ath5k: add a new bus op for reading the mac address
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath5k / eeprom.c
blobe9263e4c7f3eb8cf25244cd856bdc92e403ce976
1 /*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
24 #include <linux/slab.h>
26 #include "ath5k.h"
27 #include "reg.h"
28 #include "debug.h"
29 #include "base.h"
32 /******************\
33 * Helper functions *
34 \******************/
37 * Translate binary channel representation in EEPROM to frequency
39 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
40 unsigned int mode)
42 u16 val;
44 if (bin == AR5K_EEPROM_CHANNEL_DIS)
45 return bin;
47 if (mode == AR5K_EEPROM_MODE_11A) {
48 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
49 val = (5 * bin) + 4800;
50 else
51 val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
52 (bin * 10) + 5100;
53 } else {
54 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
55 val = bin + 2300;
56 else
57 val = bin + 2400;
60 return val;
64 /*********\
65 * Parsers *
66 \*********/
69 * Initialize eeprom & capabilities structs
71 static int
72 ath5k_eeprom_init_header(struct ath5k_hw *ah)
74 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
75 u16 val;
76 u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
79 * Read values from EEPROM and store them in the capability structure
81 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
82 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
83 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
84 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
85 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
87 /* Return if we have an old EEPROM */
88 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
89 return 0;
92 * Validate the checksum of the EEPROM date. There are some
93 * devices with invalid EEPROMs.
95 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
96 if (val) {
97 eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
98 AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
99 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
100 eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
103 * Fail safe check to prevent stupid loops due
104 * to busted EEPROMs. XXX: This value is likely too
105 * big still, waiting on a better value.
107 if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
108 ATH5K_ERR(ah->ah_sc, "Invalid max custom EEPROM size: "
109 "%d (0x%04x) max expected: %d (0x%04x)\n",
110 eep_max, eep_max,
111 3 * AR5K_EEPROM_INFO_MAX,
112 3 * AR5K_EEPROM_INFO_MAX);
113 return -EIO;
117 for (cksum = 0, offset = 0; offset < eep_max; offset++) {
118 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
119 cksum ^= val;
121 if (cksum != AR5K_EEPROM_INFO_CKSUM) {
122 ATH5K_ERR(ah->ah_sc, "Invalid EEPROM "
123 "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
124 cksum, eep_max,
125 eep_max == AR5K_EEPROM_INFO_MAX ?
126 "default size" : "custom size");
127 return -EIO;
130 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
131 ee_ant_gain);
133 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
134 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
135 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
137 /* XXX: Don't know which versions include these two */
138 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
140 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
141 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
143 if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
144 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
145 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
146 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
150 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
151 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
152 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
153 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
155 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
156 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
157 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
160 AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
162 if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
163 ee->ee_is_hb63 = true;
164 else
165 ee->ee_is_hb63 = false;
167 AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
168 ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
169 ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
171 /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
172 * and enable serdes programming if needed.
174 * XXX: Serdes values seem to be fixed so
175 * no need to read them here, we write them
176 * during ath5k_hw_init */
177 AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
178 ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
179 true : false;
181 return 0;
186 * Read antenna infos from eeprom
188 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
189 unsigned int mode)
191 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
192 u32 o = *offset;
193 u16 val;
194 int i = 0;
196 AR5K_EEPROM_READ(o++, val);
197 ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
198 ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
199 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
201 AR5K_EEPROM_READ(o++, val);
202 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
203 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
204 ee->ee_ant_control[mode][i++] = val & 0x3f;
206 AR5K_EEPROM_READ(o++, val);
207 ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
208 ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
209 ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
211 AR5K_EEPROM_READ(o++, val);
212 ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
213 ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
214 ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
215 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
217 AR5K_EEPROM_READ(o++, val);
218 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
219 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
220 ee->ee_ant_control[mode][i++] = val & 0x3f;
222 /* Get antenna switch tables */
223 ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
224 (ee->ee_ant_control[mode][0] << 4);
225 ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
226 ee->ee_ant_control[mode][1] |
227 (ee->ee_ant_control[mode][2] << 6) |
228 (ee->ee_ant_control[mode][3] << 12) |
229 (ee->ee_ant_control[mode][4] << 18) |
230 (ee->ee_ant_control[mode][5] << 24);
231 ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
232 ee->ee_ant_control[mode][6] |
233 (ee->ee_ant_control[mode][7] << 6) |
234 (ee->ee_ant_control[mode][8] << 12) |
235 (ee->ee_ant_control[mode][9] << 18) |
236 (ee->ee_ant_control[mode][10] << 24);
238 /* return new offset */
239 *offset = o;
241 return 0;
245 * Read supported modes and some mode-specific calibration data
246 * from eeprom
248 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
249 unsigned int mode)
251 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
252 u32 o = *offset;
