Merge branch 'sock_hold-misuses'
[linux/fpc-iii.git] / drivers / thermal / intel_powerclamp.c
blobd718cd179ddbb29277d05bf3cb308ebd17abc901
1 /*
2 * intel_powerclamp.c - package c-state idle injection
4 * Copyright (c) 2012, Intel Corporation.
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 * Jacob Pan <jacob.jun.pan@linux.intel.com>
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms and conditions of the GNU General Public License,
12 * version 2, as published by the Free Software Foundation.
14 * This program is distributed in the hope it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc.,
21 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
24 * TODO:
25 * 1. better handle wakeup from external interrupts, currently a fixed
26 * compensation is added to clamping duration when excessive amount
27 * of wakeups are observed during idle time. the reason is that in
28 * case of external interrupts without need for ack, clamping down
29 * cpu in non-irq context does not reduce irq. for majority of the
30 * cases, clamping down cpu does help reduce irq as well, we should
31 * be able to differenciate the two cases and give a quantitative
32 * solution for the irqs that we can control. perhaps based on
33 * get_cpu_iowait_time_us()
35 * 2. synchronization with other hw blocks
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
42 #include <linux/module.h>
43 #include <linux/kernel.h>
44 #include <linux/delay.h>
45 #include <linux/kthread.h>
46 #include <linux/cpu.h>
47 #include <linux/thermal.h>
48 #include <linux/slab.h>
49 #include <linux/tick.h>
50 #include <linux/debugfs.h>
51 #include <linux/seq_file.h>
52 #include <linux/sched/rt.h>
53 #include <uapi/linux/sched/types.h>
55 #include <asm/nmi.h>
56 #include <asm/msr.h>
57 #include <asm/mwait.h>
58 #include <asm/cpu_device_id.h>
59 #include <asm/hardirq.h>
61 #define MAX_TARGET_RATIO (50U)
62 /* For each undisturbed clamping period (no extra wake ups during idle time),
63 * we increment the confidence counter for the given target ratio.
64 * CONFIDENCE_OK defines the level where runtime calibration results are
65 * valid.
67 #define CONFIDENCE_OK (3)
68 /* Default idle injection duration, driver adjust sleep time to meet target
69 * idle ratio. Similar to frequency modulation.
71 #define DEFAULT_DURATION_JIFFIES (6)
73 static unsigned int target_mwait;
74 static struct dentry *debug_dir;
76 /* user selected target */
77 static unsigned int set_target_ratio;
78 static unsigned int current_ratio;
79 static bool should_skip;
80 static bool reduce_irq;
81 static atomic_t idle_wakeup_counter;
82 static unsigned int control_cpu; /* The cpu assigned to collect stat and update
83 * control parameters. default to BSP but BSP
84 * can be offlined.
86 static bool clamping;
88 static const struct sched_param sparam = {
89 .sched_priority = MAX_USER_RT_PRIO / 2,
91 struct powerclamp_worker_data {
92 struct kthread_worker *worker;
93 struct kthread_work balancing_work;
94 struct kthread_delayed_work idle_injection_work;
95 unsigned int cpu;
96 unsigned int count;
97 unsigned int guard;
98 unsigned int window_size_now;
99 unsigned int target_ratio;
100 unsigned int duration_jiffies;
101 bool clamping;
104 static struct powerclamp_worker_data * __percpu worker_data;
105 static struct thermal_cooling_device *cooling_dev;
106 static unsigned long *cpu_clamping_mask; /* bit map for tracking per cpu
107 * clamping kthread worker
110 static unsigned int duration;
111 static unsigned int pkg_cstate_ratio_cur;
112 static unsigned int window_size;
114 static int duration_set(const char *arg, const struct kernel_param *kp)
116 int ret = 0;
117 unsigned long new_duration;
119 ret = kstrtoul(arg, 10, &new_duration);
120 if (ret)
121 goto exit;
122 if (new_duration > 25 || new_duration < 6) {
123 pr_err("Out of recommended range %lu, between 6-25ms\n",
124 new_duration);
125 ret = -EINVAL;
128 duration = clamp(new_duration, 6ul, 25ul);
129 smp_mb();
131 exit:
133 return ret;
136 static const struct kernel_param_ops duration_ops = {
137 .set = duration_set,
138 .get = param_get_int,
142 module_param_cb(duration, &duration_ops, &duration, 0644);
143 MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec.");
145 struct powerclamp_calibration_data {
146 unsigned long confidence; /* used for calibration, basically a counter
147 * gets incremented each time a clamping
148 * period is completed without extra wakeups
149 * once that counter is reached given level,
150 * compensation is deemed usable.
