ath5k: add a new bus op for reading the mac address
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath5k / base.c
blob7583841fc29a83bf4d6f547582f30bd4fe878c0b
1 /*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
8 * All rights reserved.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
28 * NO WARRANTY
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
43 #include <linux/module.h>
44 #include <linux/delay.h>
45 #include <linux/hardirq.h>
46 #include <linux/if.h>
47 #include <linux/io.h>
48 #include <linux/netdevice.h>
49 #include <linux/cache.h>
50 #include <linux/ethtool.h>
51 #include <linux/uaccess.h>
52 #include <linux/slab.h>
53 #include <linux/etherdevice.h>
55 #include <net/ieee80211_radiotap.h>
57 #include <asm/unaligned.h>
59 #include "base.h"
60 #include "reg.h"
61 #include "debug.h"
62 #include "ani.h"
64 #define CREATE_TRACE_POINTS
65 #include "trace.h"
67 int ath5k_modparam_nohwcrypt;
68 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
69 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
71 static int modparam_all_channels;
72 module_param_named(all_channels, modparam_all_channels, bool, S_IRUGO);
73 MODULE_PARM_DESC(all_channels, "Expose all channels the device can use.");
75 /* Module info */
76 MODULE_AUTHOR("Jiri Slaby");
77 MODULE_AUTHOR("Nick Kossifidis");
78 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
79 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
80 MODULE_LICENSE("Dual BSD/GPL");
82 static int ath5k_init(struct ieee80211_hw *hw);
83 static int ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan,
84 bool skip_pcu);
85 int ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
86 void ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf);
88 /* Known SREVs */
89 static const struct ath5k_srev_name srev_names[] = {
90 #ifdef CONFIG_ATHEROS_AR231X
91 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R2 },
92 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R7 },
93 { "2313", AR5K_VERSION_MAC, AR5K_SREV_AR2313_R8 },
94 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R6 },
95 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R7 },
96 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R1 },
97 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R2 },
98 #else
99 { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 },
100 { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 },
101 { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A },
102 { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B },
103 { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 },
104 { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 },
105 { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 },
106 { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A },
107 { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 },
108 { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 },
109 { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 },
110 { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 },
111 { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 },
112 { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 },
113 { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 },
114 { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 },
115 { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 },
116 { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 },
117 #endif
118 { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN },
119 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
120 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
121 { "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A },
122 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
123 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
124 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
125 { "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B },
126 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
127 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
128 { "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B },
129 { "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 },
130 { "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 },
131 { "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 },
132 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
133 #ifdef CONFIG_ATHEROS_AR231X
134 { "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 },
135 { "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 },
136 #endif
137 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
140 static const struct ieee80211_rate ath5k_rates[] = {
141 { .bitrate = 10,
142 .hw_value = ATH5K_RATE_CODE_1M, },
143 { .bitrate = 20,
144 .hw_value = ATH5K_RATE_CODE_2M,
145 .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
146 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
147 { .bitrate = 55,
148 .hw_value = ATH5K_RATE_CODE_5_5M,
149 .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
150 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
151 { .bitrate = 110,
152 .hw_value = ATH5K_RATE_CODE_11M,
153 .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
154 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
155 { .bitrate = 60,
156 .hw_value = ATH5K_RATE_CODE_6M,
157 .flags = 0 },
158 { .bitrate = 90,
159 .hw_value = ATH5K_RATE_CODE_9M,
160 .flags = 0 },
161 { .bitrate = 120,
162 .hw_value = ATH5K_RATE_CODE_12M,
163 .flags = 0 },
164 { .bitrate = 180,
165 .hw_value = ATH5K_RATE_CODE_18M,
166 .flags = 0 },
167 { .bitrate = 240,
168 .hw_value = ATH5K_RATE_CODE_24M,
169 .flags = 0 },
170 { .bitrate = 360,
171 .hw_value = ATH5K_RATE_CODE_36M,
172 .flags = 0 },
173 { .bitrate = 480,
174 .hw_value = ATH5K_RATE_CODE_48M,
175 .flags = 0 },
176 { .bitrate = 540,
177 .hw_value = ATH5K_RATE_CODE_54M,
178 .flags = 0 },
179 /* XR missing */
182 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
184 u64 tsf = ath5k_hw_get_tsf64(ah);
186 if ((tsf & 0x7fff) < rstamp)
187 tsf -= 0x8000;
189 return (tsf & ~0x7fff) | rstamp;
192 const char *
193 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
195 const char *name = "xxxxx";
196 unsigned int i;
198 for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
199 if (srev_names[i].sr_type != type)
200 continue;
202 if ((val & 0xf0) == srev_names[i].sr_val)
203 name = srev_names[i].sr_name;
205 if ((val & 0xff) == srev_names[i].sr_val) {
206 name = srev_names[i].sr_name;
207 break;
211 return name;
213 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
215 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
216 return ath5k_hw_reg_read(ah, reg_offset);
219 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
221 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
222 ath5k_hw_reg_write(ah, val, reg_offset);
225 static const struct ath_ops ath5k_common_ops = {
226 .read = ath5k_ioread32,
227 .write = ath5k_iowrite32,
230 /***********************\
231 * Driver Initialization *
232 \***********************/
234 static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
236 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
237 struct ath5k_softc *sc = hw->priv;
238 struct ath_regulatory *regulatory = ath5k_hw_regulatory(sc->ah);
240 return ath_reg_notifier_apply(wiphy, request, regulatory);
243 /********************\
244 * Channel/mode setup *
245 \********************/
248 * Returns true for the channel numbers used without all_channels modparam.
250 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
252 if (band == IEEE80211_BAND_2GHZ && chan <= 14)
253 return true;
255 return /* UNII 1,2 */
256 (((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
257 /* midband */
258 ((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
259 /* UNII-3 */
260 ((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
261 /* 802.11j 5.030-5.080 GHz (20MHz) */
262 (chan == 8 || chan == 12 || chan == 16) ||
263 /* 802.11j 4.9GHz (20MHz) */
264 (chan == 184 || chan == 188 || chan == 192 || chan == 196));
267 static unsigned int
268 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
269 unsigned int mode, unsigned int max)
271 unsigned int count, size, chfreq, freq, ch;
272 enum ieee80211_band band;
274 switch (mode) {
275 case AR5K_MODE_11A:
276 /* 1..220, but 2GHz frequencies are filtered by check_channel */
277 size = 220;
278 chfreq = CHANNEL_5GHZ;
279 band = IEEE80211_BAND_5GHZ;
280 break;
281 case AR5K_MODE_11B:
282 case AR5K_MODE_11G:
283 size = 26;
284 chfreq = CHANNEL_2GHZ;
285 band = IEEE80211_BAND_2GHZ;
286 break;
287 default:
288 ATH5K_WARN(ah->ah_sc, "bad mode, not copying channels\n");
289 return 0;
292 count = 0;
293 for (ch = 1; ch <= size && count < max; ch++) {
294 freq = ieee80211_channel_to_frequency(ch, band);
296 if (freq == 0) /* mapping failed - not a standard channel */
297 continue;
299 /* Check if channel is supported by the chipset */
300 if (!ath5k_channel_ok(ah, freq, chfreq))
301 continue;
303 if (!modparam_all_channels &&
304 !ath5k_is_standard_channel(ch, band))
305 continue;
307 /* Write channel info and increment counter */
308 channels[count].center_freq = freq;
309 channels[count].band = band;
310 switch (mode) {
311 case AR5K_MODE_11A:
312 case AR5K_MODE_11G:
313 channels[count].hw_value = chfreq | CHANNEL_OFDM;
314 break;
315 case AR5K_MODE_11B:
316 channels[count].hw_value = CHANNEL_B;
319 count++;
322 return count;
325 static void
326 ath5k_setup_rate_idx(struct ath5k_softc *sc, struct ieee80211_supported_band *b)
328 u8 i;
330 for (i = 0; i < AR5K_MAX_RATES; i++)
331 sc->rate_idx[b->band][i] = -1;
333 for (i = 0; i < b->n_bitrates; i++) {
334 sc->rate_idx[b->band][b->bitrates[i].hw_value] = i;
335 if (b->bitrates[i].hw_value_short)
336 sc->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
340 static int
341 ath5k_setup_bands(struct ieee80211_hw *hw)
343 struct ath5k_softc *sc = hw->priv;
344 struct ath5k_hw *ah = sc->ah;
345 struct ieee80211_supported_band *sband;
346 int max_c, count_c = 0;
347 int i;
349 BUILD_BUG_ON(ARRAY_SIZE(sc->sbands) < IEEE80211_NUM_BANDS);
350 max_c = ARRAY_SIZE(sc->channels);
352 /* 2GHz band */
353 sband = &sc->sbands[IEEE80211_BAND_2GHZ];
354 sband->band = IEEE80211_BAND_2GHZ;
355 sband->bitrates = &sc->rates[IEEE80211_BAND_2GHZ][0];
357 if (test_bit(AR5K_MODE_11G, sc->ah->ah_capabilities.cap_mode)) {
358 /* G mode */
359 memcpy(sband->bitrates, &ath5k_rates[0],
360 sizeof(struct ieee80211_rate) * 12);
361 sband->n_bitrates = 12;
363 sband->channels = sc->channels;
364 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
365 AR5K_MODE_11G, max_c);
367 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
368 count_c = sband->n_channels;
369 max_c -= count_c;
370 } else if (test_bit(AR5K_MODE_11B, sc->ah->ah_capabilities.cap_mode)) {
371 /* B mode */
372 memcpy(sband->bitrates, &ath5k_rates[0],
373 sizeof(struct ieee80211_rate) * 4);
374 sband->n_bitrates = 4;
376 /* 5211 only supports B rates and uses 4bit rate codes
377 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
378 * fix them up here:
380 if (ah->ah_version == AR5K_AR5211) {
381 for (i = 0; i < 4; i++) {
382 sband->bitrates[i].hw_value =
383 sband->bitrates[i].hw_value & 0xF;
384 sband->bitrates[i].hw_value_short =
385 sband->bitrates[i].hw_value_short & 0xF;
389 sband->channels = sc->channels;
390 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
391 AR5K_MODE_11B, max_c);
393 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
394 count_c = sband->n_channels;
395 max_c -= count_c;
397 ath5k_setup_rate_idx(sc, sband);
399 /* 5GHz band, A mode */
400 if (test_bit(AR5K_MODE_11A, sc->ah->ah_capabilities.cap_mode)) {
401 sband = &sc->sbands[IEEE80211_BAND_5GHZ];
402 sband->band = IEEE80211_BAND_5GHZ;
403 sband->bitrates = &sc->rates[IEEE80211_BAND_5GHZ][0];
405 memcpy(sband->bitrates, &ath5k_rates[4],
406 sizeof(struct ieee80211_rate) * 8);
407 sband->n_bitrates = 8;
409 sband->channels = &sc->channels[count_c];
410 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
411 AR5K_MODE_11A, max_c);
413 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
415 ath5k_setup_rate_idx(sc, sband);
417 ath5k_debug_dump_bands(sc);
419 return 0;
423 * Set/change channels. We always reset the chip.
424 * To accomplish this we must first cleanup any pending DMA,
425 * then restart stuff after a la ath5k_init.
427 * Called with sc->lock.
430 ath5k_chan_set(struct ath5k_softc *sc, struct ieee80211_channel *chan)
432 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
433 "channel set, resetting (%u -> %u MHz)\n",
434 sc->curchan->center_freq, chan->center_freq);
437 * To switch channels clear any pending DMA operations;
438 * wait long enough for the RX fifo to drain, reset the
439 * hardware at the new frequency, and then re-enable
440 * the relevant bits of the h/w.
