2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
43 #include <linux/module.h>
44 #include <linux/delay.h>
45 #include <linux/hardirq.h>
48 #include <linux/netdevice.h>
49 #include <linux/cache.h>
50 #include <linux/ethtool.h>
51 #include <linux/uaccess.h>
52 #include <linux/slab.h>
53 #include <linux/etherdevice.h>
55 #include <net/ieee80211_radiotap.h>
57 #include <asm/unaligned.h>
64 #define CREATE_TRACE_POINTS
67 int ath5k_modparam_nohwcrypt
;
68 module_param_named(nohwcrypt
, ath5k_modparam_nohwcrypt
, bool, S_IRUGO
);
69 MODULE_PARM_DESC(nohwcrypt
, "Disable hardware encryption.");
71 static int modparam_all_channels
;
72 module_param_named(all_channels
, modparam_all_channels
, bool, S_IRUGO
);
73 MODULE_PARM_DESC(all_channels
, "Expose all channels the device can use.");
76 MODULE_AUTHOR("Jiri Slaby");
77 MODULE_AUTHOR("Nick Kossifidis");
78 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
79 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
80 MODULE_LICENSE("Dual BSD/GPL");
82 static int ath5k_init(struct ieee80211_hw
*hw
);
83 static int ath5k_reset(struct ath5k_softc
*sc
, struct ieee80211_channel
*chan
,
85 int ath5k_beacon_update(struct ieee80211_hw
*hw
, struct ieee80211_vif
*vif
);
86 void ath5k_beacon_update_timers(struct ath5k_softc
*sc
, u64 bc_tsf
);
89 static const struct ath5k_srev_name srev_names
[] = {
90 #ifdef CONFIG_ATHEROS_AR231X
91 { "5312", AR5K_VERSION_MAC
, AR5K_SREV_AR5312_R2
},
92 { "5312", AR5K_VERSION_MAC
, AR5K_SREV_AR5312_R7
},
93 { "2313", AR5K_VERSION_MAC
, AR5K_SREV_AR2313_R8
},
94 { "2315", AR5K_VERSION_MAC
, AR5K_SREV_AR2315_R6
},
95 { "2315", AR5K_VERSION_MAC
, AR5K_SREV_AR2315_R7
},
96 { "2317", AR5K_VERSION_MAC
, AR5K_SREV_AR2317_R1
},
97 { "2317", AR5K_VERSION_MAC
, AR5K_SREV_AR2317_R2
},
99 { "5210", AR5K_VERSION_MAC
, AR5K_SREV_AR5210
},
100 { "5311", AR5K_VERSION_MAC
, AR5K_SREV_AR5311
},
101 { "5311A", AR5K_VERSION_MAC
, AR5K_SREV_AR5311A
},
102 { "5311B", AR5K_VERSION_MAC
, AR5K_SREV_AR5311B
},
103 { "5211", AR5K_VERSION_MAC
, AR5K_SREV_AR5211
},
104 { "5212", AR5K_VERSION_MAC
, AR5K_SREV_AR5212
},
105 { "5213", AR5K_VERSION_MAC
, AR5K_SREV_AR5213
},
106 { "5213A", AR5K_VERSION_MAC
, AR5K_SREV_AR5213A
},
107 { "2413", AR5K_VERSION_MAC
, AR5K_SREV_AR2413
},
108 { "2414", AR5K_VERSION_MAC
, AR5K_SREV_AR2414
},
109 { "5424", AR5K_VERSION_MAC
, AR5K_SREV_AR5424
},
110 { "5413", AR5K_VERSION_MAC
, AR5K_SREV_AR5413
},
111 { "5414", AR5K_VERSION_MAC
, AR5K_SREV_AR5414
},
112 { "2415", AR5K_VERSION_MAC
, AR5K_SREV_AR2415
},
113 { "5416", AR5K_VERSION_MAC
, AR5K_SREV_AR5416
},
114 { "5418", AR5K_VERSION_MAC
, AR5K_SREV_AR5418
},
115 { "2425", AR5K_VERSION_MAC
, AR5K_SREV_AR2425
},
116 { "2417", AR5K_VERSION_MAC
, AR5K_SREV_AR2417
},
118 { "xxxxx", AR5K_VERSION_MAC
, AR5K_SREV_UNKNOWN
},
119 { "5110", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5110
},
120 { "5111", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5111
},
121 { "5111A", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5111A
},
122 { "2111", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2111
},
123 { "5112", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5112
},
124 { "5112A", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5112A
},
125 { "5112B", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5112B
},
126 { "2112", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2112
},
127 { "2112A", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2112A
},
128 { "2112B", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2112B
},
129 { "2413", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2413
},
130 { "5413", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5413
},
131 { "5424", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5424
},
132 { "5133", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5133
},
133 #ifdef CONFIG_ATHEROS_AR231X
134 { "2316", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2316
},
135 { "2317", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2317
},
137 { "xxxxx", AR5K_VERSION_RAD
, AR5K_SREV_UNKNOWN
},
140 static const struct ieee80211_rate ath5k_rates
[] = {
142 .hw_value
= ATH5K_RATE_CODE_1M
, },
144 .hw_value
= ATH5K_RATE_CODE_2M
,
145 .hw_value_short
= ATH5K_RATE_CODE_2M
| AR5K_SET_SHORT_PREAMBLE
,
146 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
148 .hw_value
= ATH5K_RATE_CODE_5_5M
,
149 .hw_value_short
= ATH5K_RATE_CODE_5_5M
| AR5K_SET_SHORT_PREAMBLE
,
150 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
152 .hw_value
= ATH5K_RATE_CODE_11M
,
153 .hw_value_short
= ATH5K_RATE_CODE_11M
| AR5K_SET_SHORT_PREAMBLE
,
154 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
156 .hw_value
= ATH5K_RATE_CODE_6M
,
159 .hw_value
= ATH5K_RATE_CODE_9M
,
162 .hw_value
= ATH5K_RATE_CODE_12M
,
165 .hw_value
= ATH5K_RATE_CODE_18M
,
168 .hw_value
= ATH5K_RATE_CODE_24M
,
171 .hw_value
= ATH5K_RATE_CODE_36M
,
174 .hw_value
= ATH5K_RATE_CODE_48M
,
177 .hw_value
= ATH5K_RATE_CODE_54M
,
182 static inline u64
ath5k_extend_tsf(struct ath5k_hw
*ah
, u32 rstamp
)
184 u64 tsf
= ath5k_hw_get_tsf64(ah
);
186 if ((tsf
& 0x7fff) < rstamp
)
189 return (tsf
& ~0x7fff) | rstamp
;
193 ath5k_chip_name(enum ath5k_srev_type type
, u_int16_t val
)
195 const char *name
= "xxxxx";
198 for (i
= 0; i
< ARRAY_SIZE(srev_names
); i
++) {
199 if (srev_names
[i
].sr_type
!= type
)
202 if ((val
& 0xf0) == srev_names
[i
].sr_val
)
203 name
= srev_names
[i
].sr_name
;
205 if ((val
& 0xff) == srev_names
[i
].sr_val
) {
206 name
= srev_names
[i
].sr_name
;
213 static unsigned int ath5k_ioread32(void *hw_priv
, u32 reg_offset
)
215 struct ath5k_hw
*ah
= (struct ath5k_hw
*) hw_priv
;
216 return ath5k_hw_reg_read(ah
, reg_offset
);
219 static void ath5k_iowrite32(void *hw_priv
, u32 val
, u32 reg_offset
)
221 struct ath5k_hw
*ah
= (struct ath5k_hw
*) hw_priv
;
222 ath5k_hw_reg_write(ah
, val
, reg_offset
);
225 static const struct ath_ops ath5k_common_ops
= {
226 .read
= ath5k_ioread32
,
227 .write
= ath5k_iowrite32
,
230 /***********************\
231 * Driver Initialization *
232 \***********************/
234 static int ath5k_reg_notifier(struct wiphy
*wiphy
, struct regulatory_request
*request
)
236 struct ieee80211_hw
*hw
= wiphy_to_ieee80211_hw(wiphy
);
237 struct ath5k_softc
*sc
= hw
->priv
;
238 struct ath_regulatory
*regulatory
= ath5k_hw_regulatory(sc
->ah
);
240 return ath_reg_notifier_apply(wiphy
, request
, regulatory
);
243 /********************\
244 * Channel/mode setup *
245 \********************/
248 * Returns true for the channel numbers used without all_channels modparam.
250 static bool ath5k_is_standard_channel(short chan
, enum ieee80211_band band
)
252 if (band
== IEEE80211_BAND_2GHZ
&& chan
<= 14)
255 return /* UNII 1,2 */
256 (((chan
& 3) == 0 && chan
>= 36 && chan
<= 64) ||
258 ((chan
& 3) == 0 && chan
>= 100 && chan
<= 140) ||
260 ((chan
& 3) == 1 && chan
>= 149 && chan
<= 165) ||
261 /* 802.11j 5.030-5.080 GHz (20MHz) */
262 (chan
== 8 || chan
== 12 || chan
== 16) ||
263 /* 802.11j 4.9GHz (20MHz) */
264 (chan
== 184 || chan
== 188 || chan
== 192 || chan
== 196));
268 ath5k_setup_channels(struct ath5k_hw
*ah
, struct ieee80211_channel
*channels
,
269 unsigned int mode
, unsigned int max
)
271 unsigned int count
, size
, chfreq
, freq
, ch
;
272 enum ieee80211_band band
;
276 /* 1..220, but 2GHz frequencies are filtered by check_channel */
278 chfreq
= CHANNEL_5GHZ
;
279 band
= IEEE80211_BAND_5GHZ
;
284 chfreq
= CHANNEL_2GHZ
;
285 band
= IEEE80211_BAND_2GHZ
;
288 ATH5K_WARN(ah
->ah_sc
, "bad mode, not copying channels\n");
293 for (ch
= 1; ch
<= size
&& count
< max
; ch
++) {
294 freq
= ieee80211_channel_to_frequency(ch
, band
);
296 if (freq
== 0) /* mapping failed - not a standard channel */
299 /* Check if channel is supported by the chipset */
300 if (!ath5k_channel_ok(ah
, freq
, chfreq
))
303 if (!modparam_all_channels
&&
304 !ath5k_is_standard_channel(ch
, band
))
307 /* Write channel info and increment counter */
308 channels
[count
].center_freq
= freq
;
309 channels
[count
].band
= band
;
313 channels
[count
].hw_value
= chfreq
| CHANNEL_OFDM
;
316 channels
[count
].hw_value
= CHANNEL_B
;
326 ath5k_setup_rate_idx(struct ath5k_softc
*sc
, struct ieee80211_supported_band
*b
)
330 for (i
= 0; i
< AR5K_MAX_RATES
; i
++)
331 sc
->rate_idx
[b
->band
][i
] = -1;
333 for (i
= 0; i
< b
->n_bitrates
; i
++) {
334 sc
->rate_idx
[b
->band
][b
->bitrates
[i
].hw_value
] = i
;
335 if (b
->bitrates
[i
].hw_value_short
)
336 sc
->rate_idx
[b
->band
][b
->bitrates
[i
].hw_value_short
] = i
;
341 ath5k_setup_bands(struct ieee80211_hw
*hw
)
343 struct ath5k_softc
*sc
= hw
->priv
;
344 struct ath5k_hw
*ah
= sc
->ah
;
345 struct ieee80211_supported_band
*sband
;
346 int max_c
, count_c
= 0;
349 BUILD_BUG_ON(ARRAY_SIZE(sc
->sbands
) < IEEE80211_NUM_BANDS
);
350 max_c
= ARRAY_SIZE(sc
->channels
);
353 sband
= &sc
->sbands
[IEEE80211_BAND_2GHZ
];
354 sband
->band
= IEEE80211_BAND_2GHZ
;
355 sband
->bitrates
= &sc
->rates
[IEEE80211_BAND_2GHZ
][0];
357 if (test_bit(AR5K_MODE_11G
, sc
->ah
->ah_capabilities
.cap_mode
)) {
359 memcpy(sband
->bitrates
, &ath5k_rates
[0],
360 sizeof(struct ieee80211_rate
) * 12);
361 sband
->n_bitrates
= 12;
363 sband
->channels
= sc
->channels
;
364 sband
->n_channels
= ath5k_setup_channels(ah
, sband
->channels
,
365 AR5K_MODE_11G
, max_c
);
367 hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] = sband
;
368 count_c
= sband
->n_channels
;
370 } else if (test_bit(AR5K_MODE_11B
, sc
->ah
->ah_capabilities
.cap_mode
)) {
372 memcpy(sband
->bitrates
, &ath5k_rates
[0],
373 sizeof(struct ieee80211_rate
) * 4);
374 sband
->n_bitrates
= 4;
376 /* 5211 only supports B rates and uses 4bit rate codes
377 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
380 if (ah
->ah_version
== AR5K_AR5211
) {
381 for (i
= 0; i
< 4; i
++) {
382 sband
->bitrates
[i
].hw_value
=
383 sband
->bitrates
[i
].hw_value
& 0xF;
384 sband
->bitrates
[i
].hw_value_short
=
385 sband
->bitrates
[i
].hw_value_short
& 0xF;
389 sband
->channels
= sc
->channels
;
390 sband
->n_channels
= ath5k_setup_channels(ah
, sband
->channels
,
391 AR5K_MODE_11B
, max_c
);
393 hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] = sband
;
394 count_c
= sband
->n_channels
;
397 ath5k_setup_rate_idx(sc
, sband
);
399 /* 5GHz band, A mode */
400 if (test_bit(AR5K_MODE_11A
, sc
->ah
->ah_capabilities
.cap_mode
)) {
401 sband
= &sc
->sbands
[IEEE80211_BAND_5GHZ
];
402 sband
->band
= IEEE80211_BAND_5GHZ
;
403 sband
->bitrates
= &sc
->rates
[IEEE80211_BAND_5GHZ
][0];
405 memcpy(sband
->bitrates
, &ath5k_rates
[4],
406 sizeof(struct ieee80211_rate
) * 8);
407 sband
->n_bitrates
= 8;
409 sband
->channels
= &sc
->channels
[count_c
];
410 sband
->n_channels
= ath5k_setup_channels(ah
, sband
->channels
,
411 AR5K_MODE_11A
, max_c
);
413 hw
->wiphy
->bands
[IEEE80211_BAND_5GHZ
] = sband
;
415 ath5k_setup_rate_idx(sc
, sband
);
417 ath5k_debug_dump_bands(sc
);
423 * Set/change channels. We always reset the chip.
