap - "
129 "block_group = %u, inode_bitmap = %llu",
130 block_group, bitmap_blk);
131 return NULL;
133 if (bitmap_uptodate(bh))
134 goto verify;
136 lock_buffer(bh);
137 if (bitmap_uptodate(bh)) {
138 unlock_buffer(bh);
139 goto verify;
142 ext4_lock_group(sb, block_group);
143 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
144 ext4_init_inode_bitmap(sb, bh, block_group, desc);
145 set_bitmap_uptodate(bh);
146 set_buffer_uptodate(bh);
147 set_buffer_verified(bh);
148 ext4_unlock_group(sb, block_group);
149 unlock_buffer(bh);
150 return bh;
152 ext4_unlock_group(sb, block_group);
154 if (buffer_uptodate(bh)) {
156 * if not uninit if bh is uptodate,
157 * bitmap is also uptodate
159 set_bitmap_uptodate(bh);
160 unlock_buffer(bh);
161 goto verify;
164 * submit the buffer_head for reading
166 trace_ext4_load_inode_bitmap(sb, block_group);
167 bh->b_end_io = ext4_end_bitmap_read;
168 get_bh(bh);
169 submit_bh(READ | REQ_META | REQ_PRIO, bh);
170 wait_on_buffer(bh);
171 if (!buffer_uptodate(bh)) {
172 put_bh(bh);
173 ext4_error(sb, "Cannot read inode bitmap - "
174 "block_group = %u, inode_bitmap = %llu",
175 block_group, bitmap_blk);
176 return NULL;
179 verify:
180 ext4_lock_group(sb, block_group);
181 if (!buffer_verified(bh) &&
182 !ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
183 EXT4_INODES_PER_GROUP(sb) / 8)) {
184 ext4_unlock_group(sb, block_group);
185 put_bh(bh);
186 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
187 "inode_bitmap = %llu", block_group, bitmap_blk);
188 return NULL;
190 ext4_unlock_group(sb, block_group);
191 set_buffer_verified(bh);
192 return bh;
196 * NOTE! When we get the inode, we're the only people
197 * that have access to it, and as such there are no
198 * race conditions we have to worry about. The inode
199 * is not on the hash-lists, and it cannot be reached
200 * through the filesystem because the directory entry
201 * has been deleted earlier.
203 * HOWEVER: we must make sure that we get no aliases,
204 * which means that we have to call "clear_inode()"
205 * _before_ we mark the inode not in use in the inode
206 * bitmaps. Otherwise a newly created file might use
207 * the same inode number (not actually the same pointer
208 * though), and then we'd have two inodes sharing the
209 * same inode number and space on the harddisk.
211 void ext4_free_inode(handle_t *handle, struct inode *inode)
213 struct super_block *sb = inode->i_sb;
214 int is_directory;
215 unsigned long ino;
216 struct buffer_head *bitmap_bh = NULL;
217 struct buffer_head *bh2;
218 ext4_group_t block_group;
219 unsigned long bit;
220 struct ext4_group_desc *gdp;
221 struct ext4_super_block *es;
222 struct ext4_sb_info *sbi;
223 int fatal = 0, err, count, cleared;
225 if (!sb) {
226 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
227 "nonexistent device\n", __func__, __LINE__);
228 return;
230 if (atomic_read(&inode->i_count) > 1) {
231 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
232 __func__, __LINE__, inode->i_ino,
233 atomic_read(&inode->i_count));
234 return;
236 if (inode->i_nlink) {
237 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
238 __func__, __LINE__, inode->i_ino, inode->i_nlink);
239 return;
241 sbi = EXT4_SB(sb);
243 ino = inode->i_ino;
244 ext4_debug("freeing inode %lu\n", ino);
245 trace_ext4_free_inode(inode);
248 * Note: we must free any quota before locking the superblock,
249 * as writing the quota to disk may need the lock as well.
