ocfs2: fix several issues of append dio
[linux/fpc-iii.git] / kernel / sched / core.c
blob3595403921bd5be10c3e5e591bf04916e654423d
1 /*
2 * kernel/sched/core.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
98 void update_rq_clock(struct rq *rq)
100 s64 delta;
102 lockdep_assert_held(&rq->lock);
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 return;
107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 if (delta < 0)
109 return;
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
115 * Debugging: various feature bits
118 #define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
125 #undef SCHED_FEAT
127 #ifdef CONFIG_SCHED_DEBUG
128 #define SCHED_FEAT(name, enabled) \
129 #name ,
131 static const char * const sched_feat_names[] = {
132 #include "features.h"
135 #undef SCHED_FEAT
137 static int sched_feat_show(struct seq_file *m, void *v)
139 int i;
141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
146 seq_puts(m, "\n");
148 return 0;
151 #ifdef HAVE_JUMP_LABEL
153 #define jump_label_key__true STATIC_KEY_INIT_TRUE
154 #define jump_label_key__false STATIC_KEY_INIT_FALSE
156 #define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 #include "features.h"
163 #undef SCHED_FEAT
165 static void sched_feat_disable(int i)
167 static_key_disable(&sched_feat_keys[i]);
170 static void sched_feat_enable(int i)
172 static_key_enable(&sched_feat_keys[i]);
174 #else
175 static void sched_feat_disable(int i) { };
176 static void sched_feat_enable(int i) { };
177 #endif /* HAVE_JUMP_LABEL */
179 static int sched_feat_set(char *cmp)
181 int i;
182 int neg = 0;
184 if (strncmp(cmp, "NO_", 3) == 0) {
185 neg = 1;
186 cmp += 3;
189 for (i = 0; i < __SCHED_FEAT_NR; i++) {
190 if (strcmp(cmp, sched_feat_names[i]) == 0) {
191 if (neg) {
192 sysctl_sched_features &= ~(1UL << i);
193 sched_feat_disable(i);
194 } else {
195 sysctl_sched_features |= (1UL << i);
196 sched_feat_enable(i);
198 break;
202 return i;
205 static ssize_t
206 sched_feat_write(struct file *filp, const char __user *ubuf,
207 size_t cnt, loff_t *ppos)
209 char buf[64];
210 char *cmp;
211 int i;
212 struct inode *inode;
214 if (cnt > 63)
215 cnt = 63;
217 if (copy_from_user(&buf, ubuf, cnt))
218 return -EFAULT;
220 buf[cnt] = 0;
221 cmp = strstrip(buf);
223 /* Ensure the static_key remains in a consistent state */
224 inode = file_inode(filp);
225 mutex_lock(&inode->i_mutex);
226 i = sched_feat_set(cmp);
227 mutex_unlock(&inode->i_mutex);
228 if (i == __SCHED_FEAT_NR)
229 return -EINVAL;
231 *ppos += cnt;
233 return cnt;
236 static int sched_feat_open(struct inode *inode, struct file *filp)
238 return single_open(filp, sched_feat_show, NULL);
241 static const struct file_operations sched_feat_fops = {
242 .open = sched_feat_open,
243 .write = sched_feat_write,
244 .read = seq_read,
245 .llseek = seq_lseek,
246 .release = single_release,
249 static __init int sched_init_debug(void)
251 debugfs_create_file("sched_features", 0644, NULL, NULL,
252 &sched_feat_fops);
254 return 0;
256 late_initcall(sched_init_debug);
257 #endif /* CONFIG_SCHED_DEBUG */
260 * Number of tasks to iterate in a single balance run.
261 * Limited because this is done with IRQs disabled.
263 const_debug unsigned int sysctl_sched_nr_migrate = 32;
266 * period over which we average the RT time consumption, measured
267 * in ms.
269 * default: 1s
271 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
274 * period over which we measure -rt task cpu usage in us.
275 * default: 1s
277 unsigned int sysctl_sched_rt_period = 1000000;
279 __read_mostly int scheduler_running;
282 * part of the period that we allow rt tasks to run in us.
283 * default: 0.95s
285 int sysctl_sched_rt_runtime = 950000;
287 /* cpus with isolated domains */
288 cpumask_var_t cpu_isolated_map;
291 * this_rq_lock - lock this runqueue and disable interrupts.
293 static struct rq *this_rq_lock(void)
294 __acquires(rq->lock)
296 struct rq *rq;
298 local_irq_disable();
299 rq = this_rq();
300 raw_spin_lock(&rq->lock);
302 return rq;
305 #ifdef CONFIG_SCHED_HRTICK
307 * Use HR-timers to deliver accurate preemption points.
310 static void hrtick_clear(struct rq *rq)
312 if (hrtimer_active(&rq->hrtick_timer))
313 hrtimer_cancel(&rq->hrtick_timer);
317 * High-resolution timer tick.
318 * Runs from hardirq context with interrupts disabled.
320 static enum hrtimer_restart hrtick(struct hrtimer *timer)
322 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
324 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
326 raw_spin_lock(&rq->lock);
327 update_rq_clock(rq);
328 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
329 raw_spin_unlock(&rq->lock);
331 return HRTIMER_NORESTART;
334 #ifdef CONFIG_SMP
336 static void __hrtick_restart(struct rq *rq)
338 struct hrtimer *timer = &rq->hrtick_timer;
340 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
344 * called from hardirq (IPI) context
346 static void __hrtick_start(void *arg)
348 struct rq *rq = arg;
350 raw_spin_lock(&rq->lock);
351 __hrtick_restart(rq);
352 rq->hrtick_csd_pending = 0;
353 raw_spin_unlock(&rq->lock);
357 * Called to set the hrtick timer state.
359 * called with rq->lock held and irqs disabled
361 void hrtick_start(struct rq *rq, u64 delay)
363 struct hrtimer *timer = &rq->hrtick_timer;
364 ktime_t time;
365 s64 delta;
368 * Don't schedule slices shorter than 10000ns, that just
369 * doesn't make sense and can cause timer DoS.
371 delta = max_t(s64, delay, 10000LL);
372 time = ktime_add_ns(timer->base->get_time(), delta);
374 hrtimer_set_expires(timer, time);
376 if (rq == this_rq()) {
377 __hrtick_restart(rq);
378 } else if (!rq->hrtick_csd_pending) {
379 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
380 rq->hrtick_csd_pending = 1;
384 static int
385 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
387 int cpu = (int)(long)hcpu;
389 switch (action) {
390 case CPU_UP_CANCELED:
391 case CPU_UP_CANCELED_FROZEN:
392 case CPU_DOWN_PREPARE:
393 case CPU_DOWN_PREPARE_FROZEN:
394 case CPU_DEAD:
395 case CPU_DEAD_FROZEN:
396 hrtick_clear(cpu_rq(cpu));
397 return NOTIFY_OK;
400 return NOTIFY_DONE;
403 static __init void init_hrtick(void)
405 hotcpu_notifier(hotplug_hrtick, 0);
407 #else
409 * Called to set the hrtick timer state.
411 * called with rq->lock held and irqs disabled
413 void hrtick_start(struct rq *rq, u64 delay)
416 * Don't schedule slices shorter than 10000ns, that just
417 * doesn't make sense. Rely on vruntime for fairness.
419 delay = max_t(u64, delay, 10000LL);
420 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
421 HRTIMER_MODE_REL_PINNED);
424 static inline void init_hrtick(void)
427 #endif /* CONFIG_SMP */
429 static void init_rq_hrtick(struct rq *rq)
431 #ifdef CONFIG_SMP
432 rq->hrtick_csd_pending = 0;
434 rq->hrtick_csd.flags = 0;
435 rq->hrtick_csd.func = __hrtick_start;
436 rq->hrtick_csd.info = rq;
437 #endif
439 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
440 rq->hrtick_timer.function = hrtick;
442 #else /* CONFIG_SCHED_HRTICK */
443 static inline void hrtick_clear(struct rq *rq)
447 static inline void init_rq_hrtick(struct rq *rq)
451 static inline void init_hrtick(void)
454 #endif /* CONFIG_SCHED_HRTICK */
457 * cmpxchg based fetch_or, macro so it works for different integer types
459 #define fetch_or(ptr, val) \
460 ({ typeof(*(ptr)) __old, __val = *(ptr); \
461 for (;;) { \
462 __old = cmpxchg((ptr), __val, __val | (val)); \
463 if (__old == __val) \
464 break; \
465 __val = __old; \
467 __old; \
470 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
472 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473 * this avoids any races wrt polling state changes and thereby avoids
474 * spurious IPIs.
476 static bool set_nr_and_not_polling(struct task_struct *p)
478 struct thread_info *ti = task_thread_info(p);
479 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
483 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
485 * If this returns true, then the idle task promises to call
486 * sched_ttwu_pending() and reschedule soon.
488 static bool set_nr_if_polling(struct task_struct *p)
490 struct thread_info *ti = task_thread_info(p);
491 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
493 for (;;) {
494 if (!(val & _TIF_POLLING_NRFLAG))
495 return false;
496 if (val & _TIF_NEED_RESCHED)
497 return true;
498 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
499 if (old == val)
500 break;
501 val = old;
503 return true;
506 #else
507 static bool set_nr_and_not_polling(struct task_struct *p)
509 set_tsk_need_resched(p);
510 return true;
513 #ifdef CONFIG_SMP
514 static bool set_nr_if_polling(struct task_struct *p)
516 return false;
518 #endif
519 #endif
521 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
523 struct wake_q_node *node = &task->wake_q;
526 * Atomically grab the task, if ->wake_q is !nil already it means
527 * its already queued (either by us or someone else) and will get the
528 * wakeup due to that.
530 * This cmpxchg() implies a full barrier, which pairs with the write
531 * barrier implied by the wakeup in wake_up_list().
533 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
534 return;
536 get_task_struct(task);
539 * The head is context local, there can be no concurrency.
541 *head->lastp = node;
542 head->lastp = &node->next;
545 void wake_up_q(struct wake_q_head *head)
547 struct wake_q_node *node = head->first;
549 while (node != WAKE_Q_TAIL) {
550 struct task_struct *task;
552 task = container_of(node, struct task_struct, wake_q);
553 BUG_ON(!task);
554 /* task can safely be re-inserted now */
555 node = node->next;
556 task->wake_q.next = NULL;
559 * wake_up_process() implies a wmb() to pair with the queueing
560 * in wake_q_add() so as not to miss wakeups.
562 wake_up_process(task);
563 put_task_struct(task);
568 * resched_curr - mark rq's current task 'to be rescheduled now'.
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
574 void resched_curr(struct rq *rq)
576 struct task_struct *curr = rq->curr;
577 int cpu;
579 lockdep_assert_held(&rq->lock);
581 if (test_tsk_need_resched(curr))
582 return;
584 cpu = cpu_of(rq);
586 if (cpu == smp_processor_id()) {
587 set_tsk_need_resched(curr);
588 set_preempt_need_resched();
589 return;
592 if (set_nr_and_not_polling(curr))
593 smp_send_reschedule(cpu);
594 else
595 trace_sched_wake_idle_without_ipi(cpu);
598 void resched_cpu(int cpu)
600 struct rq *rq = cpu_rq(cpu);
601 unsigned long flags;
603 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
604 return;
605 resched_curr(rq);
606 raw_spin_unlock_irqrestore(&rq->lock, flags);
609 #ifdef CONFIG_SMP
610 #ifdef CONFIG_NO_HZ_COMMON
612 * In the semi idle case, use the nearest busy cpu for migrating timers
613 * from an idle cpu. This is good for power-savings.
615 * We don't do similar optimization for completely idle system, as
616 * selecting an idle cpu will add more delays to the timers than intended
617 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
619 int get_nohz_timer_target(void)
621 int i, cpu = smp_processor_id();
622 struct sched_domain *sd;
624 if (!idle_cpu(cpu))
625 return cpu;
627 rcu_read_lock();
628 for_each_domain(cpu, sd) {
629 for_each_cpu(i, sched_domain_span(sd)) {
630 if (!idle_cpu(i)) {
631 cpu = i;
632 goto unlock;
636 unlock:
637 rcu_read_unlock();
638 return cpu;
641 * When add_timer_on() enqueues a timer into the timer wheel of an
642 * idle CPU then this timer might expire before the next timer event
643 * which is scheduled to wake up that CPU. In case of a completely
644 * idle system the next event might even be infinite time into the
645 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
646 * leaves the inner idle loop so the newly added timer is taken into
647 * account when the CPU goes back to idle and evaluates the timer
648 * wheel for the next timer event.
650 static void wake_up_idle_cpu(int cpu)
652 struct rq *rq = cpu_rq(cpu);
654 if (cpu == smp_processor_id())
655 return;
657 if (set_nr_and_not_polling(rq->idle))
658 smp_send_reschedule(cpu);
659 else
660 trace_sched_wake_idle_without_ipi(cpu);
663 static bool wake_up_full_nohz_cpu(int cpu)
666 * We just need the target to call irq_exit() and re-evaluate
667 * the next tick. The nohz full kick at least implies that.
668 * If needed we can still optimize that later with an
669 * empty IRQ.
671 if (tick_nohz_full_cpu(cpu)) {
672 if (cpu != smp_processor_id() ||
673 tick_nohz_tick_stopped())
674 tick_nohz_full_kick_cpu(cpu);
675 return true;
678 return false;
681 void wake_up_nohz_cpu(int cpu)
683 if (!wake_up_full_nohz_cpu(cpu))
684 wake_up_idle_cpu(cpu);
687 static inline bool got_nohz_idle_kick(void)
689 int cpu = smp_processor_id();
691 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
692 return false;
694 if (idle_cpu(cpu) && !need_resched())
695 return true;
698 * We can't run Idle Load Balance on this CPU for this time so we
699 * cancel it and clear NOHZ_BALANCE_KICK
701 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
702 return false;
705 #else /* CONFIG_NO_HZ_COMMON */
707 static inline bool got_nohz_idle_kick(void)
709 return false;
712 #endif /* CONFIG_NO_HZ_COMMON */
714 #ifdef CONFIG_NO_HZ_FULL
715 bool sched_can_stop_tick(void)
718 * FIFO realtime policy runs the highest priority task. Other runnable
719 * tasks are of a lower priority. The scheduler tick does nothing.
721 if (current->policy == SCHED_FIFO)
722 return true;
725 * Round-robin realtime tasks time slice with other tasks at the same
726 * realtime priority. Is this task the only one at this priority?
728 if (current->policy == SCHED_RR) {
729 struct sched_rt_entity *rt_se = &current->rt;
731 return rt_se->run_list.prev == rt_se->run_list.next;
735 * More than one running task need preemption.
736 * nr_running update is assumed to be visible
737 * after IPI is sent from wakers.
739 if (this_rq()->nr_running > 1)
740 return false;
742 return true;
744 #endif /* CONFIG_NO_HZ_FULL */
746 void sched_avg_update(struct rq *rq)
748 s64 period = sched_avg_period();
750 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
752 * Inline assembly required to prevent the compiler
753 * optimising this loop into a divmod call.
754 * See __iter_div_u64_rem() for another example of this.
756 asm("" : "+rm" (rq->age_stamp));
757 rq->age_stamp += period;
758 rq->rt_avg /= 2;
762 #endif /* CONFIG_SMP */
764 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
765 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
767 * Iterate task_group tree rooted at *from, calling @down when first entering a
768 * node and @up when leaving it for the final time.
770 * Caller must hold rcu_lock or sufficient equivalent.
772 int walk_tg_tree_from(struct task_group *from,
773 tg_visitor down, tg_visitor up, void *data)
775 struct task_group *parent, *child;
776 int ret;
778 parent = from;
780 down:
781 ret = (*down)(parent, data);
782 if (ret)
783 goto out;
784 list_for_each_entry_rcu(child, &parent->children, siblings) {
785 parent = child;
786 goto down;
789 continue;
791 ret = (*up)(parent, data);
792 if (ret || parent == from)
793 goto out;
795 child = parent;
796 parent = parent->parent;
797 if (parent)
798 goto up;
799 out:
800 return ret;
803 int tg_nop(struct task_group *tg, void *data)
805 return 0;
807 #endif
809 static void set_load_weight(struct task_struct *p)
811 int prio = p->static_prio - MAX_RT_PRIO;
812 struct load_weight *load = &p->se.load;
815 * SCHED_IDLE tasks get minimal weight:
817 if (p->policy == SCHED_IDLE) {
818 load->weight = scale_load(WEIGHT_IDLEPRIO);
819 load->inv_weight = WMULT_IDLEPRIO;
820 return;
823 load->weight = scale_load(prio_to_weight[prio]);
824 load->inv_weight = prio_to_wmult[prio];
827 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
829 update_rq_clock(rq);
830 sched_info_queued(rq, p);
831 p->sched_class->enqueue_task(rq, p, flags);
834 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
836 update_rq_clock(rq);
837 sched_info_dequeued(rq, p);
838 p->sched_class->dequeue_task(rq, p, flags);
841 void activate_task(struct rq *rq, struct task_struct *p, int flags)
843 if (task_contributes_to_load(p))
844 rq->nr_uninterruptible--;
846 enqueue_task(rq, p, flags);
849 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
851 if (task_contributes_to_load(p))
852 rq->nr_uninterruptible++;
854 dequeue_task(rq, p, flags);
857 static void update_rq_clock_task(struct rq *rq, s64 delta)
860 * In theory, the compile should just see 0 here, and optimize out the call
861 * to sched_rt_avg_update. But I don't trust it...
863 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
864 s64 steal = 0, irq_delta = 0;
865 #endif
866 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
867 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
870 * Since irq_time is only updated on {soft,}irq_exit, we might run into
871 * this case when a previous update_rq_clock() happened inside a
872 * {soft,}irq region.
874 * When this happens, we stop ->clock_task and only update the
875 * prev_irq_time stamp to account for the part that fit, so that a next
876 * update will consume the rest. This ensures ->clock_task is
877 * monotonic.
879 * It does however cause some slight miss-attribution of {soft,}irq
880 * time, a more accurate solution would be to update the irq_time using
881 * the current rq->clock timestamp, except that would require using
882 * atomic ops.
884 if (irq_delta > delta)
885 irq_delta = delta;
887 rq->prev_irq_time += irq_delta;
888 delta -= irq_delta;
889 #endif
890 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
891 if (static_key_false((&paravirt_steal_rq_enabled))) {
892 steal = paravirt_steal_clock(cpu_of(rq));
893 steal -= rq->prev_steal_time_rq;
895 if (unlikely(steal > delta))
896 steal = delta;
898 rq->prev_steal_time_rq += steal;
899 delta -= steal;
901 #endif
903 rq->clock_task += delta;
905 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
906 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
907 sched_rt_avg_update(rq, irq_delta + steal);
908 #endif
911 void sched_set_stop_task(int cpu, struct task_struct *stop)
913 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
914 struct task_struct *old_stop = cpu_rq(cpu)->stop;
916 if (stop) {
918 * Make it appear like a SCHED_FIFO task, its something
919 * userspace knows about and won't get confused about.
921 * Also, it will make PI more or less work without too
922 * much confusion -- but then, stop work should not
923 * rely on PI working anyway.
925 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
927 stop->sched_class = &stop_sched_class;
930 cpu_rq(cpu)->stop = stop;
932 if (old_stop) {
934 * Reset it back to a normal scheduling class so that
935 * it can die in pieces.
937 old_stop->sched_class = &rt_sched_class;
942 * __normal_prio - return the priority that is based on the static prio
944 static inline int __normal_prio(struct task_struct *p)
946 return p->static_prio;
950 * Calculate the expected normal priority: i.e. priority
951 * without taking RT-inheritance into account. Might be
952 * boosted by interactivity modifiers. Changes upon fork,
953 * setprio syscalls, and whenever the interactivity
954 * estimator recalculates.
956 static inline int normal_prio(struct task_struct *p)
958 int prio;
960 if (task_has_dl_policy(p))
961 prio = MAX_DL_PRIO-1;
962 else if (task_has_rt_policy(p))
963 prio = MAX_RT_PRIO-1 - p->rt_priority;
964 else
965 prio = __normal_prio(p);
966 return prio;
970 * Calculate the current priority, i.e. the priority
971 * taken into account by the scheduler. This value might
972 * be boosted by RT tasks, or might be boosted by
973 * interactivity modifiers. Will be RT if the task got
974 * RT-boosted. If not then it returns p->normal_prio.
976 static int effective_prio(struct task_struct *p)
978 p->normal_prio = normal_prio(p);
980 * If we are RT tasks or we were boosted to RT priority,
981 * keep the priority unchanged. Otherwise, update priority
982 * to the normal priority:
984 if (!rt_prio(p->prio))
985 return p->normal_prio;
986 return p->prio;
990 * task_curr - is this task currently executing on a CPU?
991 * @p: the task in question.
993 * Return: 1 if the task is currently executing. 0 otherwise.
995 inline int task_curr(const struct task_struct *p)
997 return cpu_curr(task_cpu(p)) == p;
1001 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1002 * use the balance_callback list if you want balancing.
1004 * this means any call to check_class_changed() must be followed by a call to
1005 * balance_callback().
1007 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1008 const struct sched_class *prev_class,
1009 int oldprio)
1011 if (prev_class != p->sched_class) {
1012 if (prev_class->switched_from)
1013 prev_class->switched_from(rq, p);
1015 p->sched_class->switched_to(rq, p);
1016 } else if (oldprio != p->prio || dl_task(p))
1017 p->sched_class->prio_changed(rq, p, oldprio);
1020 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1022 const struct sched_class *class;
1024 if (p->sched_class == rq->curr->sched_class) {
1025 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1026 } else {
1027 for_each_class(class) {
1028 if (class == rq->curr->sched_class)
1029 break;
1030 if (class == p->sched_class) {
1031 resched_curr(rq);
1032 break;
1038 * A queue event has occurred, and we're going to schedule. In
1039 * this case, we can save a useless back to back clock update.
1041 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1042 rq_clock_skip_update(rq, true);
1045 #ifdef CONFIG_SMP
1047 * This is how migration works:
1049 * 1) we invoke migration_cpu_stop() on the target CPU using
1050 * stop_one_cpu().
1051 * 2) stopper starts to run (implicitly forcing the migrated thread
1052 * off the CPU)
1053 * 3) it checks whether the migrated task is still in the wrong runqueue.
1054 * 4) if it's in the wrong runqueue then the migration thread removes
1055 * it and puts it into the right queue.
1056 * 5) stopper completes and stop_one_cpu() returns and the migration
1057 * is done.
1061 * move_queued_task - move a queued task to new rq.
1063 * Returns (locked) new rq. Old rq's lock is released.
1065 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1067 lockdep_assert_held(&rq->lock);
1069 dequeue_task(rq, p, 0);
1070 p->on_rq = TASK_ON_RQ_MIGRATING;
1071 set_task_cpu(p, new_cpu);
1072 raw_spin_unlock(&rq->lock);
1074 rq = cpu_rq(new_cpu);
1076 raw_spin_lock(&rq->lock);
1077 BUG_ON(task_cpu(p) != new_cpu);
1078 p->on_rq = TASK_ON_RQ_QUEUED;
1079 enqueue_task(rq, p, 0);
1080 check_preempt_curr(rq, p, 0);
1082 return rq;
1085 struct migration_arg {
1086 struct task_struct *task;
1087 int dest_cpu;
1091 * Move (not current) task off this cpu, onto dest cpu. We're doing
1092 * this because either it can't run here any more (set_cpus_allowed()
1093 * away from this CPU, or CPU going down), or because we're
1094 * attempting to rebalance this task on exec (sched_exec).
1096 * So we race with normal scheduler movements, but that's OK, as long
1097 * as the task is no longer on this CPU.
1099 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1101 if (unlikely(!cpu_active(dest_cpu)))
1102 return rq;
1104 /* Affinity changed (again). */
1105 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1106 return rq;
1108 rq = move_queued_task(rq, p, dest_cpu);
1110 return rq;
1114 * migration_cpu_stop - this will be executed by a highprio stopper thread
1115 * and performs thread migration by bumping thread off CPU then
1116 * 'pushing' onto another runqueue.
1118 static int migration_cpu_stop(void *data)
1120 struct migration_arg *arg = data;
1121 struct task_struct *p = arg->task;
1122 struct rq *rq = this_rq();
1125 * The original target cpu might have gone down and we might
1126 * be on another cpu but it doesn't matter.
1128 local_irq_disable();
1130 * We need to explicitly wake pending tasks before running
1131 * __migrate_task() such that we will not miss enforcing cpus_allowed
1132 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1134 sched_ttwu_pending();
1136 raw_spin_lock(&p->pi_lock);
1137 raw_spin_lock(&rq->lock);
1139 * If task_rq(p) != rq, it cannot be migrated here, because we're
1140 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1141 * we're holding p->pi_lock.
1143 if (task_rq(p) == rq && task_on_rq_queued(p))
1144 rq = __migrate_task(rq, p, arg->dest_cpu);
1145 raw_spin_unlock(&rq->lock);
1146 raw_spin_unlock(&p->pi_lock);
1148 local_irq_enable();
1149 return 0;
1153 * sched_class::set_cpus_allowed must do the below, but is not required to
1154 * actually call this function.
1156 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1158 cpumask_copy(&p->cpus_allowed, new_mask);
1159 p->nr_cpus_allowed = cpumask_weight(new_mask);
1162 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1164 struct rq *rq = task_rq(p);
1165 bool queued, running;
1167 lockdep_assert_held(&p->pi_lock);
1169 queued = task_on_rq_queued(p);
1170 running = task_current(rq, p);
1172 if (queued) {
1174 * Because __kthread_bind() calls this on blocked tasks without
1175 * holding rq->lock.
1177 lockdep_assert_held(&rq->lock);
1178 dequeue_task(rq, p, 0);
1180 if (running)
1181 put_prev_task(rq, p);
1183 p->sched_class->set_cpus_allowed(p, new_mask);
1185 if (running)
1186 p->sched_class->set_curr_task(rq);
1187 if (queued)
1188 enqueue_task(rq, p, 0);
1192 * Change a given task's CPU affinity. Migrate the thread to a
1193 * proper CPU and schedule it away if the CPU it's executing on
1194 * is removed from the allowed bitmask.
1196 * NOTE: the caller must have a valid reference to the task, the
1197 * task must not exit() & deallocate itself prematurely. The
1198 * call is not atomic; no spinlocks may be held.
1200 static int __set_cpus_allowed_ptr(struct task_struct *p,
1201 const struct cpumask *new_mask, bool check)
1203 unsigned long flags;
1204 struct rq *rq;
1205 unsigned int dest_cpu;
1206 int ret = 0;
1208 rq = task_rq_lock(p, &flags);
1211 * Must re-check here, to close a race against __kthread_bind(),
1212 * sched_setaffinity() is not guaranteed to observe the flag.