424 * To accomplish this we must first cleanup any pending DMA,
425 * then restart stuff after a la ath5k_init.
427 * Called with sc->lock.
430 ath5k_chan_set(struct ath5k_softc
*sc
, struct ieee80211_channel
*chan
)
432 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
,
433 "channel set, resetting (%u -> %u MHz)\n",
434 sc
->curchan
->center_freq
, chan
->center_freq
);
437 * To switch channels clear any pending DMA operations;
438 * wait long enough for the RX fifo to drain, reset the
439 * hardware at the new frequency, and then re-enable
440 * the relevant bits of the h/w.
442 return ath5k_reset(sc
, chan
, true);
445 void ath5k_vif_iter(void *data
, u8
*mac
, struct ieee80211_vif
*vif
)
447 struct ath5k_vif_iter_data
*iter_data
= data
;
449 struct ath5k_vif
*avf
= (void *)vif
->drv_priv
;
451 if (iter_data
->hw_macaddr
)
452 for (i
= 0; i
< ETH_ALEN
; i
++)
453 iter_data
->mask
[i
] &=
454 ~(iter_data
->hw_macaddr
[i
] ^ mac
[i
]);
456 if (!iter_data
->found_active
) {
457 iter_data
->found_active
= true;
458 memcpy(iter_data
->active_mac
, mac
, ETH_ALEN
);
461 if (iter_data
->need_set_hw_addr
&& iter_data
->hw_macaddr
)
462 if (compare_ether_addr(iter_data
->hw_macaddr
, mac
) == 0)
463 iter_data
->need_set_hw_addr
= false;
465 if (!iter_data
->any_assoc
) {
467 iter_data
->any_assoc
= true;
470 /* Calculate combined mode - when APs are active, operate in AP mode.
471 * Otherwise use the mode of the new interface. This can currently
472 * only deal with combinations of APs and STAs. Only one ad-hoc
473 * interfaces is allowed.
475 if (avf
->opmode
== NL80211_IFTYPE_AP
)
476 iter_data
->opmode
= NL80211_IFTYPE_AP
;
478 if (avf
->opmode
== NL80211_IFTYPE_STATION
)
480 if (iter_data
->opmode
== NL80211_IFTYPE_UNSPECIFIED
)
481 iter_data
->opmode
= avf
->opmode
;
486 ath5k_update_bssid_mask_and_opmode(struct ath5k_softc
*sc
,
487 struct ieee80211_vif
*vif
)
489 struct ath_common
*common
= ath5k_hw_common(sc
->ah
);
490 struct ath5k_vif_iter_data iter_data
;
494 * Use the hardware MAC address as reference, the hardware uses it
495 * together with the BSSID mask when matching addresses.
497 iter_data
.hw_macaddr
= common
->macaddr
;
498 memset(&iter_data
.mask
, 0xff, ETH_ALEN
);
499 iter_data
.found_active
= false;
500 iter_data
.need_set_hw_addr
= true;
501 iter_data
.opmode
= NL80211_IFTYPE_UNSPECIFIED
;
502 iter_data
.n_stas
= 0;
505 ath5k_vif_iter(&iter_data
, vif
->addr
, vif
);
507 /* Get list of all active MAC addresses */
508 ieee80211_iterate_active_interfaces_atomic(sc
->hw
, ath5k_vif_iter
,
510 memcpy(sc
->bssidmask
, iter_data
.mask
, ETH_ALEN
);
512 sc
->opmode
= iter_data
.opmode
;
513 if (sc
->opmode
== NL80211_IFTYPE_UNSPECIFIED
)
514 /* Nothing active, default to station mode */
515 sc
->opmode
= NL80211_IFTYPE_STATION
;
517 ath5k_hw_set_opmode(sc
->ah
, sc
->opmode
);
518 ATH5K_DBG(sc
, ATH5K_DEBUG_MODE
, "mode setup opmode %d (%s)\n",
519 sc
->opmode
, ath_opmode_to_string(sc
->opmode
));
521 if (iter_data
.need_set_hw_addr
&& iter_data
.found_active
)
522 ath5k_hw_set_lladdr(sc
->ah
, iter_data
.active_mac
);
524 if (ath5k_hw_hasbssidmask(sc
->ah
))
525 ath5k_hw_set_bssid_mask(sc
->ah
, sc
->bssidmask
);
527 /* Set up RX Filter */
528 if (iter_data
.n_stas
> 1) {
529 /* If you have multiple STA interfaces connected to
530 * different APs, ARPs are not received (most of the time?)
531 * Enabling PROMISC appears to fix that probem.
533 sc
->filter_flags
|= AR5K_RX_FILTER_PROM
;
536 rfilt
= sc
->filter_flags
;
537 ath5k_hw_set_rx_filter(sc
->ah
, rfilt
);
538 ATH5K_DBG(sc
, ATH5K_DEBUG_MODE
, "RX filter 0x%x\n", rfilt
);
542 ath5k_hw_to_driver_rix(struct ath5k_softc
*sc
, int hw_rix
)
546 /* return base rate on errors */
547 if (WARN(hw_rix
< 0 || hw_rix
>= AR5K_MAX_RATES
,
548 "hw_rix out of bounds: %x\n", hw_rix
))
551 rix
= sc
->rate_idx
[sc
->curchan
->band
][hw_rix
];
552 if (WARN(rix
< 0, "invalid hw_rix: %x\n", hw_rix
))
563 struct sk_buff
*ath5k_rx_skb_alloc(struct ath5k_softc
*sc
, dma_addr_t
*skb_addr
)
565 struct ath_common
*common
= ath5k_hw_common(sc
->ah
);
569 * Allocate buffer with headroom_needed space for the
570 * fake physical layer header at the start.
572 skb
= ath_rxbuf_alloc(common
,
577 ATH5K_ERR(sc
, "can't alloc skbuff of size %u\n",
582 *skb_addr
= dma_map_single(sc
->dev
,
583 skb
->data
, common
->rx_bufsize
,
586 if (unlikely(dma_mapping_error(sc
->dev
, *skb_addr
))) {
587 ATH5K_ERR(sc
, "%s: DMA mapping failed\n", __func__
);
595 ath5k_rxbuf_setup(struct ath5k_softc
*sc
, struct ath5k_buf
*bf
)
597 struct ath5k_hw
*ah
= sc
->ah
;
598 struct sk_buff
*skb
= bf
->skb
;
599 struct ath5k_desc
*ds
;
603 skb
= ath5k_rx_skb_alloc(sc
, &bf
->skbaddr
);
610 * Setup descriptors. For receive we always terminate
611 * the descriptor list with a self-linked entry so we'll
612 * not get overrun under high load (as can happen with a
613 * 5212 when ANI processing enables PHY error frames).
615 * To ensure the last descriptor is self-linked we create
616 * each descriptor as self-linked and add it to the end. As
617 * each additional descriptor is added the previous self-linked
618 * entry is "fixed" naturally. This should be safe even
619 * if DMA is happening. When processing RX interrupts we
620 * never remove/process the last, self-linked, entry on the
621 * descriptor list. This ensures the hardware always has
622 * someplace to write a new frame.
625 ds
->ds_link
= bf
->daddr
; /* link to self */
626 ds
->ds_data
= bf
->skbaddr
;
627 ret
= ath5k_hw_setup_rx_desc(ah
, ds
, ah
->common
.rx_bufsize
, 0);
629 ATH5K_ERR(sc
, "%s: could not setup RX desc\n", __func__
);
633 if (sc
->rxlink
!= NULL
)
634 *sc
->rxlink
= bf
->daddr
;
635 sc
->rxlink
= &ds
->ds_link
;
639 static enum ath5k_pkt_type
get_hw_packet_type(struct sk_buff
*skb
)
641 struct ieee80211_hdr
*hdr
;
642 enum ath5k_pkt_type htype
;
645 hdr
= (struct ieee80211_hdr
*)skb
->data
;
646 fc
= hdr
->frame_control
;
648 if (ieee80211_is_beacon(fc
))
649 htype
= AR5K_PKT_TYPE_BEACON
;
650 else if (ieee80211_is_probe_resp(fc
))
651 htype
= AR5K_PKT_TYPE_PROBE_RESP
;
652 else if (ieee80211_is_atim(fc
))
653 htype
= AR5K_PKT_TYPE_ATIM
;
654 else if (ieee80211_is_pspoll(fc
))
655 htype
= AR5K_PKT_TYPE_PSPOLL
;
657 htype
= AR5K_PKT_TYPE_NORMAL
;
663 ath5k_txbuf_setup(struct ath5k_softc
*sc
, struct ath5k_buf
*bf
,
664 struct ath5k_txq
*txq
, int padsize
)
666 struct ath5k_hw
*ah
= sc
->ah
;
667 struct ath5k_desc
*ds
= bf
->desc
;
668 struct sk_buff
*skb
= bf
->skb
;
669 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
670 unsigned int pktlen
, flags
, keyidx
= AR5K_TXKEYIX_INVALID
;
671 struct ieee80211_rate
*rate
;
672 unsigned int mrr_rate
[3], mrr_tries
[3];
679 flags
= AR5K_TXDESC_INTREQ
| AR5K_TXDESC_CLRDMASK
;
682 bf
->skbaddr
= dma_map_single(sc
->dev
, skb
->data
, skb
->len
,
685 rate
= ieee80211_get_tx_rate(sc
->hw
, info
);
691 if (info
->flags
& IEEE80211_TX_CTL_NO_ACK
)
692 flags
|= AR5K_TXDESC_NOACK
;
694 rc_flags
= info
->control
.rates
[0].flags
;
695 hw_rate
= (rc_flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
) ?
