irda: validate peer name and attribute lengths
[linux/fpc-iii.git] / lib / radix-tree.c
blobbe86b32bc87482a76f847b8f6a784069be5d78e6
1 /*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2, or (at
10 * your option) any later version.
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #include <linux/errno.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/radix-tree.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/gfp.h>
32 #include <linux/string.h>
33 #include <linux/bitops.h>
34 #include <linux/rcupdate.h>
37 #ifdef __KERNEL__
38 #define RADIX_TREE_MAP_SHIFT (CONFIG_BASE_SMALL ? 4 : 6)
39 #else
40 #define RADIX_TREE_MAP_SHIFT 3 /* For more stressful testing */
41 #endif
43 #define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT)
44 #define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1)
46 #define RADIX_TREE_TAG_LONGS \
47 ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
49 struct radix_tree_node {
50 unsigned int height; /* Height from the bottom */
51 unsigned int count;
52 struct rcu_head rcu_head;
53 void *slots[RADIX_TREE_MAP_SIZE];
54 unsigned long tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
57 struct radix_tree_path {
58 struct radix_tree_node *node;
59 int offset;
62 #define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long))
63 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
64 RADIX_TREE_MAP_SHIFT))
67 * The height_to_maxindex array needs to be one deeper than the maximum
68 * path as height 0 holds only 1 entry.
70 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
73 * Radix tree node cache.
75 static struct kmem_cache *radix_tree_node_cachep;
78 * Per-cpu pool of preloaded nodes
80 struct radix_tree_preload {
81 int nr;
82 struct radix_tree_node *nodes[RADIX_TREE_MAX_PATH];
84 DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
86 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
88 return root->gfp_mask & __GFP_BITS_MASK;
91 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
92 int offset)
94 __set_bit(offset, node->tags[tag]);
97 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
98 int offset)
100 __clear_bit(offset, node->tags[tag]);
103 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
104 int offset)
106 return test_bit(offset, node->tags[tag]);
109 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
111 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
114 static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
116 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
119 static inline void root_tag_clear_all(struct radix_tree_root *root)
121 root->gfp_mask &= __GFP_BITS_MASK;
124 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
126 return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
130 * Returns 1 if any slot in the node has this tag set.
131 * Otherwise returns 0.
133 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
135 int idx;
136 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
137 if (node->tags[tag][idx])
138 return 1;
140 return 0;
143 * This assumes that the caller has performed appropriate preallocation, and
144 * that the caller has pinned this thread of control to the current CPU.
146 static struct radix_tree_node *
147 radix_tree_node_alloc(struct radix_tree_root *root)
149 struct radix_tree_node *ret = NULL;
150 gfp_t gfp_mask = root_gfp_mask(root);
152 if (!(gfp_mask & __GFP_WAIT)) {
153 struct radix_tree_preload *rtp;
156 * Provided the caller has preloaded here, we will always
157 * succeed in getting a node here (and never reach
158 * kmem_cache_alloc)
160 rtp = &__get_cpu_var(radix_tree_preloads);
161 if (rtp->nr) {
162 ret = rtp->nodes[rtp->nr - 1];
163 rtp->nodes[rtp->nr - 1] = NULL;
164 rtp->nr--;
167 if (ret == NULL)
168 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
170 BUG_ON(radix_tree_is_indirect_ptr(ret));
171 return ret;
174 static void radix_tree_node_rcu_free(struct rcu_head *head)
176 struct radix_tree_node *node =
177 container_of(head, struct radix_tree_node, rcu_head);
180 * must only free zeroed nodes into the slab. radix_tree_shrink
181 * can leave us with a non-NULL entry in the first slot, so clear
182 * that here to make sure.
184 tag_clear(node, 0, 0);
185 tag_clear(node, 1, 0);
186 node->slots[0] = NULL;
187 node->count = 0;
189 kmem_cache_free(radix_tree_node_cachep, node);
192 static inline void
193 radix_tree_node_free(struct radix_tree_node *node)
195 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
199 * Load up this CPU's radix_tree_node buffer with sufficient objects to
200 * ensure that the addition of a single element in the tree cannot fail. On
201 * success, return zero, with preemption disabled. On error, return -ENOMEM
202 * with preemption not disabled.