1214 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1215 ret = -EINVAL;
1216 goto out;
1219 if (cpumask_equal(&p->cpus_allowed, new_mask))
1220 goto out;
1222 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1223 ret = -EINVAL;
1224 goto out;
1227 do_set_cpus_allowed(p, new_mask);
1229 /* Can the task run on the task's current CPU? If so, we're done */
1230 if (cpumask_test_cpu(task_cpu(p), new_mask))
1231 goto out;
1233 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1234 if (task_running(rq, p) || p->state == TASK_WAKING) {
1235 struct migration_arg arg = { p, dest_cpu };
1236 /* Need help from migration thread: drop lock and wait. */
1237 task_rq_unlock(rq, p, &flags);
1238 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1239 tlb_migrate_finish(p->mm);
1240 return 0;
1241 } else if (task_on_rq_queued(p)) {
1243 * OK, since we're going to drop the lock immediately
1244 * afterwards anyway.
1246 lockdep_unpin_lock(&rq->lock);
1247 rq = move_queued_task(rq, p, dest_cpu);
1248 lockdep_pin_lock(&rq->lock);
1250 out:
1251 task_rq_unlock(rq, p, &flags);
1253 return ret;
1256 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1258 return __set_cpus_allowed_ptr(p, new_mask, false);
1260 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1262 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1264 #ifdef CONFIG_SCHED_DEBUG
1266 * We should never call set_task_cpu() on a blocked task,
1267 * ttwu() will sort out the placement.
1269 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1270 !p->on_rq);
1272 #ifdef CONFIG_LOCKDEP
1274 * The caller should hold either p->pi_lock or rq->lock, when changing
1275 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1277 * sched_move_task() holds both and thus holding either pins the cgroup,
1278 * see task_group().
1280 * Furthermore, all task_rq users should acquire both locks, see
1281 * task_rq_lock().
1283 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1284 lockdep_is_held(&task_rq(p)->lock)));
1285 #endif
1286 #endif
1288 trace_sched_migrate_task(p, new_cpu);
1290 if (task_cpu(p) != new_cpu) {
1291 if (p->sched_class->migrate_task_rq)
1292 p->sched_class->migrate_task_rq(p, new_cpu);
1293 p->se.nr_migrations++;
1294 perf_event_task_migrate(p);
1297 __set_task_cpu(p, new_cpu);
1300 static void __migrate_swap_task(struct task_struct *p, int cpu)
1302 if (task_on_rq_queued(p)) {
1303 struct rq *src_rq, *dst_rq;
1305 src_rq = task_rq(p);
1306 dst_rq = cpu_rq(cpu);
1308 deactivate_task(src_rq, p, 0);
1309 set_task_cpu(p, cpu);
1310 activate_task(dst_rq, p, 0);
1311 check_preempt_curr(dst_rq, p, 0);
1312 } else {
1314 * Task isn't running anymore; make it appear like we migrated
1315 * it before it went to sleep. This means on wakeup we make the
1316 * previous cpu our targer instead of where it really is.
1318 p->wake_cpu = cpu;
1322 struct migration_swap_arg {
1323 struct task_struct *src_task, *dst_task;
1324 int src_cpu, dst_cpu;
1327 static int migrate_swap_stop(void *data)
1329 struct migration_swap_arg *arg = data;
1330 struct rq *src_rq, *dst_rq;
1331 int ret = -EAGAIN;
1333 src_rq = cpu_rq(arg->src_cpu);
1334 dst_rq = cpu_rq(arg->dst_cpu);
1336 double_raw_lock(&arg->src_task->pi_lock,
1337 &arg->dst_task->pi_lock);
1338 double_rq_lock(src_rq, dst_rq);
1339 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1340 goto unlock;
1342 if (task_cpu(arg->src_task) != arg->src_cpu)
1343 goto unlock;
1345 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1346 goto unlock;
1348 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1349 goto unlock;
1351 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1352 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1354 ret = 0;
1356 unlock:
1357 double_rq_unlock(src_rq, dst_rq);
1358 raw_spin_unlock(&arg->dst_task->pi_lock);
1359 raw_spin_unlock(&arg->src_task->pi_lock);
1361 return ret;
1365 * Cross migrate two tasks
1367 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1369 struct migration_swap_arg arg;
1370 int ret = -EINVAL;
1372 arg = (struct migration_swap_arg){
1373 .src_task = cur,
1374 .src_cpu = task_cpu(cur),
1375 .dst_task = p,
1376 .dst_cpu = task_cpu(p),
1379 if (arg.src_cpu == arg.dst_cpu)
1380 goto out;
1383 * These three tests are all lockless; this is OK since all of them
1384 * will be re-checked with proper locks held further down the line.
1386 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1387 goto out;
1389 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1390 goto out;
1392 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1393 goto out;
1395 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1396 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1398 out:
1399 return ret;
1403 * wait_task_inactive - wait for a thread to unschedule.
1405 * If @match_state is nonzero, it's the @p->state value just checked and
1406 * not expected to change. If it changes, i.e. @p might have woken up,
1407 * then return zero. When we succeed in waiting for @p to be off its CPU,
1408 * we return a positive number (its total switch count). If a second call
1409 * a short while later returns the same number, the caller can be sure that
1410 * @p has remained unscheduled the whole time.
1412 * The caller must ensure that the task *will* unschedule sometime soon,
1413 * else this function might spin for a *long* time. This function can't
1414 * be called with interrupts off, or it may introduce deadlock with
1415 * smp_call_function() if an IPI is sent by the same process we are
1416 * waiting to become inactive.
1418 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1420 unsigned long flags;
1421 int running, queued;
1422 unsigned long ncsw;
1423 struct rq *rq;
1425 for (;;) {
1427 * We do the initial early heuristics without holding
1428 * any task-queue locks at all. We'll only try to get
1429 * the runqueue lock when things look like they will
1430 * work out!
1432 rq = task_rq(p);
1435 * If the task is actively running on another CPU
1436 * still, just relax and busy-wait without holding
1437 * any locks.
1439 * NOTE! Since we don't hold any locks, it's not
1440 * even sure that "rq" stays as the right runqueue!
1441 * But we don't care, since "task_running()" will
1442 * return false if the runqueue has changed and p
1443 * is actually now running somewhere else!
1445 while (task_running(rq, p)) {
1446 if (match_state && unlikely(p->state != match_state))
1447 return 0;
1448 cpu_relax();
1452 * Ok, time to look more closely! We need the rq
1453 * lock now, to be *sure*. If we're wrong, we'll
1454 * just go back and repeat.
1456 rq = task_rq_lock(p, &flags);
1457 trace_sched_wait_task(p);
1458 running = task_running(rq, p);
1459 queued = task_on_rq_queued(p);
1460 ncsw = 0;
1461 if (!match_state || p->state == match_state)
1462 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1463 task_rq_unlock(rq, p, &flags);
1466 * If it changed from the expected state, bail out now.
1468 if (unlikely(!ncsw))
1469 break;
1472 * Was it really running after all now that we
1473 * checked with the proper locks actually held?
1475 * Oops. Go back and try again..
1477 if (unlikely(running)) {
1478 cpu_relax();
1479 continue;
1483 * It's not enough that it's not actively running,
1484 * it must be off the runqueue _entirely_, and not
1485 * preempted!
1487 * So if it was still runnable (but just not actively
1488 * running right now), it's preempted, and we should
1489 * yield - it could be a while.
1491 if (unlikely(queued)) {
1492 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1494 set_current_state(TASK_UNINTERRUPTIBLE);
1495 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1496 continue;
1500 * Ahh, all good. It wasn't running, and it wasn't
1501 * runnable, which means that it will never become
1502 * running in the future either. We're all done!
1504 break;
1507 return ncsw;
1510 /***
1511 * kick_process - kick a running thread to enter/exit the kernel
1512 * @p: the to-be-kicked thread
1514 * Cause a process which is running on another CPU to enter
1515 * kernel-mode, without any delay. (to get signals handled.)
1517 * NOTE: this function doesn't have to take the runqueue lock,
1518 * because all it wants to ensure is that the remote task enters
1519 * the kernel. If the IPI races and the task has been migrated
1520 * to another CPU then no harm is done and the purpose has been
1521 * achieved as well.
1523 void kick_process(struct task_struct *p)
1525 int cpu;
1527 preempt_disable();
1528 cpu = task_cpu(p);
1529 if ((cpu != smp_processor_id()) && task_curr(p))
1530 smp_send_reschedule(cpu);
1531 preempt_enable();
1533 EXPORT_SYMBOL_GPL(kick_process);
1536 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1538 static int select_fallback_rq(int cpu, struct task_struct *p)
1540 int nid = cpu_to_node(cpu);
1541 const struct cpumask *nodemask = NULL;
1542 enum { cpuset, possible, fail } state = cpuset;
1543 int dest_cpu;
1546 * If the node that the cpu is on has been offlined, cpu_to_node()
1547 * will return -1. There is no cpu on the node, and we should
1548 * select the cpu on the other node.
1550 if (nid != -1) {
1551 nodemask = cpumask_of_node(nid);
1553 /* Look for allowed, online CPU in same node. */
1554 for_each_cpu(dest_cpu, nodemask) {
1555 if (!cpu_online(dest_cpu))
1556 continue;
1557 if (!cpu_active(dest_cpu))
1558 continue;
1559 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1560 return dest_cpu;
1564 for (;;) {
1565 /* Any allowed, online CPU? */
1566 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1567 if (!cpu_online(dest_cpu))
1568 continue;
1569 if (!cpu_active(dest_cpu))
1570 continue;
1571 goto out;
1574 switch (state) {
1575 case cpuset:
1576 /* No more Mr. Nice Guy. */
1577 cpuset_cpus_allowed_fallback(p);
1578 state = possible;
1579 break;
1581 case possible:
1582 do_set_cpus_allowed(p, cpu_possible_mask);
1583 state = fail;
1584 break;
1586 case fail:
1587 BUG();
1588 break;
1592 out:
1593 if (state != cpuset) {
1595 * Don't tell them about moving exiting tasks or
1596 * kernel threads (both mm NULL), since they never
1597 * leave kernel.
1599 if (p->mm && printk_ratelimit()) {
1600 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1601 task_pid_nr(p), p->comm, cpu);
1605 return dest_cpu;
1609 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1611 static inline
1612 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1614 lockdep_assert_held(&p->pi_lock);
1616 if (p->nr_cpus_allowed > 1)
1617 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1620 * In order not to call set_task_cpu() on a blocking task we need
1621 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1622 * cpu.
1624 * Since this is common to all placement strategies, this lives here.
1626 * [ this allows ->select_task() to simply return task_cpu(p) and
1627 * not worry about this generic constraint ]
1629 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1630 !cpu_online(cpu)))
1631 cpu = select_fallback_rq(task_cpu(p), p);
1633 return cpu;
1636 static void update_avg(u64 *avg, u64 sample)
1638 s64 diff = sample - *avg;
1639 *avg += diff >> 3;
1642 #else
1644 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1645 const struct cpumask *new_mask, bool check)
1647 return set_cpus_allowed_ptr(p, new_mask);
1650 #endif /* CONFIG_SMP */
1652 static void
1653 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1655 #ifdef CONFIG_SCHEDSTATS
1656 struct rq *rq = this_rq();
1658 #ifdef CONFIG_SMP
1659 int this_cpu = smp_processor_id();
1661 if (cpu == this_cpu) {
1662 schedstat_inc(rq, ttwu_local);
1663 schedstat_inc(p, se.statistics.nr_wakeups_local);
1664 } else {
1665 struct sched_domain *sd;
1667 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1668 rcu_read_lock();
1669 for_each_domain(this_cpu, sd) {
1670 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1671 schedstat_inc(sd, ttwu_wake_remote);
1672 break;
1675 rcu_read_unlock();
1678 if (wake_flags & WF_MIGRATED)
1679 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1681 #endif /* CONFIG_SMP */
1683 schedstat_inc(rq, ttwu_count);
1684 schedstat_inc(p, se.statistics.nr_wakeups);
1686 if (wake_flags & WF_SYNC)
1687 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1689 #endif /* CONFIG_SCHEDSTATS */
1692 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1694 activate_task(rq, p, en_flags);
1695 p->on_rq = TASK_ON_RQ_QUEUED;
1697 /* if a worker is waking up, notify workqueue */
1698 if (p->flags & PF_WQ_WORKER)
1699 wq_worker_waking_up(p, cpu_of(rq));
1703 * Mark the task runnable and perform wakeup-preemption.
1705 static void
1706 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1708 check_preempt_curr(rq, p, wake_flags);
1709 p->state = TASK_RUNNING;
1710 trace_sched_wakeup(p);
1712 #ifdef CONFIG_SMP
1713 if (p->sched_class->task_woken) {
1715 * Our task @p is fully woken up and running; so its safe to
1716 * drop the rq->lock, hereafter rq is only used for statistics.
1718 lockdep_unpin_lock(&rq->lock);
1719 p->sched_class->task_woken(rq, p);
1720 lockdep_pin_lock(&rq->lock);
1723 if (rq->idle_stamp) {
1724 u64 delta = rq_clock(rq) - rq->idle_stamp;
1725 u64 max = 2*rq->max_idle_balance_cost;
1727 update_avg(&rq->avg_idle, delta);
1729 if (rq->avg_idle > max)
1730 rq->avg_idle = max;
1732 rq->idle_stamp = 0;
1734 #endif
1737 static void
1738 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1740 lockdep_assert_held(&rq->lock);
1742 #ifdef CONFIG_SMP
1743 if (p->sched_contributes_to_load)
1744 rq->nr_uninterruptible--;
1745 #endif
1747 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1748 ttwu_do_wakeup(rq, p, wake_flags);
1752 * Called in case the task @p isn't fully descheduled from its runqueue,
1753 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1754 * since all we need to do is flip p->state to TASK_RUNNING, since
1755 * the task is still ->on_rq.
1757 static int ttwu_remote(struct task_struct *p, int wake_flags)
1759 struct rq *rq;
1760 int ret = 0;
1762 rq = __task_rq_lock(p);
1763 if (task_on_rq_queued(p)) {
1764 /* check_preempt_curr() may use rq clock */
1765 update_rq_clock(rq);
1766 ttwu_do_wakeup(rq, p, wake_flags);
1767 ret = 1;
1769 __task_rq_unlock(rq);
1771 return ret;
1774 #ifdef CONFIG_SMP
1775 void sched_ttwu_pending(void)
1777 struct rq *rq = this_rq();
1778 struct llist_node *llist = llist_del_all(&rq->wake_list);
1779 struct task_struct *p;
1780 unsigned long flags;
1782 if (!llist)
1783 return;
1785 raw_spin_lock_irqsave(&rq->lock, flags);
1786 lockdep_pin_lock(&rq->lock);
1788 while (llist) {
1789 p = llist_entry(llist, struct task_struct, wake_entry);
1790 llist = llist_next(llist);
1791 ttwu_do_activate(rq, p, 0);
1794 lockdep_unpin_lock(&rq->lock);
1795 raw_spin_unlock_irqrestore(&rq->lock, flags);
1798 void scheduler_ipi(void)
1801 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1802 * TIF_NEED_RESCHED remotely (for the first time) will also send
1803 * this IPI.
1805 preempt_fold_need_resched();
1807 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1808 return;
1811 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1812 * traditionally all their work was done from the interrupt return
1813 * path. Now that we actually do some work, we need to make sure
1814 * we do call them.
1816 * Some archs already do call them, luckily irq_enter/exit nest
1817 * properly.
1819 * Arguably we should visit all archs and update all handlers,
1820 * however a fair share of IPIs are still resched only so this would
1821 * somewhat pessimize the simple resched case.
1823 irq_enter();
1824 sched_ttwu_pending();
1827 * Check if someone kicked us for doing the nohz idle load balance.
1829 if (unlikely(got_nohz_idle_kick())) {
1830 this_rq()->idle_balance = 1;
1831 raise_softirq_irqoff(SCHED_SOFTIRQ);
1833 irq_exit();
1836 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1838 struct rq *rq = cpu_rq(cpu);
1840 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1841 if (!set_nr_if_polling(rq->idle))
1842 smp_send_reschedule(cpu);
1843 else
1844 trace_sched_wake_idle_without_ipi(cpu);
1848 void wake_up_if_idle(int cpu)
1850 struct rq *rq = cpu_rq(cpu);
1851 unsigned long flags;
1853 rcu_read_lock();
1855 if (!is_idle_task(rcu_dereference(rq->curr)))
1856 goto out;
1858 if (set_nr_if_polling(rq->idle)) {
1859 trace_sched_wake_idle_without_ipi(cpu);
1860 } else {
1861 raw_spin_lock_irqsave(&rq->lock, flags);
1862 if (is_idle_task(rq->curr))
1863 smp_send_reschedule(cpu);
1864 /* Else cpu is not in idle, do nothing here */
1865 raw_spin_unlock_irqrestore(&rq->lock, flags);
1868 out:
1869 rcu_read_unlock();
1872 bool cpus_share_cache(int this_cpu, int that_cpu)
1874 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1876 #endif /* CONFIG_SMP */
1878 static void ttwu_queue(struct task_struct *p, int cpu)
1880 struct rq *rq = cpu_rq(cpu);
1882 #if defined(CONFIG_SMP)
1883 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1884 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1885 ttwu_queue_remote(p, cpu);
1886 return;
1888 #endif
1890 raw_spin_lock(&rq->lock);
1891 lockdep_pin_lock(&rq->lock);
1892 ttwu_do_activate(rq, p, 0);
1893 lockdep_unpin_lock(&rq->lock);
1894 raw_spin_unlock(&rq->lock);
1898 * try_to_wake_up - wake up a thread
1899 * @p: the thread to be awakened
1900 * @state: the mask of task states that can be woken
1901 * @wake_flags: wake modifier flags (WF_*)
1903 * Put it on the run-queue if it's not already there. The "current"
1904 * thread is always on the run-queue (except when the actual
1905 * re-schedule is in progress), and as such you're allowed to do
1906 * the simpler "current->state = TASK_RUNNING" to mark yourself
1907 * runnable without the overhead of this.
1909 * Return: %true if @p was woken up, %false if it was already running.
1910 * or @state didn't match @p's state.
1912 static int
1913 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1915 unsigned long flags;
1916 int cpu, success = 0;
1919 * If we are going to wake up a thread waiting for CONDITION we
1920 * need to ensure that CONDITION=1 done by the caller can not be
1921 * reordered with p->state check below. This pairs with mb() in
1922 * set_current_state() the waiting thread does.
1924 smp_mb__before_spinlock();
1925 raw_spin_lock_irqsave(&p->pi_lock, flags);
1926 if (!(p->state & state))
1927 goto out;
1929 trace_sched_waking(p);
1931 success = 1; /* we're going to change ->state */
1932 cpu = task_cpu(p);
1934 if (p->on_rq && ttwu_remote(p, wake_flags))
1935 goto stat;
1937 #ifdef CONFIG_SMP
1939 * If the owning (remote) cpu is still in the middle of schedule() with
1940 * this task as prev, wait until its done referencing the task.
1942 while (p->on_cpu)
1943 cpu_relax();
1945 * Pairs with the smp_wmb() in finish_lock_switch().
1947 smp_rmb();
1949 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1950 p->state = TASK_WAKING;
1952 if (p->sched_class->task_waking)
1953 p->sched_class->task_waking(p);
1955 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1956 if (task_cpu(p) != cpu) {
1957 wake_flags |= WF_MIGRATED;
1958 set_task_cpu(p, cpu);
1960 #endif /* CONFIG_SMP */
1962 ttwu_queue(p, cpu);
1963 stat:
1964 ttwu_stat(p, cpu, wake_flags);
1965 out:
1966 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1968 return success;
1972 * try_to_wake_up_local - try to wake up a local task with rq lock held
1973 * @p: the thread to be awakened
1975 * Put @p on the run-queue if it's not already there. The caller must
1976 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1977 * the current task.
1979 static void try_to_wake_up_local(struct task_struct *p)
1981 struct rq *rq = task_rq(p);
1983 if (WARN_ON_ONCE(rq != this_rq()) ||
1984 WARN_ON_ONCE(p == current))
1985 return;
1987 lockdep_assert_held(&rq->lock);
1989 if (!raw_spin_trylock(&p->pi_lock)) {
1991 * This is OK, because current is on_cpu, which avoids it being
1992 * picked for load-balance and preemption/IRQs are still
1993 * disabled avoiding further scheduler activity on it and we've
1994 * not yet picked a replacement task.
1996 lockdep_unpin_lock(&rq->lock);
1997 raw_spin_unlock(&rq->lock);
1998 raw_spin_lock(&p->pi_lock);
1999 raw_spin_lock(&rq->lock);
2000 lockdep_pin_lock(&rq->lock);
2003 if (!(p->state & TASK_NORMAL))
2004 goto out;
2006 trace_sched_waking(p);
2008 if (!task_on_rq_queued(p))
2009 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2011 ttwu_do_wakeup(rq, p, 0);
2012 ttwu_stat(p, smp_processor_id(), 0);
2013 out:
2014 raw_spin_unlock(&p->pi_lock);
2018 * wake_up_process - Wake up a specific process
2019 * @p: The process to be woken up.
2021 * Attempt to wake up the nominated process and move it to the set of runnable
2022 * processes.
2024 * Return: 1 if the process was woken up, 0 if it was already running.
2026 * It may be assumed that this function implies a write memory barrier before
2027 * changing the task state if and only if any tasks are woken up.
2029 int wake_up_process(struct task_struct *p)
2031 WARN_ON(task_is_stopped_or_traced(p));
2032 return try_to_wake_up(p, TASK_NORMAL, 0);
2034 EXPORT_SYMBOL(wake_up_process);
2036 int wake_up_state(struct task_struct *p, unsigned int state)
2038 return try_to_wake_up(p, state, 0);
2042 * This function clears the sched_dl_entity static params.
2044 void __dl_clear_params(struct task_struct *p)
2046 struct sched_dl_entity *dl_se = &p->dl;
2048 dl_se->dl_runtime = 0;
2049 dl_se->dl_deadline = 0;
2050 dl_se->dl_period = 0;
2051 dl_se->flags = 0;
2052 dl_se->dl_bw = 0;
2054 dl_se->dl_throttled = 0;
2055 dl_se->dl_new = 1;
2056 dl_se->dl_yielded = 0;
2060 * Perform scheduler related setup for a newly forked process p.
2061 * p is forked by current.
2063 * __sched_fork() is basic setup used by init_idle() too:
2065 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2067 p->on_rq = 0;
2069 p->se.on_rq = 0;
2070 p->se.exec_start = 0;
2071 p->se.sum_exec_runtime = 0;
2072 p->se.prev_sum_exec_runtime = 0;
2073 p->se.nr_migrations = 0;
2074 p->se.vruntime = 0;
2075 INIT_LIST_HEAD(&p->se.group_node);
2077 #ifdef CONFIG_SCHEDSTATS
2078 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2079 #endif
2081 RB_CLEAR_NODE(&p->dl.rb_node);
2082 init_dl_task_timer(&p->dl);
2083 __dl_clear_params(p);
2085 INIT_LIST_HEAD(&p->rt.run_list);
2087 #ifdef CONFIG_PREEMPT_NOTIFIERS
2088 INIT_HLIST_HEAD(&p->preempt_notifiers);
2089 #endif
2091 #ifdef CONFIG_NUMA_BALANCING
2092 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2093 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2094 p->mm->numa_scan_seq = 0;
2097 if (clone_flags & CLONE_VM)
2098 p->numa_preferred_nid = current->numa_preferred_nid;
2099 else
2100 p->numa_preferred_nid = -1;
2102 p->node_stamp = 0ULL;
2103 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2104 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2105 p->numa_work.next = &p->numa_work;
2106 p->numa_faults = NULL;
2107 p->last_task_numa_placement = 0;
2108 p->last_sum_exec_runtime = 0;
2110 p->numa_group = NULL;
2111 #endif /* CONFIG_NUMA_BALANCING */
2114 #ifdef CONFIG_NUMA_BALANCING
2115 #ifdef CONFIG_SCHED_DEBUG
2116 void set_numabalancing_state(bool enabled)
2118 if (enabled)
2119 sched_feat_set("NUMA");
2120 else
2121 sched_feat_set("NO_NUMA");
2123 #else
2124 __read_mostly bool numabalancing_enabled;
2126 void set_numabalancing_state(bool enabled)
2128 numabalancing_enabled = enabled;
2130 #endif /* CONFIG_SCHED_DEBUG */
2132 #ifdef CONFIG_PROC_SYSCTL
2133 int sysctl_numa_balancing(struct ctl_table *table, int write,
2134 void __user *buffer, size_t *lenp, loff_t *ppos)
2136 struct ctl_table t;
2137 int err;
2138 int state = numabalancing_enabled;
2140 if (write && !capable(CAP_SYS_ADMIN))
2141 return -EPERM;
2143 t = *table;
2144 t.data = &state;
2145 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2146 if (err < 0)
2147 return err;
2148 if (write)
2149 set_numabalancing_state(state);
2150 return err;
2152 #endif
2153 #endif
2156 * fork()/clone()-time setup:
2158 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2160 unsigned long flags;
2161 int cpu = get_cpu();
2163 __sched_fork(clone_flags, p);
2165 * We mark the process as running here. This guarantees that
2166 * nobody will actually run it, and a signal or other external
2167 * event cannot wake it up and insert it on the runqueue either.
2169 p->state = TASK_RUNNING;
2172 * Make sure we do not leak PI boosting priority to the child.
2174 p->prio = current->normal_prio;
2177 * Revert to default priority/policy on fork if requested.
2179 if (unlikely(p->sched_reset_on_fork)) {
2180 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2181 p->policy = SCHED_NORMAL;
2182 p->static_prio = NICE_TO_PRIO(0);
2183 p->rt_priority = 0;
2184 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2185 p->static_prio = NICE_TO_PRIO(0);
2187 p->prio = p->normal_prio = __normal_prio(p);
2188 set_load_weight(p);
2191 * We don't need the reset flag anymore after the fork. It has
2192 * fulfilled its duty:
2194 p->sched_reset_on_fork = 0;
2197 if (dl_prio(p->prio)) {
2198 put_cpu();
2199 return -EAGAIN;
2200 } else if (rt_prio(p->prio)) {
2201 p->sched_class = &rt_sched_class;
2202 } else {
2203 p->sched_class = &fair_sched_class;
2206 if (p->sched_class->task_fork)
2207 p->sched_class->task_fork(p);
2210 * The child is not yet in the pid-hash so no cgroup attach races,
2211 * and the cgroup is pinned to this child due to cgroup_fork()
2212 * is ran before sched_fork().
2214 * Silence PROVE_RCU.
2216 raw_spin_lock_irqsave(&p->pi_lock, flags);
2217 set_task_cpu(p, cpu);
2218 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2220 #ifdef CONFIG_SCHED_INFO
2221 if (likely(sched_info_on()))
2222 memset(&p->sched_info, 0, sizeof(p->sched_info));
2223 #endif
2224 #if defined(CONFIG_SMP)
2225 p->on_cpu = 0;
2226 #endif
2227 init_task_preempt_count(p);
2228 #ifdef CONFIG_SMP
2229 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2230 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2231 #endif
2233 put_cpu();
2234 return 0;
2237 unsigned long to_ratio(u64 period, u64 runtime)
2239 if (runtime == RUNTIME_INF)
2240 return 1ULL << 20;
2243 * Doing this here saves a lot of checks in all
2244 * the calling paths, and returning zero seems
2245 * safe for them anyway.