152 unsigned long steady_comp; /* steady state compensation used when
153 * no extra wakeups occurred.
155 unsigned long dynamic_comp; /* compensate excessive wakeup from idle
156 * mostly from external interrupts.
160 static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO];
162 static int window_size_set(const char *arg, const struct kernel_param *kp)
164 int ret = 0;
165 unsigned long new_window_size;
167 ret = kstrtoul(arg, 10, &new_window_size);
168 if (ret)
169 goto exit_win;
170 if (new_window_size > 10 || new_window_size < 2) {
171 pr_err("Out of recommended window size %lu, between 2-10\n",
172 new_window_size);
173 ret = -EINVAL;
176 window_size = clamp(new_window_size, 2ul, 10ul);
177 smp_mb();
179 exit_win:
181 return ret;
184 static const struct kernel_param_ops window_size_ops = {
185 .set = window_size_set,
186 .get = param_get_int,
189 module_param_cb(window_size, &window_size_ops, &window_size, 0644);
190 MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n"
191 "\tpowerclamp controls idle ratio within this window. larger\n"
192 "\twindow size results in slower response time but more smooth\n"
193 "\tclamping results. default to 2.");
195 static void find_target_mwait(void)
197 unsigned int eax, ebx, ecx, edx;
198 unsigned int highest_cstate = 0;
199 unsigned int highest_subcstate = 0;
200 int i;
202 if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
203 return;
205 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
207 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
208 !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
209 return;
211 edx >>= MWAIT_SUBSTATE_SIZE;
212 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
213 if (edx & MWAIT_SUBSTATE_MASK) {
214 highest_cstate = i;
215 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
218 target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
219 (highest_subcstate - 1);
223 struct pkg_cstate_info {
224 bool skip;
225 int msr_index;
226 int cstate_id;
229 #define PKG_CSTATE_INIT(id) { \
230 .msr_index = MSR_PKG_C##id##_RESIDENCY, \
231 .cstate_id = id \
234 static struct pkg_cstate_info pkg_cstates[] = {
235 PKG_CSTATE_INIT(2),
236 PKG_CSTATE_INIT(3),
237 PKG_CSTATE_INIT(6),
238 PKG_CSTATE_INIT(7),
239 PKG_CSTATE_INIT(8),
240 PKG_CSTATE_INIT(9),
241 PKG_CSTATE_INIT(10),
242 {NULL},
245 static bool has_pkg_state_counter(void)
247 u64 val;
248 struct pkg_cstate_info *info = pkg_cstates;
250 /* check if any one of the counter msrs exists */
251 while (info->msr_index) {
252 if (!rdmsrl_safe(info->msr_index, &val))
253 return true;
254 info++;
257 return false;
260 static u64 pkg_state_counter(void)
262 u64 val;
263 u64 count = 0;
264 struct pkg_cstate_info *info = pkg_cstates;
266 while (info->msr_index) {
267 if (!info->skip) {
268 if (!rdmsrl_safe(info->msr_index, &val))
269 count += val;
270 else
271 info->skip = true;
273 info++;
276 return count;
279 static unsigned int get_compensation(int ratio)
281 unsigned int comp = 0;
283 /* we only use compensation if all adjacent ones are good */
284 if (ratio == 1 &&
285 cal_data[ratio].confidence >= CONFIDENCE_OK &&
286 cal_data[ratio + 1].confidence >= CONFIDENCE_OK &&
287 cal_data[ratio + 2].confidence >= CONFIDENCE_OK) {