696 rate
->hw_value_short
: rate
->hw_value
;
700 /* FIXME: If we are in g mode and rate is a CCK rate
701 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
702 * from tx power (value is in dB units already) */
703 if (info
->control
.hw_key
) {
704 keyidx
= info
->control
.hw_key
->hw_key_idx
;
705 pktlen
+= info
->control
.hw_key
->icv_len
;
707 if (rc_flags
& IEEE80211_TX_RC_USE_RTS_CTS
) {
708 flags
|= AR5K_TXDESC_RTSENA
;
709 cts_rate
= ieee80211_get_rts_cts_rate(sc
->hw
, info
)->hw_value
;
710 duration
= le16_to_cpu(ieee80211_rts_duration(sc
->hw
,
711 info
->control
.vif
, pktlen
, info
));
713 if (rc_flags
& IEEE80211_TX_RC_USE_CTS_PROTECT
) {
714 flags
|= AR5K_TXDESC_CTSENA
;
715 cts_rate
= ieee80211_get_rts_cts_rate(sc
->hw
, info
)->hw_value
;
716 duration
= le16_to_cpu(ieee80211_ctstoself_duration(sc
->hw
,
717 info
->control
.vif
, pktlen
, info
));
719 ret
= ah
->ah_setup_tx_desc(ah
, ds
, pktlen
,
720 ieee80211_get_hdrlen_from_skb(skb
), padsize
,
721 get_hw_packet_type(skb
),
722 (sc
->power_level
* 2),
724 info
->control
.rates
[0].count
, keyidx
, ah
->ah_tx_ant
, flags
,
729 memset(mrr_rate
, 0, sizeof(mrr_rate
));
730 memset(mrr_tries
, 0, sizeof(mrr_tries
));
731 for (i
= 0; i
< 3; i
++) {
732 rate
= ieee80211_get_alt_retry_rate(sc
->hw
, info
, i
);
736 mrr_rate
[i
] = rate
->hw_value
;
737 mrr_tries
[i
] = info
->control
.rates
[i
+ 1].count
;
740 ath5k_hw_setup_mrr_tx_desc(ah
, ds
,
741 mrr_rate
[0], mrr_tries
[0],
742 mrr_rate
[1], mrr_tries
[1],
743 mrr_rate
[2], mrr_tries
[2]);
746 ds
->ds_data
= bf
->skbaddr
;
748 spin_lock_bh(&txq
->lock
);
749 list_add_tail(&bf
->list
, &txq
->q
);
751 if (txq
->link
== NULL
) /* is this first packet? */
752 ath5k_hw_set_txdp(ah
, txq
->qnum
, bf
->daddr
);
753 else /* no, so only link it */
754 *txq
->link
= bf
->daddr
;
756 txq
->link
= &ds
->ds_link
;
757 ath5k_hw_start_tx_dma(ah
, txq
->qnum
);
759 spin_unlock_bh(&txq
->lock
);
763 dma_unmap_single(sc
->dev
, bf
->skbaddr
, skb
->len
, DMA_TO_DEVICE
);
767 /*******************\
768 * Descriptors setup *
769 \*******************/
772 ath5k_desc_alloc(struct ath5k_softc
*sc
)
774 struct ath5k_desc
*ds
;
775 struct ath5k_buf
*bf
;
780 /* allocate descriptors */
781 sc
->desc_len
= sizeof(struct ath5k_desc
) *
782 (ATH_TXBUF
+ ATH_RXBUF
+ ATH_BCBUF
+ 1);
784 sc
->desc
= dma_alloc_coherent(sc
->dev
, sc
->desc_len
,
785 &sc
->desc_daddr
, GFP_KERNEL
);
786 if (sc
->desc
== NULL
) {
787 ATH5K_ERR(sc
, "can't allocate descriptors\n");
793 ATH5K_DBG(sc
, ATH5K_DEBUG_ANY
, "DMA map: %p (%zu) -> %llx\n",
794 ds
, sc
->desc_len
, (unsigned long long)sc
->desc_daddr
);
796 bf
= kcalloc(1 + ATH_TXBUF
+ ATH_RXBUF
+ ATH_BCBUF
,
797 sizeof(struct ath5k_buf
), GFP_KERNEL
);
799 ATH5K_ERR(sc
, "can't allocate bufptr\n");
805 INIT_LIST_HEAD(&sc
->rxbuf
);
806 for (i
= 0; i
< ATH_RXBUF
; i
++, bf
++, ds
++, da
+= sizeof(*ds
)) {
809 list_add_tail(&bf
->list
, &sc
->rxbuf
);
812 INIT_LIST_HEAD(&sc
->txbuf
);
813 sc
->txbuf_len
= ATH_TXBUF
;
814 for (i
= 0; i
< ATH_TXBUF
; i
++, bf
++, ds
++,
818 list_add_tail(&bf
->list
, &sc
->txbuf
);
822 INIT_LIST_HEAD(&sc
->bcbuf
);
823 for (i
= 0; i
< ATH_BCBUF
; i
++, bf
++, ds
++, da
+= sizeof(*ds
)) {
826 list_add_tail(&bf
->list
, &sc
->bcbuf
);
831 dma_free_coherent(sc
->dev
, sc
->desc_len
, sc
->desc
, sc
->desc_daddr
);
838 ath5k_txbuf_free_skb(struct ath5k_softc
*sc
, struct ath5k_buf
*bf
)
843 dma_unmap_single(sc
->dev
, bf
->skbaddr
, bf
->skb
->len
,
845 dev_kfree_skb_any(bf
->skb
);
848 bf
->desc
->ds_data
= 0;
852 ath5k_rxbuf_free_skb(struct ath5k_softc
*sc
, struct ath5k_buf
*bf
)
854 struct ath5k_hw
*ah
= sc
->ah
;
855 struct ath_common
*common
= ath5k_hw_common(ah
);
860 dma_unmap_single(sc
->dev
, bf
->skbaddr
, common
->rx_bufsize
,
862 dev_kfree_skb_any(bf
->skb
);
865 bf
->desc
->ds_data
= 0;
869 ath5k_desc_free(struct ath5k_softc
*sc
)
871 struct ath5k_buf
*bf
;
873 list_for_each_entry(bf
, &sc
->txbuf
, list
)
874 ath5k_txbuf_free_skb(sc
, bf
);
875 list_for_each_entry(bf
, &sc
->rxbuf
, list
)
876 ath5k_rxbuf_free_skb(sc
, bf
);
877 list_for_each_entry(bf
, &sc
->bcbuf
, list
)
878 ath5k_txbuf_free_skb(sc
, bf
);
880 /* Free memory associated with all descriptors */
881 dma_free_coherent(sc
->dev
, sc
->desc_len
, sc
->desc
, sc
->desc_daddr
);
894 static struct ath5k_txq
*
895 ath5k_txq_setup(struct ath5k_softc
*sc
,
896 int qtype
, int subtype
)
898 struct ath5k_hw
*ah
= sc
->ah
;
899 struct ath5k_txq
*txq
;
900 struct ath5k_txq_info qi
= {
901 .tqi_subtype
= subtype
,
902 /* XXX: default values not correct for B and XR channels,
904 .tqi_aifs
= AR5K_TUNE_AIFS
,
905 .tqi_cw_min
= AR5K_TUNE_CWMIN
,
906 .tqi_cw_max
= AR5K_TUNE_CWMAX
911 * Enable interrupts only for EOL and DESC conditions.
912 * We mark tx descriptors to receive a DESC interrupt
913 * when a tx queue gets deep; otherwise we wait for the
914 * EOL to reap descriptors. Note that this is done to
915 * reduce interrupt load and this only defers reaping
916 * descriptors, never transmitting frames. Aside from
917 * reducing interrupts this also permits more concurrency.
918 * The only potential downside is if the tx queue backs
919 * up in which case the top half of the kernel may backup
920 * due to a lack of tx descriptors.
922 qi
.tqi_flags
= AR5K_TXQ_FLAG_TXEOLINT_ENABLE
|
923 AR5K_TXQ_FLAG_TXDESCINT_ENABLE
;
924 qnum
= ath5k_hw_setup_tx_queue(ah
, qtype
, &qi
);
927 * NB: don't print a message, this happens
928 * normally on parts with too few tx queues
930 return ERR_PTR(qnum
);
932 if (qnum
>= ARRAY_SIZE(sc
->txqs
)) {
933 ATH5K_ERR(sc
, "hw qnum %u out of range, max %tu!\n",
934 qnum
, ARRAY_SIZE(sc
->txqs
));
935 ath5k_hw_release_tx_queue(ah
, qnum
);
936 return ERR_PTR(-EINVAL
);
938 txq
= &sc
->txqs
[qnum
];
942 INIT_LIST_HEAD(&txq
->q
);
943 spin_lock_init(&txq
->lock
);
946 txq
->txq_max
= ATH5K_TXQ_LEN_MAX
;
947 txq
->txq_poll_mark
= false;
950 return &sc
->txqs
[qnum
];
954 ath5k_beaconq_setup(struct ath5k_hw
*ah
)
956 struct ath5k_txq_info qi
= {
957 /* XXX: default values not correct for B and XR channels,
959 .tqi_aifs
= AR5K_TUNE_AIFS
,
960 .tqi_cw_min
= AR5K_TUNE_CWMIN
,
961 .tqi_cw_max
= AR5K_TUNE_CWMAX
,
962 /* NB: for dynamic turbo, don't enable any other interrupts */
963 .tqi_flags
= AR5K_TXQ_FLAG_TXDESCINT_ENABLE
966 return ath5k_hw_setup_tx_queue(ah
, AR5K_TX_QUEUE_BEACON
, &qi
);
970 ath5k_beaconq_config(struct ath5k_softc
*sc
)
972 struct ath5k_hw
*ah
= sc
->ah
;
973 struct ath5k_txq_info qi
;
976 ret
= ath5k_hw_get_tx_queueprops(ah
, sc
->bhalq
, &qi
);
980 if (sc
->opmode
== NL80211_IFTYPE_AP
||
981 sc
->opmode
== NL80211_IFTYPE_MESH_POINT
) {
983 * Always burst out beacon and CAB traffic
984 * (aifs = cwmin = cwmax = 0)
989 } else if (sc
->opmode
== NL80211_IFTYPE_ADHOC
) {
991 * Adhoc mode; backoff between 0 and (2 * cw_min).
995 qi
.tqi_cw_max
= 2 * AR5K_TUNE_CWMIN
;
998 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
,
999 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1000 qi
.tqi_aifs
, qi
.tqi_cw_min
, qi
.tqi_cw_max
);
1002 ret
= ath5k_hw_set_tx_queueprops(ah
, sc
->bhalq
, &qi
);
1004 ATH5K_ERR(sc
, "%s: unable to update parameters for beacon "
1005 "hardware queue!\n", __func__
);
1008 ret
= ath5k_hw_reset_tx_queue(ah
, sc
->bhalq
); /* push to h/w */
1012 /* reconfigure cabq with ready time to 80% of beacon_interval */
1013 ret
= ath5k_hw_get_tx_queueprops(ah
, AR5K_TX_QUEUE_ID_CAB
, &qi
);
1017 qi
.tqi_ready_time
= (sc
->bintval
* 80) / 100;
1018 ret
= ath5k_hw_set_tx_queueprops(ah
, AR5K_TX_QUEUE_ID_CAB
, &qi
);
1022 ret
= ath5k_hw_reset_tx_queue(ah
, AR5K_TX_QUEUE_ID_CAB
);
1028 * ath5k_drain_tx_buffs - Empty tx buffers
1030 * @sc The &struct ath5k_softc
1032 * Empty tx buffers from all queues in preparation
1033 * of a reset or during shutdown.
1035 * NB: this assumes output has been stopped and
1036 * we do not need to block ath5k_tx_tasklet
1039 ath5k_drain_tx_buffs(struct ath5k_softc
*sc
)
1041 struct ath5k_txq
*txq
;
1042 struct ath5k_buf
*bf
, *bf0
;
1045 for (i
= 0; i
< ARRAY_SIZE(sc
->txqs
); i
++) {
1046 if (sc
->txqs
[i
].setup
) {
1048 spin_lock_bh(&txq
->lock
);
1049 list_for_each_entry_safe(bf
, bf0
, &txq
->q
, list
) {
1050 ath5k_debug_printtxbuf(sc
, bf
);
1052 ath5k_txbuf_free_skb(sc
, bf
);
1054 spin_lock_bh(&sc
->txbuflock
);
1055 list_move_tail(&bf
->list
, &sc
->txbuf
);
1058 spin_unlock_bh(&sc
->txbuflock
);
1061 txq
->txq_poll_mark
= false;
1062 spin_unlock_bh(&txq
->lock
);
1068 ath5k_txq_release(struct ath5k_softc
*sc
)
1070 struct ath5k_txq
*txq
= sc
->txqs
;
1073 for (i
= 0; i
< ARRAY_SIZE(sc
->txqs
); i
++, txq
++)
1075 ath5k_hw_release_tx_queue(sc
->ah
, txq
->qnum
);
1086 * Enable the receive h/w following a reset.
1089 ath5k_rx_start(struct ath5k_softc
*sc
)
1091 struct ath5k_hw
*ah
= sc
->ah
;
1092 struct ath_common
*common
= ath5k_hw_common(ah
);
1093 struct ath5k_buf
*bf
;
1096 common
->rx_bufsize
= roundup(IEEE80211_MAX_FRAME_LEN
, common
->cachelsz
);
1098 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "cachelsz %u rx_bufsize %u\n",
1099 common
->cachelsz
, common
->rx_bufsize
);
1101 spin_lock_bh(&sc
->rxbuflock
);
1103 list_for_each_entry(bf
, &sc
->rxbuf
, list
) {
1104 ret
= ath5k_rxbuf_setup(sc
, bf
);
1106 spin_unlock_bh(&sc
->rxbuflock
);
1110 bf
= list_first_entry(&sc
->rxbuf
, struct ath5k_buf
, list
);
1111 ath5k_hw_set_rxdp(ah
, bf
->daddr
);
1112 spin_unlock_bh(&sc
->rxbuflock
);
1114 ath5k_hw_start_rx_dma(ah
); /* enable recv descriptors */
1115 ath5k_update_bssid_mask_and_opmode(sc
, NULL
); /* set filters, etc. */
1116 ath5k_hw_start_rx_pcu(ah
); /* re-enable PCU/DMA engine */
1124 * Disable the receive logic on PCU (DRU)
1125 * In preparation for a shutdown.
