ocfs2: fix several issues of append dio
[linux/fpc-iii.git] / drivers / thermal / cpu_cooling.c
blob620dcd405ff6eec9ae65b0af8e93c25daae15d1f
1 /*
2 * linux/drivers/thermal/cpu_cooling.c
4 * Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
5 * Copyright (C) 2012 Amit Daniel <amit.kachhap@linaro.org>
7 * Copyright (C) 2014 Viresh Kumar <viresh.kumar@linaro.org>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
23 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25 #include <linux/module.h>
26 #include <linux/thermal.h>
27 #include <linux/cpufreq.h>
28 #include <linux/err.h>
29 #include <linux/pm_opp.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <linux/cpu_cooling.h>
34 #include <trace/events/thermal.h>
37 * Cooling state <-> CPUFreq frequency
39 * Cooling states are translated to frequencies throughout this driver and this
40 * is the relation between them.
42 * Highest cooling state corresponds to lowest possible frequency.
44 * i.e.
45 * level 0 --> 1st Max Freq
46 * level 1 --> 2nd Max Freq
47 * ...
50 /**
51 * struct power_table - frequency to power conversion
52 * @frequency: frequency in KHz
53 * @power: power in mW
55 * This structure is built when the cooling device registers and helps
56 * in translating frequency to power and viceversa.
58 struct power_table {
59 u32 frequency;
60 u32 power;
63 /**
64 * struct cpufreq_cooling_device - data for cooling device with cpufreq
65 * @id: unique integer value corresponding to each cpufreq_cooling_device
66 * registered.
67 * @cool_dev: thermal_cooling_device pointer to keep track of the
68 * registered cooling device.
69 * @cpufreq_state: integer value representing the current state of cpufreq
70 * cooling devices.
71 * @clipped_freq: integer value representing the absolute value of the clipped
72 * frequency.
73 * @max_level: maximum cooling level. One less than total number of valid
74 * cpufreq frequencies.
75 * @allowed_cpus: all the cpus involved for this cpufreq_cooling_device.
76 * @node: list_head to link all cpufreq_cooling_device together.
77 * @last_load: load measured by the latest call to cpufreq_get_actual_power()
78 * @time_in_idle: previous reading of the absolute time that this cpu was idle
79 * @time_in_idle_timestamp: wall time of the last invocation of
80 * get_cpu_idle_time_us()
81 * @dyn_power_table: array of struct power_table for frequency to power
82 * conversion, sorted in ascending order.
83 * @dyn_power_table_entries: number of entries in the @dyn_power_table array
84 * @cpu_dev: the first cpu_device from @allowed_cpus that has OPPs registered
85 * @plat_get_static_power: callback to calculate the static power
87 * This structure is required for keeping information of each registered
88 * cpufreq_cooling_device.
90 struct cpufreq_cooling_device {
91 int id;
92 struct thermal_cooling_device *cool_dev;
93 unsigned int cpufreq_state;
94 unsigned int clipped_freq;
95 unsigned int max_level;
96 unsigned int *freq_table; /* In descending order */
97 struct cpumask allowed_cpus;
98 struct list_head node;
99 u32 last_load;
100 u64 *time_in_idle;
101 u64 *time_in_idle_timestamp;
102 struct power_table *dyn_power_table;
103 int dyn_power_table_entries;
104 struct device *cpu_dev;
105 get_static_t plat_get_static_power;
107 static DEFINE_IDR(cpufreq_idr);
108 static DEFINE_MUTEX(cooling_cpufreq_lock);
110 static unsigned int cpufreq_dev_count;
112 static DEFINE_MUTEX(cooling_list_lock);
113 static LIST_HEAD(cpufreq_dev_list);
116 * get_idr - function to get a unique id.
117 * @idr: struct idr * handle used to create a id.
118 * @id: int * value generated by this function.
120 * This function will populate @id with an unique
121 * id, using the idr API.
123 * Return: 0 on success, an error code on failure.
125 static int get_idr(struct idr *idr, int *id)
127 int ret;
129 mutex_lock(&cooling_cpufreq_lock);
130 ret = idr_alloc(idr, NULL, 0, 0, GFP_KERNEL);
131 mutex_unlock(&cooling_cpufreq_lock);
132 if (unlikely(ret < 0))
133 return ret;
134 *id = ret;
136 return 0;
140 * release_idr - function to free the unique id.