2247 if (period == 0)
2248 return 0;
2250 return div64_u64(runtime << 20, period);
2253 #ifdef CONFIG_SMP
2254 inline struct dl_bw *dl_bw_of(int i)
2256 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2257 "sched RCU must be held");
2258 return &cpu_rq(i)->rd->dl_bw;
2261 static inline int dl_bw_cpus(int i)
2263 struct root_domain *rd = cpu_rq(i)->rd;
2264 int cpus = 0;
2266 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2267 "sched RCU must be held");
2268 for_each_cpu_and(i, rd->span, cpu_active_mask)
2269 cpus++;
2271 return cpus;
2273 #else
2274 inline struct dl_bw *dl_bw_of(int i)
2276 return &cpu_rq(i)->dl.dl_bw;
2279 static inline int dl_bw_cpus(int i)
2281 return 1;
2283 #endif
2286 * We must be sure that accepting a new task (or allowing changing the
2287 * parameters of an existing one) is consistent with the bandwidth
2288 * constraints. If yes, this function also accordingly updates the currently
2289 * allocated bandwidth to reflect the new situation.
2291 * This function is called while holding p's rq->lock.
2293 * XXX we should delay bw change until the task's 0-lag point, see
2294 * __setparam_dl().
2296 static int dl_overflow(struct task_struct *p, int policy,
2297 const struct sched_attr *attr)
2300 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2301 u64 period = attr->sched_period ?: attr->sched_deadline;
2302 u64 runtime = attr->sched_runtime;
2303 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2304 int cpus, err = -1;
2306 if (new_bw == p->dl.dl_bw)
2307 return 0;
2310 * Either if a task, enters, leave, or stays -deadline but changes
2311 * its parameters, we may need to update accordingly the total
2312 * allocated bandwidth of the container.
2314 raw_spin_lock(&dl_b->lock);
2315 cpus = dl_bw_cpus(task_cpu(p));
2316 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2317 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2318 __dl_add(dl_b, new_bw);
2319 err = 0;
2320 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2321 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2322 __dl_clear(dl_b, p->dl.dl_bw);
2323 __dl_add(dl_b, new_bw);
2324 err = 0;
2325 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2326 __dl_clear(dl_b, p->dl.dl_bw);
2327 err = 0;
2329 raw_spin_unlock(&dl_b->lock);
2331 return err;
2334 extern void init_dl_bw(struct dl_bw *dl_b);
2337 * wake_up_new_task - wake up a newly created task for the first time.
2339 * This function will do some initial scheduler statistics housekeeping
2340 * that must be done for every newly created context, then puts the task
2341 * on the runqueue and wakes it.
2343 void wake_up_new_task(struct task_struct *p)
2345 unsigned long flags;
2346 struct rq *rq;
2348 raw_spin_lock_irqsave(&p->pi_lock, flags);
2349 #ifdef CONFIG_SMP
2351 * Fork balancing, do it here and not earlier because:
2352 * - cpus_allowed can change in the fork path
2353 * - any previously selected cpu might disappear through hotplug
2355 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2356 #endif
2358 /* Initialize new task's runnable average */
2359 init_entity_runnable_average(&p->se);
2360 rq = __task_rq_lock(p);
2361 activate_task(rq, p, 0);
2362 p->on_rq = TASK_ON_RQ_QUEUED;
2363 trace_sched_wakeup_new(p);
2364 check_preempt_curr(rq, p, WF_FORK);
2365 #ifdef CONFIG_SMP
2366 if (p->sched_class->task_woken)
2367 p->sched_class->task_woken(rq, p);
2368 #endif
2369 task_rq_unlock(rq, p, &flags);
2372 #ifdef CONFIG_PREEMPT_NOTIFIERS
2374 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2376 void preempt_notifier_inc(void)
2378 static_key_slow_inc(&preempt_notifier_key);
2380 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2382 void preempt_notifier_dec(void)
2384 static_key_slow_dec(&preempt_notifier_key);
2386 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2389 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2390 * @notifier: notifier struct to register
2392 void preempt_notifier_register(struct preempt_notifier *notifier)
2394 if (!static_key_false(&preempt_notifier_key))
2395 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2397 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2399 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2402 * preempt_notifier_unregister - no longer interested in preemption notifications
2403 * @notifier: notifier struct to unregister
2405 * This is *not* safe to call from within a preemption notifier.
2407 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2409 hlist_del(&notifier->link);
2411 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2413 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2415 struct preempt_notifier *notifier;
2417 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2418 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2421 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2423 if (static_key_false(&preempt_notifier_key))
2424 __fire_sched_in_preempt_notifiers(curr);
2427 static void
2428 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2429 struct task_struct *next)
2431 struct preempt_notifier *notifier;
2433 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2434 notifier->ops->sched_out(notifier, next);
2437 static __always_inline void
2438 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2439 struct task_struct *next)
2441 if (static_key_false(&preempt_notifier_key))
2442 __fire_sched_out_preempt_notifiers(curr, next);
2445 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2447 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2451 static inline void
2452 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2453 struct task_struct *next)
2457 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2460 * prepare_task_switch - prepare to switch tasks
2461 * @rq: the runqueue preparing to switch
2462 * @prev: the current task that is being switched out
2463 * @next: the task we are going to switch to.
2465 * This is called with the rq lock held and interrupts off. It must
2466 * be paired with a subsequent finish_task_switch after the context
2467 * switch.
2469 * prepare_task_switch sets up locking and calls architecture specific
2470 * hooks.
2472 static inline void
2473 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2474 struct task_struct *next)
2476 trace_sched_switch(prev, next);
2477 sched_info_switch(rq, prev, next);
2478 perf_event_task_sched_out(prev, next);
2479 fire_sched_out_preempt_notifiers(prev, next);
2480 prepare_lock_switch(rq, next);
2481 prepare_arch_switch(next);
2485 * finish_task_switch - clean up after a task-switch
2486 * @prev: the thread we just switched away from.
2488 * finish_task_switch must be called after the context switch, paired
2489 * with a prepare_task_switch call before the context switch.
2490 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2491 * and do any other architecture-specific cleanup actions.
2493 * Note that we may have delayed dropping an mm in context_switch(). If
2494 * so, we finish that here outside of the runqueue lock. (Doing it
2495 * with the lock held can cause deadlocks; see schedule() for
2496 * details.)
2498 * The context switch have flipped the stack from under us and restored the
2499 * local variables which were saved when this task called schedule() in the
2500 * past. prev == current is still correct but we need to recalculate this_rq
2501 * because prev may have moved to another CPU.
2503 static struct rq *finish_task_switch(struct task_struct *prev)
2504 __releases(rq->lock)
2506 struct rq *rq = this_rq();
2507 struct mm_struct *mm = rq->prev_mm;
2508 long prev_state;
2510 rq->prev_mm = NULL;
2513 * A task struct has one reference for the use as "current".
2514 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2515 * schedule one last time. The schedule call will never return, and
2516 * the scheduled task must drop that reference.
2517 * The test for TASK_DEAD must occur while the runqueue locks are
2518 * still held, otherwise prev could be scheduled on another cpu, die
2519 * there before we look at prev->state, and then the reference would
2520 * be dropped twice.
2521 * Manfred Spraul <manfred@colorfullife.com>
2523 prev_state = prev->state;
2524 vtime_task_switch(prev);
2525 perf_event_task_sched_in(prev, current);
2526 finish_lock_switch(rq, prev);
2527 finish_arch_post_lock_switch();
2529 fire_sched_in_preempt_notifiers(current);
2530 if (mm)
2531 mmdrop(mm);
2532 if (unlikely(prev_state == TASK_DEAD)) {
2533 if (prev->sched_class->task_dead)
2534 prev->sched_class->task_dead(prev);
2537 * Remove function-return probe instances associated with this
2538 * task and put them back on the free list.
2540 kprobe_flush_task(prev);
2541 put_task_struct(prev);
2544 tick_nohz_task_switch();
2545 return rq;
2548 #ifdef CONFIG_SMP
2550 /* rq->lock is NOT held, but preemption is disabled */
2551 static void __balance_callback(struct rq *rq)
2553 struct callback_head *head, *next;
2554 void (*func)(struct rq *rq);
2555 unsigned long flags;
2557 raw_spin_lock_irqsave(&rq->lock, flags);
2558 head = rq->balance_callback;
2559 rq->balance_callback = NULL;
2560 while (head) {
2561 func = (void (*)(struct rq *))head->func;
2562 next = head->next;
2563 head->next = NULL;
2564 head = next;
2566 func(rq);
2568 raw_spin_unlock_irqrestore(&rq->lock, flags);
2571 static inline void balance_callback(struct rq *rq)
2573 if (unlikely(rq->balance_callback))
2574 __balance_callback(rq);
2577 #else
2579 static inline void balance_callback(struct rq *rq)
2583 #endif
2586 * schedule_tail - first thing a freshly forked thread must call.
2587 * @prev: the thread we just switched away from.
2589 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2590 __releases(rq->lock)
2592 struct rq *rq;
2594 /* finish_task_switch() drops rq->lock and enables preemtion */
2595 preempt_disable();
2596 rq = finish_task_switch(prev);
2597 balance_callback(rq);
2598 preempt_enable();
2600 if (current->set_child_tid)
2601 put_user(task_pid_vnr(current), current->set_child_tid);
2605 * context_switch - switch to the new MM and the new thread's register state.
2607 static inline struct rq *
2608 context_switch(struct rq *rq, struct task_struct *prev,
2609 struct task_struct *next)
2611 struct mm_struct *mm, *oldmm;
2613 prepare_task_switch(rq, prev, next);
2615 mm = next->mm;
2616 oldmm = prev->active_mm;
2618 * For paravirt, this is coupled with an exit in switch_to to
2619 * combine the page table reload and the switch backend into
2620 * one hypercall.
2622 arch_start_context_switch(prev);
2624 if (!mm) {
2625 next->active_mm = oldmm;
2626 atomic_inc(&oldmm->mm_count);
2627 enter_lazy_tlb(oldmm, next);
2628 } else
2629 switch_mm(oldmm, mm, next);
2631 if (!prev->mm) {
2632 prev->active_mm = NULL;
2633 rq->prev_mm = oldmm;
2636 * Since the runqueue lock will be released by the next
2637 * task (which is an invalid locking op but in the case
2638 * of the scheduler it's an obvious special-case), so we
2639 * do an early lockdep release here:
2641 lockdep_unpin_lock(&rq->lock);
2642 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2644 /* Here we just switch the register state and the stack. */
2645 switch_to(prev, next, prev);
2646 barrier();
2648 return finish_task_switch(prev);
2652 * nr_running and nr_context_switches:
2654 * externally visible scheduler statistics: current number of runnable
2655 * threads, total number of context switches performed since bootup.
2657 unsigned long nr_running(void)
2659 unsigned long i, sum = 0;
2661 for_each_online_cpu(i)
2662 sum += cpu_rq(i)->nr_running;
2664 return sum;
2668 * Check if only the current task is running on the cpu.
2670 bool single_task_running(void)
2672 if (cpu_rq(smp_processor_id())->nr_running == 1)
2673 return true;
2674 else
2675 return false;
2677 EXPORT_SYMBOL(single_task_running);
2679 unsigned long long nr_context_switches(void)
2681 int i;
2682 unsigned long long sum = 0;
2684 for_each_possible_cpu(i)
2685 sum += cpu_rq(i)->nr_switches;
2687 return sum;
2690 unsigned long nr_iowait(void)
2692 unsigned long i, sum = 0;
2694 for_each_possible_cpu(i)
2695 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2697 return sum;
2700 unsigned long nr_iowait_cpu(int cpu)
2702 struct rq *this = cpu_rq(cpu);
2703 return atomic_read(&this->nr_iowait);
2706 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2708 struct rq *rq = this_rq();
2709 *nr_waiters = atomic_read(&rq->nr_iowait);
2710 *load = rq->load.weight;
2713 #ifdef CONFIG_SMP
2716 * sched_exec - execve() is a valuable balancing opportunity, because at
2717 * this point the task has the smallest effective memory and cache footprint.
2719 void sched_exec(void)
2721 struct task_struct *p = current;
2722 unsigned long flags;
2723 int dest_cpu;
2725 raw_spin_lock_irqsave(&p->pi_lock, flags);
2726 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2727 if (dest_cpu == smp_processor_id())
2728 goto unlock;
2730 if (likely(cpu_active(dest_cpu))) {
2731 struct migration_arg arg = { p, dest_cpu };
2733 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2734 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2735 return;
2737 unlock:
2738 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2741 #endif
2743 DEFINE_PER_CPU(struct kernel_stat, kstat);
2744 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2746 EXPORT_PER_CPU_SYMBOL(kstat);
2747 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2750 * Return accounted runtime for the task.
2751 * In case the task is currently running, return the runtime plus current's
2752 * pending runtime that have not been accounted yet.
2754 unsigned long long task_sched_runtime(struct task_struct *p)
2756 unsigned long flags;
2757 struct rq *rq;
2758 u64 ns;
2760 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2762 * 64-bit doesn't need locks to atomically read a 64bit value.
2763 * So we have a optimization chance when the task's delta_exec is 0.
2764 * Reading ->on_cpu is racy, but this is ok.
2766 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2767 * If we race with it entering cpu, unaccounted time is 0. This is
2768 * indistinguishable from the read occurring a few cycles earlier.
2769 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2770 * been accounted, so we're correct here as well.
2772 if (!p->on_cpu || !task_on_rq_queued(p))
2773 return p->se.sum_exec_runtime;
2774 #endif
2776 rq = task_rq_lock(p, &flags);
2778 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2779 * project cycles that may never be accounted to this
2780 * thread, breaking clock_gettime().
2782 if (task_current(rq, p) && task_on_rq_queued(p)) {
2783 update_rq_clock(rq);
2784 p->sched_class->update_curr(rq);
2786 ns = p->se.sum_exec_runtime;
2787 task_rq_unlock(rq, p, &flags);
2789 return ns;
2793 * This function gets called by the timer code, with HZ frequency.
2794 * We call it with interrupts disabled.
2796 void scheduler_tick(void)
2798 int cpu = smp_processor_id();
2799 struct rq *rq = cpu_rq(cpu);
2800 struct task_struct *curr = rq->curr;
2802 sched_clock_tick();
2804 raw_spin_lock(&rq->lock);
2805 update_rq_clock(rq);
2806 curr->sched_class->task_tick(rq, curr, 0);
2807 update_cpu_load_active(rq);
2808 calc_global_load_tick(rq);
2809 raw_spin_unlock(&rq->lock);
2811 perf_event_task_tick();
2813 #ifdef CONFIG_SMP
2814 rq->idle_balance = idle_cpu(cpu);
2815 trigger_load_balance(rq);
2816 #endif
2817 rq_last_tick_reset(rq);
2820 #ifdef CONFIG_NO_HZ_FULL
2822 * scheduler_tick_max_deferment
2824 * Keep at least one tick per second when a single
2825 * active task is running because the scheduler doesn't
2826 * yet completely support full dynticks environment.
2828 * This makes sure that uptime, CFS vruntime, load
2829 * balancing, etc... continue to move forward, even
2830 * with a very low granularity.
2832 * Return: Maximum deferment in nanoseconds.
2834 u64 scheduler_tick_max_deferment(void)
2836 struct rq *rq = this_rq();
2837 unsigned long next, now = READ_ONCE(jiffies);
2839 next = rq->last_sched_tick + HZ;
2841 if (time_before_eq(next, now))
2842 return 0;
2844 return jiffies_to_nsecs(next - now);
2846 #endif
2848 notrace unsigned long get_parent_ip(unsigned long addr)
2850 if (in_lock_functions(addr)) {
2851 addr = CALLER_ADDR2;
2852 if (in_lock_functions(addr))
2853 addr = CALLER_ADDR3;
2855 return addr;
2858 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2859 defined(CONFIG_PREEMPT_TRACER))
2861 void preempt_count_add(int val)
2863 #ifdef CONFIG_DEBUG_PREEMPT
2865 * Underflow?
2867 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2868 return;
2869 #endif
2870 __preempt_count_add(val);
2871 #ifdef CONFIG_DEBUG_PREEMPT
2873 * Spinlock count overflowing soon?
2875 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2876 PREEMPT_MASK - 10);
2877 #endif
2878 if (preempt_count() == val) {
2879 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2880 #ifdef CONFIG_DEBUG_PREEMPT
2881 current->preempt_disable_ip = ip;
2882 #endif
2883 trace_preempt_off(CALLER_ADDR0, ip);
2886 EXPORT_SYMBOL(preempt_count_add);
2887 NOKPROBE_SYMBOL(preempt_count_add);
2889 void preempt_count_sub(int val)
2891 #ifdef CONFIG_DEBUG_PREEMPT
2893 * Underflow?
2895 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2896 return;
2898 * Is the spinlock portion underflowing?
2900 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2901 !(preempt_count() & PREEMPT_MASK)))
2902 return;
2903 #endif
2905 if (preempt_count() == val)
2906 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2907 __preempt_count_sub(val);
2909 EXPORT_SYMBOL(preempt_count_sub);
2910 NOKPROBE_SYMBOL(preempt_count_sub);
2912 #endif
2915 * Print scheduling while atomic bug:
2917 static noinline void __schedule_bug(struct task_struct *prev)
2919 if (oops_in_progress)
2920 return;
2922 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2923 prev->comm, prev->pid, preempt_count());
2925 debug_show_held_locks(prev);
2926 print_modules();
2927 if (irqs_disabled())
2928 print_irqtrace_events(prev);
2929 #ifdef CONFIG_DEBUG_PREEMPT
2930 if (in_atomic_preempt_off()) {
2931 pr_err("Preemption disabled at:");
2932 print_ip_sym(current->preempt_disable_ip);
2933 pr_cont("\n");
2935 #endif
2936 dump_stack();
2937 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2941 * Various schedule()-time debugging checks and statistics:
2943 static inline void schedule_debug(struct task_struct *prev)
2945 #ifdef CONFIG_SCHED_STACK_END_CHECK
2946 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2947 #endif
2949 * Test if we are atomic. Since do_exit() needs to call into
2950 * schedule() atomically, we ignore that path. Otherwise whine
2951 * if we are scheduling when we should not.
2953 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2954 __schedule_bug(prev);
2955 rcu_sleep_check();
2957 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2959 schedstat_inc(this_rq(), sched_count);
2963 * Pick up the highest-prio task:
2965 static inline struct task_struct *
2966 pick_next_task(struct rq *rq, struct task_struct *prev)
2968 const struct sched_class *class = &fair_sched_class;
2969 struct task_struct *p;
2972 * Optimization: we know that if all tasks are in
2973 * the fair class we can call that function directly:
2975 if (likely(prev->sched_class == class &&
2976 rq->nr_running == rq->cfs.h_nr_running)) {
2977 p = fair_sched_class.pick_next_task(rq, prev);
2978 if (unlikely(p == RETRY_TASK))
2979 goto again;
2981 /* assumes fair_sched_class->next == idle_sched_class */
2982 if (unlikely(!p))
2983 p = idle_sched_class.pick_next_task(rq, prev);
2985 return p;
2988 again:
2989 for_each_class(class) {
2990 p = class->pick_next_task(rq, prev);
2991 if (p) {
2992 if (unlikely(p == RETRY_TASK))
2993 goto again;
2994 return p;
2998 BUG(); /* the idle class will always have a runnable task */
3002 * __schedule() is the main scheduler function.
3004 * The main means of driving the scheduler and thus entering this function are:
3006 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3008 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3009 * paths. For example, see arch/x86/entry_64.S.
3011 * To drive preemption between tasks, the scheduler sets the flag in timer
3012 * interrupt handler scheduler_tick().
3014 * 3. Wakeups don't really cause entry into schedule(). They add a
3015 * task to the run-queue and that's it.
3017 * Now, if the new task added to the run-queue preempts the current
3018 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3019 * called on the nearest possible occasion:
3021 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3023 * - in syscall or exception context, at the next outmost
3024 * preempt_enable(). (this might be as soon as the wake_up()'s
3025 * spin_unlock()!)
3027 * - in IRQ context, return from interrupt-handler to
3028 * preemptible context
3030 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3031 * then at the next:
3033 * - cond_resched() call
3034 * - explicit schedule() call
3035 * - return from syscall or exception to user-space
3036 * - return from interrupt-handler to user-space
3038 * WARNING: must be called with preemption disabled!
3040 static void __sched __schedule(void)
3042 struct task_struct *prev, *next;
3043 unsigned long *switch_count;
3044 struct rq *rq;
3045 int cpu;
3047 cpu = smp_processor_id();
3048 rq = cpu_rq(cpu);
3049 rcu_note_context_switch();
3050 prev = rq->curr;
3052 schedule_debug(prev);
3054 if (sched_feat(HRTICK))
3055 hrtick_clear(rq);
3058 * Make sure that signal_pending_state()->signal_pending() below
3059 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3060 * done by the caller to avoid the race with signal_wake_up().
3062 smp_mb__before_spinlock();
3063 raw_spin_lock_irq(&rq->lock);
3064 lockdep_pin_lock(&rq->lock);
3066 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3068 switch_count = &prev->nivcsw;
3069 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3070 if (unlikely(signal_pending_state(prev->state, prev))) {
3071 prev->state = TASK_RUNNING;
3072 } else {
3073 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3074 prev->on_rq = 0;
3077 * If a worker went to sleep, notify and ask workqueue
3078 * whether it wants to wake up a task to maintain
3079 * concurrency.
3081 if (prev->flags & PF_WQ_WORKER) {
3082 struct task_struct *to_wakeup;
3084 to_wakeup = wq_worker_sleeping(prev, cpu);
3085 if (to_wakeup)
3086 try_to_wake_up_local(to_wakeup);
3089 switch_count = &prev->nvcsw;
3092 if (task_on_rq_queued(prev))
3093 update_rq_clock(rq);
3095 next = pick_next_task(rq, prev);
3096 clear_tsk_need_resched(prev);
3097 clear_preempt_need_resched();
3098 rq->clock_skip_update = 0;
3100 if (likely(prev != next)) {
3101 rq->nr_switches++;
3102 rq->curr = next;
3103 ++*switch_count;
3105 rq = context_switch(rq, prev, next); /* unlocks the rq */
3106 cpu = cpu_of(rq);
3107 } else {
3108 lockdep_unpin_lock(&rq->lock);
3109 raw_spin_unlock_irq(&rq->lock);
3112 balance_callback(rq);
3115 static inline void sched_submit_work(struct task_struct *tsk)
3117 if (!tsk->state || tsk_is_pi_blocked(tsk))
3118 return;
3120 * If we are going to sleep and we have plugged IO queued,
3121 * make sure to submit it to avoid deadlocks.
3123 if (blk_needs_flush_plug(tsk))
3124 blk_schedule_flush_plug(tsk);
3127 asmlinkage __visible void __sched schedule(void)
3129 struct task_struct *tsk = current;
3131 sched_submit_work(tsk);
3132 do {
3133 preempt_disable();
3134 __schedule();
3135 sched_preempt_enable_no_resched();
3136 } while (need_resched());
3138 EXPORT_SYMBOL(schedule);
3140 #ifdef CONFIG_CONTEXT_TRACKING
3141 asmlinkage __visible void __sched schedule_user(void)
3144 * If we come here after a random call to set_need_resched(),
3145 * or we have been woken up remotely but the IPI has not yet arrived,
3146 * we haven't yet exited the RCU idle mode. Do it here manually until
3147 * we find a better solution.
3149 * NB: There are buggy callers of this function. Ideally we
3150 * should warn if prev_state != CONTEXT_USER, but that will trigger
3151 * too frequently to make sense yet.
3153 enum ctx_state prev_state = exception_enter();
3154 schedule();
3155 exception_exit(prev_state);
3157 #endif
3160 * schedule_preempt_disabled - called with preemption disabled
3162 * Returns with preemption disabled. Note: preempt_count must be 1
3164 void __sched schedule_preempt_disabled(void)
3166 sched_preempt_enable_no_resched();
3167 schedule();
3168 preempt_disable();
3171 static void __sched notrace preempt_schedule_common(void)
3173 do {
3174 preempt_active_enter();
3175 __schedule();
3176 preempt_active_exit();
3179 * Check again in case we missed a preemption opportunity
3180 * between schedule and now.
3182 } while (need_resched());
3185 #ifdef CONFIG_PREEMPT
3187 * this is the entry point to schedule() from in-kernel preemption
3188 * off of preempt_enable. Kernel preemptions off return from interrupt
3189 * occur there and call schedule directly.
3191 asmlinkage __visible void __sched notrace preempt_schedule(void)
3194 * If there is a non-zero preempt_count or interrupts are disabled,
3195 * we do not want to preempt the current task. Just return..
3197 if (likely(!preemptible()))
3198 return;
3200 preempt_schedule_common();
3202 NOKPROBE_SYMBOL(preempt_schedule);
3203 EXPORT_SYMBOL(preempt_schedule);
3206 * preempt_schedule_notrace - preempt_schedule called by tracing
3208 * The tracing infrastructure uses preempt_enable_notrace to prevent
3209 * recursion and tracing preempt enabling caused by the tracing
3210 * infrastructure itself. But as tracing can happen in areas coming
3211 * from userspace or just about to enter userspace, a preempt enable
3212 * can occur before user_exit() is called. This will cause the scheduler
3213 * to be called when the system is still in usermode.
3215 * To prevent this, the preempt_enable_notrace will use this function
3216 * instead of preempt_schedule() to exit user context if needed before
3217 * calling the scheduler.
3219 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3221 enum ctx_state prev_ctx;
3223 if (likely(!preemptible()))
3224 return;
3226 do {
3228 * Use raw __prempt_count() ops that don't call function.
3229 * We can't call functions before disabling preemption which
3230 * disarm preemption tracing recursions.
3232 __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3233 barrier();
3235 * Needs preempt disabled in case user_exit() is traced
3236 * and the tracer calls preempt_enable_notrace() causing
3237 * an infinite recursion.
3239 prev_ctx = exception_enter();
3240 __schedule();
3241 exception_exit(prev_ctx);
3243 barrier();
3244 __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3245 } while (need_resched());
3247 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3249 #endif /* CONFIG_PREEMPT */
3252 * this is the entry point to schedule() from kernel preemption
3253 * off of irq context.
3254 * Note, that this is called and return with irqs disabled. This will
3255 * protect us against recursive calling from irq.
3257 asmlinkage __visible void __sched preempt_schedule_irq(void)
3259 enum ctx_state prev_state;
3261 /* Catch callers which need to be fixed */
3262 BUG_ON(preempt_count() || !irqs_disabled());
3264 prev_state = exception_enter();
3266 do {
3267 preempt_active_enter();
3268 local_irq_enable();
3269 __schedule();
3270 local_irq_disable();
3271 preempt_active_exit();
3272 } while (need_resched());
3274 exception_exit(prev_state);
3277 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3278 void *key)
3280 return try_to_wake_up(curr->private, mode, wake_flags);
3282 EXPORT_SYMBOL(default_wake_function);
3284 #ifdef CONFIG_RT_MUTEXES
3287 * rt_mutex_setprio - set the current priority of a task
3288 * @p: task
3289 * @prio: prio value (kernel-internal form)
3291 * This function changes the 'effective' priority of a task. It does
3292 * not touch ->normal_prio like __setscheduler().