204 int radix_tree_preload(gfp_t gfp_mask)
206 struct radix_tree_preload *rtp;
207 struct radix_tree_node *node;
208 int ret = -ENOMEM;
210 preempt_disable();
211 rtp = &__get_cpu_var(radix_tree_preloads);
212 while (rtp->nr < ARRAY_SIZE(rtp->nodes)) {
213 preempt_enable();
214 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
215 if (node == NULL)
216 goto out;
217 preempt_disable();
218 rtp = &__get_cpu_var(radix_tree_preloads);
219 if (rtp->nr < ARRAY_SIZE(rtp->nodes))
220 rtp->nodes[rtp->nr++] = node;
221 else
222 kmem_cache_free(radix_tree_node_cachep, node);
224 ret = 0;
225 out:
226 return ret;
228 EXPORT_SYMBOL(radix_tree_preload);
231 * Return the maximum key which can be store into a
232 * radix tree with height HEIGHT.
234 static inline unsigned long radix_tree_maxindex(unsigned int height)
236 return height_to_maxindex[height];
240 * Extend a radix tree so it can store key @index.
242 static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
244 struct radix_tree_node *node;
245 unsigned int height;
246 int tag;
248 /* Figure out what the height should be. */
249 height = root->height + 1;
250 while (index > radix_tree_maxindex(height))
251 height++;
253 if (root->rnode == NULL) {
254 root->height = height;
255 goto out;
258 do {
259 unsigned int newheight;
260 if (!(node = radix_tree_node_alloc(root)))
261 return -ENOMEM;
263 /* Increase the height. */
264 node->slots[0] = radix_tree_indirect_to_ptr(root->rnode);
266 /* Propagate the aggregated tag info into the new root */
267 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
268 if (root_tag_get(root, tag))
269 tag_set(node, tag, 0);
272 newheight = root->height+1;
273 node->height = newheight;
274 node->count = 1;
275 node = radix_tree_ptr_to_indirect(node);
276 rcu_assign_pointer(root->rnode, node);
277 root->height = newheight;
278 } while (height > root->height);
279 out:
280 return 0;
284 * radix_tree_insert - insert into a radix tree
285 * @root: radix tree root
286 * @index: index key
287 * @item: item to insert
289 * Insert an item into the radix tree at position @index.
291 int radix_tree_insert(struct radix_tree_root *root,
292 unsigned long index, void *item)
294 struct radix_tree_node *node = NULL, *slot;
295 unsigned int height, shift;
296 int offset;
297 int error;
299 BUG_ON(radix_tree_is_indirect_ptr(item));
301 /* Make sure the tree is high enough. */
302 if (index > radix_tree_maxindex(root->height)) {
303 error = radix_tree_extend(root, index);
304 if (error)
305 return error;
308 slot = radix_tree_indirect_to_ptr(root->rnode);
310 height = root->height;
311 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
313 offset = 0; /* uninitialised var warning */
314 while (height > 0) {
315 if (slot == NULL) {
316 /* Have to add a child node. */
317 if (!(slot = radix_tree_node_alloc(root)))
318 return -ENOMEM;
319 slot->height = height;
320 if (node) {
321 rcu_assign_pointer(node->slots[offset], slot);
322 node->count++;
323 } else
324 rcu_assign_pointer(root->rnode,
325 radix_tree_ptr_to_indirect(slot));
328 /* Go a level down */
329 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
330 node = slot;
331 slot = node->slots[offset];
332 shift -= RADIX_TREE_MAP_SHIFT;
333 height--;
336 if (slot != NULL)
337 return -EEXIST;
339 if (node) {
340 node->count++;
341 rcu_assign_pointer(node->slots[offset], item);
342 BUG_ON(tag_get(node, 0, offset));
343 BUG_ON(tag_get(node, 1, offset));
344 } else {
345 rcu_assign_pointer(root->rnode, item);
346 BUG_ON(root_tag_get(root, 0));
347 BUG_ON(root_tag_get(root, 1));
350 return 0;
352 EXPORT_SYMBOL(radix_tree_insert);
355 * radix_tree_lookup_slot - lookup a slot in a radix tree
356 * @root: radix tree root
357 * @index: index key
359 * Returns: the slot corresponding to the position @index in the
360 * radix tree @root. This is useful for update-if-exists operations.