288 comp = (cal_data[ratio].steady_comp +
289 cal_data[ratio + 1].steady_comp +
290 cal_data[ratio + 2].steady_comp) / 3;
291 } else if (ratio == MAX_TARGET_RATIO - 1 &&
292 cal_data[ratio].confidence >= CONFIDENCE_OK &&
293 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
294 cal_data[ratio - 2].confidence >= CONFIDENCE_OK) {
295 comp = (cal_data[ratio].steady_comp +
296 cal_data[ratio - 1].steady_comp +
297 cal_data[ratio - 2].steady_comp) / 3;
298 } else if (cal_data[ratio].confidence >= CONFIDENCE_OK &&
299 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
300 cal_data[ratio + 1].confidence >= CONFIDENCE_OK) {
301 comp = (cal_data[ratio].steady_comp +
302 cal_data[ratio - 1].steady_comp +
303 cal_data[ratio + 1].steady_comp) / 3;
306 /* REVISIT: simple penalty of double idle injection */
307 if (reduce_irq)
308 comp = ratio;
309 /* do not exceed limit */
310 if (comp + ratio >= MAX_TARGET_RATIO)
311 comp = MAX_TARGET_RATIO - ratio - 1;
313 return comp;
316 static void adjust_compensation(int target_ratio, unsigned int win)
318 int delta;
319 struct powerclamp_calibration_data *d = &cal_data[target_ratio];
322 * adjust compensations if confidence level has not been reached or
323 * there are too many wakeups during the last idle injection period, we
324 * cannot trust the data for compensation.
326 if (d->confidence >= CONFIDENCE_OK ||
327 atomic_read(&idle_wakeup_counter) >
328 win * num_online_cpus())
329 return;
331 delta = set_target_ratio - current_ratio;
332 /* filter out bad data */
333 if (delta >= 0 && delta <= (1+target_ratio/10)) {
334 if (d->steady_comp)
335 d->steady_comp =
336 roundup(delta+d->steady_comp, 2)/2;
337 else
338 d->steady_comp = delta;
339 d->confidence++;
343 static bool powerclamp_adjust_controls(unsigned int target_ratio,
344 unsigned int guard, unsigned int win)
346 static u64 msr_last, tsc_last;
347 u64 msr_now, tsc_now;
348 u64 val64;
350 /* check result for the last window */
351 msr_now = pkg_state_counter();
352 tsc_now = rdtsc();
354 /* calculate pkg cstate vs tsc ratio */
355 if (!msr_last || !tsc_last)
356 current_ratio = 1;
357 else if (tsc_now-tsc_last) {
358 val64 = 100*(msr_now-msr_last);
359 do_div(val64, (tsc_now-tsc_last));
360 current_ratio = val64;
363 /* update record */
364 msr_last = msr_now;
365 tsc_last = tsc_now;
367 adjust_compensation(target_ratio, win);
369 * too many external interrupts, set flag such
370 * that we can take measure later.
372 reduce_irq = atomic_read(&idle_wakeup_counter) >=
373 2 * win * num_online_cpus();
375 atomic_set(&idle_wakeup_counter, 0);
376 /* if we are above target+guard, skip */
377 return set_target_ratio + guard <= current_ratio;
380 static void clamp_balancing_func(struct kthread_work *work)
382 struct powerclamp_worker_data *w_data;
383 int sleeptime;
384 unsigned long target_jiffies;
385 unsigned int compensated_ratio;
386 int interval; /* jiffies to sleep for each attempt */
388 w_data = container_of(work, struct powerclamp_worker_data,
389 balancing_work);
392 * make sure user selected ratio does not take effect until
393 * the next round. adjust target_ratio if user has changed
394 * target such that we can converge quickly.