3294 * Used by the rt_mutex code to implement priority inheritance
3295 * logic. Call site only calls if the priority of the task changed.
3297 void rt_mutex_setprio(struct task_struct *p, int prio)
3299 int oldprio, queued, running, enqueue_flag = 0;
3300 struct rq *rq;
3301 const struct sched_class *prev_class;
3303 BUG_ON(prio > MAX_PRIO);
3305 rq = __task_rq_lock(p);
3308 * Idle task boosting is a nono in general. There is one
3309 * exception, when PREEMPT_RT and NOHZ is active:
3311 * The idle task calls get_next_timer_interrupt() and holds
3312 * the timer wheel base->lock on the CPU and another CPU wants
3313 * to access the timer (probably to cancel it). We can safely
3314 * ignore the boosting request, as the idle CPU runs this code
3315 * with interrupts disabled and will complete the lock
3316 * protected section without being interrupted. So there is no
3317 * real need to boost.
3319 if (unlikely(p == rq->idle)) {
3320 WARN_ON(p != rq->curr);
3321 WARN_ON(p->pi_blocked_on);
3322 goto out_unlock;
3325 trace_sched_pi_setprio(p, prio);
3326 oldprio = p->prio;
3327 prev_class = p->sched_class;
3328 queued = task_on_rq_queued(p);
3329 running = task_current(rq, p);
3330 if (queued)
3331 dequeue_task(rq, p, 0);
3332 if (running)
3333 put_prev_task(rq, p);
3336 * Boosting condition are:
3337 * 1. -rt task is running and holds mutex A
3338 * --> -dl task blocks on mutex A
3340 * 2. -dl task is running and holds mutex A
3341 * --> -dl task blocks on mutex A and could preempt the
3342 * running task
3344 if (dl_prio(prio)) {
3345 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3346 if (!dl_prio(p->normal_prio) ||
3347 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3348 p->dl.dl_boosted = 1;
3349 enqueue_flag = ENQUEUE_REPLENISH;
3350 } else
3351 p->dl.dl_boosted = 0;
3352 p->sched_class = &dl_sched_class;
3353 } else if (rt_prio(prio)) {
3354 if (dl_prio(oldprio))
3355 p->dl.dl_boosted = 0;
3356 if (oldprio < prio)
3357 enqueue_flag = ENQUEUE_HEAD;
3358 p->sched_class = &rt_sched_class;
3359 } else {
3360 if (dl_prio(oldprio))
3361 p->dl.dl_boosted = 0;
3362 if (rt_prio(oldprio))
3363 p->rt.timeout = 0;
3364 p->sched_class = &fair_sched_class;
3367 p->prio = prio;
3369 if (running)
3370 p->sched_class->set_curr_task(rq);
3371 if (queued)
3372 enqueue_task(rq, p, enqueue_flag);
3374 check_class_changed(rq, p, prev_class, oldprio);
3375 out_unlock:
3376 preempt_disable(); /* avoid rq from going away on us */
3377 __task_rq_unlock(rq);
3379 balance_callback(rq);
3380 preempt_enable();
3382 #endif
3384 void set_user_nice(struct task_struct *p, long nice)
3386 int old_prio, delta, queued;
3387 unsigned long flags;
3388 struct rq *rq;
3390 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3391 return;
3393 * We have to be careful, if called from sys_setpriority(),
3394 * the task might be in the middle of scheduling on another CPU.
3396 rq = task_rq_lock(p, &flags);
3398 * The RT priorities are set via sched_setscheduler(), but we still
3399 * allow the 'normal' nice value to be set - but as expected
3400 * it wont have any effect on scheduling until the task is
3401 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3403 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3404 p->static_prio = NICE_TO_PRIO(nice);
3405 goto out_unlock;
3407 queued = task_on_rq_queued(p);
3408 if (queued)
3409 dequeue_task(rq, p, 0);
3411 p->static_prio = NICE_TO_PRIO(nice);
3412 set_load_weight(p);
3413 old_prio = p->prio;
3414 p->prio = effective_prio(p);
3415 delta = p->prio - old_prio;
3417 if (queued) {
3418 enqueue_task(rq, p, 0);
3420 * If the task increased its priority or is running and
3421 * lowered its priority, then reschedule its CPU:
3423 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3424 resched_curr(rq);
3426 out_unlock:
3427 task_rq_unlock(rq, p, &flags);
3429 EXPORT_SYMBOL(set_user_nice);
3432 * can_nice - check if a task can reduce its nice value
3433 * @p: task
3434 * @nice: nice value
3436 int can_nice(const struct task_struct *p, const int nice)
3438 /* convert nice value [19,-20] to rlimit style value [1,40] */
3439 int nice_rlim = nice_to_rlimit(nice);
3441 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3442 capable(CAP_SYS_NICE));
3445 #ifdef __ARCH_WANT_SYS_NICE
3448 * sys_nice - change the priority of the current process.
3449 * @increment: priority increment
3451 * sys_setpriority is a more generic, but much slower function that
3452 * does similar things.
3454 SYSCALL_DEFINE1(nice, int, increment)
3456 long nice, retval;
3459 * Setpriority might change our priority at the same moment.
3460 * We don't have to worry. Conceptually one call occurs first
3461 * and we have a single winner.
3463 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3464 nice = task_nice(current) + increment;
3466 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3467 if (increment < 0 && !can_nice(current, nice))
3468 return -EPERM;
3470 retval = security_task_setnice(current, nice);
3471 if (retval)
3472 return retval;
3474 set_user_nice(current, nice);
3475 return 0;
3478 #endif
3481 * task_prio - return the priority value of a given task.
3482 * @p: the task in question.
3484 * Return: The priority value as seen by users in /proc.
3485 * RT tasks are offset by -200. Normal tasks are centered
3486 * around 0, value goes from -16 to +15.
3488 int task_prio(const struct task_struct *p)
3490 return p->prio - MAX_RT_PRIO;
3494 * idle_cpu - is a given cpu idle currently?
3495 * @cpu: the processor in question.
3497 * Return: 1 if the CPU is currently idle. 0 otherwise.
3499 int idle_cpu(int cpu)
3501 struct rq *rq = cpu_rq(cpu);
3503 if (rq->curr != rq->idle)
3504 return 0;
3506 if (rq->nr_running)
3507 return 0;
3509 #ifdef CONFIG_SMP
3510 if (!llist_empty(&rq->wake_list))
3511 return 0;
3512 #endif
3514 return 1;
3518 * idle_task - return the idle task for a given cpu.
3519 * @cpu: the processor in question.
3521 * Return: The idle task for the cpu @cpu.
3523 struct task_struct *idle_task(int cpu)
3525 return cpu_rq(cpu)->idle;
3529 * find_process_by_pid - find a process with a matching PID value.
3530 * @pid: the pid in question.
3532 * The task of @pid, if found. %NULL otherwise.
3534 static struct task_struct *find_process_by_pid(pid_t pid)
3536 return pid ? find_task_by_vpid(pid) : current;
3540 * This function initializes the sched_dl_entity of a newly becoming
3541 * SCHED_DEADLINE task.
3543 * Only the static values are considered here, the actual runtime and the
3544 * absolute deadline will be properly calculated when the task is enqueued
3545 * for the first time with its new policy.
3547 static void
3548 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3550 struct sched_dl_entity *dl_se = &p->dl;
3552 dl_se->dl_runtime = attr->sched_runtime;
3553 dl_se->dl_deadline = attr->sched_deadline;
3554 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3555 dl_se->flags = attr->sched_flags;
3556 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3559 * Changing the parameters of a task is 'tricky' and we're not doing
3560 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3562 * What we SHOULD do is delay the bandwidth release until the 0-lag
3563 * point. This would include retaining the task_struct until that time
3564 * and change dl_overflow() to not immediately decrement the current
3565 * amount.
3567 * Instead we retain the current runtime/deadline and let the new
3568 * parameters take effect after the current reservation period lapses.
3569 * This is safe (albeit pessimistic) because the 0-lag point is always
3570 * before the current scheduling deadline.
3572 * We can still have temporary overloads because we do not delay the
3573 * change in bandwidth until that time; so admission control is
3574 * not on the safe side. It does however guarantee tasks will never
3575 * consume more than promised.
3580 * sched_setparam() passes in -1 for its policy, to let the functions
3581 * it calls know not to change it.
3583 #define SETPARAM_POLICY -1
3585 static void __setscheduler_params(struct task_struct *p,
3586 const struct sched_attr *attr)
3588 int policy = attr->sched_policy;
3590 if (policy == SETPARAM_POLICY)
3591 policy = p->policy;
3593 p->policy = policy;
3595 if (dl_policy(policy))
3596 __setparam_dl(p, attr);
3597 else if (fair_policy(policy))
3598 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3601 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3602 * !rt_policy. Always setting this ensures that things like
3603 * getparam()/getattr() don't report silly values for !rt tasks.
3605 p->rt_priority = attr->sched_priority;
3606 p->normal_prio = normal_prio(p);
3607 set_load_weight(p);
3610 /* Actually do priority change: must hold pi & rq lock. */
3611 static void __setscheduler(struct rq *rq, struct task_struct *p,
3612 const struct sched_attr *attr, bool keep_boost)
3614 __setscheduler_params(p, attr);
3617 * Keep a potential priority boosting if called from
3618 * sched_setscheduler().
3620 if (keep_boost)
3621 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3622 else
3623 p->prio = normal_prio(p);
3625 if (dl_prio(p->prio))
3626 p->sched_class = &dl_sched_class;
3627 else if (rt_prio(p->prio))
3628 p->sched_class = &rt_sched_class;
3629 else
3630 p->sched_class = &fair_sched_class;
3633 static void
3634 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3636 struct sched_dl_entity *dl_se = &p->dl;
3638 attr->sched_priority = p->rt_priority;
3639 attr->sched_runtime = dl_se->dl_runtime;
3640 attr->sched_deadline = dl_se->dl_deadline;
3641 attr->sched_period = dl_se->dl_period;
3642 attr->sched_flags = dl_se->flags;
3646 * This function validates the new parameters of a -deadline task.
3647 * We ask for the deadline not being zero, and greater or equal
3648 * than the runtime, as well as the period of being zero or
3649 * greater than deadline. Furthermore, we have to be sure that
3650 * user parameters are above the internal resolution of 1us (we
3651 * check sched_runtime only since it is always the smaller one) and
3652 * below 2^63 ns (we have to check both sched_deadline and
3653 * sched_period, as the latter can be zero).
3655 static bool
3656 __checkparam_dl(const struct sched_attr *attr)
3658 /* deadline != 0 */
3659 if (attr->sched_deadline == 0)
3660 return false;
3663 * Since we truncate DL_SCALE bits, make sure we're at least
3664 * that big.
3666 if (attr->sched_runtime < (1ULL << DL_SCALE))
3667 return false;
3670 * Since we use the MSB for wrap-around and sign issues, make
3671 * sure it's not set (mind that period can be equal to zero).
3673 if (attr->sched_deadline & (1ULL << 63) ||
3674 attr->sched_period & (1ULL << 63))
3675 return false;
3677 /* runtime <= deadline <= period (if period != 0) */
3678 if ((attr->sched_period != 0 &&
3679 attr->sched_period < attr->sched_deadline) ||
3680 attr->sched_deadline < attr->sched_runtime)
3681 return false;
3683 return true;
3687 * check the target process has a UID that matches the current process's
3689 static bool check_same_owner(struct task_struct *p)
3691 const struct cred *cred = current_cred(), *pcred;
3692 bool match;
3694 rcu_read_lock();
3695 pcred = __task_cred(p);
3696 match = (uid_eq(cred->euid, pcred->euid) ||
3697 uid_eq(cred->euid, pcred->uid));
3698 rcu_read_unlock();
3699 return match;
3702 static bool dl_param_changed(struct task_struct *p,
3703 const struct sched_attr *attr)
3705 struct sched_dl_entity *dl_se = &p->dl;
3707 if (dl_se->dl_runtime != attr->sched_runtime ||
3708 dl_se->dl_deadline != attr->sched_deadline ||
3709 dl_se->dl_period != attr->sched_period ||
3710 dl_se->flags != attr->sched_flags)
3711 return true;
3713 return false;
3716 static int __sched_setscheduler(struct task_struct *p,
3717 const struct sched_attr *attr,
3718 bool user, bool pi)
3720 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3721 MAX_RT_PRIO - 1 - attr->sched_priority;
3722 int retval, oldprio, oldpolicy = -1, queued, running;
3723 int new_effective_prio, policy = attr->sched_policy;
3724 unsigned long flags;
3725 const struct sched_class *prev_class;
3726 struct rq *rq;
3727 int reset_on_fork;
3729 /* may grab non-irq protected spin_locks */
3730 BUG_ON(in_interrupt());
3731 recheck:
3732 /* double check policy once rq lock held */
3733 if (policy < 0) {
3734 reset_on_fork = p->sched_reset_on_fork;
3735 policy = oldpolicy = p->policy;
3736 } else {
3737 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3739 if (policy != SCHED_DEADLINE &&
3740 policy != SCHED_FIFO && policy != SCHED_RR &&
3741 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3742 policy != SCHED_IDLE)
3743 return -EINVAL;
3746 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3747 return -EINVAL;
3750 * Valid priorities for SCHED_FIFO and SCHED_RR are
3751 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3752 * SCHED_BATCH and SCHED_IDLE is 0.
3754 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3755 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3756 return -EINVAL;
3757 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3758 (rt_policy(policy) != (attr->sched_priority != 0)))
3759 return -EINVAL;
3762 * Allow unprivileged RT tasks to decrease priority:
3764 if (user && !capable(CAP_SYS_NICE)) {
3765 if (fair_policy(policy)) {
3766 if (attr->sched_nice < task_nice(p) &&
3767 !can_nice(p, attr->sched_nice))
3768 return -EPERM;
3771 if (rt_policy(policy)) {
3772 unsigned long rlim_rtprio =
3773 task_rlimit(p, RLIMIT_RTPRIO);
3775 /* can't set/change the rt policy */
3776 if (policy != p->policy && !rlim_rtprio)
3777 return -EPERM;
3779 /* can't increase priority */
3780 if (attr->sched_priority > p->rt_priority &&
3781 attr->sched_priority > rlim_rtprio)
3782 return -EPERM;
3786 * Can't set/change SCHED_DEADLINE policy at all for now
3787 * (safest behavior); in the future we would like to allow
3788 * unprivileged DL tasks to increase their relative deadline
3789 * or reduce their runtime (both ways reducing utilization)
3791 if (dl_policy(policy))
3792 return -EPERM;
3795 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3796 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3798 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3799 if (!can_nice(p, task_nice(p)))
3800 return -EPERM;
3803 /* can't change other user's priorities */
3804 if (!check_same_owner(p))
3805 return -EPERM;
3807 /* Normal users shall not reset the sched_reset_on_fork flag */
3808 if (p->sched_reset_on_fork && !reset_on_fork)
3809 return -EPERM;
3812 if (user) {
3813 retval = security_task_setscheduler(p);
3814 if (retval)
3815 return retval;
3819 * make sure no PI-waiters arrive (or leave) while we are
3820 * changing the priority of the task:
3822 * To be able to change p->policy safely, the appropriate
3823 * runqueue lock must be held.
3825 rq = task_rq_lock(p, &flags);
3828 * Changing the policy of the stop threads its a very bad idea
3830 if (p == rq->stop) {
3831 task_rq_unlock(rq, p, &flags);
3832 return -EINVAL;
3836 * If not changing anything there's no need to proceed further,
3837 * but store a possible modification of reset_on_fork.
3839 if (unlikely(policy == p->policy)) {
3840 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3841 goto change;
3842 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3843 goto change;
3844 if (dl_policy(policy) && dl_param_changed(p, attr))
3845 goto change;
3847 p->sched_reset_on_fork = reset_on_fork;
3848 task_rq_unlock(rq, p, &flags);
3849 return 0;
3851 change:
3853 if (user) {
3854 #ifdef CONFIG_RT_GROUP_SCHED
3856 * Do not allow realtime tasks into groups that have no runtime
3857 * assigned.
3859 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3860 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3861 !task_group_is_autogroup(task_group(p))) {
3862 task_rq_unlock(rq, p, &flags);
3863 return -EPERM;
3865 #endif
3866 #ifdef CONFIG_SMP
3867 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3868 cpumask_t *span = rq->rd->span;
3871 * Don't allow tasks with an affinity mask smaller than
3872 * the entire root_domain to become SCHED_DEADLINE. We
3873 * will also fail if there's no bandwidth available.
3875 if (!cpumask_subset(span, &p->cpus_allowed) ||
3876 rq->rd->dl_bw.bw == 0) {
3877 task_rq_unlock(rq, p, &flags);
3878 return -EPERM;
3881 #endif
3884 /* recheck policy now with rq lock held */
3885 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3886 policy = oldpolicy = -1;
3887 task_rq_unlock(rq, p, &flags);
3888 goto recheck;
3892 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3893 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3894 * is available.
3896 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3897 task_rq_unlock(rq, p, &flags);
3898 return -EBUSY;
3901 p->sched_reset_on_fork = reset_on_fork;
3902 oldprio = p->prio;
3904 if (pi) {
3906 * Take priority boosted tasks into account. If the new
3907 * effective priority is unchanged, we just store the new
3908 * normal parameters and do not touch the scheduler class and
3909 * the runqueue. This will be done when the task deboost
3910 * itself.
3912 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3913 if (new_effective_prio == oldprio) {
3914 __setscheduler_params(p, attr);
3915 task_rq_unlock(rq, p, &flags);
3916 return 0;
3920 queued = task_on_rq_queued(p);
3921 running = task_current(rq, p);
3922 if (queued)
3923 dequeue_task(rq, p, 0);
3924 if (running)
3925 put_prev_task(rq, p);
3927 prev_class = p->sched_class;
3928 __setscheduler(rq, p, attr, pi);
3930 if (running)
3931 p->sched_class->set_curr_task(rq);
3932 if (queued) {
3934 * We enqueue to tail when the priority of a task is
3935 * increased (user space view).
3937 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3940 check_class_changed(rq, p, prev_class, oldprio);
3941 preempt_disable(); /* avoid rq from going away on us */
3942 task_rq_unlock(rq, p, &flags);
3944 if (pi)
3945 rt_mutex_adjust_pi(p);
3948 * Run balance callbacks after we've adjusted the PI chain.
3950 balance_callback(rq);
3951 preempt_enable();
3953 return 0;
3956 static int _sched_setscheduler(struct task_struct *p, int policy,
3957 const struct sched_param *param, bool check)
3959 struct sched_attr attr = {
3960 .sched_policy = policy,
3961 .sched_priority = param->sched_priority,
3962 .sched_nice = PRIO_TO_NICE(p->static_prio),
3965 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3966 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3967 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3968 policy &= ~SCHED_RESET_ON_FORK;
3969 attr.sched_policy = policy;
3972 return __sched_setscheduler(p, &attr, check, true);
3975 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3976 * @p: the task in question.
3977 * @policy: new policy.
3978 * @param: structure containing the new RT priority.
3980 * Return: 0 on success. An error code otherwise.
3982 * NOTE that the task may be already dead.
3984 int sched_setscheduler(struct task_struct *p, int policy,
3985 const struct sched_param *param)
3987 return _sched_setscheduler(p, policy, param, true);
3989 EXPORT_SYMBOL_GPL(sched_setscheduler);
3991 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3993 return __sched_setscheduler(p, attr, true, true);
3995 EXPORT_SYMBOL_GPL(sched_setattr);
3998 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3999 * @p: the task in question.
4000 * @policy: new policy.
4001 * @param: structure containing the new RT priority.
4003 * Just like sched_setscheduler, only don't bother checking if the
4004 * current context has permission. For example, this is needed in
4005 * stop_machine(): we create temporary high priority worker threads,
4006 * but our caller might not have that capability.
4008 * Return: 0 on success. An error code otherwise.
4010 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4011 const struct sched_param *param)
4013 return _sched_setscheduler(p, policy, param, false);
4016 static int
4017 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4019 struct sched_param lparam;
4020 struct task_struct *p;
4021 int retval;
4023 if (!param || pid < 0)
4024 return -EINVAL;
4025 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4026 return -EFAULT;
4028 rcu_read_lock();
4029 retval = -ESRCH;
4030 p = find_process_by_pid(pid);
4031 if (p != NULL)
4032 retval = sched_setscheduler(p, policy, &lparam);
4033 rcu_read_unlock();
4035 return retval;
4039 * Mimics kernel/events/core.c perf_copy_attr().
4041 static int sched_copy_attr(struct sched_attr __user *uattr,
4042 struct sched_attr *attr)
4044 u32 size;
4045 int ret;
4047 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4048 return -EFAULT;
4051 * zero the full structure, so that a short copy will be nice.
4053 memset(attr, 0, sizeof(*attr));
4055 ret = get_user(size, &uattr->size);
4056 if (ret)
4057 return ret;
4059 if (size > PAGE_SIZE) /* silly large */
4060 goto err_size;
4062 if (!size) /* abi compat */
4063 size = SCHED_ATTR_SIZE_VER0;
4065 if (size < SCHED_ATTR_SIZE_VER0)
4066 goto err_size;
4069 * If we're handed a bigger struct than we know of,
4070 * ensure all the unknown bits are 0 - i.e. new
4071 * user-space does not rely on any kernel feature
4072 * extensions we dont know about yet.
4074 if (size > sizeof(*attr)) {
4075 unsigned char __user *addr;
4076 unsigned char __user *end;
4077 unsigned char val;
4079 addr = (void __user *)uattr + sizeof(*attr);
4080 end = (void __user *)uattr + size;
4082 for (; addr < end; addr++) {
4083 ret = get_user(val, addr);
4084 if (ret)
4085 return ret;
4086 if (val)
4087 goto err_size;
4089 size = sizeof(*attr);
4092 ret = copy_from_user(attr, uattr, size);
4093 if (ret)
4094 return -EFAULT;
4097 * XXX: do we want to be lenient like existing syscalls; or do we want
4098 * to be strict and return an error on out-of-bounds values?
4100 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4102 return 0;
4104 err_size:
4105 put_user(sizeof(*attr), &uattr->size);
4106 return -E2BIG;
4110 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4111 * @pid: the pid in question.
4112 * @policy: new policy.
4113 * @param: structure containing the new RT priority.
4115 * Return: 0 on success. An error code otherwise.
4117 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4118 struct sched_param __user *, param)
4120 /* negative values for policy are not valid */
4121 if (policy < 0)
4122 return -EINVAL;
4124 return do_sched_setscheduler(pid, policy, param);
4128 * sys_sched_setparam - set/change the RT priority of a thread
4129 * @pid: the pid in question.
4130 * @param: structure containing the new RT priority.
4132 * Return: 0 on success. An error code otherwise.
4134 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4136 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4140 * sys_sched_setattr - same as above, but with extended sched_attr
4141 * @pid: the pid in question.
4142 * @uattr: structure containing the extended parameters.
4143 * @flags: for future extension.
4145 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4146 unsigned int, flags)
4148 struct sched_attr attr;
4149 struct task_struct *p;
4150 int retval;
4152 if (!uattr || pid < 0 || flags)
4153 return -EINVAL;
4155 retval = sched_copy_attr(uattr, &attr);
4156 if (retval)
4157 return retval;
4159 if ((int)attr.sched_policy < 0)
4160 return -EINVAL;
4162 rcu_read_lock();
4163 retval = -ESRCH;
4164 p = find_process_by_pid(pid);
4165 if (p != NULL)
4166 retval = sched_setattr(p, &attr);
4167 rcu_read_unlock();
4169 return retval;
4173 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4174 * @pid: the pid in question.
4176 * Return: On success, the policy of the thread. Otherwise, a negative error
4177 * code.
4179 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4181 struct task_struct *p;
4182 int retval;
4184 if (pid < 0)
4185 return -EINVAL;
4187 retval = -ESRCH;
4188 rcu_read_lock();
4189 p = find_process_by_pid(pid);
4190 if (p) {
4191 retval = security_task_getscheduler(p);
4192 if (!retval)
4193 retval = p->policy
4194 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4196 rcu_read_unlock();
4197 return retval;
4201 * sys_sched_getparam - get the RT priority of a thread
4202 * @pid: the pid in question.
4203 * @param: structure containing the RT priority.
4205 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4206 * code.
4208 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4210 struct sched_param lp = { .sched_priority = 0 };
4211 struct task_struct *p;
4212 int retval;
4214 if (!param || pid < 0)
4215 return -EINVAL;
4217 rcu_read_lock();
4218 p = find_process_by_pid(pid);
4219 retval = -ESRCH;
4220 if (!p)
4221 goto out_unlock;
4223 retval = security_task_getscheduler(p);
4224 if (retval)
4225 goto out_unlock;
4227 if (task_has_rt_policy(p))
4228 lp.sched_priority = p->rt_priority;
4229 rcu_read_unlock();
4232 * This one might sleep, we cannot do it with a spinlock held ...
4234 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4236 return retval;
4238 out_unlock:
4239 rcu_read_unlock();
4240 return retval;
4243 static int sched_read_attr(struct sched_attr __user *uattr,
4244 struct sched_attr *attr,
4245 unsigned int usize)
4247 int ret;
4249 if (!access_ok(VERIFY_WRITE, uattr, usize))
4250 return -EFAULT;
4253 * If we're handed a smaller struct than we know of,
4254 * ensure all the unknown bits are 0 - i.e. old
4255 * user-space does not get uncomplete information.
4257 if (usize < sizeof(*attr)) {
4258 unsigned char *addr;
4259 unsigned char *end;
4261 addr = (void *)attr + usize;
4262 end = (void *)attr + sizeof(*attr);
4264 for (; addr < end; addr++) {
4265 if (*addr)
4266 return -EFBIG;
4269 attr->size = usize;
4272 ret = copy_to_user(uattr, attr, attr->size);
4273 if (ret)
4274 return -EFAULT;
4276 return 0;
4280 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4281 * @pid: the pid in question.
4282 * @uattr: structure containing the extended parameters.
4283 * @size: sizeof(attr) for fwd/bwd comp.
4284 * @flags: for future extension.