442 return ath5k_reset(sc, chan, true);
445 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
447 struct ath5k_vif_iter_data *iter_data = data;
448 int i;
449 struct ath5k_vif *avf = (void *)vif->drv_priv;
451 if (iter_data->hw_macaddr)
452 for (i = 0; i < ETH_ALEN; i++)
453 iter_data->mask[i] &=
454 ~(iter_data->hw_macaddr[i] ^ mac[i]);
456 if (!iter_data->found_active) {
457 iter_data->found_active = true;
458 memcpy(iter_data->active_mac, mac, ETH_ALEN);
461 if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
462 if (compare_ether_addr(iter_data->hw_macaddr, mac) == 0)
463 iter_data->need_set_hw_addr = false;
465 if (!iter_data->any_assoc) {
466 if (avf->assoc)
467 iter_data->any_assoc = true;
470 /* Calculate combined mode - when APs are active, operate in AP mode.
471 * Otherwise use the mode of the new interface. This can currently
472 * only deal with combinations of APs and STAs. Only one ad-hoc
473 * interfaces is allowed.
475 if (avf->opmode == NL80211_IFTYPE_AP)
476 iter_data->opmode = NL80211_IFTYPE_AP;
477 else {
478 if (avf->opmode == NL80211_IFTYPE_STATION)
479 iter_data->n_stas++;
480 if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
481 iter_data->opmode = avf->opmode;
485 void
486 ath5k_update_bssid_mask_and_opmode(struct ath5k_softc *sc,
487 struct ieee80211_vif *vif)
489 struct ath_common *common = ath5k_hw_common(sc->ah);
490 struct ath5k_vif_iter_data iter_data;
491 u32 rfilt;
494 * Use the hardware MAC address as reference, the hardware uses it
495 * together with the BSSID mask when matching addresses.
497 iter_data.hw_macaddr = common->macaddr;
498 memset(&iter_data.mask, 0xff, ETH_ALEN);
499 iter_data.found_active = false;
500 iter_data.need_set_hw_addr = true;
501 iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
502 iter_data.n_stas = 0;
504 if (vif)
505 ath5k_vif_iter(&iter_data, vif->addr, vif);
507 /* Get list of all active MAC addresses */
508 ieee80211_iterate_active_interfaces_atomic(sc->hw, ath5k_vif_iter,
509 &iter_data);
510 memcpy(sc->bssidmask, iter_data.mask, ETH_ALEN);
512 sc->opmode = iter_data.opmode;
513 if (sc->opmode == NL80211_IFTYPE_UNSPECIFIED)
514 /* Nothing active, default to station mode */
515 sc->opmode = NL80211_IFTYPE_STATION;
517 ath5k_hw_set_opmode(sc->ah, sc->opmode);
518 ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
519 sc->opmode, ath_opmode_to_string(sc->opmode));
521 if (iter_data.need_set_hw_addr && iter_data.found_active)
522 ath5k_hw_set_lladdr(sc->ah, iter_data.active_mac);
524 if (ath5k_hw_hasbssidmask(sc->ah))
525 ath5k_hw_set_bssid_mask(sc->ah, sc->bssidmask);
527 /* Set up RX Filter */
528 if (iter_data.n_stas > 1) {
529 /* If you have multiple STA interfaces connected to
530 * different APs, ARPs are not received (most of the time?)
531 * Enabling PROMISC appears to fix that probem.
533 sc->filter_flags |= AR5K_RX_FILTER_PROM;
536 rfilt = sc->filter_flags;
537 ath5k_hw_set_rx_filter(sc->ah, rfilt);
538 ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
541 static inline int
542 ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix)
544 int rix;
546 /* return base rate on errors */
547 if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
548 "hw_rix out of bounds: %x\n", hw_rix))
549 return 0;
551 rix = sc->rate_idx[sc->curchan->band][hw_rix];
552 if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
553 rix = 0;
555 return rix;
558 /***************\
559 * Buffers setup *
560 \***************/
562 static
563 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_softc *sc, dma_addr_t *skb_addr)
565 struct ath_common *common = ath5k_hw_common(sc->ah);
566 struct sk_buff *skb;
569 * Allocate buffer with headroom_needed space for the
570 * fake physical layer header at the start.
572 skb = ath_rxbuf_alloc(common,
573 common->rx_bufsize,
574 GFP_ATOMIC);
576 if (!skb) {
577 ATH5K_ERR(sc, "can't alloc skbuff of size %u\n",
578 common->rx_bufsize);
579 return NULL;
582 *skb_addr = dma_map_single(sc->dev,
583 skb->data, common->rx_bufsize,
584 DMA_FROM_DEVICE);
586 if (unlikely(dma_mapping_error(sc->dev, *skb_addr))) {
587 ATH5K_ERR(sc, "%s: DMA mapping failed\n", __func__);
588 dev_kfree_skb(skb);
589 return NULL;
591 return skb;
594 static int
595 ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
597 struct ath5k_hw *ah = sc->ah;
598 struct sk_buff *skb = bf->skb;
599 struct ath5k_desc *ds;
600 int ret;
602 if (!skb) {
603 skb = ath5k_rx_skb_alloc(sc, &bf->skbaddr);
604 if (!skb)
605 return -ENOMEM;
606 bf->skb = skb;
610 * Setup descriptors. For receive we always terminate
611 * the descriptor list with a self-linked entry so we'll
612 * not get overrun under high load (as can happen with a
613 * 5212 when ANI processing enables PHY error frames).
615 * To ensure the last descriptor is self-linked we create
616 * each descriptor as self-linked and add it to the end. As
617 * each additional descriptor is added the previous self-linked
618 * entry is "fixed" naturally. This should be safe even
619 * if DMA is happening. When processing RX interrupts we
620 * never remove/process the last, self-linked, entry on the
621 * descriptor list. This ensures the hardware always has
622 * someplace to write a new frame.
624 ds = bf->desc;
625 ds->ds_link = bf->daddr; /* link to self */
626 ds->ds_data = bf->skbaddr;
627 ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
628 if (ret) {
629 ATH5K_ERR(sc, "%s: could not setup RX desc\n", __func__);
630 return ret;
633 if (sc->rxlink != NULL)
634 *sc->rxlink = bf->daddr;
635 sc->rxlink = &ds->ds_link;
636 return 0;
639 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
641 struct ieee80211_hdr *hdr;
642 enum ath5k_pkt_type htype;
643 __le16 fc;
645 hdr = (struct ieee80211_hdr *)skb->data;
646 fc = hdr->frame_control;
648 if (ieee80211_is_beacon(fc))
649 htype = AR5K_PKT_TYPE_BEACON;
650 else if (ieee80211_is_probe_resp(fc))
651 htype = AR5K_PKT_TYPE_PROBE_RESP;
652 else if (ieee80211_is_atim(fc))
653 htype = AR5K_PKT_TYPE_ATIM;
654 else if (ieee80211_is_pspoll(fc))
655 htype = AR5K_PKT_TYPE_PSPOLL;
656 else
657 htype = AR5K_PKT_TYPE_NORMAL;
659 return htype;
662 static int
663 ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf,
664 struct ath5k_txq *txq, int padsize)
666 struct ath5k_hw *ah = sc->ah;
667 struct ath5k_desc *ds = bf->desc;
668 struct sk_buff *skb = bf->skb;
669 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
670 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
671 struct ieee80211_rate *rate;
672 unsigned int mrr_rate[3], mrr_tries[3];
673 int i, ret;
674 u16 hw_rate;
675 u16 cts_rate = 0;
676 u16 duration = 0;
677 u8 rc_flags;
679 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
681 /* XXX endianness */
682 bf->skbaddr = dma_map_single(sc->dev, skb->data, skb->len,
683 DMA_TO_DEVICE);
685 rate = ieee80211_get_tx_rate(sc->hw, info);
686 if (!rate) {
687 ret = -EINVAL;
688 goto err_unmap;
691 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
692 flags |= AR5K_TXDESC_NOACK;
694 rc_flags = info->control.rates[0].flags;
695 hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
696 rate->hw_value_short : rate->hw_value;
698 pktlen = skb->len;
700 /* FIXME: If we are in g mode and rate is a CCK rate
701 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
702 * from tx power (value is in dB units already) */
703 if (info->control.hw_key) {
704 keyidx = info->control.hw_key->hw_key_idx;
705 pktlen += info->control.hw_key->icv_len;
707 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
708 flags |= AR5K_TXDESC_RTSENA;
709 cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
710 duration = le16_to_cpu(ieee80211_rts_duration(sc->hw,
711 info->control.vif, pktlen, info));
713 if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
714 flags |= AR5K_TXDESC_CTSENA;
715 cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
716 duration = le16_to_cpu(ieee80211_ctstoself_duration(sc->hw,
717 info->control.vif, pktlen, info));
719 ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
720 ieee80211_get_hdrlen_from_skb(skb), padsize,
721 get_hw_packet_type(skb),
722 (sc->power_level * 2),
723 hw_rate,
724 info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
725 cts_rate, duration);
726 if (ret)
727 goto err_unmap;
729 memset(mrr_rate, 0, sizeof(mrr_rate));
730 memset(mrr_tries, 0, sizeof(mrr_tries));
731 for (i = 0; i < 3; i++) {
732 rate = ieee80211_get_alt_retry_rate(sc->hw, info, i);
733 if (!rate)
734 break;
736 mrr_rate[i] = rate->hw_value;
737 mrr_tries[i] = info->control.rates[i + 1].count;
740 ath5k_hw_setup_mrr_tx_desc(ah, ds,
741 mrr_rate[0], mrr_tries[0],
742 mrr_rate[1], mrr_tries[1],
743 mrr_rate[2], mrr_tries[2]);
745 ds->ds_link = 0;
746 ds->ds_data = bf->skbaddr;
748 spin_lock_bh(&txq->lock);
749 list_add_tail(&bf->list, &txq->q);
750 txq->txq_len++;
751 if (txq->link == NULL) /* is this first packet? */
752 ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
753 else /* no, so only link it */
754 *txq->link = bf->daddr;
756 txq->link = &ds->ds_link;
757 ath5k_hw_start_tx_dma(ah, txq->qnum);
758 mmiowb();
759 spin_unlock_bh(&txq->lock);
761 return 0;
762 err_unmap:
763 dma_unmap_single(sc->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
764 return ret;
767 /*******************\
768 * Descriptors setup *
769 \*******************/
771 static int
772 ath5k_desc_alloc(struct ath5k_softc *sc)
774 struct ath5k_desc *ds;
775 struct ath5k_buf *bf;
776 dma_addr_t da;
777 unsigned int i;
778 int ret;
780 /* allocate descriptors */
781 sc->desc_len = sizeof(struct ath5k_desc) *
782 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
784 sc->desc = dma_alloc_coherent(sc->dev, sc->desc_len,
785 &sc->desc_daddr, GFP_KERNEL);
786 if (sc->desc == NULL) {
787 ATH5K_ERR(sc, "can't allocate descriptors\n");
788 ret = -ENOMEM;
789 goto err;
791 ds = sc->desc;
792 da = sc->desc_daddr;
793 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
794 ds, sc->desc_len, (unsigned long long)sc->desc_daddr);
796 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
797 sizeof(struct ath5k_buf), GFP_KERNEL);
798 if (bf == NULL) {
799 ATH5K_ERR(sc, "can't allocate bufptr\n");
800 ret = -ENOMEM;
801 goto err_free;
803 sc->bufptr = bf;
805 INIT_LIST_HEAD(&sc->rxbuf);
806 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
807 bf->desc = ds;
808 bf->daddr = da;
809 list_add_tail(&bf->list, &sc->rxbuf);
812 INIT_LIST_HEAD(&sc->txbuf);
813 sc->txbuf_len = ATH_TXBUF;
814 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++,
815 da += sizeof(*ds)) {
816 bf->desc = ds;
817 bf->daddr = da;
818 list_add_tail(&bf->list, &sc->txbuf);
821 /* beacon buffers */
822 INIT_LIST_HEAD(&sc->bcbuf);
823 for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
824 bf->desc = ds;
825 bf->daddr = da;
826 list_add_tail(&bf->list, &sc->bcbuf);
829 return 0;
830 err_free:
831 dma_free_coherent(sc->dev, sc->desc_len, sc->desc, sc->desc_daddr);
832 err:
833 sc->desc = NULL;
834 return ret;
837 void
838 ath5k_txbuf_free_skb(struct ath5k_softc *sc, struct ath5k_buf *bf)
840 BUG_ON(!bf);
841 if (!bf->skb)
842 return;
843 dma_unmap_single(sc->dev, bf->skbaddr, bf->skb->len,
844 DMA_TO_DEVICE);
845 dev_kfree_skb_any(bf->skb);
846 bf->skb = NULL;
847 bf->skbaddr = 0;
848 bf->desc->ds_data = 0;
851 void
852 ath5k_rxbuf_free_skb(struct ath5k_softc *sc, struct ath5k_buf *bf)
854 struct ath5k_hw *ah = sc->ah;
855 struct ath_common *common = ath5k_hw_common(ah);
857 BUG_ON(!bf);
858 if (!bf->skb)
859 return;
860 dma_unmap_single(sc->dev, bf->skbaddr, common->rx_bufsize,
861 DMA_FROM_DEVICE);
862 dev_kfree_skb_any(bf->skb);
863 bf->skb = NULL;
864 bf->skbaddr = 0;
865 bf->desc->ds_data = 0;
868 static void
869 ath5k_desc_free(struct ath5k_softc *sc)
871 struct ath5k_buf *bf;
873 list_for_each_entry(bf, &sc->txbuf, list)
874 ath5k_txbuf_free_skb(sc, bf);
875 list_for_each_entry(bf, &sc->rxbuf, list)
876 ath5k_rxbuf_free_skb(sc, bf);
877 list_for_each_entry(bf, &sc->bcbuf, list)
878 ath5k_txbuf_free_skb(sc, bf);
880 /* Free memory associated with all descriptors */
881 dma_free_coherent(sc->dev, sc->desc_len, sc->desc, sc->desc_daddr);
882 sc->desc = NULL;
883 sc->desc_daddr = 0;
885 kfree(sc->bufptr);
886 sc->bufptr = NULL;
890 /**************\
891 * Queues setup *
892 \**************/
894 static struct ath5k_txq *
895 ath5k_txq_setup(struct ath5k_softc *sc,
896 int qtype, int subtype)
898 struct ath5k_hw *ah = sc->ah;
899 struct ath5k_txq *txq;
900 struct ath5k_txq_info qi = {
901 .tqi_subtype = subtype,
902 /* XXX: default values not correct for B and XR channels,
903 * but who cares? */
904 .tqi_aifs = AR5K_TUNE_AIFS,
905 .tqi_cw_min = AR5K_TUNE_CWMIN,
906 .tqi_cw_max = AR5K_TUNE_CWMAX
908 int qnum;
911 * Enable interrupts only for EOL and DESC conditions.