251 dquot_initialize(inode);
252 ext4_xattr_delete_inode(handle, inode);
253 dquot_free_inode(inode);
254 dquot_drop(inode);
256 is_directory = S_ISDIR(inode->i_mode);
258 /* Do this BEFORE marking the inode not in use or returning an error */
259 ext4_clear_inode(inode);
261 es = EXT4_SB(sb)->s_es;
262 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
263 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
264 goto error_return;
266 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
267 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
268 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
269 if (!bitmap_bh)
270 goto error_return;
272 BUFFER_TRACE(bitmap_bh, "get_write_access");
273 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
274 if (fatal)
275 goto error_return;
277 fatal = -ESRCH;
278 gdp = ext4_get_group_desc(sb, block_group, &bh2);
279 if (gdp) {
280 BUFFER_TRACE(bh2, "get_write_access");
281 fatal = ext4_journal_get_write_access(handle, bh2);
283 ext4_lock_group(sb, block_group);
284 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
285 if (fatal || !cleared) {
286 ext4_unlock_group(sb, block_group);
287 goto out;
290 count = ext4_free_inodes_count(sb, gdp) + 1;
291 ext4_free_inodes_set(sb, gdp, count);
292 if (is_directory) {
293 count = ext4_used_dirs_count(sb, gdp) - 1;
294 ext4_used_dirs_set(sb, gdp, count);
295 percpu_counter_dec(&sbi->s_dirs_counter);
297 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
298 EXT4_INODES_PER_GROUP(sb) / 8);
299 ext4_group_desc_csum_set(sb, block_group, gdp);
300 ext4_unlock_group(sb, block_group);
302 percpu_counter_inc(&sbi->s_freeinodes_counter);
303 if (sbi->s_log_groups_per_flex) {
304 ext4_group_t f = ext4_flex_group(sbi, block_group);
306 atomic_inc(&sbi->s_flex_groups[f].free_inodes);
307 if (is_directory)
308 atomic_dec(&sbi->s_flex_groups[f].used_dirs);
310 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
311 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
312 out:
313 if (cleared) {
314 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
315 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
316 if (!fatal)
317 fatal = err;
318 } else
319 ext4_error(sb, "bit already cleared for inode %lu", ino);
321 error_return:
322 brelse(bitmap_bh);
323 ext4_std_error(sb, fatal);
326 struct orlov_stats {
327 __u64 free_clusters;
328 __u32 free_inodes;
329 __u32 used_dirs;
333 * Helper function for Orlov's allocator; returns critical information
334 * for a particular block group or flex_bg. If flex_size is 1, then g
335 * is a block group number; otherwise it is flex_bg number.
337 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
338 int flex_size, struct orlov_stats *stats)
340 struct ext4_group_desc *desc;
341 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
343 if (flex_size > 1) {
344 stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
345 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
346 stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
347 return;
350 desc = ext4_get_group_desc(sb, g, NULL);
351 if (desc) {
352 stats->free_inodes = ext4_free_inodes_count(sb, desc);
353 stats->free_clusters = ext4_free_group_clusters(sb, desc);
354 stats->used_dirs = ext4_used_dirs_count(sb, desc);
355 } else {
356 stats->free_inodes = 0;
357 stats->free_clusters = 0;
358 stats->used_dirs = 0;
363 * Orlov's allocator for directories.
365 * We always try to spread first-level directories.
367 * If there are blockgroups with both free inodes and free blocks counts
368 * not worse than average we return one with smallest directory count.
369 * Otherwise we simply return a random group.
371 * For the rest rules look so:
373 * It's OK to put directory into a group unless
374 * it has too many directories already (max_dirs) or
375 * it has too few free inodes left (min_inodes) or
376 * it has too few free blocks left (min_blocks) or
377 * Parent's group is preferred, if it doesn't satisfy these
378 * conditions we search cyclically through the rest. If none
379 * of the groups look good we just look for a group with more
380 * free inodes than average (starting at parent's group).