4286 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4287 unsigned int, size, unsigned int, flags)
4289 struct sched_attr attr = {
4290 .size = sizeof(struct sched_attr),
4292 struct task_struct *p;
4293 int retval;
4295 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4296 size < SCHED_ATTR_SIZE_VER0 || flags)
4297 return -EINVAL;
4299 rcu_read_lock();
4300 p = find_process_by_pid(pid);
4301 retval = -ESRCH;
4302 if (!p)
4303 goto out_unlock;
4305 retval = security_task_getscheduler(p);
4306 if (retval)
4307 goto out_unlock;
4309 attr.sched_policy = p->policy;
4310 if (p->sched_reset_on_fork)
4311 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4312 if (task_has_dl_policy(p))
4313 __getparam_dl(p, &attr);
4314 else if (task_has_rt_policy(p))
4315 attr.sched_priority = p->rt_priority;
4316 else
4317 attr.sched_nice = task_nice(p);
4319 rcu_read_unlock();
4321 retval = sched_read_attr(uattr, &attr, size);
4322 return retval;
4324 out_unlock:
4325 rcu_read_unlock();
4326 return retval;
4329 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4331 cpumask_var_t cpus_allowed, new_mask;
4332 struct task_struct *p;
4333 int retval;
4335 rcu_read_lock();
4337 p = find_process_by_pid(pid);
4338 if (!p) {
4339 rcu_read_unlock();
4340 return -ESRCH;
4343 /* Prevent p going away */
4344 get_task_struct(p);
4345 rcu_read_unlock();
4347 if (p->flags & PF_NO_SETAFFINITY) {
4348 retval = -EINVAL;
4349 goto out_put_task;
4351 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4352 retval = -ENOMEM;
4353 goto out_put_task;
4355 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4356 retval = -ENOMEM;
4357 goto out_free_cpus_allowed;
4359 retval = -EPERM;
4360 if (!check_same_owner(p)) {
4361 rcu_read_lock();
4362 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4363 rcu_read_unlock();
4364 goto out_free_new_mask;
4366 rcu_read_unlock();
4369 retval = security_task_setscheduler(p);
4370 if (retval)
4371 goto out_free_new_mask;
4374 cpuset_cpus_allowed(p, cpus_allowed);
4375 cpumask_and(new_mask, in_mask, cpus_allowed);
4378 * Since bandwidth control happens on root_domain basis,
4379 * if admission test is enabled, we only admit -deadline
4380 * tasks allowed to run on all the CPUs in the task's
4381 * root_domain.
4383 #ifdef CONFIG_SMP
4384 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4385 rcu_read_lock();
4386 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4387 retval = -EBUSY;
4388 rcu_read_unlock();
4389 goto out_free_new_mask;
4391 rcu_read_unlock();
4393 #endif
4394 again:
4395 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4397 if (!retval) {
4398 cpuset_cpus_allowed(p, cpus_allowed);
4399 if (!cpumask_subset(new_mask, cpus_allowed)) {
4401 * We must have raced with a concurrent cpuset
4402 * update. Just reset the cpus_allowed to the
4403 * cpuset's cpus_allowed
4405 cpumask_copy(new_mask, cpus_allowed);
4406 goto again;
4409 out_free_new_mask:
4410 free_cpumask_var(new_mask);
4411 out_free_cpus_allowed:
4412 free_cpumask_var(cpus_allowed);
4413 out_put_task:
4414 put_task_struct(p);
4415 return retval;
4418 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4419 struct cpumask *new_mask)
4421 if (len < cpumask_size())
4422 cpumask_clear(new_mask);
4423 else if (len > cpumask_size())
4424 len = cpumask_size();
4426 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4430 * sys_sched_setaffinity - set the cpu affinity of a process
4431 * @pid: pid of the process
4432 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4433 * @user_mask_ptr: user-space pointer to the new cpu mask
4435 * Return: 0 on success. An error code otherwise.
4437 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4438 unsigned long __user *, user_mask_ptr)
4440 cpumask_var_t new_mask;
4441 int retval;
4443 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4444 return -ENOMEM;
4446 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4447 if (retval == 0)
4448 retval = sched_setaffinity(pid, new_mask);
4449 free_cpumask_var(new_mask);
4450 return retval;
4453 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4455 struct task_struct *p;
4456 unsigned long flags;
4457 int retval;
4459 rcu_read_lock();
4461 retval = -ESRCH;
4462 p = find_process_by_pid(pid);
4463 if (!p)
4464 goto out_unlock;
4466 retval = security_task_getscheduler(p);
4467 if (retval)
4468 goto out_unlock;
4470 raw_spin_lock_irqsave(&p->pi_lock, flags);
4471 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4472 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4474 out_unlock:
4475 rcu_read_unlock();
4477 return retval;
4481 * sys_sched_getaffinity - get the cpu affinity of a process
4482 * @pid: pid of the process
4483 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4484 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4486 * Return: 0 on success. An error code otherwise.
4488 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4489 unsigned long __user *, user_mask_ptr)
4491 int ret;
4492 cpumask_var_t mask;
4494 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4495 return -EINVAL;
4496 if (len & (sizeof(unsigned long)-1))
4497 return -EINVAL;
4499 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4500 return -ENOMEM;
4502 ret = sched_getaffinity(pid, mask);
4503 if (ret == 0) {
4504 size_t retlen = min_t(size_t, len, cpumask_size());
4506 if (copy_to_user(user_mask_ptr, mask, retlen))
4507 ret = -EFAULT;
4508 else
4509 ret = retlen;
4511 free_cpumask_var(mask);
4513 return ret;
4517 * sys_sched_yield - yield the current processor to other threads.
4519 * This function yields the current CPU to other tasks. If there are no
4520 * other threads running on this CPU then this function will return.
4522 * Return: 0.
4524 SYSCALL_DEFINE0(sched_yield)
4526 struct rq *rq = this_rq_lock();
4528 schedstat_inc(rq, yld_count);
4529 current->sched_class->yield_task(rq);
4532 * Since we are going to call schedule() anyway, there's
4533 * no need to preempt or enable interrupts:
4535 __release(rq->lock);
4536 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4537 do_raw_spin_unlock(&rq->lock);
4538 sched_preempt_enable_no_resched();
4540 schedule();
4542 return 0;
4545 int __sched _cond_resched(void)
4547 if (should_resched(0)) {
4548 preempt_schedule_common();
4549 return 1;
4551 return 0;
4553 EXPORT_SYMBOL(_cond_resched);
4556 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4557 * call schedule, and on return reacquire the lock.
4559 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4560 * operations here to prevent schedule() from being called twice (once via
4561 * spin_unlock(), once by hand).
4563 int __cond_resched_lock(spinlock_t *lock)
4565 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4566 int ret = 0;
4568 lockdep_assert_held(lock);
4570 if (spin_needbreak(lock) || resched) {
4571 spin_unlock(lock);
4572 if (resched)
4573 preempt_schedule_common();
4574 else
4575 cpu_relax();
4576 ret = 1;
4577 spin_lock(lock);
4579 return ret;
4581 EXPORT_SYMBOL(__cond_resched_lock);
4583 int __sched __cond_resched_softirq(void)
4585 BUG_ON(!in_softirq());
4587 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4588 local_bh_enable();
4589 preempt_schedule_common();
4590 local_bh_disable();
4591 return 1;
4593 return 0;
4595 EXPORT_SYMBOL(__cond_resched_softirq);
4598 * yield - yield the current processor to other threads.
4600 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4602 * The scheduler is at all times free to pick the calling task as the most
4603 * eligible task to run, if removing the yield() call from your code breaks
4604 * it, its already broken.
4606 * Typical broken usage is:
4608 * while (!event)
4609 * yield();
4611 * where one assumes that yield() will let 'the other' process run that will
4612 * make event true. If the current task is a SCHED_FIFO task that will never
4613 * happen. Never use yield() as a progress guarantee!!
4615 * If you want to use yield() to wait for something, use wait_event().
4616 * If you want to use yield() to be 'nice' for others, use cond_resched().
4617 * If you still want to use yield(), do not!
4619 void __sched yield(void)
4621 set_current_state(TASK_RUNNING);
4622 sys_sched_yield();
4624 EXPORT_SYMBOL(yield);
4627 * yield_to - yield the current processor to another thread in
4628 * your thread group, or accelerate that thread toward the
4629 * processor it's on.
4630 * @p: target task
4631 * @preempt: whether task preemption is allowed or not
4633 * It's the caller's job to ensure that the target task struct
4634 * can't go away on us before we can do any checks.
4636 * Return:
4637 * true (>0) if we indeed boosted the target task.
4638 * false (0) if we failed to boost the target.
4639 * -ESRCH if there's no task to yield to.
4641 int __sched yield_to(struct task_struct *p, bool preempt)
4643 struct task_struct *curr = current;
4644 struct rq *rq, *p_rq;
4645 unsigned long flags;
4646 int yielded = 0;
4648 local_irq_save(flags);
4649 rq = this_rq();
4651 again:
4652 p_rq = task_rq(p);
4654 * If we're the only runnable task on the rq and target rq also
4655 * has only one task, there's absolutely no point in yielding.
4657 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4658 yielded = -ESRCH;
4659 goto out_irq;
4662 double_rq_lock(rq, p_rq);
4663 if (task_rq(p) != p_rq) {
4664 double_rq_unlock(rq, p_rq);
4665 goto again;
4668 if (!curr->sched_class->yield_to_task)
4669 goto out_unlock;
4671 if (curr->sched_class != p->sched_class)
4672 goto out_unlock;
4674 if (task_running(p_rq, p) || p->state)
4675 goto out_unlock;
4677 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4678 if (yielded) {
4679 schedstat_inc(rq, yld_count);
4681 * Make p's CPU reschedule; pick_next_entity takes care of
4682 * fairness.
4684 if (preempt && rq != p_rq)
4685 resched_curr(p_rq);
4688 out_unlock:
4689 double_rq_unlock(rq, p_rq);
4690 out_irq:
4691 local_irq_restore(flags);
4693 if (yielded > 0)
4694 schedule();
4696 return yielded;
4698 EXPORT_SYMBOL_GPL(yield_to);
4701 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4702 * that process accounting knows that this is a task in IO wait state.
4704 long __sched io_schedule_timeout(long timeout)
4706 int old_iowait = current->in_iowait;
4707 struct rq *rq;
4708 long ret;
4710 current->in_iowait = 1;
4711 blk_schedule_flush_plug(current);
4713 delayacct_blkio_start();
4714 rq = raw_rq();
4715 atomic_inc(&rq->nr_iowait);
4716 ret = schedule_timeout(timeout);
4717 current->in_iowait = old_iowait;
4718 atomic_dec(&rq->nr_iowait);
4719 delayacct_blkio_end();
4721 return ret;
4723 EXPORT_SYMBOL(io_schedule_timeout);
4726 * sys_sched_get_priority_max - return maximum RT priority.
4727 * @policy: scheduling class.
4729 * Return: On success, this syscall returns the maximum
4730 * rt_priority that can be used by a given scheduling class.
4731 * On failure, a negative error code is returned.
4733 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4735 int ret = -EINVAL;
4737 switch (policy) {
4738 case SCHED_FIFO:
4739 case SCHED_RR:
4740 ret = MAX_USER_RT_PRIO-1;
4741 break;
4742 case SCHED_DEADLINE:
4743 case SCHED_NORMAL:
4744 case SCHED_BATCH:
4745 case SCHED_IDLE:
4746 ret = 0;
4747 break;
4749 return ret;
4753 * sys_sched_get_priority_min - return minimum RT priority.
4754 * @policy: scheduling class.
4756 * Return: On success, this syscall returns the minimum
4757 * rt_priority that can be used by a given scheduling class.
4758 * On failure, a negative error code is returned.
4760 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4762 int ret = -EINVAL;
4764 switch (policy) {
4765 case SCHED_FIFO:
4766 case SCHED_RR:
4767 ret = 1;
4768 break;
4769 case SCHED_DEADLINE:
4770 case SCHED_NORMAL:
4771 case SCHED_BATCH:
4772 case SCHED_IDLE:
4773 ret = 0;
4775 return ret;
4779 * sys_sched_rr_get_interval - return the default timeslice of a process.
4780 * @pid: pid of the process.
4781 * @interval: userspace pointer to the timeslice value.
4783 * this syscall writes the default timeslice value of a given process
4784 * into the user-space timespec buffer. A value of '0' means infinity.
4786 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4787 * an error code.
4789 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4790 struct timespec __user *, interval)
4792 struct task_struct *p;
4793 unsigned int time_slice;
4794 unsigned long flags;
4795 struct rq *rq;
4796 int retval;
4797 struct timespec t;
4799 if (pid < 0)
4800 return -EINVAL;
4802 retval = -ESRCH;
4803 rcu_read_lock();
4804 p = find_process_by_pid(pid);
4805 if (!p)
4806 goto out_unlock;
4808 retval = security_task_getscheduler(p);
4809 if (retval)
4810 goto out_unlock;
4812 rq = task_rq_lock(p, &flags);
4813 time_slice = 0;
4814 if (p->sched_class->get_rr_interval)
4815 time_slice = p->sched_class->get_rr_interval(rq, p);
4816 task_rq_unlock(rq, p, &flags);
4818 rcu_read_unlock();
4819 jiffies_to_timespec(time_slice, &t);
4820 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4821 return retval;
4823 out_unlock:
4824 rcu_read_unlock();
4825 return retval;
4828 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4830 void sched_show_task(struct task_struct *p)
4832 unsigned long free = 0;
4833 int ppid;
4834 unsigned long state = p->state;
4836 if (state)
4837 state = __ffs(state) + 1;
4838 printk(KERN_INFO "%-15.15s %c", p->comm,
4839 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4840 #if BITS_PER_LONG == 32
4841 if (state == TASK_RUNNING)
4842 printk(KERN_CONT " running ");
4843 else
4844 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4845 #else
4846 if (state == TASK_RUNNING)
4847 printk(KERN_CONT " running task ");
4848 else
4849 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4850 #endif
4851 #ifdef CONFIG_DEBUG_STACK_USAGE
4852 free = stack_not_used(p);
4853 #endif
4854 ppid = 0;
4855 rcu_read_lock();
4856 if (pid_alive(p))
4857 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4858 rcu_read_unlock();
4859 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4860 task_pid_nr(p), ppid,
4861 (unsigned long)task_thread_info(p)->flags);
4863 print_worker_info(KERN_INFO, p);
4864 show_stack(p, NULL);
4867 void show_state_filter(unsigned long state_filter)
4869 struct task_struct *g, *p;
4871 #if BITS_PER_LONG == 32
4872 printk(KERN_INFO
4873 " task PC stack pid father\n");
4874 #else
4875 printk(KERN_INFO
4876 " task PC stack pid father\n");
4877 #endif
4878 rcu_read_lock();
4879 for_each_process_thread(g, p) {
4881 * reset the NMI-timeout, listing all files on a slow
4882 * console might take a lot of time:
4884 touch_nmi_watchdog();
4885 if (!state_filter || (p->state & state_filter))
4886 sched_show_task(p);
4889 touch_all_softlockup_watchdogs();
4891 #ifdef CONFIG_SCHED_DEBUG
4892 sysrq_sched_debug_show();
4893 #endif
4894 rcu_read_unlock();
4896 * Only show locks if all tasks are dumped:
4898 if (!state_filter)
4899 debug_show_all_locks();
4902 void init_idle_bootup_task(struct task_struct *idle)
4904 idle->sched_class = &idle_sched_class;
4908 * init_idle - set up an idle thread for a given CPU
4909 * @idle: task in question
4910 * @cpu: cpu the idle task belongs to
4912 * NOTE: this function does not set the idle thread's NEED_RESCHED
4913 * flag, to make booting more robust.
4915 void init_idle(struct task_struct *idle, int cpu)
4917 struct rq *rq = cpu_rq(cpu);
4918 unsigned long flags;
4920 raw_spin_lock_irqsave(&idle->pi_lock, flags);
4921 raw_spin_lock(&rq->lock);
4923 __sched_fork(0, idle);
4924 idle->state = TASK_RUNNING;
4925 idle->se.exec_start = sched_clock();
4927 do_set_cpus_allowed(idle, cpumask_of(cpu));
4929 * We're having a chicken and egg problem, even though we are
4930 * holding rq->lock, the cpu isn't yet set to this cpu so the
4931 * lockdep check in task_group() will fail.
4933 * Similar case to sched_fork(). / Alternatively we could
4934 * use task_rq_lock() here and obtain the other rq->lock.
4936 * Silence PROVE_RCU
4938 rcu_read_lock();
4939 __set_task_cpu(idle, cpu);
4940 rcu_read_unlock();
4942 rq->curr = rq->idle = idle;
4943 idle->on_rq = TASK_ON_RQ_QUEUED;
4944 #if defined(CONFIG_SMP)
4945 idle->on_cpu = 1;
4946 #endif
4947 raw_spin_unlock(&rq->lock);
4948 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
4950 /* Set the preempt count _outside_ the spinlocks! */
4951 init_idle_preempt_count(idle, cpu);
4954 * The idle tasks have their own, simple scheduling class:
4956 idle->sched_class = &idle_sched_class;
4957 ftrace_graph_init_idle_task(idle, cpu);
4958 vtime_init_idle(idle, cpu);
4959 #if defined(CONFIG_SMP)
4960 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4961 #endif
4964 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4965 const struct cpumask *trial)
4967 int ret = 1, trial_cpus;
4968 struct dl_bw *cur_dl_b;
4969 unsigned long flags;
4971 if (!cpumask_weight(cur))
4972 return ret;
4974 rcu_read_lock_sched();
4975 cur_dl_b = dl_bw_of(cpumask_any(cur));
4976 trial_cpus = cpumask_weight(trial);
4978 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4979 if (cur_dl_b->bw != -1 &&
4980 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4981 ret = 0;
4982 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4983 rcu_read_unlock_sched();
4985 return ret;
4988 int task_can_attach(struct task_struct *p,
4989 const struct cpumask *cs_cpus_allowed)
4991 int ret = 0;
4994 * Kthreads which disallow setaffinity shouldn't be moved
4995 * to a new cpuset; we don't want to change their cpu
4996 * affinity and isolating such threads by their set of
4997 * allowed nodes is unnecessary. Thus, cpusets are not
4998 * applicable for such threads. This prevents checking for
4999 * success of set_cpus_allowed_ptr() on all attached tasks
5000 * before cpus_allowed may be changed.
5002 if (p->flags & PF_NO_SETAFFINITY) {
5003 ret = -EINVAL;
5004 goto out;
5007 #ifdef CONFIG_SMP
5008 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5009 cs_cpus_allowed)) {
5010 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5011 cs_cpus_allowed);
5012 struct dl_bw *dl_b;
5013 bool overflow;
5014 int cpus;
5015 unsigned long flags;
5017 rcu_read_lock_sched();
5018 dl_b = dl_bw_of(dest_cpu);
5019 raw_spin_lock_irqsave(&dl_b->lock, flags);
5020 cpus = dl_bw_cpus(dest_cpu);
5021 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5022 if (overflow)
5023 ret = -EBUSY;
5024 else {
5026 * We reserve space for this task in the destination
5027 * root_domain, as we can't fail after this point.
5028 * We will free resources in the source root_domain
5029 * later on (see set_cpus_allowed_dl()).
5031 __dl_add(dl_b, p->dl.dl_bw);
5033 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5034 rcu_read_unlock_sched();
5037 #endif
5038 out:
5039 return ret;
5042 #ifdef CONFIG_SMP
5044 #ifdef CONFIG_NUMA_BALANCING
5045 /* Migrate current task p to target_cpu */
5046 int migrate_task_to(struct task_struct *p, int target_cpu)
5048 struct migration_arg arg = { p, target_cpu };
5049 int curr_cpu = task_cpu(p);
5051 if (curr_cpu == target_cpu)
5052 return 0;
5054 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5055 return -EINVAL;
5057 /* TODO: This is not properly updating schedstats */
5059 trace_sched_move_numa(p, curr_cpu, target_cpu);
5060 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5064 * Requeue a task on a given node and accurately track the number of NUMA
5065 * tasks on the runqueues
5067 void sched_setnuma(struct task_struct *p, int nid)
5069 struct rq *rq;
5070 unsigned long flags;
5071 bool queued, running;
5073 rq = task_rq_lock(p, &flags);
5074 queued = task_on_rq_queued(p);
5075 running = task_current(rq, p);
5077 if (queued)
5078 dequeue_task(rq, p, 0);
5079 if (running)
5080 put_prev_task(rq, p);
5082 p->numa_preferred_nid = nid;
5084 if (running)
5085 p->sched_class->set_curr_task(rq);
5086 if (queued)
5087 enqueue_task(rq, p, 0);
5088 task_rq_unlock(rq, p, &flags);
5090 #endif /* CONFIG_NUMA_BALANCING */
5092 #ifdef CONFIG_HOTPLUG_CPU
5094 * Ensures that the idle task is using init_mm right before its cpu goes
5095 * offline.
5097 void idle_task_exit(void)
5099 struct mm_struct *mm = current->active_mm;
5101 BUG_ON(cpu_online(smp_processor_id()));
5103 if (mm != &init_mm) {
5104 switch_mm(mm, &init_mm, current);
5105 finish_arch_post_lock_switch();
5107 mmdrop(mm);
5111 * Since this CPU is going 'away' for a while, fold any nr_active delta
5112 * we might have. Assumes we're called after migrate_tasks() so that the
5113 * nr_active count is stable.
5115 * Also see the comment "Global load-average calculations".
5117 static void calc_load_migrate(struct rq *rq)
5119 long delta = calc_load_fold_active(rq);
5120 if (delta)
5121 atomic_long_add(delta, &calc_load_tasks);
5124 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5128 static const struct sched_class fake_sched_class = {
5129 .put_prev_task = put_prev_task_fake,
5132 static struct task_struct fake_task = {
5134 * Avoid pull_{rt,dl}_task()
5136 .prio = MAX_PRIO + 1,
5137 .sched_class = &fake_sched_class,
5141 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5142 * try_to_wake_up()->select_task_rq().
5144 * Called with rq->lock held even though we'er in stop_machine() and
5145 * there's no concurrency possible, we hold the required locks anyway
5146 * because of lock validation efforts.
5148 static void migrate_tasks(struct rq *dead_rq)
5150 struct rq *rq = dead_rq;
5151 struct task_struct *next, *stop = rq->stop;
5152 int dest_cpu;
5155 * Fudge the rq selection such that the below task selection loop
5156 * doesn't get stuck on the currently eligible stop task.
5158 * We're currently inside stop_machine() and the rq is either stuck
5159 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5160 * either way we should never end up calling schedule() until we're
5161 * done here.
5163 rq->stop = NULL;
5166 * put_prev_task() and pick_next_task() sched
5167 * class method both need to have an up-to-date
5168 * value of rq->clock[_task]
5170 update_rq_clock(rq);
5172 for (;;) {
5174 * There's this thread running, bail when that's the only
5175 * remaining thread.
5177 if (rq->nr_running == 1)
5178 break;
5181 * Ensure rq->lock covers the entire task selection
5182 * until the migration.
5184 lockdep_pin_lock(&rq->lock);
5185 next = pick_next_task(rq, &fake_task);
5186 BUG_ON(!next);
5187 next->sched_class->put_prev_task(rq, next);
5189 /* Find suitable destination for @next, with force if needed. */
5190 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5192 lockdep_unpin_lock(&rq->lock);
5193 rq = __migrate_task(rq, next, dest_cpu);
5194 if (rq != dead_rq) {
5195 raw_spin_unlock(&rq->lock);
5196 rq = dead_rq;
5197 raw_spin_lock(&rq->lock);
5201 rq->stop = stop;
5203 #endif /* CONFIG_HOTPLUG_CPU */
5205 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5207 static struct ctl_table sd_ctl_dir[] = {
5209 .procname = "sched_domain",
5210 .mode = 0555,
5215 static struct ctl_table sd_ctl_root[] = {
5217 .procname = "kernel",
5218 .mode = 0555,
5219 .child = sd_ctl_dir,
5224 static struct ctl_table *sd_alloc_ctl_entry(int n)
5226 struct ctl_table *entry =
5227 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5229 return entry;
5232 static void sd_free_ctl_entry(struct ctl_table **tablep)
5234 struct ctl_table *entry;
5237 * In the intermediate directories, both the child directory and
5238 * procname are dynamically allocated and could fail but the mode
5239 * will always be set. In the lowest directory the names are
5240 * static strings and all have proc handlers.
5242 for (entry = *tablep; entry->mode; entry++) {
5243 if (entry->child)
5244 sd_free_ctl_entry(&entry->child);
5245 if (entry->proc_handler == NULL)
5246 kfree(entry->procname);
5249 kfree(*tablep);
5250 *tablep = NULL;
5253 static int min_load_idx = 0;
5254 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5256 static void
5257 set_table_entry(struct ctl_table *entry,
5258 const char *procname, void *data, int maxlen,
5259 umode_t mode, proc_handler *proc_handler,
5260 bool load_idx)
5262 entry->procname = procname;
5263 entry->data = data;
5264 entry->maxlen = maxlen;
5265 entry->mode = mode;
5266 entry->proc_handler = proc_handler;
5268 if (load_idx) {
5269 entry->extra1 = &min_load_idx;
5270 entry->extra2 = &max_load_idx;
5274 static struct ctl_table *
5275 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5277 struct ctl_table *table = sd_alloc_ctl_entry(14);
5279 if (table == NULL)
5280 return NULL;
5282 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5283 sizeof(long), 0644, proc_doulongvec_minmax, false);
5284 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5285 sizeof(long), 0644, proc_doulongvec_minmax, false);
5286 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5287 sizeof(int), 0644, proc_dointvec_minmax, true);
5288 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5289 sizeof(int), 0644, proc_dointvec_minmax, true);
5290 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5291 sizeof(int), 0644, proc_dointvec_minmax, true);
5292 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5293 sizeof(int), 0644, proc_dointvec_minmax, true);
5294 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5295 sizeof(int), 0644, proc_dointvec_minmax, true);
5296 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5297 sizeof(int), 0644, proc_dointvec_minmax, false);
5298 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5299 sizeof(int), 0644, proc_dointvec_minmax, false);
5300 set_table_entry(&table[9], "cache_nice_tries",
5301 &sd->cache_nice_tries,
5302 sizeof(int), 0644, proc_dointvec_minmax, false);
5303 set_table_entry(&table[10], "flags", &sd->flags,
5304 sizeof(int), 0644, proc_dointvec_minmax, false);
5305 set_table_entry(&table[11], "max_newidle_lb_cost",
5306 &sd->max_newidle_lb_cost,
5307 sizeof(long), 0644, proc_doulongvec_minmax, false);
5308 set_table_entry(&table[12], "name", sd->name,
5309 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5310 /* &table[13] is terminator */
5312 return table;
5315 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5317 struct ctl_table *entry, *table;
5318 struct sched_domain *sd;
5319 int domain_num = 0, i;
5320 char buf[32];
5322 for_each_domain(cpu, sd)
5323 domain_num++;
5324 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5325 if (table == NULL)
5326 return NULL;
5328 i = 0;
5329 for_each_domain(cpu, sd) {
5330 snprintf(buf, 32, "domain%d", i);
5331 entry->procname = kstrdup(buf, GFP_KERNEL);
5332 entry->mode = 0555;
5333 entry->child = sd_alloc_ctl_domain_table(sd);
5334 entry++;
5335 i++;
5337 return table;
5340 static struct ctl_table_header *sd_sysctl_header;
5341 static void register_sched_domain_sysctl(void)
5343 int i, cpu_num = num_possible_cpus();
5344 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5345 char buf[32];
5347 WARN_ON(sd_ctl_dir[0].child);
5348 sd_ctl_dir[0].child = entry;
5350 if (entry == NULL)
5351 return;
5353 for_each_possible_cpu(i) {
5354 snprintf(buf, 32, "cpu%d", i);
5355 entry->procname = kstrdup(buf, GFP_KERNEL);
5356 entry->mode = 0555;
5357 entry->child = sd_alloc_ctl_cpu_table(i);
5358 entry++;
5361 WARN_ON(sd_sysctl_header);
5362 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5365 /* may be called multiple times per register */
5366 static void unregister_sched_domain_sysctl(void)
5368 unregister_sysctl_table(sd_sysctl_header);
5369 sd_sysctl_header = NULL;
5370 if (sd_ctl_dir[0].child)
5371 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5373 #else
5374 static void register_sched_domain_sysctl(void)
5377 static void unregister_sched_domain_sysctl(void)
5380 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5382 static void set_rq_online(struct rq *rq)
5384 if (!rq->online) {
5385 const struct sched_class *class;
5387 cpumask_set_cpu(rq->cpu, rq->rd->online);
5388 rq->online = 1;
5390 for_each_class(class) {
5391 if (class->rq_online)
5392 class->rq_online(rq);
5397 static void set_rq_offline(struct rq *rq)
5399 if (rq->online) {
5400 const struct sched_class *class;
5402 for_each_class(class) {
5403 if (class->rq_offline)
5404 class->rq_offline(rq);
5407 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5408 rq->online = 0;
5413 * migration_call - callback that gets triggered when a CPU is added.