362 * This function can be called under rcu_read_lock iff the slot is not
363 * modified by radix_tree_replace_slot, otherwise it must be called
364 * exclusive from other writers. Any dereference of the slot must be done
365 * using radix_tree_deref_slot.
367 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
369 unsigned int height, shift;
370 struct radix_tree_node *node, **slot;
372 node = rcu_dereference(root->rnode);
373 if (node == NULL)
374 return NULL;
376 if (!radix_tree_is_indirect_ptr(node)) {
377 if (index > 0)
378 return NULL;
379 return (void **)&root->rnode;
381 node = radix_tree_indirect_to_ptr(node);
383 height = node->height;
384 if (index > radix_tree_maxindex(height))
385 return NULL;
387 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
389 do {
390 slot = (struct radix_tree_node **)
391 (node->slots + ((index>>shift) & RADIX_TREE_MAP_MASK));
392 node = rcu_dereference(*slot);
393 if (node == NULL)
394 return NULL;
396 shift -= RADIX_TREE_MAP_SHIFT;
397 height--;
398 } while (height > 0);
400 return (void **)slot;
402 EXPORT_SYMBOL(radix_tree_lookup_slot);
405 * radix_tree_lookup - perform lookup operation on a radix tree
406 * @root: radix tree root
407 * @index: index key
409 * Lookup the item at the position @index in the radix tree @root.
411 * This function can be called under rcu_read_lock, however the caller
412 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
413 * them safely). No RCU barriers are required to access or modify the
414 * returned item, however.
416 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
418 unsigned int height, shift;
419 struct radix_tree_node *node, **slot;
421 node = rcu_dereference(root->rnode);
422 if (node == NULL)
423 return NULL;
425 if (!radix_tree_is_indirect_ptr(node)) {
426 if (index > 0)
427 return NULL;
428 return node;
430 node = radix_tree_indirect_to_ptr(node);
432 height = node->height;
433 if (index > radix_tree_maxindex(height))
434 return NULL;
436 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
438 do {
439 slot = (struct radix_tree_node **)
440 (node->slots + ((index>>shift) & RADIX_TREE_MAP_MASK));
441 node = rcu_dereference(*slot);
442 if (node == NULL)
443 return NULL;
445 shift -= RADIX_TREE_MAP_SHIFT;
446 height--;
447 } while (height > 0);
449 return node;
451 EXPORT_SYMBOL(radix_tree_lookup);
454 * radix_tree_tag_set - set a tag on a radix tree node
455 * @root: radix tree root
456 * @index: index key
457 * @tag: tag index
459 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
460 * corresponding to @index in the radix tree. From
461 * the root all the way down to the leaf node.
463 * Returns the address of the tagged item. Setting a tag on a not-present
464 * item is a bug.
466 void *radix_tree_tag_set(struct radix_tree_root *root,
467 unsigned long index, unsigned int tag)
469 unsigned int height, shift;
470 struct radix_tree_node *slot;
472 height = root->height;
473 BUG_ON(index > radix_tree_maxindex(height));
475 slot = radix_tree_indirect_to_ptr(root->rnode);
476 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
478 while (height > 0) {
479 int offset;
481 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
482 if (!tag_get(slot, tag, offset))
483 tag_set(slot, tag, offset);
484 slot = slot->slots[offset];
485 BUG_ON(slot == NULL);
486 shift -= RADIX_TREE_MAP_SHIFT;
487 height--;
490 /* set the root's tag bit */
491 if (slot && !root_tag_get(root, tag))
492 root_tag_set(root, tag);
494 return slot;
496 EXPORT_SYMBOL(radix_tree_tag_set);
499 * radix_tree_tag_clear - clear a tag on a radix tree node
500 * @root: radix tree root
501 * @index: index key
502 * @tag: tag index
504 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
505 * corresponding to @index in the radix tree. If
506 * this causes the leaf node to have no tags set then clear the tag in the
507 * next-to-leaf node, etc.
