4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
78 #include <asm/switch_to.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
93 DEFINE_MUTEX(sched_domains_mutex
);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
96 static void update_rq_clock_task(struct rq
*rq
, s64 delta
);
98 void update_rq_clock(struct rq
*rq
)
102 lockdep_assert_held(&rq
->lock
);
104 if (rq
->clock_skip_update
& RQCF_ACT_SKIP
)
107 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
111 update_rq_clock_task(rq
, delta
);
115 * Debugging: various feature bits
118 #define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
121 const_debug
unsigned int sysctl_sched_features
=
122 #include "features.h"
127 #ifdef CONFIG_SCHED_DEBUG
128 #define SCHED_FEAT(name, enabled) \
131 static const char * const sched_feat_names
[] = {
132 #include "features.h"
137 static int sched_feat_show(struct seq_file
*m
, void *v
)
141 for (i
= 0; i
< __SCHED_FEAT_NR
; i
++) {
142 if (!(sysctl_sched_features
& (1UL << i
)))
144 seq_printf(m
, "%s ", sched_feat_names
[i
]);
151 #ifdef HAVE_JUMP_LABEL
153 #define jump_label_key__true STATIC_KEY_INIT_TRUE
154 #define jump_label_key__false STATIC_KEY_INIT_FALSE
156 #define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
159 struct static_key sched_feat_keys
[__SCHED_FEAT_NR
] = {
160 #include "features.h"
165 static void sched_feat_disable(int i
)
167 static_key_disable(&sched_feat_keys
[i
]);
170 static void sched_feat_enable(int i
)
172 static_key_enable(&sched_feat_keys
[i
]);
175 static void sched_feat_disable(int i
) { };
176 static void sched_feat_enable(int i
) { };
177 #endif /* HAVE_JUMP_LABEL */
179 static int sched_feat_set(char *cmp
)
184 if (strncmp(cmp
, "NO_", 3) == 0) {
189 for (i
= 0; i
< __SCHED_FEAT_NR
; i
++) {
190 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
192 sysctl_sched_features
&= ~(1UL << i
);
193 sched_feat_disable(i
);
195 sysctl_sched_features
|= (1UL << i
);
196 sched_feat_enable(i
);
206 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
207 size_t cnt
, loff_t
*ppos
)
217 if (copy_from_user(&buf
, ubuf
, cnt
))
223 /* Ensure the static_key remains in a consistent state */
224 inode
= file_inode(filp
);
225 mutex_lock(&inode
->i_mutex
);
226 i
= sched_feat_set(cmp
);
227 mutex_unlock(&inode
->i_mutex
);
228 if (i
== __SCHED_FEAT_NR
)
236 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
238 return single_open(filp
, sched_feat_show
, NULL
);
241 static const struct file_operations sched_feat_fops
= {
242 .open
= sched_feat_open
,
243 .write
= sched_feat_write
,
246 .release
= single_release
,
249 static __init
int sched_init_debug(void)
251 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
256 late_initcall(sched_init_debug
);
257 #endif /* CONFIG_SCHED_DEBUG */
260 * Number of tasks to iterate in a single balance run.
261 * Limited because this is done with IRQs disabled.
263 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
266 * period over which we average the RT time consumption, measured
271 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
274 * period over which we measure -rt task cpu usage in us.
277 unsigned int sysctl_sched_rt_period
= 1000000;
279 __read_mostly
int scheduler_running
;
282 * part of the period that we allow rt tasks to run in us.
285 int sysctl_sched_rt_runtime
= 950000;
287 /* cpus with isolated domains */
288 cpumask_var_t cpu_isolated_map
;
291 * this_rq_lock - lock this runqueue and disable interrupts.
293 static struct rq
*this_rq_lock(void)
300 raw_spin_lock(&rq
->lock
);
305 #ifdef CONFIG_SCHED_HRTICK
307 * Use HR-timers to deliver accurate preemption points.
310 static void hrtick_clear(struct rq
*rq
)
312 if (hrtimer_active(&rq
->hrtick_timer
))
313 hrtimer_cancel(&rq
->hrtick_timer
);
317 * High-resolution timer tick.
318 * Runs from hardirq context with interrupts disabled.
320 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
322 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
324 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
326 raw_spin_lock(&rq
->lock
);
328 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
329 raw_spin_unlock(&rq
->lock
);
331 return HRTIMER_NORESTART
;
336 static void __hrtick_restart(struct rq
*rq
)
338 struct hrtimer
*timer
= &rq
->hrtick_timer
;
340 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS_PINNED
);
344 * called from hardirq (IPI) context
346 static void __hrtick_start(void *arg
)
350 raw_spin_lock(&rq
->lock
);
351 __hrtick_restart(rq
);
352 rq
->hrtick_csd_pending
= 0;
353 raw_spin_unlock(&rq
->lock
);
357 * Called to set the hrtick timer state.
359 * called with rq->lock held and irqs disabled
361 void hrtick_start(struct rq
*rq
, u64 delay
)
363 struct hrtimer
*timer
= &rq
->hrtick_timer
;
368 * Don't schedule slices shorter than 10000ns, that just
369 * doesn't make sense and can cause timer DoS.
371 delta
= max_t(s64
, delay
, 10000LL);
372 time
= ktime_add_ns(timer
->base
->get_time(), delta
);
374 hrtimer_set_expires(timer
, time
);
376 if (rq
== this_rq()) {
377 __hrtick_restart(rq
);
378 } else if (!rq
->hrtick_csd_pending
) {
379 smp_call_function_single_async(cpu_of(rq
), &rq
->hrtick_csd
);
380 rq
->hrtick_csd_pending
= 1;
385 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
387 int cpu
= (int)(long)hcpu
;
390 case CPU_UP_CANCELED
:
391 case CPU_UP_CANCELED_FROZEN
:
392 case CPU_DOWN_PREPARE
:
393 case CPU_DOWN_PREPARE_FROZEN
:
395 case CPU_DEAD_FROZEN
:
396 hrtick_clear(cpu_rq(cpu
));
403 static __init
void init_hrtick(void)
405 hotcpu_notifier(hotplug_hrtick
, 0);
409 * Called to set the hrtick timer state.
411 * called with rq->lock held and irqs disabled
413 void hrtick_start(struct rq
*rq
, u64 delay
)
416 * Don't schedule slices shorter than 10000ns, that just
417 * doesn't make sense. Rely on vruntime for fairness.
419 delay
= max_t(u64
, delay
, 10000LL);
420 hrtimer_start(&rq
->hrtick_timer
, ns_to_ktime(delay
),
421 HRTIMER_MODE_REL_PINNED
);
424 static inline void init_hrtick(void)
427 #endif /* CONFIG_SMP */
429 static void init_rq_hrtick(struct rq
*rq
)
432 rq
->hrtick_csd_pending
= 0;
434 rq
->hrtick_csd
.flags
= 0;
435 rq
->hrtick_csd
.func
= __hrtick_start
;
436 rq
->hrtick_csd
.info
= rq
;
439 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
440 rq
->hrtick_timer
.function
= hrtick
;
442 #else /* CONFIG_SCHED_HRTICK */
443 static inline void hrtick_clear(struct rq
*rq
)
447 static inline void init_rq_hrtick(struct rq
*rq
)
451 static inline void init_hrtick(void)
454 #endif /* CONFIG_SCHED_HRTICK */
457 * cmpxchg based fetch_or, macro so it works for different integer types
459 #define fetch_or(ptr, val) \
460 ({ typeof(*(ptr)) __old, __val = *(ptr); \
462 __old = cmpxchg((ptr), __val, __val | (val)); \
463 if (__old == __val) \
470 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
472 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473 * this avoids any races wrt polling state changes and thereby avoids
476 static bool set_nr_and_not_polling(struct task_struct
*p
)
478 struct thread_info
*ti
= task_thread_info(p
);
479 return !(fetch_or(&ti
->flags
, _TIF_NEED_RESCHED
) & _TIF_POLLING_NRFLAG
);
483 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
485 * If this returns true, then the idle task promises to call
486 * sched_ttwu_pending() and reschedule soon.
488 static bool set_nr_if_polling(struct task_struct
*p
)
490 struct thread_info
*ti
= task_thread_info(p
);
491 typeof(ti
->flags
) old
, val
= READ_ONCE(ti
->flags
);
494 if (!(val
& _TIF_POLLING_NRFLAG
))
496 if (val
& _TIF_NEED_RESCHED
)
498 old
= cmpxchg(&ti
->flags
, val
, val
| _TIF_NEED_RESCHED
);
507 static bool set_nr_and_not_polling(struct task_struct
*p
)
509 set_tsk_need_resched(p
);
514 static bool set_nr_if_polling(struct task_struct
*p
)
521 void wake_q_add(struct wake_q_head
*head
, struct task_struct
*task
)
523 struct wake_q_node
*node
= &task
->wake_q
;
526 * Atomically grab the task, if ->wake_q is !nil already it means
527 * its already queued (either by us or someone else) and will get the
528 * wakeup due to that.
530 * This cmpxchg() implies a full barrier, which pairs with the write
531 * barrier implied by the wakeup in wake_up_list().
533 if (cmpxchg(&node
->next
, NULL
, WAKE_Q_TAIL
))
536 get_task_struct(task
);
539 * The head is context local, there can be no concurrency.
542 head
->lastp
= &node
->next
;
545 void wake_up_q(struct wake_q_head
*head
)
547 struct wake_q_node
*node
= head
->first
;
549 while (node
!= WAKE_Q_TAIL
) {
550 struct task_struct
*task
;
552 task
= container_of(node
, struct task_struct
, wake_q
);
554 /* task can safely be re-inserted now */
556 task
->wake_q
.next
= NULL
;
559 * wake_up_process() implies a wmb() to pair with the queueing
560 * in wake_q_add() so as not to miss wakeups.
562 wake_up_process(task
);
563 put_task_struct(task
);
568 * resched_curr - mark rq's current task 'to be rescheduled now'.
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
574 void resched_curr(struct rq
*rq
)
576 struct task_struct
*curr
= rq
->curr
;
579 lockdep_assert_held(&rq
->lock
);
581 if (test_tsk_need_resched(curr
))
586 if (cpu
== smp_processor_id()) {
587 set_tsk_need_resched(curr
);
588 set_preempt_need_resched();
592 if (set_nr_and_not_polling(curr
))
593 smp_send_reschedule(cpu
);
595 trace_sched_wake_idle_without_ipi(cpu
);
598 void resched_cpu(int cpu
)
600 struct rq
*rq
= cpu_rq(cpu
);
603 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
606 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
610 #ifdef CONFIG_NO_HZ_COMMON
612 * In the semi idle case, use the nearest busy cpu for migrating timers
613 * from an idle cpu. This is good for power-savings.
615 * We don't do similar optimization for completely idle system, as
616 * selecting an idle cpu will add more delays to the timers than intended
617 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
619 int get_nohz_timer_target(void)
621 int i
, cpu
= smp_processor_id();
622 struct sched_domain
*sd
;
628 for_each_domain(cpu
, sd
) {
629 for_each_cpu(i
, sched_domain_span(sd
)) {
641 * When add_timer_on() enqueues a timer into the timer wheel of an
642 * idle CPU then this timer might expire before the next timer event
643 * which is scheduled to wake up that CPU. In case of a completely
644 * idle system the next event might even be infinite time into the
645 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
646 * leaves the inner idle loop so the newly added timer is taken into
647 * account when the CPU goes back to idle and evaluates the timer
648 * wheel for the next timer event.
650 static void wake_up_idle_cpu(int cpu
)
652 struct rq
*rq
= cpu_rq(cpu
);
654 if (cpu
== smp_processor_id())
657 if (set_nr_and_not_polling(rq
->idle
))
658 smp_send_reschedule(cpu
);
660 trace_sched_wake_idle_without_ipi(cpu
);
663 static bool wake_up_full_nohz_cpu(int cpu
)
666 * We just need the target to call irq_exit() and re-evaluate
667 * the next tick. The nohz full kick at least implies that.
668 * If needed we can still optimize that later with an
671 if (tick_nohz_full_cpu(cpu
)) {
672 if (cpu
!= smp_processor_id() ||
673 tick_nohz_tick_stopped())
674 tick_nohz_full_kick_cpu(cpu
);
681 void wake_up_nohz_cpu(int cpu
)
683 if (!wake_up_full_nohz_cpu(cpu
))
684 wake_up_idle_cpu(cpu
);
687 static inline bool got_nohz_idle_kick(void)
689 int cpu
= smp_processor_id();
691 if (!test_bit(NOHZ_BALANCE_KICK
, nohz_flags(cpu
)))
694 if (idle_cpu(cpu
) && !need_resched())
698 * We can't run Idle Load Balance on this CPU for this time so we
699 * cancel it and clear NOHZ_BALANCE_KICK
701 clear_bit(NOHZ_BALANCE_KICK
, nohz_flags(cpu
));
705 #else /* CONFIG_NO_HZ_COMMON */
707 static inline bool got_nohz_idle_kick(void)
712 #endif /* CONFIG_NO_HZ_COMMON */
714 #ifdef CONFIG_NO_HZ_FULL
715 bool sched_can_stop_tick(void)
718 * FIFO realtime policy runs the highest priority task. Other runnable
719 * tasks are of a lower priority. The scheduler tick does nothing.
721 if (current
->policy
== SCHED_FIFO
)
725 * Round-robin realtime tasks time slice with other tasks at the same
726 * realtime priority. Is this task the only one at this priority?
728 if (current
->policy
== SCHED_RR
) {
729 struct sched_rt_entity
*rt_se
= ¤t
->rt
;
731 return rt_se
->run_list
.prev
== rt_se
->run_list
.next
;
735 * More than one running task need preemption.
736 * nr_running update is assumed to be visible
737 * after IPI is sent from wakers.
739 if (this_rq()->nr_running
> 1)
744 #endif /* CONFIG_NO_HZ_FULL */
746 void sched_avg_update(struct rq
*rq
)
748 s64 period
= sched_avg_period();
750 while ((s64
)(rq_clock(rq
) - rq
->age_stamp
) > period
) {
752 * Inline assembly required to prevent the compiler
753 * optimising this loop into a divmod call.
754 * See __iter_div_u64_rem() for another example of this.
756 asm("" : "+rm" (rq
->age_stamp
));
757 rq
->age_stamp
+= period
;
762 #endif /* CONFIG_SMP */
764 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
765 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
767 * Iterate task_group tree rooted at *from, calling @down when first entering a
768 * node and @up when leaving it for the final time.
770 * Caller must hold rcu_lock or sufficient equivalent.
772 int walk_tg_tree_from(struct task_group
*from
,
773 tg_visitor down
, tg_visitor up
, void *data
)
775 struct task_group
*parent
, *child
;
781 ret
= (*down
)(parent
, data
);
784 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
791 ret
= (*up
)(parent
, data
);
792 if (ret
|| parent
== from
)
796 parent
= parent
->parent
;
803 int tg_nop(struct task_group
*tg
, void *data
)
809 static void set_load_weight(struct task_struct
*p
)
811 int prio
= p
->static_prio
- MAX_RT_PRIO
;
812 struct load_weight
*load
= &p
->se
.load
;
815 * SCHED_IDLE tasks get minimal weight:
817 if (p
->policy
== SCHED_IDLE
) {
818 load
->weight
= scale_load(WEIGHT_IDLEPRIO
);
819 load
->inv_weight
= WMULT_IDLEPRIO
;
823 load
->weight
= scale_load(prio_to_weight
[prio
]);
824 load
->inv_weight
= prio_to_wmult
[prio
];
827 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
830 sched_info_queued(rq
, p
);
831 p
->sched_class
->enqueue_task(rq
, p
, flags
);
834 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
837 sched_info_dequeued(rq
, p
);
838 p
->sched_class
->dequeue_task(rq
, p
, flags
);
841 void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
843 if (task_contributes_to_load(p
))
844 rq
->nr_uninterruptible
--;
846 enqueue_task(rq
, p
, flags
);
849 void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
851 if (task_contributes_to_load(p
))
852 rq
->nr_uninterruptible
++;
854 dequeue_task(rq
, p
, flags
);
857 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
860 * In theory, the compile should just see 0 here, and optimize out the call
861 * to sched_rt_avg_update. But I don't trust it...
863 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
864 s64 steal
= 0, irq_delta
= 0;
866 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
867 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
870 * Since irq_time is only updated on {soft,}irq_exit, we might run into
871 * this case when a previous update_rq_clock() happened inside a
874 * When this happens, we stop ->clock_task and only update the
875 * prev_irq_time stamp to account for the part that fit, so that a next
876 * update will consume the rest. This ensures ->clock_task is
879 * It does however cause some slight miss-attribution of {soft,}irq
880 * time, a more accurate solution would be to update the irq_time using
881 * the current rq->clock timestamp, except that would require using
884 if (irq_delta
> delta
)
887 rq
->prev_irq_time
+= irq_delta
;
890 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
891 if (static_key_false((¶virt_steal_rq_enabled
))) {
892 steal
= paravirt_steal_clock(cpu_of(rq
));
893 steal
-= rq
->prev_steal_time_rq
;
895 if (unlikely(steal
> delta
))
898 rq
->prev_steal_time_rq
+= steal
;
903 rq
->clock_task
+= delta
;
905 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
906 if ((irq_delta
+ steal
) && sched_feat(NONTASK_CAPACITY
))
907 sched_rt_avg_update(rq
, irq_delta
+ steal
);
911 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
913 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
914 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
918 * Make it appear like a SCHED_FIFO task, its something
919 * userspace knows about and won't get confused about.