5414 * Here we can start up the necessary migration thread for the new CPU.
5416 static int
5417 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5419 int cpu = (long)hcpu;
5420 unsigned long flags;
5421 struct rq *rq = cpu_rq(cpu);
5423 switch (action & ~CPU_TASKS_FROZEN) {
5425 case CPU_UP_PREPARE:
5426 rq->calc_load_update = calc_load_update;
5427 break;
5429 case CPU_ONLINE:
5430 /* Update our root-domain */
5431 raw_spin_lock_irqsave(&rq->lock, flags);
5432 if (rq->rd) {
5433 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5435 set_rq_online(rq);
5437 raw_spin_unlock_irqrestore(&rq->lock, flags);
5438 break;
5440 #ifdef CONFIG_HOTPLUG_CPU
5441 case CPU_DYING:
5442 sched_ttwu_pending();
5443 /* Update our root-domain */
5444 raw_spin_lock_irqsave(&rq->lock, flags);
5445 if (rq->rd) {
5446 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5447 set_rq_offline(rq);
5449 migrate_tasks(rq);
5450 BUG_ON(rq->nr_running != 1); /* the migration thread */
5451 raw_spin_unlock_irqrestore(&rq->lock, flags);
5452 break;
5454 case CPU_DEAD:
5455 calc_load_migrate(rq);
5456 break;
5457 #endif
5460 update_max_interval();
5462 return NOTIFY_OK;
5466 * Register at high priority so that task migration (migrate_all_tasks)
5467 * happens before everything else. This has to be lower priority than
5468 * the notifier in the perf_event subsystem, though.
5470 static struct notifier_block migration_notifier = {
5471 .notifier_call = migration_call,
5472 .priority = CPU_PRI_MIGRATION,
5475 static void set_cpu_rq_start_time(void)
5477 int cpu = smp_processor_id();
5478 struct rq *rq = cpu_rq(cpu);
5479 rq->age_stamp = sched_clock_cpu(cpu);
5482 static int sched_cpu_active(struct notifier_block *nfb,
5483 unsigned long action, void *hcpu)
5485 switch (action & ~CPU_TASKS_FROZEN) {
5486 case CPU_STARTING:
5487 set_cpu_rq_start_time();
5488 return NOTIFY_OK;
5489 case CPU_ONLINE:
5491 * At this point a starting CPU has marked itself as online via
5492 * set_cpu_online(). But it might not yet have marked itself
5493 * as active, which is essential from here on.
5495 * Thus, fall-through and help the starting CPU along.
5497 case CPU_DOWN_FAILED:
5498 set_cpu_active((long)hcpu, true);
5499 return NOTIFY_OK;
5500 default:
5501 return NOTIFY_DONE;
5505 static int sched_cpu_inactive(struct notifier_block *nfb,
5506 unsigned long action, void *hcpu)
5508 switch (action & ~CPU_TASKS_FROZEN) {
5509 case CPU_DOWN_PREPARE:
5510 set_cpu_active((long)hcpu, false);
5511 return NOTIFY_OK;
5512 default:
5513 return NOTIFY_DONE;
5517 static int __init migration_init(void)
5519 void *cpu = (void *)(long)smp_processor_id();
5520 int err;
5522 /* Initialize migration for the boot CPU */
5523 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5524 BUG_ON(err == NOTIFY_BAD);
5525 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5526 register_cpu_notifier(&migration_notifier);
5528 /* Register cpu active notifiers */
5529 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5530 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5532 return 0;
5534 early_initcall(migration_init);
5536 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5538 #ifdef CONFIG_SCHED_DEBUG
5540 static __read_mostly int sched_debug_enabled;
5542 static int __init sched_debug_setup(char *str)
5544 sched_debug_enabled = 1;
5546 return 0;
5548 early_param("sched_debug", sched_debug_setup);
5550 static inline bool sched_debug(void)
5552 return sched_debug_enabled;
5555 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5556 struct cpumask *groupmask)
5558 struct sched_group *group = sd->groups;
5560 cpumask_clear(groupmask);
5562 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5564 if (!(sd->flags & SD_LOAD_BALANCE)) {
5565 printk("does not load-balance\n");
5566 if (sd->parent)
5567 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5568 " has parent");
5569 return -1;
5572 printk(KERN_CONT "span %*pbl level %s\n",
5573 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5575 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5576 printk(KERN_ERR "ERROR: domain->span does not contain "
5577 "CPU%d\n", cpu);
5579 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5580 printk(KERN_ERR "ERROR: domain->groups does not contain"
5581 " CPU%d\n", cpu);
5584 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5585 do {
5586 if (!group) {
5587 printk("\n");
5588 printk(KERN_ERR "ERROR: group is NULL\n");
5589 break;
5592 if (!cpumask_weight(sched_group_cpus(group))) {
5593 printk(KERN_CONT "\n");
5594 printk(KERN_ERR "ERROR: empty group\n");
5595 break;
5598 if (!(sd->flags & SD_OVERLAP) &&
5599 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5600 printk(KERN_CONT "\n");
5601 printk(KERN_ERR "ERROR: repeated CPUs\n");
5602 break;
5605 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5607 printk(KERN_CONT " %*pbl",
5608 cpumask_pr_args(sched_group_cpus(group)));
5609 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5610 printk(KERN_CONT " (cpu_capacity = %d)",
5611 group->sgc->capacity);
5614 group = group->next;
5615 } while (group != sd->groups);
5616 printk(KERN_CONT "\n");
5618 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5619 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5621 if (sd->parent &&
5622 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5623 printk(KERN_ERR "ERROR: parent span is not a superset "
5624 "of domain->span\n");
5625 return 0;
5628 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5630 int level = 0;
5632 if (!sched_debug_enabled)
5633 return;
5635 if (!sd) {
5636 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5637 return;
5640 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5642 for (;;) {
5643 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5644 break;
5645 level++;
5646 sd = sd->parent;
5647 if (!sd)
5648 break;
5651 #else /* !CONFIG_SCHED_DEBUG */
5652 # define sched_domain_debug(sd, cpu) do { } while (0)
5653 static inline bool sched_debug(void)
5655 return false;
5657 #endif /* CONFIG_SCHED_DEBUG */
5659 static int sd_degenerate(struct sched_domain *sd)
5661 if (cpumask_weight(sched_domain_span(sd)) == 1)
5662 return 1;
5664 /* Following flags need at least 2 groups */
5665 if (sd->flags & (SD_LOAD_BALANCE |
5666 SD_BALANCE_NEWIDLE |
5667 SD_BALANCE_FORK |
5668 SD_BALANCE_EXEC |
5669 SD_SHARE_CPUCAPACITY |
5670 SD_SHARE_PKG_RESOURCES |
5671 SD_SHARE_POWERDOMAIN)) {
5672 if (sd->groups != sd->groups->next)
5673 return 0;
5676 /* Following flags don't use groups */
5677 if (sd->flags & (SD_WAKE_AFFINE))
5678 return 0;
5680 return 1;
5683 static int
5684 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5686 unsigned long cflags = sd->flags, pflags = parent->flags;
5688 if (sd_degenerate(parent))
5689 return 1;
5691 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5692 return 0;
5694 /* Flags needing groups don't count if only 1 group in parent */
5695 if (parent->groups == parent->groups->next) {
5696 pflags &= ~(SD_LOAD_BALANCE |
5697 SD_BALANCE_NEWIDLE |
5698 SD_BALANCE_FORK |
5699 SD_BALANCE_EXEC |
5700 SD_SHARE_CPUCAPACITY |
5701 SD_SHARE_PKG_RESOURCES |
5702 SD_PREFER_SIBLING |
5703 SD_SHARE_POWERDOMAIN);
5704 if (nr_node_ids == 1)
5705 pflags &= ~SD_SERIALIZE;
5707 if (~cflags & pflags)
5708 return 0;
5710 return 1;
5713 static void free_rootdomain(struct rcu_head *rcu)
5715 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5717 cpupri_cleanup(&rd->cpupri);
5718 cpudl_cleanup(&rd->cpudl);
5719 free_cpumask_var(rd->dlo_mask);
5720 free_cpumask_var(rd->rto_mask);
5721 free_cpumask_var(rd->online);
5722 free_cpumask_var(rd->span);
5723 kfree(rd);
5726 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5728 struct root_domain *old_rd = NULL;
5729 unsigned long flags;
5731 raw_spin_lock_irqsave(&rq->lock, flags);
5733 if (rq->rd) {
5734 old_rd = rq->rd;
5736 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5737 set_rq_offline(rq);
5739 cpumask_clear_cpu(rq->cpu, old_rd->span);
5742 * If we dont want to free the old_rd yet then
5743 * set old_rd to NULL to skip the freeing later
5744 * in this function:
5746 if (!atomic_dec_and_test(&old_rd->refcount))
5747 old_rd = NULL;
5750 atomic_inc(&rd->refcount);
5751 rq->rd = rd;
5753 cpumask_set_cpu(rq->cpu, rd->span);
5754 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5755 set_rq_online(rq);
5757 raw_spin_unlock_irqrestore(&rq->lock, flags);
5759 if (old_rd)
5760 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5763 static int init_rootdomain(struct root_domain *rd)
5765 memset(rd, 0, sizeof(*rd));
5767 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5768 goto out;
5769 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5770 goto free_span;
5771 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5772 goto free_online;
5773 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5774 goto free_dlo_mask;
5776 init_dl_bw(&rd->dl_bw);
5777 if (cpudl_init(&rd->cpudl) != 0)
5778 goto free_dlo_mask;
5780 if (cpupri_init(&rd->cpupri) != 0)
5781 goto free_rto_mask;
5782 return 0;
5784 free_rto_mask:
5785 free_cpumask_var(rd->rto_mask);
5786 free_dlo_mask:
5787 free_cpumask_var(rd->dlo_mask);
5788 free_online:
5789 free_cpumask_var(rd->online);
5790 free_span:
5791 free_cpumask_var(rd->span);
5792 out:
5793 return -ENOMEM;
5797 * By default the system creates a single root-domain with all cpus as
5798 * members (mimicking the global state we have today).
5800 struct root_domain def_root_domain;
5802 static void init_defrootdomain(void)
5804 init_rootdomain(&def_root_domain);
5806 atomic_set(&def_root_domain.refcount, 1);
5809 static struct root_domain *alloc_rootdomain(void)
5811 struct root_domain *rd;
5813 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5814 if (!rd)
5815 return NULL;
5817 if (init_rootdomain(rd) != 0) {
5818 kfree(rd);
5819 return NULL;
5822 return rd;
5825 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5827 struct sched_group *tmp, *first;
5829 if (!sg)
5830 return;
5832 first = sg;
5833 do {
5834 tmp = sg->next;
5836 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5837 kfree(sg->sgc);
5839 kfree(sg);
5840 sg = tmp;
5841 } while (sg != first);
5844 static void free_sched_domain(struct rcu_head *rcu)
5846 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5849 * If its an overlapping domain it has private groups, iterate and
5850 * nuke them all.
5852 if (sd->flags & SD_OVERLAP) {
5853 free_sched_groups(sd->groups, 1);
5854 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5855 kfree(sd->groups->sgc);
5856 kfree(sd->groups);
5858 kfree(sd);
5861 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5863 call_rcu(&sd->rcu, free_sched_domain);
5866 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5868 for (; sd; sd = sd->parent)
5869 destroy_sched_domain(sd, cpu);
5873 * Keep a special pointer to the highest sched_domain that has
5874 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5875 * allows us to avoid some pointer chasing select_idle_sibling().
5877 * Also keep a unique ID per domain (we use the first cpu number in
5878 * the cpumask of the domain), this allows us to quickly tell if
5879 * two cpus are in the same cache domain, see cpus_share_cache().
5881 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5882 DEFINE_PER_CPU(int, sd_llc_size);
5883 DEFINE_PER_CPU(int, sd_llc_id);
5884 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5885 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5886 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5888 static void update_top_cache_domain(int cpu)
5890 struct sched_domain *sd;
5891 struct sched_domain *busy_sd = NULL;
5892 int id = cpu;
5893 int size = 1;
5895 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5896 if (sd) {
5897 id = cpumask_first(sched_domain_span(sd));
5898 size = cpumask_weight(sched_domain_span(sd));
5899 busy_sd = sd->parent; /* sd_busy */
5901 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5903 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5904 per_cpu(sd_llc_size, cpu) = size;
5905 per_cpu(sd_llc_id, cpu) = id;
5907 sd = lowest_flag_domain(cpu, SD_NUMA);
5908 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5910 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5911 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5915 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5916 * hold the hotplug lock.
5918 static void
5919 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5921 struct rq *rq = cpu_rq(cpu);
5922 struct sched_domain *tmp;
5924 /* Remove the sched domains which do not contribute to scheduling. */
5925 for (tmp = sd; tmp; ) {
5926 struct sched_domain *parent = tmp->parent;
5927 if (!parent)
5928 break;
5930 if (sd_parent_degenerate(tmp, parent)) {
5931 tmp->parent = parent->parent;
5932 if (parent->parent)
5933 parent->parent->child = tmp;
5935 * Transfer SD_PREFER_SIBLING down in case of a
5936 * degenerate parent; the spans match for this
5937 * so the property transfers.
5939 if (parent->flags & SD_PREFER_SIBLING)
5940 tmp->flags |= SD_PREFER_SIBLING;
5941 destroy_sched_domain(parent, cpu);
5942 } else
5943 tmp = tmp->parent;
5946 if (sd && sd_degenerate(sd)) {
5947 tmp = sd;
5948 sd = sd->parent;
5949 destroy_sched_domain(tmp, cpu);
5950 if (sd)
5951 sd->child = NULL;
5954 sched_domain_debug(sd, cpu);
5956 rq_attach_root(rq, rd);
5957 tmp = rq->sd;
5958 rcu_assign_pointer(rq->sd, sd);
5959 destroy_sched_domains(tmp, cpu);
5961 update_top_cache_domain(cpu);
5964 /* Setup the mask of cpus configured for isolated domains */
5965 static int __init isolated_cpu_setup(char *str)
5967 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5968 cpulist_parse(str, cpu_isolated_map);
5969 return 1;
5972 __setup("isolcpus=", isolated_cpu_setup);
5974 struct s_data {
5975 struct sched_domain ** __percpu sd;
5976 struct root_domain *rd;
5979 enum s_alloc {
5980 sa_rootdomain,
5981 sa_sd,
5982 sa_sd_storage,
5983 sa_none,
5987 * Build an iteration mask that can exclude certain CPUs from the upwards
5988 * domain traversal.
5990 * Asymmetric node setups can result in situations where the domain tree is of
5991 * unequal depth, make sure to skip domains that already cover the entire
5992 * range.
5994 * In that case build_sched_domains() will have terminated the iteration early
5995 * and our sibling sd spans will be empty. Domains should always include the
5996 * cpu they're built on, so check that.
5999 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6001 const struct cpumask *span = sched_domain_span(sd);
6002 struct sd_data *sdd = sd->private;
6003 struct sched_domain *sibling;
6004 int i;
6006 for_each_cpu(i, span) {
6007 sibling = *per_cpu_ptr(sdd->sd, i);
6008 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6009 continue;
6011 cpumask_set_cpu(i, sched_group_mask(sg));
6016 * Return the canonical balance cpu for this group, this is the first cpu
6017 * of this group that's also in the iteration mask.
6019 int group_balance_cpu(struct sched_group *sg)
6021 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6024 static int
6025 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6027 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6028 const struct cpumask *span = sched_domain_span(sd);
6029 struct cpumask *covered = sched_domains_tmpmask;
6030 struct sd_data *sdd = sd->private;
6031 struct sched_domain *sibling;
6032 int i;
6034 cpumask_clear(covered);
6036 for_each_cpu(i, span) {
6037 struct cpumask *sg_span;
6039 if (cpumask_test_cpu(i, covered))
6040 continue;
6042 sibling = *per_cpu_ptr(sdd->sd, i);
6044 /* See the comment near build_group_mask(). */
6045 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6046 continue;
6048 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6049 GFP_KERNEL, cpu_to_node(cpu));
6051 if (!sg)
6052 goto fail;
6054 sg_span = sched_group_cpus(sg);
6055 if (sibling->child)
6056 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6057 else
6058 cpumask_set_cpu(i, sg_span);
6060 cpumask_or(covered, covered, sg_span);
6062 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6063 if (atomic_inc_return(&sg->sgc->ref) == 1)
6064 build_group_mask(sd, sg);
6067 * Initialize sgc->capacity such that even if we mess up the
6068 * domains and no possible iteration will get us here, we won't
6069 * die on a /0 trap.
6071 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6074 * Make sure the first group of this domain contains the
6075 * canonical balance cpu. Otherwise the sched_domain iteration
6076 * breaks. See update_sg_lb_stats().
6078 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6079 group_balance_cpu(sg) == cpu)
6080 groups = sg;
6082 if (!first)
6083 first = sg;
6084 if (last)
6085 last->next = sg;
6086 last = sg;
6087 last->next = first;
6089 sd->groups = groups;
6091 return 0;
6093 fail:
6094 free_sched_groups(first, 0);
6096 return -ENOMEM;
6099 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6101 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6102 struct sched_domain *child = sd->child;
6104 if (child)
6105 cpu = cpumask_first(sched_domain_span(child));
6107 if (sg) {
6108 *sg = *per_cpu_ptr(sdd->sg, cpu);
6109 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6110 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6113 return cpu;
6117 * build_sched_groups will build a circular linked list of the groups
6118 * covered by the given span, and will set each group's ->cpumask correctly,
6119 * and ->cpu_capacity to 0.
6121 * Assumes the sched_domain tree is fully constructed
6123 static int
6124 build_sched_groups(struct sched_domain *sd, int cpu)
6126 struct sched_group *first = NULL, *last = NULL;
6127 struct sd_data *sdd = sd->private;
6128 const struct cpumask *span = sched_domain_span(sd);
6129 struct cpumask *covered;
6130 int i;
6132 get_group(cpu, sdd, &sd->groups);
6133 atomic_inc(&sd->groups->ref);
6135 if (cpu != cpumask_first(span))
6136 return 0;
6138 lockdep_assert_held(&sched_domains_mutex);
6139 covered = sched_domains_tmpmask;
6141 cpumask_clear(covered);
6143 for_each_cpu(i, span) {
6144 struct sched_group *sg;
6145 int group, j;
6147 if (cpumask_test_cpu(i, covered))
6148 continue;
6150 group = get_group(i, sdd, &sg);
6151 cpumask_setall(sched_group_mask(sg));
6153 for_each_cpu(j, span) {
6154 if (get_group(j, sdd, NULL) != group)
6155 continue;
6157 cpumask_set_cpu(j, covered);
6158 cpumask_set_cpu(j, sched_group_cpus(sg));
6161 if (!first)
6162 first = sg;
6163 if (last)
6164 last->next = sg;
6165 last = sg;
6167 last->next = first;
6169 return 0;
6173 * Initialize sched groups cpu_capacity.
6175 * cpu_capacity indicates the capacity of sched group, which is used while
6176 * distributing the load between different sched groups in a sched domain.
6177 * Typically cpu_capacity for all the groups in a sched domain will be same
6178 * unless there are asymmetries in the topology. If there are asymmetries,
6179 * group having more cpu_capacity will pickup more load compared to the
6180 * group having less cpu_capacity.
6182 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6184 struct sched_group *sg = sd->groups;
6186 WARN_ON(!sg);
6188 do {
6189 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6190 sg = sg->next;
6191 } while (sg != sd->groups);
6193 if (cpu != group_balance_cpu(sg))
6194 return;
6196 update_group_capacity(sd, cpu);
6197 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6201 * Initializers for schedule domains
6202 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6205 static int default_relax_domain_level = -1;
6206 int sched_domain_level_max;
6208 static int __init setup_relax_domain_level(char *str)
6210 if (kstrtoint(str, 0, &default_relax_domain_level))
6211 pr_warn("Unable to set relax_domain_level\n");
6213 return 1;
6215 __setup("relax_domain_level=", setup_relax_domain_level);
6217 static void set_domain_attribute(struct sched_domain *sd,
6218 struct sched_domain_attr *attr)
6220 int request;
6222 if (!attr || attr->relax_domain_level < 0) {
6223 if (default_relax_domain_level < 0)
6224 return;
6225 else
6226 request = default_relax_domain_level;
6227 } else
6228 request = attr->relax_domain_level;
6229 if (request < sd->level) {
6230 /* turn off idle balance on this domain */
6231 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6232 } else {
6233 /* turn on idle balance on this domain */
6234 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6238 static void __sdt_free(const struct cpumask *cpu_map);
6239 static int __sdt_alloc(const struct cpumask *cpu_map);
6241 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6242 const struct cpumask *cpu_map)
6244 switch (what) {
6245 case sa_rootdomain:
6246 if (!atomic_read(&d->rd->refcount))
6247 free_rootdomain(&d->rd->rcu); /* fall through */
6248 case sa_sd:
6249 free_percpu(d->sd); /* fall through */
6250 case sa_sd_storage:
6251 __sdt_free(cpu_map); /* fall through */
6252 case sa_none:
6253 break;
6257 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6258 const struct cpumask *cpu_map)
6260 memset(d, 0, sizeof(*d));
6262 if (__sdt_alloc(cpu_map))
6263 return sa_sd_storage;
6264 d->sd = alloc_percpu(struct sched_domain *);
6265 if (!d->sd)
6266 return sa_sd_storage;
6267 d->rd = alloc_rootdomain();
6268 if (!d->rd)
6269 return sa_sd;
6270 return sa_rootdomain;
6274 * NULL the sd_data elements we've used to build the sched_domain and
6275 * sched_group structure so that the subsequent __free_domain_allocs()
6276 * will not free the data we're using.
6278 static void claim_allocations(int cpu, struct sched_domain *sd)
6280 struct sd_data *sdd = sd->private;
6282 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6283 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6285 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6286 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6288 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6289 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6292 #ifdef CONFIG_NUMA
6293 static int sched_domains_numa_levels;
6294 enum numa_topology_type sched_numa_topology_type;
6295 static int *sched_domains_numa_distance;
6296 int sched_max_numa_distance;
6297 static struct cpumask ***sched_domains_numa_masks;
6298 static int sched_domains_curr_level;
6299 #endif
6302 * SD_flags allowed in topology descriptions.
6304 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6305 * SD_SHARE_PKG_RESOURCES - describes shared caches
6306 * SD_NUMA - describes NUMA topologies
6307 * SD_SHARE_POWERDOMAIN - describes shared power domain
6309 * Odd one out:
6310 * SD_ASYM_PACKING - describes SMT quirks
6312 #define TOPOLOGY_SD_FLAGS \
6313 (SD_SHARE_CPUCAPACITY | \
6314 SD_SHARE_PKG_RESOURCES | \
6315 SD_NUMA | \
6316 SD_ASYM_PACKING | \
6317 SD_SHARE_POWERDOMAIN)
6319 static struct sched_domain *
6320 sd_init(struct sched_domain_topology_level *tl, int cpu)
6322 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6323 int sd_weight, sd_flags = 0;
6325 #ifdef CONFIG_NUMA
6327 * Ugly hack to pass state to sd_numa_mask()...
6329 sched_domains_curr_level = tl->numa_level;
6330 #endif
6332 sd_weight = cpumask_weight(tl->mask(cpu));
6334 if (tl->sd_flags)
6335 sd_flags = (*tl->sd_flags)();
6336 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6337 "wrong sd_flags in topology description\n"))
6338 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6340 *sd = (struct sched_domain){
6341 .min_interval = sd_weight,
6342 .max_interval = 2*sd_weight,
6343 .busy_factor = 32,
6344 .imbalance_pct = 125,
6346 .cache_nice_tries = 0,
6347 .busy_idx = 0,
6348 .idle_idx = 0,
6349 .newidle_idx = 0,
6350 .wake_idx = 0,
6351 .forkexec_idx = 0,
6353 .flags = 1*SD_LOAD_BALANCE
6354 | 1*SD_BALANCE_NEWIDLE
6355 | 1*SD_BALANCE_EXEC
6356 | 1*SD_BALANCE_FORK
6357 | 0*SD_BALANCE_WAKE
6358 | 1*SD_WAKE_AFFINE
6359 | 0*SD_SHARE_CPUCAPACITY
6360 | 0*SD_SHARE_PKG_RESOURCES
6361 | 0*SD_SERIALIZE
6362 | 0*SD_PREFER_SIBLING
6363 | 0*SD_NUMA
6364 | sd_flags
6367 .last_balance = jiffies,
6368 .balance_interval = sd_weight,
6369 .smt_gain = 0,
6370 .max_newidle_lb_cost = 0,
6371 .next_decay_max_lb_cost = jiffies,
6372 #ifdef CONFIG_SCHED_DEBUG
6373 .name = tl->name,
6374 #endif
6378 * Convert topological properties into behaviour.
6381 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6382 sd->flags |= SD_PREFER_SIBLING;
6383 sd->imbalance_pct = 110;
6384 sd->smt_gain = 1178; /* ~15% */
6386 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6387 sd->imbalance_pct = 117;
6388 sd->cache_nice_tries = 1;
6389 sd->busy_idx = 2;
6391 #ifdef CONFIG_NUMA
6392 } else if (sd->flags & SD_NUMA) {
6393 sd->cache_nice_tries = 2;
6394 sd->busy_idx = 3;
6395 sd->idle_idx = 2;
6397 sd->flags |= SD_SERIALIZE;
6398 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6399 sd->flags &= ~(SD_BALANCE_EXEC |
6400 SD_BALANCE_FORK |
6401 SD_WAKE_AFFINE);
6404 #endif
6405 } else {
6406 sd->flags |= SD_PREFER_SIBLING;
6407 sd->cache_nice_tries = 1;
6408 sd->busy_idx = 2;
6409 sd->idle_idx = 1;
6412 sd->private = &tl->data;
6414 return sd;
6418 * Topology list, bottom-up.