383 static int find_group_orlov(struct super_block *sb, struct inode *parent,
384 ext4_group_t *group, umode_t mode,
385 const struct qstr *qstr)
387 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
388 struct ext4_sb_info *sbi = EXT4_SB(sb);
389 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
390 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
391 unsigned int freei, avefreei, grp_free;
392 ext4_fsblk_t freeb, avefreec;
393 unsigned int ndirs;
394 int max_dirs, min_inodes;
395 ext4_grpblk_t min_clusters;
396 ext4_group_t i, grp, g, ngroups;
397 struct ext4_group_desc *desc;
398 struct orlov_stats stats;
399 int flex_size = ext4_flex_bg_size(sbi);
400 struct dx_hash_info hinfo;
402 ngroups = real_ngroups;
403 if (flex_size > 1) {
404 ngroups = (real_ngroups + flex_size - 1) >>
405 sbi->s_log_groups_per_flex;
406 parent_group >>= sbi->s_log_groups_per_flex;
409 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
410 avefreei = freei / ngroups;
411 freeb = EXT4_C2B(sbi,
412 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
413 avefreec = freeb;
414 do_div(avefreec, ngroups);
415 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
417 if (S_ISDIR(mode) &&
418 ((parent == sb->s_root->d_inode) ||
419 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
420 int best_ndir = inodes_per_group;
421 int ret = -1;
423 if (qstr) {
424 hinfo.hash_version = DX_HASH_HALF_MD4;
425 hinfo.seed = sbi->s_hash_seed;
426 ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
427 grp = hinfo.hash;
428 } else
429 get_random_bytes(&grp, sizeof(grp));
430 parent_group = (unsigned)grp % ngroups;
431 for (i = 0; i < ngroups; i++) {
432 g = (parent_group + i) % ngroups;
433 get_orlov_stats(sb, g, flex_size, &stats);
434 if (!stats.free_inodes)
435 continue;
436 if (stats.used_dirs >= best_ndir)
437 continue;
438 if (stats.free_inodes < avefreei)
439 continue;
440 if (stats.free_clusters < avefreec)
441 continue;
442 grp = g;
443 ret = 0;
444 best_ndir = stats.used_dirs;
446 if (ret)
447 goto fallback;
448 found_flex_bg:
449 if (flex_size == 1) {
450 *group = grp;
451 return 0;
455 * We pack inodes at the beginning of the flexgroup's
456 * inode tables. Block allocation decisions will do
457 * something similar, although regular files will
458 * start at 2nd block group of the flexgroup. See
459 * ext4_ext_find_goal() and ext4_find_near().
461 grp *= flex_size;
462 for (i = 0; i < flex_size; i++) {
463 if (grp+i >= real_ngroups)
464 break;
465 desc = ext4_get_group_desc(sb, grp+i, NULL);
466 if (desc && ext4_free_inodes_count(sb, desc)) {
467 *group = grp+i;
468 return 0;
471 goto fallback;
474 max_dirs = ndirs / ngroups + inodes_per_group / 16;
475 min_inodes = avefreei - inodes_per_group*flex_size / 4;
476 if (min_inodes < 1)
477 min_inodes = 1;
478 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
481 * Start looking in the flex group where we last allocated an
482 * inode for this parent directory
484 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
485 parent_group = EXT4_I(parent)->i_last_alloc_group;
486 if (flex_size > 1)
487 parent_group >>= sbi->s_log_groups_per_flex;
490 for (i = 0; i < ngroups; i++) {
491 grp = (parent_group + i) % ngroups;
492 get_orlov_stats(sb, grp, flex_size, &stats);
493 if (stats.used_dirs >= max_dirs)
494 continue;
495 if (stats.free_inodes < min_inodes)
496 continue;
497 if (stats.free_clusters < min_clusters)
498 continue;
499 goto found_flex_bg;
502 fallback:
503 ngroups = real_ngroups;
504 avefreei = freei / ngroups;
505 fallback_retry:
506 parent_group = EXT4_I(parent)->i_block_group;
507 for (i = 0; i < ngroups; i++) {
508 grp = (parent_group + i) % ngroups;
509 desc = ext4_get_group_desc(sb, grp, NULL);
510 if (desc) {
511 grp_free = ext4_free_inodes_count(sb, desc);
512 if (grp_free && grp_free >= avefreei) {
513 *group = grp;
514 return 0;
519 if (avefreei) {
521 * The free-inodes counter is approximate, and for really small
522 * filesystems the above test can fail to find any blockgroups
524 avefreei = 0;
525 goto fallback_retry;
528 return -1;
531 static int find_group_other(struct super_block *sb, struct inode *parent,
532 ext4_group_t *group, umode_t mode)
534 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
535 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
536 struct ext4_group_desc *desc;
537 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
540 * Try to place the inode is the same flex group as its
541 * parent. If we can't find space, use the Orlov algorithm to
542 * find another flex group, and store that information in the
543 * parent directory's inode information so that use that flex
544 * group for future allocations.
546 if (flex_size > 1) {
547 int retry = 0;
549 try_again:
550 parent_group &= ~(flex_size-1);
551 last = parent_group + flex_size;
552 if (last > ngroups)
553 last = ngroups;
554 for (i = parent_group; i < last; i++) {
555 desc = ext4_get_group_desc(sb, i, NULL);
556 if (desc && ext4_free_inodes_count(sb, desc)) {
557 *group = i;
558 return 0;
561 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
562 retry = 1;
563 parent_group = EXT4_I(parent)->i_last_alloc_group;
564 goto try_again;
567 * If this didn't work, use the Orlov search algorithm
568 * to find a new flex group; we pass in the mode to
569 * avoid the topdir algorithms.
571 *group = parent_group + flex_size;
572 if (*group > ngroups)
573 *group = 0;
574 return find_group_orlov(sb, parent, group, mode, NULL);
578 * Try to place the inode in its parent directory
580 *group = parent_group;
581 desc = ext4_get_group_desc(sb, *group, NULL);
582 if (desc && ext4_free_inodes_count(sb, desc) &&
583 ext4_free_group_clusters(sb, desc))
584 return 0;
587 * We're going to place this inode in a different blockgroup from its
588 * parent. We want to cause files in a common directory to all land in
589 * the same blockgroup. But we want files which are in a different
590 * directory which shares a blockgroup with our parent to land in a
591 * different blockgroup.
593 * So add our directory's i_ino into the starting point for the hash.
595 *group = (*group + parent->i_ino) % ngroups;
598 * Use a quadratic hash to find a group with a free inode and some free
599 * blocks.
601 for (i = 1; i < ngroups; i <<= 1) {
602 *group += i;
603 if (*group >= ngroups)
604 *group -= ngroups;
605 desc = ext4_get_group_desc(sb, *group, NULL);
606 if (desc && ext4_free_inodes_count(sb, desc) &&
607 ext4_free_group_clusters(sb, desc))
608 return 0;
612 * That failed: try linear search for a free inode, even if that group
613 * has no free blocks.
615 *group = parent_group;
616 for (i = 0; i < ngroups; i++) {
617 if (++*group >= ngroups)
618 *group = 0;
619 desc = ext4_get_group_desc(sb, *group, NULL);
620 if (desc && ext4_free_inodes_count(sb, desc))
621 return 0;
624 return -1;
628 * There are two policies for allocating an inode. If the new inode is
629 * a directory, then a forward search is made for a block group with both
630 * free space and a low directory-to-inode ratio; if that fails, then of
631 * the groups with above-average free space, that group with the fewest
632 * directories already is chosen.
634 * For other inodes, search forward from the parent directory's block
635 * group to find a free inode.