509 * Returns the address of the tagged item on success, else NULL. ie:
510 * has the same return value and semantics as radix_tree_lookup().
512 void *radix_tree_tag_clear(struct radix_tree_root *root,
513 unsigned long index, unsigned int tag)
516 * The radix tree path needs to be one longer than the maximum path
517 * since the "list" is null terminated.
519 struct radix_tree_path path[RADIX_TREE_MAX_PATH + 1], *pathp = path;
520 struct radix_tree_node *slot = NULL;
521 unsigned int height, shift;
523 height = root->height;
524 if (index > radix_tree_maxindex(height))
525 goto out;
527 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
528 pathp->node = NULL;
529 slot = radix_tree_indirect_to_ptr(root->rnode);
531 while (height > 0) {
532 int offset;
534 if (slot == NULL)
535 goto out;
537 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
538 pathp[1].offset = offset;
539 pathp[1].node = slot;
540 slot = slot->slots[offset];
541 pathp++;
542 shift -= RADIX_TREE_MAP_SHIFT;
543 height--;
546 if (slot == NULL)
547 goto out;
549 while (pathp->node) {
550 if (!tag_get(pathp->node, tag, pathp->offset))
551 goto out;
552 tag_clear(pathp->node, tag, pathp->offset);
553 if (any_tag_set(pathp->node, tag))
554 goto out;
555 pathp--;
558 /* clear the root's tag bit */
559 if (root_tag_get(root, tag))
560 root_tag_clear(root, tag);
562 out:
563 return slot;
565 EXPORT_SYMBOL(radix_tree_tag_clear);
567 #ifndef __KERNEL__ /* Only the test harness uses this at present */
569 * radix_tree_tag_get - get a tag on a radix tree node
570 * @root: radix tree root
571 * @index: index key
572 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
574 * Return values:
576 * 0: tag not present or not set
577 * 1: tag set
579 int radix_tree_tag_get(struct radix_tree_root *root,
580 unsigned long index, unsigned int tag)
582 unsigned int height, shift;
583 struct radix_tree_node *node;
584 int saw_unset_tag = 0;
586 /* check the root's tag bit */
587 if (!root_tag_get(root, tag))
588 return 0;
590 node = rcu_dereference(root->rnode);
591 if (node == NULL)
592 return 0;
594 if (!radix_tree_is_indirect_ptr(node))
595 return (index == 0);
596 node = radix_tree_indirect_to_ptr(node);
598 height = node->height;
599 if (index > radix_tree_maxindex(height))
600 return 0;
602 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
604 for ( ; ; ) {
605 int offset;
607 if (node == NULL)
608 return 0;
610 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
613 * This is just a debug check. Later, we can bale as soon as
614 * we see an unset tag.
616 if (!tag_get(node, tag, offset))
617 saw_unset_tag = 1;
618 if (height == 1) {
619 int ret = tag_get(node, tag, offset);
621 BUG_ON(ret && saw_unset_tag);
622 return !!ret;
624 node = rcu_dereference(node->slots[offset]);
625 shift -= RADIX_TREE_MAP_SHIFT;
626 height--;
629 EXPORT_SYMBOL(radix_tree_tag_get);
630 #endif
633 * radix_tree_next_hole - find the next hole (not-present entry)
634 * @root: tree root
635 * @index: index key
636 * @max_scan: maximum range to search
638 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the lowest
639 * indexed hole.
641 * Returns: the index of the hole if found, otherwise returns an index
642 * outside of the set specified (in which case 'return - index >= max_scan'
643 * will be true).
645 * radix_tree_next_hole may be called under rcu_read_lock. However, like
646 * radix_tree_gang_lookup, this will not atomically search a snapshot of the
647 * tree at a single point in time. For example, if a hole is created at index
648 * 5, then subsequently a hole is created at index 10, radix_tree_next_hole
649 * covering both indexes may return 10 if called under rcu_read_lock.