912 * We mark tx descriptors to receive a DESC interrupt
913 * when a tx queue gets deep; otherwise we wait for the
914 * EOL to reap descriptors. Note that this is done to
915 * reduce interrupt load and this only defers reaping
916 * descriptors, never transmitting frames. Aside from
917 * reducing interrupts this also permits more concurrency.
918 * The only potential downside is if the tx queue backs
919 * up in which case the top half of the kernel may backup
920 * due to a lack of tx descriptors.
922 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
923 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
924 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
925 if (qnum < 0) {
927 * NB: don't print a message, this happens
928 * normally on parts with too few tx queues
930 return ERR_PTR(qnum);
932 if (qnum >= ARRAY_SIZE(sc->txqs)) {
933 ATH5K_ERR(sc, "hw qnum %u out of range, max %tu!\n",
934 qnum, ARRAY_SIZE(sc->txqs));
935 ath5k_hw_release_tx_queue(ah, qnum);
936 return ERR_PTR(-EINVAL);
938 txq = &sc->txqs[qnum];
939 if (!txq->setup) {
940 txq->qnum = qnum;
941 txq->link = NULL;
942 INIT_LIST_HEAD(&txq->q);
943 spin_lock_init(&txq->lock);
944 txq->setup = true;
945 txq->txq_len = 0;
946 txq->txq_max = ATH5K_TXQ_LEN_MAX;
947 txq->txq_poll_mark = false;
948 txq->txq_stuck = 0;
950 return &sc->txqs[qnum];
953 static int
954 ath5k_beaconq_setup(struct ath5k_hw *ah)
956 struct ath5k_txq_info qi = {
957 /* XXX: default values not correct for B and XR channels,
958 * but who cares? */
959 .tqi_aifs = AR5K_TUNE_AIFS,
960 .tqi_cw_min = AR5K_TUNE_CWMIN,
961 .tqi_cw_max = AR5K_TUNE_CWMAX,
962 /* NB: for dynamic turbo, don't enable any other interrupts */
963 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
966 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
969 static int
970 ath5k_beaconq_config(struct ath5k_softc *sc)
972 struct ath5k_hw *ah = sc->ah;
973 struct ath5k_txq_info qi;
974 int ret;
976 ret = ath5k_hw_get_tx_queueprops(ah, sc->bhalq, &qi);
977 if (ret)
978 goto err;
980 if (sc->opmode == NL80211_IFTYPE_AP ||
981 sc->opmode == NL80211_IFTYPE_MESH_POINT) {
983 * Always burst out beacon and CAB traffic
984 * (aifs = cwmin = cwmax = 0)
986 qi.tqi_aifs = 0;
987 qi.tqi_cw_min = 0;
988 qi.tqi_cw_max = 0;
989 } else if (sc->opmode == NL80211_IFTYPE_ADHOC) {
991 * Adhoc mode; backoff between 0 and (2 * cw_min).
993 qi.tqi_aifs = 0;
994 qi.tqi_cw_min = 0;
995 qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
998 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
999 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1000 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1002 ret = ath5k_hw_set_tx_queueprops(ah, sc->bhalq, &qi);
1003 if (ret) {
1004 ATH5K_ERR(sc, "%s: unable to update parameters for beacon "
1005 "hardware queue!\n", __func__);
1006 goto err;
1008 ret = ath5k_hw_reset_tx_queue(ah, sc->bhalq); /* push to h/w */
1009 if (ret)
1010 goto err;
1012 /* reconfigure cabq with ready time to 80% of beacon_interval */
1013 ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1014 if (ret)
1015 goto err;
1017 qi.tqi_ready_time = (sc->bintval * 80) / 100;
1018 ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1019 if (ret)
1020 goto err;
1022 ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1023 err:
1024 return ret;
1028 * ath5k_drain_tx_buffs - Empty tx buffers
1030 * @sc The &struct ath5k_softc
1032 * Empty tx buffers from all queues in preparation
1033 * of a reset or during shutdown.
1035 * NB: this assumes output has been stopped and
1036 * we do not need to block ath5k_tx_tasklet
1038 static void
1039 ath5k_drain_tx_buffs(struct ath5k_softc *sc)
1041 struct ath5k_txq *txq;
1042 struct ath5k_buf *bf, *bf0;
1043 int i;
1045 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++) {
1046 if (sc->txqs[i].setup) {
1047 txq = &sc->txqs[i];
1048 spin_lock_bh(&txq->lock);
1049 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1050 ath5k_debug_printtxbuf(sc, bf);
1052 ath5k_txbuf_free_skb(sc, bf);
1054 spin_lock_bh(&sc->txbuflock);
1055 list_move_tail(&bf->list, &sc->txbuf);
1056 sc->txbuf_len++;
1057 txq->txq_len--;
1058 spin_unlock_bh(&sc->txbuflock);
1060 txq->link = NULL;
1061 txq->txq_poll_mark = false;
1062 spin_unlock_bh(&txq->lock);
1067 static void
1068 ath5k_txq_release(struct ath5k_softc *sc)
1070 struct ath5k_txq *txq = sc->txqs;
1071 unsigned int i;
1073 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++, txq++)
1074 if (txq->setup) {
1075 ath5k_hw_release_tx_queue(sc->ah, txq->qnum);
1076 txq->setup = false;
1081 /*************\
1082 * RX Handling *
1083 \*************/
1086 * Enable the receive h/w following a reset.
1088 static int
1089 ath5k_rx_start(struct ath5k_softc *sc)
1091 struct ath5k_hw *ah = sc->ah;
1092 struct ath_common *common = ath5k_hw_common(ah);
1093 struct ath5k_buf *bf;
1094 int ret;
1096 common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1098 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1099 common->cachelsz, common->rx_bufsize);
1101 spin_lock_bh(&sc->rxbuflock);
1102 sc->rxlink = NULL;
1103 list_for_each_entry(bf, &sc->rxbuf, list) {
1104 ret = ath5k_rxbuf_setup(sc, bf);
1105 if (ret != 0) {
1106 spin_unlock_bh(&sc->rxbuflock);
1107 goto err;
1110 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1111 ath5k_hw_set_rxdp(ah, bf->daddr);
1112 spin_unlock_bh(&sc->rxbuflock);
1114 ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
1115 ath5k_update_bssid_mask_and_opmode(sc, NULL); /* set filters, etc. */
1116 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
1118 return 0;
1119 err:
1120 return ret;
1124 * Disable the receive logic on PCU (DRU)
1125 * In preparation for a shutdown.
1127 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1128 * does.
1130 static void
1131 ath5k_rx_stop(struct ath5k_softc *sc)
1133 struct ath5k_hw *ah = sc->ah;
1135 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1136 ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
1138 ath5k_debug_printrxbuffs(sc, ah);
1141 static unsigned int
1142 ath5k_rx_decrypted(struct ath5k_softc *sc, struct sk_buff *skb,
1143 struct ath5k_rx_status *rs)
1145 struct ath5k_hw *ah = sc->ah;
1146 struct ath_common *common = ath5k_hw_common(ah);
1147 struct ieee80211_hdr *hdr = (void *)skb->data;
1148 unsigned int keyix, hlen;
1150 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1151 rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1152 return RX_FLAG_DECRYPTED;
1154 /* Apparently when a default key is used to decrypt the packet
1155 the hw does not set the index used to decrypt. In such cases
1156 get the index from the packet. */
1157 hlen = ieee80211_hdrlen(hdr->frame_control);
1158 if (ieee80211_has_protected(hdr->frame_control) &&
1159 !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1160 skb->len >= hlen + 4) {
1161 keyix = skb->data[hlen + 3] >> 6;
1163 if (test_bit(keyix, common->keymap))
1164 return RX_FLAG_DECRYPTED;
1167 return 0;
1171 static void
1172 ath5k_check_ibss_tsf(struct ath5k_softc *sc, struct sk_buff *skb,
1173 struct ieee80211_rx_status *rxs)
1175 struct ath_common *common = ath5k_hw_common(sc->ah);
1176 u64 tsf, bc_tstamp;
1177 u32 hw_tu;
1178 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1180 if (ieee80211_is_beacon(mgmt->frame_control) &&
1181 le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1182 memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) == 0) {
1184 * Received an IBSS beacon with the same BSSID. Hardware *must*
1185 * have updated the local TSF. We have to work around various
1186 * hardware bugs, though...
1188 tsf = ath5k_hw_get_tsf64(sc->ah);
1189 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1190 hw_tu = TSF_TO_TU(tsf);
1192 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1193 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1194 (unsigned long long)bc_tstamp,
1195 (unsigned long long)rxs->mactime,
1196 (unsigned long long)(rxs->mactime - bc_tstamp),
1197 (unsigned long long)tsf);
1200 * Sometimes the HW will give us a wrong tstamp in the rx
1201 * status, causing the timestamp extension to go wrong.