141 * @idr: struct idr * handle used for creating the id.
142 * @id: int value representing the unique id.
144 static void release_idr(struct idr *idr, int id)
146 mutex_lock(&cooling_cpufreq_lock);
147 idr_remove(idr, id);
148 mutex_unlock(&cooling_cpufreq_lock);
151 /* Below code defines functions to be used for cpufreq as cooling device */
154 * get_level: Find the level for a particular frequency
155 * @cpufreq_dev: cpufreq_dev for which the property is required
156 * @freq: Frequency
158 * Return: level on success, THERMAL_CSTATE_INVALID on error.
160 static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_dev,
161 unsigned int freq)
163 unsigned long level;
165 for (level = 0; level <= cpufreq_dev->max_level; level++) {
166 if (freq == cpufreq_dev->freq_table[level])
167 return level;
169 if (freq > cpufreq_dev->freq_table[level])
170 break;
173 return THERMAL_CSTATE_INVALID;
177 * cpufreq_cooling_get_level - for a given cpu, return the cooling level.
178 * @cpu: cpu for which the level is required
179 * @freq: the frequency of interest
181 * This function will match the cooling level corresponding to the
182 * requested @freq and return it.
184 * Return: The matched cooling level on success or THERMAL_CSTATE_INVALID
185 * otherwise.
187 unsigned long cpufreq_cooling_get_level(unsigned int cpu, unsigned int freq)
189 struct cpufreq_cooling_device *cpufreq_dev;
191 mutex_lock(&cooling_list_lock);
192 list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
193 if (cpumask_test_cpu(cpu, &cpufreq_dev->allowed_cpus)) {
194 mutex_unlock(&cooling_list_lock);
195 return get_level(cpufreq_dev, freq);
198 mutex_unlock(&cooling_list_lock);
200 pr_err("%s: cpu:%d not part of any cooling device\n", __func__, cpu);
201 return THERMAL_CSTATE_INVALID;
203 EXPORT_SYMBOL_GPL(cpufreq_cooling_get_level);
206 * cpufreq_thermal_notifier - notifier callback for cpufreq policy change.
207 * @nb: struct notifier_block * with callback info.
208 * @event: value showing cpufreq event for which this function invoked.
209 * @data: callback-specific data
211 * Callback to hijack the notification on cpufreq policy transition.
212 * Every time there is a change in policy, we will intercept and
213 * update the cpufreq policy with thermal constraints.
215 * Return: 0 (success)
217 static int cpufreq_thermal_notifier(struct notifier_block *nb,
218 unsigned long event, void *data)
220 struct cpufreq_policy *policy = data;
221 unsigned long clipped_freq;
222 struct cpufreq_cooling_device *cpufreq_dev;
224 if (event != CPUFREQ_ADJUST)
225 return NOTIFY_DONE;
227 mutex_lock(&cooling_list_lock);
228 list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
229 if (!cpumask_test_cpu(policy->cpu, &cpufreq_dev->allowed_cpus))
230 continue;
233 * policy->max is the maximum allowed frequency defined by user
234 * and clipped_freq is the maximum that thermal constraints
235 * allow.
237 * If clipped_freq is lower than policy->max, then we need to
238 * readjust policy->max.
240 * But, if clipped_freq is greater than policy->max, we don't
241 * need to do anything.
243 clipped_freq = cpufreq_dev->clipped_freq;
245 if (policy->max > clipped_freq)
246 cpufreq_verify_within_limits(policy, 0, clipped_freq);
247 break;
249 mutex_unlock(&cooling_list_lock);
251 return NOTIFY_OK;
255 * build_dyn_power_table() - create a dynamic power to frequency table
256 * @cpufreq_device: the cpufreq cooling device in which to store the table
257 * @capacitance: dynamic power coefficient for these cpus
259 * Build a dynamic power to frequency table for this cpu and store it
260 * in @cpufreq_device. This table will be used in cpu_power_to_freq() and
261 * cpu_freq_to_power() to convert between power and frequency
262 * efficiently. Power is stored in mW, frequency in KHz. The
263 * resulting table is in ascending order.
265 * Return: 0 on success, -E* on error.