253 u16 val;
255 ee->ee_n_piers[mode] = 0;
256 AR5K_EEPROM_READ(o++, val);
257 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
258 switch(mode) {
259 case AR5K_EEPROM_MODE_11A:
260 ee->ee_ob[mode][3] = (val >> 5) & 0x7;
261 ee->ee_db[mode][3] = (val >> 2) & 0x7;
262 ee->ee_ob[mode][2] = (val << 1) & 0x7;
264 AR5K_EEPROM_READ(o++, val);
265 ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
266 ee->ee_db[mode][2] = (val >> 12) & 0x7;
267 ee->ee_ob[mode][1] = (val >> 9) & 0x7;
268 ee->ee_db[mode][1] = (val >> 6) & 0x7;
269 ee->ee_ob[mode][0] = (val >> 3) & 0x7;
270 ee->ee_db[mode][0] = val & 0x7;
271 break;
272 case AR5K_EEPROM_MODE_11G:
273 case AR5K_EEPROM_MODE_11B:
274 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
275 ee->ee_db[mode][1] = val & 0x7;
276 break;
279 AR5K_EEPROM_READ(o++, val);
280 ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
281 ee->ee_thr_62[mode] = val & 0xff;
283 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
284 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
286 AR5K_EEPROM_READ(o++, val);
287 ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
288 ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
290 AR5K_EEPROM_READ(o++, val);
291 ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
293 if ((val & 0xff) & 0x80)
294 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
295 else
296 ee->ee_noise_floor_thr[mode] = val & 0xff;
298 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
299 ee->ee_noise_floor_thr[mode] =
300 mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
302 AR5K_EEPROM_READ(o++, val);
303 ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
304 ee->ee_x_gain[mode] = (val >> 1) & 0xf;
305 ee->ee_xpd[mode] = val & 0x1;
307 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
308 mode != AR5K_EEPROM_MODE_11B)
309 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
311 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
312 AR5K_EEPROM_READ(o++, val);
313 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
315 if (mode == AR5K_EEPROM_MODE_11A)
316 ee->ee_xr_power[mode] = val & 0x3f;
317 else {
318 /* b_DB_11[bg] and b_OB_11[bg] */
319 ee->ee_ob[mode][0] = val & 0x7;
320 ee->ee_db[mode][0] = (val >> 3) & 0x7;
324 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
325 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
326 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
327 } else {
328 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
330 AR5K_EEPROM_READ(o++, val);
331 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
333 if (mode == AR5K_EEPROM_MODE_11G) {
334 ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
335 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
336 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
340 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
341 mode == AR5K_EEPROM_MODE_11A) {
342 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
343 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
346 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
347 goto done;
349 /* Note: >= v5 have bg freq piers on another location
350 * so these freq piers are ignored for >= v5 (should be 0xff
351 * anyway) */
352 switch(mode) {
353 case AR5K_EEPROM_MODE_11A:
354 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
355 break;
357 AR5K_EEPROM_READ(o++, val);
358 ee->ee_margin_tx_rx[mode] = val & 0x3f;
359 break;
360 case AR5K_EEPROM_MODE_11B:
361 AR5K_EEPROM_READ(o++, val);
363 ee->ee_pwr_cal_b[0].freq =
364 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
365 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
366 ee->ee_n_piers[mode]++;
368 ee->ee_pwr_cal_b[1].freq =
369 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
370 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
371 ee->ee_n_piers[mode]++;
373 AR5K_EEPROM_READ(o++, val);
374 ee->ee_pwr_cal_b[2].freq =
375 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
376 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
377 ee->ee_n_piers[mode]++;
379 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
380 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
381 break;
382 case AR5K_EEPROM_MODE_11G:
383 AR5K_EEPROM_READ(o++, val);
385 ee->ee_pwr_cal_g[0].freq =
386 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
387 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
388 ee->ee_n_piers[mode]++;
390 ee->ee_pwr_cal_g[1].freq =
391 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
392 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
393 ee->ee_n_piers[mode]++;
395 AR5K_EEPROM_READ(o++, val);
396 ee->ee_turbo_max_power[mode] = val & 0x7f;
397 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
399 AR5K_EEPROM_READ(o++, val);
400 ee->ee_pwr_cal_g[2].freq =
401 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
402 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
403 ee->ee_n_piers[mode]++;
405 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
406 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
408 AR5K_EEPROM_READ(o++, val);
409 ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
410 ee->ee_q_cal[mode] = val & 0x1f;
412 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
413 AR5K_EEPROM_READ(o++, val);
414 ee->ee_cck_ofdm_gain_delta = val & 0xff;
416 break;
420 * Read turbo mode information on newer EEPROM versions
422 if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
423 goto done;
425 switch (mode){
426 case AR5K_EEPROM_MODE_11A:
427 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
429 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
430 AR5K_EEPROM_READ(o++, val);
431 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
432 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
434 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
435 AR5K_EEPROM_READ(o++, val);
436 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
437 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
439 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
440 ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
441 break;
442 case AR5K_EEPROM_MODE_11G:
443 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
445 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
446 AR5K_EEPROM_READ(o++, val);
447 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
448 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
450 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
451 AR5K_EEPROM_READ(o++, val);
452 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
453 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
454 break;
457 done:
458 /* return new offset */
459 *offset = o;
461 return 0;
464 /* Read mode-specific data (except power calibration data) */
465 static int
466 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
468 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
469 u32 mode_offset[3];
470 unsigned int mode;
471 u32 offset;
472 int ret;
475 * Get values for all modes
477 mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