6420 static struct sched_domain_topology_level default_topology[] = {
6421 #ifdef CONFIG_SCHED_SMT
6422 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6423 #endif
6424 #ifdef CONFIG_SCHED_MC
6425 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6426 #endif
6427 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6428 { NULL, },
6431 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6433 #define for_each_sd_topology(tl) \
6434 for (tl = sched_domain_topology; tl->mask; tl++)
6436 void set_sched_topology(struct sched_domain_topology_level *tl)
6438 sched_domain_topology = tl;
6441 #ifdef CONFIG_NUMA
6443 static const struct cpumask *sd_numa_mask(int cpu)
6445 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6448 static void sched_numa_warn(const char *str)
6450 static int done = false;
6451 int i,j;
6453 if (done)
6454 return;
6456 done = true;
6458 printk(KERN_WARNING "ERROR: %s\n\n", str);
6460 for (i = 0; i < nr_node_ids; i++) {
6461 printk(KERN_WARNING " ");
6462 for (j = 0; j < nr_node_ids; j++)
6463 printk(KERN_CONT "%02d ", node_distance(i,j));
6464 printk(KERN_CONT "\n");
6466 printk(KERN_WARNING "\n");
6469 bool find_numa_distance(int distance)
6471 int i;
6473 if (distance == node_distance(0, 0))
6474 return true;
6476 for (i = 0; i < sched_domains_numa_levels; i++) {
6477 if (sched_domains_numa_distance[i] == distance)
6478 return true;
6481 return false;
6485 * A system can have three types of NUMA topology:
6486 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6487 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6488 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6490 * The difference between a glueless mesh topology and a backplane
6491 * topology lies in whether communication between not directly
6492 * connected nodes goes through intermediary nodes (where programs
6493 * could run), or through backplane controllers. This affects
6494 * placement of programs.
6496 * The type of topology can be discerned with the following tests:
6497 * - If the maximum distance between any nodes is 1 hop, the system
6498 * is directly connected.
6499 * - If for two nodes A and B, located N > 1 hops away from each other,
6500 * there is an intermediary node C, which is < N hops away from both
6501 * nodes A and B, the system is a glueless mesh.
6503 static void init_numa_topology_type(void)
6505 int a, b, c, n;
6507 n = sched_max_numa_distance;
6509 if (sched_domains_numa_levels <= 1) {
6510 sched_numa_topology_type = NUMA_DIRECT;
6511 return;
6514 for_each_online_node(a) {
6515 for_each_online_node(b) {
6516 /* Find two nodes furthest removed from each other. */
6517 if (node_distance(a, b) < n)
6518 continue;
6520 /* Is there an intermediary node between a and b? */
6521 for_each_online_node(c) {
6522 if (node_distance(a, c) < n &&
6523 node_distance(b, c) < n) {
6524 sched_numa_topology_type =
6525 NUMA_GLUELESS_MESH;
6526 return;
6530 sched_numa_topology_type = NUMA_BACKPLANE;
6531 return;
6536 static void sched_init_numa(void)
6538 int next_distance, curr_distance = node_distance(0, 0);
6539 struct sched_domain_topology_level *tl;
6540 int level = 0;
6541 int i, j, k;
6543 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6544 if (!sched_domains_numa_distance)
6545 return;
6548 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6549 * unique distances in the node_distance() table.
6551 * Assumes node_distance(0,j) includes all distances in
6552 * node_distance(i,j) in order to avoid cubic time.
6554 next_distance = curr_distance;
6555 for (i = 0; i < nr_node_ids; i++) {
6556 for (j = 0; j < nr_node_ids; j++) {
6557 for (k = 0; k < nr_node_ids; k++) {
6558 int distance = node_distance(i, k);
6560 if (distance > curr_distance &&
6561 (distance < next_distance ||
6562 next_distance == curr_distance))
6563 next_distance = distance;
6566 * While not a strong assumption it would be nice to know
6567 * about cases where if node A is connected to B, B is not
6568 * equally connected to A.
6570 if (sched_debug() && node_distance(k, i) != distance)
6571 sched_numa_warn("Node-distance not symmetric");
6573 if (sched_debug() && i && !find_numa_distance(distance))
6574 sched_numa_warn("Node-0 not representative");
6576 if (next_distance != curr_distance) {
6577 sched_domains_numa_distance[level++] = next_distance;
6578 sched_domains_numa_levels = level;
6579 curr_distance = next_distance;
6580 } else break;
6584 * In case of sched_debug() we verify the above assumption.
6586 if (!sched_debug())
6587 break;
6590 if (!level)
6591 return;
6594 * 'level' contains the number of unique distances, excluding the
6595 * identity distance node_distance(i,i).
6597 * The sched_domains_numa_distance[] array includes the actual distance
6598 * numbers.
6602 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6603 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6604 * the array will contain less then 'level' members. This could be
6605 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6606 * in other functions.
6608 * We reset it to 'level' at the end of this function.
6610 sched_domains_numa_levels = 0;
6612 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6613 if (!sched_domains_numa_masks)
6614 return;
6617 * Now for each level, construct a mask per node which contains all
6618 * cpus of nodes that are that many hops away from us.
6620 for (i = 0; i < level; i++) {
6621 sched_domains_numa_masks[i] =
6622 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6623 if (!sched_domains_numa_masks[i])
6624 return;
6626 for (j = 0; j < nr_node_ids; j++) {
6627 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6628 if (!mask)
6629 return;
6631 sched_domains_numa_masks[i][j] = mask;
6633 for (k = 0; k < nr_node_ids; k++) {
6634 if (node_distance(j, k) > sched_domains_numa_distance[i])
6635 continue;
6637 cpumask_or(mask, mask, cpumask_of_node(k));
6642 /* Compute default topology size */
6643 for (i = 0; sched_domain_topology[i].mask; i++);
6645 tl = kzalloc((i + level + 1) *
6646 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6647 if (!tl)
6648 return;
6651 * Copy the default topology bits..
6653 for (i = 0; sched_domain_topology[i].mask; i++)
6654 tl[i] = sched_domain_topology[i];
6657 * .. and append 'j' levels of NUMA goodness.
6659 for (j = 0; j < level; i++, j++) {
6660 tl[i] = (struct sched_domain_topology_level){
6661 .mask = sd_numa_mask,
6662 .sd_flags = cpu_numa_flags,
6663 .flags = SDTL_OVERLAP,
6664 .numa_level = j,
6665 SD_INIT_NAME(NUMA)
6669 sched_domain_topology = tl;
6671 sched_domains_numa_levels = level;
6672 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6674 init_numa_topology_type();
6677 static void sched_domains_numa_masks_set(int cpu)
6679 int i, j;
6680 int node = cpu_to_node(cpu);
6682 for (i = 0; i < sched_domains_numa_levels; i++) {
6683 for (j = 0; j < nr_node_ids; j++) {
6684 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6685 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6690 static void sched_domains_numa_masks_clear(int cpu)
6692 int i, j;
6693 for (i = 0; i < sched_domains_numa_levels; i++) {
6694 for (j = 0; j < nr_node_ids; j++)
6695 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6700 * Update sched_domains_numa_masks[level][node] array when new cpus
6701 * are onlined.
6703 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6704 unsigned long action,
6705 void *hcpu)
6707 int cpu = (long)hcpu;
6709 switch (action & ~CPU_TASKS_FROZEN) {
6710 case CPU_ONLINE:
6711 sched_domains_numa_masks_set(cpu);
6712 break;
6714 case CPU_DEAD:
6715 sched_domains_numa_masks_clear(cpu);
6716 break;
6718 default:
6719 return NOTIFY_DONE;
6722 return NOTIFY_OK;
6724 #else
6725 static inline void sched_init_numa(void)
6729 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6730 unsigned long action,
6731 void *hcpu)
6733 return 0;
6735 #endif /* CONFIG_NUMA */
6737 static int __sdt_alloc(const struct cpumask *cpu_map)
6739 struct sched_domain_topology_level *tl;
6740 int j;
6742 for_each_sd_topology(tl) {
6743 struct sd_data *sdd = &tl->data;
6745 sdd->sd = alloc_percpu(struct sched_domain *);
6746 if (!sdd->sd)
6747 return -ENOMEM;
6749 sdd->sg = alloc_percpu(struct sched_group *);
6750 if (!sdd->sg)
6751 return -ENOMEM;
6753 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6754 if (!sdd->sgc)
6755 return -ENOMEM;
6757 for_each_cpu(j, cpu_map) {
6758 struct sched_domain *sd;
6759 struct sched_group *sg;
6760 struct sched_group_capacity *sgc;
6762 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6763 GFP_KERNEL, cpu_to_node(j));
6764 if (!sd)
6765 return -ENOMEM;
6767 *per_cpu_ptr(sdd->sd, j) = sd;
6769 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6770 GFP_KERNEL, cpu_to_node(j));
6771 if (!sg)
6772 return -ENOMEM;
6774 sg->next = sg;
6776 *per_cpu_ptr(sdd->sg, j) = sg;
6778 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6779 GFP_KERNEL, cpu_to_node(j));
6780 if (!sgc)
6781 return -ENOMEM;
6783 *per_cpu_ptr(sdd->sgc, j) = sgc;
6787 return 0;
6790 static void __sdt_free(const struct cpumask *cpu_map)
6792 struct sched_domain_topology_level *tl;
6793 int j;
6795 for_each_sd_topology(tl) {
6796 struct sd_data *sdd = &tl->data;
6798 for_each_cpu(j, cpu_map) {
6799 struct sched_domain *sd;
6801 if (sdd->sd) {
6802 sd = *per_cpu_ptr(sdd->sd, j);
6803 if (sd && (sd->flags & SD_OVERLAP))
6804 free_sched_groups(sd->groups, 0);
6805 kfree(*per_cpu_ptr(sdd->sd, j));
6808 if (sdd->sg)
6809 kfree(*per_cpu_ptr(sdd->sg, j));
6810 if (sdd->sgc)
6811 kfree(*per_cpu_ptr(sdd->sgc, j));
6813 free_percpu(sdd->sd);
6814 sdd->sd = NULL;
6815 free_percpu(sdd->sg);
6816 sdd->sg = NULL;
6817 free_percpu(sdd->sgc);
6818 sdd->sgc = NULL;
6822 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6823 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6824 struct sched_domain *child, int cpu)
6826 struct sched_domain *sd = sd_init(tl, cpu);
6827 if (!sd)
6828 return child;
6830 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6831 if (child) {
6832 sd->level = child->level + 1;
6833 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6834 child->parent = sd;
6835 sd->child = child;
6837 if (!cpumask_subset(sched_domain_span(child),
6838 sched_domain_span(sd))) {
6839 pr_err("BUG: arch topology borken\n");
6840 #ifdef CONFIG_SCHED_DEBUG
6841 pr_err(" the %s domain not a subset of the %s domain\n",
6842 child->name, sd->name);
6843 #endif
6844 /* Fixup, ensure @sd has at least @child cpus. */
6845 cpumask_or(sched_domain_span(sd),
6846 sched_domain_span(sd),
6847 sched_domain_span(child));
6851 set_domain_attribute(sd, attr);
6853 return sd;
6857 * Build sched domains for a given set of cpus and attach the sched domains
6858 * to the individual cpus
6860 static int build_sched_domains(const struct cpumask *cpu_map,
6861 struct sched_domain_attr *attr)
6863 enum s_alloc alloc_state;
6864 struct sched_domain *sd;
6865 struct s_data d;
6866 int i, ret = -ENOMEM;
6868 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6869 if (alloc_state != sa_rootdomain)
6870 goto error;
6872 /* Set up domains for cpus specified by the cpu_map. */
6873 for_each_cpu(i, cpu_map) {
6874 struct sched_domain_topology_level *tl;
6876 sd = NULL;
6877 for_each_sd_topology(tl) {
6878 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6879 if (tl == sched_domain_topology)
6880 *per_cpu_ptr(d.sd, i) = sd;
6881 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6882 sd->flags |= SD_OVERLAP;
6883 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6884 break;
6888 /* Build the groups for the domains */
6889 for_each_cpu(i, cpu_map) {
6890 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6891 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6892 if (sd->flags & SD_OVERLAP) {
6893 if (build_overlap_sched_groups(sd, i))
6894 goto error;
6895 } else {
6896 if (build_sched_groups(sd, i))
6897 goto error;
6902 /* Calculate CPU capacity for physical packages and nodes */
6903 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6904 if (!cpumask_test_cpu(i, cpu_map))
6905 continue;
6907 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6908 claim_allocations(i, sd);
6909 init_sched_groups_capacity(i, sd);
6913 /* Attach the domains */
6914 rcu_read_lock();
6915 for_each_cpu(i, cpu_map) {
6916 sd = *per_cpu_ptr(d.sd, i);
6917 cpu_attach_domain(sd, d.rd, i);
6919 rcu_read_unlock();
6921 ret = 0;
6922 error:
6923 __free_domain_allocs(&d, alloc_state, cpu_map);
6924 return ret;
6927 static cpumask_var_t *doms_cur; /* current sched domains */
6928 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6929 static struct sched_domain_attr *dattr_cur;
6930 /* attribues of custom domains in 'doms_cur' */
6933 * Special case: If a kmalloc of a doms_cur partition (array of
6934 * cpumask) fails, then fallback to a single sched domain,
6935 * as determined by the single cpumask fallback_doms.
6937 static cpumask_var_t fallback_doms;
6940 * arch_update_cpu_topology lets virtualized architectures update the
6941 * cpu core maps. It is supposed to return 1 if the topology changed
6942 * or 0 if it stayed the same.
6944 int __weak arch_update_cpu_topology(void)
6946 return 0;
6949 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6951 int i;
6952 cpumask_var_t *doms;
6954 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6955 if (!doms)
6956 return NULL;
6957 for (i = 0; i < ndoms; i++) {
6958 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6959 free_sched_domains(doms, i);
6960 return NULL;
6963 return doms;
6966 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6968 unsigned int i;
6969 for (i = 0; i < ndoms; i++)
6970 free_cpumask_var(doms[i]);
6971 kfree(doms);
6975 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6976 * For now this just excludes isolated cpus, but could be used to
6977 * exclude other special cases in the future.
6979 static int init_sched_domains(const struct cpumask *cpu_map)
6981 int err;
6983 arch_update_cpu_topology();
6984 ndoms_cur = 1;
6985 doms_cur = alloc_sched_domains(ndoms_cur);
6986 if (!doms_cur)
6987 doms_cur = &fallback_doms;
6988 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6989 err = build_sched_domains(doms_cur[0], NULL);
6990 register_sched_domain_sysctl();
6992 return err;
6996 * Detach sched domains from a group of cpus specified in cpu_map
6997 * These cpus will now be attached to the NULL domain
6999 static void detach_destroy_domains(const struct cpumask *cpu_map)
7001 int i;
7003 rcu_read_lock();
7004 for_each_cpu(i, cpu_map)
7005 cpu_attach_domain(NULL, &def_root_domain, i);
7006 rcu_read_unlock();
7009 /* handle null as "default" */
7010 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7011 struct sched_domain_attr *new, int idx_new)
7013 struct sched_domain_attr tmp;
7015 /* fast path */
7016 if (!new && !cur)
7017 return 1;
7019 tmp = SD_ATTR_INIT;
7020 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7021 new ? (new + idx_new) : &tmp,
7022 sizeof(struct sched_domain_attr));
7026 * Partition sched domains as specified by the 'ndoms_new'
7027 * cpumasks in the array doms_new[] of cpumasks. This compares
7028 * doms_new[] to the current sched domain partitioning, doms_cur[].
7029 * It destroys each deleted domain and builds each new domain.
7031 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7032 * The masks don't intersect (don't overlap.) We should setup one
7033 * sched domain for each mask. CPUs not in any of the cpumasks will
7034 * not be load balanced. If the same cpumask appears both in the
7035 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7036 * it as it is.
7038 * The passed in 'doms_new' should be allocated using
7039 * alloc_sched_domains. This routine takes ownership of it and will
7040 * free_sched_domains it when done with it. If the caller failed the
7041 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7042 * and partition_sched_domains() will fallback to the single partition
7043 * 'fallback_doms', it also forces the domains to be rebuilt.
7045 * If doms_new == NULL it will be replaced with cpu_online_mask.
7046 * ndoms_new == 0 is a special case for destroying existing domains,
7047 * and it will not create the default domain.
7049 * Call with hotplug lock held
7051 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7052 struct sched_domain_attr *dattr_new)
7054 int i, j, n;
7055 int new_topology;
7057 mutex_lock(&sched_domains_mutex);
7059 /* always unregister in case we don't destroy any domains */
7060 unregister_sched_domain_sysctl();
7062 /* Let architecture update cpu core mappings. */
7063 new_topology = arch_update_cpu_topology();
7065 n = doms_new ? ndoms_new : 0;
7067 /* Destroy deleted domains */
7068 for (i = 0; i < ndoms_cur; i++) {
7069 for (j = 0; j < n && !new_topology; j++) {
7070 if (cpumask_equal(doms_cur[i], doms_new[j])
7071 && dattrs_equal(dattr_cur, i, dattr_new, j))
7072 goto match1;
7074 /* no match - a current sched domain not in new doms_new[] */
7075 detach_destroy_domains(doms_cur[i]);
7076 match1:
7080 n = ndoms_cur;
7081 if (doms_new == NULL) {
7082 n = 0;
7083 doms_new = &fallback_doms;
7084 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7085 WARN_ON_ONCE(dattr_new);
7088 /* Build new domains */
7089 for (i = 0; i < ndoms_new; i++) {
7090 for (j = 0; j < n && !new_topology; j++) {
7091 if (cpumask_equal(doms_new[i], doms_cur[j])
7092 && dattrs_equal(dattr_new, i, dattr_cur, j))
7093 goto match2;
7095 /* no match - add a new doms_new */
7096 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7097 match2:
7101 /* Remember the new sched domains */
7102 if (doms_cur != &fallback_doms)
7103 free_sched_domains(doms_cur, ndoms_cur);
7104 kfree(dattr_cur); /* kfree(NULL) is safe */
7105 doms_cur = doms_new;
7106 dattr_cur = dattr_new;
7107 ndoms_cur = ndoms_new;
7109 register_sched_domain_sysctl();
7111 mutex_unlock(&sched_domains_mutex);
7114 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7117 * Update cpusets according to cpu_active mask. If cpusets are
7118 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7119 * around partition_sched_domains().
7121 * If we come here as part of a suspend/resume, don't touch cpusets because we
7122 * want to restore it back to its original state upon resume anyway.
7124 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7125 void *hcpu)
7127 switch (action) {
7128 case CPU_ONLINE_FROZEN:
7129 case CPU_DOWN_FAILED_FROZEN:
7132 * num_cpus_frozen tracks how many CPUs are involved in suspend
7133 * resume sequence. As long as this is not the last online
7134 * operation in the resume sequence, just build a single sched
7135 * domain, ignoring cpusets.
7137 num_cpus_frozen--;
7138 if (likely(num_cpus_frozen)) {
7139 partition_sched_domains(1, NULL, NULL);
7140 break;
7144 * This is the last CPU online operation. So fall through and
7145 * restore the original sched domains by considering the
7146 * cpuset configurations.
7149 case CPU_ONLINE:
7150 cpuset_update_active_cpus(true);
7151 break;
7152 default:
7153 return NOTIFY_DONE;
7155 return NOTIFY_OK;
7158 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7159 void *hcpu)
7161 unsigned long flags;
7162 long cpu = (long)hcpu;
7163 struct dl_bw *dl_b;
7164 bool overflow;
7165 int cpus;
7167 switch (action) {
7168 case CPU_DOWN_PREPARE:
7169 rcu_read_lock_sched();
7170 dl_b = dl_bw_of(cpu);
7172 raw_spin_lock_irqsave(&dl_b->lock, flags);
7173 cpus = dl_bw_cpus(cpu);
7174 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7175 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7177 rcu_read_unlock_sched();
7179 if (overflow)
7180 return notifier_from_errno(-EBUSY);
7181 cpuset_update_active_cpus(false);
7182 break;
7183 case CPU_DOWN_PREPARE_FROZEN:
7184 num_cpus_frozen++;
7185 partition_sched_domains(1, NULL, NULL);
7186 break;
7187 default:
7188 return NOTIFY_DONE;
7190 return NOTIFY_OK;
7193 void __init sched_init_smp(void)
7195 cpumask_var_t non_isolated_cpus;
7197 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7198 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7200 /* nohz_full won't take effect without isolating the cpus. */
7201 tick_nohz_full_add_cpus_to(cpu_isolated_map);
7203 sched_init_numa();
7206 * There's no userspace yet to cause hotplug operations; hence all the
7207 * cpu masks are stable and all blatant races in the below code cannot
7208 * happen.
7210 mutex_lock(&sched_domains_mutex);
7211 init_sched_domains(cpu_active_mask);
7212 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7213 if (cpumask_empty(non_isolated_cpus))
7214 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7215 mutex_unlock(&sched_domains_mutex);
7217 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7218 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7219 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7221 init_hrtick();
7223 /* Move init over to a non-isolated CPU */
7224 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7225 BUG();
7226 sched_init_granularity();
7227 free_cpumask_var(non_isolated_cpus);
7229 init_sched_rt_class();
7230 init_sched_dl_class();
7232 #else
7233 void __init sched_init_smp(void)
7235 sched_init_granularity();
7237 #endif /* CONFIG_SMP */
7239 int in_sched_functions(unsigned long addr)
7241 return in_lock_functions(addr) ||
7242 (addr >= (unsigned long)__sched_text_start
7243 && addr < (unsigned long)__sched_text_end);
7246 #ifdef CONFIG_CGROUP_SCHED
7248 * Default task group.
7249 * Every task in system belongs to this group at bootup.
7251 struct task_group root_task_group;
7252 LIST_HEAD(task_groups);
7253 #endif
7255 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7257 void __init sched_init(void)
7259 int i, j;
7260 unsigned long alloc_size = 0, ptr;
7262 #ifdef CONFIG_FAIR_GROUP_SCHED
7263 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7264 #endif
7265 #ifdef CONFIG_RT_GROUP_SCHED
7266 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7267 #endif
7268 if (alloc_size) {
7269 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7271 #ifdef CONFIG_FAIR_GROUP_SCHED
7272 root_task_group.se = (struct sched_entity **)ptr;
7273 ptr += nr_cpu_ids * sizeof(void **);
7275 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7276 ptr += nr_cpu_ids * sizeof(void **);
7278 #endif /* CONFIG_FAIR_GROUP_SCHED */
7279 #ifdef CONFIG_RT_GROUP_SCHED
7280 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7281 ptr += nr_cpu_ids * sizeof(void **);
7283 root_task_group.rt_rq = (struct rt_rq **)ptr;
7284 ptr += nr_cpu_ids * sizeof(void **);
7286 #endif /* CONFIG_RT_GROUP_SCHED */
7288 #ifdef CONFIG_CPUMASK_OFFSTACK
7289 for_each_possible_cpu(i) {
7290 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7291 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7293 #endif /* CONFIG_CPUMASK_OFFSTACK */
7295 init_rt_bandwidth(&def_rt_bandwidth,
7296 global_rt_period(), global_rt_runtime());
7297 init_dl_bandwidth(&def_dl_bandwidth,
7298 global_rt_period(), global_rt_runtime());
7300 #ifdef CONFIG_SMP
7301 init_defrootdomain();
7302 #endif
7304 #ifdef CONFIG_RT_GROUP_SCHED
7305 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7306 global_rt_period(), global_rt_runtime());
7307 #endif /* CONFIG_RT_GROUP_SCHED */
7309 #ifdef CONFIG_CGROUP_SCHED
7310 list_add(&root_task_group.list, &task_groups);
7311 INIT_LIST_HEAD(&root_task_group.children);
7312 INIT_LIST_HEAD(&root_task_group.siblings);
7313 autogroup_init(&init_task);
7315 #endif /* CONFIG_CGROUP_SCHED */
7317 for_each_possible_cpu(i) {
7318 struct rq *rq;
7320 rq = cpu_rq(i);
7321 raw_spin_lock_init(&rq->lock);
7322 rq->nr_running = 0;
7323 rq->calc_load_active = 0;
7324 rq->calc_load_update = jiffies + LOAD_FREQ;
7325 init_cfs_rq(&rq->cfs);
7326 init_rt_rq(&rq->rt);
7327 init_dl_rq(&rq->dl);
7328 #ifdef CONFIG_FAIR_GROUP_SCHED
7329 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7330 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7332 * How much cpu bandwidth does root_task_group get?
7334 * In case of task-groups formed thr' the cgroup filesystem, it
7335 * gets 100% of the cpu resources in the system. This overall
7336 * system cpu resource is divided among the tasks of
7337 * root_task_group and its child task-groups in a fair manner,
7338 * based on each entity's (task or task-group's) weight
7339 * (se->load.weight).
7341 * In other words, if root_task_group has 10 tasks of weight
7342 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7343 * then A0's share of the cpu resource is:
7345 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7347 * We achieve this by letting root_task_group's tasks sit
7348 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7350 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7351 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7352 #endif /* CONFIG_FAIR_GROUP_SCHED */
7354 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7355 #ifdef CONFIG_RT_GROUP_SCHED
7356 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7357 #endif
7359 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7360 rq->cpu_load[j] = 0;
7362 rq->last_load_update_tick = jiffies;
7364 #ifdef CONFIG_SMP
7365 rq->sd = NULL;
7366 rq->rd = NULL;
7367 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7368 rq->balance_callback = NULL;
7369 rq->active_balance = 0;
7370 rq->next_balance = jiffies;
7371 rq->push_cpu = 0;
7372 rq->cpu = i;
7373 rq->online = 0;
7374 rq->idle_stamp = 0;
7375 rq->avg_idle = 2*sysctl_sched_migration_cost;
7376 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7378 INIT_LIST_HEAD(&rq->cfs_tasks);
7380 rq_attach_root(rq, &def_root_domain);
7381 #ifdef CONFIG_NO_HZ_COMMON
7382 rq->nohz_flags = 0;
7383 #endif
7384 #ifdef CONFIG_NO_HZ_FULL
7385 rq->last_sched_tick = 0;
7386 #endif
7387 #endif
7388 init_rq_hrtick(rq);
7389 atomic_set(&rq->nr_iowait, 0);
7392 set_load_weight(&init_task);
7394 #ifdef CONFIG_PREEMPT_NOTIFIERS
7395 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7396 #endif
7399 * The boot idle thread does lazy MMU switching as well:
7401 atomic_inc(&init_mm.mm_count);
7402 enter_lazy_tlb(&init_mm, current);
7405 * During early bootup we pretend to be a normal task:
7407 current->sched_class = &fair_sched_class;
7410 * Make us the idle thread. Technically, schedule() should not be
7411 * called from this thread, however somewhere below it might be,
7412 * but because we are the idle thread, we just pick up running again
7413 * when this runqueue becomes "idle".
7415 init_idle(current, smp_processor_id());
7417 calc_load_update = jiffies + LOAD_FREQ;
7419 #ifdef CONFIG_SMP
7420 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7421 /* May be allocated at isolcpus cmdline parse time */
7422 if (cpu_isolated_map == NULL)
7423 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7424 idle_thread_set_boot_cpu();
7425 set_cpu_rq_start_time();
7426 #endif
7427 init_sched_fair_class();
7429 scheduler_running = 1;
7432 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7433 static inline int preempt_count_equals(int preempt_offset)
7435 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7437 return (nested == preempt_offset);
7440 void __might_sleep(const char *file, int line, int preempt_offset)
7443 * Blocking primitives will set (and therefore destroy) current->state,
7444 * since we will exit with TASK_RUNNING make sure we enter with it,
7445 * otherwise we will destroy state.