267 static int build_dyn_power_table(struct cpufreq_cooling_device *cpufreq_device,
268 u32 capacitance)
270 struct power_table *power_table;
271 struct dev_pm_opp *opp;
272 struct device *dev = NULL;
273 int num_opps = 0, cpu, i, ret = 0;
274 unsigned long freq;
276 rcu_read_lock();
278 for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
279 dev = get_cpu_device(cpu);
280 if (!dev) {
281 dev_warn(&cpufreq_device->cool_dev->device,
282 "No cpu device for cpu %d\n", cpu);
283 continue;
286 num_opps = dev_pm_opp_get_opp_count(dev);
287 if (num_opps > 0) {
288 break;
289 } else if (num_opps < 0) {
290 ret = num_opps;
291 goto unlock;
295 if (num_opps == 0) {
296 ret = -EINVAL;
297 goto unlock;
300 power_table = kcalloc(num_opps, sizeof(*power_table), GFP_KERNEL);
301 if (!power_table) {
302 ret = -ENOMEM;
303 goto unlock;
306 for (freq = 0, i = 0;
307 opp = dev_pm_opp_find_freq_ceil(dev, &freq), !IS_ERR(opp);
308 freq++, i++) {
309 u32 freq_mhz, voltage_mv;
310 u64 power;
312 freq_mhz = freq / 1000000;
313 voltage_mv = dev_pm_opp_get_voltage(opp) / 1000;
316 * Do the multiplication with MHz and millivolt so as
317 * to not overflow.
319 power = (u64)capacitance * freq_mhz * voltage_mv * voltage_mv;
320 do_div(power, 1000000000);
322 /* frequency is stored in power_table in KHz */
323 power_table[i].frequency = freq / 1000;
325 /* power is stored in mW */
326 power_table[i].power = power;
329 if (i == 0) {
330 ret = PTR_ERR(opp);
331 goto unlock;
334 cpufreq_device->cpu_dev = dev;
335 cpufreq_device->dyn_power_table = power_table;
336 cpufreq_device->dyn_power_table_entries = i;
338 unlock:
339 rcu_read_unlock();
340 return ret;
343 static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_device,
344 u32 freq)
346 int i;
347 struct power_table *pt = cpufreq_device->dyn_power_table;
349 for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
350 if (freq < pt[i].frequency)
351 break;
353 return pt[i - 1].power;
356 static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_device,
357 u32 power)
359 int i;
360 struct power_table *pt = cpufreq_device->dyn_power_table;
362 for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
363 if (power < pt[i].power)
364 break;
366 return pt[i - 1].frequency;
370 * get_load() - get load for a cpu since last updated
371 * @cpufreq_device: &struct cpufreq_cooling_device for this cpu
372 * @cpu: cpu number
374 * Return: The average load of cpu @cpu in percentage since this
375 * function was last called.
377 static u32 get_load(struct cpufreq_cooling_device *cpufreq_device, int cpu)
379 u32 load;
380 u64 now, now_idle, delta_time, delta_idle;
382 now_idle = get_cpu_idle_time(cpu, &now, 0);
383 delta_idle = now_idle - cpufreq_device->time_in_idle[cpu];
384 delta_time = now - cpufreq_device->time_in_idle_timestamp[cpu];
386 if (delta_time <= delta_idle)
387 load = 0;
388 else
389 load = div64_u64(100 * (delta_time - delta_idle), delta_time);
391 cpufreq_device->time_in_idle[cpu] = now_idle;
392 cpufreq_device->time_in_idle_timestamp[cpu] = now;
394 return load;
398 * get_static_power() - calculate the static power consumed by the cpus
399 * @cpufreq_device: struct &cpufreq_cooling_device for this cpu cdev
400 * @tz: thermal zone device in which we're operating
401 * @freq: frequency in KHz
402 * @power: pointer in which to store the calculated static power
404 * Calculate the static power consumed by the cpus described by
405 * @cpu_actor running at frequency @freq. This function relies on a
406 * platform specific function that should have been provided when the
407 * actor was registered. If it wasn't, the static power is assumed to
408 * be negligible. The calculated static power is stored in @power.
410 * Return: 0 on success, -E* on failure.