478 mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
479 mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
481 ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
482 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
484 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
485 offset = mode_offset[mode];
487 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
488 if (ret)
489 return ret;
491 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
492 if (ret)
493 return ret;
496 /* override for older eeprom versions for better performance */
497 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
498 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
499 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
500 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
503 return 0;
506 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
507 * frequency mask) */
508 static inline int
509 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
510 struct ath5k_chan_pcal_info *pc, unsigned int mode)
512 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
513 int o = *offset;
514 int i = 0;
515 u8 freq1, freq2;
516 u16 val;
518 ee->ee_n_piers[mode] = 0;
519 while(i < max) {
520 AR5K_EEPROM_READ(o++, val);
522 freq1 = val & 0xff;
523 if (!freq1)
524 break;
526 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
527 freq1, mode);
528 ee->ee_n_piers[mode]++;
530 freq2 = (val >> 8) & 0xff;
531 if (!freq2)
532 break;
534 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
535 freq2, mode);
536 ee->ee_n_piers[mode]++;
539 /* return new offset */
540 *offset = o;
542 return 0;
545 /* Read frequency piers for 802.11a */
546 static int
547 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
549 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
550 struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
551 int i;
552 u16 val;
553 u8 mask;
555 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
556 ath5k_eeprom_read_freq_list(ah, &offset,
557 AR5K_EEPROM_N_5GHZ_CHAN, pcal,
558 AR5K_EEPROM_MODE_11A);
559 } else {
560 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
562 AR5K_EEPROM_READ(offset++, val);
563 pcal[0].freq = (val >> 9) & mask;
564 pcal[1].freq = (val >> 2) & mask;
565 pcal[2].freq = (val << 5) & mask;
567 AR5K_EEPROM_READ(offset++, val);
568 pcal[2].freq |= (val >> 11) & 0x1f;
569 pcal[3].freq = (val >> 4) & mask;
570 pcal[4].freq = (val << 3) & mask;
572 AR5K_EEPROM_READ(offset++, val);
573 pcal[4].freq |= (val >> 13) & 0x7;
574 pcal[5].freq = (val >> 6) & mask;
575 pcal[6].freq = (val << 1) & mask;
577 AR5K_EEPROM_READ(offset++, val);
578 pcal[6].freq |= (val >> 15) & 0x1;
579 pcal[7].freq = (val >> 8) & mask;
580 pcal[8].freq = (val >> 1) & mask;
581 pcal[9].freq = (val << 6) & mask;
583 AR5K_EEPROM_READ(offset++, val);
584 pcal[9].freq |= (val >> 10) & 0x3f;
586 /* Fixed number of piers */
587 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
589 for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
590 pcal[i].freq = ath5k_eeprom_bin2freq(ee,
591 pcal[i].freq, AR5K_EEPROM_MODE_11A);
595 return 0;
598 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
599 static inline int
600 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
602 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
603 struct ath5k_chan_pcal_info *pcal;
605 switch(mode) {
606 case AR5K_EEPROM_MODE_11B:
607 pcal = ee->ee_pwr_cal_b;
608 break;
609 case AR5K_EEPROM_MODE_11G:
610 pcal = ee->ee_pwr_cal_g;
611 break;
612 default:
613 return -EINVAL;
616 ath5k_eeprom_read_freq_list(ah, &offset,
617 AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
618 mode);
620 return 0;
625 * Read power calibration for RF5111 chips
627 * For RF5111 we have an XPD -eXternal Power Detector- curve
628 * for each calibrated channel. Each curve has 0,5dB Power steps
629 * on x axis and PCDAC steps (offsets) on y axis and looks like an
630 * exponential function. To recreate the curve we read 11 points
631 * here and interpolate later.
634 /* Used to match PCDAC steps with power values on RF5111 chips
635 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
636 * steps that match with the power values we read from eeprom. On
637 * older eeprom versions (< 3.2) these steps are equaly spaced at
638 * 10% of the pcdac curve -until the curve reaches its maximum-
639 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
640 * these 11 steps are spaced in a different way. This function returns
641 * the pcdac steps based on eeprom version and curve min/max so that we
642 * can have pcdac/pwr points.
644 static inline void
645 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
647 static const u16 intercepts3[] =
648 { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
649 static const u16 intercepts3_2[] =
650 { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
651 const u16 *ip;
652 int i;
654 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
655 ip = intercepts3_2;
656 else
657 ip = intercepts3;
659 for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
660 vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
663 static int
664 ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
666 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
667 struct ath5k_chan_pcal_info *chinfo;
668 u8 pier, pdg;
670 switch (mode) {
671 case AR5K_EEPROM_MODE_11A:
672 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
673 return 0;
674 chinfo = ee->ee_pwr_cal_a;
675 break;
676 case AR5K_EEPROM_MODE_11B:
677 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
678 return 0;
679 chinfo = ee->ee_pwr_cal_b;
680 break;
681 case AR5K_EEPROM_MODE_11G:
682 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
683 return 0;
684 chinfo = ee->ee_pwr_cal_g;
685 break;
686 default:
687 return -EINVAL;
690 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
691 if (!chinfo[pier].pd_curves)
692 continue;
694 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
695 struct ath5k_pdgain_info *pd =
696 &chinfo[pier].pd_curves[pdg];
698 if (pd != NULL) {
699 kfree(pd->pd_step);
700 kfree(pd->pd_pwr);
704 kfree(chinfo[pier].pd_curves);
707 return 0;
710 /* Convert RF5111 specific data to generic raw data
711 * used by interpolation code */
712 static int
713 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
714 struct ath5k_chan_pcal_info *chinfo)
716 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
717 struct ath5k_chan_pcal_info_rf5111 *pcinfo;
718 struct ath5k_pdgain_info *pd;
719 u8 pier, point, idx;
720 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
722 /* Fill raw data for each calibration pier */
723 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
725 pcinfo = &chinfo[pier].rf5111_info;
727 /* Allocate pd_curves for this cal pier */
728 chinfo[pier].pd_curves =
729 kcalloc(AR5K_EEPROM_N_PD_CURVES,
730 sizeof(struct ath5k_pdgain_info),
731 GFP_KERNEL);
733 if (!chinfo[pier].pd_curves)
734 goto err_out;
736 /* Only one curve for RF5111
737 * find out which one and place
738 * in pd_curves.