1202 * (This seems to happen especially with beacon frames bigger
1203 * than 78 byte (incl. FCS))
1204 * But we know that the receive timestamp must be later than the
1205 * timestamp of the beacon since HW must have synced to that.
1207 * NOTE: here we assume mactime to be after the frame was
1208 * received, not like mac80211 which defines it at the start.
1210 if (bc_tstamp > rxs->mactime) {
1211 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1212 "fixing mactime from %llx to %llx\n",
1213 (unsigned long long)rxs->mactime,
1214 (unsigned long long)tsf);
1215 rxs->mactime = tsf;
1219 * Local TSF might have moved higher than our beacon timers,
1220 * in that case we have to update them to continue sending
1221 * beacons. This also takes care of synchronizing beacon sending
1222 * times with other stations.
1224 if (hw_tu >= sc->nexttbtt)
1225 ath5k_beacon_update_timers(sc, bc_tstamp);
1227 /* Check if the beacon timers are still correct, because a TSF
1228 * update might have created a window between them - for a
1229 * longer description see the comment of this function: */
1230 if (!ath5k_hw_check_beacon_timers(sc->ah, sc->bintval)) {
1231 ath5k_beacon_update_timers(sc, bc_tstamp);
1232 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1233 "fixed beacon timers after beacon receive\n");
1238 static void
1239 ath5k_update_beacon_rssi(struct ath5k_softc *sc, struct sk_buff *skb, int rssi)
1241 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1242 struct ath5k_hw *ah = sc->ah;
1243 struct ath_common *common = ath5k_hw_common(ah);
1245 /* only beacons from our BSSID */
1246 if (!ieee80211_is_beacon(mgmt->frame_control) ||
1247 memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) != 0)
1248 return;
1250 ewma_add(&ah->ah_beacon_rssi_avg, rssi);
1252 /* in IBSS mode we should keep RSSI statistics per neighbour */
1253 /* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1257 * Compute padding position. skb must contain an IEEE 802.11 frame
1259 static int ath5k_common_padpos(struct sk_buff *skb)
1261 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
1262 __le16 frame_control = hdr->frame_control;
1263 int padpos = 24;
1265 if (ieee80211_has_a4(frame_control)) {
1266 padpos += ETH_ALEN;
1268 if (ieee80211_is_data_qos(frame_control)) {
1269 padpos += IEEE80211_QOS_CTL_LEN;
1272 return padpos;
1276 * This function expects an 802.11 frame and returns the number of
1277 * bytes added, or -1 if we don't have enough header room.
1279 static int ath5k_add_padding(struct sk_buff *skb)
1281 int padpos = ath5k_common_padpos(skb);
1282 int padsize = padpos & 3;
1284 if (padsize && skb->len>padpos) {
1286 if (skb_headroom(skb) < padsize)
1287 return -1;
1289 skb_push(skb, padsize);
1290 memmove(skb->data, skb->data+padsize, padpos);
1291 return padsize;
1294 return 0;
1298 * The MAC header is padded to have 32-bit boundary if the
1299 * packet payload is non-zero. The general calculation for
1300 * padsize would take into account odd header lengths:
1301 * padsize = 4 - (hdrlen & 3); however, since only
1302 * even-length headers are used, padding can only be 0 or 2
1303 * bytes and we can optimize this a bit. We must not try to
1304 * remove padding from short control frames that do not have a
1305 * payload.
1307 * This function expects an 802.11 frame and returns the number of
1308 * bytes removed.
1310 static int ath5k_remove_padding(struct sk_buff *skb)
1312 int padpos = ath5k_common_padpos(skb);
1313 int padsize = padpos & 3;
1315 if (padsize && skb->len>=padpos+padsize) {
1316 memmove(skb->data + padsize, skb->data, padpos);
1317 skb_pull(skb, padsize);
1318 return padsize;
1321 return 0;
1324 static void
1325 ath5k_receive_frame(struct ath5k_softc *sc, struct sk_buff *skb,
1326 struct ath5k_rx_status *rs)
1328 struct ieee80211_rx_status *rxs;
1330 ath5k_remove_padding(skb);
1332 rxs = IEEE80211_SKB_RXCB(skb);
1334 rxs->flag = 0;
1335 if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1336 rxs->flag |= RX_FLAG_MMIC_ERROR;
1339 * always extend the mac timestamp, since this information is
1340 * also needed for proper IBSS merging.
1342 * XXX: it might be too late to do it here, since rs_tstamp is
1343 * 15bit only. that means TSF extension has to be done within
1344 * 32768usec (about 32ms). it might be necessary to move this to
1345 * the interrupt handler, like it is done in madwifi.
1347 * Unfortunately we don't know when the hardware takes the rx
1348 * timestamp (beginning of phy frame, data frame, end of rx?).
1349 * The only thing we know is that it is hardware specific...
1350 * On AR5213 it seems the rx timestamp is at the end of the
1351 * frame, but i'm not sure.
1353 * NOTE: mac80211 defines mactime at the beginning of the first
1354 * data symbol. Since we don't have any time references it's
1355 * impossible to comply to that. This affects IBSS merge only
1356 * right now, so it's not too bad...
1358 rxs->mactime = ath5k_extend_tsf(sc->ah, rs->rs_tstamp);
1359 rxs->flag |= RX_FLAG_MACTIME_MPDU;
1361 rxs->freq = sc->curchan->center_freq;
1362 rxs->band = sc->curchan->band;
1364 rxs->signal = sc->ah->ah_noise_floor + rs->rs_rssi;
1366 rxs->antenna = rs->rs_antenna;
1368 if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1369 sc->stats.antenna_rx[rs->rs_antenna]++;
1370 else
1371 sc->stats.antenna_rx[0]++; /* invalid */
1373 rxs->rate_idx = ath5k_hw_to_driver_rix(sc, rs->rs_rate);
1374 rxs->flag |= ath5k_rx_decrypted(sc, skb, rs);
1376 if (rxs->rate_idx >= 0 && rs->rs_rate ==
1377 sc->sbands[sc->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1378 rxs->flag |= RX_FLAG_SHORTPRE;
1380 trace_ath5k_rx(sc, skb);
1382 ath5k_update_beacon_rssi(sc, skb, rs->rs_rssi);
1384 /* check beacons in IBSS mode */
1385 if (sc->opmode == NL80211_IFTYPE_ADHOC)
1386 ath5k_check_ibss_tsf(sc, skb, rxs);
1388 ieee80211_rx(sc->hw, skb);
1391 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1393 * Check if we want to further process this frame or not. Also update
1394 * statistics. Return true if we want this frame, false if not.
1396 static bool
1397 ath5k_receive_frame_ok(struct ath5k_softc *sc, struct ath5k_rx_status *rs)
1399 sc->stats.rx_all_count++;
1400 sc->stats.rx_bytes_count += rs->rs_datalen;
1402 if (unlikely(rs->rs_status)) {
1403 if (rs->rs_status & AR5K_RXERR_CRC)
1404 sc->stats.rxerr_crc++;
1405 if (rs->rs_status & AR5K_RXERR_FIFO)
1406 sc->stats.rxerr_fifo++;
1407 if (rs->rs_status & AR5K_RXERR_PHY) {
1408 sc->stats.rxerr_phy++;
1409 if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1410 sc->stats.rxerr_phy_code[rs->rs_phyerr]++;
1411 return false;
1413 if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1415 * Decrypt error. If the error occurred
1416 * because there was no hardware key, then
1417 * let the frame through so the upper layers
1418 * can process it. This is necessary for 5210
1419 * parts which have no way to setup a ``clear''
1420 * key cache entry.
1422 * XXX do key cache faulting
1424 sc->stats.rxerr_decrypt++;
1425 if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1426 !(rs->rs_status & AR5K_RXERR_CRC))
1427 return true;
1429 if (rs->rs_status & AR5K_RXERR_MIC) {
1430 sc->stats.rxerr_mic++;
1431 return true;
1434 /* reject any frames with non-crypto errors */
1435 if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1436 return false;
1439 if (unlikely(rs->rs_more)) {
1440 sc->stats.rxerr_jumbo++;
1441 return false;
1443 return true;
1446 static void
1447 ath5k_set_current_imask(struct ath5k_softc *sc)
1449 enum ath5k_int imask = sc->imask;
1450 unsigned long flags;
1452 spin_lock_irqsave(&sc->irqlock, flags);
1453 if (sc->rx_pending)
1454 imask &= ~AR5K_INT_RX_ALL;
1455 if (sc->tx_pending)
1456 imask &= ~AR5K_INT_TX_ALL;
1457 ath5k_hw_set_imr(sc->ah, imask);
1458 spin_unlock_irqrestore(&sc->irqlock, flags);
1461 static void
1462 ath5k_tasklet_rx(unsigned long data)
1464 struct ath5k_rx_status rs = {};
1465 struct sk_buff *skb, *next_skb;
1466 dma_addr_t next_skb_addr;
1467 struct ath5k_softc *sc = (void *)data;
1468 struct ath5k_hw *ah = sc->ah;
1469 struct ath_common *common = ath5k_hw_common(ah);
1470 struct ath5k_buf *bf;
1471 struct ath5k_desc *ds;
1472 int ret;
1474 spin_lock(&sc->rxbuflock);
1475 if (list_empty(&sc->rxbuf)) {
1476 ATH5K_WARN(sc, "empty rx buf pool\n");
1477 goto unlock;
1479 do {
1480 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1481 BUG_ON(bf->skb == NULL);
1482 skb = bf->skb;
1483 ds = bf->desc;
1485 /* bail if HW is still using self-linked descriptor */
1486 if (ath5k_hw_get_rxdp(sc->ah) == bf->daddr)
1487 break;
1489 ret = sc->ah->ah_proc_rx_desc(sc->ah, ds, &rs);
1490 if (unlikely(ret == -EINPROGRESS))
1491 break;
1492 else if (unlikely(ret)) {
1493 ATH5K_ERR(sc, "error in processing rx descriptor\n");
1494 sc->stats.rxerr_proc++;
1495 break;
1498 if (ath5k_receive_frame_ok(sc, &rs)) {
1499 next_skb = ath5k_rx_skb_alloc(sc, &next_skb_addr);
1502 * If we can't replace bf->skb with a new skb under
1503 * memory pressure, just skip this packet
1505 if (!next_skb)
1506 goto next;
1508 dma_unmap_single(sc->dev, bf->skbaddr,
1509 common->rx_bufsize,
1510 DMA_FROM_DEVICE);
1512 skb_put(skb, rs.rs_datalen);
1514 ath5k_receive_frame(sc, skb, &rs);
1516 bf->skb = next_skb;
1517 bf->skbaddr = next_skb_addr;
1519 next:
1520 list_move_tail(&bf->list, &sc->rxbuf);
1521 } while (ath5k_rxbuf_setup(sc, bf) == 0);
1522 unlock:
1523 spin_unlock(&sc->rxbuflock);
1524 sc->rx_pending = false;
1525 ath5k_set_current_imask(sc);
1529 /*************\
1530 * TX Handling *
1531 \*************/
1533 void
1534 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1535 struct ath5k_txq *txq)
1537 struct ath5k_softc *sc = hw->priv;
1538 struct ath5k_buf *bf;
1539 unsigned long flags;
1540 int padsize;
1542 trace_ath5k_tx(sc, skb, txq);
1545 * The hardware expects the header padded to 4 byte boundaries.
1546 * If this is not the case, we add the padding after the header.