412 static int get_static_power(struct cpufreq_cooling_device *cpufreq_device,
413 struct thermal_zone_device *tz, unsigned long freq,
414 u32 *power)
416 struct dev_pm_opp *opp;
417 unsigned long voltage;
418 struct cpumask *cpumask = &cpufreq_device->allowed_cpus;
419 unsigned long freq_hz = freq * 1000;
421 if (!cpufreq_device->plat_get_static_power ||
422 !cpufreq_device->cpu_dev) {
423 *power = 0;
424 return 0;
427 rcu_read_lock();
429 opp = dev_pm_opp_find_freq_exact(cpufreq_device->cpu_dev, freq_hz,
430 true);
431 voltage = dev_pm_opp_get_voltage(opp);
433 rcu_read_unlock();
435 if (voltage == 0) {
436 dev_warn_ratelimited(cpufreq_device->cpu_dev,
437 "Failed to get voltage for frequency %lu: %ld\n",
438 freq_hz, IS_ERR(opp) ? PTR_ERR(opp) : 0);
439 return -EINVAL;
442 return cpufreq_device->plat_get_static_power(cpumask, tz->passive_delay,
443 voltage, power);
447 * get_dynamic_power() - calculate the dynamic power
448 * @cpufreq_device: &cpufreq_cooling_device for this cdev
449 * @freq: current frequency
451 * Return: the dynamic power consumed by the cpus described by
452 * @cpufreq_device.
454 static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_device,
455 unsigned long freq)
457 u32 raw_cpu_power;
459 raw_cpu_power = cpu_freq_to_power(cpufreq_device, freq);
460 return (raw_cpu_power * cpufreq_device->last_load) / 100;
463 /* cpufreq cooling device callback functions are defined below */
466 * cpufreq_get_max_state - callback function to get the max cooling state.
467 * @cdev: thermal cooling device pointer.
468 * @state: fill this variable with the max cooling state.
470 * Callback for the thermal cooling device to return the cpufreq
471 * max cooling state.
473 * Return: 0 on success, an error code otherwise.
475 static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
476 unsigned long *state)
478 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
480 *state = cpufreq_device->max_level;
481 return 0;
485 * cpufreq_get_cur_state - callback function to get the current cooling state.
486 * @cdev: thermal cooling device pointer.
487 * @state: fill this variable with the current cooling state.
489 * Callback for the thermal cooling device to return the cpufreq
490 * current cooling state.
492 * Return: 0 on success, an error code otherwise.
494 static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
495 unsigned long *state)
497 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
499 *state = cpufreq_device->cpufreq_state;
501 return 0;
505 * cpufreq_set_cur_state - callback function to set the current cooling state.
506 * @cdev: thermal cooling device pointer.
507 * @state: set this variable to the current cooling state.
509 * Callback for the thermal cooling device to change the cpufreq
510 * current cooling state.
512 * Return: 0 on success, an error code otherwise.
514 static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
515 unsigned long state)
517 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
518 unsigned int cpu = cpumask_any(&cpufreq_device->allowed_cpus);
519 unsigned int clip_freq;
521 /* Request state should be less than max_level */
522 if (WARN_ON(state > cpufreq_device->max_level))
523 return -EINVAL;
525 /* Check if the old cooling action is same as new cooling action */
526 if (cpufreq_device->cpufreq_state == state)
527 return 0;
529 clip_freq = cpufreq_device->freq_table[state];
530 cpufreq_device->cpufreq_state = state;
531 cpufreq_device->clipped_freq = clip_freq;
533 cpufreq_update_policy(cpu);
535 return 0;
539 * cpufreq_get_requested_power() - get the current power
540 * @cdev: &thermal_cooling_device pointer
541 * @tz: a valid thermal zone device pointer
542 * @power: pointer in which to store the resulting power
544 * Calculate the current power consumption of the cpus in milliwatts
545 * and store it in @power. This function should actually calculate
546 * the requested power, but it's hard to get the frequency that
547 * cpufreq would have assigned if there were no thermal limits.
548 * Instead, we calculate the current power on the assumption that the
549 * immediate future will look like the immediate past.
551 * We use the current frequency and the average load since this
552 * function was last called. In reality, there could have been
553 * multiple opps since this function was last called and that affects
554 * the load calculation. While it's not perfectly accurate, this
555 * simplification is good enough and works. REVISIT this, as more
556 * complex code may be needed if experiments show that it's not
557 * accurate enough.