651 unsigned long radix_tree_next_hole(struct radix_tree_root *root,
652 unsigned long index, unsigned long max_scan)
654 unsigned long i;
656 for (i = 0; i < max_scan; i++) {
657 if (!radix_tree_lookup(root, index))
658 break;
659 index++;
660 if (index == 0)
661 break;
664 return index;
666 EXPORT_SYMBOL(radix_tree_next_hole);
668 static unsigned int
669 __lookup(struct radix_tree_node *slot, void ***results, unsigned long index,
670 unsigned int max_items, unsigned long *next_index)
672 unsigned int nr_found = 0;
673 unsigned int shift, height;
674 unsigned long i;
676 height = slot->height;
677 if (height == 0)
678 goto out;
679 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
681 for ( ; height > 1; height--) {
682 i = (index >> shift) & RADIX_TREE_MAP_MASK;
683 for (;;) {
684 if (slot->slots[i] != NULL)
685 break;
686 index &= ~((1UL << shift) - 1);
687 index += 1UL << shift;
688 if (index == 0)
689 goto out; /* 32-bit wraparound */
690 i++;
691 if (i == RADIX_TREE_MAP_SIZE)
692 goto out;
695 shift -= RADIX_TREE_MAP_SHIFT;
696 slot = rcu_dereference(slot->slots[i]);
697 if (slot == NULL)
698 goto out;
701 /* Bottom level: grab some items */
702 for (i = index & RADIX_TREE_MAP_MASK; i < RADIX_TREE_MAP_SIZE; i++) {
703 index++;
704 if (slot->slots[i]) {
705 results[nr_found++] = &(slot->slots[i]);
706 if (nr_found == max_items)
707 goto out;
710 out:
711 *next_index = index;
712 return nr_found;
716 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
717 * @root: radix tree root
718 * @results: where the results of the lookup are placed
719 * @first_index: start the lookup from this key
720 * @max_items: place up to this many items at *results
722 * Performs an index-ascending scan of the tree for present items. Places
723 * them at *@results and returns the number of items which were placed at
724 * *@results.
726 * The implementation is naive.
728 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
729 * rcu_read_lock. In this case, rather than the returned results being
730 * an atomic snapshot of the tree at a single point in time, the semantics
731 * of an RCU protected gang lookup are as though multiple radix_tree_lookups
732 * have been issued in individual locks, and results stored in 'results'.
734 unsigned int
735 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
736 unsigned long first_index, unsigned int max_items)
738 unsigned long max_index;
739 struct radix_tree_node *node;
740 unsigned long cur_index = first_index;
741 unsigned int ret;
743 node = rcu_dereference(root->rnode);
744 if (!node)
745 return 0;
747 if (!radix_tree_is_indirect_ptr(node)) {
748 if (first_index > 0)
749 return 0;
750 results[0] = node;
751 return 1;
753 node = radix_tree_indirect_to_ptr(node);
755 max_index = radix_tree_maxindex(node->height);
757 ret = 0;
758 while (ret < max_items) {
759 unsigned int nr_found, slots_found, i;
760 unsigned long next_index; /* Index of next search */
762 if (cur_index > max_index)
763 break;
764 slots_found = __lookup(node, (void ***)results + ret, cur_index,
765 max_items - ret, &next_index);
766 nr_found = 0;
767 for (i = 0; i < slots_found; i++) {
768 struct radix_tree_node *slot;
769 slot = *(((void ***)results)[ret + i]);
770 if (!slot)
771 continue;
772 results[ret + nr_found] = rcu_dereference(slot);
773 nr_found++;
775 ret += nr_found;
776 if (next_index == 0)
777 break;
778 cur_index = next_index;
781 return ret;
783 EXPORT_SYMBOL(radix_tree_gang_lookup);
786 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
787 * @root: radix tree root
788 * @results: where the results of the lookup are placed
789 * @first_index: start the lookup from this key
790 * @max_items: place up to this many items at *results
792 * Performs an index-ascending scan of the tree for present items. Places
793 * their slots at *@results and returns the number of items which were
794 * placed at *@results.