739 * Note: ee_x_gain is reversed here */
740 for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
742 if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
743 pdgain_idx[0] = idx;
744 break;
748 ee->ee_pd_gains[mode] = 1;
750 pd = &chinfo[pier].pd_curves[idx];
752 pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
754 /* Allocate pd points for this curve */
755 pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
756 sizeof(u8), GFP_KERNEL);
757 if (!pd->pd_step)
758 goto err_out;
760 pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
761 sizeof(s16), GFP_KERNEL);
762 if (!pd->pd_pwr)
763 goto err_out;
765 /* Fill raw dataset
766 * (convert power to 0.25dB units
767 * for RF5112 combatibility) */
768 for (point = 0; point < pd->pd_points; point++) {
770 /* Absolute values */
771 pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
773 /* Already sorted */
774 pd->pd_step[point] = pcinfo->pcdac[point];
777 /* Set min/max pwr */
778 chinfo[pier].min_pwr = pd->pd_pwr[0];
779 chinfo[pier].max_pwr = pd->pd_pwr[10];
783 return 0;
785 err_out:
786 ath5k_eeprom_free_pcal_info(ah, mode);
787 return -ENOMEM;
790 /* Parse EEPROM data */
791 static int
792 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
794 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
795 struct ath5k_chan_pcal_info *pcal;
796 int offset, ret;
797 int i;
798 u16 val;
800 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
801 switch(mode) {
802 case AR5K_EEPROM_MODE_11A:
803 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
804 return 0;
806 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
807 offset + AR5K_EEPROM_GROUP1_OFFSET);
808 if (ret < 0)
809 return ret;
811 offset += AR5K_EEPROM_GROUP2_OFFSET;
812 pcal = ee->ee_pwr_cal_a;
813 break;
814 case AR5K_EEPROM_MODE_11B:
815 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
816 !AR5K_EEPROM_HDR_11G(ee->ee_header))
817 return 0;
819 pcal = ee->ee_pwr_cal_b;
820 offset += AR5K_EEPROM_GROUP3_OFFSET;
822 /* fixed piers */
823 pcal[0].freq = 2412;
824 pcal[1].freq = 2447;
825 pcal[2].freq = 2484;
826 ee->ee_n_piers[mode] = 3;
827 break;
828 case AR5K_EEPROM_MODE_11G:
829 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
830 return 0;
832 pcal = ee->ee_pwr_cal_g;
833 offset += AR5K_EEPROM_GROUP4_OFFSET;
835 /* fixed piers */
836 pcal[0].freq = 2312;
837 pcal[1].freq = 2412;
838 pcal[2].freq = 2484;
839 ee->ee_n_piers[mode] = 3;
840 break;
841 default:
842 return -EINVAL;
845 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
846 struct ath5k_chan_pcal_info_rf5111 *cdata =
847 &pcal[i].rf5111_info;
849 AR5K_EEPROM_READ(offset++, val);
850 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
851 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
852 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
854 AR5K_EEPROM_READ(offset++, val);
855 cdata->pwr[0] |= ((val >> 14) & 0x3);
856 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
857 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
858 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
860 AR5K_EEPROM_READ(offset++, val);
861 cdata->pwr[3] |= ((val >> 12) & 0xf);
862 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
863 cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
865 AR5K_EEPROM_READ(offset++, val);
866 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
867 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
868 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
870 AR5K_EEPROM_READ(offset++, val);
871 cdata->pwr[8] |= ((val >> 14) & 0x3);
872 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
873 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
875 ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
876 cdata->pcdac_max, cdata->pcdac);
879 return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
884 * Read power calibration for RF5112 chips
886 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
887 * for each calibrated channel on 0, -6, -12 and -18dbm but we only
888 * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
889 * power steps on x axis and PCDAC steps on y axis and looks like a
890 * linear function. To recreate the curve and pass the power values
891 * on hw, we read 4 points for xpd 0 (lower gain -> max power)
892 * and 3 points for xpd 3 (higher gain -> lower power) here and
893 * interpolate later.
895 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
898 /* Convert RF5112 specific data to generic raw data
899 * used by interpolation code */
900 static int
901 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
902 struct ath5k_chan_pcal_info *chinfo)
904 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
905 struct ath5k_chan_pcal_info_rf5112 *pcinfo;
906 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
907 unsigned int pier, pdg, point;
909 /* Fill raw data for each calibration pier */
910 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
912 pcinfo = &chinfo[pier].rf5112_info;
914 /* Allocate pd_curves for this cal pier */
915 chinfo[pier].pd_curves =
916 kcalloc(AR5K_EEPROM_N_PD_CURVES,
917 sizeof(struct ath5k_pdgain_info),
918 GFP_KERNEL);
920 if (!chinfo[pier].pd_curves)
921 goto err_out;
923 /* Fill pd_curves */
924 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
926 u8 idx = pdgain_idx[pdg];
927 struct ath5k_pdgain_info *pd =
928 &chinfo[pier].pd_curves[idx];
930 /* Lowest gain curve (max power) */
931 if (pdg == 0) {
932 /* One more point for better accuracy */
933 pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
935 /* Allocate pd points for this curve */
936 pd->pd_step = kcalloc(pd->pd_points,
937 sizeof(u8), GFP_KERNEL);
939 if (!pd->pd_step)
940 goto err_out;
942 pd->pd_pwr = kcalloc(pd->pd_points,
943 sizeof(s16), GFP_KERNEL);
945 if (!pd->pd_pwr)
946 goto err_out;
948 /* Fill raw dataset
949 * (all power levels are in 0.25dB units) */
950 pd->pd_step[0] = pcinfo->pcdac_x0[0];
951 pd->pd_pwr[0] = pcinfo->pwr_x0[0];
953 for (point = 1; point < pd->pd_points;
954 point++) {
955 /* Absolute values */
956 pd->pd_pwr[point] =
957 pcinfo->pwr_x0[point];
959 /* Deltas */
960 pd->pd_step[point] =
961 pd->pd_step[point - 1] +
962 pcinfo->pcdac_x0[point];
965 /* Set min power for this frequency */
966 chinfo[pier].min_pwr = pd->pd_pwr[0];
968 /* Highest gain curve (min power) */
969 } else if (pdg == 1) {
971 pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
973 /* Allocate pd points for this curve */
974 pd->pd_step = kcalloc(pd->pd_points,
975 sizeof(u8), GFP_KERNEL);
977 if (!pd->pd_step)
978 goto err_out;
980 pd->pd_pwr = kcalloc(pd->pd_points,
981 sizeof(s16), GFP_KERNEL);
983 if (!pd->pd_pwr)
984 goto err_out;
986 /* Fill raw dataset
987 * (all power levels are in 0.25dB units) */
988 for (point = 0; point < pd->pd_points;
989 point++) {
990 /* Absolute values */
991 pd->pd_pwr[point] =
992 pcinfo->pwr_x3[point];
994 /* Fixed points */
995 pd->pd_step[point] =
996 pcinfo->pcdac_x3[point];
999 /* Since we have a higher gain curve
1000 * override min power */
1001 chinfo[pier].min_pwr = pd->pd_pwr[0];
1006 return 0;
1008 err_out:
1009 ath5k_eeprom_free_pcal_info(ah, mode);
1010 return -ENOMEM;
1013 /* Parse EEPROM data */
1014 static int
1015 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
1017 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1018 struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
1019 struct ath5k_chan_pcal_info *gen_chan_info;
1020 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1021 u32 offset;
1022 u8 i, c;
1023 u16 val;
1024 u8 pd_gains = 0;
1026 /* Count how many curves we have and
1027 * identify them (which one of the 4
1028 * available curves we have on each count).
1029 * Curves are stored from lower (x0) to
1030 * higher (x3) gain */
1031 for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
1032 /* ee_x_gain[mode] is x gain mask */
1033 if ((ee->ee_x_gain[mode] >> i) & 0x1)
1034 pdgain_idx[pd_gains++] = i;
1036 ee->ee_pd_gains[mode] = pd_gains;
1038 if (pd_gains == 0 || pd_gains > 2)
1039 return -EINVAL;
1041 switch (mode) {
1042 case AR5K_EEPROM_MODE_11A:
1044 * Read 5GHz EEPROM channels
1046 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1047 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1049 offset += AR5K_EEPROM_GROUP2_OFFSET;
1050 gen_chan_info = ee->ee_pwr_cal_a;
1051 break;
1052 case AR5K_EEPROM_MODE_11B:
1053 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1054 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1055 offset += AR5K_EEPROM_GROUP3_OFFSET;
1057 /* NB: frequency piers parsed during mode init */
1058 gen_chan_info = ee->ee_pwr_cal_b;
1059 break;
1060 case AR5K_EEPROM_MODE_11G:
1061 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1062 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1063 offset += AR5K_EEPROM_GROUP4_OFFSET;
1064 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1065 offset += AR5K_EEPROM_GROUP2_OFFSET;
1067 /* NB: frequency piers parsed during mode init */
1068 gen_chan_info = ee->ee_pwr_cal_g;
1069 break;
1070 default:
1071 return -EINVAL;
1074 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1075 chan_pcal_info = &gen_chan_info[i].rf5112_info;
1077 /* Power values in quarter dB
1078 * for the lower xpd gain curve
1079 * (0 dBm -> higher output power) */
1080 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1081 AR5K_EEPROM_READ(offset++, val);
1082 chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1083 chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1086 /* PCDAC steps
1087 * corresponding to the above power
1088 * measurements */
1089 AR5K_EEPROM_READ(offset++, val);
1090 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1091 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1092 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1094 /* Power values in quarter dB
1095 * for the higher xpd gain curve
1096 * (18 dBm -> lower output power) */
1097 AR5K_EEPROM_READ(offset++, val);
1098 chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1099 chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1101 AR5K_EEPROM_READ(offset++, val);
1102 chan_pcal_info->pwr_x3[2] = (val & 0xff);
1104 /* PCDAC steps
1105 * corresponding to the above power
1106 * measurements (fixed) */
1107 chan_pcal_info->pcdac_x3[0] = 20;
1108 chan_pcal_info->pcdac_x3[1] = 35;
1109 chan_pcal_info->pcdac_x3[2] = 63;
1111 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1112 chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1114 /* Last xpd0 power level is also channel maximum */
1115 gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1116 } else {
1117 chan_pcal_info->pcdac_x0[0] = 1;
1118 gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1123 return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1128 * Read power calibration for RF2413 chips
1130 * For RF2413 we have a Power to PDDAC table (Power Detector)
1131 * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1132 * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1133 * axis and looks like an exponential function like the RF5111 curve.
1135 * To recreate the curves we read here the points and interpolate
1136 * later. Note that in most cases only 2 (higher and lower) curves are
1137 * used (like RF5112) but vendors have the oportunity to include all
1138 * 4 curves on eeprom. The final curve (higher power) has an extra
1139 * point for better accuracy like RF5112.
1142 /* For RF2413 power calibration data doesn't start on a fixed location and
1143 * if a mode is not supported, its section is missing -not zeroed-.
1144 * So we need to calculate the starting offset for each section by using
1145 * these two functions */
1147 /* Return the size of each section based on the mode and the number of pd
1148 * gains available (maximum 4). */
1149 static inline unsigned int
1150 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1152 static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1153 unsigned int sz;
1155 sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1156 sz *= ee->ee_n_piers[mode];
1158 return sz;
1161 /* Return the starting offset for a section based on the modes supported
1162 * and each section's size. */
1163 static unsigned int
1164 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1166 u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1168 switch(mode) {
1169 case AR5K_EEPROM_MODE_11G:
1170 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1171 offset += ath5k_pdgains_size_2413(ee,
1172 AR5K_EEPROM_MODE_11B) +
1173 AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1174 /* fall through */
1175 case AR5K_EEPROM_MODE_11B:
1176 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1177 offset += ath5k_pdgains_size_2413(ee,
1178 AR5K_EEPROM_MODE_11A) +
1179 AR5K_EEPROM_N_5GHZ_CHAN / 2;
1180 /* fall through */
1181 case AR5K_EEPROM_MODE_11A:
1182 break;
1183 default:
1184 break;
1187 return offset;
1190 /* Convert RF2413 specific data to generic raw data
1191 * used by interpolation code */
1192 static int
1193 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1194 struct ath5k_chan_pcal_info *chinfo)
1196 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1197 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1198 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1199 unsigned int pier, pdg, point;
1201 /* Fill raw data for each calibration pier */
1202 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1204 pcinfo = &chinfo[pier].rf2413_info;
1206 /* Allocate pd_curves for this cal pier */
1207 chinfo[pier].pd_curves =
1208 kcalloc(AR5K_EEPROM_N_PD_CURVES,
1209 sizeof(struct ath5k_pdgain_info),
1210 GFP_KERNEL);
1212 if (!chinfo[pier].pd_curves)
1213 goto err_out;
1215 /* Fill pd_curves */
1216 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1218 u8 idx = pdgain_idx[pdg];
1219 struct ath5k_pdgain_info *pd =
1220 &chinfo[pier].pd_curves[idx];
1222 /* One more point for the highest power
1223 * curve (lowest gain) */
1224 if (pdg == ee->ee_pd_gains[mode] - 1)
1225 pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1226 else
1227 pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1229 /* Allocate pd points for this curve */
1230 pd->pd_step = kcalloc(pd->pd_points,
1231 sizeof(u8), GFP_KERNEL);
1233 if (!pd->pd_step)
1234 goto err_out;
1236 pd->pd_pwr = kcalloc(pd->pd_points,
1237 sizeof(s16), GFP_KERNEL);
1239 if (!pd->pd_pwr)
1240 goto err_out;
1242 /* Fill raw dataset
1243 * convert all pwr levels to
1244 * quarter dB for RF5112 combatibility */
1245 pd->pd_step[0] = pcinfo->pddac_i[pdg];
1246 pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1248 for (point = 1; point < pd->pd_points; point++) {
1250 pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1251 2 * pcinfo->pwr[pdg][point - 1];
1253 pd->pd_step[point] = pd->pd_step[point - 1] +
1254 pcinfo->pddac[pdg][point - 1];
1258 /* Highest gain curve -> min power */
1259 if (pdg == 0)
1260 chinfo[pier].min_pwr = pd->pd_pwr[0];
1262 /* Lowest gain curve -> max power */
1263 if (pdg == ee->ee_pd_gains[mode] - 1)
1264 chinfo[pier].max_pwr =
1265 pd->pd_pwr[pd->pd_points - 1];
1269 return 0;
1271 err_out:
1272 ath5k_eeprom_free_pcal_info(ah, mode);
1273 return -ENOMEM;
1276 /* Parse EEPROM data */
1277 static int
1278 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1280 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1281 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1282 struct ath5k_chan_pcal_info *chinfo;
1283 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1284 u32 offset;
1285 int idx, i;
1286 u16 val;
1287 u8 pd_gains = 0;
1289 /* Count how many curves we have and
1290 * identify them (which one of the 4
1291 * available curves we have on each count).
1292 * Curves are stored from higher to
1293 * lower gain so we go backwards */
1294 for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1295 /* ee_x_gain[mode] is x gain mask */
1296 if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1297 pdgain_idx[pd_gains++] = idx;
1300 ee->ee_pd_gains[mode] = pd_gains;
1302 if (pd_gains == 0)
1303 return -EINVAL;
1305 offset = ath5k_cal_data_offset_2413(ee, mode);
1306 switch (mode) {
1307 case AR5K_EEPROM_MODE_11A:
1308 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1309 return 0;
1311 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1312 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1313 chinfo = ee->ee_pwr_cal_a;
1314 break;
1315 case AR5K_EEPROM_MODE_11B:
1316 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1317 return 0;
1319 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1320 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1321 chinfo = ee->ee_pwr_cal_b;
1322 break;
1323 case AR5K_EEPROM_MODE_11G:
1324 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1325 return 0;
1327 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1328 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1329 chinfo = ee->ee_pwr_cal_g;
1330 break;
1331 default:
1332 return -EINVAL;
1335 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1336 pcinfo = &chinfo[i].rf2413_info;
1339 * Read pwr_i, pddac_i and the first
1340 * 2 pd points (pwr, pddac)
1342 AR5K_EEPROM_READ(offset++, val);
1343 pcinfo->pwr_i[0] = val & 0x1f;
1344 pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1345 pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1347 AR5K_EEPROM_READ(offset++, val);
1348 pcinfo->pddac[0][0] = val & 0x3f;
1349 pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1350 pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1352 AR5K_EEPROM_READ(offset++, val);
1353 pcinfo->pwr[0][2] = val & 0xf;
1354 pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1356 pcinfo->pwr[0][3] = 0;
1357 pcinfo->pddac[0][3] = 0;
1359 if (pd_gains > 1) {
1361 * Pd gain 0 is not the last pd gain
1362 * so it only has 2 pd points.