1127 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1131 ath5k_rx_stop(struct ath5k_softc
*sc
)
1133 struct ath5k_hw
*ah
= sc
->ah
;
1135 ath5k_hw_set_rx_filter(ah
, 0); /* clear recv filter */
1136 ath5k_hw_stop_rx_pcu(ah
); /* disable PCU */
1138 ath5k_debug_printrxbuffs(sc
, ah
);
1142 ath5k_rx_decrypted(struct ath5k_softc
*sc
, struct sk_buff
*skb
,
1143 struct ath5k_rx_status
*rs
)
1145 struct ath5k_hw
*ah
= sc
->ah
;
1146 struct ath_common
*common
= ath5k_hw_common(ah
);
1147 struct ieee80211_hdr
*hdr
= (void *)skb
->data
;
1148 unsigned int keyix
, hlen
;
1150 if (!(rs
->rs_status
& AR5K_RXERR_DECRYPT
) &&
1151 rs
->rs_keyix
!= AR5K_RXKEYIX_INVALID
)
1152 return RX_FLAG_DECRYPTED
;
1154 /* Apparently when a default key is used to decrypt the packet
1155 the hw does not set the index used to decrypt. In such cases
1156 get the index from the packet. */
1157 hlen
= ieee80211_hdrlen(hdr
->frame_control
);
1158 if (ieee80211_has_protected(hdr
->frame_control
) &&
1159 !(rs
->rs_status
& AR5K_RXERR_DECRYPT
) &&
1160 skb
->len
>= hlen
+ 4) {
1161 keyix
= skb
->data
[hlen
+ 3] >> 6;
1163 if (test_bit(keyix
, common
->keymap
))
1164 return RX_FLAG_DECRYPTED
;
1172 ath5k_check_ibss_tsf(struct ath5k_softc
*sc
, struct sk_buff
*skb
,
1173 struct ieee80211_rx_status
*rxs
)
1175 struct ath_common
*common
= ath5k_hw_common(sc
->ah
);
1178 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*)skb
->data
;
1180 if (ieee80211_is_beacon(mgmt
->frame_control
) &&
1181 le16_to_cpu(mgmt
->u
.beacon
.capab_info
) & WLAN_CAPABILITY_IBSS
&&
1182 memcmp(mgmt
->bssid
, common
->curbssid
, ETH_ALEN
) == 0) {
1184 * Received an IBSS beacon with the same BSSID. Hardware *must*
1185 * have updated the local TSF. We have to work around various
1186 * hardware bugs, though...
1188 tsf
= ath5k_hw_get_tsf64(sc
->ah
);
1189 bc_tstamp
= le64_to_cpu(mgmt
->u
.beacon
.timestamp
);
1190 hw_tu
= TSF_TO_TU(tsf
);
1192 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
1193 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1194 (unsigned long long)bc_tstamp
,
1195 (unsigned long long)rxs
->mactime
,
1196 (unsigned long long)(rxs
->mactime
- bc_tstamp
),
1197 (unsigned long long)tsf
);
1200 * Sometimes the HW will give us a wrong tstamp in the rx
1201 * status, causing the timestamp extension to go wrong.
1202 * (This seems to happen especially with beacon frames bigger
1203 * than 78 byte (incl. FCS))
1204 * But we know that the receive timestamp must be later than the
1205 * timestamp of the beacon since HW must have synced to that.
1207 * NOTE: here we assume mactime to be after the frame was
1208 * received, not like mac80211 which defines it at the start.
1210 if (bc_tstamp
> rxs
->mactime
) {
1211 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
1212 "fixing mactime from %llx to %llx\n",
1213 (unsigned long long)rxs
->mactime
,
1214 (unsigned long long)tsf
);
1219 * Local TSF might have moved higher than our beacon timers,
1220 * in that case we have to update them to continue sending
1221 * beacons. This also takes care of synchronizing beacon sending
1222 * times with other stations.
1224 if (hw_tu
>= sc
->nexttbtt
)
1225 ath5k_beacon_update_timers(sc
, bc_tstamp
);
1227 /* Check if the beacon timers are still correct, because a TSF
1228 * update might have created a window between them - for a
1229 * longer description see the comment of this function: */
1230 if (!ath5k_hw_check_beacon_timers(sc
->ah
, sc
->bintval
)) {
1231 ath5k_beacon_update_timers(sc
, bc_tstamp
);
1232 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
1233 "fixed beacon timers after beacon receive\n");
1239 ath5k_update_beacon_rssi(struct ath5k_softc
*sc
, struct sk_buff
*skb
, int rssi
)
1241 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*)skb
->data
;
1242 struct ath5k_hw
*ah
= sc
->ah
;
1243 struct ath_common
*common
= ath5k_hw_common(ah
);
1245 /* only beacons from our BSSID */
1246 if (!ieee80211_is_beacon(mgmt
->frame_control
) ||
1247 memcmp(mgmt
->bssid
, common
->curbssid
, ETH_ALEN
) != 0)
1250 ewma_add(&ah
->ah_beacon_rssi_avg
, rssi
);
1252 /* in IBSS mode we should keep RSSI statistics per neighbour */
1253 /* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1257 * Compute padding position. skb must contain an IEEE 802.11 frame
1259 static int ath5k_common_padpos(struct sk_buff
*skb
)
1261 struct ieee80211_hdr
* hdr
= (struct ieee80211_hdr
*)skb
->data
;
1262 __le16 frame_control
= hdr
->frame_control
;
1265 if (ieee80211_has_a4(frame_control
)) {
1268 if (ieee80211_is_data_qos(frame_control
)) {
1269 padpos
+= IEEE80211_QOS_CTL_LEN
;
1276 * This function expects an 802.11 frame and returns the number of
1277 * bytes added, or -1 if we don't have enough header room.
1279 static int ath5k_add_padding(struct sk_buff
*skb
)
1281 int padpos
= ath5k_common_padpos(skb
);
1282 int padsize
= padpos
& 3;
1284 if (padsize
&& skb
->len
>padpos
) {
1286 if (skb_headroom(skb
) < padsize
)
1289 skb_push(skb
, padsize
);
1290 memmove(skb
->data
, skb
->data
+padsize
, padpos
);
1298 * The MAC header is padded to have 32-bit boundary if the
1299 * packet payload is non-zero. The general calculation for
1300 * padsize would take into account odd header lengths:
1301 * padsize = 4 - (hdrlen & 3); however, since only
1302 * even-length headers are used, padding can only be 0 or 2
1303 * bytes and we can optimize this a bit. We must not try to
1304 * remove padding from short control frames that do not have a
1307 * This function expects an 802.11 frame and returns the number of
1310 static int ath5k_remove_padding(struct sk_buff
*skb
)
1312 int padpos
= ath5k_common_padpos(skb
);
1313 int padsize
= padpos
& 3;
1315 if (padsize
&& skb
->len
>=padpos
+padsize
) {
1316 memmove(skb
->data
+ padsize
, skb
->data
, padpos
);
1317 skb_pull(skb
, padsize
);
1325 ath5k_receive_frame(struct ath5k_softc
*sc
, struct sk_buff
*skb
,
1326 struct ath5k_rx_status
*rs
)
1328 struct ieee80211_rx_status
*rxs
;
1330 ath5k_remove_padding(skb
);
1332 rxs
= IEEE80211_SKB_RXCB(skb
);
1335 if (unlikely(rs
->rs_status
& AR5K_RXERR_MIC
))
1336 rxs
->flag
|= RX_FLAG_MMIC_ERROR
;
1339 * always extend the mac timestamp, since this information is
1340 * also needed for proper IBSS merging.
1342 * XXX: it might be too late to do it here, since rs_tstamp is
1343 * 15bit only. that means TSF extension has to be done within
1344 * 32768usec (about 32ms). it might be necessary to move this to
1345 * the interrupt handler, like it is done in madwifi.
1347 * Unfortunately we don't know when the hardware takes the rx
1348 * timestamp (beginning of phy frame, data frame, end of rx?).
1349 * The only thing we know is that it is hardware specific...
1350 * On AR5213 it seems the rx timestamp is at the end of the
1351 * frame, but i'm not sure.
1353 * NOTE: mac80211 defines mactime at the beginning of the first
1354 * data symbol. Since we don't have any time references it's
1355 * impossible to comply to that. This affects IBSS merge only
1356 * right now, so it's not too bad...
1358 rxs
->mactime
= ath5k_extend_tsf(sc
->ah
, rs
->rs_tstamp
);
1359 rxs
->flag
|= RX_FLAG_MACTIME_MPDU
;
1361 rxs
->freq
= sc
->curchan
->center_freq
;
1362 rxs
->band
= sc
->curchan
->band
;
1364 rxs
->signal
= sc
->ah
->ah_noise_floor
+ rs
->rs_rssi
;
1366 rxs
->antenna
= rs
->rs_antenna
;
1368 if (rs
->rs_antenna
> 0 && rs
->rs_antenna
< 5)
1369 sc
->stats
.antenna_rx
[rs
->rs_antenna
]++;
1371 sc
->stats
.antenna_rx
[0]++; /* invalid */
1373 rxs
->rate_idx
= ath5k_hw_to_driver_rix(sc
, rs
->rs_rate
);
1374 rxs
->flag
|= ath5k_rx_decrypted(sc
, skb
, rs
);
1376 if (rxs
->rate_idx
>= 0 && rs
->rs_rate
==
1377 sc
->sbands
[sc
->curchan
->band
].bitrates
[rxs
->rate_idx
].hw_value_short
)
1378 rxs
->flag
|= RX_FLAG_SHORTPRE
;
1380 trace_ath5k_rx(sc
, skb
);
1382 ath5k_update_beacon_rssi(sc
, skb
, rs
->rs_rssi
);
1384 /* check beacons in IBSS mode */
1385 if (sc
->opmode
== NL80211_IFTYPE_ADHOC
)
1386 ath5k_check_ibss_tsf(sc
, skb
, rxs
);
1388 ieee80211_rx(sc
->hw
, skb
);
1391 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1393 * Check if we want to further process this frame or not. Also update
1394 * statistics. Return true if we want this frame, false if not.
1397 ath5k_receive_frame_ok(struct ath5k_softc
*sc
, struct ath5k_rx_status
*rs
)
1399 sc
->stats
.rx_all_count
++;
1400 sc
->stats
.rx_bytes_count
+= rs
->rs_datalen
;
1402 if (unlikely(rs
->rs_status
)) {
1403 if (rs
->rs_status
& AR5K_RXERR_CRC
)
1404 sc
->stats
.rxerr_crc
++;
1405 if (rs
->rs_status
& AR5K_RXERR_FIFO
)
1406 sc
->stats
.rxerr_fifo
++;
1407 if (rs
->rs_status
& AR5K_RXERR_PHY
) {
1408 sc
->stats
.rxerr_phy
++;
1409 if (rs
->rs_phyerr
> 0 && rs
->rs_phyerr
< 32)
1410 sc
->stats
.rxerr_phy_code
[rs
->rs_phyerr
]++;
1413 if (rs
->rs_status
& AR5K_RXERR_DECRYPT
) {
1415 * Decrypt error. If the error occurred
1416 * because there was no hardware key, then
1417 * let the frame through so the upper layers
1418 * can process it. This is necessary for 5210
1419 * parts which have no way to setup a ``clear''
1422 * XXX do key cache faulting
1424 sc
->stats
.rxerr_decrypt
++;
1425 if (rs
->rs_keyix
== AR5K_RXKEYIX_INVALID
&&
1426 !(rs
->rs_status
& AR5K_RXERR_CRC
))
1429 if (rs
->rs_status
& AR5K_RXERR_MIC
) {
1430 sc
->stats
.rxerr_mic
++;
1434 /* reject any frames with non-crypto errors */
1435 if (rs
->rs_status
& ~(AR5K_RXERR_DECRYPT
))
1439 if (unlikely(rs
->rs_more
)) {
1440 sc
->stats
.rxerr_jumbo
++;
1447 ath5k_set_current_imask(struct ath5k_softc
*sc
)
1449 enum ath5k_int imask
= sc
->imask
;
1450 unsigned long flags
;
1452 spin_lock_irqsave(&sc
->irqlock
, flags
);
1454 imask
&= ~AR5K_INT_RX_ALL
;
1456 imask
&= ~AR5K_INT_TX_ALL
;
1457 ath5k_hw_set_imr(sc
->ah
, imask
);
1458 spin_unlock_irqrestore(&sc
->irqlock
, flags
);
1462 ath5k_tasklet_rx(unsigned long data
)
1464 struct ath5k_rx_status rs
= {};
1465 struct sk_buff
*skb
, *next_skb
;
1466 dma_addr_t next_skb_addr
;
1467 struct ath5k_softc
*sc
= (void *)data
;
1468 struct ath5k_hw
*ah
= sc
->ah
;
1469 struct ath_common
*common
= ath5k_hw_common(ah
);
1470 struct ath5k_buf
*bf
;
1471 struct ath5k_desc
*ds
;
1474 spin_lock(&sc
->rxbuflock
);
1475 if (list_empty(&sc
->rxbuf
)) {
1476 ATH5K_WARN(sc
, "empty rx buf pool\n");
1480 bf
= list_first_entry(&sc
->rxbuf
, struct ath5k_buf
, list
);
1481 BUG_ON(bf
->skb
== NULL
);
1485 /* bail if HW is still using self-linked descriptor */
1486 if (ath5k_hw_get_rxdp(sc
->ah
) == bf
->daddr
)
1489 ret
= sc
->ah
->ah_proc_rx_desc(sc
->ah
, ds
, &rs
);
1490 if (unlikely(ret
== -EINPROGRESS
))
1492 else if (unlikely(ret
)) {
1493 ATH5K_ERR(sc
, "error in processing rx descriptor\n");
1494 sc
->stats
.rxerr_proc
++;
1498 if (ath5k_receive_frame_ok(sc
, &rs
)) {
1499 next_skb
= ath5k_rx_skb_alloc(sc
, &next_skb_addr
);
1502 * If we can't replace bf->skb with a new skb under
1503 * memory pressure, just skip this packet
1508 dma_unmap_single(sc
->dev
, bf
->skbaddr
,
1512 skb_put(skb
, rs
.rs_datalen
);
1514 ath5k_receive_frame(sc
, skb
, &rs
);
1517 bf
->skbaddr
= next_skb_addr
;
1520 list_move_tail(&bf
->list
, &sc
->rxbuf
);
1521 } while (ath5k_rxbuf_setup(sc
, bf
) == 0);
1523 spin_unlock(&sc
->rxbuflock
);
1524 sc
->rx_pending
= false;
1525 ath5k_set_current_imask(sc
);
1534 ath5k_tx_queue(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
1535 struct ath5k_txq
*txq
)
1537 struct ath5k_softc
*sc
= hw
->priv
;
1538 struct ath5k_buf
*bf
;
1539 unsigned long flags
;
1542 trace_ath5k_tx(sc
, skb
, txq
);
1545 * The hardware expects the header padded to 4 byte boundaries.
1546 * If this is not the case, we add the padding after the header.
1548 padsize
= ath5k_add_padding(skb
);
1550 ATH5K_ERR(sc
, "tx hdrlen not %%4: not enough"
1551 " headroom to pad");
1555 if (txq
->txq_len
>= txq
->txq_max
)
1556 ieee80211_stop_queue(hw
, txq
->qnum
);
1558 spin_lock_irqsave(&sc
->txbuflock
, flags
);
1559 if (list_empty(&sc
->txbuf
)) {
1560 ATH5K_ERR(sc
, "no further txbuf available, dropping packet\n");
1561 spin_unlock_irqrestore(&sc
->txbuflock
, flags
);
1562 ieee80211_stop_queues(hw
);
1565 bf
= list_first_entry(&sc
->txbuf
, struct ath5k_buf
, list
);
1566 list_del(&bf
->list
);
1568 if (list_empty(&sc
->txbuf
))
1569 ieee80211_stop_queues(hw
);
1570 spin_unlock_irqrestore(&sc
->txbuflock
, flags
);
1574 if (ath5k_txbuf_setup(sc
, bf
, txq
, padsize
)) {
1576 spin_lock_irqsave(&sc
->txbuflock
, flags
);
1577 list_add_tail(&bf
->list
, &sc
->txbuf
);
1579 spin_unlock_irqrestore(&sc
->txbuflock
, flags
);
1585 dev_kfree_skb_any(skb
);
1589 ath5k_tx_frame_completed(struct ath5k_softc
*sc
, struct sk_buff
*skb
,
1590 struct ath5k_txq
*txq
, struct ath5k_tx_status
*ts
)
1592 struct ieee80211_tx_info
*info
;
1596 sc
->stats
.tx_all_count
++;
1597 sc
->stats
.tx_bytes_count
+= skb
->len
;
1598 info
= IEEE80211_SKB_CB(skb
);
1600 tries
[0] = info
->status
.rates
[0].count
;
1601 tries
[1] = info
->status
.rates
[1].count
;
1602 tries
[2] = info
->status
.rates
[2].count
;
1604 ieee80211_tx_info_clear_status(info
);
1606 for (i
= 0; i
< ts
->ts_final_idx
; i
++) {
1607 struct ieee80211_tx_rate
*r
=
1608 &info
->status
.rates
[i
];
1610 r
->count
= tries
[i
];
1613 info
->status
.rates
[ts
->ts_final_idx
].count
= ts
->ts_final_retry
;
1614 info
->status
.rates
[ts
->ts_final_idx
+ 1].idx
= -1;
1616 if (unlikely(ts
->ts_status
)) {
1617 sc
->stats
.ack_fail
++;
1618 if (ts
->ts_status
& AR5K_TXERR_FILT
) {
1619 info
->flags
|= IEEE80211_TX_STAT_TX_FILTERED
;
1620 sc
->stats
.txerr_filt
++;
1622 if (ts
->ts_status
& AR5K_TXERR_XRETRY
)
1623 sc
->stats
.txerr_retry
++;
1624 if (ts
->ts_status
& AR5K_TXERR_FIFO
)
1625 sc
->stats
.txerr_fifo
++;
1627 info
->flags
|= IEEE80211_TX_STAT_ACK
;
1628 info
->status
.ack_signal
= ts
->ts_rssi
;
1630 /* count the successful attempt as well */
1631 info
->status
.rates
[ts
->ts_final_idx
].count
++;
1635 * Remove MAC header padding before giving the frame
1638 ath5k_remove_padding(skb
);
1640 if (ts
->ts_antenna
> 0 && ts
->ts_antenna
< 5)
1641 sc
->stats
.antenna_tx
[ts
->ts_antenna
]++;
1643 sc
->stats
.antenna_tx
[0]++; /* invalid */
1645 trace_ath5k_tx_complete(sc
, skb
, txq
, ts
);
1646 ieee80211_tx_status(sc
->hw
, skb
);
1650 ath5k_tx_processq(struct ath5k_softc
*sc
, struct ath5k_txq
*txq
)
1652 struct ath5k_tx_status ts
= {};
1653 struct ath5k_buf
*bf
, *bf0
;
1654 struct ath5k_desc
*ds
;
1655 struct sk_buff
*skb
;
1658 spin_lock(&txq
->lock
);
1659 list_for_each_entry_safe(bf
, bf0
, &txq
->q
, list
) {
1661 txq
->txq_poll_mark
= false;
1663 /* skb might already have been processed last time. */
1664 if (bf
->skb
!= NULL
) {
1667 ret
= sc
->ah
->ah_proc_tx_desc(sc
->ah
, ds
, &ts
);
1668 if (unlikely(ret
== -EINPROGRESS
))
1670 else if (unlikely(ret
)) {
1672 "error %d while processing "
1673 "queue %u\n", ret
, txq
->qnum
);
1680 dma_unmap_single(sc
->dev
, bf
->skbaddr
, skb
->len
,
1682 ath5k_tx_frame_completed(sc
, skb
, txq
, &ts
);
1686 * It's possible that the hardware can say the buffer is
1687 * completed when it hasn't yet loaded the ds_link from
1688 * host memory and moved on.
1689 * Always keep the last descriptor to avoid HW races...
1691 if (ath5k_hw_get_txdp(sc
->ah
, txq
->qnum
) != bf
->daddr
) {
1692 spin_lock(&sc
->txbuflock
);
1693 list_move_tail(&bf
->list
, &sc
->txbuf
);
1696 spin_unlock(&sc
->txbuflock
);
1699 spin_unlock(&txq
->lock
);
1700 if (txq
->txq_len
< ATH5K_TXQ_LEN_LOW
&& txq
->qnum
< 4)
1701 ieee80211_wake_queue(sc
->hw
, txq
->qnum
);
1705 ath5k_tasklet_tx(unsigned long data
)
1708 struct ath5k_softc
*sc
= (void *)data
;
1710 for (i
=0; i
< AR5K_NUM_TX_QUEUES
; i
++)
1711 if (sc
->txqs
[i
].setup
&& (sc
->ah
->ah_txq_isr
& BIT(i
)))
1712 ath5k_tx_processq(sc
, &sc
->txqs
[i
]);
1714 sc
->tx_pending
= false;
1715 ath5k_set_current_imask(sc
);
1724 * Setup the beacon frame for transmit.
1727 ath5k_beacon_setup(struct ath5k_softc
*sc
, struct ath5k_buf
*bf
)
1729 struct sk_buff
*skb
= bf
->skb
;
1730 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
1731 struct ath5k_hw
*ah
= sc
->ah
;
1732 struct ath5k_desc
*ds
;
1736 const int padsize
= 0;
1738 bf
->skbaddr
= dma_map_single(sc
->dev
, skb
->data
, skb
->len
,
1740 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
, "skb %p [data %p len %u] "
1741 "skbaddr %llx\n", skb
, skb
->data
, skb
->len
,
1742 (unsigned long long)bf
->skbaddr
);
1744 if (dma_mapping_error(sc
->dev
, bf
->skbaddr
)) {
1745 ATH5K_ERR(sc
, "beacon DMA mapping failed\n");
1750 antenna
= ah
->ah_tx_ant
;
1752 flags
= AR5K_TXDESC_NOACK
;
1753 if (sc
->opmode
== NL80211_IFTYPE_ADHOC
&& ath5k_hw_hasveol(ah
)) {
1754 ds
->ds_link
= bf
->daddr
; /* self-linked */
1755 flags
|= AR5K_TXDESC_VEOL
;
1760 * If we use multiple antennas on AP and use
1761 * the Sectored AP scenario, switch antenna every
1762 * 4 beacons to make sure everybody hears our AP.
1763 * When a client tries to associate, hw will keep
1764 * track of the tx antenna to be used for this client
1765 * automaticaly, based on ACKed packets.
1767 * Note: AP still listens and transmits RTS on the
1768 * default antenna which is supposed to be an omni.
1770 * Note2: On sectored scenarios it's possible to have
1771 * multiple antennas (1 omni -- the default -- and 14
1772 * sectors), so if we choose to actually support this
1773 * mode, we need to allow the user to set how many antennas
1774 * we have and tweak the code below to send beacons
1777 if (ah
->ah_ant_mode
== AR5K_ANTMODE_SECTOR_AP
)
1778 antenna
= sc
->bsent
& 4 ? 2 : 1;
1781 /* FIXME: If we are in g mode and rate is a CCK rate
1782 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1783 * from tx power (value is in dB units already) */
1784 ds
->ds_data
= bf
->skbaddr
;
1785 ret
= ah
->ah_setup_tx_desc(ah
, ds
, skb
->len
,
1786 ieee80211_get_hdrlen_from_skb(skb
), padsize
,
1787 AR5K_PKT_TYPE_BEACON
, (sc
->power_level
* 2),
1788 ieee80211_get_tx_rate(sc
->hw
, info
)->hw_value
,
1789 1, AR5K_TXKEYIX_INVALID
,
1790 antenna
, flags
, 0, 0);
1796 dma_unmap_single(sc
->dev
, bf
->skbaddr
, skb
->len
, DMA_TO_DEVICE
);
1801 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
1802 * this is called only once at config_bss time, for AP we do it every
1803 * SWBA interrupt so that the TIM will reflect buffered frames.
1805 * Called with the beacon lock.
1808 ath5k_beacon_update(struct ieee80211_hw
*hw
, struct ieee80211_vif
*vif
)
1811 struct ath5k_softc
*sc
= hw
->priv
;
1812 struct ath5k_vif
*avf
= (void *)vif
->drv_priv
;
1813 struct sk_buff
*skb
;
1815 if (WARN_ON(!vif
)) {
1820 skb
= ieee80211_beacon_get(hw
, vif
);
1827 ath5k_txbuf_free_skb(sc
, avf
->bbuf
);
1828 avf
->bbuf
->skb
= skb
;
1829 ret
= ath5k_beacon_setup(sc
, avf
->bbuf
);
1831 avf
->bbuf
->skb
= NULL
;
1837 * Transmit a beacon frame at SWBA. Dynamic updates to the
1838 * frame contents are done as needed and the slot time is
1839 * also adjusted based on current state.
1841 * This is called from software irq context (beacontq tasklets)
1842 * or user context from ath5k_beacon_config.
1845 ath5k_beacon_send(struct ath5k_softc
*sc
)
1847 struct ath5k_hw
*ah
= sc
->ah
;
1848 struct ieee80211_vif
*vif
;
1849 struct ath5k_vif
*avf
;
1850 struct ath5k_buf
*bf
;
1851 struct sk_buff
*skb
;
1853 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
, "in beacon_send\n");
1856 * Check if the previous beacon has gone out. If
1857 * not, don't don't try to post another: skip this
1858 * period and wait for the next. Missed beacons
1859 * indicate a problem and should not occur. If we
1860 * miss too many consecutive beacons reset the device.
1862 if (unlikely(ath5k_hw_num_tx_pending(ah
, sc
->bhalq
) != 0)) {
1864 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
,
1865 "missed %u consecutive beacons\n", sc
->bmisscount
);
1866 if (sc
->bmisscount
> 10) { /* NB: 10 is a guess */
1867 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
,
1868 "stuck beacon time (%u missed)\n",
1870 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
,
1871 "stuck beacon, resetting\n");
1872 ieee80211_queue_work(sc
->hw
, &sc
->reset_work
);
1876 if (unlikely(sc
->bmisscount
!= 0)) {
1877 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
,
1878 "resume beacon xmit after %u misses\n",
1883 if ((sc
->opmode
== NL80211_IFTYPE_AP
&& sc
->num_ap_vifs
> 1) ||
1884 sc
->opmode
== NL80211_IFTYPE_MESH_POINT
) {
1885 u64 tsf
= ath5k_hw_get_tsf64(ah
);
1886 u32 tsftu
= TSF_TO_TU(tsf
);
1887 int slot
= ((tsftu
% sc
->bintval
) * ATH_BCBUF
) / sc
->bintval
;
1888 vif
= sc
->bslot
[(slot
+ 1) % ATH_BCBUF
];
1889 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
,
1890 "tsf %llx tsftu %x intval %u slot %u vif %p\n",
1891 (unsigned long long)tsf
, tsftu
, sc
->bintval
, slot
, vif
);
1892 } else /* only one interface */
1898 avf
= (void *)vif
->drv_priv
;
1900 if (unlikely(bf
->skb
== NULL
|| sc
->opmode
== NL80211_IFTYPE_STATION
||
1901 sc
->opmode
== NL80211_IFTYPE_MONITOR
)) {
1902 ATH5K_WARN(sc
, "bf=%p bf_skb=%p\n", bf
, bf
? bf
->skb
: NULL
);
1907 * Stop any current dma and put the new frame on the queue.
1908 * This should never fail since we check above that no frames
1909 * are still pending on the queue.
1911 if (unlikely(ath5k_hw_stop_beacon_queue(ah
, sc
->bhalq
))) {
1912 ATH5K_WARN(sc
, "beacon queue %u didn't start/stop ?\n", sc
->bhalq
);
1913 /* NB: hw still stops DMA, so proceed */
1916 /* refresh the beacon for AP or MESH mode */
1917 if (sc
->opmode
== NL80211_IFTYPE_AP
||
1918 sc
->opmode
== NL80211_IFTYPE_MESH_POINT
)
1919 ath5k_beacon_update(sc
->hw
, vif
);
1921 trace_ath5k_tx(sc
, bf
->skb
, &sc
->txqs
[sc
->bhalq
]);
1923 ath5k_hw_set_txdp(ah
, sc
->bhalq
, bf
->daddr
);
1924 ath5k_hw_start_tx_dma(ah
, sc
->bhalq
);
1925 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
, "TXDP[%u] = %llx (%p)\n",
1926 sc
->bhalq
, (unsigned long long)bf
->daddr
, bf
->desc
);
1928 skb
= ieee80211_get_buffered_bc(sc
->hw
, vif
);
1930 ath5k_tx_queue(sc
->hw
, skb
, sc
->cabq
);
1931 skb
= ieee80211_get_buffered_bc(sc
->hw
, vif
);
1938 * ath5k_beacon_update_timers - update beacon timers
1940 * @sc: struct ath5k_softc pointer we are operating on
1941 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1942 * beacon timer update based on the current HW TSF.
1944 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1945 * of a received beacon or the current local hardware TSF and write it to the
1946 * beacon timer registers.
1948 * This is called in a variety of situations, e.g. when a beacon is received,
1949 * when a TSF update has been detected, but also when an new IBSS is created or
1950 * when we otherwise know we have to update the timers, but we keep it in this
1951 * function to have it all together in one place.
1954 ath5k_beacon_update_timers(struct ath5k_softc
*sc
, u64 bc_tsf
)
1956 struct ath5k_hw
*ah
= sc
->ah
;
1957 u32 nexttbtt
, intval
, hw_tu
, bc_tu
;
1960 intval
= sc
->bintval
& AR5K_BEACON_PERIOD
;
1961 if (sc
->opmode
== NL80211_IFTYPE_AP
&& sc
->num_ap_vifs
> 1) {
1962 intval
/= ATH_BCBUF
; /* staggered multi-bss beacons */
1964 ATH5K_WARN(sc
, "intval %u is too low, min 15\n",
1967 if (WARN_ON(!intval
))
1970 /* beacon TSF converted to TU */
1971 bc_tu
= TSF_TO_TU(bc_tsf
);
1973 /* current TSF converted to TU */
1974 hw_tsf
= ath5k_hw_get_tsf64(ah
);
1975 hw_tu
= TSF_TO_TU(hw_tsf
);
1977 #define FUDGE AR5K_TUNE_SW_BEACON_RESP + 3
1978 /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
1979 * Since we later substract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
1980 * configuration we need to make sure it is bigger than that. */
1984 * no beacons received, called internally.
1985 * just need to refresh timers based on HW TSF.
1987 nexttbtt
= roundup(hw_tu
+ FUDGE
, intval
);
1988 } else if (bc_tsf
== 0) {
1990 * no beacon received, probably called by ath5k_reset_tsf().
1991 * reset TSF to start with 0.
1994 intval
|= AR5K_BEACON_RESET_TSF
;
1995 } else if (bc_tsf
> hw_tsf
) {
1997 * beacon received, SW merge happend but HW TSF not yet updated.
1998 * not possible to reconfigure timers yet, but next time we
1999 * receive a beacon with the same BSSID, the hardware will
2000 * automatically update the TSF and then we need to reconfigure
2003 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
2004 "need to wait for HW TSF sync\n");
2008 * most important case for beacon synchronization between STA.
2010 * beacon received and HW TSF has been already updated by HW.
2011 * update next TBTT based on the TSF of the beacon, but make
2012 * sure it is ahead of our local TSF timer.
2014 nexttbtt
= bc_tu
+ roundup(hw_tu
+ FUDGE
- bc_tu
, intval
);
2018 sc
->nexttbtt
= nexttbtt
;
2020 intval
|= AR5K_BEACON_ENA
;
2021 ath5k_hw_init_beacon(ah
, nexttbtt
, intval
);
2024 * debugging output last in order to preserve the time critical aspect
2028 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
2029 "reconfigured timers based on HW TSF\n");
2030 else if (bc_tsf
== 0)
2031 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
2032 "reset HW TSF and timers\n");
2034 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
2035 "updated timers based on beacon TSF\n");
2037 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
2038 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2039 (unsigned long long) bc_tsf
,
2040 (unsigned long long) hw_tsf
, bc_tu
, hw_tu
, nexttbtt
);
2041 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
, "intval %u %s %s\n",
2042 intval
& AR5K_BEACON_PERIOD
,
2043 intval
& AR5K_BEACON_ENA
? "AR5K_BEACON_ENA" : "",
2044 intval
& AR5K_BEACON_RESET_TSF
? "AR5K_BEACON_RESET_TSF" : "");
2048 * ath5k_beacon_config - Configure the beacon queues and interrupts
2050 * @sc: struct ath5k_softc pointer we are operating on
2052 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2053 * interrupts to detect TSF updates only.
2056 ath5k_beacon_config(struct ath5k_softc
*sc
)
2058 struct ath5k_hw
*ah
= sc
->ah
;
2059 unsigned long flags
;
2061 spin_lock_irqsave(&sc
->block
, flags
);
2063 sc
->imask
&= ~(AR5K_INT_BMISS
| AR5K_INT_SWBA
);
2065 if (sc
->enable_beacon
) {
2067 * In IBSS mode we use a self-linked tx descriptor and let the
2068 * hardware send the beacons automatically. We have to load it
2070 * We use the SWBA interrupt only to keep track of the beacon
2071 * timers in order to detect automatic TSF updates.
2073 ath5k_beaconq_config(sc
);
2075 sc
->imask
|= AR5K_INT_SWBA
;
2077 if (sc
->opmode
== NL80211_IFTYPE_ADHOC
) {
2078 if (ath5k_hw_hasveol(ah
))
2079 ath5k_beacon_send(sc
);
2081 ath5k_beacon_update_timers(sc
, -1);
2083 ath5k_hw_stop_beacon_queue(sc
->ah
, sc
->bhalq
);
2086 ath5k_hw_set_imr(ah
, sc
->imask
);
2088 spin_unlock_irqrestore(&sc
->block
, flags
);
2091 static void ath5k_tasklet_beacon(unsigned long data
)
2093 struct ath5k_softc
*sc
= (struct ath5k_softc
*) data
;
2096 * Software beacon alert--time to send a beacon.
2098 * In IBSS mode we use this interrupt just to
2099 * keep track of the next TBTT (target beacon
2100 * transmission time) in order to detect wether
2101 * automatic TSF updates happened.
2103 if (sc
->opmode
== NL80211_IFTYPE_ADHOC
) {
2104 /* XXX: only if VEOL suppported */
2105 u64 tsf
= ath5k_hw_get_tsf64(sc
->ah
);
2106 sc
->nexttbtt
+= sc
->bintval
;
2107 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
,
2108 "SWBA nexttbtt: %x hw_tu: %x "
2112 (unsigned long long) tsf
);
2114 spin_lock(&sc
->block
);
2115 ath5k_beacon_send(sc
);
2116 spin_unlock(&sc
->block
);
2121 /********************\
2122 * Interrupt handling *
2123 \********************/
2126 ath5k_intr_calibration_poll(struct ath5k_hw
*ah
)
2128 if (time_is_before_eq_jiffies(ah
->ah_cal_next_ani
) &&
2129 !(ah
->ah_cal_mask
& AR5K_CALIBRATION_FULL
)) {
2130 /* run ANI only when full calibration is not active */
2131 ah
->ah_cal_next_ani
= jiffies
+
2132 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI
);
2133 tasklet_schedule(&ah
->ah_sc
->ani_tasklet
);
2135 } else if (time_is_before_eq_jiffies(ah
->ah_cal_next_full
)) {
2136 ah
->ah_cal_next_full
= jiffies
+
2137 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL
);
2138 tasklet_schedule(&ah
->ah_sc
->calib
);
2140 /* we could use SWI to generate enough interrupts to meet our
2141 * calibration interval requirements, if necessary:
2142 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2146 ath5k_schedule_rx(struct ath5k_softc
*sc
)
2148 sc
->rx_pending
= true;
2149 tasklet_schedule(&sc
->rxtq
);
2153 ath5k_schedule_tx(struct ath5k_softc
*sc
)
2155 sc
->tx_pending
= true;
2156 tasklet_schedule(&sc
->txtq
);
2160 ath5k_intr(int irq
, void *dev_id
)
2162 struct ath5k_softc
*sc
= dev_id
;
2163 struct ath5k_hw
*ah
= sc
->ah
;
2164 enum ath5k_int status
;
2165 unsigned int counter
= 1000;
2167 if (unlikely(test_bit(ATH_STAT_INVALID
, sc
->status
) ||
2168 ((ath5k_get_bus_type(ah
) != ATH_AHB
) &&
2169 !ath5k_hw_is_intr_pending(ah
))))
2173 ath5k_hw_get_isr(ah
, &status
); /* NB: clears IRQ too */
2174 ATH5K_DBG(sc
, ATH5K_DEBUG_INTR
, "status 0x%x/0x%x\n",
2176 if (unlikely(status
& AR5K_INT_FATAL
)) {
2178 * Fatal errors are unrecoverable.
2179 * Typically these are caused by DMA errors.
2181 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
,
2182 "fatal int, resetting\n");
2183 ieee80211_queue_work(sc
->hw
, &sc
->reset_work
);
2184 } else if (unlikely(status
& AR5K_INT_RXORN
)) {
2186 * Receive buffers are full. Either the bus is busy or
2187 * the CPU is not fast enough to process all received
2189 * Older chipsets need a reset to come out of this
2190 * condition, but we treat it as RX for newer chips.
2191 * We don't know exactly which versions need a reset -
2192 * this guess is copied from the HAL.
2194 sc
->stats
.rxorn_intr
++;
2195 if (ah
->ah_mac_srev
< AR5K_SREV_AR5212
) {
2196 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
,
2197 "rx overrun, resetting\n");
2198 ieee80211_queue_work(sc
->hw
, &sc
->reset_work
);
2201 ath5k_schedule_rx(sc
);
2203 if (status
& AR5K_INT_SWBA
) {
2204 tasklet_hi_schedule(&sc
->beacontq
);
2206 if (status
& AR5K_INT_RXEOL
) {
2208 * NB: the hardware should re-read the link when
2209 * RXE bit is written, but it doesn't work at
2210 * least on older hardware revs.