1548 padsize = ath5k_add_padding(skb);
1549 if (padsize < 0) {
1550 ATH5K_ERR(sc, "tx hdrlen not %%4: not enough"
1551 " headroom to pad");
1552 goto drop_packet;
1555 if (txq->txq_len >= txq->txq_max)
1556 ieee80211_stop_queue(hw, txq->qnum);
1558 spin_lock_irqsave(&sc->txbuflock, flags);
1559 if (list_empty(&sc->txbuf)) {
1560 ATH5K_ERR(sc, "no further txbuf available, dropping packet\n");
1561 spin_unlock_irqrestore(&sc->txbuflock, flags);
1562 ieee80211_stop_queues(hw);
1563 goto drop_packet;
1565 bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list);
1566 list_del(&bf->list);
1567 sc->txbuf_len--;
1568 if (list_empty(&sc->txbuf))
1569 ieee80211_stop_queues(hw);
1570 spin_unlock_irqrestore(&sc->txbuflock, flags);
1572 bf->skb = skb;
1574 if (ath5k_txbuf_setup(sc, bf, txq, padsize)) {
1575 bf->skb = NULL;
1576 spin_lock_irqsave(&sc->txbuflock, flags);
1577 list_add_tail(&bf->list, &sc->txbuf);
1578 sc->txbuf_len++;
1579 spin_unlock_irqrestore(&sc->txbuflock, flags);
1580 goto drop_packet;
1582 return;
1584 drop_packet:
1585 dev_kfree_skb_any(skb);
1588 static void
1589 ath5k_tx_frame_completed(struct ath5k_softc *sc, struct sk_buff *skb,
1590 struct ath5k_txq *txq, struct ath5k_tx_status *ts)
1592 struct ieee80211_tx_info *info;
1593 u8 tries[3];
1594 int i;
1596 sc->stats.tx_all_count++;
1597 sc->stats.tx_bytes_count += skb->len;
1598 info = IEEE80211_SKB_CB(skb);
1600 tries[0] = info->status.rates[0].count;
1601 tries[1] = info->status.rates[1].count;
1602 tries[2] = info->status.rates[2].count;
1604 ieee80211_tx_info_clear_status(info);
1606 for (i = 0; i < ts->ts_final_idx; i++) {
1607 struct ieee80211_tx_rate *r =
1608 &info->status.rates[i];
1610 r->count = tries[i];
1613 info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1614 info->status.rates[ts->ts_final_idx + 1].idx = -1;
1616 if (unlikely(ts->ts_status)) {
1617 sc->stats.ack_fail++;
1618 if (ts->ts_status & AR5K_TXERR_FILT) {
1619 info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1620 sc->stats.txerr_filt++;
1622 if (ts->ts_status & AR5K_TXERR_XRETRY)
1623 sc->stats.txerr_retry++;
1624 if (ts->ts_status & AR5K_TXERR_FIFO)
1625 sc->stats.txerr_fifo++;
1626 } else {
1627 info->flags |= IEEE80211_TX_STAT_ACK;
1628 info->status.ack_signal = ts->ts_rssi;
1630 /* count the successful attempt as well */
1631 info->status.rates[ts->ts_final_idx].count++;
1635 * Remove MAC header padding before giving the frame
1636 * back to mac80211.
1638 ath5k_remove_padding(skb);
1640 if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1641 sc->stats.antenna_tx[ts->ts_antenna]++;
1642 else
1643 sc->stats.antenna_tx[0]++; /* invalid */
1645 trace_ath5k_tx_complete(sc, skb, txq, ts);
1646 ieee80211_tx_status(sc->hw, skb);
1649 static void
1650 ath5k_tx_processq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1652 struct ath5k_tx_status ts = {};
1653 struct ath5k_buf *bf, *bf0;
1654 struct ath5k_desc *ds;
1655 struct sk_buff *skb;
1656 int ret;
1658 spin_lock(&txq->lock);
1659 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1661 txq->txq_poll_mark = false;
1663 /* skb might already have been processed last time. */
1664 if (bf->skb != NULL) {
1665 ds = bf->desc;
1667 ret = sc->ah->ah_proc_tx_desc(sc->ah, ds, &ts);
1668 if (unlikely(ret == -EINPROGRESS))
1669 break;
1670 else if (unlikely(ret)) {
1671 ATH5K_ERR(sc,
1672 "error %d while processing "
1673 "queue %u\n", ret, txq->qnum);
1674 break;
1677 skb = bf->skb;
1678 bf->skb = NULL;
1680 dma_unmap_single(sc->dev, bf->skbaddr, skb->len,
1681 DMA_TO_DEVICE);
1682 ath5k_tx_frame_completed(sc, skb, txq, &ts);
1686 * It's possible that the hardware can say the buffer is
1687 * completed when it hasn't yet loaded the ds_link from
1688 * host memory and moved on.
1689 * Always keep the last descriptor to avoid HW races...
1691 if (ath5k_hw_get_txdp(sc->ah, txq->qnum) != bf->daddr) {
1692 spin_lock(&sc->txbuflock);
1693 list_move_tail(&bf->list, &sc->txbuf);
1694 sc->txbuf_len++;
1695 txq->txq_len--;
1696 spin_unlock(&sc->txbuflock);
1699 spin_unlock(&txq->lock);
1700 if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1701 ieee80211_wake_queue(sc->hw, txq->qnum);
1704 static void
1705 ath5k_tasklet_tx(unsigned long data)
1707 int i;
1708 struct ath5k_softc *sc = (void *)data;
1710 for (i=0; i < AR5K_NUM_TX_QUEUES; i++)
1711 if (sc->txqs[i].setup && (sc->ah->ah_txq_isr & BIT(i)))
1712 ath5k_tx_processq(sc, &sc->txqs[i]);
1714 sc->tx_pending = false;
1715 ath5k_set_current_imask(sc);
1719 /*****************\
1720 * Beacon handling *
1721 \*****************/
1724 * Setup the beacon frame for transmit.
1726 static int
1727 ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1729 struct sk_buff *skb = bf->skb;
1730 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1731 struct ath5k_hw *ah = sc->ah;
1732 struct ath5k_desc *ds;
1733 int ret = 0;
1734 u8 antenna;
1735 u32 flags;
1736 const int padsize = 0;
1738 bf->skbaddr = dma_map_single(sc->dev, skb->data, skb->len,
1739 DMA_TO_DEVICE);
1740 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1741 "skbaddr %llx\n", skb, skb->data, skb->len,
1742 (unsigned long long)bf->skbaddr);
1744 if (dma_mapping_error(sc->dev, bf->skbaddr)) {
1745 ATH5K_ERR(sc, "beacon DMA mapping failed\n");
1746 return -EIO;
1749 ds = bf->desc;
1750 antenna = ah->ah_tx_ant;
1752 flags = AR5K_TXDESC_NOACK;
1753 if (sc->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1754 ds->ds_link = bf->daddr; /* self-linked */
1755 flags |= AR5K_TXDESC_VEOL;
1756 } else
1757 ds->ds_link = 0;
1760 * If we use multiple antennas on AP and use
1761 * the Sectored AP scenario, switch antenna every
1762 * 4 beacons to make sure everybody hears our AP.
1763 * When a client tries to associate, hw will keep
1764 * track of the tx antenna to be used for this client
1765 * automaticaly, based on ACKed packets.
1767 * Note: AP still listens and transmits RTS on the
1768 * default antenna which is supposed to be an omni.
1770 * Note2: On sectored scenarios it's possible to have
1771 * multiple antennas (1 omni -- the default -- and 14
1772 * sectors), so if we choose to actually support this
1773 * mode, we need to allow the user to set how many antennas
1774 * we have and tweak the code below to send beacons
1775 * on all of them.
1777 if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1778 antenna = sc->bsent & 4 ? 2 : 1;
1781 /* FIXME: If we are in g mode and rate is a CCK rate
1782 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1783 * from tx power (value is in dB units already) */
1784 ds->ds_data = bf->skbaddr;
1785 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1786 ieee80211_get_hdrlen_from_skb(skb), padsize,
1787 AR5K_PKT_TYPE_BEACON, (sc->power_level * 2),
1788 ieee80211_get_tx_rate(sc->hw, info)->hw_value,
1789 1, AR5K_TXKEYIX_INVALID,
1790 antenna, flags, 0, 0);
1791 if (ret)
1792 goto err_unmap;
1794 return 0;
1795 err_unmap:
1796 dma_unmap_single(sc->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1797 return ret;
1801 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
1802 * this is called only once at config_bss time, for AP we do it every
1803 * SWBA interrupt so that the TIM will reflect buffered frames.
1805 * Called with the beacon lock.
1808 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1810 int ret;
1811 struct ath5k_softc *sc = hw->priv;
1812 struct ath5k_vif *avf = (void *)vif->drv_priv;
1813 struct sk_buff *skb;
1815 if (WARN_ON(!vif)) {
1816 ret = -EINVAL;
1817 goto out;
1820 skb = ieee80211_beacon_get(hw, vif);
1822 if (!skb) {
1823 ret = -ENOMEM;
1824 goto out;
1827 ath5k_txbuf_free_skb(sc, avf->bbuf);
1828 avf->bbuf->skb = skb;
1829 ret = ath5k_beacon_setup(sc, avf->bbuf);
1830 if (ret)
1831 avf->bbuf->skb = NULL;
1832 out:
1833 return ret;
1837 * Transmit a beacon frame at SWBA. Dynamic updates to the
1838 * frame contents are done as needed and the slot time is
1839 * also adjusted based on current state.
1841 * This is called from software irq context (beacontq tasklets)
1842 * or user context from ath5k_beacon_config.
1844 static void
1845 ath5k_beacon_send(struct ath5k_softc *sc)
1847 struct ath5k_hw *ah = sc->ah;
1848 struct ieee80211_vif *vif;
1849 struct ath5k_vif *avf;
1850 struct ath5k_buf *bf;
1851 struct sk_buff *skb;
1853 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1856 * Check if the previous beacon has gone out. If
1857 * not, don't don't try to post another: skip this
1858 * period and wait for the next. Missed beacons
1859 * indicate a problem and should not occur. If we
1860 * miss too many consecutive beacons reset the device.
1862 if (unlikely(ath5k_hw_num_tx_pending(ah, sc->bhalq) != 0)) {
1863 sc->bmisscount++;
1864 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1865 "missed %u consecutive beacons\n", sc->bmisscount);
1866 if (sc->bmisscount > 10) { /* NB: 10 is a guess */
1867 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1868 "stuck beacon time (%u missed)\n",
1869 sc->bmisscount);
1870 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
1871 "stuck beacon, resetting\n");
1872 ieee80211_queue_work(sc->hw, &sc->reset_work);
1874 return;
1876 if (unlikely(sc->bmisscount != 0)) {
1877 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1878 "resume beacon xmit after %u misses\n",
1879 sc->bmisscount);
1880 sc->bmisscount = 0;
1883 if ((sc->opmode == NL80211_IFTYPE_AP && sc->num_ap_vifs > 1) ||
1884 sc->opmode == NL80211_IFTYPE_MESH_POINT) {
1885 u64 tsf = ath5k_hw_get_tsf64(ah);
1886 u32 tsftu = TSF_TO_TU(tsf);
1887 int slot = ((tsftu % sc->bintval) * ATH_BCBUF) / sc->bintval;
1888 vif = sc->bslot[(slot + 1) % ATH_BCBUF];
1889 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1890 "tsf %llx tsftu %x intval %u slot %u vif %p\n",
1891 (unsigned long long)tsf, tsftu, sc->bintval, slot, vif);
1892 } else /* only one interface */
1893 vif = sc->bslot[0];
1895 if (!vif)
1896 return;
1898 avf = (void *)vif->drv_priv;
1899 bf = avf->bbuf;
1900 if (unlikely(bf->skb == NULL || sc->opmode == NL80211_IFTYPE_STATION ||
1901 sc->opmode == NL80211_IFTYPE_MONITOR)) {
1902 ATH5K_WARN(sc, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL);
1903 return;
1907 * Stop any current dma and put the new frame on the queue.