796 * The implementation is naive.
798 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
799 * be dereferenced with radix_tree_deref_slot, and if using only RCU
800 * protection, radix_tree_deref_slot may fail requiring a retry.
802 unsigned int
803 radix_tree_gang_lookup_slot(struct radix_tree_root *root, void ***results,
804 unsigned long first_index, unsigned int max_items)
806 unsigned long max_index;
807 struct radix_tree_node *node;
808 unsigned long cur_index = first_index;
809 unsigned int ret;
811 node = rcu_dereference(root->rnode);
812 if (!node)
813 return 0;
815 if (!radix_tree_is_indirect_ptr(node)) {
816 if (first_index > 0)
817 return 0;
818 results[0] = (void **)&root->rnode;
819 return 1;
821 node = radix_tree_indirect_to_ptr(node);
823 max_index = radix_tree_maxindex(node->height);
825 ret = 0;
826 while (ret < max_items) {
827 unsigned int slots_found;
828 unsigned long next_index; /* Index of next search */
830 if (cur_index > max_index)
831 break;
832 slots_found = __lookup(node, results + ret, cur_index,
833 max_items - ret, &next_index);
834 ret += slots_found;
835 if (next_index == 0)
836 break;
837 cur_index = next_index;
840 return ret;
842 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
845 * FIXME: the two tag_get()s here should use find_next_bit() instead of
846 * open-coding the search.
848 static unsigned int
849 __lookup_tag(struct radix_tree_node *slot, void ***results, unsigned long index,
850 unsigned int max_items, unsigned long *next_index, unsigned int tag)
852 unsigned int nr_found = 0;
853 unsigned int shift, height;
855 height = slot->height;
856 if (height == 0)
857 goto out;
858 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
860 while (height > 0) {
861 unsigned long i = (index >> shift) & RADIX_TREE_MAP_MASK ;
863 for (;;) {
864 if (tag_get(slot, tag, i))
865 break;
866 index &= ~((1UL << shift) - 1);
867 index += 1UL << shift;
868 if (index == 0)
869 goto out; /* 32-bit wraparound */
870 i++;
871 if (i == RADIX_TREE_MAP_SIZE)
872 goto out;
874 height--;
875 if (height == 0) { /* Bottom level: grab some items */
876 unsigned long j = index & RADIX_TREE_MAP_MASK;
878 for ( ; j < RADIX_TREE_MAP_SIZE; j++) {
879 index++;
880 if (!tag_get(slot, tag, j))
881 continue;
883 * Even though the tag was found set, we need to
884 * recheck that we have a non-NULL node, because
885 * if this lookup is lockless, it may have been
886 * subsequently deleted.
888 * Similar care must be taken in any place that
889 * lookup ->slots[x] without a lock (ie. can't
890 * rely on its value remaining the same).
892 if (slot->slots[j]) {
893 results[nr_found++] = &(slot->slots[j]);
894 if (nr_found == max_items)
895 goto out;
899 shift -= RADIX_TREE_MAP_SHIFT;
900 slot = rcu_dereference(slot->slots[i]);
901 if (slot == NULL)
902 break;
904 out:
905 *next_index = index;
906 return nr_found;
910 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
911 * based on a tag
912 * @root: radix tree root
913 * @results: where the results of the lookup are placed
914 * @first_index: start the lookup from this key
915 * @max_items: place up to this many items at *results
916 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
918 * Performs an index-ascending scan of the tree for present items which
919 * have the tag indexed by @tag set. Places the items at *@results and
920 * returns the number of items which were placed at *@results.