396 w_data->target_ratio = READ_ONCE(set_target_ratio);
397 w_data->guard = 1 + w_data->target_ratio / 20;
398 w_data->window_size_now = window_size;
399 w_data->duration_jiffies = msecs_to_jiffies(duration);
400 w_data->count++;
403 * systems may have different ability to enter package level
404 * c-states, thus we need to compensate the injected idle ratio
405 * to achieve the actual target reported by the HW.
407 compensated_ratio = w_data->target_ratio +
408 get_compensation(w_data->target_ratio);
409 if (compensated_ratio <= 0)
410 compensated_ratio = 1;
411 interval = w_data->duration_jiffies * 100 / compensated_ratio;
413 /* align idle time */
414 target_jiffies = roundup(jiffies, interval);
415 sleeptime = target_jiffies - jiffies;
416 if (sleeptime <= 0)
417 sleeptime = 1;
419 if (clamping && w_data->clamping && cpu_online(w_data->cpu))
420 kthread_queue_delayed_work(w_data->worker,
421 &w_data->idle_injection_work,
422 sleeptime);
425 static void clamp_idle_injection_func(struct kthread_work *work)
427 struct powerclamp_worker_data *w_data;
429 w_data = container_of(work, struct powerclamp_worker_data,
430 idle_injection_work.work);
433 * only elected controlling cpu can collect stats and update
434 * control parameters.
436 if (w_data->cpu == control_cpu &&
437 !(w_data->count % w_data->window_size_now)) {
438 should_skip =
439 powerclamp_adjust_controls(w_data->target_ratio,
440 w_data->guard,
441 w_data->window_size_now);
442 smp_mb();
445 if (should_skip)
446 goto balance;
448 play_idle(jiffies_to_msecs(w_data->duration_jiffies));
450 balance:
451 if (clamping && w_data->clamping && cpu_online(w_data->cpu))
452 kthread_queue_work(w_data->worker, &w_data->balancing_work);
456 * 1 HZ polling while clamping is active, useful for userspace
457 * to monitor actual idle ratio.
459 static void poll_pkg_cstate(struct work_struct *dummy);
460 static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate);
461 static void poll_pkg_cstate(struct work_struct *dummy)
463 static u64 msr_last;
464 static u64 tsc_last;
466 u64 msr_now;
467 u64 tsc_now;
468 u64 val64;
470 msr_now = pkg_state_counter();
471 tsc_now = rdtsc();
473 /* calculate pkg cstate vs tsc ratio */
474 if (!msr_last || !tsc_last)
475 pkg_cstate_ratio_cur = 1;
476 else {
477 if (tsc_now - tsc_last) {
478 val64 = 100 * (msr_now - msr_last);
479 do_div(val64, (tsc_now - tsc_last));
480 pkg_cstate_ratio_cur = val64;
484 /* update record */
485 msr_last = msr_now;
486 tsc_last = tsc_now;
488 if (true == clamping)
489 schedule_delayed_work(&poll_pkg_cstate_work, HZ);
492 static void start_power_clamp_worker(unsigned long cpu)
494 struct powerclamp_worker_data *w_data = per_cpu_ptr(worker_data, cpu);
495 struct kthread_worker *worker;
497 worker = kthread_create_worker_on_cpu(cpu, 0, "kidle_inject/%ld", cpu);
498 if (IS_ERR(worker))
499 return;
501 w_data->worker = worker;
502 w_data->count = 0;
503 w_data->cpu = cpu;
504 w_data->clamping = true;
505 set_bit(cpu, cpu_clamping_mask);
506 sched_setscheduler(worker->task, SCHED_FIFO, &sparam);
507 kthread_init_work(&w_data->balancing_work, clamp_balancing_func);
508 kthread_init_delayed_work(&w_data->idle_injection_work,
509 clamp_idle_injection_func);
510 kthread_queue_work(w_data->worker, &w_data->balancing_work);
513 static void stop_power_clamp_worker(unsigned long cpu)
515 struct powerclamp_worker_data *w_data = per_cpu_ptr(worker_data, cpu);
517 if (!w_data->worker)
518 return;
520 w_data->clamping = false;
522 * Make sure that all works that get queued after this point see
523 * the clamping disabled. The counter part is not needed because
524 * there is an implicit memory barrier when the queued work
525 * is proceed.