2212 sc
->stats
.rxeol_intr
++;
2214 if (status
& AR5K_INT_TXURN
) {
2215 /* bump tx trigger level */
2216 ath5k_hw_update_tx_triglevel(ah
, true);
2218 if (status
& (AR5K_INT_RXOK
| AR5K_INT_RXERR
))
2219 ath5k_schedule_rx(sc
);
2220 if (status
& (AR5K_INT_TXOK
| AR5K_INT_TXDESC
2221 | AR5K_INT_TXERR
| AR5K_INT_TXEOL
))
2222 ath5k_schedule_tx(sc
);
2223 if (status
& AR5K_INT_BMISS
) {
2226 if (status
& AR5K_INT_MIB
) {
2227 sc
->stats
.mib_intr
++;
2228 ath5k_hw_update_mib_counters(ah
);
2229 ath5k_ani_mib_intr(ah
);
2231 if (status
& AR5K_INT_GPIO
)
2232 tasklet_schedule(&sc
->rf_kill
.toggleq
);
2236 if (ath5k_get_bus_type(ah
) == ATH_AHB
)
2239 } while (ath5k_hw_is_intr_pending(ah
) && --counter
> 0);
2241 if (sc
->rx_pending
|| sc
->tx_pending
)
2242 ath5k_set_current_imask(sc
);
2244 if (unlikely(!counter
))
2245 ATH5K_WARN(sc
, "too many interrupts, giving up for now\n");
2247 ath5k_intr_calibration_poll(ah
);
2253 * Periodically recalibrate the PHY to account
2254 * for temperature/environment changes.
2257 ath5k_tasklet_calibrate(unsigned long data
)
2259 struct ath5k_softc
*sc
= (void *)data
;
2260 struct ath5k_hw
*ah
= sc
->ah
;
2262 /* Only full calibration for now */
2263 ah
->ah_cal_mask
|= AR5K_CALIBRATION_FULL
;
2265 ATH5K_DBG(sc
, ATH5K_DEBUG_CALIBRATE
, "channel %u/%x\n",
2266 ieee80211_frequency_to_channel(sc
->curchan
->center_freq
),
2267 sc
->curchan
->hw_value
);
2269 if (ath5k_hw_gainf_calibrate(ah
) == AR5K_RFGAIN_NEED_CHANGE
) {
2271 * Rfgain is out of bounds, reset the chip
2272 * to load new gain values.
2274 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "calibration, resetting\n");
2275 ieee80211_queue_work(sc
->hw
, &sc
->reset_work
);
2277 if (ath5k_hw_phy_calibrate(ah
, sc
->curchan
))
2278 ATH5K_ERR(sc
, "calibration of channel %u failed\n",
2279 ieee80211_frequency_to_channel(
2280 sc
->curchan
->center_freq
));
2282 /* Noise floor calibration interrupts rx/tx path while I/Q calibration
2284 * TODO: We should stop TX here, so that it doesn't interfere.
2285 * Note that stopping the queues is not enough to stop TX! */
2286 if (time_is_before_eq_jiffies(ah
->ah_cal_next_nf
)) {
2287 ah
->ah_cal_next_nf
= jiffies
+
2288 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_NF
);
2289 ath5k_hw_update_noise_floor(ah
);
2292 ah
->ah_cal_mask
&= ~AR5K_CALIBRATION_FULL
;
2297 ath5k_tasklet_ani(unsigned long data
)
2299 struct ath5k_softc
*sc
= (void *)data
;
2300 struct ath5k_hw
*ah
= sc
->ah
;
2302 ah
->ah_cal_mask
|= AR5K_CALIBRATION_ANI
;
2303 ath5k_ani_calibration(ah
);
2304 ah
->ah_cal_mask
&= ~AR5K_CALIBRATION_ANI
;
2309 ath5k_tx_complete_poll_work(struct work_struct
*work
)
2311 struct ath5k_softc
*sc
= container_of(work
, struct ath5k_softc
,
2312 tx_complete_work
.work
);
2313 struct ath5k_txq
*txq
;
2315 bool needreset
= false;
2317 mutex_lock(&sc
->lock
);
2319 for (i
= 0; i
< ARRAY_SIZE(sc
->txqs
); i
++) {
2320 if (sc
->txqs
[i
].setup
) {
2322 spin_lock_bh(&txq
->lock
);
2323 if (txq
->txq_len
> 1) {
2324 if (txq
->txq_poll_mark
) {
2325 ATH5K_DBG(sc
, ATH5K_DEBUG_XMIT
,
2326 "TX queue stuck %d\n",
2330 spin_unlock_bh(&txq
->lock
);
2333 txq
->txq_poll_mark
= true;
2336 spin_unlock_bh(&txq
->lock
);
2341 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
,
2342 "TX queues stuck, resetting\n");
2343 ath5k_reset(sc
, NULL
, true);
2346 mutex_unlock(&sc
->lock
);
2348 ieee80211_queue_delayed_work(sc
->hw
, &sc
->tx_complete_work
,
2349 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT
));
2353 /*************************\
2354 * Initialization routines *
2355 \*************************/
2358 ath5k_init_softc(struct ath5k_softc
*sc
, const struct ath_bus_ops
*bus_ops
)
2360 struct ieee80211_hw
*hw
= sc
->hw
;
2361 struct ath_common
*common
;
2365 /* Initialize driver private data */
2366 SET_IEEE80211_DEV(hw
, sc
->dev
);
2367 hw
->flags
= IEEE80211_HW_RX_INCLUDES_FCS
|
2368 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING
|
2369 IEEE80211_HW_SIGNAL_DBM
|
2370 IEEE80211_HW_REPORTS_TX_ACK_STATUS
;
2372 hw
->wiphy
->interface_modes
=
2373 BIT(NL80211_IFTYPE_AP
) |
2374 BIT(NL80211_IFTYPE_STATION
) |
2375 BIT(NL80211_IFTYPE_ADHOC
) |
2376 BIT(NL80211_IFTYPE_MESH_POINT
);
2378 /* both antennas can be configured as RX or TX */
2379 hw
->wiphy
->available_antennas_tx
= 0x3;
2380 hw
->wiphy
->available_antennas_rx
= 0x3;
2382 hw
->extra_tx_headroom
= 2;
2383 hw
->channel_change_time
= 5000;
2386 * Mark the device as detached to avoid processing
2387 * interrupts until setup is complete.
2389 __set_bit(ATH_STAT_INVALID
, sc
->status
);
2391 sc
->opmode
= NL80211_IFTYPE_STATION
;
2393 mutex_init(&sc
->lock
);
2394 spin_lock_init(&sc
->rxbuflock
);
2395 spin_lock_init(&sc
->txbuflock
);
2396 spin_lock_init(&sc
->block
);
2399 /* Setup interrupt handler */
2400 ret
= request_irq(sc
->irq
, ath5k_intr
, IRQF_SHARED
, "ath", sc
);
2402 ATH5K_ERR(sc
, "request_irq failed\n");
2406 /* If we passed the test, malloc an ath5k_hw struct */
2407 sc
->ah
= kzalloc(sizeof(struct ath5k_hw
), GFP_KERNEL
);
2410 ATH5K_ERR(sc
, "out of memory\n");
2415 sc
->ah
->ah_iobase
= sc
->iobase
;
2416 common
= ath5k_hw_common(sc
->ah
);
2417 common
->ops
= &ath5k_common_ops
;
2418 common
->bus_ops
= bus_ops
;
2419 common
->ah
= sc
->ah
;
2424 * Cache line size is used to size and align various
2425 * structures used to communicate with the hardware.
2427 ath5k_read_cachesize(common
, &csz
);
2428 common
->cachelsz
= csz
<< 2; /* convert to bytes */
2430 spin_lock_init(&common
->cc_lock
);
2432 /* Initialize device */
2433 ret
= ath5k_hw_init(sc
);
2437 /* set up multi-rate retry capabilities */
2438 if (sc
->ah
->ah_version
== AR5K_AR5212
) {
2440 hw
->max_rate_tries
= max(AR5K_INIT_RETRY_SHORT
,
2441 AR5K_INIT_RETRY_LONG
);
2444 hw
->vif_data_size
= sizeof(struct ath5k_vif
);
2446 /* Finish private driver data initialization */
2447 ret
= ath5k_init(hw
);
2451 ATH5K_INFO(sc
, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2452 ath5k_chip_name(AR5K_VERSION_MAC
, sc
->ah
->ah_mac_srev
),
2453 sc
->ah
->ah_mac_srev
,
2454 sc
->ah
->ah_phy_revision
);
2456 if (!sc
->ah
->ah_single_chip
) {
2457 /* Single chip radio (!RF5111) */
2458 if (sc
->ah
->ah_radio_5ghz_revision
&&
2459 !sc
->ah
->ah_radio_2ghz_revision
) {
2460 /* No 5GHz support -> report 2GHz radio */
2461 if (!test_bit(AR5K_MODE_11A
,
2462 sc
->ah
->ah_capabilities
.cap_mode
)) {
2463 ATH5K_INFO(sc
, "RF%s 2GHz radio found (0x%x)\n",
2464 ath5k_chip_name(AR5K_VERSION_RAD
,
2465 sc
->ah
->ah_radio_5ghz_revision
),
2466 sc
->ah
->ah_radio_5ghz_revision
);
2467 /* No 2GHz support (5110 and some
2468 * 5Ghz only cards) -> report 5Ghz radio */
2469 } else if (!test_bit(AR5K_MODE_11B
,
2470 sc
->ah
->ah_capabilities
.cap_mode
)) {
2471 ATH5K_INFO(sc
, "RF%s 5GHz radio found (0x%x)\n",
2472 ath5k_chip_name(AR5K_VERSION_RAD
,
2473 sc
->ah
->ah_radio_5ghz_revision
),
2474 sc
->ah
->ah_radio_5ghz_revision
);
2475 /* Multiband radio */
2477 ATH5K_INFO(sc
, "RF%s multiband radio found"
2479 ath5k_chip_name(AR5K_VERSION_RAD
,
2480 sc
->ah
->ah_radio_5ghz_revision
),
2481 sc
->ah
->ah_radio_5ghz_revision
);
2484 /* Multi chip radio (RF5111 - RF2111) ->
2485 * report both 2GHz/5GHz radios */
2486 else if (sc
->ah
->ah_radio_5ghz_revision
&&
2487 sc
->ah
->ah_radio_2ghz_revision
){
2488 ATH5K_INFO(sc
, "RF%s 5GHz radio found (0x%x)\n",
2489 ath5k_chip_name(AR5K_VERSION_RAD
,
2490 sc
->ah
->ah_radio_5ghz_revision
),
2491 sc
->ah
->ah_radio_5ghz_revision
);
2492 ATH5K_INFO(sc
, "RF%s 2GHz radio found (0x%x)\n",
2493 ath5k_chip_name(AR5K_VERSION_RAD
,
2494 sc
->ah
->ah_radio_2ghz_revision
),
2495 sc
->ah
->ah_radio_2ghz_revision
);
2499 ath5k_debug_init_device(sc
);
2501 /* ready to process interrupts */
2502 __clear_bit(ATH_STAT_INVALID
, sc
->status
);
2506 ath5k_hw_deinit(sc
->ah
);
2510 free_irq(sc
->irq
, sc
);
2516 ath5k_stop_locked(struct ath5k_softc
*sc
)
2518 struct ath5k_hw
*ah
= sc
->ah
;
2520 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "invalid %u\n",
2521 test_bit(ATH_STAT_INVALID
, sc
->status
));
2524 * Shutdown the hardware and driver:
2525 * stop output from above
2526 * disable interrupts
2528 * turn off the radio
2529 * clear transmit machinery
2530 * clear receive machinery
2531 * drain and release tx queues
2532 * reclaim beacon resources
2533 * power down hardware
2535 * Note that some of this work is not possible if the
2536 * hardware is gone (invalid).
2538 ieee80211_stop_queues(sc
->hw
);
2540 if (!test_bit(ATH_STAT_INVALID
, sc
->status
)) {
2542 ath5k_hw_set_imr(ah
, 0);
2543 synchronize_irq(sc
->irq
);
2545 ath5k_hw_dma_stop(ah
);
2546 ath5k_drain_tx_buffs(sc
);
2547 ath5k_hw_phy_disable(ah
);
2554 ath5k_init_hw(struct ath5k_softc
*sc
)
2556 struct ath5k_hw
*ah
= sc
->ah
;
2557 struct ath_common
*common
= ath5k_hw_common(ah
);
2560 mutex_lock(&sc
->lock
);
2562 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "mode %d\n", sc
->opmode
);
2565 * Stop anything previously setup. This is safe
2566 * no matter this is the first time through or not.
2568 ath5k_stop_locked(sc
);
2571 * The basic interface to setting the hardware in a good
2572 * state is ``reset''. On return the hardware is known to
2573 * be powered up and with interrupts disabled. This must
2574 * be followed by initialization of the appropriate bits
2575 * and then setup of the interrupt mask.
2577 sc
->curchan
= sc
->hw
->conf
.channel
;
2578 sc
->imask
= AR5K_INT_RXOK
| AR5K_INT_RXERR
| AR5K_INT_RXEOL
|
2579 AR5K_INT_RXORN
| AR5K_INT_TXDESC
| AR5K_INT_TXEOL
|
2580 AR5K_INT_FATAL
| AR5K_INT_GLOBAL
| AR5K_INT_MIB
;
2582 ret
= ath5k_reset(sc
, NULL
, false);
2586 ath5k_rfkill_hw_start(ah
);
2589 * Reset the key cache since some parts do not reset the
2590 * contents on initial power up or resume from suspend.
2592 for (i
= 0; i
< common
->keymax
; i
++)
2593 ath_hw_keyreset(common
, (u16
) i
);
2595 /* Use higher rates for acks instead of base
2597 ah
->ah_ack_bitrate_high
= true;
2599 for (i
= 0; i
< ARRAY_SIZE(sc
->bslot
); i
++)
2600 sc
->bslot
[i
] = NULL
;
2605 mutex_unlock(&sc
->lock
);
2607 ieee80211_queue_delayed_work(sc
->hw
, &sc
->tx_complete_work
,
2608 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT
));
2613 static void stop_tasklets(struct ath5k_softc
*sc
)
2615 sc
->rx_pending
= false;
2616 sc
->tx_pending
= false;
2617 tasklet_kill(&sc
->rxtq
);
2618 tasklet_kill(&sc
->txtq
);
2619 tasklet_kill(&sc
->calib
);
2620 tasklet_kill(&sc
->beacontq
);
2621 tasklet_kill(&sc
->ani_tasklet
);
2625 * Stop the device, grabbing the top-level lock to protect
2626 * against concurrent entry through ath5k_init (which can happen
2627 * if another thread does a system call and the thread doing the
2628 * stop is preempted).
2631 ath5k_stop_hw(struct ath5k_softc
*sc
)
2635 mutex_lock(&sc
->lock
);
2636 ret
= ath5k_stop_locked(sc
);
2637 if (ret
== 0 && !test_bit(ATH_STAT_INVALID
, sc
->status
)) {
2639 * Don't set the card in full sleep mode!
2641 * a) When the device is in this state it must be carefully
2642 * woken up or references to registers in the PCI clock
2643 * domain may freeze the bus (and system). This varies
2644 * by chip and is mostly an issue with newer parts
2645 * (madwifi sources mentioned srev >= 0x78) that go to
2646 * sleep more quickly.
2648 * b) On older chips full sleep results a weird behaviour
2649 * during wakeup. I tested various cards with srev < 0x78
2650 * and they don't wake up after module reload, a second
2651 * module reload is needed to bring the card up again.
2653 * Until we figure out what's going on don't enable
2654 * full chip reset on any chip (this is what Legacy HAL
2655 * and Sam's HAL do anyway). Instead Perform a full reset
2656 * on the device (same as initial state after attach) and
2657 * leave it idle (keep MAC/BB on warm reset) */
2658 ret
= ath5k_hw_on_hold(sc
->ah
);
2660 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
,
2661 "putting device to sleep\n");
2665 mutex_unlock(&sc
->lock
);
2669 cancel_delayed_work_sync(&sc
->tx_complete_work
);
2671 ath5k_rfkill_hw_stop(sc
->ah
);
2677 * Reset the hardware. If chan is not NULL, then also pause rx/tx
2678 * and change to the given channel.
2680 * This should be called with sc->lock.
2683 ath5k_reset(struct ath5k_softc
*sc
, struct ieee80211_channel
*chan
,
2686 struct ath5k_hw
*ah
= sc
->ah
;
2687 struct ath_common
*common
= ath5k_hw_common(ah
);
2690 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "resetting\n");
2692 ath5k_hw_set_imr(ah
, 0);
2693 synchronize_irq(sc
->irq
);
2696 /* Save ani mode and disable ANI durring
2697 * reset. If we don't we might get false
2698 * PHY error interrupts. */
2699 ani_mode
= ah
->ah_sc
->ani_state
.ani_mode
;
2700 ath5k_ani_init(ah
, ATH5K_ANI_MODE_OFF
);
2702 /* We are going to empty hw queues
2703 * so we should also free any remaining
2705 ath5k_drain_tx_buffs(sc
);
2708 ret
= ath5k_hw_reset(ah
, sc
->opmode
, sc
->curchan
, chan
!= NULL
,
2711 ATH5K_ERR(sc
, "can't reset hardware (%d)\n", ret
);
2715 ret
= ath5k_rx_start(sc
);
2717 ATH5K_ERR(sc
, "can't start recv logic\n");
2721 ath5k_ani_init(ah
, ani_mode
);
2723 ah
->ah_cal_next_full
= jiffies
;
2724 ah
->ah_cal_next_ani
= jiffies
;
2725 ah
->ah_cal_next_nf
= jiffies
;
2726 ewma_init(&ah
->ah_beacon_rssi_avg
, 1024, 8);
2728 /* clear survey data and cycle counters */
2729 memset(&sc
->survey
, 0, sizeof(sc
->survey
));
2730 spin_lock_bh(&common
->cc_lock
);
2731 ath_hw_cycle_counters_update(common
);
2732 memset(&common
->cc_survey
, 0, sizeof(common
->cc_survey
));
2733 memset(&common
->cc_ani
, 0, sizeof(common
->cc_ani
));
2734 spin_unlock_bh(&common
->cc_lock
);
2737 * Change channels and update the h/w rate map if we're switching;
2738 * e.g. 11a to 11b/g.
2740 * We may be doing a reset in response to an ioctl that changes the
2741 * channel so update any state that might change as a result.
2745 /* ath5k_chan_change(sc, c); */
2747 ath5k_beacon_config(sc
);
2748 /* intrs are enabled by ath5k_beacon_config */
2750 ieee80211_wake_queues(sc
->hw
);
2757 static void ath5k_reset_work(struct work_struct
*work
)
2759 struct ath5k_softc
*sc
= container_of(work
, struct ath5k_softc
,
2762 mutex_lock(&sc
->lock
);
2763 ath5k_reset(sc
, NULL
, true);
2764 mutex_unlock(&sc
->lock
);
2768 ath5k_init(struct ieee80211_hw
*hw
)
2771 struct ath5k_softc
*sc
= hw
->priv
;
2772 struct ath5k_hw
*ah
= sc
->ah
;
2773 struct ath_regulatory
*regulatory
= ath5k_hw_regulatory(ah
);
2774 struct ath5k_txq
*txq
;
2775 u8 mac
[ETH_ALEN
] = {};
2780 * Check if the MAC has multi-rate retry support.
2781 * We do this by trying to setup a fake extended
2782 * descriptor. MACs that don't have support will
2783 * return false w/o doing anything. MACs that do
2784 * support it will return true w/o doing anything.
2786 ret
= ath5k_hw_setup_mrr_tx_desc(ah
, NULL
, 0, 0, 0, 0, 0, 0);
2791 __set_bit(ATH_STAT_MRRETRY
, sc
->status
);
2794 * Collect the channel list. The 802.11 layer
2795 * is resposible for filtering this list based
2796 * on settings like the phy mode and regulatory
2797 * domain restrictions.
2799 ret
= ath5k_setup_bands(hw
);
2801 ATH5K_ERR(sc
, "can't get channels\n");
2806 * Allocate tx+rx descriptors and populate the lists.
2808 ret
= ath5k_desc_alloc(sc
);
2810 ATH5K_ERR(sc
, "can't allocate descriptors\n");
2815 * Allocate hardware transmit queues: one queue for
2816 * beacon frames and one data queue for each QoS
2817 * priority. Note that hw functions handle resetting
2818 * these queues at the needed time.
2820 ret
= ath5k_beaconq_setup(ah
);
2822 ATH5K_ERR(sc
, "can't setup a beacon xmit queue\n");
2826 sc
->cabq
= ath5k_txq_setup(sc
, AR5K_TX_QUEUE_CAB
, 0);
2827 if (IS_ERR(sc
->cabq
)) {
2828 ATH5K_ERR(sc
, "can't setup cab queue\n");
2829 ret
= PTR_ERR(sc
->cabq
);
2833 /* 5211 and 5212 usually support 10 queues but we better rely on the
2834 * capability information */
2835 if (ah
->ah_capabilities
.cap_queues
.q_tx_num
>= 6) {
2836 /* This order matches mac80211's queue priority, so we can
2837 * directly use the mac80211 queue number without any mapping */
2838 txq
= ath5k_txq_setup(sc
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_VO
);
2840 ATH5K_ERR(sc
, "can't setup xmit queue\n");
2844 txq
= ath5k_txq_setup(sc
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_VI
);
2846 ATH5K_ERR(sc
, "can't setup xmit queue\n");
2850 txq
= ath5k_txq_setup(sc
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_BE
);
2852 ATH5K_ERR(sc
, "can't setup xmit queue\n");
2856 txq
= ath5k_txq_setup(sc
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_BK
);
2858 ATH5K_ERR(sc
, "can't setup xmit queue\n");
2864 /* older hardware (5210) can only support one data queue */
2865 txq
= ath5k_txq_setup(sc
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_BE
);
2867 ATH5K_ERR(sc
, "can't setup xmit queue\n");
2874 tasklet_init(&sc
->rxtq
, ath5k_tasklet_rx
, (unsigned long)sc
);
2875 tasklet_init(&sc
->txtq
, ath5k_tasklet_tx
, (unsigned long)sc
);
2876 tasklet_init(&sc
->calib
, ath5k_tasklet_calibrate
, (unsigned long)sc
);
2877 tasklet_init(&sc
->beacontq
, ath5k_tasklet_beacon
, (unsigned long)sc
);
2878 tasklet_init(&sc
->ani_tasklet
, ath5k_tasklet_ani
, (unsigned long)sc
);
2880 INIT_WORK(&sc
->reset_work
, ath5k_reset_work
);
2881 INIT_DELAYED_WORK(&sc
->tx_complete_work
, ath5k_tx_complete_poll_work
);
2883 ret
= ath5k_hw_common(ah
)->bus_ops
->eeprom_read_mac(ah
, mac
);
2885 ATH5K_ERR(sc
, "unable to read address from EEPROM\n");
2889 SET_IEEE80211_PERM_ADDR(hw
, mac
);
2890 memcpy(&sc
->lladdr
, mac
, ETH_ALEN
);
2891 /* All MAC address bits matter for ACKs */
2892 ath5k_update_bssid_mask_and_opmode(sc
, NULL
);
2894 regulatory
->current_rd
= ah
->ah_capabilities
.cap_eeprom
.ee_regdomain
;
2895 ret
= ath_regd_init(regulatory
, hw
->wiphy
, ath5k_reg_notifier
);
2897 ATH5K_ERR(sc
, "can't initialize regulatory system\n");
2901 ret
= ieee80211_register_hw(hw
);
2903 ATH5K_ERR(sc
, "can't register ieee80211 hw\n");
2907 if (!ath_is_world_regd(regulatory
))
2908 regulatory_hint(hw
->wiphy
, regulatory
->alpha2
);
2910 ath5k_init_leds(sc
);
2912 ath5k_sysfs_register(sc
);
2916 ath5k_txq_release(sc
);
2918 ath5k_hw_release_tx_queue(ah
, sc
->bhalq
);
2920 ath5k_desc_free(sc
);
2926 ath5k_deinit_softc(struct ath5k_softc
*sc
)
2928 struct ieee80211_hw
*hw
= sc
->hw
;
2931 * NB: the order of these is important:
2932 * o call the 802.11 layer before detaching ath5k_hw to
2933 * ensure callbacks into the driver to delete global
2934 * key cache entries can be handled
2935 * o reclaim the tx queue data structures after calling
2936 * the 802.11 layer as we'll get called back to reclaim
2937 * node state and potentially want to use them
2938 * o to cleanup the tx queues the hal is called, so detach
2940 * XXX: ??? detach ath5k_hw ???
2941 * Other than that, it's straightforward...
2943 ieee80211_unregister_hw(hw
);
2944 ath5k_desc_free(sc
);
2945 ath5k_txq_release(sc
);
2946 ath5k_hw_release_tx_queue(sc
->ah
, sc
->bhalq
);
2947 ath5k_unregister_leds(sc
);
2949 ath5k_sysfs_unregister(sc
);
2951 * NB: can't reclaim these until after ieee80211_ifdetach
2952 * returns because we'll get called back to reclaim node
2953 * state and potentially want to use them.
2955 ath5k_hw_deinit(sc
->ah
);
2956 free_irq(sc
->irq
, sc
);
2960 ath_any_vif_assoc(struct ath5k_softc
*sc
)
2962 struct ath5k_vif_iter_data iter_data
;
2963 iter_data
.hw_macaddr
= NULL
;
2964 iter_data
.any_assoc
= false;
2965 iter_data
.need_set_hw_addr
= false;
2966 iter_data
.found_active
= true;
2968 ieee80211_iterate_active_interfaces_atomic(sc
->hw
, ath5k_vif_iter
,
2970 return iter_data
.any_assoc
;
2974 set_beacon_filter(struct ieee80211_hw
*hw
, bool enable
)
2976 struct ath5k_softc
*sc
= hw
->priv
;
2977 struct ath5k_hw
*ah
= sc
->ah
;
2979 rfilt
= ath5k_hw_get_rx_filter(ah
);
2981 rfilt
|= AR5K_RX_FILTER_BEACON
;
2983 rfilt
&= ~AR5K_RX_FILTER_BEACON
;
2984 ath5k_hw_set_rx_filter(ah
, rfilt
);
2985 sc
->filter_flags
= rfilt
;