559 * Return: 0 on success, -E* if getting the static power failed.
561 static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
562 struct thermal_zone_device *tz,
563 u32 *power)
565 unsigned long freq;
566 int i = 0, cpu, ret;
567 u32 static_power, dynamic_power, total_load = 0;
568 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
569 u32 *load_cpu = NULL;
571 cpu = cpumask_any_and(&cpufreq_device->allowed_cpus, cpu_online_mask);
574 * All the CPUs are offline, thus the requested power by
575 * the cdev is 0
577 if (cpu >= nr_cpu_ids) {
578 *power = 0;
579 return 0;
582 freq = cpufreq_quick_get(cpu);
584 if (trace_thermal_power_cpu_get_power_enabled()) {
585 u32 ncpus = cpumask_weight(&cpufreq_device->allowed_cpus);
587 load_cpu = devm_kcalloc(&cdev->device, ncpus, sizeof(*load_cpu),
588 GFP_KERNEL);
591 for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
592 u32 load;
594 if (cpu_online(cpu))
595 load = get_load(cpufreq_device, cpu);
596 else
597 load = 0;
599 total_load += load;
600 if (trace_thermal_power_cpu_limit_enabled() && load_cpu)
601 load_cpu[i] = load;
603 i++;
606 cpufreq_device->last_load = total_load;
608 dynamic_power = get_dynamic_power(cpufreq_device, freq);
609 ret = get_static_power(cpufreq_device, tz, freq, &static_power);
610 if (ret) {
611 if (load_cpu)
612 devm_kfree(&cdev->device, load_cpu);
613 return ret;
616 if (load_cpu) {
617 trace_thermal_power_cpu_get_power(
618 &cpufreq_device->allowed_cpus,
619 freq, load_cpu, i, dynamic_power, static_power);
621 devm_kfree(&cdev->device, load_cpu);
624 *power = static_power + dynamic_power;
625 return 0;
629 * cpufreq_state2power() - convert a cpu cdev state to power consumed
630 * @cdev: &thermal_cooling_device pointer
631 * @tz: a valid thermal zone device pointer
632 * @state: cooling device state to be converted
633 * @power: pointer in which to store the resulting power
635 * Convert cooling device state @state into power consumption in
636 * milliwatts assuming 100% load. Store the calculated power in
637 * @power.
639 * Return: 0 on success, -EINVAL if the cooling device state could not
640 * be converted into a frequency or other -E* if there was an error
641 * when calculating the static power.
643 static int cpufreq_state2power(struct thermal_cooling_device *cdev,
644 struct thermal_zone_device *tz,
645 unsigned long state, u32 *power)
647 unsigned int freq, num_cpus;
648 cpumask_t cpumask;
649 u32 static_power, dynamic_power;
650 int ret;
651 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
653 cpumask_and(&cpumask, &cpufreq_device->allowed_cpus, cpu_online_mask);
654 num_cpus = cpumask_weight(&cpumask);
656 /* None of our cpus are online, so no power */
657 if (num_cpus == 0) {
658 *power = 0;
659 return 0;
662 freq = cpufreq_device->freq_table[state];
663 if (!freq)
664 return -EINVAL;
666 dynamic_power = cpu_freq_to_power(cpufreq_device, freq) * num_cpus;
667 ret = get_static_power(cpufreq_device, tz, freq, &static_power);
668 if (ret)
669 return ret;
671 *power = static_power + dynamic_power;
672 return 0;
676 * cpufreq_power2state() - convert power to a cooling device state
677 * @cdev: &thermal_cooling_device pointer
678 * @tz: a valid thermal zone device pointer
679 * @power: power in milliwatts to be converted
680 * @state: pointer in which to store the resulting state
682 * Calculate a cooling device state for the cpus described by @cdev
683 * that would allow them to consume at most @power mW and store it in
684 * @state. Note that this calculation depends on external factors
685 * such as the cpu load or the current static power. Calling this
686 * function with the same power as input can yield different cooling
687 * device states depending on those external factors.
689 * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
690 * the calculated frequency could not be converted to a valid state.
691 * The latter should not happen unless the frequencies available to
692 * cpufreq have changed since the initialization of the cpu cooling
693 * device.