527 smp_wmb();
528 kthread_cancel_work_sync(&w_data->balancing_work);
529 kthread_cancel_delayed_work_sync(&w_data->idle_injection_work);
531 * The balancing work still might be queued here because
532 * the handling of the "clapming" variable, cancel, and queue
533 * operations are not synchronized via a lock. But it is not
534 * a big deal. The balancing work is fast and destroy kthread
535 * will wait for it.
537 clear_bit(w_data->cpu, cpu_clamping_mask);
538 kthread_destroy_worker(w_data->worker);
540 w_data->worker = NULL;
543 static int start_power_clamp(void)
545 unsigned long cpu;
547 set_target_ratio = clamp(set_target_ratio, 0U, MAX_TARGET_RATIO - 1);
548 /* prevent cpu hotplug */
549 get_online_cpus();
551 /* prefer BSP */
552 control_cpu = 0;
553 if (!cpu_online(control_cpu))
554 control_cpu = smp_processor_id();
556 clamping = true;
557 schedule_delayed_work(&poll_pkg_cstate_work, 0);
559 /* start one kthread worker per online cpu */
560 for_each_online_cpu(cpu) {
561 start_power_clamp_worker(cpu);
563 put_online_cpus();
565 return 0;
568 static void end_power_clamp(void)
570 int i;
573 * Block requeuing in all the kthread workers. They will flush and
574 * stop faster.
576 clamping = false;
577 if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) {
578 for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) {
579 pr_debug("clamping worker for cpu %d alive, destroy\n",
581 stop_power_clamp_worker(i);
586 static int powerclamp_cpu_online(unsigned int cpu)
588 if (clamping == false)
589 return 0;
590 start_power_clamp_worker(cpu);
591 /* prefer BSP as controlling CPU */
592 if (cpu == 0) {
593 control_cpu = 0;
594 smp_mb();
596 return 0;
599 static int powerclamp_cpu_predown(unsigned int cpu)
601 if (clamping == false)
602 return 0;
604 stop_power_clamp_worker(cpu);
605 if (cpu != control_cpu)
606 return 0;
608 control_cpu = cpumask_first(cpu_online_mask);
609 if (control_cpu == cpu)
610 control_cpu = cpumask_next(cpu, cpu_online_mask);
611 smp_mb();
612 return 0;
615 static int powerclamp_get_max_state(struct thermal_cooling_device *cdev,
616 unsigned long *state)
618 *state = MAX_TARGET_RATIO;
620 return 0;
623 static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev,
624 unsigned long *state)
626 if (true == clamping)
627 *state = pkg_cstate_ratio_cur;
628 else
629 /* to save power, do not poll idle ratio while not clamping */
630 *state = -1; /* indicates invalid state */
632 return 0;
635 static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev,
636 unsigned long new_target_ratio)
638 int ret = 0;
640 new_target_ratio = clamp(new_target_ratio, 0UL,
641 (unsigned long) (MAX_TARGET_RATIO-1));
642 if (set_target_ratio == 0 && new_target_ratio > 0) {
643 pr_info("Start idle injection to reduce power\n");
644 set_target_ratio = new_target_ratio;
645 ret = start_power_clamp();
646 goto exit_set;
647 } else if (set_target_ratio > 0 && new_target_ratio == 0) {
648 pr_info("Stop forced idle injection\n");
649 end_power_clamp();
650 set_target_ratio = 0;
651 } else /* adjust currently running */ {
652 set_target_ratio = new_target_ratio;
653 /* make new set_target_ratio visible to other cpus */
654 smp_mb();
657 exit_set:
658 return ret;
661 /* bind to generic thermal layer as cooling device*/
662 static struct thermal_cooling_device_ops powerclamp_cooling_ops = {
663 .get_max_state = powerclamp_get_max_state,
664 .get_cur_state = powerclamp_get_cur_state,
665 .set_cur_state = powerclamp_set_cur_state,
668 static const struct x86_cpu_id __initconst intel_powerclamp_ids[] = {