7447 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7448 "do not call blocking ops when !TASK_RUNNING; "
7449 "state=%lx set at [<%p>] %pS\n",
7450 current->state,
7451 (void *)current->task_state_change,
7452 (void *)current->task_state_change);
7454 ___might_sleep(file, line, preempt_offset);
7456 EXPORT_SYMBOL(__might_sleep);
7458 void ___might_sleep(const char *file, int line, int preempt_offset)
7460 static unsigned long prev_jiffy; /* ratelimiting */
7462 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7463 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7464 !is_idle_task(current)) ||
7465 system_state != SYSTEM_RUNNING || oops_in_progress)
7466 return;
7467 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7468 return;
7469 prev_jiffy = jiffies;
7471 printk(KERN_ERR
7472 "BUG: sleeping function called from invalid context at %s:%d\n",
7473 file, line);
7474 printk(KERN_ERR
7475 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7476 in_atomic(), irqs_disabled(),
7477 current->pid, current->comm);
7479 if (task_stack_end_corrupted(current))
7480 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7482 debug_show_held_locks(current);
7483 if (irqs_disabled())
7484 print_irqtrace_events(current);
7485 #ifdef CONFIG_DEBUG_PREEMPT
7486 if (!preempt_count_equals(preempt_offset)) {
7487 pr_err("Preemption disabled at:");
7488 print_ip_sym(current->preempt_disable_ip);
7489 pr_cont("\n");
7491 #endif
7492 dump_stack();
7494 EXPORT_SYMBOL(___might_sleep);
7495 #endif
7497 #ifdef CONFIG_MAGIC_SYSRQ
7498 void normalize_rt_tasks(void)
7500 struct task_struct *g, *p;
7501 struct sched_attr attr = {
7502 .sched_policy = SCHED_NORMAL,
7505 read_lock(&tasklist_lock);
7506 for_each_process_thread(g, p) {
7508 * Only normalize user tasks:
7510 if (p->flags & PF_KTHREAD)
7511 continue;
7513 p->se.exec_start = 0;
7514 #ifdef CONFIG_SCHEDSTATS
7515 p->se.statistics.wait_start = 0;
7516 p->se.statistics.sleep_start = 0;
7517 p->se.statistics.block_start = 0;
7518 #endif
7520 if (!dl_task(p) && !rt_task(p)) {
7522 * Renice negative nice level userspace
7523 * tasks back to 0:
7525 if (task_nice(p) < 0)
7526 set_user_nice(p, 0);
7527 continue;
7530 __sched_setscheduler(p, &attr, false, false);
7532 read_unlock(&tasklist_lock);
7535 #endif /* CONFIG_MAGIC_SYSRQ */
7537 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7539 * These functions are only useful for the IA64 MCA handling, or kdb.
7541 * They can only be called when the whole system has been
7542 * stopped - every CPU needs to be quiescent, and no scheduling
7543 * activity can take place. Using them for anything else would
7544 * be a serious bug, and as a result, they aren't even visible
7545 * under any other configuration.
7549 * curr_task - return the current task for a given cpu.
7550 * @cpu: the processor in question.
7552 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7554 * Return: The current task for @cpu.
7556 struct task_struct *curr_task(int cpu)
7558 return cpu_curr(cpu);
7561 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7563 #ifdef CONFIG_IA64
7565 * set_curr_task - set the current task for a given cpu.
7566 * @cpu: the processor in question.
7567 * @p: the task pointer to set.
7569 * Description: This function must only be used when non-maskable interrupts
7570 * are serviced on a separate stack. It allows the architecture to switch the
7571 * notion of the current task on a cpu in a non-blocking manner. This function
7572 * must be called with all CPU's synchronized, and interrupts disabled, the
7573 * and caller must save the original value of the current task (see
7574 * curr_task() above) and restore that value before reenabling interrupts and
7575 * re-starting the system.
7577 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7579 void set_curr_task(int cpu, struct task_struct *p)
7581 cpu_curr(cpu) = p;
7584 #endif
7586 #ifdef CONFIG_CGROUP_SCHED
7587 /* task_group_lock serializes the addition/removal of task groups */
7588 static DEFINE_SPINLOCK(task_group_lock);
7590 static void free_sched_group(struct task_group *tg)
7592 free_fair_sched_group(tg);
7593 free_rt_sched_group(tg);
7594 autogroup_free(tg);
7595 kfree(tg);
7598 /* allocate runqueue etc for a new task group */
7599 struct task_group *sched_create_group(struct task_group *parent)
7601 struct task_group *tg;
7603 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7604 if (!tg)
7605 return ERR_PTR(-ENOMEM);
7607 if (!alloc_fair_sched_group(tg, parent))
7608 goto err;
7610 if (!alloc_rt_sched_group(tg, parent))
7611 goto err;
7613 return tg;
7615 err:
7616 free_sched_group(tg);
7617 return ERR_PTR(-ENOMEM);
7620 void sched_online_group(struct task_group *tg, struct task_group *parent)
7622 unsigned long flags;
7624 spin_lock_irqsave(&task_group_lock, flags);
7625 list_add_rcu(&tg->list, &task_groups);
7627 WARN_ON(!parent); /* root should already exist */
7629 tg->parent = parent;
7630 INIT_LIST_HEAD(&tg->children);
7631 list_add_rcu(&tg->siblings, &parent->children);
7632 spin_unlock_irqrestore(&task_group_lock, flags);
7635 /* rcu callback to free various structures associated with a task group */
7636 static void free_sched_group_rcu(struct rcu_head *rhp)
7638 /* now it should be safe to free those cfs_rqs */
7639 free_sched_group(container_of(rhp, struct task_group, rcu));
7642 /* Destroy runqueue etc associated with a task group */
7643 void sched_destroy_group(struct task_group *tg)
7645 /* wait for possible concurrent references to cfs_rqs complete */
7646 call_rcu(&tg->rcu, free_sched_group_rcu);
7649 void sched_offline_group(struct task_group *tg)
7651 unsigned long flags;
7652 int i;
7654 /* end participation in shares distribution */
7655 for_each_possible_cpu(i)
7656 unregister_fair_sched_group(tg, i);
7658 spin_lock_irqsave(&task_group_lock, flags);
7659 list_del_rcu(&tg->list);
7660 list_del_rcu(&tg->siblings);
7661 spin_unlock_irqrestore(&task_group_lock, flags);
7664 /* change task's runqueue when it moves between groups.
7665 * The caller of this function should have put the task in its new group
7666 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7667 * reflect its new group.
7669 void sched_move_task(struct task_struct *tsk)
7671 struct task_group *tg;
7672 int queued, running;
7673 unsigned long flags;
7674 struct rq *rq;
7676 rq = task_rq_lock(tsk, &flags);
7678 running = task_current(rq, tsk);
7679 queued = task_on_rq_queued(tsk);
7681 if (queued)
7682 dequeue_task(rq, tsk, 0);
7683 if (unlikely(running))
7684 put_prev_task(rq, tsk);
7687 * All callers are synchronized by task_rq_lock(); we do not use RCU
7688 * which is pointless here. Thus, we pass "true" to task_css_check()
7689 * to prevent lockdep warnings.
7691 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7692 struct task_group, css);
7693 tg = autogroup_task_group(tsk, tg);
7694 tsk->sched_task_group = tg;
7696 #ifdef CONFIG_FAIR_GROUP_SCHED
7697 if (tsk->sched_class->task_move_group)
7698 tsk->sched_class->task_move_group(tsk, queued);
7699 else
7700 #endif
7701 set_task_rq(tsk, task_cpu(tsk));
7703 if (unlikely(running))
7704 tsk->sched_class->set_curr_task(rq);
7705 if (queued)
7706 enqueue_task(rq, tsk, 0);
7708 task_rq_unlock(rq, tsk, &flags);
7710 #endif /* CONFIG_CGROUP_SCHED */
7712 #ifdef CONFIG_RT_GROUP_SCHED
7714 * Ensure that the real time constraints are schedulable.
7716 static DEFINE_MUTEX(rt_constraints_mutex);
7718 /* Must be called with tasklist_lock held */
7719 static inline int tg_has_rt_tasks(struct task_group *tg)
7721 struct task_struct *g, *p;
7724 * Autogroups do not have RT tasks; see autogroup_create().
7726 if (task_group_is_autogroup(tg))
7727 return 0;
7729 for_each_process_thread(g, p) {
7730 if (rt_task(p) && task_group(p) == tg)
7731 return 1;
7734 return 0;
7737 struct rt_schedulable_data {
7738 struct task_group *tg;
7739 u64 rt_period;
7740 u64 rt_runtime;
7743 static int tg_rt_schedulable(struct task_group *tg, void *data)
7745 struct rt_schedulable_data *d = data;
7746 struct task_group *child;
7747 unsigned long total, sum = 0;
7748 u64 period, runtime;
7750 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7751 runtime = tg->rt_bandwidth.rt_runtime;
7753 if (tg == d->tg) {
7754 period = d->rt_period;
7755 runtime = d->rt_runtime;
7759 * Cannot have more runtime than the period.
7761 if (runtime > period && runtime != RUNTIME_INF)
7762 return -EINVAL;
7765 * Ensure we don't starve existing RT tasks.
7767 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7768 return -EBUSY;
7770 total = to_ratio(period, runtime);
7773 * Nobody can have more than the global setting allows.
7775 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7776 return -EINVAL;
7779 * The sum of our children's runtime should not exceed our own.
7781 list_for_each_entry_rcu(child, &tg->children, siblings) {
7782 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7783 runtime = child->rt_bandwidth.rt_runtime;
7785 if (child == d->tg) {
7786 period = d->rt_period;
7787 runtime = d->rt_runtime;
7790 sum += to_ratio(period, runtime);
7793 if (sum > total)
7794 return -EINVAL;
7796 return 0;
7799 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7801 int ret;
7803 struct rt_schedulable_data data = {
7804 .tg = tg,
7805 .rt_period = period,
7806 .rt_runtime = runtime,
7809 rcu_read_lock();
7810 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7811 rcu_read_unlock();
7813 return ret;
7816 static int tg_set_rt_bandwidth(struct task_group *tg,
7817 u64 rt_period, u64 rt_runtime)
7819 int i, err = 0;
7822 * Disallowing the root group RT runtime is BAD, it would disallow the
7823 * kernel creating (and or operating) RT threads.
7825 if (tg == &root_task_group && rt_runtime == 0)
7826 return -EINVAL;
7828 /* No period doesn't make any sense. */
7829 if (rt_period == 0)
7830 return -EINVAL;
7832 mutex_lock(&rt_constraints_mutex);
7833 read_lock(&tasklist_lock);
7834 err = __rt_schedulable(tg, rt_period, rt_runtime);
7835 if (err)
7836 goto unlock;
7838 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7839 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7840 tg->rt_bandwidth.rt_runtime = rt_runtime;
7842 for_each_possible_cpu(i) {
7843 struct rt_rq *rt_rq = tg->rt_rq[i];
7845 raw_spin_lock(&rt_rq->rt_runtime_lock);
7846 rt_rq->rt_runtime = rt_runtime;
7847 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7849 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7850 unlock:
7851 read_unlock(&tasklist_lock);
7852 mutex_unlock(&rt_constraints_mutex);
7854 return err;
7857 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7859 u64 rt_runtime, rt_period;
7861 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7862 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7863 if (rt_runtime_us < 0)
7864 rt_runtime = RUNTIME_INF;
7866 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7869 static long sched_group_rt_runtime(struct task_group *tg)
7871 u64 rt_runtime_us;
7873 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7874 return -1;
7876 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7877 do_div(rt_runtime_us, NSEC_PER_USEC);
7878 return rt_runtime_us;
7881 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7883 u64 rt_runtime, rt_period;
7885 rt_period = rt_period_us * NSEC_PER_USEC;
7886 rt_runtime = tg->rt_bandwidth.rt_runtime;
7888 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7891 static long sched_group_rt_period(struct task_group *tg)
7893 u64 rt_period_us;
7895 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7896 do_div(rt_period_us, NSEC_PER_USEC);
7897 return rt_period_us;
7899 #endif /* CONFIG_RT_GROUP_SCHED */
7901 #ifdef CONFIG_RT_GROUP_SCHED
7902 static int sched_rt_global_constraints(void)
7904 int ret = 0;
7906 mutex_lock(&rt_constraints_mutex);
7907 read_lock(&tasklist_lock);
7908 ret = __rt_schedulable(NULL, 0, 0);
7909 read_unlock(&tasklist_lock);
7910 mutex_unlock(&rt_constraints_mutex);
7912 return ret;
7915 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7917 /* Don't accept realtime tasks when there is no way for them to run */
7918 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7919 return 0;
7921 return 1;
7924 #else /* !CONFIG_RT_GROUP_SCHED */
7925 static int sched_rt_global_constraints(void)
7927 unsigned long flags;
7928 int i, ret = 0;
7930 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7931 for_each_possible_cpu(i) {
7932 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7934 raw_spin_lock(&rt_rq->rt_runtime_lock);
7935 rt_rq->rt_runtime = global_rt_runtime();
7936 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7938 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7940 return ret;
7942 #endif /* CONFIG_RT_GROUP_SCHED */
7944 static int sched_dl_global_validate(void)
7946 u64 runtime = global_rt_runtime();
7947 u64 period = global_rt_period();
7948 u64 new_bw = to_ratio(period, runtime);
7949 struct dl_bw *dl_b;
7950 int cpu, ret = 0;
7951 unsigned long flags;
7954 * Here we want to check the bandwidth not being set to some
7955 * value smaller than the currently allocated bandwidth in
7956 * any of the root_domains.
7958 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7959 * cycling on root_domains... Discussion on different/better
7960 * solutions is welcome!
7962 for_each_possible_cpu(cpu) {
7963 rcu_read_lock_sched();
7964 dl_b = dl_bw_of(cpu);
7966 raw_spin_lock_irqsave(&dl_b->lock, flags);
7967 if (new_bw < dl_b->total_bw)
7968 ret = -EBUSY;
7969 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7971 rcu_read_unlock_sched();
7973 if (ret)
7974 break;
7977 return ret;
7980 static void sched_dl_do_global(void)
7982 u64 new_bw = -1;
7983 struct dl_bw *dl_b;
7984 int cpu;
7985 unsigned long flags;
7987 def_dl_bandwidth.dl_period = global_rt_period();
7988 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7990 if (global_rt_runtime() != RUNTIME_INF)
7991 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7994 * FIXME: As above...
7996 for_each_possible_cpu(cpu) {
7997 rcu_read_lock_sched();
7998 dl_b = dl_bw_of(cpu);
8000 raw_spin_lock_irqsave(&dl_b->lock, flags);
8001 dl_b->bw = new_bw;
8002 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8004 rcu_read_unlock_sched();
8008 static int sched_rt_global_validate(void)
8010 if (sysctl_sched_rt_period <= 0)
8011 return -EINVAL;
8013 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8014 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8015 return -EINVAL;
8017 return 0;
8020 static void sched_rt_do_global(void)
8022 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8023 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8026 int sched_rt_handler(struct ctl_table *table, int write,
8027 void __user *buffer, size_t *lenp,
8028 loff_t *ppos)
8030 int old_period, old_runtime;
8031 static DEFINE_MUTEX(mutex);
8032 int ret;
8034 mutex_lock(&mutex);
8035 old_period = sysctl_sched_rt_period;
8036 old_runtime = sysctl_sched_rt_runtime;
8038 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8040 if (!ret && write) {
8041 ret = sched_rt_global_validate();
8042 if (ret)
8043 goto undo;
8045 ret = sched_dl_global_validate();
8046 if (ret)
8047 goto undo;
8049 ret = sched_rt_global_constraints();
8050 if (ret)
8051 goto undo;
8053 sched_rt_do_global();
8054 sched_dl_do_global();
8056 if (0) {
8057 undo:
8058 sysctl_sched_rt_period = old_period;
8059 sysctl_sched_rt_runtime = old_runtime;
8061 mutex_unlock(&mutex);
8063 return ret;
8066 int sched_rr_handler(struct ctl_table *table, int write,
8067 void __user *buffer, size_t *lenp,
8068 loff_t *ppos)
8070 int ret;
8071 static DEFINE_MUTEX(mutex);
8073 mutex_lock(&mutex);
8074 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8075 /* make sure that internally we keep jiffies */
8076 /* also, writing zero resets timeslice to default */
8077 if (!ret && write) {
8078 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8079 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8081 mutex_unlock(&mutex);
8082 return ret;
8085 #ifdef CONFIG_CGROUP_SCHED
8087 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8089 return css ? container_of(css, struct task_group, css) : NULL;
8092 static struct cgroup_subsys_state *
8093 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8095 struct task_group *parent = css_tg(parent_css);
8096 struct task_group *tg;
8098 if (!parent) {
8099 /* This is early initialization for the top cgroup */
8100 return &root_task_group.css;
8103 tg = sched_create_group(parent);
8104 if (IS_ERR(tg))
8105 return ERR_PTR(-ENOMEM);
8107 return &tg->css;
8110 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8112 struct task_group *tg = css_tg(css);
8113 struct task_group *parent = css_tg(css->parent);
8115 if (parent)
8116 sched_online_group(tg, parent);
8117 return 0;
8120 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8122 struct task_group *tg = css_tg(css);
8124 sched_destroy_group(tg);
8127 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8129 struct task_group *tg = css_tg(css);
8131 sched_offline_group(tg);
8134 static void cpu_cgroup_fork(struct task_struct *task, void *private)
8136 sched_move_task(task);
8139 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8140 struct cgroup_taskset *tset)
8142 struct task_struct *task;
8144 cgroup_taskset_for_each(task, tset) {
8145 #ifdef CONFIG_RT_GROUP_SCHED
8146 if (!sched_rt_can_attach(css_tg(css), task))
8147 return -EINVAL;
8148 #else
8149 /* We don't support RT-tasks being in separate groups */
8150 if (task->sched_class != &fair_sched_class)
8151 return -EINVAL;
8152 #endif
8154 return 0;
8157 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8158 struct cgroup_taskset *tset)
8160 struct task_struct *task;
8162 cgroup_taskset_for_each(task, tset)
8163 sched_move_task(task);
8166 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8167 struct cgroup_subsys_state *old_css,
8168 struct task_struct *task)
8171 * cgroup_exit() is called in the copy_process() failure path.
8172 * Ignore this case since the task hasn't ran yet, this avoids
8173 * trying to poke a half freed task state from generic code.
8175 if (!(task->flags & PF_EXITING))
8176 return;
8178 sched_move_task(task);
8181 #ifdef CONFIG_FAIR_GROUP_SCHED
8182 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8183 struct cftype *cftype, u64 shareval)
8185 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8188 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8189 struct cftype *cft)
8191 struct task_group *tg = css_tg(css);
8193 return (u64) scale_load_down(tg->shares);
8196 #ifdef CONFIG_CFS_BANDWIDTH
8197 static DEFINE_MUTEX(cfs_constraints_mutex);
8199 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8200 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8202 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8204 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8206 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8207 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8209 if (tg == &root_task_group)
8210 return -EINVAL;
8213 * Ensure we have at some amount of bandwidth every period. This is
8214 * to prevent reaching a state of large arrears when throttled via
8215 * entity_tick() resulting in prolonged exit starvation.
8217 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8218 return -EINVAL;
8221 * Likewise, bound things on the otherside by preventing insane quota
8222 * periods. This also allows us to normalize in computing quota
8223 * feasibility.
8225 if (period > max_cfs_quota_period)
8226 return -EINVAL;
8229 * Prevent race between setting of cfs_rq->runtime_enabled and
8230 * unthrottle_offline_cfs_rqs().
8232 get_online_cpus();
8233 mutex_lock(&cfs_constraints_mutex);
8234 ret = __cfs_schedulable(tg, period, quota);
8235 if (ret)
8236 goto out_unlock;
8238 runtime_enabled = quota != RUNTIME_INF;
8239 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8241 * If we need to toggle cfs_bandwidth_used, off->on must occur
8242 * before making related changes, and on->off must occur afterwards
8244 if (runtime_enabled && !runtime_was_enabled)
8245 cfs_bandwidth_usage_inc();
8246 raw_spin_lock_irq(&cfs_b->lock);
8247 cfs_b->period = ns_to_ktime(period);
8248 cfs_b->quota = quota;
8250 __refill_cfs_bandwidth_runtime(cfs_b);
8251 /* restart the period timer (if active) to handle new period expiry */
8252 if (runtime_enabled)
8253 start_cfs_bandwidth(cfs_b);
8254 raw_spin_unlock_irq(&cfs_b->lock);
8256 for_each_online_cpu(i) {
8257 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8258 struct rq *rq = cfs_rq->rq;
8260 raw_spin_lock_irq(&rq->lock);
8261 cfs_rq->runtime_enabled = runtime_enabled;
8262 cfs_rq->runtime_remaining = 0;
8264 if (cfs_rq->throttled)
8265 unthrottle_cfs_rq(cfs_rq);
8266 raw_spin_unlock_irq(&rq->lock);
8268 if (runtime_was_enabled && !runtime_enabled)
8269 cfs_bandwidth_usage_dec();
8270 out_unlock:
8271 mutex_unlock(&cfs_constraints_mutex);
8272 put_online_cpus();
8274 return ret;
8277 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8279 u64 quota, period;
8281 period = ktime_to_ns(tg->cfs_bandwidth.period);
8282 if (cfs_quota_us < 0)
8283 quota = RUNTIME_INF;
8284 else
8285 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8287 return tg_set_cfs_bandwidth(tg, period, quota);
8290 long tg_get_cfs_quota(struct task_group *tg)
8292 u64 quota_us;
8294 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8295 return -1;
8297 quota_us = tg->cfs_bandwidth.quota;
8298 do_div(quota_us, NSEC_PER_USEC);
8300 return quota_us;
8303 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8305 u64 quota, period;
8307 period = (u64)cfs_period_us * NSEC_PER_USEC;
8308 quota = tg->cfs_bandwidth.quota;
8310 return tg_set_cfs_bandwidth(tg, period, quota);
8313 long tg_get_cfs_period(struct task_group *tg)
8315 u64 cfs_period_us;
8317 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8318 do_div(cfs_period_us, NSEC_PER_USEC);
8320 return cfs_period_us;
8323 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8324 struct cftype *cft)
8326 return tg_get_cfs_quota(css_tg(css));
8329 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8330 struct cftype *cftype, s64 cfs_quota_us)
8332 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8335 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8336 struct cftype *cft)
8338 return tg_get_cfs_period(css_tg(css));
8341 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8342 struct cftype *cftype, u64 cfs_period_us)
8344 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8347 struct cfs_schedulable_data {
8348 struct task_group *tg;
8349 u64 period, quota;
8353 * normalize group quota/period to be quota/max_period
8354 * note: units are usecs
8356 static u64 normalize_cfs_quota(struct task_group *tg,
8357 struct cfs_schedulable_data *d)
8359 u64 quota, period;
8361 if (tg == d->tg) {
8362 period = d->period;
8363 quota = d->quota;
8364 } else {
8365 period = tg_get_cfs_period(tg);
8366 quota = tg_get_cfs_quota(tg);
8369 /* note: these should typically be equivalent */
8370 if (quota == RUNTIME_INF || quota == -1)
8371 return RUNTIME_INF;
8373 return to_ratio(period, quota);
8376 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8378 struct cfs_schedulable_data *d = data;
8379 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8380 s64 quota = 0, parent_quota = -1;
8382 if (!tg->parent) {
8383 quota = RUNTIME_INF;
8384 } else {
8385 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8387 quota = normalize_cfs_quota(tg, d);
8388 parent_quota = parent_b->hierarchical_quota;
8391 * ensure max(child_quota) <= parent_quota, inherit when no
8392 * limit is set
8394 if (quota == RUNTIME_INF)
8395 quota = parent_quota;
8396 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8397 return -EINVAL;
8399 cfs_b->hierarchical_quota = quota;
8401 return 0;
8404 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8406 int ret;
8407 struct cfs_schedulable_data data = {
8408 .tg = tg,
8409 .period = period,
8410 .quota = quota,
8413 if (quota != RUNTIME_INF) {
8414 do_div(data.period, NSEC_PER_USEC);
8415 do_div(data.quota, NSEC_PER_USEC);
8418 rcu_read_lock();
8419 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8420 rcu_read_unlock();
8422 return ret;
8425 static int cpu_stats_show(struct seq_file *sf, void *v)
8427 struct task_group *tg = css_tg(seq_css(sf));
8428 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8430 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8431 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8432 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8434 return 0;
8436 #endif /* CONFIG_CFS_BANDWIDTH */
8437 #endif /* CONFIG_FAIR_GROUP_SCHED */
8439 #ifdef CONFIG_RT_GROUP_SCHED
8440 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8441 struct cftype *cft, s64 val)
8443 return sched_group_set_rt_runtime(css_tg(css), val);
8446 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8447 struct cftype *cft)
8449 return sched_group_rt_runtime(css_tg(css));
8452 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8453 struct cftype *cftype, u64 rt_period_us)
8455 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8458 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8459 struct cftype *cft)
8461 return sched_group_rt_period(css_tg(css));
8463 #endif /* CONFIG_RT_GROUP_SCHED */
8465 static struct cftype cpu_files[] = {
8466 #ifdef CONFIG_FAIR_GROUP_SCHED
8468 .name = "shares",
8469 .read_u64 = cpu_shares_read_u64,
8470 .write_u64 = cpu_shares_write_u64,
8472 #endif
8473 #ifdef CONFIG_CFS_BANDWIDTH
8475 .name = "cfs_quota_us",
8476 .read_s64 = cpu_cfs_quota_read_s64,
8477 .write_s64 = cpu_cfs_quota_write_s64,
8480 .name = "cfs_period_us",
8481 .read_u64 = cpu_cfs_period_read_u64,
8482 .write_u64 = cpu_cfs_period_write_u64,
8485 .name = "stat",
8486 .seq_show = cpu_stats_show,
8488 #endif
8489 #ifdef CONFIG_RT_GROUP_SCHED
8491 .name = "rt_runtime_us",
8492 .read_s64 = cpu_rt_runtime_read,
8493 .write_s64 = cpu_rt_runtime_write,
8496 .name = "rt_period_us",
8497 .read_u64 = cpu_rt_period_read_uint,
8498 .write_u64 = cpu_rt_period_write_uint,
8500 #endif
8501 { } /* terminate */
8504 struct cgroup_subsys cpu_cgrp_subsys = {
8505 .css_alloc = cpu_cgroup_css_alloc,
8506 .css_free = cpu_cgroup_css_free,
8507 .css_online = cpu_cgroup_css_online,
8508 .css_offline = cpu_cgroup_css_offline,
8509 .fork = cpu_cgroup_fork,
8510 .can_attach = cpu_cgroup_can_attach,
8511 .attach = cpu_cgroup_attach,
8512 .exit = cpu_cgroup_exit,
8513 .legacy_cftypes = cpu_files,
8514 .early_init = 1,
8517 #endif /* CONFIG_CGROUP_SCHED */
8519 void dump_cpu_task(int cpu)
8521 pr_info("Task dump for CPU %d:\n", cpu);
8522 sched_show_task(cpu_curr(cpu));