921 * Also, it will make PI more or less work without too
922 * much confusion -- but then, stop work should not
923 * rely on PI working anyway.
925 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
927 stop
->sched_class
= &stop_sched_class
;
930 cpu_rq(cpu
)->stop
= stop
;
934 * Reset it back to a normal scheduling class so that
935 * it can die in pieces.
937 old_stop
->sched_class
= &rt_sched_class
;
942 * __normal_prio - return the priority that is based on the static prio
944 static inline int __normal_prio(struct task_struct
*p
)
946 return p
->static_prio
;
950 * Calculate the expected normal priority: i.e. priority
951 * without taking RT-inheritance into account. Might be
952 * boosted by interactivity modifiers. Changes upon fork,
953 * setprio syscalls, and whenever the interactivity
954 * estimator recalculates.
956 static inline int normal_prio(struct task_struct
*p
)
960 if (task_has_dl_policy(p
))
961 prio
= MAX_DL_PRIO
-1;
962 else if (task_has_rt_policy(p
))
963 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
965 prio
= __normal_prio(p
);
970 * Calculate the current priority, i.e. the priority
971 * taken into account by the scheduler. This value might
972 * be boosted by RT tasks, or might be boosted by
973 * interactivity modifiers. Will be RT if the task got
974 * RT-boosted. If not then it returns p->normal_prio.
976 static int effective_prio(struct task_struct
*p
)
978 p
->normal_prio
= normal_prio(p
);
980 * If we are RT tasks or we were boosted to RT priority,
981 * keep the priority unchanged. Otherwise, update priority
982 * to the normal priority:
984 if (!rt_prio(p
->prio
))
985 return p
->normal_prio
;
990 * task_curr - is this task currently executing on a CPU?
991 * @p: the task in question.
993 * Return: 1 if the task is currently executing. 0 otherwise.
995 inline int task_curr(const struct task_struct
*p
)
997 return cpu_curr(task_cpu(p
)) == p
;
1001 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1002 * use the balance_callback list if you want balancing.
1004 * this means any call to check_class_changed() must be followed by a call to
1005 * balance_callback().
1007 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1008 const struct sched_class
*prev_class
,
1011 if (prev_class
!= p
->sched_class
) {
1012 if (prev_class
->switched_from
)
1013 prev_class
->switched_from(rq
, p
);
1015 p
->sched_class
->switched_to(rq
, p
);
1016 } else if (oldprio
!= p
->prio
|| dl_task(p
))
1017 p
->sched_class
->prio_changed(rq
, p
, oldprio
);
1020 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
1022 const struct sched_class
*class;
1024 if (p
->sched_class
== rq
->curr
->sched_class
) {
1025 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
1027 for_each_class(class) {
1028 if (class == rq
->curr
->sched_class
)
1030 if (class == p
->sched_class
) {
1038 * A queue event has occurred, and we're going to schedule. In
1039 * this case, we can save a useless back to back clock update.
1041 if (task_on_rq_queued(rq
->curr
) && test_tsk_need_resched(rq
->curr
))
1042 rq_clock_skip_update(rq
, true);
1047 * This is how migration works:
1049 * 1) we invoke migration_cpu_stop() on the target CPU using
1051 * 2) stopper starts to run (implicitly forcing the migrated thread
1053 * 3) it checks whether the migrated task is still in the wrong runqueue.
1054 * 4) if it's in the wrong runqueue then the migration thread removes
1055 * it and puts it into the right queue.
1056 * 5) stopper completes and stop_one_cpu() returns and the migration
1061 * move_queued_task - move a queued task to new rq.
1063 * Returns (locked) new rq. Old rq's lock is released.
1065 static struct rq
*move_queued_task(struct rq
*rq
, struct task_struct
*p
, int new_cpu
)
1067 lockdep_assert_held(&rq
->lock
);
1069 dequeue_task(rq
, p
, 0);
1070 p
->on_rq
= TASK_ON_RQ_MIGRATING
;
1071 set_task_cpu(p
, new_cpu
);
1072 raw_spin_unlock(&rq
->lock
);
1074 rq
= cpu_rq(new_cpu
);
1076 raw_spin_lock(&rq
->lock
);
1077 BUG_ON(task_cpu(p
) != new_cpu
);
1078 p
->on_rq
= TASK_ON_RQ_QUEUED
;
1079 enqueue_task(rq
, p
, 0);
1080 check_preempt_curr(rq
, p
, 0);
1085 struct migration_arg
{
1086 struct task_struct
*task
;
1091 * Move (not current) task off this cpu, onto dest cpu. We're doing
1092 * this because either it can't run here any more (set_cpus_allowed()
1093 * away from this CPU, or CPU going down), or because we're
1094 * attempting to rebalance this task on exec (sched_exec).
1096 * So we race with normal scheduler movements, but that's OK, as long
1097 * as the task is no longer on this CPU.
1099 static struct rq
*__migrate_task(struct rq
*rq
, struct task_struct
*p
, int dest_cpu
)
1101 if (unlikely(!cpu_active(dest_cpu
)))
1104 /* Affinity changed (again). */
1105 if (!cpumask_test_cpu(dest_cpu
, tsk_cpus_allowed(p
)))
1108 rq
= move_queued_task(rq
, p
, dest_cpu
);
1114 * migration_cpu_stop - this will be executed by a highprio stopper thread
1115 * and performs thread migration by bumping thread off CPU then
1116 * 'pushing' onto another runqueue.
1118 static int migration_cpu_stop(void *data
)
1120 struct migration_arg
*arg
= data
;
1121 struct task_struct
*p
= arg
->task
;
1122 struct rq
*rq
= this_rq();
1125 * The original target cpu might have gone down and we might
1126 * be on another cpu but it doesn't matter.
1128 local_irq_disable();
1130 * We need to explicitly wake pending tasks before running
1131 * __migrate_task() such that we will not miss enforcing cpus_allowed
1132 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1134 sched_ttwu_pending();
1136 raw_spin_lock(&p
->pi_lock
);
1137 raw_spin_lock(&rq
->lock
);
1139 * If task_rq(p) != rq, it cannot be migrated here, because we're
1140 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1141 * we're holding p->pi_lock.
1143 if (task_rq(p
) == rq
&& task_on_rq_queued(p
))
1144 rq
= __migrate_task(rq
, p
, arg
->dest_cpu
);
1145 raw_spin_unlock(&rq
->lock
);
1146 raw_spin_unlock(&p
->pi_lock
);
1153 * sched_class::set_cpus_allowed must do the below, but is not required to
1154 * actually call this function.
1156 void set_cpus_allowed_common(struct task_struct
*p
, const struct cpumask
*new_mask
)
1158 cpumask_copy(&p
->cpus_allowed
, new_mask
);
1159 p
->nr_cpus_allowed
= cpumask_weight(new_mask
);
1162 void do_set_cpus_allowed(struct task_struct
*p
, const struct cpumask
*new_mask
)
1164 struct rq
*rq
= task_rq(p
);
1165 bool queued
, running
;
1167 lockdep_assert_held(&p
->pi_lock
);
1169 queued
= task_on_rq_queued(p
);
1170 running
= task_current(rq
, p
);
1174 * Because __kthread_bind() calls this on blocked tasks without
1177 lockdep_assert_held(&rq
->lock
);
1178 dequeue_task(rq
, p
, 0);
1181 put_prev_task(rq
, p
);
1183 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
1186 p
->sched_class
->set_curr_task(rq
);
1188 enqueue_task(rq
, p
, 0);
1192 * Change a given task's CPU affinity. Migrate the thread to a
1193 * proper CPU and schedule it away if the CPU it's executing on
1194 * is removed from the allowed bitmask.
1196 * NOTE: the caller must have a valid reference to the task, the
1197 * task must not exit() & deallocate itself prematurely. The
1198 * call is not atomic; no spinlocks may be held.
1200 static int __set_cpus_allowed_ptr(struct task_struct
*p
,
1201 const struct cpumask
*new_mask
, bool check
)
1203 unsigned long flags
;
1205 unsigned int dest_cpu
;
1208 rq
= task_rq_lock(p
, &flags
);
1211 * Must re-check here, to close a race against __kthread_bind(),
1212 * sched_setaffinity() is not guaranteed to observe the flag.
1214 if (check
&& (p
->flags
& PF_NO_SETAFFINITY
)) {
1219 if (cpumask_equal(&p
->cpus_allowed
, new_mask
))
1222 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
1227 do_set_cpus_allowed(p
, new_mask
);
1229 /* Can the task run on the task's current CPU? If so, we're done */
1230 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
1233 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
1234 if (task_running(rq
, p
) || p
->state
== TASK_WAKING
) {
1235 struct migration_arg arg
= { p
, dest_cpu
};
1236 /* Need help from migration thread: drop lock and wait. */
1237 task_rq_unlock(rq
, p
, &flags
);
1238 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
1239 tlb_migrate_finish(p
->mm
);
1241 } else if (task_on_rq_queued(p
)) {
1243 * OK, since we're going to drop the lock immediately
1244 * afterwards anyway.
1246 lockdep_unpin_lock(&rq
->lock
);
1247 rq
= move_queued_task(rq
, p
, dest_cpu
);
1248 lockdep_pin_lock(&rq
->lock
);
1251 task_rq_unlock(rq
, p
, &flags
);
1256 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
1258 return __set_cpus_allowed_ptr(p
, new_mask
, false);
1260 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
1262 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1264 #ifdef CONFIG_SCHED_DEBUG
1266 * We should never call set_task_cpu() on a blocked task,
1267 * ttwu() will sort out the placement.
1269 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
1272 #ifdef CONFIG_LOCKDEP
1274 * The caller should hold either p->pi_lock or rq->lock, when changing
1275 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1277 * sched_move_task() holds both and thus holding either pins the cgroup,
1280 * Furthermore, all task_rq users should acquire both locks, see
1283 WARN_ON_ONCE(debug_locks
&& !(lockdep_is_held(&p
->pi_lock
) ||
1284 lockdep_is_held(&task_rq(p
)->lock
)));
1288 trace_sched_migrate_task(p
, new_cpu
);
1290 if (task_cpu(p
) != new_cpu
) {
1291 if (p
->sched_class
->migrate_task_rq
)
1292 p
->sched_class
->migrate_task_rq(p
, new_cpu
);
1293 p
->se
.nr_migrations
++;
1294 perf_event_task_migrate(p
);
1297 __set_task_cpu(p
, new_cpu
);
1300 static void __migrate_swap_task(struct task_struct
*p
, int cpu
)
1302 if (task_on_rq_queued(p
)) {
1303 struct rq
*src_rq
, *dst_rq
;
1305 src_rq
= task_rq(p
);
1306 dst_rq
= cpu_rq(cpu
);
1308 deactivate_task(src_rq
, p
, 0);
1309 set_task_cpu(p
, cpu
);
1310 activate_task(dst_rq
, p
, 0);
1311 check_preempt_curr(dst_rq
, p
, 0);
1314 * Task isn't running anymore; make it appear like we migrated
1315 * it before it went to sleep. This means on wakeup we make the
1316 * previous cpu our targer instead of where it really is.
1322 struct migration_swap_arg
{
1323 struct task_struct
*src_task
, *dst_task
;
1324 int src_cpu
, dst_cpu
;
1327 static int migrate_swap_stop(void *data
)
1329 struct migration_swap_arg
*arg
= data
;
1330 struct rq
*src_rq
, *dst_rq
;
1333 src_rq
= cpu_rq(arg
->src_cpu
);
1334 dst_rq
= cpu_rq(arg
->dst_cpu
);
1336 double_raw_lock(&arg
->src_task
->pi_lock
,
1337 &arg
->dst_task
->pi_lock
);
1338 double_rq_lock(src_rq
, dst_rq
);
1339 if (task_cpu(arg
->dst_task
) != arg
->dst_cpu
)
1342 if (task_cpu(arg
->src_task
) != arg
->src_cpu
)
1345 if (!cpumask_test_cpu(arg
->dst_cpu
, tsk_cpus_allowed(arg
->src_task
)))
1348 if (!cpumask_test_cpu(arg
->src_cpu
, tsk_cpus_allowed(arg
->dst_task
)))
1351 __migrate_swap_task(arg
->src_task
, arg
->dst_cpu
);
1352 __migrate_swap_task(arg
->dst_task
, arg
->src_cpu
);
1357 double_rq_unlock(src_rq
, dst_rq
);
1358 raw_spin_unlock(&arg
->dst_task
->pi_lock
);
1359 raw_spin_unlock(&arg
->src_task
->pi_lock
);
1365 * Cross migrate two tasks
1367 int migrate_swap(struct task_struct
*cur
, struct task_struct
*p
)
1369 struct migration_swap_arg arg
;
1372 arg
= (struct migration_swap_arg
){
1374 .src_cpu
= task_cpu(cur
),
1376 .dst_cpu
= task_cpu(p
),
1379 if (arg
.src_cpu
== arg
.dst_cpu
)
1383 * These three tests are all lockless; this is OK since all of them
1384 * will be re-checked with proper locks held further down the line.
1386 if (!cpu_active(arg
.src_cpu
) || !cpu_active(arg
.dst_cpu
))
1389 if (!cpumask_test_cpu(arg
.dst_cpu
, tsk_cpus_allowed(arg
.src_task
)))
1392 if (!cpumask_test_cpu(arg
.src_cpu
, tsk_cpus_allowed(arg
.dst_task
)))
1395 trace_sched_swap_numa(cur
, arg
.src_cpu
, p
, arg
.dst_cpu
);
1396 ret
= stop_two_cpus(arg
.dst_cpu
, arg
.src_cpu
, migrate_swap_stop
, &arg
);
1403 * wait_task_inactive - wait for a thread to unschedule.
1405 * If @match_state is nonzero, it's the @p->state value just checked and
1406 * not expected to change. If it changes, i.e. @p might have woken up,
1407 * then return zero. When we succeed in waiting for @p to be off its CPU,
1408 * we return a positive number (its total switch count). If a second call
1409 * a short while later returns the same number, the caller can be sure that
1410 * @p has remained unscheduled the whole time.
1412 * The caller must ensure that the task *will* unschedule sometime soon,
1413 * else this function might spin for a *long* time. This function can't
1414 * be called with interrupts off, or it may introduce deadlock with
1415 * smp_call_function() if an IPI is sent by the same process we are
1416 * waiting to become inactive.
1418 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
1420 unsigned long flags
;
1421 int running
, queued
;
1427 * We do the initial early heuristics without holding
1428 * any task-queue locks at all. We'll only try to get
1429 * the runqueue lock when things look like they will
1435 * If the task is actively running on another CPU
1436 * still, just relax and busy-wait without holding
1439 * NOTE! Since we don't hold any locks, it's not
1440 * even sure that "rq" stays as the right runqueue!
1441 * But we don't care, since "task_running()" will
1442 * return false if the runqueue has changed and p
1443 * is actually now running somewhere else!
1445 while (task_running(rq
, p
)) {
1446 if (match_state
&& unlikely(p
->state
!= match_state
))
1452 * Ok, time to look more closely! We need the rq
1453 * lock now, to be *sure*. If we're wrong, we'll
1454 * just go back and repeat.
1456 rq
= task_rq_lock(p
, &flags
);
1457 trace_sched_wait_task(p
);
1458 running
= task_running(rq
, p
);
1459 queued
= task_on_rq_queued(p
);
1461 if (!match_state
|| p
->state
== match_state
)
1462 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
1463 task_rq_unlock(rq
, p
, &flags
);
1466 * If it changed from the expected state, bail out now.
1468 if (unlikely(!ncsw
))
1472 * Was it really running after all now that we
1473 * checked with the proper locks actually held?
1475 * Oops. Go back and try again..
1477 if (unlikely(running
)) {
1483 * It's not enough that it's not actively running,
1484 * it must be off the runqueue _entirely_, and not
1487 * So if it was still runnable (but just not actively
1488 * running right now), it's preempted, and we should
1489 * yield - it could be a while.
1491 if (unlikely(queued
)) {
1492 ktime_t to
= ktime_set(0, NSEC_PER_SEC
/HZ
);
1494 set_current_state(TASK_UNINTERRUPTIBLE
);
1495 schedule_hrtimeout(&to
, HRTIMER_MODE_REL
);
1500 * Ahh, all good. It wasn't running, and it wasn't
1501 * runnable, which means that it will never become
1502 * running in the future either. We're all done!
1511 * kick_process - kick a running thread to enter/exit the kernel
1512 * @p: the to-be-kicked thread
1514 * Cause a process which is running on another CPU to enter
1515 * kernel-mode, without any delay. (to get signals handled.)