669 { X86_VENDOR_INTEL, X86_FAMILY_ANY, X86_MODEL_ANY, X86_FEATURE_MWAIT },
672 MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids);
674 static int __init powerclamp_probe(void)
677 if (!x86_match_cpu(intel_powerclamp_ids)) {
678 pr_err("CPU does not support MWAIT");
679 return -ENODEV;
682 /* The goal for idle time alignment is to achieve package cstate. */
683 if (!has_pkg_state_counter()) {
684 pr_info("No package C-state available");
685 return -ENODEV;
688 /* find the deepest mwait value */
689 find_target_mwait();
691 return 0;
694 static int powerclamp_debug_show(struct seq_file *m, void *unused)
696 int i = 0;
698 seq_printf(m, "controlling cpu: %d\n", control_cpu);
699 seq_printf(m, "pct confidence steady dynamic (compensation)\n");
700 for (i = 0; i < MAX_TARGET_RATIO; i++) {
701 seq_printf(m, "%d\t%lu\t%lu\t%lu\n",
703 cal_data[i].confidence,
704 cal_data[i].steady_comp,
705 cal_data[i].dynamic_comp);
708 return 0;
711 static int powerclamp_debug_open(struct inode *inode,
712 struct file *file)
714 return single_open(file, powerclamp_debug_show, inode->i_private);
717 static const struct file_operations powerclamp_debug_fops = {
718 .open = powerclamp_debug_open,
719 .read = seq_read,
720 .llseek = seq_lseek,
721 .release = single_release,
722 .owner = THIS_MODULE,
725 static inline void powerclamp_create_debug_files(void)
727 debug_dir = debugfs_create_dir("intel_powerclamp", NULL);
728 if (!debug_dir)
729 return;
731 if (!debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir,
732 cal_data, &powerclamp_debug_fops))
733 goto file_error;
735 return;
737 file_error:
738 debugfs_remove_recursive(debug_dir);
741 static enum cpuhp_state hp_state;
743 static int __init powerclamp_init(void)
745 int retval;
746 int bitmap_size;
748 bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long);
749 cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL);
750 if (!cpu_clamping_mask)
751 return -ENOMEM;
753 /* probe cpu features and ids here */
754 retval = powerclamp_probe();
755 if (retval)
756 goto exit_free;
758 /* set default limit, maybe adjusted during runtime based on feedback */
759 window_size = 2;
760 retval = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
761 "thermal/intel_powerclamp:online",
762 powerclamp_cpu_online,
763 powerclamp_cpu_predown);
764 if (retval < 0)
765 goto exit_free;
767 hp_state = retval;
769 worker_data = alloc_percpu(struct powerclamp_worker_data);
770 if (!worker_data) {
771 retval = -ENOMEM;
772 goto exit_unregister;
775 cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL,
776 &powerclamp_cooling_ops);
777 if (IS_ERR(cooling_dev)) {
778 retval = -ENODEV;
779 goto exit_free_thread;
782 if (!duration)
783 duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES);
785 powerclamp_create_debug_files();
787 return 0;
789 exit_free_thread:
790 free_percpu(worker_data);
791 exit_unregister:
792 cpuhp_remove_state_nocalls(hp_state);
793 exit_free:
794 kfree(cpu_clamping_mask);
795 return retval;
797 module_init(powerclamp_init);
799 static void __exit powerclamp_exit(void)
801 end_power_clamp();
802 cpuhp_remove_state_nocalls(hp_state);
803 free_percpu(worker_data);
804 thermal_cooling_device_unregister(cooling_dev);
805 kfree(cpu_clamping_mask);
807 cancel_delayed_work_sync(&poll_pkg_cstate_work);
808 debugfs_remove_recursive(debug_dir);
810 module_exit(powerclamp_exit);
812 MODULE_LICENSE("GPL");
813 MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>");
814 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@linux.intel.com>");
815 MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs");