2 * QLogic Fibre Channel HBA Driver
3 * Copyright (c) 2003-2014 QLogic Corporation
5 * See LICENSE.qla2xxx for copyright and licensing details.
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/vmalloc.h>
12 #include <asm/uaccess.h>
15 * NVRAM support routines
19 * qla2x00_lock_nvram_access() -
23 qla2x00_lock_nvram_access(struct qla_hw_data
*ha
)
26 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
28 if (!IS_QLA2100(ha
) && !IS_QLA2200(ha
) && !IS_QLA2300(ha
)) {
29 data
= RD_REG_WORD(®
->nvram
);
30 while (data
& NVR_BUSY
) {
32 data
= RD_REG_WORD(®
->nvram
);
36 WRT_REG_WORD(®
->u
.isp2300
.host_semaphore
, 0x1);
37 RD_REG_WORD(®
->u
.isp2300
.host_semaphore
);
39 data
= RD_REG_WORD(®
->u
.isp2300
.host_semaphore
);
40 while ((data
& BIT_0
) == 0) {
43 WRT_REG_WORD(®
->u
.isp2300
.host_semaphore
, 0x1);
44 RD_REG_WORD(®
->u
.isp2300
.host_semaphore
);
46 data
= RD_REG_WORD(®
->u
.isp2300
.host_semaphore
);
52 * qla2x00_unlock_nvram_access() -
56 qla2x00_unlock_nvram_access(struct qla_hw_data
*ha
)
58 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
60 if (!IS_QLA2100(ha
) && !IS_QLA2200(ha
) && !IS_QLA2300(ha
)) {
61 WRT_REG_WORD(®
->u
.isp2300
.host_semaphore
, 0);
62 RD_REG_WORD(®
->u
.isp2300
.host_semaphore
);
67 * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
69 * @data: Serial interface selector
72 qla2x00_nv_write(struct qla_hw_data
*ha
, uint16_t data
)
74 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
76 WRT_REG_WORD(®
->nvram
, data
| NVR_SELECT
| NVR_WRT_ENABLE
);
77 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
79 WRT_REG_WORD(®
->nvram
, data
| NVR_SELECT
| NVR_CLOCK
|
81 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
83 WRT_REG_WORD(®
->nvram
, data
| NVR_SELECT
| NVR_WRT_ENABLE
);
84 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
89 * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
92 * @nv_cmd: NVRAM command
94 * Bit definitions for NVRAM command:
99 * Bit 15-0 = write data
101 * Returns the word read from nvram @addr.
104 qla2x00_nvram_request(struct qla_hw_data
*ha
, uint32_t nv_cmd
)
107 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
111 /* Send command to NVRAM. */
113 for (cnt
= 0; cnt
< 11; cnt
++) {
115 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
117 qla2x00_nv_write(ha
, 0);
121 /* Read data from NVRAM. */
122 for (cnt
= 0; cnt
< 16; cnt
++) {
123 WRT_REG_WORD(®
->nvram
, NVR_SELECT
| NVR_CLOCK
);
124 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
127 reg_data
= RD_REG_WORD(®
->nvram
);
128 if (reg_data
& NVR_DATA_IN
)
130 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
131 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
136 WRT_REG_WORD(®
->nvram
, NVR_DESELECT
);
137 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
145 * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
146 * request routine to get the word from NVRAM.
148 * @addr: Address in NVRAM to read
150 * Returns the word read from nvram @addr.
153 qla2x00_get_nvram_word(struct qla_hw_data
*ha
, uint32_t addr
)
159 nv_cmd
|= NV_READ_OP
;
160 data
= qla2x00_nvram_request(ha
, nv_cmd
);
166 * qla2x00_nv_deselect() - Deselect NVRAM operations.
170 qla2x00_nv_deselect(struct qla_hw_data
*ha
)
172 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
174 WRT_REG_WORD(®
->nvram
, NVR_DESELECT
);
175 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
180 * qla2x00_write_nvram_word() - Write NVRAM data.
182 * @addr: Address in NVRAM to write
183 * @data: word to program
186 qla2x00_write_nvram_word(struct qla_hw_data
*ha
, uint32_t addr
, uint16_t data
)
190 uint32_t nv_cmd
, wait_cnt
;
191 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
192 scsi_qla_host_t
*vha
= pci_get_drvdata(ha
->pdev
);
194 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
195 qla2x00_nv_write(ha
, 0);
196 qla2x00_nv_write(ha
, 0);
198 for (word
= 0; word
< 8; word
++)
199 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
201 qla2x00_nv_deselect(ha
);
204 nv_cmd
= (addr
<< 16) | NV_WRITE_OP
;
207 for (count
= 0; count
< 27; count
++) {
209 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
211 qla2x00_nv_write(ha
, 0);
216 qla2x00_nv_deselect(ha
);
218 /* Wait for NVRAM to become ready */
219 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
220 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
221 wait_cnt
= NVR_WAIT_CNT
;
224 ql_dbg(ql_dbg_user
, vha
, 0x708d,
225 "NVRAM didn't go ready...\n");
229 word
= RD_REG_WORD(®
->nvram
);
230 } while ((word
& NVR_DATA_IN
) == 0);
232 qla2x00_nv_deselect(ha
);
235 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
236 for (count
= 0; count
< 10; count
++)
237 qla2x00_nv_write(ha
, 0);
239 qla2x00_nv_deselect(ha
);
243 qla2x00_write_nvram_word_tmo(struct qla_hw_data
*ha
, uint32_t addr
,
244 uint16_t data
, uint32_t tmo
)
249 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
253 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
254 qla2x00_nv_write(ha
, 0);
255 qla2x00_nv_write(ha
, 0);
257 for (word
= 0; word
< 8; word
++)
258 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
260 qla2x00_nv_deselect(ha
);
263 nv_cmd
= (addr
<< 16) | NV_WRITE_OP
;
266 for (count
= 0; count
< 27; count
++) {
268 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
270 qla2x00_nv_write(ha
, 0);
275 qla2x00_nv_deselect(ha
);
277 /* Wait for NVRAM to become ready */
278 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
279 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
282 word
= RD_REG_WORD(®
->nvram
);
284 ret
= QLA_FUNCTION_FAILED
;
287 } while ((word
& NVR_DATA_IN
) == 0);
289 qla2x00_nv_deselect(ha
);
292 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
293 for (count
= 0; count
< 10; count
++)
294 qla2x00_nv_write(ha
, 0);
296 qla2x00_nv_deselect(ha
);
302 * qla2x00_clear_nvram_protection() -
306 qla2x00_clear_nvram_protection(struct qla_hw_data
*ha
)
309 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
310 uint32_t word
, wait_cnt
;
311 uint16_t wprot
, wprot_old
;
312 scsi_qla_host_t
*vha
= pci_get_drvdata(ha
->pdev
);
314 /* Clear NVRAM write protection. */
315 ret
= QLA_FUNCTION_FAILED
;
317 wprot_old
= cpu_to_le16(qla2x00_get_nvram_word(ha
, ha
->nvram_base
));
318 stat
= qla2x00_write_nvram_word_tmo(ha
, ha
->nvram_base
,
319 cpu_to_le16(0x1234), 100000);
320 wprot
= cpu_to_le16(qla2x00_get_nvram_word(ha
, ha
->nvram_base
));
321 if (stat
!= QLA_SUCCESS
|| wprot
!= 0x1234) {
323 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
324 qla2x00_nv_write(ha
, 0);
325 qla2x00_nv_write(ha
, 0);
326 for (word
= 0; word
< 8; word
++)
327 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
329 qla2x00_nv_deselect(ha
);
331 /* Enable protection register. */
332 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
333 qla2x00_nv_write(ha
, NVR_PR_ENABLE
);
334 qla2x00_nv_write(ha
, NVR_PR_ENABLE
);
335 for (word
= 0; word
< 8; word
++)
336 qla2x00_nv_write(ha
, NVR_DATA_OUT
| NVR_PR_ENABLE
);
338 qla2x00_nv_deselect(ha
);
340 /* Clear protection register (ffff is cleared). */
341 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
342 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
343 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
344 for (word
= 0; word
< 8; word
++)
345 qla2x00_nv_write(ha
, NVR_DATA_OUT
| NVR_PR_ENABLE
);
347 qla2x00_nv_deselect(ha
);
349 /* Wait for NVRAM to become ready. */
350 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
351 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
352 wait_cnt
= NVR_WAIT_CNT
;
355 ql_dbg(ql_dbg_user
, vha
, 0x708e,
356 "NVRAM didn't go ready...\n");
360 word
= RD_REG_WORD(®
->nvram
);
361 } while ((word
& NVR_DATA_IN
) == 0);
366 qla2x00_write_nvram_word(ha
, ha
->nvram_base
, wprot_old
);
372 qla2x00_set_nvram_protection(struct qla_hw_data
*ha
, int stat
)
374 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
375 uint32_t word
, wait_cnt
;
376 scsi_qla_host_t
*vha
= pci_get_drvdata(ha
->pdev
);
378 if (stat
!= QLA_SUCCESS
)
381 /* Set NVRAM write protection. */
383 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
384 qla2x00_nv_write(ha
, 0);
385 qla2x00_nv_write(ha
, 0);
386 for (word
= 0; word
< 8; word
++)
387 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
389 qla2x00_nv_deselect(ha
);
391 /* Enable protection register. */
392 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
393 qla2x00_nv_write(ha
, NVR_PR_ENABLE
);
394 qla2x00_nv_write(ha
, NVR_PR_ENABLE
);
395 for (word
= 0; word
< 8; word
++)
396 qla2x00_nv_write(ha
, NVR_DATA_OUT
| NVR_PR_ENABLE
);
398 qla2x00_nv_deselect(ha
);
400 /* Enable protection register. */
401 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
402 qla2x00_nv_write(ha
, NVR_PR_ENABLE
);
403 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
404 for (word
= 0; word
< 8; word
++)
405 qla2x00_nv_write(ha
, NVR_PR_ENABLE
);
407 qla2x00_nv_deselect(ha
);
409 /* Wait for NVRAM to become ready. */
410 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
411 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
412 wait_cnt
= NVR_WAIT_CNT
;
415 ql_dbg(ql_dbg_user
, vha
, 0x708f,
416 "NVRAM didn't go ready...\n");
420 word
= RD_REG_WORD(®
->nvram
);
421 } while ((word
& NVR_DATA_IN
) == 0);
425 /*****************************************************************************/
426 /* Flash Manipulation Routines */
427 /*****************************************************************************/
429 static inline uint32_t
430 flash_conf_addr(struct qla_hw_data
*ha
, uint32_t faddr
)
432 return ha
->flash_conf_off
| faddr
;
435 static inline uint32_t
436 flash_data_addr(struct qla_hw_data
*ha
, uint32_t faddr
)
438 return ha
->flash_data_off
| faddr
;
441 static inline uint32_t
442 nvram_conf_addr(struct qla_hw_data
*ha
, uint32_t naddr
)
444 return ha
->nvram_conf_off
| naddr
;
447 static inline uint32_t
448 nvram_data_addr(struct qla_hw_data
*ha
, uint32_t naddr
)
450 return ha
->nvram_data_off
| naddr
;
454 qla24xx_read_flash_dword(struct qla_hw_data
*ha
, uint32_t addr
)
458 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
460 WRT_REG_DWORD(®
->flash_addr
, addr
& ~FARX_DATA_FLAG
);
461 /* Wait for READ cycle to complete. */
464 (RD_REG_DWORD(®
->flash_addr
) & FARX_DATA_FLAG
) == 0 &&
465 rval
== QLA_SUCCESS
; cnt
--) {
469 rval
= QLA_FUNCTION_TIMEOUT
;
473 /* TODO: What happens if we time out? */
475 if (rval
== QLA_SUCCESS
)
476 data
= RD_REG_DWORD(®
->flash_data
);
482 qla24xx_read_flash_data(scsi_qla_host_t
*vha
, uint32_t *dwptr
, uint32_t faddr
,
486 struct qla_hw_data
*ha
= vha
->hw
;
488 /* Dword reads to flash. */
489 for (i
= 0; i
< dwords
; i
++, faddr
++)
490 dwptr
[i
] = cpu_to_le32(qla24xx_read_flash_dword(ha
,
491 flash_data_addr(ha
, faddr
)));
497 qla24xx_write_flash_dword(struct qla_hw_data
*ha
, uint32_t addr
, uint32_t data
)
501 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
503 WRT_REG_DWORD(®
->flash_data
, data
);
504 RD_REG_DWORD(®
->flash_data
); /* PCI Posting. */
505 WRT_REG_DWORD(®
->flash_addr
, addr
| FARX_DATA_FLAG
);
506 /* Wait for Write cycle to complete. */
508 for (cnt
= 500000; (RD_REG_DWORD(®
->flash_addr
) & FARX_DATA_FLAG
) &&
509 rval
== QLA_SUCCESS
; cnt
--) {
513 rval
= QLA_FUNCTION_TIMEOUT
;
520 qla24xx_get_flash_manufacturer(struct qla_hw_data
*ha
, uint8_t *man_id
,
525 ids
= qla24xx_read_flash_dword(ha
, flash_conf_addr(ha
, 0x03ab));
527 *flash_id
= MSB(ids
);
529 /* Check if man_id and flash_id are valid. */
530 if (ids
!= 0xDEADDEAD && (*man_id
== 0 || *flash_id
== 0)) {
531 /* Read information using 0x9f opcode
532 * Device ID, Mfg ID would be read in the format:
533 * <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
534 * Example: ATMEL 0x00 01 45 1F
535 * Extract MFG and Dev ID from last two bytes.
537 ids
= qla24xx_read_flash_dword(ha
, flash_conf_addr(ha
, 0x009f));
539 *flash_id
= MSB(ids
);
544 qla2xxx_find_flt_start(scsi_qla_host_t
*vha
, uint32_t *start
)
546 const char *loc
, *locations
[] = { "DEF", "PCI" };
547 uint32_t pcihdr
, pcids
;
549 uint8_t *buf
, *bcode
, last_image
;
550 uint16_t cnt
, chksum
, *wptr
;
551 struct qla_flt_location
*fltl
;
552 struct qla_hw_data
*ha
= vha
->hw
;
553 struct req_que
*req
= ha
->req_q_map
[0];
556 * FLT-location structure resides after the last PCI region.
559 /* Begin with sane defaults. */
562 if (IS_QLA24XX_TYPE(ha
))
563 *start
= FA_FLASH_LAYOUT_ADDR_24
;
564 else if (IS_QLA25XX(ha
))
565 *start
= FA_FLASH_LAYOUT_ADDR
;
566 else if (IS_QLA81XX(ha
))
567 *start
= FA_FLASH_LAYOUT_ADDR_81
;
568 else if (IS_P3P_TYPE(ha
)) {
569 *start
= FA_FLASH_LAYOUT_ADDR_82
;
571 } else if (IS_QLA83XX(ha
) || IS_QLA27XX(ha
)) {
572 *start
= FA_FLASH_LAYOUT_ADDR_83
;
575 /* Begin with first PCI expansion ROM header. */
576 buf
= (uint8_t *)req
->ring
;
577 dcode
= (uint32_t *)req
->ring
;
581 /* Verify PCI expansion ROM header. */
582 qla24xx_read_flash_data(vha
, dcode
, pcihdr
>> 2, 0x20);
583 bcode
= buf
+ (pcihdr
% 4);
584 if (bcode
[0x0] != 0x55 || bcode
[0x1] != 0xaa)
587 /* Locate PCI data structure. */
588 pcids
= pcihdr
+ ((bcode
[0x19] << 8) | bcode
[0x18]);
589 qla24xx_read_flash_data(vha
, dcode
, pcids
>> 2, 0x20);
590 bcode
= buf
+ (pcihdr
% 4);
592 /* Validate signature of PCI data structure. */
593 if (bcode
[0x0] != 'P' || bcode
[0x1] != 'C' ||
594 bcode
[0x2] != 'I' || bcode
[0x3] != 'R')
597 last_image
= bcode
[0x15] & BIT_7
;
599 /* Locate next PCI expansion ROM. */
600 pcihdr
+= ((bcode
[0x11] << 8) | bcode
[0x10]) * 512;
601 } while (!last_image
);
603 /* Now verify FLT-location structure. */
604 fltl
= (struct qla_flt_location
*)req
->ring
;
605 qla24xx_read_flash_data(vha
, dcode
, pcihdr
>> 2,
606 sizeof(struct qla_flt_location
) >> 2);
607 if (fltl
->sig
[0] != 'Q' || fltl
->sig
[1] != 'F' ||
608 fltl
->sig
[2] != 'L' || fltl
->sig
[3] != 'T')
611 wptr
= (uint16_t *)req
->ring
;
612 cnt
= sizeof(struct qla_flt_location
) >> 1;
613 for (chksum
= 0; cnt
; cnt
--)
614 chksum
+= le16_to_cpu(*wptr
++);
616 ql_log(ql_log_fatal
, vha
, 0x0045,
617 "Inconsistent FLTL detected: checksum=0x%x.\n", chksum
);
618 ql_dump_buffer(ql_dbg_init
+ ql_dbg_buffer
, vha
, 0x010e,
619 buf
, sizeof(struct qla_flt_location
));
620 return QLA_FUNCTION_FAILED
;
623 /* Good data. Use specified location. */
625 *start
= (le16_to_cpu(fltl
->start_hi
) << 16 |
626 le16_to_cpu(fltl
->start_lo
)) >> 2;
628 ql_dbg(ql_dbg_init
, vha
, 0x0046,
629 "FLTL[%s] = 0x%x.\n",
635 qla2xxx_get_flt_info(scsi_qla_host_t
*vha
, uint32_t flt_addr
)
637 const char *loc
, *locations
[] = { "DEF", "FLT" };
638 const uint32_t def_fw
[] =
639 { FA_RISC_CODE_ADDR
, FA_RISC_CODE_ADDR
, FA_RISC_CODE_ADDR_81
};
640 const uint32_t def_boot
[] =
641 { FA_BOOT_CODE_ADDR
, FA_BOOT_CODE_ADDR
, FA_BOOT_CODE_ADDR_81
};
642 const uint32_t def_vpd_nvram
[] =
643 { FA_VPD_NVRAM_ADDR
, FA_VPD_NVRAM_ADDR
, FA_VPD_NVRAM_ADDR_81
};
644 const uint32_t def_vpd0
[] =
645 { 0, 0, FA_VPD0_ADDR_81
};
646 const uint32_t def_vpd1
[] =
647 { 0, 0, FA_VPD1_ADDR_81
};
648 const uint32_t def_nvram0
[] =
649 { 0, 0, FA_NVRAM0_ADDR_81
};
650 const uint32_t def_nvram1
[] =
651 { 0, 0, FA_NVRAM1_ADDR_81
};
652 const uint32_t def_fdt
[] =
653 { FA_FLASH_DESCR_ADDR_24
, FA_FLASH_DESCR_ADDR
,
654 FA_FLASH_DESCR_ADDR_81
};
655 const uint32_t def_npiv_conf0
[] =
656 { FA_NPIV_CONF0_ADDR_24
, FA_NPIV_CONF0_ADDR
,
657 FA_NPIV_CONF0_ADDR_81
};
658 const uint32_t def_npiv_conf1
[] =
659 { FA_NPIV_CONF1_ADDR_24
, FA_NPIV_CONF1_ADDR
,
660 FA_NPIV_CONF1_ADDR_81
};
661 const uint32_t fcp_prio_cfg0
[] =
662 { FA_FCP_PRIO0_ADDR
, FA_FCP_PRIO0_ADDR_25
,
664 const uint32_t fcp_prio_cfg1
[] =
665 { FA_FCP_PRIO1_ADDR
, FA_FCP_PRIO1_ADDR_25
,
669 uint16_t cnt
, chksum
;
671 struct qla_flt_header
*flt
;
672 struct qla_flt_region
*region
;
673 struct qla_hw_data
*ha
= vha
->hw
;
674 struct req_que
*req
= ha
->req_q_map
[0];
679 else if (IS_QLA81XX(ha
))
682 /* Assign FCP prio region since older adapters may not have FLT, or
683 FCP prio region in it's FLT.
685 ha
->flt_region_fcp_prio
= (ha
->port_no
== 0) ?
686 fcp_prio_cfg0
[def
] : fcp_prio_cfg1
[def
];
688 ha
->flt_region_flt
= flt_addr
;
689 wptr
= (uint16_t *)req
->ring
;
690 flt
= (struct qla_flt_header
*)req
->ring
;
691 region
= (struct qla_flt_region
*)&flt
[1];
692 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)req
->ring
,
693 flt_addr
<< 2, OPTROM_BURST_SIZE
);
694 if (*wptr
== cpu_to_le16(0xffff))
696 if (flt
->version
!= cpu_to_le16(1)) {
697 ql_log(ql_log_warn
, vha
, 0x0047,
698 "Unsupported FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
699 le16_to_cpu(flt
->version
), le16_to_cpu(flt
->length
),
700 le16_to_cpu(flt
->checksum
));
704 cnt
= (sizeof(struct qla_flt_header
) + le16_to_cpu(flt
->length
)) >> 1;
705 for (chksum
= 0; cnt
; cnt
--)
706 chksum
+= le16_to_cpu(*wptr
++);
708 ql_log(ql_log_fatal
, vha
, 0x0048,
709 "Inconsistent FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
710 le16_to_cpu(flt
->version
), le16_to_cpu(flt
->length
),
711 le16_to_cpu(flt
->checksum
));
716 cnt
= le16_to_cpu(flt
->length
) / sizeof(struct qla_flt_region
);
717 for ( ; cnt
; cnt
--, region
++) {
718 /* Store addresses as DWORD offsets. */
719 start
= le32_to_cpu(region
->start
) >> 2;
720 ql_dbg(ql_dbg_init
, vha
, 0x0049,
721 "FLT[%02x]: start=0x%x "
722 "end=0x%x size=0x%x.\n", le32_to_cpu(region
->code
) & 0xff,
723 start
, le32_to_cpu(region
->end
) >> 2,
724 le32_to_cpu(region
->size
));
726 switch (le32_to_cpu(region
->code
) & 0xff) {
727 case FLT_REG_FCOE_FW
:
730 ha
->flt_region_fw
= start
;
735 ha
->flt_region_fw
= start
;
737 case FLT_REG_BOOT_CODE
:
738 ha
->flt_region_boot
= start
;
743 ha
->flt_region_vpd_nvram
= start
;
746 if (ha
->port_no
== 0)
747 ha
->flt_region_vpd
= start
;
750 if (IS_P3P_TYPE(ha
) || IS_QLA8031(ha
))
752 if (ha
->port_no
== 1)
753 ha
->flt_region_vpd
= start
;
758 if (ha
->port_no
== 2)
759 ha
->flt_region_vpd
= start
;
764 if (ha
->port_no
== 3)
765 ha
->flt_region_vpd
= start
;
767 case FLT_REG_NVRAM_0
:
770 if (ha
->port_no
== 0)
771 ha
->flt_region_nvram
= start
;
773 case FLT_REG_NVRAM_1
:
776 if (ha
->port_no
== 1)
777 ha
->flt_region_nvram
= start
;
779 case FLT_REG_NVRAM_2
:
782 if (ha
->port_no
== 2)
783 ha
->flt_region_nvram
= start
;
785 case FLT_REG_NVRAM_3
:
788 if (ha
->port_no
== 3)
789 ha
->flt_region_nvram
= start
;
792 ha
->flt_region_fdt
= start
;
794 case FLT_REG_NPIV_CONF_0
:
795 if (ha
->port_no
== 0)
796 ha
->flt_region_npiv_conf
= start
;
798 case FLT_REG_NPIV_CONF_1
:
799 if (ha
->port_no
== 1)
800 ha
->flt_region_npiv_conf
= start
;
802 case FLT_REG_GOLD_FW
:
803 ha
->flt_region_gold_fw
= start
;
805 case FLT_REG_FCP_PRIO_0
:
806 if (ha
->port_no
== 0)
807 ha
->flt_region_fcp_prio
= start
;
809 case FLT_REG_FCP_PRIO_1
:
810 if (ha
->port_no
== 1)
811 ha
->flt_region_fcp_prio
= start
;
813 case FLT_REG_BOOT_CODE_82XX
:
814 ha
->flt_region_boot
= start
;
816 case FLT_REG_BOOT_CODE_8044
:
818 ha
->flt_region_boot
= start
;
820 case FLT_REG_FW_82XX
:
821 ha
->flt_region_fw
= start
;
824 if (IS_CNA_CAPABLE(ha
))
825 ha
->flt_region_fw
= start
;
827 case FLT_REG_GOLD_FW_82XX
:
828 ha
->flt_region_gold_fw
= start
;
830 case FLT_REG_BOOTLOAD_82XX
:
831 ha
->flt_region_bootload
= start
;
833 case FLT_REG_VPD_8XXX
:
834 if (IS_CNA_CAPABLE(ha
))
835 ha
->flt_region_vpd
= start
;
837 case FLT_REG_FCOE_NVRAM_0
:
838 if (!(IS_QLA8031(ha
) || IS_QLA8044(ha
)))
840 if (ha
->port_no
== 0)
841 ha
->flt_region_nvram
= start
;
843 case FLT_REG_FCOE_NVRAM_1
:
844 if (!(IS_QLA8031(ha
) || IS_QLA8044(ha
)))
846 if (ha
->port_no
== 1)
847 ha
->flt_region_nvram
= start
;
854 /* Use hardcoded defaults. */
856 ha
->flt_region_fw
= def_fw
[def
];
857 ha
->flt_region_boot
= def_boot
[def
];
858 ha
->flt_region_vpd_nvram
= def_vpd_nvram
[def
];
859 ha
->flt_region_vpd
= (ha
->port_no
== 0) ?
860 def_vpd0
[def
] : def_vpd1
[def
];
861 ha
->flt_region_nvram
= (ha
->port_no
== 0) ?
862 def_nvram0
[def
] : def_nvram1
[def
];
863 ha
->flt_region_fdt
= def_fdt
[def
];
864 ha
->flt_region_npiv_conf
= (ha
->port_no
== 0) ?
865 def_npiv_conf0
[def
] : def_npiv_conf1
[def
];
867 ql_dbg(ql_dbg_init
, vha
, 0x004a,
868 "FLT[%s]: boot=0x%x fw=0x%x vpd_nvram=0x%x vpd=0x%x nvram=0x%x "
869 "fdt=0x%x flt=0x%x npiv=0x%x fcp_prif_cfg=0x%x.\n",
870 loc
, ha
->flt_region_boot
, ha
->flt_region_fw
,
871 ha
->flt_region_vpd_nvram
, ha
->flt_region_vpd
, ha
->flt_region_nvram
,
872 ha
->flt_region_fdt
, ha
->flt_region_flt
, ha
->flt_region_npiv_conf
,
873 ha
->flt_region_fcp_prio
);
877 qla2xxx_get_fdt_info(scsi_qla_host_t
*vha
)
879 #define FLASH_BLK_SIZE_4K 0x1000
880 #define FLASH_BLK_SIZE_32K 0x8000
881 #define FLASH_BLK_SIZE_64K 0x10000
882 const char *loc
, *locations
[] = { "MID", "FDT" };
883 uint16_t cnt
, chksum
;
885 struct qla_fdt_layout
*fdt
;
886 uint8_t man_id
, flash_id
;
887 uint16_t mid
= 0, fid
= 0;
888 struct qla_hw_data
*ha
= vha
->hw
;
889 struct req_que
*req
= ha
->req_q_map
[0];
891 wptr
= (uint16_t *)req
->ring
;
892 fdt
= (struct qla_fdt_layout
*)req
->ring
;
893 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)req
->ring
,
894 ha
->flt_region_fdt
<< 2, OPTROM_BURST_SIZE
);
895 if (*wptr
== cpu_to_le16(0xffff))
897 if (fdt
->sig
[0] != 'Q' || fdt
->sig
[1] != 'L' || fdt
->sig
[2] != 'I' ||
901 for (cnt
= 0, chksum
= 0; cnt
< sizeof(struct qla_fdt_layout
) >> 1;
903 chksum
+= le16_to_cpu(*wptr
++);
905 ql_dbg(ql_dbg_init
, vha
, 0x004c,
906 "Inconsistent FDT detected:"
907 " checksum=0x%x id=%c version0x%x.\n", chksum
,
908 fdt
->sig
[0], le16_to_cpu(fdt
->version
));
909 ql_dump_buffer(ql_dbg_init
+ ql_dbg_buffer
, vha
, 0x0113,
910 (uint8_t *)fdt
, sizeof(*fdt
));
915 mid
= le16_to_cpu(fdt
->man_id
);
916 fid
= le16_to_cpu(fdt
->id
);
917 ha
->fdt_wrt_disable
= fdt
->wrt_disable_bits
;
918 ha
->fdt_wrt_enable
= fdt
->wrt_enable_bits
;
919 ha
->fdt_wrt_sts_reg_cmd
= fdt
->wrt_sts_reg_cmd
;
921 ha
->fdt_erase_cmd
= fdt
->erase_cmd
;
924 flash_conf_addr(ha
, 0x0300 | fdt
->erase_cmd
);
925 ha
->fdt_block_size
= le32_to_cpu(fdt
->block_size
);
926 if (fdt
->unprotect_sec_cmd
) {
927 ha
->fdt_unprotect_sec_cmd
= flash_conf_addr(ha
, 0x0300 |
928 fdt
->unprotect_sec_cmd
);
929 ha
->fdt_protect_sec_cmd
= fdt
->protect_sec_cmd
?
930 flash_conf_addr(ha
, 0x0300 | fdt
->protect_sec_cmd
):
931 flash_conf_addr(ha
, 0x0336);
936 if (IS_P3P_TYPE(ha
)) {
937 ha
->fdt_block_size
= FLASH_BLK_SIZE_64K
;
940 qla24xx_get_flash_manufacturer(ha
, &man_id
, &flash_id
);
943 ha
->fdt_wrt_disable
= 0x9c;
944 ha
->fdt_erase_cmd
= flash_conf_addr(ha
, 0x03d8);
946 case 0xbf: /* STT flash. */
947 if (flash_id
== 0x8e)
948 ha
->fdt_block_size
= FLASH_BLK_SIZE_64K
;
950 ha
->fdt_block_size
= FLASH_BLK_SIZE_32K
;
952 if (flash_id
== 0x80)
953 ha
->fdt_erase_cmd
= flash_conf_addr(ha
, 0x0352);
955 case 0x13: /* ST M25P80. */
956 ha
->fdt_block_size
= FLASH_BLK_SIZE_64K
;
958 case 0x1f: /* Atmel 26DF081A. */
959 ha
->fdt_block_size
= FLASH_BLK_SIZE_4K
;
960 ha
->fdt_erase_cmd
= flash_conf_addr(ha
, 0x0320);
961 ha
->fdt_unprotect_sec_cmd
= flash_conf_addr(ha
, 0x0339);
962 ha
->fdt_protect_sec_cmd
= flash_conf_addr(ha
, 0x0336);
965 /* Default to 64 kb sector size. */
966 ha
->fdt_block_size
= FLASH_BLK_SIZE_64K
;
970 ql_dbg(ql_dbg_init
, vha
, 0x004d,
971 "FDT[%s]: (0x%x/0x%x) erase=0x%x "
972 "pr=%x wrtd=0x%x blk=0x%x.\n",
974 ha
->fdt_erase_cmd
, ha
->fdt_protect_sec_cmd
,
975 ha
->fdt_wrt_disable
, ha
->fdt_block_size
);
980 qla2xxx_get_idc_param(scsi_qla_host_t
*vha
)
982 #define QLA82XX_IDC_PARAM_ADDR 0x003e885c
984 struct qla_hw_data
*ha
= vha
->hw
;
985 struct req_que
*req
= ha
->req_q_map
[0];
987 if (!(IS_P3P_TYPE(ha
)))
990 wptr
= (uint32_t *)req
->ring
;
991 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)req
->ring
,
992 QLA82XX_IDC_PARAM_ADDR
, 8);
994 if (*wptr
== cpu_to_le32(0xffffffff)) {
995 ha
->fcoe_dev_init_timeout
= QLA82XX_ROM_DEV_INIT_TIMEOUT
;
996 ha
->fcoe_reset_timeout
= QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT
;
998 ha
->fcoe_dev_init_timeout
= le32_to_cpu(*wptr
++);
999 ha
->fcoe_reset_timeout
= le32_to_cpu(*wptr
);
1001 ql_dbg(ql_dbg_init
, vha
, 0x004e,
1002 "fcoe_dev_init_timeout=%d "
1003 "fcoe_reset_timeout=%d.\n", ha
->fcoe_dev_init_timeout
,
1004 ha
->fcoe_reset_timeout
);
1009 qla2xxx_get_flash_info(scsi_qla_host_t
*vha
)
1013 struct qla_hw_data
*ha
= vha
->hw
;
1015 if (!IS_QLA24XX_TYPE(ha
) && !IS_QLA25XX(ha
) &&
1016 !IS_CNA_CAPABLE(ha
) && !IS_QLA2031(ha
) && !IS_QLA27XX(ha
))
1019 ret
= qla2xxx_find_flt_start(vha
, &flt_addr
);
1020 if (ret
!= QLA_SUCCESS
)
1023 qla2xxx_get_flt_info(vha
, flt_addr
);
1024 qla2xxx_get_fdt_info(vha
);
1025 qla2xxx_get_idc_param(vha
);
1031 qla2xxx_flash_npiv_conf(scsi_qla_host_t
*vha
)
1033 #define NPIV_CONFIG_SIZE (16*1024)
1036 uint16_t cnt
, chksum
;
1038 struct qla_npiv_header hdr
;
1039 struct qla_npiv_entry
*entry
;
1040 struct qla_hw_data
*ha
= vha
->hw
;
1042 if (!IS_QLA24XX_TYPE(ha
) && !IS_QLA25XX(ha
) &&
1043 !IS_CNA_CAPABLE(ha
) && !IS_QLA2031(ha
))
1046 if (ha
->flags
.nic_core_reset_hdlr_active
)
1052 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)&hdr
,
1053 ha
->flt_region_npiv_conf
<< 2, sizeof(struct qla_npiv_header
));
1054 if (hdr
.version
== cpu_to_le16(0xffff))
1056 if (hdr
.version
!= cpu_to_le16(1)) {
1057 ql_dbg(ql_dbg_user
, vha
, 0x7090,
1058 "Unsupported NPIV-Config "
1059 "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1060 le16_to_cpu(hdr
.version
), le16_to_cpu(hdr
.entries
),
1061 le16_to_cpu(hdr
.checksum
));
1065 data
= kmalloc(NPIV_CONFIG_SIZE
, GFP_KERNEL
);
1067 ql_log(ql_log_warn
, vha
, 0x7091,
1068 "Unable to allocate memory for data.\n");
1072 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)data
,
1073 ha
->flt_region_npiv_conf
<< 2, NPIV_CONFIG_SIZE
);
1075 cnt
= (sizeof(struct qla_npiv_header
) + le16_to_cpu(hdr
.entries
) *
1076 sizeof(struct qla_npiv_entry
)) >> 1;
1077 for (wptr
= data
, chksum
= 0; cnt
; cnt
--)
1078 chksum
+= le16_to_cpu(*wptr
++);
1080 ql_dbg(ql_dbg_user
, vha
, 0x7092,
1081 "Inconsistent NPIV-Config "
1082 "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1083 le16_to_cpu(hdr
.version
), le16_to_cpu(hdr
.entries
),
1084 le16_to_cpu(hdr
.checksum
));
1088 entry
= data
+ sizeof(struct qla_npiv_header
);
1089 cnt
= le16_to_cpu(hdr
.entries
);
1090 for (i
= 0; cnt
; cnt
--, entry
++, i
++) {
1092 struct fc_vport_identifiers vid
;
1093 struct fc_vport
*vport
;
1095 memcpy(&ha
->npiv_info
[i
], entry
, sizeof(struct qla_npiv_entry
));
1097 flags
= le16_to_cpu(entry
->flags
);
1098 if (flags
== 0xffff)
1100 if ((flags
& BIT_0
) == 0)
1103 memset(&vid
, 0, sizeof(vid
));
1104 vid
.roles
= FC_PORT_ROLE_FCP_INITIATOR
;
1105 vid
.vport_type
= FC_PORTTYPE_NPIV
;
1106 vid
.disable
= false;
1107 vid
.port_name
= wwn_to_u64(entry
->port_name
);
1108 vid
.node_name
= wwn_to_u64(entry
->node_name
);
1110 ql_dbg(ql_dbg_user
, vha
, 0x7093,
1111 "NPIV[%02x]: wwpn=%llx "
1112 "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt
,
1113 (unsigned long long)vid
.port_name
,
1114 (unsigned long long)vid
.node_name
,
1115 le16_to_cpu(entry
->vf_id
),
1116 entry
->q_qos
, entry
->f_qos
);
1118 if (i
< QLA_PRECONFIG_VPORTS
) {
1119 vport
= fc_vport_create(vha
->host
, 0, &vid
);
1121 ql_log(ql_log_warn
, vha
, 0x7094,
1122 "NPIV-Config Failed to create vport [%02x]: "
1123 "wwpn=%llx wwnn=%llx.\n", cnt
,
1124 (unsigned long long)vid
.port_name
,
1125 (unsigned long long)vid
.node_name
);
1133 qla24xx_unprotect_flash(scsi_qla_host_t
*vha
)
1135 struct qla_hw_data
*ha
= vha
->hw
;
1136 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
1138 if (ha
->flags
.fac_supported
)
1139 return qla81xx_fac_do_write_enable(vha
, 1);
1141 /* Enable flash write. */
1142 WRT_REG_DWORD(®
->ctrl_status
,
1143 RD_REG_DWORD(®
->ctrl_status
) | CSRX_FLASH_ENABLE
);
1144 RD_REG_DWORD(®
->ctrl_status
); /* PCI Posting. */
1146 if (!ha
->fdt_wrt_disable
)
1149 /* Disable flash write-protection, first clear SR protection bit */
1150 qla24xx_write_flash_dword(ha
, flash_conf_addr(ha
, 0x101), 0);
1151 /* Then write zero again to clear remaining SR bits.*/
1152 qla24xx_write_flash_dword(ha
, flash_conf_addr(ha
, 0x101), 0);
1158 qla24xx_protect_flash(scsi_qla_host_t
*vha
)
1161 struct qla_hw_data
*ha
= vha
->hw
;
1162 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
1164 if (ha
->flags
.fac_supported
)
1165 return qla81xx_fac_do_write_enable(vha
, 0);
1167 if (!ha
->fdt_wrt_disable
)
1168 goto skip_wrt_protect
;
1170 /* Enable flash write-protection and wait for completion. */
1171 qla24xx_write_flash_dword(ha
, flash_conf_addr(ha
, 0x101),
1172 ha
->fdt_wrt_disable
);
1173 for (cnt
= 300; cnt
&&
1174 qla24xx_read_flash_dword(ha
, flash_conf_addr(ha
, 0x005)) & BIT_0
;
1180 /* Disable flash write. */
1181 WRT_REG_DWORD(®
->ctrl_status
,
1182 RD_REG_DWORD(®
->ctrl_status
) & ~CSRX_FLASH_ENABLE
);
1183 RD_REG_DWORD(®
->ctrl_status
); /* PCI Posting. */
1189 qla24xx_erase_sector(scsi_qla_host_t
*vha
, uint32_t fdata
)
1191 struct qla_hw_data
*ha
= vha
->hw
;
1192 uint32_t start
, finish
;
1194 if (ha
->flags
.fac_supported
) {
1196 finish
= start
+ (ha
->fdt_block_size
>> 2) - 1;
1197 return qla81xx_fac_erase_sector(vha
, flash_data_addr(ha
,
1198 start
), flash_data_addr(ha
, finish
));
1201 return qla24xx_write_flash_dword(ha
, ha
->fdt_erase_cmd
,
1202 (fdata
& 0xff00) | ((fdata
<< 16) & 0xff0000) |
1203 ((fdata
>> 16) & 0xff));
1207 qla24xx_write_flash_data(scsi_qla_host_t
*vha
, uint32_t *dwptr
, uint32_t faddr
,
1212 uint32_t sec_mask
, rest_addr
;
1214 dma_addr_t optrom_dma
;
1215 void *optrom
= NULL
;
1216 struct qla_hw_data
*ha
= vha
->hw
;
1218 /* Prepare burst-capable write on supported ISPs. */
1219 if ((IS_QLA25XX(ha
) || IS_QLA81XX(ha
) || IS_QLA83XX(ha
) ||
1221 !(faddr
& 0xfff) && dwords
> OPTROM_BURST_DWORDS
) {
1222 optrom
= dma_alloc_coherent(&ha
->pdev
->dev
, OPTROM_BURST_SIZE
,
1223 &optrom_dma
, GFP_KERNEL
);
1225 ql_log(ql_log_warn
, vha
, 0x7095,
1226 "Unable to allocate "
1227 "memory for optrom burst write (%x KB).\n",
1228 OPTROM_BURST_SIZE
/ 1024);
1232 rest_addr
= (ha
->fdt_block_size
>> 2) - 1;
1233 sec_mask
= ~rest_addr
;
1235 ret
= qla24xx_unprotect_flash(vha
);
1236 if (ret
!= QLA_SUCCESS
) {
1237 ql_log(ql_log_warn
, vha
, 0x7096,
1238 "Unable to unprotect flash for update.\n");
1242 for (liter
= 0; liter
< dwords
; liter
++, faddr
++, dwptr
++) {
1243 fdata
= (faddr
& sec_mask
) << 2;
1245 /* Are we at the beginning of a sector? */
1246 if ((faddr
& rest_addr
) == 0) {
1247 /* Do sector unprotect. */
1248 if (ha
->fdt_unprotect_sec_cmd
)
1249 qla24xx_write_flash_dword(ha
,
1250 ha
->fdt_unprotect_sec_cmd
,
1251 (fdata
& 0xff00) | ((fdata
<< 16) &
1252 0xff0000) | ((fdata
>> 16) & 0xff));
1253 ret
= qla24xx_erase_sector(vha
, fdata
);
1254 if (ret
!= QLA_SUCCESS
) {
1255 ql_dbg(ql_dbg_user
, vha
, 0x7007,
1256 "Unable to erase erase sector: address=%x.\n",
1262 /* Go with burst-write. */
1263 if (optrom
&& (liter
+ OPTROM_BURST_DWORDS
) <= dwords
) {
1264 /* Copy data to DMA'ble buffer. */
1265 memcpy(optrom
, dwptr
, OPTROM_BURST_SIZE
);
1267 ret
= qla2x00_load_ram(vha
, optrom_dma
,
1268 flash_data_addr(ha
, faddr
),
1269 OPTROM_BURST_DWORDS
);
1270 if (ret
!= QLA_SUCCESS
) {
1271 ql_log(ql_log_warn
, vha
, 0x7097,
1272 "Unable to burst-write optrom segment "
1273 "(%x/%x/%llx).\n", ret
,
1274 flash_data_addr(ha
, faddr
),
1275 (unsigned long long)optrom_dma
);
1276 ql_log(ql_log_warn
, vha
, 0x7098,
1277 "Reverting to slow-write.\n");
1279 dma_free_coherent(&ha
->pdev
->dev
,
1280 OPTROM_BURST_SIZE
, optrom
, optrom_dma
);
1283 liter
+= OPTROM_BURST_DWORDS
- 1;
1284 faddr
+= OPTROM_BURST_DWORDS
- 1;
1285 dwptr
+= OPTROM_BURST_DWORDS
- 1;
1290 ret
= qla24xx_write_flash_dword(ha
,
1291 flash_data_addr(ha
, faddr
), cpu_to_le32(*dwptr
));
1292 if (ret
!= QLA_SUCCESS
) {
1293 ql_dbg(ql_dbg_user
, vha
, 0x7006,
1294 "Unable to program flash address=%x data=%x.\n",
1299 /* Do sector protect. */
1300 if (ha
->fdt_unprotect_sec_cmd
&&
1301 ((faddr
& rest_addr
) == rest_addr
))
1302 qla24xx_write_flash_dword(ha
,
1303 ha
->fdt_protect_sec_cmd
,
1304 (fdata
& 0xff00) | ((fdata
<< 16) &
1305 0xff0000) | ((fdata
>> 16) & 0xff));
1308 ret
= qla24xx_protect_flash(vha
);
1309 if (ret
!= QLA_SUCCESS
)
1310 ql_log(ql_log_warn
, vha
, 0x7099,
1311 "Unable to protect flash after update.\n");
1314 dma_free_coherent(&ha
->pdev
->dev
,
1315 OPTROM_BURST_SIZE
, optrom
, optrom_dma
);
1321 qla2x00_read_nvram_data(scsi_qla_host_t
*vha
, uint8_t *buf
, uint32_t naddr
,
1326 struct qla_hw_data
*ha
= vha
->hw
;
1328 /* Word reads to NVRAM via registers. */
1329 wptr
= (uint16_t *)buf
;
1330 qla2x00_lock_nvram_access(ha
);
1331 for (i
= 0; i
< bytes
>> 1; i
++, naddr
++)
1332 wptr
[i
] = cpu_to_le16(qla2x00_get_nvram_word(ha
,
1334 qla2x00_unlock_nvram_access(ha
);
1340 qla24xx_read_nvram_data(scsi_qla_host_t
*vha
, uint8_t *buf
, uint32_t naddr
,
1345 struct qla_hw_data
*ha
= vha
->hw
;
1347 if (IS_P3P_TYPE(ha
))
1350 /* Dword reads to flash. */
1351 dwptr
= (uint32_t *)buf
;
1352 for (i
= 0; i
< bytes
>> 2; i
++, naddr
++)
1353 dwptr
[i
] = cpu_to_le32(qla24xx_read_flash_dword(ha
,
1354 nvram_data_addr(ha
, naddr
)));
1360 qla2x00_write_nvram_data(scsi_qla_host_t
*vha
, uint8_t *buf
, uint32_t naddr
,
1366 unsigned long flags
;
1367 struct qla_hw_data
*ha
= vha
->hw
;
1371 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
1372 qla2x00_lock_nvram_access(ha
);
1374 /* Disable NVRAM write-protection. */
1375 stat
= qla2x00_clear_nvram_protection(ha
);
1377 wptr
= (uint16_t *)buf
;
1378 for (i
= 0; i
< bytes
>> 1; i
++, naddr
++) {
1379 qla2x00_write_nvram_word(ha
, naddr
,
1380 cpu_to_le16(*wptr
));
1384 /* Enable NVRAM write-protection. */
1385 qla2x00_set_nvram_protection(ha
, stat
);
1387 qla2x00_unlock_nvram_access(ha
);
1388 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
1394 qla24xx_write_nvram_data(scsi_qla_host_t
*vha
, uint8_t *buf
, uint32_t naddr
,
1400 struct qla_hw_data
*ha
= vha
->hw
;
1401 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
1405 if (IS_P3P_TYPE(ha
))
1408 /* Enable flash write. */
1409 WRT_REG_DWORD(®
->ctrl_status
,
1410 RD_REG_DWORD(®
->ctrl_status
) | CSRX_FLASH_ENABLE
);
1411 RD_REG_DWORD(®
->ctrl_status
); /* PCI Posting. */
1413 /* Disable NVRAM write-protection. */
1414 qla24xx_write_flash_dword(ha
, nvram_conf_addr(ha
, 0x101), 0);
1415 qla24xx_write_flash_dword(ha
, nvram_conf_addr(ha
, 0x101), 0);
1417 /* Dword writes to flash. */
1418 dwptr
= (uint32_t *)buf
;
1419 for (i
= 0; i
< bytes
>> 2; i
++, naddr
++, dwptr
++) {
1420 ret
= qla24xx_write_flash_dword(ha
,
1421 nvram_data_addr(ha
, naddr
), cpu_to_le32(*dwptr
));
1422 if (ret
!= QLA_SUCCESS
) {
1423 ql_dbg(ql_dbg_user
, vha
, 0x709a,
1424 "Unable to program nvram address=%x data=%x.\n",
1430 /* Enable NVRAM write-protection. */
1431 qla24xx_write_flash_dword(ha
, nvram_conf_addr(ha
, 0x101), 0x8c);
1433 /* Disable flash write. */
1434 WRT_REG_DWORD(®
->ctrl_status
,
1435 RD_REG_DWORD(®
->ctrl_status
) & ~CSRX_FLASH_ENABLE
);
1436 RD_REG_DWORD(®
->ctrl_status
); /* PCI Posting. */
1442 qla25xx_read_nvram_data(scsi_qla_host_t
*vha
, uint8_t *buf
, uint32_t naddr
,
1447 struct qla_hw_data
*ha
= vha
->hw
;
1449 /* Dword reads to flash. */
1450 dwptr
= (uint32_t *)buf
;
1451 for (i
= 0; i
< bytes
>> 2; i
++, naddr
++)
1452 dwptr
[i
] = cpu_to_le32(qla24xx_read_flash_dword(ha
,
1453 flash_data_addr(ha
, ha
->flt_region_vpd_nvram
| naddr
)));
1459 qla25xx_write_nvram_data(scsi_qla_host_t
*vha
, uint8_t *buf
, uint32_t naddr
,
1462 struct qla_hw_data
*ha
= vha
->hw
;
1463 #define RMW_BUFFER_SIZE (64 * 1024)
1466 dbuf
= vmalloc(RMW_BUFFER_SIZE
);
1468 return QLA_MEMORY_ALLOC_FAILED
;
1469 ha
->isp_ops
->read_optrom(vha
, dbuf
, ha
->flt_region_vpd_nvram
<< 2,
1471 memcpy(dbuf
+ (naddr
<< 2), buf
, bytes
);
1472 ha
->isp_ops
->write_optrom(vha
, dbuf
, ha
->flt_region_vpd_nvram
<< 2,
1480 qla2x00_flip_colors(struct qla_hw_data
*ha
, uint16_t *pflags
)
1482 if (IS_QLA2322(ha
)) {
1483 /* Flip all colors. */
1484 if (ha
->beacon_color_state
== QLA_LED_ALL_ON
) {
1486 ha
->beacon_color_state
= 0;
1487 *pflags
= GPIO_LED_ALL_OFF
;
1490 ha
->beacon_color_state
= QLA_LED_ALL_ON
;
1491 *pflags
= GPIO_LED_RGA_ON
;
1494 /* Flip green led only. */
1495 if (ha
->beacon_color_state
== QLA_LED_GRN_ON
) {
1497 ha
->beacon_color_state
= 0;
1498 *pflags
= GPIO_LED_GREEN_OFF_AMBER_OFF
;
1501 ha
->beacon_color_state
= QLA_LED_GRN_ON
;
1502 *pflags
= GPIO_LED_GREEN_ON_AMBER_OFF
;
1507 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1510 qla2x00_beacon_blink(struct scsi_qla_host
*vha
)
1512 uint16_t gpio_enable
;
1514 uint16_t led_color
= 0;
1515 unsigned long flags
;
1516 struct qla_hw_data
*ha
= vha
->hw
;
1517 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
1519 if (IS_P3P_TYPE(ha
))
1522 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
1524 /* Save the Original GPIOE. */
1525 if (ha
->pio_address
) {
1526 gpio_enable
= RD_REG_WORD_PIO(PIO_REG(ha
, gpioe
));
1527 gpio_data
= RD_REG_WORD_PIO(PIO_REG(ha
, gpiod
));
1529 gpio_enable
= RD_REG_WORD(®
->gpioe
);
1530 gpio_data
= RD_REG_WORD(®
->gpiod
);
1533 /* Set the modified gpio_enable values */
1534 gpio_enable
|= GPIO_LED_MASK
;
1536 if (ha
->pio_address
) {
1537 WRT_REG_WORD_PIO(PIO_REG(ha
, gpioe
), gpio_enable
);
1539 WRT_REG_WORD(®
->gpioe
, gpio_enable
);
1540 RD_REG_WORD(®
->gpioe
);
1543 qla2x00_flip_colors(ha
, &led_color
);
1545 /* Clear out any previously set LED color. */
1546 gpio_data
&= ~GPIO_LED_MASK
;
1548 /* Set the new input LED color to GPIOD. */
1549 gpio_data
|= led_color
;
1551 /* Set the modified gpio_data values */
1552 if (ha
->pio_address
) {
1553 WRT_REG_WORD_PIO(PIO_REG(ha
, gpiod
), gpio_data
);
1555 WRT_REG_WORD(®
->gpiod
, gpio_data
);
1556 RD_REG_WORD(®
->gpiod
);
1559 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
1563 qla2x00_beacon_on(struct scsi_qla_host
*vha
)
1565 uint16_t gpio_enable
;
1567 unsigned long flags
;
1568 struct qla_hw_data
*ha
= vha
->hw
;
1569 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
1571 ha
->fw_options
[1] &= ~FO1_SET_EMPHASIS_SWING
;
1572 ha
->fw_options
[1] |= FO1_DISABLE_GPIO6_7
;
1574 if (qla2x00_set_fw_options(vha
, ha
->fw_options
) != QLA_SUCCESS
) {
1575 ql_log(ql_log_warn
, vha
, 0x709b,
1576 "Unable to update fw options (beacon on).\n");
1577 return QLA_FUNCTION_FAILED
;
1580 /* Turn off LEDs. */
1581 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
1582 if (ha
->pio_address
) {
1583 gpio_enable
= RD_REG_WORD_PIO(PIO_REG(ha
, gpioe
));
1584 gpio_data
= RD_REG_WORD_PIO(PIO_REG(ha
, gpiod
));
1586 gpio_enable
= RD_REG_WORD(®
->gpioe
);
1587 gpio_data
= RD_REG_WORD(®
->gpiod
);
1589 gpio_enable
|= GPIO_LED_MASK
;
1591 /* Set the modified gpio_enable values. */
1592 if (ha
->pio_address
) {
1593 WRT_REG_WORD_PIO(PIO_REG(ha
, gpioe
), gpio_enable
);
1595 WRT_REG_WORD(®
->gpioe
, gpio_enable
);
1596 RD_REG_WORD(®
->gpioe
);
1599 /* Clear out previously set LED colour. */
1600 gpio_data
&= ~GPIO_LED_MASK
;
1601 if (ha
->pio_address
) {
1602 WRT_REG_WORD_PIO(PIO_REG(ha
, gpiod
), gpio_data
);
1604 WRT_REG_WORD(®
->gpiod
, gpio_data
);
1605 RD_REG_WORD(®
->gpiod
);
1607 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
1610 * Let the per HBA timer kick off the blinking process based on
1611 * the following flags. No need to do anything else now.
1613 ha
->beacon_blink_led
= 1;
1614 ha
->beacon_color_state
= 0;
1620 qla2x00_beacon_off(struct scsi_qla_host
*vha
)
1622 int rval
= QLA_SUCCESS
;
1623 struct qla_hw_data
*ha
= vha
->hw
;
1625 ha
->beacon_blink_led
= 0;
1627 /* Set the on flag so when it gets flipped it will be off. */
1629 ha
->beacon_color_state
= QLA_LED_ALL_ON
;
1631 ha
->beacon_color_state
= QLA_LED_GRN_ON
;
1633 ha
->isp_ops
->beacon_blink(vha
); /* This turns green LED off */
1635 ha
->fw_options
[1] &= ~FO1_SET_EMPHASIS_SWING
;
1636 ha
->fw_options
[1] &= ~FO1_DISABLE_GPIO6_7
;
1638 rval
= qla2x00_set_fw_options(vha
, ha
->fw_options
);
1639 if (rval
!= QLA_SUCCESS
)
1640 ql_log(ql_log_warn
, vha
, 0x709c,
1641 "Unable to update fw options (beacon off).\n");
1647 qla24xx_flip_colors(struct qla_hw_data
*ha
, uint16_t *pflags
)
1649 /* Flip all colors. */
1650 if (ha
->beacon_color_state
== QLA_LED_ALL_ON
) {
1652 ha
->beacon_color_state
= 0;
1656 ha
->beacon_color_state
= QLA_LED_ALL_ON
;
1657 *pflags
= GPDX_LED_YELLOW_ON
| GPDX_LED_AMBER_ON
;
1662 qla24xx_beacon_blink(struct scsi_qla_host
*vha
)
1664 uint16_t led_color
= 0;
1666 unsigned long flags
;
1667 struct qla_hw_data
*ha
= vha
->hw
;
1668 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
1670 /* Save the Original GPIOD. */
1671 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
1672 gpio_data
= RD_REG_DWORD(®
->gpiod
);
1674 /* Enable the gpio_data reg for update. */
1675 gpio_data
|= GPDX_LED_UPDATE_MASK
;
1677 WRT_REG_DWORD(®
->gpiod
, gpio_data
);
1678 gpio_data
= RD_REG_DWORD(®
->gpiod
);
1680 /* Set the color bits. */
1681 qla24xx_flip_colors(ha
, &led_color
);
1683 /* Clear out any previously set LED color. */
1684 gpio_data
&= ~GPDX_LED_COLOR_MASK
;
1686 /* Set the new input LED color to GPIOD. */
1687 gpio_data
|= led_color
;
1689 /* Set the modified gpio_data values. */
1690 WRT_REG_DWORD(®
->gpiod
, gpio_data
);
1691 gpio_data
= RD_REG_DWORD(®
->gpiod
);
1692 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
1696 qla83xx_select_led_port(struct qla_hw_data
*ha
)
1698 uint32_t led_select_value
= 0;
1700 if (!IS_QLA83XX(ha
) && !IS_QLA27XX(ha
))
1703 if (ha
->port_no
== 0)
1704 led_select_value
= QLA83XX_LED_PORT0
;
1706 led_select_value
= QLA83XX_LED_PORT1
;
1709 return led_select_value
;
1713 qla83xx_beacon_blink(struct scsi_qla_host
*vha
)
1715 uint32_t led_select_value
;
1716 struct qla_hw_data
*ha
= vha
->hw
;
1717 uint16_t led_cfg
[6];
1718 uint16_t orig_led_cfg
[6];
1719 uint32_t led_10_value
, led_43_value
;
1721 if (!IS_QLA83XX(ha
) && !IS_QLA81XX(ha
) && !IS_QLA27XX(ha
))
1724 if (!ha
->beacon_blink_led
)
1727 if (IS_QLA27XX(ha
)) {
1728 qla2x00_write_ram_word(vha
, 0x1003, 0x40000230);
1729 qla2x00_write_ram_word(vha
, 0x1004, 0x40000230);
1730 } else if (IS_QLA2031(ha
)) {
1731 led_select_value
= qla83xx_select_led_port(ha
);
1733 qla83xx_wr_reg(vha
, led_select_value
, 0x40000230);
1734 qla83xx_wr_reg(vha
, led_select_value
+ 4, 0x40000230);
1735 } else if (IS_QLA8031(ha
)) {
1736 led_select_value
= qla83xx_select_led_port(ha
);
1738 qla83xx_rd_reg(vha
, led_select_value
, &led_10_value
);
1739 qla83xx_rd_reg(vha
, led_select_value
+ 0x10, &led_43_value
);
1740 qla83xx_wr_reg(vha
, led_select_value
, 0x01f44000);
1742 qla83xx_wr_reg(vha
, led_select_value
, 0x400001f4);
1744 qla83xx_wr_reg(vha
, led_select_value
, led_10_value
);
1745 qla83xx_wr_reg(vha
, led_select_value
+ 0x10, led_43_value
);
1746 } else if (IS_QLA81XX(ha
)) {
1750 rval
= qla81xx_get_led_config(vha
, orig_led_cfg
);
1752 if (rval
== QLA_SUCCESS
) {
1753 if (IS_QLA81XX(ha
)) {
1754 led_cfg
[0] = 0x4000;
1755 led_cfg
[1] = 0x2000;
1761 led_cfg
[0] = 0x4000;
1762 led_cfg
[1] = 0x4000;
1763 led_cfg
[2] = 0x4000;
1764 led_cfg
[3] = 0x2000;
1766 led_cfg
[5] = 0x2000;
1768 rval
= qla81xx_set_led_config(vha
, led_cfg
);
1770 if (IS_QLA81XX(ha
)) {
1771 led_cfg
[0] = 0x4000;
1772 led_cfg
[1] = 0x2000;
1775 led_cfg
[0] = 0x4000;
1776 led_cfg
[1] = 0x2000;
1777 led_cfg
[2] = 0x4000;
1778 led_cfg
[3] = 0x4000;
1780 led_cfg
[5] = 0x2000;
1782 rval
= qla81xx_set_led_config(vha
, led_cfg
);
1784 /* On exit, restore original (presumes no status change) */
1785 qla81xx_set_led_config(vha
, orig_led_cfg
);
1790 qla24xx_beacon_on(struct scsi_qla_host
*vha
)
1793 unsigned long flags
;
1794 struct qla_hw_data
*ha
= vha
->hw
;
1795 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
1797 if (IS_P3P_TYPE(ha
))
1800 if (IS_QLA8031(ha
) || IS_QLA81XX(ha
))
1801 goto skip_gpio
; /* let blink handle it */
1803 if (ha
->beacon_blink_led
== 0) {
1804 /* Enable firmware for update */
1805 ha
->fw_options
[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL
;
1807 if (qla2x00_set_fw_options(vha
, ha
->fw_options
) != QLA_SUCCESS
)
1808 return QLA_FUNCTION_FAILED
;
1810 if (qla2x00_get_fw_options(vha
, ha
->fw_options
) !=
1812 ql_log(ql_log_warn
, vha
, 0x7009,
1813 "Unable to update fw options (beacon on).\n");
1814 return QLA_FUNCTION_FAILED
;
1817 if (IS_QLA2031(ha
) || IS_QLA27XX(ha
))
1820 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
1821 gpio_data
= RD_REG_DWORD(®
->gpiod
);
1823 /* Enable the gpio_data reg for update. */
1824 gpio_data
|= GPDX_LED_UPDATE_MASK
;
1825 WRT_REG_DWORD(®
->gpiod
, gpio_data
);
1826 RD_REG_DWORD(®
->gpiod
);
1828 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
1831 /* So all colors blink together. */
1832 ha
->beacon_color_state
= 0;
1835 /* Let the per HBA timer kick off the blinking process. */
1836 ha
->beacon_blink_led
= 1;
1842 qla24xx_beacon_off(struct scsi_qla_host
*vha
)
1845 unsigned long flags
;
1846 struct qla_hw_data
*ha
= vha
->hw
;
1847 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
1849 if (IS_P3P_TYPE(ha
))
1852 ha
->beacon_blink_led
= 0;
1854 if (IS_QLA2031(ha
) || IS_QLA27XX(ha
))
1855 goto set_fw_options
;
1857 if (IS_QLA8031(ha
) || IS_QLA81XX(ha
))
1860 ha
->beacon_color_state
= QLA_LED_ALL_ON
;
1862 ha
->isp_ops
->beacon_blink(vha
); /* Will flip to all off. */
1864 /* Give control back to firmware. */
1865 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
1866 gpio_data
= RD_REG_DWORD(®
->gpiod
);
1868 /* Disable the gpio_data reg for update. */
1869 gpio_data
&= ~GPDX_LED_UPDATE_MASK
;
1870 WRT_REG_DWORD(®
->gpiod
, gpio_data
);
1871 RD_REG_DWORD(®
->gpiod
);
1872 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
1875 ha
->fw_options
[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL
;
1877 if (qla2x00_set_fw_options(vha
, ha
->fw_options
) != QLA_SUCCESS
) {
1878 ql_log(ql_log_warn
, vha
, 0x704d,
1879 "Unable to update fw options (beacon on).\n");
1880 return QLA_FUNCTION_FAILED
;
1883 if (qla2x00_get_fw_options(vha
, ha
->fw_options
) != QLA_SUCCESS
) {
1884 ql_log(ql_log_warn
, vha
, 0x704e,
1885 "Unable to update fw options (beacon on).\n");
1886 return QLA_FUNCTION_FAILED
;
1894 * Flash support routines
1898 * qla2x00_flash_enable() - Setup flash for reading and writing.
1902 qla2x00_flash_enable(struct qla_hw_data
*ha
)
1905 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
1907 data
= RD_REG_WORD(®
->ctrl_status
);
1908 data
|= CSR_FLASH_ENABLE
;
1909 WRT_REG_WORD(®
->ctrl_status
, data
);
1910 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1914 * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1918 qla2x00_flash_disable(struct qla_hw_data
*ha
)
1921 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
1923 data
= RD_REG_WORD(®
->ctrl_status
);
1924 data
&= ~(CSR_FLASH_ENABLE
);
1925 WRT_REG_WORD(®
->ctrl_status
, data
);
1926 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1930 * qla2x00_read_flash_byte() - Reads a byte from flash
1932 * @addr: Address in flash to read
1934 * A word is read from the chip, but, only the lower byte is valid.
1936 * Returns the byte read from flash @addr.
1939 qla2x00_read_flash_byte(struct qla_hw_data
*ha
, uint32_t addr
)
1942 uint16_t bank_select
;
1943 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
1945 bank_select
= RD_REG_WORD(®
->ctrl_status
);
1947 if (IS_QLA2322(ha
) || IS_QLA6322(ha
)) {
1948 /* Specify 64K address range: */
1949 /* clear out Module Select and Flash Address bits [19:16]. */
1950 bank_select
&= ~0xf8;
1951 bank_select
|= addr
>> 12 & 0xf0;
1952 bank_select
|= CSR_FLASH_64K_BANK
;
1953 WRT_REG_WORD(®
->ctrl_status
, bank_select
);
1954 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1956 WRT_REG_WORD(®
->flash_address
, (uint16_t)addr
);
1957 data
= RD_REG_WORD(®
->flash_data
);
1959 return (uint8_t)data
;
1962 /* Setup bit 16 of flash address. */
1963 if ((addr
& BIT_16
) && ((bank_select
& CSR_FLASH_64K_BANK
) == 0)) {
1964 bank_select
|= CSR_FLASH_64K_BANK
;
1965 WRT_REG_WORD(®
->ctrl_status
, bank_select
);
1966 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1967 } else if (((addr
& BIT_16
) == 0) &&
1968 (bank_select
& CSR_FLASH_64K_BANK
)) {
1969 bank_select
&= ~(CSR_FLASH_64K_BANK
);
1970 WRT_REG_WORD(®
->ctrl_status
, bank_select
);
1971 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1974 /* Always perform IO mapped accesses to the FLASH registers. */
1975 if (ha
->pio_address
) {
1978 WRT_REG_WORD_PIO(PIO_REG(ha
, flash_address
), (uint16_t)addr
);
1980 data
= RD_REG_WORD_PIO(PIO_REG(ha
, flash_data
));
1983 data2
= RD_REG_WORD_PIO(PIO_REG(ha
, flash_data
));
1984 } while (data
!= data2
);
1986 WRT_REG_WORD(®
->flash_address
, (uint16_t)addr
);
1987 data
= qla2x00_debounce_register(®
->flash_data
);
1990 return (uint8_t)data
;
1994 * qla2x00_write_flash_byte() - Write a byte to flash
1996 * @addr: Address in flash to write
1997 * @data: Data to write
2000 qla2x00_write_flash_byte(struct qla_hw_data
*ha
, uint32_t addr
, uint8_t data
)
2002 uint16_t bank_select
;
2003 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
2005 bank_select
= RD_REG_WORD(®
->ctrl_status
);
2006 if (IS_QLA2322(ha
) || IS_QLA6322(ha
)) {
2007 /* Specify 64K address range: */
2008 /* clear out Module Select and Flash Address bits [19:16]. */
2009 bank_select
&= ~0xf8;
2010 bank_select
|= addr
>> 12 & 0xf0;
2011 bank_select
|= CSR_FLASH_64K_BANK
;
2012 WRT_REG_WORD(®
->ctrl_status
, bank_select
);
2013 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
2015 WRT_REG_WORD(®
->flash_address
, (uint16_t)addr
);
2016 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
2017 WRT_REG_WORD(®
->flash_data
, (uint16_t)data
);
2018 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
2023 /* Setup bit 16 of flash address. */
2024 if ((addr
& BIT_16
) && ((bank_select
& CSR_FLASH_64K_BANK
) == 0)) {
2025 bank_select
|= CSR_FLASH_64K_BANK
;
2026 WRT_REG_WORD(®
->ctrl_status
, bank_select
);
2027 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
2028 } else if (((addr
& BIT_16
) == 0) &&
2029 (bank_select
& CSR_FLASH_64K_BANK
)) {
2030 bank_select
&= ~(CSR_FLASH_64K_BANK
);
2031 WRT_REG_WORD(®
->ctrl_status
, bank_select
);
2032 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
2035 /* Always perform IO mapped accesses to the FLASH registers. */
2036 if (ha
->pio_address
) {
2037 WRT_REG_WORD_PIO(PIO_REG(ha
, flash_address
), (uint16_t)addr
);
2038 WRT_REG_WORD_PIO(PIO_REG(ha
, flash_data
), (uint16_t)data
);
2040 WRT_REG_WORD(®
->flash_address
, (uint16_t)addr
);
2041 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
2042 WRT_REG_WORD(®
->flash_data
, (uint16_t)data
);
2043 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
2048 * qla2x00_poll_flash() - Polls flash for completion.
2050 * @addr: Address in flash to poll
2051 * @poll_data: Data to be polled
2052 * @man_id: Flash manufacturer ID
2053 * @flash_id: Flash ID
2055 * This function polls the device until bit 7 of what is read matches data
2056 * bit 7 or until data bit 5 becomes a 1. If that hapens, the flash ROM timed
2057 * out (a fatal error). The flash book recommeds reading bit 7 again after
2058 * reading bit 5 as a 1.
2060 * Returns 0 on success, else non-zero.
2063 qla2x00_poll_flash(struct qla_hw_data
*ha
, uint32_t addr
, uint8_t poll_data
,
2064 uint8_t man_id
, uint8_t flash_id
)
2072 /* Wait for 30 seconds for command to finish. */
2074 for (cnt
= 3000000; cnt
; cnt
--) {
2075 flash_data
= qla2x00_read_flash_byte(ha
, addr
);
2076 if ((flash_data
& BIT_7
) == poll_data
) {
2081 if (man_id
!= 0x40 && man_id
!= 0xda) {
2082 if ((flash_data
& BIT_5
) && cnt
> 2)
2093 * qla2x00_program_flash_address() - Programs a flash address
2095 * @addr: Address in flash to program
2096 * @data: Data to be written in flash
2097 * @man_id: Flash manufacturer ID
2098 * @flash_id: Flash ID
2100 * Returns 0 on success, else non-zero.
2103 qla2x00_program_flash_address(struct qla_hw_data
*ha
, uint32_t addr
,
2104 uint8_t data
, uint8_t man_id
, uint8_t flash_id
)
2106 /* Write Program Command Sequence. */
2107 if (IS_OEM_001(ha
)) {
2108 qla2x00_write_flash_byte(ha
, 0xaaa, 0xaa);
2109 qla2x00_write_flash_byte(ha
, 0x555, 0x55);
2110 qla2x00_write_flash_byte(ha
, 0xaaa, 0xa0);
2111 qla2x00_write_flash_byte(ha
, addr
, data
);
2113 if (man_id
== 0xda && flash_id
== 0xc1) {
2114 qla2x00_write_flash_byte(ha
, addr
, data
);
2118 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
2119 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
2120 qla2x00_write_flash_byte(ha
, 0x5555, 0xa0);
2121 qla2x00_write_flash_byte(ha
, addr
, data
);
2127 /* Wait for write to complete. */
2128 return qla2x00_poll_flash(ha
, addr
, data
, man_id
, flash_id
);
2132 * qla2x00_erase_flash() - Erase the flash.
2134 * @man_id: Flash manufacturer ID
2135 * @flash_id: Flash ID
2137 * Returns 0 on success, else non-zero.
2140 qla2x00_erase_flash(struct qla_hw_data
*ha
, uint8_t man_id
, uint8_t flash_id
)
2142 /* Individual Sector Erase Command Sequence */
2143 if (IS_OEM_001(ha
)) {
2144 qla2x00_write_flash_byte(ha
, 0xaaa, 0xaa);
2145 qla2x00_write_flash_byte(ha
, 0x555, 0x55);
2146 qla2x00_write_flash_byte(ha
, 0xaaa, 0x80);
2147 qla2x00_write_flash_byte(ha
, 0xaaa, 0xaa);
2148 qla2x00_write_flash_byte(ha
, 0x555, 0x55);
2149 qla2x00_write_flash_byte(ha
, 0xaaa, 0x10);
2151 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
2152 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
2153 qla2x00_write_flash_byte(ha
, 0x5555, 0x80);
2154 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
2155 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
2156 qla2x00_write_flash_byte(ha
, 0x5555, 0x10);
2161 /* Wait for erase to complete. */
2162 return qla2x00_poll_flash(ha
, 0x00, 0x80, man_id
, flash_id
);
2166 * qla2x00_erase_flash_sector() - Erase a flash sector.
2168 * @addr: Flash sector to erase
2169 * @sec_mask: Sector address mask
2170 * @man_id: Flash manufacturer ID
2171 * @flash_id: Flash ID
2173 * Returns 0 on success, else non-zero.
2176 qla2x00_erase_flash_sector(struct qla_hw_data
*ha
, uint32_t addr
,
2177 uint32_t sec_mask
, uint8_t man_id
, uint8_t flash_id
)
2179 /* Individual Sector Erase Command Sequence */
2180 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
2181 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
2182 qla2x00_write_flash_byte(ha
, 0x5555, 0x80);
2183 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
2184 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
2185 if (man_id
== 0x1f && flash_id
== 0x13)
2186 qla2x00_write_flash_byte(ha
, addr
& sec_mask
, 0x10);
2188 qla2x00_write_flash_byte(ha
, addr
& sec_mask
, 0x30);
2192 /* Wait for erase to complete. */
2193 return qla2x00_poll_flash(ha
, addr
, 0x80, man_id
, flash_id
);
2197 * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
2198 * @man_id: Flash manufacturer ID
2199 * @flash_id: Flash ID
2202 qla2x00_get_flash_manufacturer(struct qla_hw_data
*ha
, uint8_t *man_id
,
2205 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
2206 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
2207 qla2x00_write_flash_byte(ha
, 0x5555, 0x90);
2208 *man_id
= qla2x00_read_flash_byte(ha
, 0x0000);
2209 *flash_id
= qla2x00_read_flash_byte(ha
, 0x0001);
2210 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
2211 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
2212 qla2x00_write_flash_byte(ha
, 0x5555, 0xf0);
2216 qla2x00_read_flash_data(struct qla_hw_data
*ha
, uint8_t *tmp_buf
,
2217 uint32_t saddr
, uint32_t length
)
2219 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
2220 uint32_t midpoint
, ilength
;
2223 midpoint
= length
/ 2;
2225 WRT_REG_WORD(®
->nvram
, 0);
2226 RD_REG_WORD(®
->nvram
);
2227 for (ilength
= 0; ilength
< length
; saddr
++, ilength
++, tmp_buf
++) {
2228 if (ilength
== midpoint
) {
2229 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
2230 RD_REG_WORD(®
->nvram
);
2232 data
= qla2x00_read_flash_byte(ha
, saddr
);
2241 qla2x00_suspend_hba(struct scsi_qla_host
*vha
)
2244 unsigned long flags
;
2245 struct qla_hw_data
*ha
= vha
->hw
;
2246 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
2249 scsi_block_requests(vha
->host
);
2250 ha
->isp_ops
->disable_intrs(ha
);
2251 set_bit(MBX_UPDATE_FLASH_ACTIVE
, &ha
->mbx_cmd_flags
);
2254 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
2255 WRT_REG_WORD(®
->hccr
, HCCR_PAUSE_RISC
);
2256 RD_REG_WORD(®
->hccr
);
2257 if (IS_QLA2100(ha
) || IS_QLA2200(ha
) || IS_QLA2300(ha
)) {
2258 for (cnt
= 0; cnt
< 30000; cnt
++) {
2259 if ((RD_REG_WORD(®
->hccr
) & HCCR_RISC_PAUSE
) != 0)
2266 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
2270 qla2x00_resume_hba(struct scsi_qla_host
*vha
)
2272 struct qla_hw_data
*ha
= vha
->hw
;
2275 clear_bit(MBX_UPDATE_FLASH_ACTIVE
, &ha
->mbx_cmd_flags
);
2276 set_bit(ISP_ABORT_NEEDED
, &vha
->dpc_flags
);
2277 qla2xxx_wake_dpc(vha
);
2278 qla2x00_wait_for_chip_reset(vha
);
2279 scsi_unblock_requests(vha
->host
);
2283 qla2x00_read_optrom_data(struct scsi_qla_host
*vha
, uint8_t *buf
,
2284 uint32_t offset
, uint32_t length
)
2286 uint32_t addr
, midpoint
;
2288 struct qla_hw_data
*ha
= vha
->hw
;
2289 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
2292 qla2x00_suspend_hba(vha
);
2295 midpoint
= ha
->optrom_size
/ 2;
2297 qla2x00_flash_enable(ha
);
2298 WRT_REG_WORD(®
->nvram
, 0);
2299 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
2300 for (addr
= offset
, data
= buf
; addr
< length
; addr
++, data
++) {
2301 if (addr
== midpoint
) {
2302 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
2303 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
2306 *data
= qla2x00_read_flash_byte(ha
, addr
);
2308 qla2x00_flash_disable(ha
);
2311 qla2x00_resume_hba(vha
);
2317 qla2x00_write_optrom_data(struct scsi_qla_host
*vha
, uint8_t *buf
,
2318 uint32_t offset
, uint32_t length
)
2322 uint8_t man_id
, flash_id
, sec_number
, data
;
2324 uint32_t addr
, liter
, sec_mask
, rest_addr
;
2325 struct qla_hw_data
*ha
= vha
->hw
;
2326 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
2329 qla2x00_suspend_hba(vha
);
2334 /* Reset ISP chip. */
2335 WRT_REG_WORD(®
->ctrl_status
, CSR_ISP_SOFT_RESET
);
2336 pci_read_config_word(ha
->pdev
, PCI_COMMAND
, &wd
);
2338 /* Go with write. */
2339 qla2x00_flash_enable(ha
);
2340 do { /* Loop once to provide quick error exit */
2341 /* Structure of flash memory based on manufacturer */
2342 if (IS_OEM_001(ha
)) {
2343 /* OEM variant with special flash part. */
2344 man_id
= flash_id
= 0;
2349 qla2x00_get_flash_manufacturer(ha
, &man_id
, &flash_id
);
2351 case 0x20: /* ST flash. */
2352 if (flash_id
== 0xd2 || flash_id
== 0xe3) {
2354 * ST m29w008at part - 64kb sector size with
2355 * 32kb,8kb,8kb,16kb sectors at memory address
2363 * ST m29w010b part - 16kb sector size
2364 * Default to 16kb sectors
2369 case 0x40: /* Mostel flash. */
2370 /* Mostel v29c51001 part - 512 byte sector size. */
2374 case 0xbf: /* SST flash. */
2375 /* SST39sf10 part - 4kb sector size. */
2379 case 0xda: /* Winbond flash. */
2380 /* Winbond W29EE011 part - 256 byte sector size. */
2384 case 0xc2: /* Macronix flash. */
2385 /* 64k sector size. */
2386 if (flash_id
== 0x38 || flash_id
== 0x4f) {
2391 /* Fall through... */
2393 case 0x1f: /* Atmel flash. */
2394 /* 512k sector size. */
2395 if (flash_id
== 0x13) {
2396 rest_addr
= 0x7fffffff;
2397 sec_mask
= 0x80000000;
2400 /* Fall through... */
2402 case 0x01: /* AMD flash. */
2403 if (flash_id
== 0x38 || flash_id
== 0x40 ||
2405 /* Am29LV081 part - 64kb sector size. */
2406 /* Am29LV002BT part - 64kb sector size. */
2410 } else if (flash_id
== 0x3e) {
2412 * Am29LV008b part - 64kb sector size with
2413 * 32kb,8kb,8kb,16kb sector at memory address
2419 } else if (flash_id
== 0x20 || flash_id
== 0x6e) {
2421 * Am29LV010 part or AM29f010 - 16kb sector
2427 } else if (flash_id
== 0x6d) {
2428 /* Am29LV001 part - 8kb sector size. */
2434 /* Default to 16 kb sector size. */
2441 if (IS_QLA2322(ha
) || IS_QLA6322(ha
)) {
2442 if (qla2x00_erase_flash(ha
, man_id
, flash_id
)) {
2443 rval
= QLA_FUNCTION_FAILED
;
2448 for (addr
= offset
, liter
= 0; liter
< length
; liter
++,
2451 /* Are we at the beginning of a sector? */
2452 if ((addr
& rest_addr
) == 0) {
2453 if (IS_QLA2322(ha
) || IS_QLA6322(ha
)) {
2454 if (addr
>= 0x10000UL
) {
2455 if (((addr
>> 12) & 0xf0) &&
2457 flash_id
== 0x3e) ||
2459 flash_id
== 0xd2))) {
2461 if (sec_number
== 1) {
2482 } else if (addr
== ha
->optrom_size
/ 2) {
2483 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
2484 RD_REG_WORD(®
->nvram
);
2487 if (flash_id
== 0xda && man_id
== 0xc1) {
2488 qla2x00_write_flash_byte(ha
, 0x5555,
2490 qla2x00_write_flash_byte(ha
, 0x2aaa,
2492 qla2x00_write_flash_byte(ha
, 0x5555,
2494 } else if (!IS_QLA2322(ha
) && !IS_QLA6322(ha
)) {
2496 if (qla2x00_erase_flash_sector(ha
,
2497 addr
, sec_mask
, man_id
,
2499 rval
= QLA_FUNCTION_FAILED
;
2502 if (man_id
== 0x01 && flash_id
== 0x6d)
2507 if (man_id
== 0x01 && flash_id
== 0x6d) {
2508 if (sec_number
== 1 &&
2509 addr
== (rest_addr
- 1)) {
2512 } else if (sec_number
== 3 && (addr
& 0x7ffe)) {
2518 if (qla2x00_program_flash_address(ha
, addr
, data
,
2519 man_id
, flash_id
)) {
2520 rval
= QLA_FUNCTION_FAILED
;
2526 qla2x00_flash_disable(ha
);
2529 qla2x00_resume_hba(vha
);
2535 qla24xx_read_optrom_data(struct scsi_qla_host
*vha
, uint8_t *buf
,
2536 uint32_t offset
, uint32_t length
)
2538 struct qla_hw_data
*ha
= vha
->hw
;
2541 scsi_block_requests(vha
->host
);
2542 set_bit(MBX_UPDATE_FLASH_ACTIVE
, &ha
->mbx_cmd_flags
);
2545 qla24xx_read_flash_data(vha
, (uint32_t *)buf
, offset
>> 2, length
>> 2);
2548 clear_bit(MBX_UPDATE_FLASH_ACTIVE
, &ha
->mbx_cmd_flags
);
2549 scsi_unblock_requests(vha
->host
);
2555 qla24xx_write_optrom_data(struct scsi_qla_host
*vha
, uint8_t *buf
,
2556 uint32_t offset
, uint32_t length
)
2559 struct qla_hw_data
*ha
= vha
->hw
;
2562 scsi_block_requests(vha
->host
);
2563 set_bit(MBX_UPDATE_FLASH_ACTIVE
, &ha
->mbx_cmd_flags
);
2565 /* Go with write. */
2566 rval
= qla24xx_write_flash_data(vha
, (uint32_t *)buf
, offset
>> 2,
2569 clear_bit(MBX_UPDATE_FLASH_ACTIVE
, &ha
->mbx_cmd_flags
);
2570 scsi_unblock_requests(vha
->host
);
2576 qla25xx_read_optrom_data(struct scsi_qla_host
*vha
, uint8_t *buf
,
2577 uint32_t offset
, uint32_t length
)
2580 dma_addr_t optrom_dma
;
2583 uint32_t faddr
, left
, burst
;
2584 struct qla_hw_data
*ha
= vha
->hw
;
2586 if (IS_QLA25XX(ha
) || IS_QLA81XX(ha
) || IS_QLA83XX(ha
) ||
2591 if (length
< OPTROM_BURST_SIZE
)
2595 optrom
= dma_alloc_coherent(&ha
->pdev
->dev
, OPTROM_BURST_SIZE
,
2596 &optrom_dma
, GFP_KERNEL
);
2598 ql_log(ql_log_warn
, vha
, 0x00cc,
2599 "Unable to allocate memory for optrom burst read (%x KB).\n",
2600 OPTROM_BURST_SIZE
/ 1024);
2605 faddr
= offset
>> 2;
2607 burst
= OPTROM_BURST_DWORDS
;
2612 rval
= qla2x00_dump_ram(vha
, optrom_dma
,
2613 flash_data_addr(ha
, faddr
), burst
);
2615 ql_log(ql_log_warn
, vha
, 0x00f5,
2616 "Unable to burst-read optrom segment (%x/%x/%llx).\n",
2617 rval
, flash_data_addr(ha
, faddr
),
2618 (unsigned long long)optrom_dma
);
2619 ql_log(ql_log_warn
, vha
, 0x00f6,
2620 "Reverting to slow-read.\n");
2622 dma_free_coherent(&ha
->pdev
->dev
, OPTROM_BURST_SIZE
,
2623 optrom
, optrom_dma
);
2627 memcpy(pbuf
, optrom
, burst
* 4);
2634 dma_free_coherent(&ha
->pdev
->dev
, OPTROM_BURST_SIZE
, optrom
,
2640 return qla24xx_read_optrom_data(vha
, buf
, offset
, length
);
2644 * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2646 * @pcids: Pointer to the FCODE PCI data structure
2648 * The process of retrieving the FCODE version information is at best
2649 * described as interesting.
2651 * Within the first 100h bytes of the image an ASCII string is present
2652 * which contains several pieces of information including the FCODE
2653 * version. Unfortunately it seems the only reliable way to retrieve
2654 * the version is by scanning for another sentinel within the string,
2655 * the FCODE build date:
2657 * ... 2.00.02 10/17/02 ...
2659 * Returns QLA_SUCCESS on successful retrieval of version.
2662 qla2x00_get_fcode_version(struct qla_hw_data
*ha
, uint32_t pcids
)
2664 int ret
= QLA_FUNCTION_FAILED
;
2665 uint32_t istart
, iend
, iter
, vend
;
2666 uint8_t do_next
, rbyte
, *vbyte
;
2668 memset(ha
->fcode_revision
, 0, sizeof(ha
->fcode_revision
));
2670 /* Skip the PCI data structure. */
2672 ((qla2x00_read_flash_byte(ha
, pcids
+ 0x0B) << 8) |
2673 qla2x00_read_flash_byte(ha
, pcids
+ 0x0A));
2674 iend
= istart
+ 0x100;
2676 /* Scan for the sentinel date string...eeewww. */
2679 while ((iter
< iend
) && !do_next
) {
2681 if (qla2x00_read_flash_byte(ha
, iter
) == '/') {
2682 if (qla2x00_read_flash_byte(ha
, iter
+ 2) ==
2685 else if (qla2x00_read_flash_byte(ha
,
2693 /* Backtrack to previous ' ' (space). */
2695 while ((iter
> istart
) && !do_next
) {
2697 if (qla2x00_read_flash_byte(ha
, iter
) == ' ')
2704 * Mark end of version tag, and find previous ' ' (space) or
2705 * string length (recent FCODE images -- major hack ahead!!!).
2709 while ((iter
> istart
) && !do_next
) {
2711 rbyte
= qla2x00_read_flash_byte(ha
, iter
);
2712 if (rbyte
== ' ' || rbyte
== 0xd || rbyte
== 0x10)
2718 /* Mark beginning of version tag, and copy data. */
2720 if ((vend
- iter
) &&
2721 ((vend
- iter
) < sizeof(ha
->fcode_revision
))) {
2722 vbyte
= ha
->fcode_revision
;
2723 while (iter
<= vend
) {
2724 *vbyte
++ = qla2x00_read_flash_byte(ha
, iter
);
2731 if (ret
!= QLA_SUCCESS
)
2732 memset(ha
->fcode_revision
, 0, sizeof(ha
->fcode_revision
));
2736 qla2x00_get_flash_version(scsi_qla_host_t
*vha
, void *mbuf
)
2738 int ret
= QLA_SUCCESS
;
2739 uint8_t code_type
, last_image
;
2740 uint32_t pcihdr
, pcids
;
2743 struct qla_hw_data
*ha
= vha
->hw
;
2745 if (!ha
->pio_address
|| !mbuf
)
2746 return QLA_FUNCTION_FAILED
;
2748 memset(ha
->bios_revision
, 0, sizeof(ha
->bios_revision
));
2749 memset(ha
->efi_revision
, 0, sizeof(ha
->efi_revision
));
2750 memset(ha
->fcode_revision
, 0, sizeof(ha
->fcode_revision
));
2751 memset(ha
->fw_revision
, 0, sizeof(ha
->fw_revision
));
2753 qla2x00_flash_enable(ha
);
2755 /* Begin with first PCI expansion ROM header. */
2759 /* Verify PCI expansion ROM header. */
2760 if (qla2x00_read_flash_byte(ha
, pcihdr
) != 0x55 ||
2761 qla2x00_read_flash_byte(ha
, pcihdr
+ 0x01) != 0xaa) {
2763 ql_log(ql_log_fatal
, vha
, 0x0050,
2764 "No matching ROM signature.\n");
2765 ret
= QLA_FUNCTION_FAILED
;
2769 /* Locate PCI data structure. */
2771 ((qla2x00_read_flash_byte(ha
, pcihdr
+ 0x19) << 8) |
2772 qla2x00_read_flash_byte(ha
, pcihdr
+ 0x18));
2774 /* Validate signature of PCI data structure. */
2775 if (qla2x00_read_flash_byte(ha
, pcids
) != 'P' ||
2776 qla2x00_read_flash_byte(ha
, pcids
+ 0x1) != 'C' ||
2777 qla2x00_read_flash_byte(ha
, pcids
+ 0x2) != 'I' ||
2778 qla2x00_read_flash_byte(ha
, pcids
+ 0x3) != 'R') {
2779 /* Incorrect header. */
2780 ql_log(ql_log_fatal
, vha
, 0x0051,
2781 "PCI data struct not found pcir_adr=%x.\n", pcids
);
2782 ret
= QLA_FUNCTION_FAILED
;
2787 code_type
= qla2x00_read_flash_byte(ha
, pcids
+ 0x14);
2788 switch (code_type
) {
2789 case ROM_CODE_TYPE_BIOS
:
2790 /* Intel x86, PC-AT compatible. */
2791 ha
->bios_revision
[0] =
2792 qla2x00_read_flash_byte(ha
, pcids
+ 0x12);
2793 ha
->bios_revision
[1] =
2794 qla2x00_read_flash_byte(ha
, pcids
+ 0x13);
2795 ql_dbg(ql_dbg_init
, vha
, 0x0052,
2796 "Read BIOS %d.%d.\n",
2797 ha
->bios_revision
[1], ha
->bios_revision
[0]);
2799 case ROM_CODE_TYPE_FCODE
:
2800 /* Open Firmware standard for PCI (FCode). */
2802 qla2x00_get_fcode_version(ha
, pcids
);
2804 case ROM_CODE_TYPE_EFI
:
2805 /* Extensible Firmware Interface (EFI). */
2806 ha
->efi_revision
[0] =
2807 qla2x00_read_flash_byte(ha
, pcids
+ 0x12);
2808 ha
->efi_revision
[1] =
2809 qla2x00_read_flash_byte(ha
, pcids
+ 0x13);
2810 ql_dbg(ql_dbg_init
, vha
, 0x0053,
2811 "Read EFI %d.%d.\n",
2812 ha
->efi_revision
[1], ha
->efi_revision
[0]);
2815 ql_log(ql_log_warn
, vha
, 0x0054,
2816 "Unrecognized code type %x at pcids %x.\n",
2821 last_image
= qla2x00_read_flash_byte(ha
, pcids
+ 0x15) & BIT_7
;
2823 /* Locate next PCI expansion ROM. */
2824 pcihdr
+= ((qla2x00_read_flash_byte(ha
, pcids
+ 0x11) << 8) |
2825 qla2x00_read_flash_byte(ha
, pcids
+ 0x10)) * 512;
2826 } while (!last_image
);
2828 if (IS_QLA2322(ha
)) {
2829 /* Read firmware image information. */
2830 memset(ha
->fw_revision
, 0, sizeof(ha
->fw_revision
));
2832 memset(dbyte
, 0, 8);
2833 dcode
= (uint16_t *)dbyte
;
2835 qla2x00_read_flash_data(ha
, dbyte
, ha
->flt_region_fw
* 4 + 10,
2837 ql_dbg(ql_dbg_init
+ ql_dbg_buffer
, vha
, 0x010a,
2839 "ver from flash:.\n");
2840 ql_dump_buffer(ql_dbg_init
+ ql_dbg_buffer
, vha
, 0x010b,
2841 (uint8_t *)dbyte
, 8);
2843 if ((dcode
[0] == 0xffff && dcode
[1] == 0xffff &&
2844 dcode
[2] == 0xffff && dcode
[3] == 0xffff) ||
2845 (dcode
[0] == 0 && dcode
[1] == 0 && dcode
[2] == 0 &&
2847 ql_log(ql_log_warn
, vha
, 0x0057,
2848 "Unrecognized fw revision at %x.\n",
2849 ha
->flt_region_fw
* 4);
2851 /* values are in big endian */
2852 ha
->fw_revision
[0] = dbyte
[0] << 16 | dbyte
[1];
2853 ha
->fw_revision
[1] = dbyte
[2] << 16 | dbyte
[3];
2854 ha
->fw_revision
[2] = dbyte
[4] << 16 | dbyte
[5];
2855 ql_dbg(ql_dbg_init
, vha
, 0x0058,
2857 "%d.%d.%d.\n", ha
->fw_revision
[0],
2858 ha
->fw_revision
[1], ha
->fw_revision
[2]);
2862 qla2x00_flash_disable(ha
);
2868 qla82xx_get_flash_version(scsi_qla_host_t
*vha
, void *mbuf
)
2870 int ret
= QLA_SUCCESS
;
2871 uint32_t pcihdr
, pcids
;
2874 uint8_t code_type
, last_image
;
2875 struct qla_hw_data
*ha
= vha
->hw
;
2878 return QLA_FUNCTION_FAILED
;
2880 memset(ha
->bios_revision
, 0, sizeof(ha
->bios_revision
));
2881 memset(ha
->efi_revision
, 0, sizeof(ha
->efi_revision
));
2882 memset(ha
->fcode_revision
, 0, sizeof(ha
->fcode_revision
));
2883 memset(ha
->fw_revision
, 0, sizeof(ha
->fw_revision
));
2887 /* Begin with first PCI expansion ROM header. */
2888 pcihdr
= ha
->flt_region_boot
<< 2;
2891 /* Verify PCI expansion ROM header. */
2892 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)dcode
, pcihdr
,
2894 bcode
= mbuf
+ (pcihdr
% 4);
2895 if (bcode
[0x0] != 0x55 || bcode
[0x1] != 0xaa) {
2897 ql_log(ql_log_fatal
, vha
, 0x0154,
2898 "No matching ROM signature.\n");
2899 ret
= QLA_FUNCTION_FAILED
;
2903 /* Locate PCI data structure. */
2904 pcids
= pcihdr
+ ((bcode
[0x19] << 8) | bcode
[0x18]);
2906 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)dcode
, pcids
,
2908 bcode
= mbuf
+ (pcihdr
% 4);
2910 /* Validate signature of PCI data structure. */
2911 if (bcode
[0x0] != 'P' || bcode
[0x1] != 'C' ||
2912 bcode
[0x2] != 'I' || bcode
[0x3] != 'R') {
2913 /* Incorrect header. */
2914 ql_log(ql_log_fatal
, vha
, 0x0155,
2915 "PCI data struct not found pcir_adr=%x.\n", pcids
);
2916 ret
= QLA_FUNCTION_FAILED
;
2921 code_type
= bcode
[0x14];
2922 switch (code_type
) {
2923 case ROM_CODE_TYPE_BIOS
:
2924 /* Intel x86, PC-AT compatible. */
2925 ha
->bios_revision
[0] = bcode
[0x12];
2926 ha
->bios_revision
[1] = bcode
[0x13];
2927 ql_dbg(ql_dbg_init
, vha
, 0x0156,
2928 "Read BIOS %d.%d.\n",
2929 ha
->bios_revision
[1], ha
->bios_revision
[0]);
2931 case ROM_CODE_TYPE_FCODE
:
2932 /* Open Firmware standard for PCI (FCode). */
2933 ha
->fcode_revision
[0] = bcode
[0x12];
2934 ha
->fcode_revision
[1] = bcode
[0x13];
2935 ql_dbg(ql_dbg_init
, vha
, 0x0157,
2936 "Read FCODE %d.%d.\n",
2937 ha
->fcode_revision
[1], ha
->fcode_revision
[0]);
2939 case ROM_CODE_TYPE_EFI
:
2940 /* Extensible Firmware Interface (EFI). */
2941 ha
->efi_revision
[0] = bcode
[0x12];
2942 ha
->efi_revision
[1] = bcode
[0x13];
2943 ql_dbg(ql_dbg_init
, vha
, 0x0158,
2944 "Read EFI %d.%d.\n",
2945 ha
->efi_revision
[1], ha
->efi_revision
[0]);
2948 ql_log(ql_log_warn
, vha
, 0x0159,
2949 "Unrecognized code type %x at pcids %x.\n",
2954 last_image
= bcode
[0x15] & BIT_7
;
2956 /* Locate next PCI expansion ROM. */
2957 pcihdr
+= ((bcode
[0x11] << 8) | bcode
[0x10]) * 512;
2958 } while (!last_image
);
2960 /* Read firmware image information. */
2961 memset(ha
->fw_revision
, 0, sizeof(ha
->fw_revision
));
2963 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)dcode
, ha
->flt_region_fw
<< 2,
2965 bcode
= mbuf
+ (pcihdr
% 4);
2967 /* Validate signature of PCI data structure. */
2968 if (bcode
[0x0] == 0x3 && bcode
[0x1] == 0x0 &&
2969 bcode
[0x2] == 0x40 && bcode
[0x3] == 0x40) {
2970 ha
->fw_revision
[0] = bcode
[0x4];
2971 ha
->fw_revision
[1] = bcode
[0x5];
2972 ha
->fw_revision
[2] = bcode
[0x6];
2973 ql_dbg(ql_dbg_init
, vha
, 0x0153,
2974 "Firmware revision %d.%d.%d\n",
2975 ha
->fw_revision
[0], ha
->fw_revision
[1],
2976 ha
->fw_revision
[2]);
2983 qla24xx_get_flash_version(scsi_qla_host_t
*vha
, void *mbuf
)
2985 int ret
= QLA_SUCCESS
;
2986 uint32_t pcihdr
, pcids
;
2989 uint8_t code_type
, last_image
;
2991 struct qla_hw_data
*ha
= vha
->hw
;
2993 if (IS_P3P_TYPE(ha
))
2997 return QLA_FUNCTION_FAILED
;
2999 memset(ha
->bios_revision
, 0, sizeof(ha
->bios_revision
));
3000 memset(ha
->efi_revision
, 0, sizeof(ha
->efi_revision
));
3001 memset(ha
->fcode_revision
, 0, sizeof(ha
->fcode_revision
));
3002 memset(ha
->fw_revision
, 0, sizeof(ha
->fw_revision
));
3006 /* Begin with first PCI expansion ROM header. */
3007 pcihdr
= ha
->flt_region_boot
<< 2;
3010 /* Verify PCI expansion ROM header. */
3011 qla24xx_read_flash_data(vha
, dcode
, pcihdr
>> 2, 0x20);
3012 bcode
= mbuf
+ (pcihdr
% 4);
3013 if (bcode
[0x0] != 0x55 || bcode
[0x1] != 0xaa) {
3015 ql_log(ql_log_fatal
, vha
, 0x0059,
3016 "No matching ROM signature.\n");
3017 ret
= QLA_FUNCTION_FAILED
;
3021 /* Locate PCI data structure. */
3022 pcids
= pcihdr
+ ((bcode
[0x19] << 8) | bcode
[0x18]);
3024 qla24xx_read_flash_data(vha
, dcode
, pcids
>> 2, 0x20);
3025 bcode
= mbuf
+ (pcihdr
% 4);
3027 /* Validate signature of PCI data structure. */
3028 if (bcode
[0x0] != 'P' || bcode
[0x1] != 'C' ||
3029 bcode
[0x2] != 'I' || bcode
[0x3] != 'R') {
3030 /* Incorrect header. */
3031 ql_log(ql_log_fatal
, vha
, 0x005a,
3032 "PCI data struct not found pcir_adr=%x.\n", pcids
);
3033 ret
= QLA_FUNCTION_FAILED
;
3038 code_type
= bcode
[0x14];
3039 switch (code_type
) {
3040 case ROM_CODE_TYPE_BIOS
:
3041 /* Intel x86, PC-AT compatible. */
3042 ha
->bios_revision
[0] = bcode
[0x12];
3043 ha
->bios_revision
[1] = bcode
[0x13];
3044 ql_dbg(ql_dbg_init
, vha
, 0x005b,
3045 "Read BIOS %d.%d.\n",
3046 ha
->bios_revision
[1], ha
->bios_revision
[0]);
3048 case ROM_CODE_TYPE_FCODE
:
3049 /* Open Firmware standard for PCI (FCode). */
3050 ha
->fcode_revision
[0] = bcode
[0x12];
3051 ha
->fcode_revision
[1] = bcode
[0x13];
3052 ql_dbg(ql_dbg_init
, vha
, 0x005c,
3053 "Read FCODE %d.%d.\n",
3054 ha
->fcode_revision
[1], ha
->fcode_revision
[0]);
3056 case ROM_CODE_TYPE_EFI
:
3057 /* Extensible Firmware Interface (EFI). */
3058 ha
->efi_revision
[0] = bcode
[0x12];
3059 ha
->efi_revision
[1] = bcode
[0x13];
3060 ql_dbg(ql_dbg_init
, vha
, 0x005d,
3061 "Read EFI %d.%d.\n",
3062 ha
->efi_revision
[1], ha
->efi_revision
[0]);
3065 ql_log(ql_log_warn
, vha
, 0x005e,
3066 "Unrecognized code type %x at pcids %x.\n",
3071 last_image
= bcode
[0x15] & BIT_7
;
3073 /* Locate next PCI expansion ROM. */
3074 pcihdr
+= ((bcode
[0x11] << 8) | bcode
[0x10]) * 512;
3075 } while (!last_image
);
3077 /* Read firmware image information. */
3078 memset(ha
->fw_revision
, 0, sizeof(ha
->fw_revision
));
3081 qla24xx_read_flash_data(vha
, dcode
, ha
->flt_region_fw
+ 4, 4);
3082 for (i
= 0; i
< 4; i
++)
3083 dcode
[i
] = be32_to_cpu(dcode
[i
]);
3085 if ((dcode
[0] == 0xffffffff && dcode
[1] == 0xffffffff &&
3086 dcode
[2] == 0xffffffff && dcode
[3] == 0xffffffff) ||
3087 (dcode
[0] == 0 && dcode
[1] == 0 && dcode
[2] == 0 &&
3089 ql_log(ql_log_warn
, vha
, 0x005f,
3090 "Unrecognized fw revision at %x.\n",
3091 ha
->flt_region_fw
* 4);
3093 ha
->fw_revision
[0] = dcode
[0];
3094 ha
->fw_revision
[1] = dcode
[1];
3095 ha
->fw_revision
[2] = dcode
[2];
3096 ha
->fw_revision
[3] = dcode
[3];
3097 ql_dbg(ql_dbg_init
, vha
, 0x0060,
3098 "Firmware revision %d.%d.%d (%x).\n",
3099 ha
->fw_revision
[0], ha
->fw_revision
[1],
3100 ha
->fw_revision
[2], ha
->fw_revision
[3]);
3103 /* Check for golden firmware and get version if available */
3104 if (!IS_QLA81XX(ha
)) {
3105 /* Golden firmware is not present in non 81XX adapters */
3109 memset(ha
->gold_fw_version
, 0, sizeof(ha
->gold_fw_version
));
3111 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)dcode
,
3112 ha
->flt_region_gold_fw
<< 2, 32);
3114 if (dcode
[4] == 0xFFFFFFFF && dcode
[5] == 0xFFFFFFFF &&
3115 dcode
[6] == 0xFFFFFFFF && dcode
[7] == 0xFFFFFFFF) {
3116 ql_log(ql_log_warn
, vha
, 0x0056,
3117 "Unrecognized golden fw at 0x%x.\n",
3118 ha
->flt_region_gold_fw
* 4);
3122 for (i
= 4; i
< 8; i
++)
3123 ha
->gold_fw_version
[i
-4] = be32_to_cpu(dcode
[i
]);
3129 qla2xxx_is_vpd_valid(uint8_t *pos
, uint8_t *end
)
3131 if (pos
>= end
|| *pos
!= 0x82)
3135 if (pos
>= end
|| *pos
!= 0x90)
3139 if (pos
>= end
|| *pos
!= 0x78)
3146 qla2xxx_get_vpd_field(scsi_qla_host_t
*vha
, char *key
, char *str
, size_t size
)
3148 struct qla_hw_data
*ha
= vha
->hw
;
3149 uint8_t *pos
= ha
->vpd
;
3150 uint8_t *end
= pos
+ ha
->vpd_size
;
3153 if (!IS_FWI2_CAPABLE(ha
) || !qla2xxx_is_vpd_valid(pos
, end
))
3156 while (pos
< end
&& *pos
!= 0x78) {
3157 len
= (*pos
== 0x82) ? pos
[1] : pos
[2];
3159 if (!strncmp(pos
, key
, strlen(key
)))
3162 if (*pos
!= 0x90 && *pos
!= 0x91)
3168 if (pos
< end
- len
&& *pos
!= 0x78)
3169 return scnprintf(str
, size
, "%.*s", len
, pos
+ 3);
3175 qla24xx_read_fcp_prio_cfg(scsi_qla_host_t
*vha
)
3178 uint32_t fcp_prio_addr
;
3179 struct qla_hw_data
*ha
= vha
->hw
;
3181 if (!ha
->fcp_prio_cfg
) {
3182 ha
->fcp_prio_cfg
= vmalloc(FCP_PRIO_CFG_SIZE
);
3183 if (!ha
->fcp_prio_cfg
) {
3184 ql_log(ql_log_warn
, vha
, 0x00d5,
3185 "Unable to allocate memory for fcp priorty data (%x).\n",
3187 return QLA_FUNCTION_FAILED
;
3190 memset(ha
->fcp_prio_cfg
, 0, FCP_PRIO_CFG_SIZE
);
3192 fcp_prio_addr
= ha
->flt_region_fcp_prio
;
3194 /* first read the fcp priority data header from flash */
3195 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)ha
->fcp_prio_cfg
,
3196 fcp_prio_addr
<< 2, FCP_PRIO_CFG_HDR_SIZE
);
3198 if (!qla24xx_fcp_prio_cfg_valid(vha
, ha
->fcp_prio_cfg
, 0))
3201 /* read remaining FCP CMD config data from flash */
3202 fcp_prio_addr
+= (FCP_PRIO_CFG_HDR_SIZE
>> 2);
3203 len
= ha
->fcp_prio_cfg
->num_entries
* FCP_PRIO_CFG_ENTRY_SIZE
;
3204 max_len
= FCP_PRIO_CFG_SIZE
- FCP_PRIO_CFG_HDR_SIZE
;
3206 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)&ha
->fcp_prio_cfg
->entry
[0],
3207 fcp_prio_addr
<< 2, (len
< max_len
? len
: max_len
));
3209 /* revalidate the entire FCP priority config data, including entries */
3210 if (!qla24xx_fcp_prio_cfg_valid(vha
, ha
->fcp_prio_cfg
, 1))
3213 ha
->flags
.fcp_prio_enabled
= 1;
3216 vfree(ha
->fcp_prio_cfg
);
3217 ha
->fcp_prio_cfg
= NULL
;
3218 return QLA_FUNCTION_FAILED
;