1363 * Continue wih pd gain 1.
1365 pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1367 pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1368 AR5K_EEPROM_READ(offset++, val);
1369 pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1371 pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1372 pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1374 AR5K_EEPROM_READ(offset++, val);
1375 pcinfo->pwr[1][1] = val & 0xf;
1376 pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1377 pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1379 pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1380 AR5K_EEPROM_READ(offset++, val);
1381 pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1383 pcinfo->pwr[1][3] = 0;
1384 pcinfo->pddac[1][3] = 0;
1385 } else if (pd_gains == 1) {
1387 * Pd gain 0 is the last one so
1388 * read the extra point.
1390 pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1392 pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1393 AR5K_EEPROM_READ(offset++, val);
1394 pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1398 * Proceed with the other pd_gains
1399 * as above.
1401 if (pd_gains > 2) {
1402 pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1403 pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1405 AR5K_EEPROM_READ(offset++, val);
1406 pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1407 pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1408 pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1410 pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1411 AR5K_EEPROM_READ(offset++, val);
1412 pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1414 pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1415 pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1417 pcinfo->pwr[2][3] = 0;
1418 pcinfo->pddac[2][3] = 0;
1419 } else if (pd_gains == 2) {
1420 pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1421 pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1424 if (pd_gains > 3) {
1425 pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1426 AR5K_EEPROM_READ(offset++, val);
1427 pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1429 pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1430 pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1431 pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1433 AR5K_EEPROM_READ(offset++, val);
1434 pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1435 pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1436 pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1438 pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1439 AR5K_EEPROM_READ(offset++, val);
1440 pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1442 pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1443 pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1445 pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1446 AR5K_EEPROM_READ(offset++, val);
1447 pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1448 } else if (pd_gains == 3) {
1449 pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1450 AR5K_EEPROM_READ(offset++, val);
1451 pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1453 pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1457 return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1462 * Read per rate target power (this is the maximum tx power
1463 * supported by the card). This info is used when setting
1464 * tx power, no matter the channel.
1466 * This also works for v5 EEPROMs.
1468 static int
1469 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1471 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1472 struct ath5k_rate_pcal_info *rate_pcal_info;
1473 u8 *rate_target_pwr_num;
1474 u32 offset;
1475 u16 val;
1476 int i;
1478 offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1479 rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1480 switch (mode) {
1481 case AR5K_EEPROM_MODE_11A:
1482 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1483 rate_pcal_info = ee->ee_rate_tpwr_a;
1484 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1485 break;
1486 case AR5K_EEPROM_MODE_11B:
1487 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1488 rate_pcal_info = ee->ee_rate_tpwr_b;
1489 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1490 break;
1491 case AR5K_EEPROM_MODE_11G:
1492 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1493 rate_pcal_info = ee->ee_rate_tpwr_g;
1494 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1495 break;
1496 default:
1497 return -EINVAL;
1500 /* Different freq mask for older eeproms (<= v3.2) */
1501 if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1502 for (i = 0; i < (*rate_target_pwr_num); i++) {
1503 AR5K_EEPROM_READ(offset++, val);
1504 rate_pcal_info[i].freq =
1505 ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1507 rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1508 rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1510 AR5K_EEPROM_READ(offset++, val);
1512 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1513 val == 0) {
1514 (*rate_target_pwr_num) = i;
1515 break;
1518 rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1519 rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1520 rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1522 } else {
1523 for (i = 0; i < (*rate_target_pwr_num); i++) {
1524 AR5K_EEPROM_READ(offset++, val);
1525 rate_pcal_info[i].freq =
1526 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1528 rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1529 rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1531 AR5K_EEPROM_READ(offset++, val);
1533 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1534 val == 0) {
1535 (*rate_target_pwr_num) = i;
1536 break;
1539 rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1540 rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1541 rate_pcal_info[i].target_power_54 = (val & 0x3f);
1545 return 0;
1550 * Read per channel calibration info from EEPROM
1552 * This info is used to calibrate the baseband power table. Imagine
1553 * that for each channel there is a power curve that's hw specific
1554 * (depends on amplifier etc) and we try to "correct" this curve using
1555 * offsets we pass on to phy chip (baseband -> before amplifier) so that
1556 * it can use accurate power values when setting tx power (takes amplifier's
1557 * performance on each channel into account).
1559 * EEPROM provides us with the offsets for some pre-calibrated channels
1560 * and we have to interpolate to create the full table for these channels and
1561 * also the table for any channel.