695 static int cpufreq_power2state(struct thermal_cooling_device *cdev,
696 struct thermal_zone_device *tz, u32 power,
697 unsigned long *state)
699 unsigned int cpu, cur_freq, target_freq;
700 int ret;
701 s32 dyn_power;
702 u32 last_load, normalised_power, static_power;
703 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
705 cpu = cpumask_any_and(&cpufreq_device->allowed_cpus, cpu_online_mask);
707 /* None of our cpus are online */
708 if (cpu >= nr_cpu_ids)
709 return -ENODEV;
711 cur_freq = cpufreq_quick_get(cpu);
712 ret = get_static_power(cpufreq_device, tz, cur_freq, &static_power);
713 if (ret)
714 return ret;
716 dyn_power = power - static_power;
717 dyn_power = dyn_power > 0 ? dyn_power : 0;
718 last_load = cpufreq_device->last_load ?: 1;
719 normalised_power = (dyn_power * 100) / last_load;
720 target_freq = cpu_power_to_freq(cpufreq_device, normalised_power);
722 *state = cpufreq_cooling_get_level(cpu, target_freq);
723 if (*state == THERMAL_CSTATE_INVALID) {
724 dev_warn_ratelimited(&cdev->device,
725 "Failed to convert %dKHz for cpu %d into a cdev state\n",
726 target_freq, cpu);
727 return -EINVAL;
730 trace_thermal_power_cpu_limit(&cpufreq_device->allowed_cpus,
731 target_freq, *state, power);
732 return 0;
735 /* Bind cpufreq callbacks to thermal cooling device ops */
736 static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
737 .get_max_state = cpufreq_get_max_state,
738 .get_cur_state = cpufreq_get_cur_state,
739 .set_cur_state = cpufreq_set_cur_state,
742 /* Notifier for cpufreq policy change */
743 static struct notifier_block thermal_cpufreq_notifier_block = {
744 .notifier_call = cpufreq_thermal_notifier,
747 static unsigned int find_next_max(struct cpufreq_frequency_table *table,
748 unsigned int prev_max)
750 struct cpufreq_frequency_table *pos;
751 unsigned int max = 0;
753 cpufreq_for_each_valid_entry(pos, table) {
754 if (pos->frequency > max && pos->frequency < prev_max)
755 max = pos->frequency;
758 return max;
762 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
763 * @np: a valid struct device_node to the cooling device device tree node
764 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
765 * Normally this should be same as cpufreq policy->related_cpus.
766 * @capacitance: dynamic power coefficient for these cpus
767 * @plat_static_func: function to calculate the static power consumed by these
768 * cpus (optional)
770 * This interface function registers the cpufreq cooling device with the name
771 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
772 * cooling devices. It also gives the opportunity to link the cooling device
773 * with a device tree node, in order to bind it via the thermal DT code.
775 * Return: a valid struct thermal_cooling_device pointer on success,
776 * on failure, it returns a corresponding ERR_PTR().
778 static struct thermal_cooling_device *
779 __cpufreq_cooling_register(struct device_node *np,
780 const struct cpumask *clip_cpus, u32 capacitance,
781 get_static_t plat_static_func)
783 struct thermal_cooling_device *cool_dev;
784 struct cpufreq_cooling_device *cpufreq_dev;
785 char dev_name[THERMAL_NAME_LENGTH];
786 struct cpufreq_frequency_table *pos, *table;
787 unsigned int freq, i, num_cpus;
788 int ret;
790 table = cpufreq_frequency_get_table(cpumask_first(clip_cpus));
791 if (!table) {
792 pr_debug("%s: CPUFreq table not found\n", __func__);
793 return ERR_PTR(-EPROBE_DEFER);
796 cpufreq_dev = kzalloc(sizeof(*cpufreq_dev), GFP_KERNEL);
797 if (!cpufreq_dev)
798 return ERR_PTR(-ENOMEM);
800 num_cpus = cpumask_weight(clip_cpus);
801 cpufreq_dev->time_in_idle = kcalloc(num_cpus,
802 sizeof(*cpufreq_dev->time_in_idle),
803 GFP_KERNEL);
804 if (!cpufreq_dev->time_in_idle) {
805 cool_dev = ERR_PTR(-ENOMEM);
806 goto free_cdev;
809 cpufreq_dev->time_in_idle_timestamp =
810 kcalloc(num_cpus, sizeof(*cpufreq_dev->time_in_idle_timestamp),
811 GFP_KERNEL);
812 if (!cpufreq_dev->time_in_idle_timestamp) {
813 cool_dev = ERR_PTR(-ENOMEM);
814 goto free_time_in_idle;
817 /* Find max levels */
818 cpufreq_for_each_valid_entry(pos, table)
819 cpufreq_dev->max_level++;
821 cpufreq_dev->freq_table = kmalloc(sizeof(*cpufreq_dev->freq_table) *
822 cpufreq_dev->max_level, GFP_KERNEL);
823 if (!cpufreq_dev->freq_table) {
824 cool_dev = ERR_PTR(-ENOMEM);
825 goto free_time_in_idle_timestamp;
828 /* max_level is an index, not a counter */
829 cpufreq_dev->max_level--;
831 cpumask_copy(&cpufreq_dev->allowed_cpus, clip_cpus);
833 if (capacitance) {
834 cpufreq_cooling_ops.get_requested_power =
835 cpufreq_get_requested_power;
836 cpufreq_cooling_ops.state2power = cpufreq_state2power;
837 cpufreq_cooling_ops.power2state = cpufreq_power2state;
838 cpufreq_dev->plat_get_static_power = plat_static_func;
840 ret = build_dyn_power_table(cpufreq_dev, capacitance);
841 if (ret) {
842 cool_dev = ERR_PTR(ret);
843 goto free_table;
847 ret = get_idr(&cpufreq_idr, &cpufreq_dev->id);
848 if (ret) {
849 cool_dev = ERR_PTR(ret);
850 goto free_table;
853 snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d",
854 cpufreq_dev->id);
856 cool_dev = thermal_of_cooling_device_register(np, dev_name, cpufreq_dev,
857 &cpufreq_cooling_ops);
858 if (IS_ERR(cool_dev))
859 goto remove_idr;
861 /* Fill freq-table in descending order of frequencies */
862 for (i = 0, freq = -1; i <= cpufreq_dev->max_level; i++) {
863 freq = find_next_max(table, freq);
864 cpufreq_dev->freq_table[i] = freq;
866 /* Warn for duplicate entries */
867 if (!freq)
868 pr_warn("%s: table has duplicate entries\n", __func__);
869 else
870 pr_debug("%s: freq:%u KHz\n", __func__, freq);
873 cpufreq_dev->clipped_freq = cpufreq_dev->freq_table[0];
874 cpufreq_dev->cool_dev = cool_dev;
876 mutex_lock(&cooling_cpufreq_lock);
878 mutex_lock(&cooling_list_lock);
879 list_add(&cpufreq_dev->node, &cpufreq_dev_list);
880 mutex_unlock(&cooling_list_lock);
882 /* Register the notifier for first cpufreq cooling device */
883 if (!cpufreq_dev_count++)
884 cpufreq_register_notifier(&thermal_cpufreq_notifier_block,
885 CPUFREQ_POLICY_NOTIFIER);
886 mutex_unlock(&cooling_cpufreq_lock);
888 return cool_dev;
890 remove_idr:
891 release_idr(&cpufreq_idr, cpufreq_dev->id);
892 free_table:
893 kfree(cpufreq_dev->freq_table);
894 free_time_in_idle_timestamp:
895 kfree(cpufreq_dev->time_in_idle_timestamp);
896 free_time_in_idle:
897 kfree(cpufreq_dev->time_in_idle);
898 free_cdev:
899 kfree(cpufreq_dev);
901 return cool_dev;
905 * cpufreq_cooling_register - function to create cpufreq cooling device.
906 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
908 * This interface function registers the cpufreq cooling device with the name
909 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
910 * cooling devices.
912 * Return: a valid struct thermal_cooling_device pointer on success,
913 * on failure, it returns a corresponding ERR_PTR().
915 struct thermal_cooling_device *
916 cpufreq_cooling_register(const struct cpumask *clip_cpus)
918 return __cpufreq_cooling_register(NULL, clip_cpus, 0, NULL);
920 EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
923 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
924 * @np: a valid struct device_node to the cooling device device tree node
925 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
927 * This interface function registers the cpufreq cooling device with the name
928 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
929 * cooling devices. Using this API, the cpufreq cooling device will be
930 * linked to the device tree node provided.
932 * Return: a valid struct thermal_cooling_device pointer on success,
933 * on failure, it returns a corresponding ERR_PTR().
935 struct thermal_cooling_device *
936 of_cpufreq_cooling_register(struct device_node *np,
937 const struct cpumask *clip_cpus)
939 if (!np)
940 return ERR_PTR(-EINVAL);
942 return __cpufreq_cooling_register(np, clip_cpus, 0, NULL);
944 EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
947 * cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
948 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
949 * @capacitance: dynamic power coefficient for these cpus
950 * @plat_static_func: function to calculate the static power consumed by these
951 * cpus (optional)
953 * This interface function registers the cpufreq cooling device with
954 * the name "thermal-cpufreq-%x". This api can support multiple
955 * instances of cpufreq cooling devices. Using this function, the
956 * cooling device will implement the power extensions by using a
957 * simple cpu power model. The cpus must have registered their OPPs
958 * using the OPP library.
960 * An optional @plat_static_func may be provided to calculate the
961 * static power consumed by these cpus. If the platform's static
962 * power consumption is unknown or negligible, make it NULL.
964 * Return: a valid struct thermal_cooling_device pointer on success,
965 * on failure, it returns a corresponding ERR_PTR().
967 struct thermal_cooling_device *
968 cpufreq_power_cooling_register(const struct cpumask *clip_cpus, u32 capacitance,
969 get_static_t plat_static_func)
971 return __cpufreq_cooling_register(NULL, clip_cpus, capacitance,
972 plat_static_func);
974 EXPORT_SYMBOL(cpufreq_power_cooling_register);
977 * of_cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
978 * @np: a valid struct device_node to the cooling device device tree node
979 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
980 * @capacitance: dynamic power coefficient for these cpus
981 * @plat_static_func: function to calculate the static power consumed by these
982 * cpus (optional)
984 * This interface function registers the cpufreq cooling device with
985 * the name "thermal-cpufreq-%x". This api can support multiple
986 * instances of cpufreq cooling devices. Using this API, the cpufreq
987 * cooling device will be linked to the device tree node provided.
988 * Using this function, the cooling device will implement the power
989 * extensions by using a simple cpu power model. The cpus must have
990 * registered their OPPs using the OPP library.
992 * An optional @plat_static_func may be provided to calculate the
993 * static power consumed by these cpus. If the platform's static
994 * power consumption is unknown or negligible, make it NULL.
996 * Return: a valid struct thermal_cooling_device pointer on success,
997 * on failure, it returns a corresponding ERR_PTR().
999 struct thermal_cooling_device *
1000 of_cpufreq_power_cooling_register(struct device_node *np,
1001 const struct cpumask *clip_cpus,
1002 u32 capacitance,
1003 get_static_t plat_static_func)
1005 if (!np)
1006 return ERR_PTR(-EINVAL);
1008 return __cpufreq_cooling_register(np, clip_cpus, capacitance,
1009 plat_static_func);
1011 EXPORT_SYMBOL(of_cpufreq_power_cooling_register);
1014 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
1015 * @cdev: thermal cooling device pointer.
1017 * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
1019 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
1021 struct cpufreq_cooling_device *cpufreq_dev;
1023 if (!cdev)
1024 return;
1026 cpufreq_dev = cdev->devdata;
1028 /* Unregister the notifier for the last cpufreq cooling device */
1029 mutex_lock(&cooling_cpufreq_lock);
1030 if (!--cpufreq_dev_count)
1031 cpufreq_unregister_notifier(&thermal_cpufreq_notifier_block,
1032 CPUFREQ_POLICY_NOTIFIER);
1034 mutex_lock(&cooling_list_lock);
1035 list_del(&cpufreq_dev->node);
1036 mutex_unlock(&cooling_list_lock);
1038 mutex_unlock(&cooling_cpufreq_lock);
1040 thermal_cooling_device_unregister(cpufreq_dev->cool_dev);
1041 release_idr(&cpufreq_idr, cpufreq_dev->id);
1042 kfree(cpufreq_dev->time_in_idle_timestamp);
1043 kfree(cpufreq_dev->time_in_idle);
1044 kfree(cpufreq_dev->freq_table);
1045 kfree(cpufreq_dev);
1047 EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);