1517 * NOTE: this function doesn't have to take the runqueue lock,
1518 * because all it wants to ensure is that the remote task enters
1519 * the kernel. If the IPI races and the task has been migrated
1520 * to another CPU then no harm is done and the purpose has been
1523 void kick_process(struct task_struct
*p
)
1529 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1530 smp_send_reschedule(cpu
);
1533 EXPORT_SYMBOL_GPL(kick_process
);
1536 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1538 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
1540 int nid
= cpu_to_node(cpu
);
1541 const struct cpumask
*nodemask
= NULL
;
1542 enum { cpuset
, possible
, fail
} state
= cpuset
;
1546 * If the node that the cpu is on has been offlined, cpu_to_node()
1547 * will return -1. There is no cpu on the node, and we should
1548 * select the cpu on the other node.
1551 nodemask
= cpumask_of_node(nid
);
1553 /* Look for allowed, online CPU in same node. */
1554 for_each_cpu(dest_cpu
, nodemask
) {
1555 if (!cpu_online(dest_cpu
))
1557 if (!cpu_active(dest_cpu
))
1559 if (cpumask_test_cpu(dest_cpu
, tsk_cpus_allowed(p
)))
1565 /* Any allowed, online CPU? */
1566 for_each_cpu(dest_cpu
, tsk_cpus_allowed(p
)) {
1567 if (!cpu_online(dest_cpu
))
1569 if (!cpu_active(dest_cpu
))
1576 /* No more Mr. Nice Guy. */
1577 cpuset_cpus_allowed_fallback(p
);
1582 do_set_cpus_allowed(p
, cpu_possible_mask
);
1593 if (state
!= cpuset
) {
1595 * Don't tell them about moving exiting tasks or
1596 * kernel threads (both mm NULL), since they never
1599 if (p
->mm
&& printk_ratelimit()) {
1600 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1601 task_pid_nr(p
), p
->comm
, cpu
);
1609 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1612 int select_task_rq(struct task_struct
*p
, int cpu
, int sd_flags
, int wake_flags
)
1614 lockdep_assert_held(&p
->pi_lock
);
1616 if (p
->nr_cpus_allowed
> 1)
1617 cpu
= p
->sched_class
->select_task_rq(p
, cpu
, sd_flags
, wake_flags
);
1620 * In order not to call set_task_cpu() on a blocking task we need
1621 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1624 * Since this is common to all placement strategies, this lives here.
1626 * [ this allows ->select_task() to simply return task_cpu(p) and
1627 * not worry about this generic constraint ]
1629 if (unlikely(!cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)) ||
1631 cpu
= select_fallback_rq(task_cpu(p
), p
);
1636 static void update_avg(u64
*avg
, u64 sample
)
1638 s64 diff
= sample
- *avg
;
1644 static inline int __set_cpus_allowed_ptr(struct task_struct
*p
,
1645 const struct cpumask
*new_mask
, bool check
)
1647 return set_cpus_allowed_ptr(p
, new_mask
);
1650 #endif /* CONFIG_SMP */
1653 ttwu_stat(struct task_struct
*p
, int cpu
, int wake_flags
)
1655 #ifdef CONFIG_SCHEDSTATS
1656 struct rq
*rq
= this_rq();
1659 int this_cpu
= smp_processor_id();
1661 if (cpu
== this_cpu
) {
1662 schedstat_inc(rq
, ttwu_local
);
1663 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
1665 struct sched_domain
*sd
;
1667 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
1669 for_each_domain(this_cpu
, sd
) {
1670 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
1671 schedstat_inc(sd
, ttwu_wake_remote
);
1678 if (wake_flags
& WF_MIGRATED
)
1679 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
1681 #endif /* CONFIG_SMP */
1683 schedstat_inc(rq
, ttwu_count
);
1684 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
1686 if (wake_flags
& WF_SYNC
)
1687 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
1689 #endif /* CONFIG_SCHEDSTATS */
1692 static void ttwu_activate(struct rq
*rq
, struct task_struct
*p
, int en_flags
)
1694 activate_task(rq
, p
, en_flags
);
1695 p
->on_rq
= TASK_ON_RQ_QUEUED
;
1697 /* if a worker is waking up, notify workqueue */
1698 if (p
->flags
& PF_WQ_WORKER
)
1699 wq_worker_waking_up(p
, cpu_of(rq
));
1703 * Mark the task runnable and perform wakeup-preemption.
1706 ttwu_do_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1708 check_preempt_curr(rq
, p
, wake_flags
);
1709 p
->state
= TASK_RUNNING
;
1710 trace_sched_wakeup(p
);
1713 if (p
->sched_class
->task_woken
) {
1715 * Our task @p is fully woken up and running; so its safe to
1716 * drop the rq->lock, hereafter rq is only used for statistics.
1718 lockdep_unpin_lock(&rq
->lock
);
1719 p
->sched_class
->task_woken(rq
, p
);
1720 lockdep_pin_lock(&rq
->lock
);
1723 if (rq
->idle_stamp
) {
1724 u64 delta
= rq_clock(rq
) - rq
->idle_stamp
;
1725 u64 max
= 2*rq
->max_idle_balance_cost
;
1727 update_avg(&rq
->avg_idle
, delta
);
1729 if (rq
->avg_idle
> max
)
1738 ttwu_do_activate(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1740 lockdep_assert_held(&rq
->lock
);
1743 if (p
->sched_contributes_to_load
)
1744 rq
->nr_uninterruptible
--;
1747 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
| ENQUEUE_WAKING
);
1748 ttwu_do_wakeup(rq
, p
, wake_flags
);
1752 * Called in case the task @p isn't fully descheduled from its runqueue,
1753 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1754 * since all we need to do is flip p->state to TASK_RUNNING, since
1755 * the task is still ->on_rq.
1757 static int ttwu_remote(struct task_struct
*p
, int wake_flags
)
1762 rq
= __task_rq_lock(p
);
1763 if (task_on_rq_queued(p
)) {
1764 /* check_preempt_curr() may use rq clock */
1765 update_rq_clock(rq
);
1766 ttwu_do_wakeup(rq
, p
, wake_flags
);
1769 __task_rq_unlock(rq
);
1775 void sched_ttwu_pending(void)
1777 struct rq
*rq
= this_rq();
1778 struct llist_node
*llist
= llist_del_all(&rq
->wake_list
);
1779 struct task_struct
*p
;
1780 unsigned long flags
;
1785 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1786 lockdep_pin_lock(&rq
->lock
);
1789 p
= llist_entry(llist
, struct task_struct
, wake_entry
);
1790 llist
= llist_next(llist
);
1791 ttwu_do_activate(rq
, p
, 0);
1794 lockdep_unpin_lock(&rq
->lock
);
1795 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1798 void scheduler_ipi(void)
1801 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1802 * TIF_NEED_RESCHED remotely (for the first time) will also send
1805 preempt_fold_need_resched();
1807 if (llist_empty(&this_rq()->wake_list
) && !got_nohz_idle_kick())
1811 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1812 * traditionally all their work was done from the interrupt return
1813 * path. Now that we actually do some work, we need to make sure
1816 * Some archs already do call them, luckily irq_enter/exit nest
1819 * Arguably we should visit all archs and update all handlers,
1820 * however a fair share of IPIs are still resched only so this would
1821 * somewhat pessimize the simple resched case.
1824 sched_ttwu_pending();
1827 * Check if someone kicked us for doing the nohz idle load balance.
1829 if (unlikely(got_nohz_idle_kick())) {
1830 this_rq()->idle_balance
= 1;
1831 raise_softirq_irqoff(SCHED_SOFTIRQ
);
1836 static void ttwu_queue_remote(struct task_struct
*p
, int cpu
)
1838 struct rq
*rq
= cpu_rq(cpu
);
1840 if (llist_add(&p
->wake_entry
, &cpu_rq(cpu
)->wake_list
)) {
1841 if (!set_nr_if_polling(rq
->idle
))
1842 smp_send_reschedule(cpu
);
1844 trace_sched_wake_idle_without_ipi(cpu
);
1848 void wake_up_if_idle(int cpu
)
1850 struct rq
*rq
= cpu_rq(cpu
);
1851 unsigned long flags
;
1855 if (!is_idle_task(rcu_dereference(rq
->curr
)))
1858 if (set_nr_if_polling(rq
->idle
)) {
1859 trace_sched_wake_idle_without_ipi(cpu
);
1861 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1862 if (is_idle_task(rq
->curr
))
1863 smp_send_reschedule(cpu
);
1864 /* Else cpu is not in idle, do nothing here */
1865 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1872 bool cpus_share_cache(int this_cpu
, int that_cpu
)
1874 return per_cpu(sd_llc_id
, this_cpu
) == per_cpu(sd_llc_id
, that_cpu
);
1876 #endif /* CONFIG_SMP */
1878 static void ttwu_queue(struct task_struct
*p
, int cpu
)
1880 struct rq
*rq
= cpu_rq(cpu
);
1882 #if defined(CONFIG_SMP)
1883 if (sched_feat(TTWU_QUEUE
) && !cpus_share_cache(smp_processor_id(), cpu
)) {
1884 sched_clock_cpu(cpu
); /* sync clocks x-cpu */
1885 ttwu_queue_remote(p
, cpu
);
1890 raw_spin_lock(&rq
->lock
);
1891 lockdep_pin_lock(&rq
->lock
);
1892 ttwu_do_activate(rq
, p
, 0);
1893 lockdep_unpin_lock(&rq
->lock
);
1894 raw_spin_unlock(&rq
->lock
);
1898 * try_to_wake_up - wake up a thread
1899 * @p: the thread to be awakened
1900 * @state: the mask of task states that can be woken
1901 * @wake_flags: wake modifier flags (WF_*)
1903 * Put it on the run-queue if it's not already there. The "current"
1904 * thread is always on the run-queue (except when the actual
1905 * re-schedule is in progress), and as such you're allowed to do
1906 * the simpler "current->state = TASK_RUNNING" to mark yourself
1907 * runnable without the overhead of this.
1909 * Return: %true if @p was woken up, %false if it was already running.
1910 * or @state didn't match @p's state.
1913 try_to_wake_up(struct task_struct
*p
, unsigned int state
, int wake_flags
)
1915 unsigned long flags
;
1916 int cpu
, success
= 0;
1919 * If we are going to wake up a thread waiting for CONDITION we
1920 * need to ensure that CONDITION=1 done by the caller can not be
1921 * reordered with p->state check below. This pairs with mb() in
1922 * set_current_state() the waiting thread does.
1924 smp_mb__before_spinlock();
1925 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
1926 if (!(p
->state
& state
))
1929 trace_sched_waking(p
);
1931 success
= 1; /* we're going to change ->state */
1934 if (p
->on_rq
&& ttwu_remote(p
, wake_flags
))
1939 * If the owning (remote) cpu is still in the middle of schedule() with
1940 * this task as prev, wait until its done referencing the task.
1945 * Pairs with the smp_wmb() in finish_lock_switch().
1949 p
->sched_contributes_to_load
= !!task_contributes_to_load(p
);
1950 p
->state
= TASK_WAKING
;
1952 if (p
->sched_class
->task_waking
)
1953 p
->sched_class
->task_waking(p
);
1955 cpu
= select_task_rq(p
, p
->wake_cpu
, SD_BALANCE_WAKE
, wake_flags
);
1956 if (task_cpu(p
) != cpu
) {
1957 wake_flags
|= WF_MIGRATED
;
1958 set_task_cpu(p
, cpu
);
1960 #endif /* CONFIG_SMP */
1964 ttwu_stat(p
, cpu
, wake_flags
);
1966 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
1972 * try_to_wake_up_local - try to wake up a local task with rq lock held
1973 * @p: the thread to be awakened
1975 * Put @p on the run-queue if it's not already there. The caller must
1976 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1979 static void try_to_wake_up_local(struct task_struct
*p
)
1981 struct rq
*rq
= task_rq(p
);
1983 if (WARN_ON_ONCE(rq
!= this_rq()) ||
1984 WARN_ON_ONCE(p
== current
))
1987 lockdep_assert_held(&rq
->lock
);
1989 if (!raw_spin_trylock(&p
->pi_lock
)) {
1991 * This is OK, because current is on_cpu, which avoids it being
1992 * picked for load-balance and preemption/IRQs are still
1993 * disabled avoiding further scheduler activity on it and we've
1994 * not yet picked a replacement task.
1996 lockdep_unpin_lock(&rq
->lock
);
1997 raw_spin_unlock(&rq
->lock
);
1998 raw_spin_lock(&p
->pi_lock
);
1999 raw_spin_lock(&rq
->lock
);
2000 lockdep_pin_lock(&rq
->lock
);
2003 if (!(p
->state
& TASK_NORMAL
))
2006 trace_sched_waking(p
);
2008 if (!task_on_rq_queued(p
))
2009 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
2011 ttwu_do_wakeup(rq
, p
, 0);
2012 ttwu_stat(p
, smp_processor_id(), 0);
2014 raw_spin_unlock(&p
->pi_lock
);
2018 * wake_up_process - Wake up a specific process
2019 * @p: The process to be woken up.
2021 * Attempt to wake up the nominated process and move it to the set of runnable
2024 * Return: 1 if the process was woken up, 0 if it was already running.
2026 * It may be assumed that this function implies a write memory barrier before
2027 * changing the task state if and only if any tasks are woken up.
2029 int wake_up_process(struct task_struct
*p
)
2031 WARN_ON(task_is_stopped_or_traced(p
));
2032 return try_to_wake_up(p
, TASK_NORMAL
, 0);
2034 EXPORT_SYMBOL(wake_up_process
);
2036 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2038 return try_to_wake_up(p
, state
, 0);
2042 * This function clears the sched_dl_entity static params.
2044 void __dl_clear_params(struct task_struct
*p
)
2046 struct sched_dl_entity
*dl_se
= &p
->dl
;
2048 dl_se
->dl_runtime
= 0;
2049 dl_se
->dl_deadline
= 0;
2050 dl_se
->dl_period
= 0;
2054 dl_se
->dl_throttled
= 0;
2056 dl_se
->dl_yielded
= 0;
2060 * Perform scheduler related setup for a newly forked process p.
2061 * p is forked by current.
2063 * __sched_fork() is basic setup used by init_idle() too:
2065 static void __sched_fork(unsigned long clone_flags
, struct task_struct
*p
)
2070 p
->se
.exec_start
= 0;
2071 p
->se
.sum_exec_runtime
= 0;
2072 p
->se
.prev_sum_exec_runtime
= 0;
2073 p
->se
.nr_migrations
= 0;
2075 INIT_LIST_HEAD(&p
->se
.group_node
);
2077 #ifdef CONFIG_SCHEDSTATS
2078 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2081 RB_CLEAR_NODE(&p
->dl
.rb_node
);
2082 init_dl_task_timer(&p
->dl
);
2083 __dl_clear_params(p
);
2085 INIT_LIST_HEAD(&p
->rt
.run_list
);
2087 #ifdef CONFIG_PREEMPT_NOTIFIERS
2088 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2091 #ifdef CONFIG_NUMA_BALANCING
2092 if (p
->mm
&& atomic_read(&p
->mm
->mm_users
) == 1) {
2093 p
->mm
->numa_next_scan
= jiffies
+ msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
2094 p
->mm
->numa_scan_seq
= 0;
2097 if (clone_flags
& CLONE_VM
)
2098 p
->numa_preferred_nid
= current
->numa_preferred_nid
;
2100 p
->numa_preferred_nid
= -1;
2102 p
->node_stamp
= 0ULL;
2103 p
->numa_scan_seq
= p
->mm
? p
->mm
->numa_scan_seq
: 0;
2104 p
->numa_scan_period
= sysctl_numa_balancing_scan_delay
;
2105 p
->numa_work
.next
= &p
->numa_work
;
2106 p
->numa_faults
= NULL
;
2107 p
->last_task_numa_placement
= 0;
2108 p
->last_sum_exec_runtime
= 0;
2110 p
->numa_group
= NULL
;
2111 #endif /* CONFIG_NUMA_BALANCING */
2114 #ifdef CONFIG_NUMA_BALANCING
2115 #ifdef CONFIG_SCHED_DEBUG
2116 void set_numabalancing_state(bool enabled
)
2119 sched_feat_set("NUMA");
2121 sched_feat_set("NO_NUMA");
2124 __read_mostly
bool numabalancing_enabled
;
2126 void set_numabalancing_state(bool enabled
)
2128 numabalancing_enabled
= enabled
;
2130 #endif /* CONFIG_SCHED_DEBUG */
2132 #ifdef CONFIG_PROC_SYSCTL
2133 int sysctl_numa_balancing(struct ctl_table
*table
, int write
,
2134 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2138 int state
= numabalancing_enabled
;
2140 if (write
&& !capable(CAP_SYS_ADMIN
))
2145 err
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
2149 set_numabalancing_state(state
);
2156 * fork()/clone()-time setup:
2158 int sched_fork(unsigned long clone_flags
, struct task_struct
*p
)
2160 unsigned long flags
;
2161 int cpu
= get_cpu();
2163 __sched_fork(clone_flags
, p
);
2165 * We mark the process as running here. This guarantees that
2166 * nobody will actually run it, and a signal or other external
2167 * event cannot wake it up and insert it on the runqueue either.
2169 p
->state
= TASK_RUNNING
;
2172 * Make sure we do not leak PI boosting priority to the child.
2174 p
->prio
= current
->normal_prio
;
2177 * Revert to default priority/policy on fork if requested.
2179 if (unlikely(p
->sched_reset_on_fork
)) {
2180 if (task_has_dl_policy(p
) || task_has_rt_policy(p
)) {
2181 p
->policy
= SCHED_NORMAL
;
2182 p
->static_prio
= NICE_TO_PRIO(0);
2184 } else if (PRIO_TO_NICE(p
->static_prio
) < 0)
2185 p
->static_prio
= NICE_TO_PRIO(0);
2187 p
->prio
= p
->normal_prio
= __normal_prio(p
);
2191 * We don't need the reset flag anymore after the fork. It has
2192 * fulfilled its duty:
2194 p
->sched_reset_on_fork
= 0;
2197 if (dl_prio(p
->prio
)) {
2200 } else if (rt_prio(p
->prio
)) {
2201 p
->sched_class
= &rt_sched_class
;
2203 p
->sched_class
= &fair_sched_class
;
2206 if (p
->sched_class
->task_fork
)
2207 p
->sched_class
->task_fork(p
);
2210 * The child is not yet in the pid-hash so no cgroup attach races,
2211 * and the cgroup is pinned to this child due to cgroup_fork()
2212 * is ran before sched_fork().
2214 * Silence PROVE_RCU.
2216 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2217 set_task_cpu(p
, cpu
);
2218 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2220 #ifdef CONFIG_SCHED_INFO
2221 if (likely(sched_info_on()))
2222 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2224 #if defined(CONFIG_SMP)
2227 init_task_preempt_count(p
);
2229 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2230 RB_CLEAR_NODE(&p
->pushable_dl_tasks
);
2237 unsigned long to_ratio(u64 period
, u64 runtime
)
2239 if (runtime
== RUNTIME_INF
)
2243 * Doing this here saves a lot of checks in all
2244 * the calling paths, and returning zero seems
2245 * safe for them anyway.
2250 return div64_u64(runtime
<< 20, period
);
2254 inline struct dl_bw
*dl_bw_of(int i
)
2256 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2257 "sched RCU must be held");
2258 return &cpu_rq(i
)->rd
->dl_bw
;
2261 static inline int dl_bw_cpus(int i
)
2263 struct root_domain
*rd
= cpu_rq(i
)->rd
;
2266 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2267 "sched RCU must be held");
2268 for_each_cpu_and(i
, rd
->span
, cpu_active_mask
)
2274 inline struct dl_bw
*dl_bw_of(int i
)
2276 return &cpu_rq(i
)->dl
.dl_bw
;
2279 static inline int dl_bw_cpus(int i
)
2286 * We must be sure that accepting a new task (or allowing changing the
2287 * parameters of an existing one) is consistent with the bandwidth
2288 * constraints. If yes, this function also accordingly updates the currently
2289 * allocated bandwidth to reflect the new situation.
2291 * This function is called while holding p's rq->lock.
2293 * XXX we should delay bw change until the task's 0-lag point, see
2296 static int dl_overflow(struct task_struct
*p
, int policy
,
2297 const struct sched_attr
*attr
)
2300 struct dl_bw
*dl_b
= dl_bw_of(task_cpu(p
));
2301 u64 period
= attr
->sched_period
?: attr
->sched_deadline
;
2302 u64 runtime
= attr
->sched_runtime
;
2303 u64 new_bw
= dl_policy(policy
) ? to_ratio(period
, runtime
) : 0;
2306 if (new_bw
== p
->dl
.dl_bw
)
2310 * Either if a task, enters, leave, or stays -deadline but changes
2311 * its parameters, we may need to update accordingly the total
2312 * allocated bandwidth of the container.
2314 raw_spin_lock(&dl_b
->lock
);
2315 cpus
= dl_bw_cpus(task_cpu(p
));
2316 if (dl_policy(policy
) && !task_has_dl_policy(p
) &&
2317 !__dl_overflow(dl_b
, cpus
, 0, new_bw
)) {
2318 __dl_add(dl_b
, new_bw
);
2320 } else if (dl_policy(policy
) && task_has_dl_policy(p
) &&
2321 !__dl_overflow(dl_b
, cpus
, p
->dl
.dl_bw
, new_bw
)) {
2322 __dl_clear(dl_b
, p
->dl
.dl_bw
);
2323 __dl_add(dl_b
, new_bw
);
2325 } else if (!dl_policy(policy
) && task_has_dl_policy(p
)) {
2326 __dl_clear(dl_b
, p
->dl
.dl_bw
);
2329 raw_spin_unlock(&dl_b
->lock
);
2334 extern void init_dl_bw(struct dl_bw
*dl_b
);
2337 * wake_up_new_task - wake up a newly created task for the first time.
2339 * This function will do some initial scheduler statistics housekeeping
2340 * that must be done for every newly created context, then puts the task
2341 * on the runqueue and wakes it.
2343 void wake_up_new_task(struct task_struct
*p
)
2345 unsigned long flags
;
2348 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2351 * Fork balancing, do it here and not earlier because:
2352 * - cpus_allowed can change in the fork path
2353 * - any previously selected cpu might disappear through hotplug
2355 set_task_cpu(p
, select_task_rq(p
, task_cpu(p
), SD_BALANCE_FORK
, 0));
2358 /* Initialize new task's runnable average */
2359 init_entity_runnable_average(&p
->se
);
2360 rq
= __task_rq_lock(p
);
2361 activate_task(rq
, p
, 0);
2362 p
->on_rq
= TASK_ON_RQ_QUEUED
;
2363 trace_sched_wakeup_new(p
);
2364 check_preempt_curr(rq
, p
, WF_FORK
);
2366 if (p
->sched_class
->task_woken
)
2367 p
->sched_class
->task_woken(rq
, p
);
2369 task_rq_unlock(rq
, p
, &flags
);
2372 #ifdef CONFIG_PREEMPT_NOTIFIERS
2374 static struct static_key preempt_notifier_key
= STATIC_KEY_INIT_FALSE
;
2376 void preempt_notifier_inc(void)
2378 static_key_slow_inc(&preempt_notifier_key
);
2380 EXPORT_SYMBOL_GPL(preempt_notifier_inc
);
2382 void preempt_notifier_dec(void)
2384 static_key_slow_dec(&preempt_notifier_key
);
2386 EXPORT_SYMBOL_GPL(preempt_notifier_dec
);
2389 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2390 * @notifier: notifier struct to register
2392 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2394 if (!static_key_false(&preempt_notifier_key
))
2395 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2397 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2399 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2402 * preempt_notifier_unregister - no longer interested in preemption notifications
2403 * @notifier: notifier struct to unregister
2405 * This is *not* safe to call from within a preemption notifier.
2407 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2409 hlist_del(¬ifier
->link
);
2411 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2413 static void __fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2415 struct preempt_notifier
*notifier
;
2417 hlist_for_each_entry(notifier
, &curr
->preempt_notifiers
, link
)
2418 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2421 static __always_inline
void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2423 if (static_key_false(&preempt_notifier_key
))
2424 __fire_sched_in_preempt_notifiers(curr
);
2428 __fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2429 struct task_struct
*next
)
2431 struct preempt_notifier
*notifier
;
2433 hlist_for_each_entry(notifier
, &curr
->preempt_notifiers
, link
)
2434 notifier
->ops
->sched_out(notifier
, next
);
2437 static __always_inline
void
2438 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2439 struct task_struct
*next
)
2441 if (static_key_false(&preempt_notifier_key
))
2442 __fire_sched_out_preempt_notifiers(curr
, next
);
2445 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2447 static inline void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2452 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2453 struct task_struct
*next
)
2457 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2460 * prepare_task_switch - prepare to switch tasks
2461 * @rq: the runqueue preparing to switch
2462 * @prev: the current task that is being switched out
2463 * @next: the task we are going to switch to.
2465 * This is called with the rq lock held and interrupts off. It must
2466 * be paired with a subsequent finish_task_switch after the context
2469 * prepare_task_switch sets up locking and calls architecture specific
2473 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2474 struct task_struct
*next
)
2476 trace_sched_switch(prev
, next
);
2477 sched_info_switch(rq
, prev
, next
);
2478 perf_event_task_sched_out(prev
, next
);
2479 fire_sched_out_preempt_notifiers(prev
, next
);
2480 prepare_lock_switch(rq
, next
);
2481 prepare_arch_switch(next
);
2485 * finish_task_switch - clean up after a task-switch
2486 * @prev: the thread we just switched away from.
2488 * finish_task_switch must be called after the context switch, paired
2489 * with a prepare_task_switch call before the context switch.
2490 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2491 * and do any other architecture-specific cleanup actions.
2493 * Note that we may have delayed dropping an mm in context_switch(). If
2494 * so, we finish that here outside of the runqueue lock. (Doing it
2495 * with the lock held can cause deadlocks; see schedule() for
2498 * The context switch have flipped the stack from under us and restored the
2499 * local variables which were saved when this task called schedule() in the
2500 * past. prev == current is still correct but we need to recalculate this_rq
2501 * because prev may have moved to another CPU.
2503 static struct rq
*finish_task_switch(struct task_struct
*prev
)
2504 __releases(rq
->lock
)
2506 struct rq
*rq
= this_rq();
2507 struct mm_struct
*mm
= rq
->prev_mm
;
2513 * A task struct has one reference for the use as "current".
2514 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2515 * schedule one last time. The schedule call will never return, and
2516 * the scheduled task must drop that reference.
2517 * The test for TASK_DEAD must occur while the runqueue locks are
2518 * still held, otherwise prev could be scheduled on another cpu, die
2519 * there before we look at prev->state, and then the reference would
2521 * Manfred Spraul <manfred@colorfullife.com>
2523 prev_state
= prev
->state
;
2524 vtime_task_switch(prev
);
2525 perf_event_task_sched_in(prev
, current
);
2526 finish_lock_switch(rq
, prev
);
2527 finish_arch_post_lock_switch();
2529 fire_sched_in_preempt_notifiers(current
);
2532 if (unlikely(prev_state
== TASK_DEAD
)) {
2533 if (prev
->sched_class
->task_dead
)
2534 prev
->sched_class
->task_dead(prev
);
2537 * Remove function-return probe instances associated with this
2538 * task and put them back on the free list.
2540 kprobe_flush_task(prev
);
2541 put_task_struct(prev
);
2544 tick_nohz_task_switch();
2550 /* rq->lock is NOT held, but preemption is disabled */
2551 static void __balance_callback(struct rq
*rq
)
2553 struct callback_head
*head
, *next
;
2554 void (*func
)(struct rq
*rq
);
2555 unsigned long flags
;
2557 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2558 head
= rq
->balance_callback
;
2559 rq
->balance_callback
= NULL
;
2561 func
= (void (*)(struct rq
*))head
->func
;
2568 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2571 static inline void balance_callback(struct rq
*rq
)
2573 if (unlikely(rq
->balance_callback
))
2574 __balance_callback(rq
);
2579 static inline void balance_callback(struct rq
*rq
)
2586 * schedule_tail - first thing a freshly forked thread must call.
2587 * @prev: the thread we just switched away from.
2589 asmlinkage __visible
void schedule_tail(struct task_struct
*prev
)
2590 __releases(rq
->lock
)
2594 /* finish_task_switch() drops rq->lock and enables preemtion */
2596 rq
= finish_task_switch(prev
);
2597 balance_callback(rq
);
2600 if (current
->set_child_tid
)
2601 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2605 * context_switch - switch to the new MM and the new thread's register state.
2607 static inline struct rq
*
2608 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2609 struct task_struct
*next
)
2611 struct mm_struct
*mm
, *oldmm
;
2613 prepare_task_switch(rq
, prev
, next
);
2616 oldmm
= prev
->active_mm
;
2618 * For paravirt, this is coupled with an exit in switch_to to
2619 * combine the page table reload and the switch backend into
2622 arch_start_context_switch(prev
);
2625 next
->active_mm
= oldmm
;
2626 atomic_inc(&oldmm
->mm_count
);
2627 enter_lazy_tlb(oldmm
, next
);
2629 switch_mm(oldmm
, mm
, next
);
2632 prev
->active_mm
= NULL
;
2633 rq
->prev_mm
= oldmm
;
2636 * Since the runqueue lock will be released by the next
2637 * task (which is an invalid locking op but in the case
2638 * of the scheduler it's an obvious special-case), so we
2639 * do an early lockdep release here:
2641 lockdep_unpin_lock(&rq
->lock
);
2642 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2644 /* Here we just switch the register state and the stack. */
2645 switch_to(prev
, next
, prev
);
2648 return finish_task_switch(prev
);
2652 * nr_running and nr_context_switches:
2654 * externally visible scheduler statistics: current number of runnable
2655 * threads, total number of context switches performed since bootup.
2657 unsigned long nr_running(void)
2659 unsigned long i
, sum
= 0;
2661 for_each_online_cpu(i
)
2662 sum
+= cpu_rq(i
)->nr_running
;
2668 * Check if only the current task is running on the cpu.
2670 bool single_task_running(void)
2672 if (cpu_rq(smp_processor_id())->nr_running
== 1)
2677 EXPORT_SYMBOL(single_task_running
);
2679 unsigned long long nr_context_switches(void)
2682 unsigned long long sum
= 0;
2684 for_each_possible_cpu(i
)
2685 sum
+= cpu_rq(i
)->nr_switches
;
2690 unsigned long nr_iowait(void)
2692 unsigned long i
, sum
= 0;
2694 for_each_possible_cpu(i
)
2695 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2700 unsigned long nr_iowait_cpu(int cpu
)
2702 struct rq
*this = cpu_rq(cpu
);
2703 return atomic_read(&this->nr_iowait
);
2706 void get_iowait_load(unsigned long *nr_waiters
, unsigned long *load
)
2708 struct rq
*rq
= this_rq();
2709 *nr_waiters
= atomic_read(&rq
->nr_iowait
);
2710 *load
= rq
->load
.weight
;
2716 * sched_exec - execve() is a valuable balancing opportunity, because at
2717 * this point the task has the smallest effective memory and cache footprint.
2719 void sched_exec(void)
2721 struct task_struct
*p
= current
;
2722 unsigned long flags
;
2725 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2726 dest_cpu
= p
->sched_class
->select_task_rq(p
, task_cpu(p
), SD_BALANCE_EXEC
, 0);
2727 if (dest_cpu
== smp_processor_id())
2730 if (likely(cpu_active(dest_cpu
))) {
2731 struct migration_arg arg
= { p
, dest_cpu
};
2733 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2734 stop_one_cpu(task_cpu(p
), migration_cpu_stop
, &arg
);
2738 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2743 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
2744 DEFINE_PER_CPU(struct kernel_cpustat
, kernel_cpustat
);
2746 EXPORT_PER_CPU_SYMBOL(kstat
);
2747 EXPORT_PER_CPU_SYMBOL(kernel_cpustat
);
2750 * Return accounted runtime for the task.
2751 * In case the task is currently running, return the runtime plus current's
2752 * pending runtime that have not been accounted yet.
2754 unsigned long long task_sched_runtime(struct task_struct
*p
)
2756 unsigned long flags
;
2760 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2762 * 64-bit doesn't need locks to atomically read a 64bit value.
2763 * So we have a optimization chance when the task's delta_exec is 0.
2764 * Reading ->on_cpu is racy, but this is ok.
2766 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2767 * If we race with it entering cpu, unaccounted time is 0. This is
2768 * indistinguishable from the read occurring a few cycles earlier.
2769 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2770 * been accounted, so we're correct here as well.
2772 if (!p
->on_cpu
|| !task_on_rq_queued(p
))
2773 return p
->se
.sum_exec_runtime
;
2776 rq
= task_rq_lock(p
, &flags
);
2778 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2779 * project cycles that may never be accounted to this
2780 * thread, breaking clock_gettime().
2782 if (task_current(rq
, p
) && task_on_rq_queued(p
)) {
2783 update_rq_clock(rq
);
2784 p
->sched_class
->update_curr(rq
);
2786 ns
= p
->se
.sum_exec_runtime
;
2787 task_rq_unlock(rq
, p
, &flags
);
2793 * This function gets called by the timer code, with HZ frequency.
2794 * We call it with interrupts disabled.
2796 void scheduler_tick(void)
2798 int cpu
= smp_processor_id();
2799 struct rq
*rq
= cpu_rq(cpu
);
2800 struct task_struct
*curr
= rq
->curr
;
2804 raw_spin_lock(&rq
->lock
);
2805 update_rq_clock(rq
);
2806 curr
->sched_class
->task_tick(rq
, curr
, 0);
2807 update_cpu_load_active(rq
);
2808 calc_global_load_tick(rq
);
2809 raw_spin_unlock(&rq
->lock
);
2811 perf_event_task_tick();
2814 rq
->idle_balance
= idle_cpu(cpu
);
2815 trigger_load_balance(rq
);
2817 rq_last_tick_reset(rq
);
2820 #ifdef CONFIG_NO_HZ_FULL
2822 * scheduler_tick_max_deferment
2824 * Keep at least one tick per second when a single
2825 * active task is running because the scheduler doesn't
2826 * yet completely support full dynticks environment.
2828 * This makes sure that uptime, CFS vruntime, load
2829 * balancing, etc... continue to move forward, even
2830 * with a very low granularity.
2832 * Return: Maximum deferment in nanoseconds.
2834 u64
scheduler_tick_max_deferment(void)
2836 struct rq
*rq
= this_rq();
2837 unsigned long next
, now
= READ_ONCE(jiffies
);
2839 next
= rq
->last_sched_tick
+ HZ
;
2841 if (time_before_eq(next
, now
))
2844 return jiffies_to_nsecs(next
- now
);
2848 notrace
unsigned long get_parent_ip(unsigned long addr
)
2850 if (in_lock_functions(addr
)) {
2851 addr
= CALLER_ADDR2
;
2852 if (in_lock_functions(addr
))
2853 addr
= CALLER_ADDR3
;
2858 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2859 defined(CONFIG_PREEMPT_TRACER))
2861 void preempt_count_add(int val
)
2863 #ifdef CONFIG_DEBUG_PREEMPT
2867 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2870 __preempt_count_add(val
);
2871 #ifdef CONFIG_DEBUG_PREEMPT
2873 * Spinlock count overflowing soon?
2875 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
2878 if (preempt_count() == val
) {
2879 unsigned long ip
= get_parent_ip(CALLER_ADDR1
);
2880 #ifdef CONFIG_DEBUG_PREEMPT
2881 current
->preempt_disable_ip
= ip
;
2883 trace_preempt_off(CALLER_ADDR0
, ip
);
2886 EXPORT_SYMBOL(preempt_count_add
);
2887 NOKPROBE_SYMBOL(preempt_count_add
);
2889 void preempt_count_sub(int val
)
2891 #ifdef CONFIG_DEBUG_PREEMPT
2895 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
2898 * Is the spinlock portion underflowing?
2900 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
2901 !(preempt_count() & PREEMPT_MASK
)))
2905 if (preempt_count() == val
)
2906 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
2907 __preempt_count_sub(val
);
2909 EXPORT_SYMBOL(preempt_count_sub
);
2910 NOKPROBE_SYMBOL(preempt_count_sub
);
2915 * Print scheduling while atomic bug:
2917 static noinline
void __schedule_bug(struct task_struct
*prev
)
2919 if (oops_in_progress
)
2922 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
2923 prev
->comm
, prev
->pid
, preempt_count());
2925 debug_show_held_locks(prev
);
2927 if (irqs_disabled())
2928 print_irqtrace_events(prev
);
2929 #ifdef CONFIG_DEBUG_PREEMPT
2930 if (in_atomic_preempt_off()) {
2931 pr_err("Preemption disabled at:");
2932 print_ip_sym(current
->preempt_disable_ip
);
2937 add_taint(TAINT_WARN
, LOCKDEP_STILL_OK
);
2941 * Various schedule()-time debugging checks and statistics:
2943 static inline void schedule_debug(struct task_struct
*prev
)
2945 #ifdef CONFIG_SCHED_STACK_END_CHECK
2946 BUG_ON(unlikely(task_stack_end_corrupted(prev
)));
2949 * Test if we are atomic. Since do_exit() needs to call into
2950 * schedule() atomically, we ignore that path. Otherwise whine
2951 * if we are scheduling when we should not.
2953 if (unlikely(in_atomic_preempt_off() && prev
->state
!= TASK_DEAD
))
2954 __schedule_bug(prev
);
2957 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
2959 schedstat_inc(this_rq(), sched_count
);
2963 * Pick up the highest-prio task:
2965 static inline struct task_struct
*
2966 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
2968 const struct sched_class
*class = &fair_sched_class
;
2969 struct task_struct
*p
;
2972 * Optimization: we know that if all tasks are in
2973 * the fair class we can call that function directly:
2975 if (likely(prev
->sched_class
== class &&
2976 rq
->nr_running
== rq
->cfs
.h_nr_running
)) {
2977 p
= fair_sched_class
.pick_next_task(rq
, prev
);
2978 if (unlikely(p
== RETRY_TASK
))
2981 /* assumes fair_sched_class->next == idle_sched_class */
2983 p
= idle_sched_class
.pick_next_task(rq
, prev
);
2989 for_each_class(class) {
2990 p
= class->pick_next_task(rq
, prev
);
2992 if (unlikely(p
== RETRY_TASK
))
2998 BUG(); /* the idle class will always have a runnable task */
3002 * __schedule() is the main scheduler function.
3004 * The main means of driving the scheduler and thus entering this function are:
3006 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3008 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3009 * paths. For example, see arch/x86/entry_64.S.
3011 * To drive preemption between tasks, the scheduler sets the flag in timer
3012 * interrupt handler scheduler_tick().
3014 * 3. Wakeups don't really cause entry into schedule(). They add a
3015 * task to the run-queue and that's it.
3017 * Now, if the new task added to the run-queue preempts the current
3018 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3019 * called on the nearest possible occasion:
3021 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3023 * - in syscall or exception context, at the next outmost
3024 * preempt_enable(). (this might be as soon as the wake_up()'s
3027 * - in IRQ context, return from interrupt-handler to
3028 * preemptible context
3030 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3033 * - cond_resched() call
3034 * - explicit schedule() call
3035 * - return from syscall or exception to user-space
3036 * - return from interrupt-handler to user-space
3038 * WARNING: must be called with preemption disabled!
3040 static void __sched
__schedule(void)
3042 struct task_struct
*prev
, *next
;
3043 unsigned long *switch_count
;
3047 cpu
= smp_processor_id();
3049 rcu_note_context_switch();
3052 schedule_debug(prev
);
3054 if (sched_feat(HRTICK
))
3058 * Make sure that signal_pending_state()->signal_pending() below
3059 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3060 * done by the caller to avoid the race with signal_wake_up().
3062 smp_mb__before_spinlock();
3063 raw_spin_lock_irq(&rq
->lock
);
3064 lockdep_pin_lock(&rq
->lock
);
3066 rq
->clock_skip_update
<<= 1; /* promote REQ to ACT */
3068 switch_count
= &prev
->nivcsw
;
3069 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3070 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
3071 prev
->state
= TASK_RUNNING
;
3073 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
3077 * If a worker went to sleep, notify and ask workqueue
3078 * whether it wants to wake up a task to maintain
3081 if (prev
->flags
& PF_WQ_WORKER
) {
3082 struct task_struct
*to_wakeup
;
3084 to_wakeup
= wq_worker_sleeping(prev
, cpu
);
3086 try_to_wake_up_local(to_wakeup
);
3089 switch_count
= &prev
->nvcsw
;
3092 if (task_on_rq_queued(prev
))
3093 update_rq_clock(rq
);
3095 next
= pick_next_task(rq
, prev
);
3096 clear_tsk_need_resched(prev
);
3097 clear_preempt_need_resched();
3098 rq
->clock_skip_update
= 0;
3100 if (likely(prev
!= next
)) {
3105 rq
= context_switch(rq
, prev
, next
); /* unlocks the rq */
3108 lockdep_unpin_lock(&rq
->lock
);
3109 raw_spin_unlock_irq(&rq
->lock
);
3112 balance_callback(rq
);
3115 static inline void sched_submit_work(struct task_struct
*tsk
)
3117 if (!tsk
->state
|| tsk_is_pi_blocked(tsk
))
3120 * If we are going to sleep and we have plugged IO queued,
3121 * make sure to submit it to avoid deadlocks.
3123 if (blk_needs_flush_plug(tsk
))
3124 blk_schedule_flush_plug(tsk
);
3127 asmlinkage __visible
void __sched
schedule(void)
3129 struct task_struct
*tsk
= current
;
3131 sched_submit_work(tsk
);
3135 sched_preempt_enable_no_resched();
3136 } while (need_resched());
3138 EXPORT_SYMBOL(schedule
);
3140 #ifdef CONFIG_CONTEXT_TRACKING
3141 asmlinkage __visible
void __sched
schedule_user(void)
3144 * If we come here after a random call to set_need_resched(),
3145 * or we have been woken up remotely but the IPI has not yet arrived,
3146 * we haven't yet exited the RCU idle mode. Do it here manually until
3147 * we find a better solution.
3149 * NB: There are buggy callers of this function. Ideally we
3150 * should warn if prev_state != CONTEXT_USER, but that will trigger
3151 * too frequently to make sense yet.
3153 enum ctx_state prev_state
= exception_enter();
3155 exception_exit(prev_state
);
3160 * schedule_preempt_disabled - called with preemption disabled
3162 * Returns with preemption disabled. Note: preempt_count must be 1
3164 void __sched
schedule_preempt_disabled(void)
3166 sched_preempt_enable_no_resched();
3171 static void __sched notrace
preempt_schedule_common(void)
3174 preempt_active_enter();
3176 preempt_active_exit();
3179 * Check again in case we missed a preemption opportunity
3180 * between schedule and now.
3182 } while (need_resched());
3185 #ifdef CONFIG_PREEMPT
3187 * this is the entry point to schedule() from in-kernel preemption
3188 * off of preempt_enable. Kernel preemptions off return from interrupt
3189 * occur there and call schedule directly.
3191 asmlinkage __visible
void __sched notrace
preempt_schedule(void)
3194 * If there is a non-zero preempt_count or interrupts are disabled,
3195 * we do not want to preempt the current task. Just return..
3197 if (likely(!preemptible()))
3200 preempt_schedule_common();
3202 NOKPROBE_SYMBOL(preempt_schedule
);
3203 EXPORT_SYMBOL(preempt_schedule
);
3206 * preempt_schedule_notrace - preempt_schedule called by tracing
3208 * The tracing infrastructure uses preempt_enable_notrace to prevent
3209 * recursion and tracing preempt enabling caused by the tracing
3210 * infrastructure itself. But as tracing can happen in areas coming
3211 * from userspace or just about to enter userspace, a preempt enable
3212 * can occur before user_exit() is called. This will cause the scheduler
3213 * to be called when the system is still in usermode.
3215 * To prevent this, the preempt_enable_notrace will use this function
3216 * instead of preempt_schedule() to exit user context if needed before
3217 * calling the scheduler.
3219 asmlinkage __visible
void __sched notrace
preempt_schedule_notrace(void)
3221 enum ctx_state prev_ctx
;
3223 if (likely(!preemptible()))
3228 * Use raw __prempt_count() ops that don't call function.
3229 * We can't call functions before disabling preemption which
3230 * disarm preemption tracing recursions.
3232 __preempt_count_add(PREEMPT_ACTIVE
+ PREEMPT_DISABLE_OFFSET
);
3235 * Needs preempt disabled in case user_exit() is traced
3236 * and the tracer calls preempt_enable_notrace() causing
3237 * an infinite recursion.
3239 prev_ctx
= exception_enter();
3241 exception_exit(prev_ctx
);
3244 __preempt_count_sub(PREEMPT_ACTIVE
+ PREEMPT_DISABLE_OFFSET
);
3245 } while (need_resched());
3247 EXPORT_SYMBOL_GPL(preempt_schedule_notrace
);
3249 #endif /* CONFIG_PREEMPT */
3252 * this is the entry point to schedule() from kernel preemption
3253 * off of irq context.
3254 * Note, that this is called and return with irqs disabled. This will
3255 * protect us against recursive calling from irq.
3257 asmlinkage __visible
void __sched
preempt_schedule_irq(void)
3259 enum ctx_state prev_state
;
3261 /* Catch callers which need to be fixed */
3262 BUG_ON(preempt_count() || !irqs_disabled());
3264 prev_state
= exception_enter();
3267 preempt_active_enter();
3270 local_irq_disable();
3271 preempt_active_exit();
3272 } while (need_resched());
3274 exception_exit(prev_state
);
3277 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
3280 return try_to_wake_up(curr
->private, mode
, wake_flags
);
3282 EXPORT_SYMBOL(default_wake_function
);
3284 #ifdef CONFIG_RT_MUTEXES
3287 * rt_mutex_setprio - set the current priority of a task
3289 * @prio: prio value (kernel-internal form)
3291 * This function changes the 'effective' priority of a task. It does
3292 * not touch ->normal_prio like __setscheduler().
3294 * Used by the rt_mutex code to implement priority inheritance
3295 * logic. Call site only calls if the priority of the task changed.
3297 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
3299 int oldprio
, queued
, running
, enqueue_flag
= 0;
3301 const struct sched_class
*prev_class
;
3303 BUG_ON(prio
> MAX_PRIO
);
3305 rq
= __task_rq_lock(p
);
3308 * Idle task boosting is a nono in general. There is one
3309 * exception, when PREEMPT_RT and NOHZ is active:
3311 * The idle task calls get_next_timer_interrupt() and holds
3312 * the timer wheel base->lock on the CPU and another CPU wants
3313 * to access the timer (probably to cancel it). We can safely
3314 * ignore the boosting request, as the idle CPU runs this code
3315 * with interrupts disabled and will complete the lock
3316 * protected section without being interrupted. So there is no
3317 * real need to boost.
3319 if (unlikely(p
== rq
->idle
)) {
3320 WARN_ON(p
!= rq
->curr
);
3321 WARN_ON(p
->pi_blocked_on
);
3325 trace_sched_pi_setprio(p
, prio
);
3327 prev_class
= p
->sched_class
;
3328 queued
= task_on_rq_queued(p
);
3329 running
= task_current(rq
, p
);
3331 dequeue_task(rq
, p
, 0);
3333 put_prev_task(rq
, p
);
3336 * Boosting condition are:
3337 * 1. -rt task is running and holds mutex A
3338 * --> -dl task blocks on mutex A
3340 * 2. -dl task is running and holds mutex A
3341 * --> -dl task blocks on mutex A and could preempt the
3344 if (dl_prio(prio
)) {
3345 struct task_struct
*pi_task
= rt_mutex_get_top_task(p
);
3346 if (!dl_prio(p
->normal_prio
) ||
3347 (pi_task
&& dl_entity_preempt(&pi_task
->dl
, &p
->dl
))) {
3348 p
->dl
.dl_boosted
= 1;
3349 enqueue_flag
= ENQUEUE_REPLENISH
;
3351 p
->dl
.dl_boosted
= 0;
3352 p
->sched_class
= &dl_sched_class
;
3353 } else if (rt_prio(prio
)) {
3354 if (dl_prio(oldprio
))
3355 p
->dl
.dl_boosted
= 0;
3357 enqueue_flag
= ENQUEUE_HEAD
;
3358 p
->sched_class
= &rt_sched_class
;
3360 if (dl_prio(oldprio
))
3361 p
->dl
.dl_boosted
= 0;
3362 if (rt_prio(oldprio
))
3364 p
->sched_class
= &fair_sched_class
;
3370 p
->sched_class
->set_curr_task(rq
);
3372 enqueue_task(rq
, p
, enqueue_flag
);
3374 check_class_changed(rq
, p
, prev_class
, oldprio
);
3376 preempt_disable(); /* avoid rq from going away on us */
3377 __task_rq_unlock(rq
);
3379 balance_callback(rq
);
3384 void set_user_nice(struct task_struct
*p
, long nice
)
3386 int old_prio
, delta
, queued
;
3387 unsigned long flags
;
3390 if (task_nice(p
) == nice
|| nice
< MIN_NICE
|| nice
> MAX_NICE
)
3393 * We have to be careful, if called from sys_setpriority(),
3394 * the task might be in the middle of scheduling on another CPU.
3396 rq
= task_rq_lock(p
, &flags
);
3398 * The RT priorities are set via sched_setscheduler(), but we still
3399 * allow the 'normal' nice value to be set - but as expected
3400 * it wont have any effect on scheduling until the task is
3401 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3403 if (task_has_dl_policy(p
) || task_has_rt_policy(p
)) {
3404 p
->static_prio
= NICE_TO_PRIO(nice
);
3407 queued
= task_on_rq_queued(p
);
3409 dequeue_task(rq
, p
, 0);
3411 p
->static_prio
= NICE_TO_PRIO(nice
);
3414 p
->prio
= effective_prio(p
);
3415 delta
= p
->prio
- old_prio
;
3418 enqueue_task(rq
, p
, 0);
3420 * If the task increased its priority or is running and
3421 * lowered its priority, then reschedule its CPU:
3423 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3427 task_rq_unlock(rq
, p
, &flags
);
3429 EXPORT_SYMBOL(set_user_nice
);
3432 * can_nice - check if a task can reduce its nice value
3436 int can_nice(const struct task_struct
*p
, const int nice
)
3438 /* convert nice value [19,-20] to rlimit style value [1,40] */
3439 int nice_rlim
= nice_to_rlimit(nice
);
3441 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
3442 capable(CAP_SYS_NICE
));
3445 #ifdef __ARCH_WANT_SYS_NICE
3448 * sys_nice - change the priority of the current process.
3449 * @increment: priority increment
3451 * sys_setpriority is a more generic, but much slower function that
3452 * does similar things.
3454 SYSCALL_DEFINE1(nice
, int, increment
)
3459 * Setpriority might change our priority at the same moment.
3460 * We don't have to worry. Conceptually one call occurs first
3461 * and we have a single winner.