1908 * This should never fail since we check above that no frames
1909 * are still pending on the queue.
1911 if (unlikely(ath5k_hw_stop_beacon_queue(ah, sc->bhalq))) {
1912 ATH5K_WARN(sc, "beacon queue %u didn't start/stop ?\n", sc->bhalq);
1913 /* NB: hw still stops DMA, so proceed */
1916 /* refresh the beacon for AP or MESH mode */
1917 if (sc->opmode == NL80211_IFTYPE_AP ||
1918 sc->opmode == NL80211_IFTYPE_MESH_POINT)
1919 ath5k_beacon_update(sc->hw, vif);
1921 trace_ath5k_tx(sc, bf->skb, &sc->txqs[sc->bhalq]);
1923 ath5k_hw_set_txdp(ah, sc->bhalq, bf->daddr);
1924 ath5k_hw_start_tx_dma(ah, sc->bhalq);
1925 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1926 sc->bhalq, (unsigned long long)bf->daddr, bf->desc);
1928 skb = ieee80211_get_buffered_bc(sc->hw, vif);
1929 while (skb) {
1930 ath5k_tx_queue(sc->hw, skb, sc->cabq);
1931 skb = ieee80211_get_buffered_bc(sc->hw, vif);
1934 sc->bsent++;
1938 * ath5k_beacon_update_timers - update beacon timers
1940 * @sc: struct ath5k_softc pointer we are operating on
1941 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1942 * beacon timer update based on the current HW TSF.
1944 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1945 * of a received beacon or the current local hardware TSF and write it to the
1946 * beacon timer registers.
1948 * This is called in a variety of situations, e.g. when a beacon is received,
1949 * when a TSF update has been detected, but also when an new IBSS is created or
1950 * when we otherwise know we have to update the timers, but we keep it in this
1951 * function to have it all together in one place.
1953 void
1954 ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf)
1956 struct ath5k_hw *ah = sc->ah;
1957 u32 nexttbtt, intval, hw_tu, bc_tu;
1958 u64 hw_tsf;
1960 intval = sc->bintval & AR5K_BEACON_PERIOD;
1961 if (sc->opmode == NL80211_IFTYPE_AP && sc->num_ap_vifs > 1) {
1962 intval /= ATH_BCBUF; /* staggered multi-bss beacons */
1963 if (intval < 15)
1964 ATH5K_WARN(sc, "intval %u is too low, min 15\n",
1965 intval);
1967 if (WARN_ON(!intval))
1968 return;
1970 /* beacon TSF converted to TU */
1971 bc_tu = TSF_TO_TU(bc_tsf);
1973 /* current TSF converted to TU */
1974 hw_tsf = ath5k_hw_get_tsf64(ah);
1975 hw_tu = TSF_TO_TU(hw_tsf);
1977 #define FUDGE AR5K_TUNE_SW_BEACON_RESP + 3
1978 /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
1979 * Since we later substract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
1980 * configuration we need to make sure it is bigger than that. */
1982 if (bc_tsf == -1) {
1984 * no beacons received, called internally.
1985 * just need to refresh timers based on HW TSF.
1987 nexttbtt = roundup(hw_tu + FUDGE, intval);
1988 } else if (bc_tsf == 0) {
1990 * no beacon received, probably called by ath5k_reset_tsf().
1991 * reset TSF to start with 0.
1993 nexttbtt = intval;
1994 intval |= AR5K_BEACON_RESET_TSF;
1995 } else if (bc_tsf > hw_tsf) {
1997 * beacon received, SW merge happend but HW TSF not yet updated.
1998 * not possible to reconfigure timers yet, but next time we
1999 * receive a beacon with the same BSSID, the hardware will
2000 * automatically update the TSF and then we need to reconfigure
2001 * the timers.
2003 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2004 "need to wait for HW TSF sync\n");
2005 return;
2006 } else {
2008 * most important case for beacon synchronization between STA.
2010 * beacon received and HW TSF has been already updated by HW.
2011 * update next TBTT based on the TSF of the beacon, but make
2012 * sure it is ahead of our local TSF timer.
2014 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2016 #undef FUDGE
2018 sc->nexttbtt = nexttbtt;
2020 intval |= AR5K_BEACON_ENA;
2021 ath5k_hw_init_beacon(ah, nexttbtt, intval);
2024 * debugging output last in order to preserve the time critical aspect
2025 * of this function
2027 if (bc_tsf == -1)
2028 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2029 "reconfigured timers based on HW TSF\n");
2030 else if (bc_tsf == 0)
2031 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2032 "reset HW TSF and timers\n");
2033 else
2034 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2035 "updated timers based on beacon TSF\n");
2037 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2038 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2039 (unsigned long long) bc_tsf,
2040 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2041 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2042 intval & AR5K_BEACON_PERIOD,
2043 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2044 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2048 * ath5k_beacon_config - Configure the beacon queues and interrupts
2050 * @sc: struct ath5k_softc pointer we are operating on
2052 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2053 * interrupts to detect TSF updates only.
2055 void
2056 ath5k_beacon_config(struct ath5k_softc *sc)
2058 struct ath5k_hw *ah = sc->ah;
2059 unsigned long flags;
2061 spin_lock_irqsave(&sc->block, flags);
2062 sc->bmisscount = 0;
2063 sc->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2065 if (sc->enable_beacon) {
2067 * In IBSS mode we use a self-linked tx descriptor and let the
2068 * hardware send the beacons automatically. We have to load it
2069 * only once here.
2070 * We use the SWBA interrupt only to keep track of the beacon
2071 * timers in order to detect automatic TSF updates.
2073 ath5k_beaconq_config(sc);
2075 sc->imask |= AR5K_INT_SWBA;
2077 if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2078 if (ath5k_hw_hasveol(ah))
2079 ath5k_beacon_send(sc);
2080 } else
2081 ath5k_beacon_update_timers(sc, -1);
2082 } else {
2083 ath5k_hw_stop_beacon_queue(sc->ah, sc->bhalq);
2086 ath5k_hw_set_imr(ah, sc->imask);
2087 mmiowb();
2088 spin_unlock_irqrestore(&sc->block, flags);
2091 static void ath5k_tasklet_beacon(unsigned long data)
2093 struct ath5k_softc *sc = (struct ath5k_softc *) data;
2096 * Software beacon alert--time to send a beacon.
2098 * In IBSS mode we use this interrupt just to
2099 * keep track of the next TBTT (target beacon
2100 * transmission time) in order to detect wether
2101 * automatic TSF updates happened.
2103 if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2104 /* XXX: only if VEOL suppported */
2105 u64 tsf = ath5k_hw_get_tsf64(sc->ah);
2106 sc->nexttbtt += sc->bintval;
2107 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2108 "SWBA nexttbtt: %x hw_tu: %x "
2109 "TSF: %llx\n",
2110 sc->nexttbtt,
2111 TSF_TO_TU(tsf),
2112 (unsigned long long) tsf);
2113 } else {
2114 spin_lock(&sc->block);
2115 ath5k_beacon_send(sc);
2116 spin_unlock(&sc->block);
2121 /********************\
2122 * Interrupt handling *
2123 \********************/
2125 static void
2126 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2128 if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2129 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL)) {
2130 /* run ANI only when full calibration is not active */
2131 ah->ah_cal_next_ani = jiffies +
2132 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2133 tasklet_schedule(&ah->ah_sc->ani_tasklet);
2135 } else if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2136 ah->ah_cal_next_full = jiffies +
2137 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2138 tasklet_schedule(&ah->ah_sc->calib);
2140 /* we could use SWI to generate enough interrupts to meet our
2141 * calibration interval requirements, if necessary:
2142 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2145 static void
2146 ath5k_schedule_rx(struct ath5k_softc *sc)
2148 sc->rx_pending = true;
2149 tasklet_schedule(&sc->rxtq);
2152 static void
2153 ath5k_schedule_tx(struct ath5k_softc *sc)
2155 sc->tx_pending = true;
2156 tasklet_schedule(&sc->txtq);
2159 irqreturn_t
2160 ath5k_intr(int irq, void *dev_id)
2162 struct ath5k_softc *sc = dev_id;
2163 struct ath5k_hw *ah = sc->ah;
2164 enum ath5k_int status;
2165 unsigned int counter = 1000;
2167 if (unlikely(test_bit(ATH_STAT_INVALID, sc->status) ||
2168 ((ath5k_get_bus_type(ah) != ATH_AHB) &&
2169 !ath5k_hw_is_intr_pending(ah))))
2170 return IRQ_NONE;
2172 do {
2173 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2174 ATH5K_DBG(sc, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2175 status, sc->imask);
2176 if (unlikely(status & AR5K_INT_FATAL)) {
2178 * Fatal errors are unrecoverable.
2179 * Typically these are caused by DMA errors.
2181 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2182 "fatal int, resetting\n");
2183 ieee80211_queue_work(sc->hw, &sc->reset_work);
2184 } else if (unlikely(status & AR5K_INT_RXORN)) {
2186 * Receive buffers are full. Either the bus is busy or
2187 * the CPU is not fast enough to process all received
2188 * frames.
2189 * Older chipsets need a reset to come out of this
2190 * condition, but we treat it as RX for newer chips.
2191 * We don't know exactly which versions need a reset -
2192 * this guess is copied from the HAL.
2194 sc->stats.rxorn_intr++;
2195 if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2196 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2197 "rx overrun, resetting\n");
2198 ieee80211_queue_work(sc->hw, &sc->reset_work);
2200 else
2201 ath5k_schedule_rx(sc);
2202 } else {
2203 if (status & AR5K_INT_SWBA) {
2204 tasklet_hi_schedule(&sc->beacontq);
2206 if (status & AR5K_INT_RXEOL) {
2208 * NB: the hardware should re-read the link when
2209 * RXE bit is written, but it doesn't work at
2210 * least on older hardware revs.
2212 sc->stats.rxeol_intr++;
2214 if (status & AR5K_INT_TXURN) {
2215 /* bump tx trigger level */
2216 ath5k_hw_update_tx_triglevel(ah, true);
2218 if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2219 ath5k_schedule_rx(sc);
2220 if (status & (AR5K_INT_TXOK | AR5K_INT_TXDESC
2221 | AR5K_INT_TXERR | AR5K_INT_TXEOL))
2222 ath5k_schedule_tx(sc);
2223 if (status & AR5K_INT_BMISS) {
2224 /* TODO */
2226 if (status & AR5K_INT_MIB) {
2227 sc->stats.mib_intr++;
2228 ath5k_hw_update_mib_counters(ah);
2229 ath5k_ani_mib_intr(ah);
2231 if (status & AR5K_INT_GPIO)
2232 tasklet_schedule(&sc->rf_kill.toggleq);
2236 if (ath5k_get_bus_type(ah) == ATH_AHB)
2237 break;
2239 } while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2241 if (sc->rx_pending || sc->tx_pending)
2242 ath5k_set_current_imask(sc);
2244 if (unlikely(!counter))
2245 ATH5K_WARN(sc, "too many interrupts, giving up for now\n");
2247 ath5k_intr_calibration_poll(ah);
2249 return IRQ_HANDLED;
2253 * Periodically recalibrate the PHY to account
2254 * for temperature/environment changes.
2256 static void
2257 ath5k_tasklet_calibrate(unsigned long data)
2259 struct ath5k_softc *sc = (void *)data;
2260 struct ath5k_hw *ah = sc->ah;
2262 /* Only full calibration for now */
2263 ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2265 ATH5K_DBG(sc, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2266 ieee80211_frequency_to_channel(sc->curchan->center_freq),
2267 sc->curchan->hw_value);
2269 if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2271 * Rfgain is out of bounds, reset the chip
2272 * to load new gain values.