637 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
638 umode_t mode, const struct qstr *qstr,
639 __u32 goal, uid_t *owner, int handle_type,
640 unsigned int line_no, int nblocks)
642 struct super_block *sb;
643 struct buffer_head *inode_bitmap_bh = NULL;
644 struct buffer_head *group_desc_bh;
645 ext4_group_t ngroups, group = 0;
646 unsigned long ino = 0;
647 struct inode *inode;
648 struct ext4_group_desc *gdp = NULL;
649 struct ext4_inode_info *ei;
650 struct ext4_sb_info *sbi;
651 int ret2, err = 0;
652 struct inode *ret;
653 ext4_group_t i;
654 ext4_group_t flex_group;
656 /* Cannot create files in a deleted directory */
657 if (!dir || !dir->i_nlink)
658 return ERR_PTR(-EPERM);
660 sb = dir->i_sb;
661 ngroups = ext4_get_groups_count(sb);
662 trace_ext4_request_inode(dir, mode);
663 inode = new_inode(sb);
664 if (!inode)
665 return ERR_PTR(-ENOMEM);
666 ei = EXT4_I(inode);
667 sbi = EXT4_SB(sb);
670 * Initalize owners and quota early so that we don't have to account
671 * for quota initialization worst case in standard inode creating
672 * transaction
674 if (owner) {
675 inode->i_mode = mode;
676 i_uid_write(inode, owner[0]);
677 i_gid_write(inode, owner[1]);
678 } else if (test_opt(sb, GRPID)) {
679 inode->i_mode = mode;
680 inode->i_uid = current_fsuid();
681 inode->i_gid = dir->i_gid;
682 } else
683 inode_init_owner(inode, dir, mode);
684 dquot_initialize(inode);
686 if (!goal)
687 goal = sbi->s_inode_goal;
689 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
690 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
691 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
692 ret2 = 0;
693 goto got_group;
696 if (S_ISDIR(mode))
697 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
698 else
699 ret2 = find_group_other(sb, dir, &group, mode);
701 got_group:
702 EXT4_I(dir)->i_last_alloc_group = group;
703 err = -ENOSPC;
704 if (ret2 == -1)
705 goto out;
708 * Normally we will only go through one pass of this loop,
709 * unless we get unlucky and it turns out the group we selected
710 * had its last inode grabbed by someone else.
712 for (i = 0; i < ngroups; i++, ino = 0) {
713 err = -EIO;
715 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
716 if (!gdp)
717 goto out;
720 * Check free inodes count before loading bitmap.
722 if (ext4_free_inodes_count(sb, gdp) == 0) {
723 if (++group == ngroups)
724 group = 0;
725 continue;
728 brelse(inode_bitmap_bh);
729 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
730 if (!inode_bitmap_bh)
731 goto out;
733 repeat_in_this_group:
734 ino = ext4_find_next_zero_bit((unsigned long *)
735 inode_bitmap_bh->b_data,
736 EXT4_INODES_PER_GROUP(sb), ino);
737 if (ino >= EXT4_INODES_PER_GROUP(sb)) {
738 if (++group == ngroups)
739 group = 0;
740 continue;
742 if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {
743 ext4_error(sb, "reserved inode found cleared - "
744 "inode=%lu", ino + 1);
745 continue;
747 if (!handle) {
748 BUG_ON(nblocks <= 0);
749 handle = __ext4_journal_start_sb(dir->i_sb, line_no,
750 handle_type, nblocks,
752 if (IS_ERR(handle)) {
753 err = PTR_ERR(handle);
754 ext4_std_error(sb, err);
755 goto out;
758 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
759 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
760 if (err) {
761 ext4_std_error(sb, err);
762 goto out;
764 ext4_lock_group(sb, group);
765 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
766 ext4_unlock_group(sb, group);
767 ino++; /* the inode bitmap is zero-based */
768 if (!ret2)
769 goto got; /* we grabbed the inode! */
770 if (ino < EXT4_INODES_PER_GROUP(sb))
771 goto repeat_in_this_group;
773 err = -ENOSPC;
774 goto out;
776 got:
777 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
778 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
779 if (err) {
780 ext4_std_error(sb, err);
781 goto out;
784 /* We may have to initialize the block bitmap if it isn't already */
785 if (ext4_has_group_desc_csum(sb) &&
786 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
787 struct buffer_head *block_bitmap_bh;
789 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
790 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
791 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
792 if (err) {
793 brelse(block_bitmap_bh);
794 ext4_std_error(sb, err);
795 goto out;
798 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
799 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
801 /* recheck and clear flag under lock if we still need to */
802 ext4_lock_group(sb, group);
803 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
804 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
805 ext4_free_group_clusters_set(sb, gdp,
806 ext4_free_clusters_after_init(sb, group, gdp));
807 ext4_block_bitmap_csum_set(sb, group, gdp,
808 block_bitmap_bh);
809 ext4_group_desc_csum_set(sb, group, gdp);
811 ext4_unlock_group(sb, group);
812 brelse(block_bitmap_bh);
814 if (err) {
815 ext4_std_error(sb, err);
816 goto out;
820 BUFFER_TRACE(group_desc_bh, "get_write_access");
821 err = ext4_journal_get_write_access(handle, group_desc_bh);
822 if (err) {
823 ext4_std_error(sb, err);
824 goto out;
827 /* Update the relevant bg descriptor fields */
828 if (ext4_has_group_desc_csum(sb)) {
829 int free;
830 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
832 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
833 ext4_lock_group(sb, group); /* while we modify the bg desc */
834 free = EXT4_INODES_PER_GROUP(sb) -
835 ext4_itable_unused_count(sb, gdp);
836 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
837 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
838 free = 0;
841 * Check the relative inode number against the last used
842 * relative inode number in this group. if it is greater
843 * we need to update the bg_itable_unused count
845 if (ino > free)
846 ext4_itable_unused_set(sb, gdp,
847 (EXT4_INODES_PER_GROUP(sb) - ino));
848 up_read(&grp->alloc_sem);
849 } else {
850 ext4_lock_group(sb, group);
853 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
854 if (S_ISDIR(mode)) {
855 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
856 if (sbi->s_log_groups_per_flex) {
857 ext4_group_t f = ext4_flex_group(sbi, group);
859 atomic_inc(&sbi->s_flex_groups[f].used_dirs);
862 if (ext4_has_group_desc_csum(sb)) {
863 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
864 EXT4_INODES_PER_GROUP(sb) / 8);
865 ext4_group_desc_csum_set(sb, group, gdp);
867 ext4_unlock_group(sb, group);
869 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
870 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
871 if (err) {
872 ext4_std_error(sb, err);
873 goto out;
876 percpu_counter_dec(&sbi->s_freeinodes_counter);
877 if (S_ISDIR(mode))
878 percpu_counter_inc(&sbi->s_dirs_counter);
880 if (sbi->s_log_groups_per_flex) {
881 flex_group = ext4_flex_group(sbi, group);
882 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
885 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
886 /* This is the optimal IO size (for stat), not the fs block size */
887 inode->i_blocks = 0;
888 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
889 ext4_current_time(inode);
891 memset(ei->i_data, 0, sizeof(ei->i_data));
892 ei->i_dir_start_lookup = 0;
893 ei->i_disksize = 0;
895 /* Don't inherit extent flag from directory, amongst others. */
896 ei->i_flags =
897 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
898 ei->i_file_acl = 0;
899 ei->i_dtime = 0;
900 ei->i_block_group = group;
901 ei->i_last_alloc_group = ~0;
903 ext4_set_inode_flags(inode);
904 if (IS_DIRSYNC(inode))
905 ext4_handle_sync(handle);
906 if (insert_inode_locked(inode) < 0) {
908 * Likely a bitmap corruption causing inode to be allocated
909 * twice.
911 err = -EIO;
912 ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
913 inode->i_ino);
914 goto out;
916 spin_lock(&sbi->s_next_gen_lock);
917 inode->i_generation = sbi->s_next_generation++;
918 spin_unlock(&sbi->s_next_gen_lock);
920 /* Precompute checksum seed for inode metadata */
921 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
922 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
923 __u32 csum;
924 __le32 inum = cpu_to_le32(inode->i_ino);
925 __le32 gen = cpu_to_le32(inode->i_generation);
926 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
927 sizeof(inum));
928 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
929 sizeof(gen));
932 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
933 ext4_set_inode_state(inode, EXT4_STATE_NEW);
935 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
937 ei->i_inline_off = 0;
938 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_INLINE_DATA))
939 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
941 ret = inode;
942 err = dquot_alloc_inode(inode);
943 if (err)
944 goto fail_drop;
946 err = ext4_init_acl(handle, inode, dir);
947 if (err)
948 goto fail_free_drop;
950 err = ext4_init_security(handle, inode, dir, qstr);
951 if (err)
952 goto fail_free_drop;
954 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
955 /* set extent flag only for directory, file and normal symlink*/
956 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
957 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
958 ext4_ext_tree_init(handle, inode);
962 if (ext4_handle_valid(handle)) {
963 ei->i_sync_tid = handle->h_transaction->t_tid;
964 ei->i_datasync_tid = handle->h_transaction->t_tid;
967 err = ext4_mark_inode_dirty(handle, inode);
968 if (err) {
969 ext4_std_error(sb, err);
970 goto fail_free_drop;
973 ext4_debug("allocating inode %lu\n", inode->i_ino);
974 trace_ext4_allocate_inode(inode, dir, mode);
975 brelse(inode_bitmap_bh);
976 return ret;
978 fail_free_drop:
979 dquot_free_inode(inode);
980 fail_drop:
981 clear_nlink(inode);
982 unlock_new_inode(inode);
983 out:
984 dquot_drop(inode);
985 inode->i_flags |= S_NOQUOTA;
986 iput(inode);
987 brelse(inode_bitmap_bh);
988 return ERR_PTR(err);
991 /* Verify that we are loading a valid orphan from disk */
992 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
994 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
995 ext4_group_t block_group;
996 int bit;
997 struct buffer_head *bitmap_bh;
998 struct inode *inode = NULL;
999 long err = -EIO;
1001 /* Error cases - e2fsck has already cleaned up for us */
1002 if (ino > max_ino) {
1003 ext4_warning(sb, "bad orphan ino %lu! e2fsck was run?", ino);
1004 goto error;
1007 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1008 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1009 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1010 if (!bitmap_bh) {
1011 ext4_warning(sb, "inode bitmap error for orphan %lu", ino);
1012 goto error;
1015 /* Having the inode bit set should be a 100% indicator that this
1016 * is a valid orphan (no e2fsck run on fs). Orphans also include
1017 * inodes that were being truncated, so we can't check i_nlink==0.
1019 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1020 goto bad_orphan;
1022 inode = ext4_iget(sb, ino);
1023 if (IS_ERR(inode))
1024 goto iget_failed;
1027 * If the orphans has i_nlinks > 0 then it should be able to be
1028 * truncated, otherwise it won't be removed from the orphan list
1029 * during processing and an infinite loop will result.
1031 if (inode->i_nlink && !ext4_can_truncate(inode))
1032 goto bad_orphan;
1034 if (NEXT_ORPHAN(inode) > max_ino)
1035 goto bad_orphan;
1036 brelse(bitmap_bh);
1037 return inode;
1039 iget_failed:
1040 err = PTR_ERR(inode);
1041 inode = NULL;
1042 bad_orphan:
1043 ext4_warning(sb, "bad orphan inode %lu! e2fsck was run?", ino);
1044 printk(KERN_WARNING "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1045 bit, (unsigned long long)bitmap_bh->b_blocknr,
1046 ext4_test_bit(bit, bitmap_bh->b_data));
1047 printk(KERN_WARNING "inode=%p\n", inode);
1048 if (inode) {
1049 printk(KERN_WARNING "is_bad_inode(inode)=%d\n",
1050 is_bad_inode(inode));
1051 printk(KERN_WARNING "NEXT_ORPHAN(inode)=%u\n",
1052 NEXT_ORPHAN(inode));
1053 printk(KERN_WARNING "max_ino=%lu\n", max_ino);
1054 printk(KERN_WARNING "i_nlink=%u\n", inode->i_nlink);
1055 /* Avoid freeing blocks if we got a bad deleted inode */
1056 if (inode->i_nlink == 0)
1057 inode->i_blocks = 0;
1058 iput(inode);
1060 brelse(bitmap_bh);
1061 error:
1062 return ERR_PTR(err);
1065 unsigned long ext4_count_free_inodes(struct super_block *sb)
1067 unsigned long desc_count;
1068 struct ext4_group_desc *gdp;
1069 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1070 #ifdef EXT4FS_DEBUG
1071 struct ext4_super_block *es;
1072 unsigned long bitmap_count, x;
1073 struct buffer_head *bitmap_bh = NULL;
1075 es = EXT4_SB(sb)->s_es;
1076 desc_count = 0;
1077 bitmap_count = 0;
1078 gdp = NULL;
1079 for (i = 0; i < ngroups; i++) {
1080 gdp = ext4_get_group_desc(sb, i, NULL);
1081 if (!gdp)
1082 continue;
1083 desc_count += ext4_free_inodes_count(sb, gdp);
1084 brelse(bitmap_bh);
1085 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1086 if (!bitmap_bh)
1087 continue;
1089 x = ext4_count_free(bitmap_bh->b_data,
1090 EXT4_INODES_PER_GROUP(sb) / 8);
1091 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1092 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1093 bitmap_count += x;
1095 brelse(bitmap_bh);
1096 printk(KERN_DEBUG "ext4_count_free_inodes: "
1097 "stored = %u, computed = %lu, %lu\n",
1098 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1099 return desc_count;
1100 #else
1101 desc_count = 0;
1102 for (i = 0; i < ngroups; i++) {
1103 gdp = ext4_get_group_desc(sb, i, NULL);
1104 if (!gdp)
1105 continue;
1106 desc_count += ext4_free_inodes_count(sb, gdp);
1107 cond_resched();
1109 return desc_count;
1110 #endif
1113 /* Called at mount-time, super-block is locked */
1114 unsigned long ext4_count_dirs(struct super_block * sb)
1116 unsigned long count = 0;
1117 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1119 for (i = 0; i < ngroups; i++) {
1120 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1121 if (!gdp)
1122 continue;
1123 count += ext4_used_dirs_count(sb, gdp);
1125 return count;
1129 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1130 * inode table. Must be called without any spinlock held. The only place
1131 * where it is called from on active part of filesystem is ext4lazyinit
1132 * thread, so we do not need any special locks, however we have to prevent
1133 * inode allocation from the current group, so we take alloc_sem lock, to
1134 * block ext4_new_inode() until we are finished.
1136 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1137 int barrier)
1139 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1140 struct ext4_sb_info *sbi = EXT4_SB(sb);
1141 struct ext4_group_desc *gdp = NULL;
1142 struct buffer_head *group_desc_bh;
1143 handle_t *handle;
1144 ext4_fsblk_t blk;
1145 int num, ret = 0, used_blks = 0;
1147 /* This should not happen, but just to be sure check this */
1148 if (sb->s_flags & MS_RDONLY) {
1149 ret = 1;
1150 goto out;
1153 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1154 if (!gdp)
1155 goto out;
1158 * We do not need to lock this, because we are the only one
1159 * handling this flag.
1161 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1162 goto out;
1164 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1165 if (IS_ERR(handle)) {
1166 ret = PTR_ERR(handle);
1167 goto out;
1170 down_write(&grp->alloc_sem);
1172 * If inode bitmap was already initialized there may be some
1173 * used inodes so we need to skip blocks with used inodes in
1174 * inode table.
1176 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1177 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1178 ext4_itable_unused_count(sb, gdp)),
1179 sbi->s_inodes_per_block);
1181 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1182 ext4_error(sb, "Something is wrong with group %u: "
1183 "used itable blocks: %d; "
1184 "itable unused count: %u",
1185 group, used_blks,
1186 ext4_itable_unused_count(sb, gdp));
1187 ret = 1;
1188 goto err_out;
1191 blk = ext4_inode_table(sb, gdp) + used_blks;
1192 num = sbi->s_itb_per_group - used_blks;
1194 BUFFER_TRACE(group_desc_bh, "get_write_access");
1195 ret = ext4_journal_get_write_access(handle,
1196 group_desc_bh);
1197 if (ret)
1198 goto err_out;
1201 * Skip zeroout if the inode table is full. But we set the ZEROED
1202 * flag anyway, because obviously, when it is full it does not need
1203 * further zeroing.
1205 if (unlikely(num == 0))
1206 goto skip_zeroout;
1208 ext4_debug("going to zero out inode table in group %d\n",
1209 group);
1210 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1211 if (ret < 0)
1212 goto err_out;
1213 if (barrier)
1214 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1216 skip_zeroout:
1217 ext4_lock_group(sb, group);
1218 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1219 ext4_group_desc_csum_set(sb, group, gdp);
1220 ext4_unlock_group(sb, group);
1222 BUFFER_TRACE(group_desc_bh,
1223 "call ext4_handle_dirty_metadata");
1224 ret = ext4_handle_dirty_metadata(handle, NULL,
1225 group_desc_bh);
1227 err_out:
1228 up_write(&grp->alloc_sem);
1229 ext4_journal_stop(handle);
1230 out:
1231 return ret;