922 unsigned int
923 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
924 unsigned long first_index, unsigned int max_items,
925 unsigned int tag)
927 struct radix_tree_node *node;
928 unsigned long max_index;
929 unsigned long cur_index = first_index;
930 unsigned int ret;
932 /* check the root's tag bit */
933 if (!root_tag_get(root, tag))
934 return 0;
936 node = rcu_dereference(root->rnode);
937 if (!node)
938 return 0;
940 if (!radix_tree_is_indirect_ptr(node)) {
941 if (first_index > 0)
942 return 0;
943 results[0] = node;
944 return 1;
946 node = radix_tree_indirect_to_ptr(node);
948 max_index = radix_tree_maxindex(node->height);
950 ret = 0;
951 while (ret < max_items) {
952 unsigned int nr_found, slots_found, i;
953 unsigned long next_index; /* Index of next search */
955 if (cur_index > max_index)
956 break;
957 slots_found = __lookup_tag(node, (void ***)results + ret,
958 cur_index, max_items - ret, &next_index, tag);
959 nr_found = 0;
960 for (i = 0; i < slots_found; i++) {
961 struct radix_tree_node *slot;
962 slot = *(((void ***)results)[ret + i]);
963 if (!slot)
964 continue;
965 results[ret + nr_found] = rcu_dereference(slot);
966 nr_found++;
968 ret += nr_found;
969 if (next_index == 0)
970 break;
971 cur_index = next_index;
974 return ret;
976 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
979 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
980 * radix tree based on a tag
981 * @root: radix tree root
982 * @results: where the results of the lookup are placed
983 * @first_index: start the lookup from this key
984 * @max_items: place up to this many items at *results
985 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
987 * Performs an index-ascending scan of the tree for present items which
988 * have the tag indexed by @tag set. Places the slots at *@results and
989 * returns the number of slots which were placed at *@results.
991 unsigned int
992 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
993 unsigned long first_index, unsigned int max_items,
994 unsigned int tag)
996 struct radix_tree_node *node;
997 unsigned long max_index;
998 unsigned long cur_index = first_index;
999 unsigned int ret;
1001 /* check the root's tag bit */
1002 if (!root_tag_get(root, tag))
1003 return 0;
1005 node = rcu_dereference(root->rnode);
1006 if (!node)
1007 return 0;
1009 if (!radix_tree_is_indirect_ptr(node)) {
1010 if (first_index > 0)
1011 return 0;
1012 results[0] = (void **)&root->rnode;
1013 return 1;
1015 node = radix_tree_indirect_to_ptr(node);
1017 max_index = radix_tree_maxindex(node->height);
1019 ret = 0;
1020 while (ret < max_items) {
1021 unsigned int slots_found;
1022 unsigned long next_index; /* Index of next search */
1024 if (cur_index > max_index)
1025 break;
1026 slots_found = __lookup_tag(node, results + ret,
1027 cur_index, max_items - ret, &next_index, tag);
1028 ret += slots_found;
1029 if (next_index == 0)
1030 break;
1031 cur_index = next_index;
1034 return ret;
1036 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1040 * radix_tree_shrink - shrink height of a radix tree to minimal
1041 * @root radix tree root
1043 static inline void radix_tree_shrink(struct radix_tree_root *root)
1045 /* try to shrink tree height */
1046 while (root->height > 0) {
1047 struct radix_tree_node *to_free = root->rnode;
1048 void *newptr;
1050 BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1051 to_free = radix_tree_indirect_to_ptr(to_free);
1054 * The candidate node has more than one child, or its child
1055 * is not at the leftmost slot, we cannot shrink.
1057 if (to_free->count != 1)
1058 break;
1059 if (!to_free->slots[0])
1060 break;
1063 * We don't need rcu_assign_pointer(), since we are simply
1064 * moving the node from one part of the tree to another. If
1065 * it was safe to dereference the old pointer to it
1066 * (to_free->slots[0]), it will be safe to dereference the new
1067 * one (root->rnode).
1069 newptr = to_free->slots[0];
1070 if (root->height > 1)
1071 newptr = radix_tree_ptr_to_indirect(newptr);
1072 root->rnode = newptr;
1073 root->height--;
1074 radix_tree_node_free(to_free);
1079 * radix_tree_delete - delete an item from a radix tree
1080 * @root: radix tree root
1081 * @index: index key
1083 * Remove the item at @index from the radix tree rooted at @root.
1085 * Returns the address of the deleted item, or NULL if it was not present.