1563 static int
1564 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1566 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1567 int (*read_pcal)(struct ath5k_hw *hw, int mode);
1568 int mode;
1569 int err;
1571 if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1572 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1573 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1574 else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1575 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1576 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1577 else
1578 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1581 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1582 mode++) {
1583 err = read_pcal(ah, mode);
1584 if (err)
1585 return err;
1587 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1588 if (err < 0)
1589 return err;
1592 return 0;
1595 /* Read conformance test limits used for regulatory control */
1596 static int
1597 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1599 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1600 struct ath5k_edge_power *rep;
1601 unsigned int fmask, pmask;
1602 unsigned int ctl_mode;
1603 int i, j;
1604 u32 offset;
1605 u16 val;
1607 pmask = AR5K_EEPROM_POWER_M;
1608 fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1609 offset = AR5K_EEPROM_CTL(ee->ee_version);
1610 ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1611 for (i = 0; i < ee->ee_ctls; i += 2) {
1612 AR5K_EEPROM_READ(offset++, val);
1613 ee->ee_ctl[i] = (val >> 8) & 0xff;
1614 ee->ee_ctl[i + 1] = val & 0xff;
1617 offset = AR5K_EEPROM_GROUP8_OFFSET;
1618 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1619 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1620 AR5K_EEPROM_GROUP5_OFFSET;
1621 else
1622 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1624 rep = ee->ee_ctl_pwr;
1625 for(i = 0; i < ee->ee_ctls; i++) {
1626 switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1627 case AR5K_CTL_11A:
1628 case AR5K_CTL_TURBO:
1629 ctl_mode = AR5K_EEPROM_MODE_11A;
1630 break;
1631 default:
1632 ctl_mode = AR5K_EEPROM_MODE_11G;
1633 break;
1635 if (ee->ee_ctl[i] == 0) {
1636 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1637 offset += 8;
1638 else
1639 offset += 7;
1640 rep += AR5K_EEPROM_N_EDGES;
1641 continue;
1643 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1644 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1645 AR5K_EEPROM_READ(offset++, val);
1646 rep[j].freq = (val >> 8) & fmask;
1647 rep[j + 1].freq = val & fmask;
1649 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1650 AR5K_EEPROM_READ(offset++, val);
1651 rep[j].edge = (val >> 8) & pmask;
1652 rep[j].flag = (val >> 14) & 1;
1653 rep[j + 1].edge = val & pmask;
1654 rep[j + 1].flag = (val >> 6) & 1;
1656 } else {
1657 AR5K_EEPROM_READ(offset++, val);
1658 rep[0].freq = (val >> 9) & fmask;
1659 rep[1].freq = (val >> 2) & fmask;
1660 rep[2].freq = (val << 5) & fmask;
1662 AR5K_EEPROM_READ(offset++, val);
1663 rep[2].freq |= (val >> 11) & 0x1f;
1664 rep[3].freq = (val >> 4) & fmask;
1665 rep[4].freq = (val << 3) & fmask;
1667 AR5K_EEPROM_READ(offset++, val);
1668 rep[4].freq |= (val >> 13) & 0x7;
1669 rep[5].freq = (val >> 6) & fmask;
1670 rep[6].freq = (val << 1) & fmask;
1672 AR5K_EEPROM_READ(offset++, val);
1673 rep[6].freq |= (val >> 15) & 0x1;
1674 rep[7].freq = (val >> 8) & fmask;
1676 rep[0].edge = (val >> 2) & pmask;
1677 rep[1].edge = (val << 4) & pmask;
1679 AR5K_EEPROM_READ(offset++, val);
1680 rep[1].edge |= (val >> 12) & 0xf;
1681 rep[2].edge = (val >> 6) & pmask;
1682 rep[3].edge = val & pmask;
1684 AR5K_EEPROM_READ(offset++, val);
1685 rep[4].edge = (val >> 10) & pmask;
1686 rep[5].edge = (val >> 4) & pmask;
1687 rep[6].edge = (val << 2) & pmask;
1689 AR5K_EEPROM_READ(offset++, val);
1690 rep[6].edge |= (val >> 14) & 0x3;
1691 rep[7].edge = (val >> 8) & pmask;
1693 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1694 rep[j].freq = ath5k_eeprom_bin2freq(ee,
1695 rep[j].freq, ctl_mode);
1697 rep += AR5K_EEPROM_N_EDGES;
1700 return 0;
1703 static int
1704 ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1706 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1707 u32 offset;
1708 u16 val;
1709 int ret = 0, i;
1711 offset = AR5K_EEPROM_CTL(ee->ee_version) +
1712 AR5K_EEPROM_N_CTLS(ee->ee_version);
1714 if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1715 /* No spur info for 5GHz */
1716 ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1717 /* 2 channels for 2GHz (2464/2420) */
1718 ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1719 ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1720 ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1721 } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1722 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1723 AR5K_EEPROM_READ(offset, val);
1724 ee->ee_spur_chans[i][0] = val;
1725 AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1726 val);
1727 ee->ee_spur_chans[i][1] = val;
1728 offset++;
1732 return ret;
1736 /***********************\
1737 * Init/Detach functions *
1738 \***********************/
1741 * Initialize eeprom data structure
1744 ath5k_eeprom_init(struct ath5k_hw *ah)
1746 int err;
1748 err = ath5k_eeprom_init_header(ah);
1749 if (err < 0)
1750 return err;
1752 err = ath5k_eeprom_init_modes(ah);
1753 if (err < 0)
1754 return err;
1756 err = ath5k_eeprom_read_pcal_info(ah);
1757 if (err < 0)
1758 return err;
1760 err = ath5k_eeprom_read_ctl_info(ah);
1761 if (err < 0)
1762 return err;
1764 err = ath5k_eeprom_read_spur_chans(ah);
1765 if (err < 0)
1766 return err;
1768 return 0;
1771 void
1772 ath5k_eeprom_detach(struct ath5k_hw *ah)
1774 u8 mode;
1776 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1777 ath5k_eeprom_free_pcal_info(ah, mode);
1781 ath5k_eeprom_mode_from_channel(struct ieee80211_channel *channel)
1783 switch (channel->hw_value & CHANNEL_MODES) {
1784 case CHANNEL_A:
1785 case CHANNEL_XR:
1786 return AR5K_EEPROM_MODE_11A;
1787 case CHANNEL_G:
1788 return AR5K_EEPROM_MODE_11G;
1789 case CHANNEL_B:
1790 return AR5K_EEPROM_MODE_11B;
1791 default:
1792 return -1;