3463 increment
= clamp(increment
, -NICE_WIDTH
, NICE_WIDTH
);
3464 nice
= task_nice(current
) + increment
;
3466 nice
= clamp_val(nice
, MIN_NICE
, MAX_NICE
);
3467 if (increment
< 0 && !can_nice(current
, nice
))
3470 retval
= security_task_setnice(current
, nice
);
3474 set_user_nice(current
, nice
);
3481 * task_prio - return the priority value of a given task.
3482 * @p: the task in question.
3484 * Return: The priority value as seen by users in /proc.
3485 * RT tasks are offset by -200. Normal tasks are centered
3486 * around 0, value goes from -16 to +15.
3488 int task_prio(const struct task_struct
*p
)
3490 return p
->prio
- MAX_RT_PRIO
;
3494 * idle_cpu - is a given cpu idle currently?
3495 * @cpu: the processor in question.
3497 * Return: 1 if the CPU is currently idle. 0 otherwise.
3499 int idle_cpu(int cpu
)
3501 struct rq
*rq
= cpu_rq(cpu
);
3503 if (rq
->curr
!= rq
->idle
)
3510 if (!llist_empty(&rq
->wake_list
))
3518 * idle_task - return the idle task for a given cpu.
3519 * @cpu: the processor in question.
3521 * Return: The idle task for the cpu @cpu.
3523 struct task_struct
*idle_task(int cpu
)
3525 return cpu_rq(cpu
)->idle
;
3529 * find_process_by_pid - find a process with a matching PID value.
3530 * @pid: the pid in question.
3532 * The task of @pid, if found. %NULL otherwise.
3534 static struct task_struct
*find_process_by_pid(pid_t pid
)
3536 return pid
? find_task_by_vpid(pid
) : current
;
3540 * This function initializes the sched_dl_entity of a newly becoming
3541 * SCHED_DEADLINE task.
3543 * Only the static values are considered here, the actual runtime and the
3544 * absolute deadline will be properly calculated when the task is enqueued
3545 * for the first time with its new policy.
3548 __setparam_dl(struct task_struct
*p
, const struct sched_attr
*attr
)
3550 struct sched_dl_entity
*dl_se
= &p
->dl
;
3552 dl_se
->dl_runtime
= attr
->sched_runtime
;
3553 dl_se
->dl_deadline
= attr
->sched_deadline
;
3554 dl_se
->dl_period
= attr
->sched_period
?: dl_se
->dl_deadline
;
3555 dl_se
->flags
= attr
->sched_flags
;
3556 dl_se
->dl_bw
= to_ratio(dl_se
->dl_period
, dl_se
->dl_runtime
);
3559 * Changing the parameters of a task is 'tricky' and we're not doing
3560 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3562 * What we SHOULD do is delay the bandwidth release until the 0-lag
3563 * point. This would include retaining the task_struct until that time
3564 * and change dl_overflow() to not immediately decrement the current
3567 * Instead we retain the current runtime/deadline and let the new
3568 * parameters take effect after the current reservation period lapses.
3569 * This is safe (albeit pessimistic) because the 0-lag point is always
3570 * before the current scheduling deadline.
3572 * We can still have temporary overloads because we do not delay the
3573 * change in bandwidth until that time; so admission control is
3574 * not on the safe side. It does however guarantee tasks will never
3575 * consume more than promised.
3580 * sched_setparam() passes in -1 for its policy, to let the functions
3581 * it calls know not to change it.
3583 #define SETPARAM_POLICY -1
3585 static void __setscheduler_params(struct task_struct
*p
,
3586 const struct sched_attr
*attr
)
3588 int policy
= attr
->sched_policy
;
3590 if (policy
== SETPARAM_POLICY
)
3595 if (dl_policy(policy
))
3596 __setparam_dl(p
, attr
);
3597 else if (fair_policy(policy
))
3598 p
->static_prio
= NICE_TO_PRIO(attr
->sched_nice
);
3601 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3602 * !rt_policy. Always setting this ensures that things like
3603 * getparam()/getattr() don't report silly values for !rt tasks.
3605 p
->rt_priority
= attr
->sched_priority
;
3606 p
->normal_prio
= normal_prio(p
);
3610 /* Actually do priority change: must hold pi & rq lock. */
3611 static void __setscheduler(struct rq
*rq
, struct task_struct
*p
,
3612 const struct sched_attr
*attr
, bool keep_boost
)
3614 __setscheduler_params(p
, attr
);
3617 * Keep a potential priority boosting if called from
3618 * sched_setscheduler().
3621 p
->prio
= rt_mutex_get_effective_prio(p
, normal_prio(p
));
3623 p
->prio
= normal_prio(p
);
3625 if (dl_prio(p
->prio
))
3626 p
->sched_class
= &dl_sched_class
;
3627 else if (rt_prio(p
->prio
))
3628 p
->sched_class
= &rt_sched_class
;
3630 p
->sched_class
= &fair_sched_class
;
3634 __getparam_dl(struct task_struct
*p
, struct sched_attr
*attr
)
3636 struct sched_dl_entity
*dl_se
= &p
->dl
;
3638 attr
->sched_priority
= p
->rt_priority
;
3639 attr
->sched_runtime
= dl_se
->dl_runtime
;
3640 attr
->sched_deadline
= dl_se
->dl_deadline
;
3641 attr
->sched_period
= dl_se
->dl_period
;
3642 attr
->sched_flags
= dl_se
->flags
;
3646 * This function validates the new parameters of a -deadline task.
3647 * We ask for the deadline not being zero, and greater or equal
3648 * than the runtime, as well as the period of being zero or
3649 * greater than deadline. Furthermore, we have to be sure that
3650 * user parameters are above the internal resolution of 1us (we
3651 * check sched_runtime only since it is always the smaller one) and
3652 * below 2^63 ns (we have to check both sched_deadline and
3653 * sched_period, as the latter can be zero).
3656 __checkparam_dl(const struct sched_attr
*attr
)
3659 if (attr
->sched_deadline
== 0)
3663 * Since we truncate DL_SCALE bits, make sure we're at least
3666 if (attr
->sched_runtime
< (1ULL << DL_SCALE
))
3670 * Since we use the MSB for wrap-around and sign issues, make
3671 * sure it's not set (mind that period can be equal to zero).
3673 if (attr
->sched_deadline
& (1ULL << 63) ||
3674 attr
->sched_period
& (1ULL << 63))
3677 /* runtime <= deadline <= period (if period != 0) */
3678 if ((attr
->sched_period
!= 0 &&
3679 attr
->sched_period
< attr
->sched_deadline
) ||
3680 attr
->sched_deadline
< attr
->sched_runtime
)
3687 * check the target process has a UID that matches the current process's
3689 static bool check_same_owner(struct task_struct
*p
)
3691 const struct cred
*cred
= current_cred(), *pcred
;
3695 pcred
= __task_cred(p
);
3696 match
= (uid_eq(cred
->euid
, pcred
->euid
) ||
3697 uid_eq(cred
->euid
, pcred
->uid
));
3702 static bool dl_param_changed(struct task_struct
*p
,
3703 const struct sched_attr
*attr
)
3705 struct sched_dl_entity
*dl_se
= &p
->dl
;
3707 if (dl_se
->dl_runtime
!= attr
->sched_runtime
||
3708 dl_se
->dl_deadline
!= attr
->sched_deadline
||
3709 dl_se
->dl_period
!= attr
->sched_period
||
3710 dl_se
->flags
!= attr
->sched_flags
)
3716 static int __sched_setscheduler(struct task_struct
*p
,
3717 const struct sched_attr
*attr
,
3720 int newprio
= dl_policy(attr
->sched_policy
) ? MAX_DL_PRIO
- 1 :
3721 MAX_RT_PRIO
- 1 - attr
->sched_priority
;
3722 int retval
, oldprio
, oldpolicy
= -1, queued
, running
;
3723 int new_effective_prio
, policy
= attr
->sched_policy
;
3724 unsigned long flags
;
3725 const struct sched_class
*prev_class
;
3729 /* may grab non-irq protected spin_locks */
3730 BUG_ON(in_interrupt());
3732 /* double check policy once rq lock held */
3734 reset_on_fork
= p
->sched_reset_on_fork
;
3735 policy
= oldpolicy
= p
->policy
;
3737 reset_on_fork
= !!(attr
->sched_flags
& SCHED_FLAG_RESET_ON_FORK
);
3739 if (policy
!= SCHED_DEADLINE
&&
3740 policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
3741 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
3742 policy
!= SCHED_IDLE
)
3746 if (attr
->sched_flags
& ~(SCHED_FLAG_RESET_ON_FORK
))
3750 * Valid priorities for SCHED_FIFO and SCHED_RR are
3751 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3752 * SCHED_BATCH and SCHED_IDLE is 0.
3754 if ((p
->mm
&& attr
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
3755 (!p
->mm
&& attr
->sched_priority
> MAX_RT_PRIO
-1))
3757 if ((dl_policy(policy
) && !__checkparam_dl(attr
)) ||
3758 (rt_policy(policy
) != (attr
->sched_priority
!= 0)))
3762 * Allow unprivileged RT tasks to decrease priority:
3764 if (user
&& !capable(CAP_SYS_NICE
)) {
3765 if (fair_policy(policy
)) {
3766 if (attr
->sched_nice
< task_nice(p
) &&
3767 !can_nice(p
, attr
->sched_nice
))
3771 if (rt_policy(policy
)) {
3772 unsigned long rlim_rtprio
=
3773 task_rlimit(p
, RLIMIT_RTPRIO
);
3775 /* can't set/change the rt policy */
3776 if (policy
!= p
->policy
&& !rlim_rtprio
)
3779 /* can't increase priority */
3780 if (attr
->sched_priority
> p
->rt_priority
&&
3781 attr
->sched_priority
> rlim_rtprio
)
3786 * Can't set/change SCHED_DEADLINE policy at all for now
3787 * (safest behavior); in the future we would like to allow
3788 * unprivileged DL tasks to increase their relative deadline
3789 * or reduce their runtime (both ways reducing utilization)
3791 if (dl_policy(policy
))
3795 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3796 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3798 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
) {
3799 if (!can_nice(p
, task_nice(p
)))
3803 /* can't change other user's priorities */
3804 if (!check_same_owner(p
))
3807 /* Normal users shall not reset the sched_reset_on_fork flag */
3808 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
3813 retval
= security_task_setscheduler(p
);
3819 * make sure no PI-waiters arrive (or leave) while we are
3820 * changing the priority of the task:
3822 * To be able to change p->policy safely, the appropriate
3823 * runqueue lock must be held.
3825 rq
= task_rq_lock(p
, &flags
);
3828 * Changing the policy of the stop threads its a very bad idea
3830 if (p
== rq
->stop
) {
3831 task_rq_unlock(rq
, p
, &flags
);
3836 * If not changing anything there's no need to proceed further,
3837 * but store a possible modification of reset_on_fork.
3839 if (unlikely(policy
== p
->policy
)) {
3840 if (fair_policy(policy
) && attr
->sched_nice
!= task_nice(p
))
3842 if (rt_policy(policy
) && attr
->sched_priority
!= p
->rt_priority
)
3844 if (dl_policy(policy
) && dl_param_changed(p
, attr
))
3847 p
->sched_reset_on_fork
= reset_on_fork
;
3848 task_rq_unlock(rq
, p
, &flags
);
3854 #ifdef CONFIG_RT_GROUP_SCHED
3856 * Do not allow realtime tasks into groups that have no runtime
3859 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
3860 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
3861 !task_group_is_autogroup(task_group(p
))) {
3862 task_rq_unlock(rq
, p
, &flags
);
3867 if (dl_bandwidth_enabled() && dl_policy(policy
)) {
3868 cpumask_t
*span
= rq
->rd
->span
;
3871 * Don't allow tasks with an affinity mask smaller than
3872 * the entire root_domain to become SCHED_DEADLINE. We
3873 * will also fail if there's no bandwidth available.
3875 if (!cpumask_subset(span
, &p
->cpus_allowed
) ||
3876 rq
->rd
->dl_bw
.bw
== 0) {
3877 task_rq_unlock(rq
, p
, &flags
);
3884 /* recheck policy now with rq lock held */
3885 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
3886 policy
= oldpolicy
= -1;
3887 task_rq_unlock(rq
, p
, &flags
);
3892 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3893 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3896 if ((dl_policy(policy
) || dl_task(p
)) && dl_overflow(p
, policy
, attr
)) {
3897 task_rq_unlock(rq
, p
, &flags
);
3901 p
->sched_reset_on_fork
= reset_on_fork
;
3906 * Take priority boosted tasks into account. If the new
3907 * effective priority is unchanged, we just store the new
3908 * normal parameters and do not touch the scheduler class and
3909 * the runqueue. This will be done when the task deboost
3912 new_effective_prio
= rt_mutex_get_effective_prio(p
, newprio
);
3913 if (new_effective_prio
== oldprio
) {
3914 __setscheduler_params(p
, attr
);
3915 task_rq_unlock(rq
, p
, &flags
);
3920 queued
= task_on_rq_queued(p
);
3921 running
= task_current(rq
, p
);
3923 dequeue_task(rq
, p
, 0);
3925 put_prev_task(rq
, p
);
3927 prev_class
= p
->sched_class
;
3928 __setscheduler(rq
, p
, attr
, pi
);
3931 p
->sched_class
->set_curr_task(rq
);
3934 * We enqueue to tail when the priority of a task is
3935 * increased (user space view).
3937 enqueue_task(rq
, p
, oldprio
<= p
->prio
? ENQUEUE_HEAD
: 0);
3940 check_class_changed(rq
, p
, prev_class
, oldprio
);
3941 preempt_disable(); /* avoid rq from going away on us */
3942 task_rq_unlock(rq
, p
, &flags
);
3945 rt_mutex_adjust_pi(p
);
3948 * Run balance callbacks after we've adjusted the PI chain.
3950 balance_callback(rq
);
3956 static int _sched_setscheduler(struct task_struct
*p
, int policy
,
3957 const struct sched_param
*param
, bool check
)
3959 struct sched_attr attr
= {
3960 .sched_policy
= policy
,
3961 .sched_priority
= param
->sched_priority
,
3962 .sched_nice
= PRIO_TO_NICE(p
->static_prio
),
3965 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3966 if ((policy
!= SETPARAM_POLICY
) && (policy
& SCHED_RESET_ON_FORK
)) {
3967 attr
.sched_flags
|= SCHED_FLAG_RESET_ON_FORK
;
3968 policy
&= ~SCHED_RESET_ON_FORK
;
3969 attr
.sched_policy
= policy
;
3972 return __sched_setscheduler(p
, &attr
, check
, true);
3975 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3976 * @p: the task in question.
3977 * @policy: new policy.
3978 * @param: structure containing the new RT priority.
3980 * Return: 0 on success. An error code otherwise.
3982 * NOTE that the task may be already dead.
3984 int sched_setscheduler(struct task_struct
*p
, int policy
,
3985 const struct sched_param
*param
)
3987 return _sched_setscheduler(p
, policy
, param
, true);
3989 EXPORT_SYMBOL_GPL(sched_setscheduler
);
3991 int sched_setattr(struct task_struct
*p
, const struct sched_attr
*attr
)
3993 return __sched_setscheduler(p
, attr
, true, true);
3995 EXPORT_SYMBOL_GPL(sched_setattr
);
3998 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3999 * @p: the task in question.
4000 * @policy: new policy.
4001 * @param: structure containing the new RT priority.
4003 * Just like sched_setscheduler, only don't bother checking if the
4004 * current context has permission. For example, this is needed in
4005 * stop_machine(): we create temporary high priority worker threads,
4006 * but our caller might not have that capability.
4008 * Return: 0 on success. An error code otherwise.
4010 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
4011 const struct sched_param
*param
)
4013 return _sched_setscheduler(p
, policy
, param
, false);
4017 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4019 struct sched_param lparam
;
4020 struct task_struct
*p
;
4023 if (!param
|| pid
< 0)
4025 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4030 p
= find_process_by_pid(pid
);
4032 retval
= sched_setscheduler(p
, policy
, &lparam
);
4039 * Mimics kernel/events/core.c perf_copy_attr().
4041 static int sched_copy_attr(struct sched_attr __user
*uattr
,
4042 struct sched_attr
*attr
)
4047 if (!access_ok(VERIFY_WRITE
, uattr
, SCHED_ATTR_SIZE_VER0
))
4051 * zero the full structure, so that a short copy will be nice.
4053 memset(attr
, 0, sizeof(*attr
));
4055 ret
= get_user(size
, &uattr
->size
);
4059 if (size
> PAGE_SIZE
) /* silly large */
4062 if (!size
) /* abi compat */
4063 size
= SCHED_ATTR_SIZE_VER0
;
4065 if (size
< SCHED_ATTR_SIZE_VER0
)
4069 * If we're handed a bigger struct than we know of,
4070 * ensure all the unknown bits are 0 - i.e. new
4071 * user-space does not rely on any kernel feature
4072 * extensions we dont know about yet.
4074 if (size
> sizeof(*attr
)) {
4075 unsigned char __user
*addr
;
4076 unsigned char __user
*end
;
4079 addr
= (void __user
*)uattr
+ sizeof(*attr
);
4080 end
= (void __user
*)uattr
+ size
;
4082 for (; addr
< end
; addr
++) {
4083 ret
= get_user(val
, addr
);
4089 size
= sizeof(*attr
);
4092 ret
= copy_from_user(attr
, uattr
, size
);
4097 * XXX: do we want to be lenient like existing syscalls; or do we want
4098 * to be strict and return an error on out-of-bounds values?
4100 attr
->sched_nice
= clamp(attr
->sched_nice
, MIN_NICE
, MAX_NICE
);
4105 put_user(sizeof(*attr
), &uattr
->size
);
4110 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4111 * @pid: the pid in question.
4112 * @policy: new policy.
4113 * @param: structure containing the new RT priority.
4115 * Return: 0 on success. An error code otherwise.
4117 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
4118 struct sched_param __user
*, param
)
4120 /* negative values for policy are not valid */
4124 return do_sched_setscheduler(pid
, policy
, param
);
4128 * sys_sched_setparam - set/change the RT priority of a thread
4129 * @pid: the pid in question.
4130 * @param: structure containing the new RT priority.
4132 * Return: 0 on success. An error code otherwise.
4134 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4136 return do_sched_setscheduler(pid
, SETPARAM_POLICY
, param
);
4140 * sys_sched_setattr - same as above, but with extended sched_attr
4141 * @pid: the pid in question.
4142 * @uattr: structure containing the extended parameters.
4143 * @flags: for future extension.
4145 SYSCALL_DEFINE3(sched_setattr
, pid_t
, pid
, struct sched_attr __user
*, uattr
,
4146 unsigned int, flags
)
4148 struct sched_attr attr
;
4149 struct task_struct
*p
;
4152 if (!uattr
|| pid
< 0 || flags
)
4155 retval
= sched_copy_attr(uattr
, &attr
);
4159 if ((int)attr
.sched_policy
< 0)
4164 p
= find_process_by_pid(pid
);
4166 retval
= sched_setattr(p
, &attr
);
4173 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4174 * @pid: the pid in question.
4176 * Return: On success, the policy of the thread. Otherwise, a negative error
4179 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
4181 struct task_struct
*p
;
4189 p
= find_process_by_pid(pid
);
4191 retval
= security_task_getscheduler(p
);
4194 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
4201 * sys_sched_getparam - get the RT priority of a thread
4202 * @pid: the pid in question.
4203 * @param: structure containing the RT priority.
4205 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4208 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4210 struct sched_param lp
= { .sched_priority
= 0 };
4211 struct task_struct
*p
;
4214 if (!param
|| pid
< 0)
4218 p
= find_process_by_pid(pid
);
4223 retval
= security_task_getscheduler(p
);
4227 if (task_has_rt_policy(p
))
4228 lp
.sched_priority
= p
->rt_priority
;
4232 * This one might sleep, we cannot do it with a spinlock held ...
4234 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4243 static int sched_read_attr(struct sched_attr __user
*uattr
,
4244 struct sched_attr
*attr
,
4249 if (!access_ok(VERIFY_WRITE
, uattr
, usize
))
4253 * If we're handed a smaller struct than we know of,
4254 * ensure all the unknown bits are 0 - i.e. old
4255 * user-space does not get uncomplete information.
4257 if (usize
< sizeof(*attr
)) {
4258 unsigned char *addr
;
4261 addr
= (void *)attr
+ usize
;
4262 end
= (void *)attr
+ sizeof(*attr
);
4264 for (; addr
< end
; addr
++) {
4272 ret
= copy_to_user(uattr
, attr
, attr
->size
);
4280 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4281 * @pid: the pid in question.
4282 * @uattr: structure containing the extended parameters.
4283 * @size: sizeof(attr) for fwd/bwd comp.
4284 * @flags: for future extension.
4286 SYSCALL_DEFINE4(sched_getattr
, pid_t
, pid
, struct sched_attr __user
*, uattr
,
4287 unsigned int, size
, unsigned int, flags
)
4289 struct sched_attr attr
= {
4290 .size
= sizeof(struct sched_attr
),
4292 struct task_struct
*p
;
4295 if (!uattr
|| pid
< 0 || size
> PAGE_SIZE
||
4296 size
< SCHED_ATTR_SIZE_VER0
|| flags
)
4300 p
= find_process_by_pid(pid
);
4305 retval
= security_task_getscheduler(p
);
4309 attr
.sched_policy
= p
->policy
;
4310 if (p
->sched_reset_on_fork
)
4311 attr
.sched_flags
|= SCHED_FLAG_RESET_ON_FORK
;
4312 if (task_has_dl_policy(p
))
4313 __getparam_dl(p
, &attr
);
4314 else if (task_has_rt_policy(p
))
4315 attr
.sched_priority
= p
->rt_priority
;
4317 attr
.sched_nice
= task_nice(p
);
4321 retval
= sched_read_attr(uattr
, &attr
, size
);
4329 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
4331 cpumask_var_t cpus_allowed
, new_mask
;
4332 struct task_struct
*p
;
4337 p
= find_process_by_pid(pid
);
4343 /* Prevent p going away */
4347 if (p
->flags
& PF_NO_SETAFFINITY
) {
4351 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
4355 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
4357 goto out_free_cpus_allowed
;
4360 if (!check_same_owner(p
)) {
4362 if (!ns_capable(__task_cred(p
)->user_ns
, CAP_SYS_NICE
)) {
4364 goto out_free_new_mask
;
4369 retval
= security_task_setscheduler(p
);
4371 goto out_free_new_mask
;
4374 cpuset_cpus_allowed(p
, cpus_allowed
);
4375 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
4378 * Since bandwidth control happens on root_domain basis,
4379 * if admission test is enabled, we only admit -deadline
4380 * tasks allowed to run on all the CPUs in the task's
4384 if (task_has_dl_policy(p
) && dl_bandwidth_enabled()) {
4386 if (!cpumask_subset(task_rq(p
)->rd
->span
, new_mask
)) {
4389 goto out_free_new_mask
;
4395 retval
= __set_cpus_allowed_ptr(p
, new_mask
, true);
4398 cpuset_cpus_allowed(p
, cpus_allowed
);
4399 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
4401 * We must have raced with a concurrent cpuset
4402 * update. Just reset the cpus_allowed to the
4403 * cpuset's cpus_allowed
4405 cpumask_copy(new_mask
, cpus_allowed
);
4410 free_cpumask_var(new_mask
);
4411 out_free_cpus_allowed
:
4412 free_cpumask_var(cpus_allowed
);
4418 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4419 struct cpumask
*new_mask
)
4421 if (len
< cpumask_size())
4422 cpumask_clear(new_mask
);
4423 else if (len
> cpumask_size())
4424 len
= cpumask_size();
4426 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4430 * sys_sched_setaffinity - set the cpu affinity of a process
4431 * @pid: pid of the process
4432 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4433 * @user_mask_ptr: user-space pointer to the new cpu mask
4435 * Return: 0 on success. An error code otherwise.
4437 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
4438 unsigned long __user
*, user_mask_ptr
)
4440 cpumask_var_t new_mask
;
4443 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
4446 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
4448 retval
= sched_setaffinity(pid
, new_mask
);
4449 free_cpumask_var(new_mask
);
4453 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
4455 struct task_struct
*p
;
4456 unsigned long flags
;
4462 p
= find_process_by_pid(pid
);
4466 retval
= security_task_getscheduler(p
);
4470 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
4471 cpumask_and(mask
, &p
->cpus_allowed
, cpu_active_mask
);
4472 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4481 * sys_sched_getaffinity - get the cpu affinity of a process
4482 * @pid: pid of the process
4483 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4484 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4486 * Return: 0 on success. An error code otherwise.
4488 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
4489 unsigned long __user
*, user_mask_ptr
)
4494 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
4496 if (len
& (sizeof(unsigned long)-1))
4499 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
4502 ret
= sched_getaffinity(pid
, mask
);
4504 size_t retlen
= min_t(size_t, len
, cpumask_size());
4506 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
4511 free_cpumask_var(mask
);
4517 * sys_sched_yield - yield the current processor to other threads.
4519 * This function yields the current CPU to other tasks. If there are no
4520 * other threads running on this CPU then this function will return.
4524 SYSCALL_DEFINE0(sched_yield
)
4526 struct rq
*rq
= this_rq_lock();
4528 schedstat_inc(rq
, yld_count
);
4529 current
->sched_class
->yield_task(rq
);
4532 * Since we are going to call schedule() anyway, there's
4533 * no need to preempt or enable interrupts:
4535 __release(rq
->lock
);
4536 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4537 do_raw_spin_unlock(&rq
->lock
);
4538 sched_preempt_enable_no_resched();
4545 int __sched
_cond_resched(void)
4547 if (should_resched(0)) {
4548 preempt_schedule_common();
4553 EXPORT_SYMBOL(_cond_resched
);
4556 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4557 * call schedule, and on return reacquire the lock.
4559 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4560 * operations here to prevent schedule() from being called twice (once via
4561 * spin_unlock(), once by hand).
4563 int __cond_resched_lock(spinlock_t
*lock
)
4565 int resched
= should_resched(PREEMPT_LOCK_OFFSET
);
4568 lockdep_assert_held(lock
);
4570 if (spin_needbreak(lock
) || resched
) {
4573 preempt_schedule_common();
4581 EXPORT_SYMBOL(__cond_resched_lock
);
4583 int __sched
__cond_resched_softirq(void)
4585 BUG_ON(!in_softirq());
4587 if (should_resched(SOFTIRQ_DISABLE_OFFSET
)) {
4589 preempt_schedule_common();
4595 EXPORT_SYMBOL(__cond_resched_softirq
);
4598 * yield - yield the current processor to other threads.
4600 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4602 * The scheduler is at all times free to pick the calling task as the most
4603 * eligible task to run, if removing the yield() call from your code breaks
4604 * it, its already broken.
4606 * Typical broken usage is:
4611 * where one assumes that yield() will let 'the other' process run that will
4612 * make event true. If the current task is a SCHED_FIFO task that will never
4613 * happen. Never use yield() as a progress guarantee!!
4615 * If you want to use yield() to wait for something, use wait_event().
4616 * If you want to use yield() to be 'nice' for others, use cond_resched().
4617 * If you still want to use yield(), do not!
4619 void __sched
yield(void)
4621 set_current_state(TASK_RUNNING
);
4624 EXPORT_SYMBOL(yield
);
4627 * yield_to - yield the current processor to another thread in
4628 * your thread group, or accelerate that thread toward the
4629 * processor it's on.
4631 * @preempt: whether task preemption is allowed or not
4633 * It's the caller's job to ensure that the target task struct
4634 * can't go away on us before we can do any checks.
4637 * true (>0) if we indeed boosted the target task.
4638 * false (0) if we failed to boost the target.
4639 * -ESRCH if there's no task to yield to.
4641 int __sched
yield_to(struct task_struct
*p
, bool preempt
)
4643 struct task_struct
*curr
= current
;
4644 struct rq
*rq
, *p_rq
;
4645 unsigned long flags
;
4648 local_irq_save(flags
);
4654 * If we're the only runnable task on the rq and target rq also
4655 * has only one task, there's absolutely no point in yielding.
4657 if (rq
->nr_running
== 1 && p_rq
->nr_running
== 1) {
4662 double_rq_lock(rq
, p_rq
);
4663 if (task_rq(p
) != p_rq
) {
4664 double_rq_unlock(rq
, p_rq
);
4668 if (!curr
->sched_class
->yield_to_task
)
4671 if (curr
->sched_class
!= p
->sched_class
)
4674 if (task_running(p_rq
, p
) || p
->state
)
4677 yielded
= curr
->sched_class
->yield_to_task(rq
, p
, preempt
);
4679 schedstat_inc(rq
, yld_count
);
4681 * Make p's CPU reschedule; pick_next_entity takes care of
4684 if (preempt
&& rq
!= p_rq
)
4689 double_rq_unlock(rq
, p_rq
);
4691 local_irq_restore(flags
);
4698 EXPORT_SYMBOL_GPL(yield_to
);
4701 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4702 * that process accounting knows that this is a task in IO wait state.
4704 long __sched
io_schedule_timeout(long timeout
)
4706 int old_iowait
= current
->in_iowait
;
4710 current
->in_iowait
= 1;
4711 blk_schedule_flush_plug(current
);
4713 delayacct_blkio_start();
4715 atomic_inc(&rq
->nr_iowait
);
4716 ret
= schedule_timeout(timeout
);
4717 current
->in_iowait
= old_iowait
;
4718 atomic_dec(&rq
->nr_iowait
);
4719 delayacct_blkio_end();
4723 EXPORT_SYMBOL(io_schedule_timeout
);
4726 * sys_sched_get_priority_max - return maximum RT priority.
4727 * @policy: scheduling class.
4729 * Return: On success, this syscall returns the maximum
4730 * rt_priority that can be used by a given scheduling class.
4731 * On failure, a negative error code is returned.
4733 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
4740 ret
= MAX_USER_RT_PRIO
-1;
4742 case SCHED_DEADLINE
:
4753 * sys_sched_get_priority_min - return minimum RT priority.
4754 * @policy: scheduling class.
4756 * Return: On success, this syscall returns the minimum
4757 * rt_priority that can be used by a given scheduling class.
4758 * On failure, a negative error code is returned.
4760 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
4769 case SCHED_DEADLINE
:
4779 * sys_sched_rr_get_interval - return the default timeslice of a process.
4780 * @pid: pid of the process.
4781 * @interval: userspace pointer to the timeslice value.
4783 * this syscall writes the default timeslice value of a given process
4784 * into the user-space timespec buffer. A value of '0' means infinity.
4786 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4789 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
4790 struct timespec __user
*, interval
)
4792 struct task_struct
*p
;
4793 unsigned int time_slice
;
4794 unsigned long flags
;
4804 p
= find_process_by_pid(pid
);
4808 retval
= security_task_getscheduler(p
);
4812 rq
= task_rq_lock(p
, &flags
);
4814 if (p
->sched_class
->get_rr_interval
)
4815 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
4816 task_rq_unlock(rq
, p
, &flags
);
4819 jiffies_to_timespec(time_slice
, &t
);
4820 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4828 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
4830 void sched_show_task(struct task_struct
*p
)
4832 unsigned long free
= 0;
4834 unsigned long state
= p
->state
;
4837 state
= __ffs(state
) + 1;
4838 printk(KERN_INFO
"%-15.15s %c", p
->comm
,
4839 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4840 #if BITS_PER_LONG == 32
4841 if (state
== TASK_RUNNING
)
4842 printk(KERN_CONT
" running ");
4844 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
4846 if (state
== TASK_RUNNING
)
4847 printk(KERN_CONT
" running task ");
4849 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
4851 #ifdef CONFIG_DEBUG_STACK_USAGE
4852 free
= stack_not_used(p
);
4857 ppid
= task_pid_nr(rcu_dereference(p
->real_parent
));
4859 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
4860 task_pid_nr(p
), ppid
,
4861 (unsigned long)task_thread_info(p
)->flags
);
4863 print_worker_info(KERN_INFO
, p
);
4864 show_stack(p
, NULL
);
4867 void show_state_filter(unsigned long state_filter
)
4869 struct task_struct
*g
, *p
;
4871 #if BITS_PER_LONG == 32
4873 " task PC stack pid father\n");
4876 " task PC stack pid father\n");
4879 for_each_process_thread(g
, p
) {
4881 * reset the NMI-timeout, listing all files on a slow
4882 * console might take a lot of time:
4884 touch_nmi_watchdog();
4885 if (!state_filter
|| (p
->state
& state_filter
))
4889 touch_all_softlockup_watchdogs();
4891 #ifdef CONFIG_SCHED_DEBUG
4892 sysrq_sched_debug_show();
4896 * Only show locks if all tasks are dumped:
4899 debug_show_all_locks();
4902 void init_idle_bootup_task(struct task_struct
*idle
)
4904 idle
->sched_class
= &idle_sched_class
;
4908 * init_idle - set up an idle thread for a given CPU
4909 * @idle: task in question
4910 * @cpu: cpu the idle task belongs to
4912 * NOTE: this function does not set the idle thread's NEED_RESCHED
4913 * flag, to make booting more robust.
4915 void init_idle(struct task_struct
*idle
, int cpu
)
4917 struct rq
*rq
= cpu_rq(cpu
);
4918 unsigned long flags
;
4920 raw_spin_lock_irqsave(&idle
->pi_lock
, flags
);
4921 raw_spin_lock(&rq
->lock
);
4923 __sched_fork(0, idle
);
4924 idle
->state
= TASK_RUNNING
;
4925 idle
->se
.exec_start
= sched_clock();
4927 do_set_cpus_allowed(idle
, cpumask_of(cpu
));
4929 * We're having a chicken and egg problem, even though we are
4930 * holding rq->lock, the cpu isn't yet set to this cpu so the
4931 * lockdep check in task_group() will fail.
4933 * Similar case to sched_fork(). / Alternatively we could
4934 * use task_rq_lock() here and obtain the other rq->lock.