1087 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1090 * The radix tree path needs to be one longer than the maximum path
1091 * since the "list" is null terminated.
1093 struct radix_tree_path path[RADIX_TREE_MAX_PATH + 1], *pathp = path;
1094 struct radix_tree_node *slot = NULL;
1095 struct radix_tree_node *to_free;
1096 unsigned int height, shift;
1097 int tag;
1098 int offset;
1100 height = root->height;
1101 if (index > radix_tree_maxindex(height))
1102 goto out;
1104 slot = root->rnode;
1105 if (height == 0) {
1106 root_tag_clear_all(root);
1107 root->rnode = NULL;
1108 goto out;
1110 slot = radix_tree_indirect_to_ptr(slot);
1112 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
1113 pathp->node = NULL;
1115 do {
1116 if (slot == NULL)
1117 goto out;
1119 pathp++;
1120 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1121 pathp->offset = offset;
1122 pathp->node = slot;
1123 slot = slot->slots[offset];
1124 shift -= RADIX_TREE_MAP_SHIFT;
1125 height--;
1126 } while (height > 0);
1128 if (slot == NULL)
1129 goto out;
1132 * Clear all tags associated with the just-deleted item
1134 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1135 if (tag_get(pathp->node, tag, pathp->offset))
1136 radix_tree_tag_clear(root, index, tag);
1139 to_free = NULL;
1140 /* Now free the nodes we do not need anymore */
1141 while (pathp->node) {
1142 pathp->node->slots[pathp->offset] = NULL;
1143 pathp->node->count--;
1145 * Queue the node for deferred freeing after the
1146 * last reference to it disappears (set NULL, above).
1148 if (to_free)
1149 radix_tree_node_free(to_free);
1151 if (pathp->node->count) {
1152 if (pathp->node ==
1153 radix_tree_indirect_to_ptr(root->rnode))
1154 radix_tree_shrink(root);
1155 goto out;
1158 /* Node with zero slots in use so free it */
1159 to_free = pathp->node;
1160 pathp--;
1163 root_tag_clear_all(root);
1164 root->height = 0;
1165 root->rnode = NULL;
1166 if (to_free)
1167 radix_tree_node_free(to_free);
1169 out:
1170 return slot;
1172 EXPORT_SYMBOL(radix_tree_delete);
1175 * radix_tree_tagged - test whether any items in the tree are tagged
1176 * @root: radix tree root
1177 * @tag: tag to test
1179 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1181 return root_tag_get(root, tag);
1183 EXPORT_SYMBOL(radix_tree_tagged);
1185 static void
1186 radix_tree_node_ctor(void *node)
1188 memset(node, 0, sizeof(struct radix_tree_node));
1191 static __init unsigned long __maxindex(unsigned int height)
1193 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1194 int shift = RADIX_TREE_INDEX_BITS - width;
1196 if (shift < 0)
1197 return ~0UL;
1198 if (shift >= BITS_PER_LONG)
1199 return 0UL;
1200 return ~0UL >> shift;
1203 static __init void radix_tree_init_maxindex(void)
1205 unsigned int i;
1207 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1208 height_to_maxindex[i] = __maxindex(i);
1211 static int radix_tree_callback(struct notifier_block *nfb,
1212 unsigned long action,
1213 void *hcpu)
1215 int cpu = (long)hcpu;
1216 struct radix_tree_preload *rtp;
1218 /* Free per-cpu pool of perloaded nodes */
1219 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1220 rtp = &per_cpu(radix_tree_preloads, cpu);
1221 while (rtp->nr) {
1222 kmem_cache_free(radix_tree_node_cachep,
1223 rtp->nodes[rtp->nr-1]);
1224 rtp->nodes[rtp->nr-1] = NULL;
1225 rtp->nr--;
1228 return NOTIFY_OK;
1231 void __init radix_tree_init(void)
1233 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1234 sizeof(struct radix_tree_node), 0,
1235 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1236 radix_tree_node_ctor);
1237 radix_tree_init_maxindex();
1238 hotcpu_notifier(radix_tree_callback, 0);