2274 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "calibration, resetting\n");
2275 ieee80211_queue_work(sc->hw, &sc->reset_work);
2277 if (ath5k_hw_phy_calibrate(ah, sc->curchan))
2278 ATH5K_ERR(sc, "calibration of channel %u failed\n",
2279 ieee80211_frequency_to_channel(
2280 sc->curchan->center_freq));
2282 /* Noise floor calibration interrupts rx/tx path while I/Q calibration
2283 * doesn't.
2284 * TODO: We should stop TX here, so that it doesn't interfere.
2285 * Note that stopping the queues is not enough to stop TX! */
2286 if (time_is_before_eq_jiffies(ah->ah_cal_next_nf)) {
2287 ah->ah_cal_next_nf = jiffies +
2288 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_NF);
2289 ath5k_hw_update_noise_floor(ah);
2292 ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2296 static void
2297 ath5k_tasklet_ani(unsigned long data)
2299 struct ath5k_softc *sc = (void *)data;
2300 struct ath5k_hw *ah = sc->ah;
2302 ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2303 ath5k_ani_calibration(ah);
2304 ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2308 static void
2309 ath5k_tx_complete_poll_work(struct work_struct *work)
2311 struct ath5k_softc *sc = container_of(work, struct ath5k_softc,
2312 tx_complete_work.work);
2313 struct ath5k_txq *txq;
2314 int i;
2315 bool needreset = false;
2317 mutex_lock(&sc->lock);
2319 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++) {
2320 if (sc->txqs[i].setup) {
2321 txq = &sc->txqs[i];
2322 spin_lock_bh(&txq->lock);
2323 if (txq->txq_len > 1) {
2324 if (txq->txq_poll_mark) {
2325 ATH5K_DBG(sc, ATH5K_DEBUG_XMIT,
2326 "TX queue stuck %d\n",
2327 txq->qnum);
2328 needreset = true;
2329 txq->txq_stuck++;
2330 spin_unlock_bh(&txq->lock);
2331 break;
2332 } else {
2333 txq->txq_poll_mark = true;
2336 spin_unlock_bh(&txq->lock);
2340 if (needreset) {
2341 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2342 "TX queues stuck, resetting\n");
2343 ath5k_reset(sc, NULL, true);
2346 mutex_unlock(&sc->lock);
2348 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2349 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2353 /*************************\
2354 * Initialization routines *
2355 \*************************/
2358 ath5k_init_softc(struct ath5k_softc *sc, const struct ath_bus_ops *bus_ops)
2360 struct ieee80211_hw *hw = sc->hw;
2361 struct ath_common *common;
2362 int ret;
2363 int csz;
2365 /* Initialize driver private data */
2366 SET_IEEE80211_DEV(hw, sc->dev);
2367 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2368 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2369 IEEE80211_HW_SIGNAL_DBM |
2370 IEEE80211_HW_REPORTS_TX_ACK_STATUS;
2372 hw->wiphy->interface_modes =
2373 BIT(NL80211_IFTYPE_AP) |
2374 BIT(NL80211_IFTYPE_STATION) |
2375 BIT(NL80211_IFTYPE_ADHOC) |
2376 BIT(NL80211_IFTYPE_MESH_POINT);
2378 /* both antennas can be configured as RX or TX */
2379 hw->wiphy->available_antennas_tx = 0x3;
2380 hw->wiphy->available_antennas_rx = 0x3;
2382 hw->extra_tx_headroom = 2;
2383 hw->channel_change_time = 5000;
2386 * Mark the device as detached to avoid processing
2387 * interrupts until setup is complete.
2389 __set_bit(ATH_STAT_INVALID, sc->status);
2391 sc->opmode = NL80211_IFTYPE_STATION;
2392 sc->bintval = 1000;
2393 mutex_init(&sc->lock);
2394 spin_lock_init(&sc->rxbuflock);
2395 spin_lock_init(&sc->txbuflock);
2396 spin_lock_init(&sc->block);
2399 /* Setup interrupt handler */
2400 ret = request_irq(sc->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
2401 if (ret) {
2402 ATH5K_ERR(sc, "request_irq failed\n");
2403 goto err;
2406 /* If we passed the test, malloc an ath5k_hw struct */
2407 sc->ah = kzalloc(sizeof(struct ath5k_hw), GFP_KERNEL);
2408 if (!sc->ah) {
2409 ret = -ENOMEM;
2410 ATH5K_ERR(sc, "out of memory\n");
2411 goto err_irq;
2414 sc->ah->ah_sc = sc;
2415 sc->ah->ah_iobase = sc->iobase;
2416 common = ath5k_hw_common(sc->ah);
2417 common->ops = &ath5k_common_ops;
2418 common->bus_ops = bus_ops;
2419 common->ah = sc->ah;
2420 common->hw = hw;
2421 common->priv = sc;
2424 * Cache line size is used to size and align various
2425 * structures used to communicate with the hardware.
2427 ath5k_read_cachesize(common, &csz);
2428 common->cachelsz = csz << 2; /* convert to bytes */
2430 spin_lock_init(&common->cc_lock);
2432 /* Initialize device */
2433 ret = ath5k_hw_init(sc);
2434 if (ret)
2435 goto err_free_ah;
2437 /* set up multi-rate retry capabilities */
2438 if (sc->ah->ah_version == AR5K_AR5212) {
2439 hw->max_rates = 4;
2440 hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2441 AR5K_INIT_RETRY_LONG);
2444 hw->vif_data_size = sizeof(struct ath5k_vif);
2446 /* Finish private driver data initialization */
2447 ret = ath5k_init(hw);
2448 if (ret)
2449 goto err_ah;
2451 ATH5K_INFO(sc, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2452 ath5k_chip_name(AR5K_VERSION_MAC, sc->ah->ah_mac_srev),
2453 sc->ah->ah_mac_srev,
2454 sc->ah->ah_phy_revision);
2456 if (!sc->ah->ah_single_chip) {
2457 /* Single chip radio (!RF5111) */
2458 if (sc->ah->ah_radio_5ghz_revision &&
2459 !sc->ah->ah_radio_2ghz_revision) {
2460 /* No 5GHz support -> report 2GHz radio */
2461 if (!test_bit(AR5K_MODE_11A,
2462 sc->ah->ah_capabilities.cap_mode)) {
2463 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
2464 ath5k_chip_name(AR5K_VERSION_RAD,
2465 sc->ah->ah_radio_5ghz_revision),
2466 sc->ah->ah_radio_5ghz_revision);
2467 /* No 2GHz support (5110 and some
2468 * 5Ghz only cards) -> report 5Ghz radio */
2469 } else if (!test_bit(AR5K_MODE_11B,
2470 sc->ah->ah_capabilities.cap_mode)) {
2471 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
2472 ath5k_chip_name(AR5K_VERSION_RAD,
2473 sc->ah->ah_radio_5ghz_revision),
2474 sc->ah->ah_radio_5ghz_revision);
2475 /* Multiband radio */
2476 } else {
2477 ATH5K_INFO(sc, "RF%s multiband radio found"
2478 " (0x%x)\n",
2479 ath5k_chip_name(AR5K_VERSION_RAD,
2480 sc->ah->ah_radio_5ghz_revision),
2481 sc->ah->ah_radio_5ghz_revision);
2484 /* Multi chip radio (RF5111 - RF2111) ->
2485 * report both 2GHz/5GHz radios */
2486 else if (sc->ah->ah_radio_5ghz_revision &&
2487 sc->ah->ah_radio_2ghz_revision){
2488 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
2489 ath5k_chip_name(AR5K_VERSION_RAD,
2490 sc->ah->ah_radio_5ghz_revision),
2491 sc->ah->ah_radio_5ghz_revision);
2492 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
2493 ath5k_chip_name(AR5K_VERSION_RAD,
2494 sc->ah->ah_radio_2ghz_revision),
2495 sc->ah->ah_radio_2ghz_revision);
2499 ath5k_debug_init_device(sc);
2501 /* ready to process interrupts */
2502 __clear_bit(ATH_STAT_INVALID, sc->status);
2504 return 0;
2505 err_ah:
2506 ath5k_hw_deinit(sc->ah);
2507 err_free_ah:
2508 kfree(sc->ah);
2509 err_irq:
2510 free_irq(sc->irq, sc);
2511 err:
2512 return ret;
2515 static int
2516 ath5k_stop_locked(struct ath5k_softc *sc)
2518 struct ath5k_hw *ah = sc->ah;
2520 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "invalid %u\n",
2521 test_bit(ATH_STAT_INVALID, sc->status));
2524 * Shutdown the hardware and driver:
2525 * stop output from above
2526 * disable interrupts
2527 * turn off timers
2528 * turn off the radio
2529 * clear transmit machinery
2530 * clear receive machinery
2531 * drain and release tx queues
2532 * reclaim beacon resources
2533 * power down hardware
2535 * Note that some of this work is not possible if the
2536 * hardware is gone (invalid).
2538 ieee80211_stop_queues(sc->hw);
2540 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2541 ath5k_led_off(sc);
2542 ath5k_hw_set_imr(ah, 0);
2543 synchronize_irq(sc->irq);
2544 ath5k_rx_stop(sc);
2545 ath5k_hw_dma_stop(ah);
2546 ath5k_drain_tx_buffs(sc);
2547 ath5k_hw_phy_disable(ah);
2550 return 0;
2554 ath5k_init_hw(struct ath5k_softc *sc)
2556 struct ath5k_hw *ah = sc->ah;
2557 struct ath_common *common = ath5k_hw_common(ah);
2558 int ret, i;
2560 mutex_lock(&sc->lock);
2562 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mode %d\n", sc->opmode);
2565 * Stop anything previously setup. This is safe
2566 * no matter this is the first time through or not.
2568 ath5k_stop_locked(sc);
2571 * The basic interface to setting the hardware in a good
2572 * state is ``reset''. On return the hardware is known to
2573 * be powered up and with interrupts disabled. This must
2574 * be followed by initialization of the appropriate bits
2575 * and then setup of the interrupt mask.
2577 sc->curchan = sc->hw->conf.channel;
2578 sc->imask = AR5K_INT_RXOK | AR5K_INT_RXERR | AR5K_INT_RXEOL |
2579 AR5K_INT_RXORN | AR5K_INT_TXDESC | AR5K_INT_TXEOL |
2580 AR5K_INT_FATAL | AR5K_INT_GLOBAL | AR5K_INT_MIB;
2582 ret = ath5k_reset(sc, NULL, false);
2583 if (ret)
2584 goto done;
2586 ath5k_rfkill_hw_start(ah);
2589 * Reset the key cache since some parts do not reset the
2590 * contents on initial power up or resume from suspend.
2592 for (i = 0; i < common->keymax; i++)
2593 ath_hw_keyreset(common, (u16) i);
2595 /* Use higher rates for acks instead of base
2596 * rate */
2597 ah->ah_ack_bitrate_high = true;
2599 for (i = 0; i < ARRAY_SIZE(sc->bslot); i++)
2600 sc->bslot[i] = NULL;
2602 ret = 0;
2603 done:
2604 mmiowb();
2605 mutex_unlock(&sc->lock);
2607 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2608 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2610 return ret;
2613 static void stop_tasklets(struct ath5k_softc *sc)
2615 sc->rx_pending = false;
2616 sc->tx_pending = false;
2617 tasklet_kill(&sc->rxtq);
2618 tasklet_kill(&sc->txtq);
2619 tasklet_kill(&sc->calib);
2620 tasklet_kill(&sc->beacontq);
2621 tasklet_kill(&sc->ani_tasklet);
2625 * Stop the device, grabbing the top-level lock to protect
2626 * against concurrent entry through ath5k_init (which can happen
2627 * if another thread does a system call and the thread doing the
2628 * stop is preempted).
2631 ath5k_stop_hw(struct ath5k_softc *sc)
2633 int ret;
2635 mutex_lock(&sc->lock);
2636 ret = ath5k_stop_locked(sc);
2637 if (ret == 0 && !test_bit(ATH_STAT_INVALID, sc->status)) {
2639 * Don't set the card in full sleep mode!
2641 * a) When the device is in this state it must be carefully
2642 * woken up or references to registers in the PCI clock
2643 * domain may freeze the bus (and system). This varies
2644 * by chip and is mostly an issue with newer parts
2645 * (madwifi sources mentioned srev >= 0x78) that go to
2646 * sleep more quickly.
2648 * b) On older chips full sleep results a weird behaviour
2649 * during wakeup. I tested various cards with srev < 0x78
2650 * and they don't wake up after module reload, a second
2651 * module reload is needed to bring the card up again.
2653 * Until we figure out what's going on don't enable
2654 * full chip reset on any chip (this is what Legacy HAL
2655 * and Sam's HAL do anyway). Instead Perform a full reset
2656 * on the device (same as initial state after attach) and
2657 * leave it idle (keep MAC/BB on warm reset) */
2658 ret = ath5k_hw_on_hold(sc->ah);
2660 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2661 "putting device to sleep\n");
2664 mmiowb();
2665 mutex_unlock(&sc->lock);
2667 stop_tasklets(sc);
2669 cancel_delayed_work_sync(&sc->tx_complete_work);
2671 ath5k_rfkill_hw_stop(sc->ah);
2673 return ret;
2677 * Reset the hardware. If chan is not NULL, then also pause rx/tx
2678 * and change to the given channel.
2680 * This should be called with sc->lock.
2682 static int
2683 ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan,
2684 bool skip_pcu)
2686 struct ath5k_hw *ah = sc->ah;
2687 struct ath_common *common = ath5k_hw_common(ah);
2688 int ret, ani_mode;
2690 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n");
2692 ath5k_hw_set_imr(ah, 0);
2693 synchronize_irq(sc->irq);
2694 stop_tasklets(sc);
2696 /* Save ani mode and disable ANI durring
2697 * reset. If we don't we might get false
2698 * PHY error interrupts. */
2699 ani_mode = ah->ah_sc->ani_state.ani_mode;
2700 ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2702 /* We are going to empty hw queues
2703 * so we should also free any remaining
2704 * tx buffers */
2705 ath5k_drain_tx_buffs(sc);
2706 if (chan)
2707 sc->curchan = chan;
2708 ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, chan != NULL,
2709 skip_pcu);
2710 if (ret) {
2711 ATH5K_ERR(sc, "can't reset hardware (%d)\n", ret);
2712 goto err;
2715 ret = ath5k_rx_start(sc);
2716 if (ret) {
2717 ATH5K_ERR(sc, "can't start recv logic\n");
2718 goto err;
2721 ath5k_ani_init(ah, ani_mode);
2723 ah->ah_cal_next_full = jiffies;
2724 ah->ah_cal_next_ani = jiffies;
2725 ah->ah_cal_next_nf = jiffies;
2726 ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2728 /* clear survey data and cycle counters */
2729 memset(&sc->survey, 0, sizeof(sc->survey));
2730 spin_lock_bh(&common->cc_lock);
2731 ath_hw_cycle_counters_update(common);
2732 memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2733 memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2734 spin_unlock_bh(&common->cc_lock);
2737 * Change channels and update the h/w rate map if we're switching;
2738 * e.g. 11a to 11b/g.
2740 * We may be doing a reset in response to an ioctl that changes the
2741 * channel so update any state that might change as a result.
2743 * XXX needed?
2745 /* ath5k_chan_change(sc, c); */
2747 ath5k_beacon_config(sc);
2748 /* intrs are enabled by ath5k_beacon_config */
2750 ieee80211_wake_queues(sc->hw);
2752 return 0;
2753 err:
2754 return ret;
2757 static void ath5k_reset_work(struct work_struct *work)
2759 struct ath5k_softc *sc = container_of(work, struct ath5k_softc,
2760 reset_work);
2762 mutex_lock(&sc->lock);
2763 ath5k_reset(sc, NULL, true);
2764 mutex_unlock(&sc->lock);
2767 static int
2768 ath5k_init(struct ieee80211_hw *hw)
2771 struct ath5k_softc *sc = hw->priv;
2772 struct ath5k_hw *ah = sc->ah;
2773 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2774 struct ath5k_txq *txq;
2775 u8 mac[ETH_ALEN] = {};
2776 int ret;
2780 * Check if the MAC has multi-rate retry support.
2781 * We do this by trying to setup a fake extended
2782 * descriptor. MACs that don't have support will
2783 * return false w/o doing anything. MACs that do
2784 * support it will return true w/o doing anything.
2786 ret = ath5k_hw_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
2788 if (ret < 0)
2789 goto err;
2790 if (ret > 0)
2791 __set_bit(ATH_STAT_MRRETRY, sc->status);
2794 * Collect the channel list. The 802.11 layer
2795 * is resposible for filtering this list based
2796 * on settings like the phy mode and regulatory
2797 * domain restrictions.
2799 ret = ath5k_setup_bands(hw);
2800 if (ret) {
2801 ATH5K_ERR(sc, "can't get channels\n");
2802 goto err;
2806 * Allocate tx+rx descriptors and populate the lists.
2808 ret = ath5k_desc_alloc(sc);
2809 if (ret) {
2810 ATH5K_ERR(sc, "can't allocate descriptors\n");
2811 goto err;
2815 * Allocate hardware transmit queues: one queue for
2816 * beacon frames and one data queue for each QoS
2817 * priority. Note that hw functions handle resetting
2818 * these queues at the needed time.
2820 ret = ath5k_beaconq_setup(ah);
2821 if (ret < 0) {
2822 ATH5K_ERR(sc, "can't setup a beacon xmit queue\n");
2823 goto err_desc;
2825 sc->bhalq = ret;
2826 sc->cabq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_CAB, 0);
2827 if (IS_ERR(sc->cabq)) {
2828 ATH5K_ERR(sc, "can't setup cab queue\n");
2829 ret = PTR_ERR(sc->cabq);
2830 goto err_bhal;
2833 /* 5211 and 5212 usually support 10 queues but we better rely on the
2834 * capability information */
2835 if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2836 /* This order matches mac80211's queue priority, so we can
2837 * directly use the mac80211 queue number without any mapping */
2838 txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2839 if (IS_ERR(txq)) {
2840 ATH5K_ERR(sc, "can't setup xmit queue\n");
2841 ret = PTR_ERR(txq);
2842 goto err_queues;
2844 txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2845 if (IS_ERR(txq)) {
2846 ATH5K_ERR(sc, "can't setup xmit queue\n");
2847 ret = PTR_ERR(txq);
2848 goto err_queues;
2850 txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2851 if (IS_ERR(txq)) {
2852 ATH5K_ERR(sc, "can't setup xmit queue\n");
2853 ret = PTR_ERR(txq);
2854 goto err_queues;
2856 txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
2857 if (IS_ERR(txq)) {
2858 ATH5K_ERR(sc, "can't setup xmit queue\n");
2859 ret = PTR_ERR(txq);
2860 goto err_queues;
2862 hw->queues = 4;
2863 } else {
2864 /* older hardware (5210) can only support one data queue */
2865 txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2866 if (IS_ERR(txq)) {
2867 ATH5K_ERR(sc, "can't setup xmit queue\n");
2868 ret = PTR_ERR(txq);
2869 goto err_queues;
2871 hw->queues = 1;
2874 tasklet_init(&sc->rxtq, ath5k_tasklet_rx, (unsigned long)sc);
2875 tasklet_init(&sc->txtq, ath5k_tasklet_tx, (unsigned long)sc);
2876 tasklet_init(&sc->calib, ath5k_tasklet_calibrate, (unsigned long)sc);
2877 tasklet_init(&sc->beacontq, ath5k_tasklet_beacon, (unsigned long)sc);
2878 tasklet_init(&sc->ani_tasklet, ath5k_tasklet_ani, (unsigned long)sc);
2880 INIT_WORK(&sc->reset_work, ath5k_reset_work);
2881 INIT_DELAYED_WORK(&sc->tx_complete_work, ath5k_tx_complete_poll_work);
2883 ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
2884 if (ret) {
2885 ATH5K_ERR(sc, "unable to read address from EEPROM\n");
2886 goto err_queues;
2889 SET_IEEE80211_PERM_ADDR(hw, mac);
2890 memcpy(&sc->lladdr, mac, ETH_ALEN);
2891 /* All MAC address bits matter for ACKs */
2892 ath5k_update_bssid_mask_and_opmode(sc, NULL);
2894 regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
2895 ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
2896 if (ret) {
2897 ATH5K_ERR(sc, "can't initialize regulatory system\n");
2898 goto err_queues;
2901 ret = ieee80211_register_hw(hw);
2902 if (ret) {
2903 ATH5K_ERR(sc, "can't register ieee80211 hw\n");
2904 goto err_queues;
2907 if (!ath_is_world_regd(regulatory))
2908 regulatory_hint(hw->wiphy, regulatory->alpha2);
2910 ath5k_init_leds(sc);
2912 ath5k_sysfs_register(sc);
2914 return 0;
2915 err_queues:
2916 ath5k_txq_release(sc);
2917 err_bhal:
2918 ath5k_hw_release_tx_queue(ah, sc->bhalq);
2919 err_desc:
2920 ath5k_desc_free(sc);
2921 err:
2922 return ret;
2925 void
2926 ath5k_deinit_softc(struct ath5k_softc *sc)
2928 struct ieee80211_hw *hw = sc->hw;
2931 * NB: the order of these is important:
2932 * o call the 802.11 layer before detaching ath5k_hw to
2933 * ensure callbacks into the driver to delete global
2934 * key cache entries can be handled
2935 * o reclaim the tx queue data structures after calling
2936 * the 802.11 layer as we'll get called back to reclaim
2937 * node state and potentially want to use them
2938 * o to cleanup the tx queues the hal is called, so detach
2939 * it last
2940 * XXX: ??? detach ath5k_hw ???
2941 * Other than that, it's straightforward...
2943 ieee80211_unregister_hw(hw);
2944 ath5k_desc_free(sc);
2945 ath5k_txq_release(sc);
2946 ath5k_hw_release_tx_queue(sc->ah, sc->bhalq);
2947 ath5k_unregister_leds(sc);
2949 ath5k_sysfs_unregister(sc);
2951 * NB: can't reclaim these until after ieee80211_ifdetach
2952 * returns because we'll get called back to reclaim node
2953 * state and potentially want to use them.
2955 ath5k_hw_deinit(sc->ah);
2956 free_irq(sc->irq, sc);
2959 bool
2960 ath_any_vif_assoc(struct ath5k_softc *sc)
2962 struct ath5k_vif_iter_data iter_data;
2963 iter_data.hw_macaddr = NULL;
2964 iter_data.any_assoc = false;
2965 iter_data.need_set_hw_addr = false;
2966 iter_data.found_active = true;
2968 ieee80211_iterate_active_interfaces_atomic(sc->hw, ath5k_vif_iter,
2969 &iter_data);
2970 return iter_data.any_assoc;
2973 void
2974 set_beacon_filter(struct ieee80211_hw *hw, bool enable)
2976 struct ath5k_softc *sc = hw->priv;
2977 struct ath5k_hw *ah = sc->ah;
2978 u32 rfilt;
2979 rfilt = ath5k_hw_get_rx_filter(ah);
2980 if (enable)
2981 rfilt |= AR5K_RX_FILTER_BEACON;
2982 else
2983 rfilt &= ~AR5K_RX_FILTER_BEACON;
2984 ath5k_hw_set_rx_filter(ah, rfilt);
2985 sc->filter_flags = rfilt;