4939 __set_task_cpu(idle
, cpu
);
4942 rq
->curr
= rq
->idle
= idle
;
4943 idle
->on_rq
= TASK_ON_RQ_QUEUED
;
4944 #if defined(CONFIG_SMP)
4947 raw_spin_unlock(&rq
->lock
);
4948 raw_spin_unlock_irqrestore(&idle
->pi_lock
, flags
);
4950 /* Set the preempt count _outside_ the spinlocks! */
4951 init_idle_preempt_count(idle
, cpu
);
4954 * The idle tasks have their own, simple scheduling class:
4956 idle
->sched_class
= &idle_sched_class
;
4957 ftrace_graph_init_idle_task(idle
, cpu
);
4958 vtime_init_idle(idle
, cpu
);
4959 #if defined(CONFIG_SMP)
4960 sprintf(idle
->comm
, "%s/%d", INIT_TASK_COMM
, cpu
);
4964 int cpuset_cpumask_can_shrink(const struct cpumask
*cur
,
4965 const struct cpumask
*trial
)
4967 int ret
= 1, trial_cpus
;
4968 struct dl_bw
*cur_dl_b
;
4969 unsigned long flags
;
4971 if (!cpumask_weight(cur
))
4974 rcu_read_lock_sched();
4975 cur_dl_b
= dl_bw_of(cpumask_any(cur
));
4976 trial_cpus
= cpumask_weight(trial
);
4978 raw_spin_lock_irqsave(&cur_dl_b
->lock
, flags
);
4979 if (cur_dl_b
->bw
!= -1 &&
4980 cur_dl_b
->bw
* trial_cpus
< cur_dl_b
->total_bw
)
4982 raw_spin_unlock_irqrestore(&cur_dl_b
->lock
, flags
);
4983 rcu_read_unlock_sched();
4988 int task_can_attach(struct task_struct
*p
,
4989 const struct cpumask
*cs_cpus_allowed
)
4994 * Kthreads which disallow setaffinity shouldn't be moved
4995 * to a new cpuset; we don't want to change their cpu
4996 * affinity and isolating such threads by their set of
4997 * allowed nodes is unnecessary. Thus, cpusets are not
4998 * applicable for such threads. This prevents checking for
4999 * success of set_cpus_allowed_ptr() on all attached tasks
5000 * before cpus_allowed may be changed.
5002 if (p
->flags
& PF_NO_SETAFFINITY
) {
5008 if (dl_task(p
) && !cpumask_intersects(task_rq(p
)->rd
->span
,
5010 unsigned int dest_cpu
= cpumask_any_and(cpu_active_mask
,
5015 unsigned long flags
;
5017 rcu_read_lock_sched();
5018 dl_b
= dl_bw_of(dest_cpu
);
5019 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
5020 cpus
= dl_bw_cpus(dest_cpu
);
5021 overflow
= __dl_overflow(dl_b
, cpus
, 0, p
->dl
.dl_bw
);
5026 * We reserve space for this task in the destination
5027 * root_domain, as we can't fail after this point.
5028 * We will free resources in the source root_domain
5029 * later on (see set_cpus_allowed_dl()).
5031 __dl_add(dl_b
, p
->dl
.dl_bw
);
5033 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
5034 rcu_read_unlock_sched();
5044 #ifdef CONFIG_NUMA_BALANCING
5045 /* Migrate current task p to target_cpu */
5046 int migrate_task_to(struct task_struct
*p
, int target_cpu
)
5048 struct migration_arg arg
= { p
, target_cpu
};
5049 int curr_cpu
= task_cpu(p
);
5051 if (curr_cpu
== target_cpu
)
5054 if (!cpumask_test_cpu(target_cpu
, tsk_cpus_allowed(p
)))
5057 /* TODO: This is not properly updating schedstats */
5059 trace_sched_move_numa(p
, curr_cpu
, target_cpu
);
5060 return stop_one_cpu(curr_cpu
, migration_cpu_stop
, &arg
);
5064 * Requeue a task on a given node and accurately track the number of NUMA
5065 * tasks on the runqueues
5067 void sched_setnuma(struct task_struct
*p
, int nid
)
5070 unsigned long flags
;
5071 bool queued
, running
;
5073 rq
= task_rq_lock(p
, &flags
);
5074 queued
= task_on_rq_queued(p
);
5075 running
= task_current(rq
, p
);
5078 dequeue_task(rq
, p
, 0);
5080 put_prev_task(rq
, p
);
5082 p
->numa_preferred_nid
= nid
;
5085 p
->sched_class
->set_curr_task(rq
);
5087 enqueue_task(rq
, p
, 0);
5088 task_rq_unlock(rq
, p
, &flags
);
5090 #endif /* CONFIG_NUMA_BALANCING */
5092 #ifdef CONFIG_HOTPLUG_CPU
5094 * Ensures that the idle task is using init_mm right before its cpu goes
5097 void idle_task_exit(void)
5099 struct mm_struct
*mm
= current
->active_mm
;
5101 BUG_ON(cpu_online(smp_processor_id()));
5103 if (mm
!= &init_mm
) {
5104 switch_mm(mm
, &init_mm
, current
);
5105 finish_arch_post_lock_switch();
5111 * Since this CPU is going 'away' for a while, fold any nr_active delta
5112 * we might have. Assumes we're called after migrate_tasks() so that the
5113 * nr_active count is stable.
5115 * Also see the comment "Global load-average calculations".
5117 static void calc_load_migrate(struct rq
*rq
)
5119 long delta
= calc_load_fold_active(rq
);
5121 atomic_long_add(delta
, &calc_load_tasks
);
5124 static void put_prev_task_fake(struct rq
*rq
, struct task_struct
*prev
)
5128 static const struct sched_class fake_sched_class
= {
5129 .put_prev_task
= put_prev_task_fake
,
5132 static struct task_struct fake_task
= {
5134 * Avoid pull_{rt,dl}_task()
5136 .prio
= MAX_PRIO
+ 1,
5137 .sched_class
= &fake_sched_class
,
5141 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5142 * try_to_wake_up()->select_task_rq().
5144 * Called with rq->lock held even though we'er in stop_machine() and
5145 * there's no concurrency possible, we hold the required locks anyway
5146 * because of lock validation efforts.
5148 static void migrate_tasks(struct rq
*dead_rq
)
5150 struct rq
*rq
= dead_rq
;
5151 struct task_struct
*next
, *stop
= rq
->stop
;
5155 * Fudge the rq selection such that the below task selection loop
5156 * doesn't get stuck on the currently eligible stop task.
5158 * We're currently inside stop_machine() and the rq is either stuck
5159 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5160 * either way we should never end up calling schedule() until we're
5166 * put_prev_task() and pick_next_task() sched
5167 * class method both need to have an up-to-date
5168 * value of rq->clock[_task]
5170 update_rq_clock(rq
);
5174 * There's this thread running, bail when that's the only
5177 if (rq
->nr_running
== 1)
5181 * Ensure rq->lock covers the entire task selection
5182 * until the migration.
5184 lockdep_pin_lock(&rq
->lock
);
5185 next
= pick_next_task(rq
, &fake_task
);
5187 next
->sched_class
->put_prev_task(rq
, next
);
5189 /* Find suitable destination for @next, with force if needed. */
5190 dest_cpu
= select_fallback_rq(dead_rq
->cpu
, next
);
5192 lockdep_unpin_lock(&rq
->lock
);
5193 rq
= __migrate_task(rq
, next
, dest_cpu
);
5194 if (rq
!= dead_rq
) {
5195 raw_spin_unlock(&rq
->lock
);
5197 raw_spin_lock(&rq
->lock
);
5203 #endif /* CONFIG_HOTPLUG_CPU */
5205 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5207 static struct ctl_table sd_ctl_dir
[] = {
5209 .procname
= "sched_domain",
5215 static struct ctl_table sd_ctl_root
[] = {
5217 .procname
= "kernel",
5219 .child
= sd_ctl_dir
,
5224 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5226 struct ctl_table
*entry
=
5227 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5232 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5234 struct ctl_table
*entry
;
5237 * In the intermediate directories, both the child directory and
5238 * procname are dynamically allocated and could fail but the mode
5239 * will always be set. In the lowest directory the names are
5240 * static strings and all have proc handlers.
5242 for (entry
= *tablep
; entry
->mode
; entry
++) {
5244 sd_free_ctl_entry(&entry
->child
);
5245 if (entry
->proc_handler
== NULL
)
5246 kfree(entry
->procname
);
5253 static int min_load_idx
= 0;
5254 static int max_load_idx
= CPU_LOAD_IDX_MAX
-1;
5257 set_table_entry(struct ctl_table
*entry
,
5258 const char *procname
, void *data
, int maxlen
,
5259 umode_t mode
, proc_handler
*proc_handler
,
5262 entry
->procname
= procname
;
5264 entry
->maxlen
= maxlen
;
5266 entry
->proc_handler
= proc_handler
;
5269 entry
->extra1
= &min_load_idx
;
5270 entry
->extra2
= &max_load_idx
;
5274 static struct ctl_table
*
5275 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5277 struct ctl_table
*table
= sd_alloc_ctl_entry(14);
5282 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5283 sizeof(long), 0644, proc_doulongvec_minmax
, false);
5284 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5285 sizeof(long), 0644, proc_doulongvec_minmax
, false);
5286 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5287 sizeof(int), 0644, proc_dointvec_minmax
, true);
5288 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5289 sizeof(int), 0644, proc_dointvec_minmax
, true);
5290 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5291 sizeof(int), 0644, proc_dointvec_minmax
, true);
5292 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5293 sizeof(int), 0644, proc_dointvec_minmax
, true);
5294 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5295 sizeof(int), 0644, proc_dointvec_minmax
, true);
5296 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5297 sizeof(int), 0644, proc_dointvec_minmax
, false);
5298 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5299 sizeof(int), 0644, proc_dointvec_minmax
, false);
5300 set_table_entry(&table
[9], "cache_nice_tries",
5301 &sd
->cache_nice_tries
,
5302 sizeof(int), 0644, proc_dointvec_minmax
, false);
5303 set_table_entry(&table
[10], "flags", &sd
->flags
,
5304 sizeof(int), 0644, proc_dointvec_minmax
, false);
5305 set_table_entry(&table
[11], "max_newidle_lb_cost",
5306 &sd
->max_newidle_lb_cost
,
5307 sizeof(long), 0644, proc_doulongvec_minmax
, false);
5308 set_table_entry(&table
[12], "name", sd
->name
,
5309 CORENAME_MAX_SIZE
, 0444, proc_dostring
, false);
5310 /* &table[13] is terminator */
5315 static struct ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5317 struct ctl_table
*entry
, *table
;
5318 struct sched_domain
*sd
;
5319 int domain_num
= 0, i
;
5322 for_each_domain(cpu
, sd
)
5324 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5329 for_each_domain(cpu
, sd
) {
5330 snprintf(buf
, 32, "domain%d", i
);
5331 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5333 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5340 static struct ctl_table_header
*sd_sysctl_header
;
5341 static void register_sched_domain_sysctl(void)
5343 int i
, cpu_num
= num_possible_cpus();
5344 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5347 WARN_ON(sd_ctl_dir
[0].child
);
5348 sd_ctl_dir
[0].child
= entry
;
5353 for_each_possible_cpu(i
) {
5354 snprintf(buf
, 32, "cpu%d", i
);
5355 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5357 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5361 WARN_ON(sd_sysctl_header
);
5362 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5365 /* may be called multiple times per register */
5366 static void unregister_sched_domain_sysctl(void)
5368 unregister_sysctl_table(sd_sysctl_header
);
5369 sd_sysctl_header
= NULL
;
5370 if (sd_ctl_dir
[0].child
)
5371 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5374 static void register_sched_domain_sysctl(void)
5377 static void unregister_sched_domain_sysctl(void)
5380 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5382 static void set_rq_online(struct rq
*rq
)
5385 const struct sched_class
*class;
5387 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
5390 for_each_class(class) {
5391 if (class->rq_online
)
5392 class->rq_online(rq
);
5397 static void set_rq_offline(struct rq
*rq
)
5400 const struct sched_class
*class;
5402 for_each_class(class) {
5403 if (class->rq_offline
)
5404 class->rq_offline(rq
);
5407 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
5413 * migration_call - callback that gets triggered when a CPU is added.
5414 * Here we can start up the necessary migration thread for the new CPU.
5417 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5419 int cpu
= (long)hcpu
;
5420 unsigned long flags
;
5421 struct rq
*rq
= cpu_rq(cpu
);
5423 switch (action
& ~CPU_TASKS_FROZEN
) {
5425 case CPU_UP_PREPARE
:
5426 rq
->calc_load_update
= calc_load_update
;
5430 /* Update our root-domain */
5431 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5433 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5437 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5440 #ifdef CONFIG_HOTPLUG_CPU
5442 sched_ttwu_pending();
5443 /* Update our root-domain */
5444 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5446 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5450 BUG_ON(rq
->nr_running
!= 1); /* the migration thread */
5451 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5455 calc_load_migrate(rq
);
5460 update_max_interval();
5466 * Register at high priority so that task migration (migrate_all_tasks)
5467 * happens before everything else. This has to be lower priority than
5468 * the notifier in the perf_event subsystem, though.
5470 static struct notifier_block migration_notifier
= {
5471 .notifier_call
= migration_call
,
5472 .priority
= CPU_PRI_MIGRATION
,
5475 static void set_cpu_rq_start_time(void)
5477 int cpu
= smp_processor_id();
5478 struct rq
*rq
= cpu_rq(cpu
);
5479 rq
->age_stamp
= sched_clock_cpu(cpu
);
5482 static int sched_cpu_active(struct notifier_block
*nfb
,
5483 unsigned long action
, void *hcpu
)
5485 switch (action
& ~CPU_TASKS_FROZEN
) {
5487 set_cpu_rq_start_time();
5491 * At this point a starting CPU has marked itself as online via
5492 * set_cpu_online(). But it might not yet have marked itself
5493 * as active, which is essential from here on.
5495 * Thus, fall-through and help the starting CPU along.
5497 case CPU_DOWN_FAILED
:
5498 set_cpu_active((long)hcpu
, true);
5505 static int sched_cpu_inactive(struct notifier_block
*nfb
,
5506 unsigned long action
, void *hcpu
)
5508 switch (action
& ~CPU_TASKS_FROZEN
) {
5509 case CPU_DOWN_PREPARE
:
5510 set_cpu_active((long)hcpu
, false);
5517 static int __init
migration_init(void)
5519 void *cpu
= (void *)(long)smp_processor_id();
5522 /* Initialize migration for the boot CPU */
5523 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5524 BUG_ON(err
== NOTIFY_BAD
);
5525 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5526 register_cpu_notifier(&migration_notifier
);
5528 /* Register cpu active notifiers */
5529 cpu_notifier(sched_cpu_active
, CPU_PRI_SCHED_ACTIVE
);
5530 cpu_notifier(sched_cpu_inactive
, CPU_PRI_SCHED_INACTIVE
);
5534 early_initcall(migration_init
);
5536 static cpumask_var_t sched_domains_tmpmask
; /* sched_domains_mutex */
5538 #ifdef CONFIG_SCHED_DEBUG
5540 static __read_mostly
int sched_debug_enabled
;
5542 static int __init
sched_debug_setup(char *str
)
5544 sched_debug_enabled
= 1;
5548 early_param("sched_debug", sched_debug_setup
);
5550 static inline bool sched_debug(void)
5552 return sched_debug_enabled
;
5555 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
5556 struct cpumask
*groupmask
)
5558 struct sched_group
*group
= sd
->groups
;
5560 cpumask_clear(groupmask
);
5562 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
5564 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5565 printk("does not load-balance\n");
5567 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5572 printk(KERN_CONT
"span %*pbl level %s\n",
5573 cpumask_pr_args(sched_domain_span(sd
)), sd
->name
);
5575 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
5576 printk(KERN_ERR
"ERROR: domain->span does not contain "
5579 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
5580 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5584 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
5588 printk(KERN_ERR
"ERROR: group is NULL\n");
5592 if (!cpumask_weight(sched_group_cpus(group
))) {
5593 printk(KERN_CONT
"\n");
5594 printk(KERN_ERR
"ERROR: empty group\n");
5598 if (!(sd
->flags
& SD_OVERLAP
) &&
5599 cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
5600 printk(KERN_CONT
"\n");
5601 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5605 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
5607 printk(KERN_CONT
" %*pbl",
5608 cpumask_pr_args(sched_group_cpus(group
)));
5609 if (group
->sgc
->capacity
!= SCHED_CAPACITY_SCALE
) {
5610 printk(KERN_CONT
" (cpu_capacity = %d)",
5611 group
->sgc
->capacity
);
5614 group
= group
->next
;
5615 } while (group
!= sd
->groups
);
5616 printk(KERN_CONT
"\n");
5618 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
5619 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
5622 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
5623 printk(KERN_ERR
"ERROR: parent span is not a superset "
5624 "of domain->span\n");
5628 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5632 if (!sched_debug_enabled
)
5636 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5640 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5643 if (sched_domain_debug_one(sd
, cpu
, level
, sched_domains_tmpmask
))
5651 #else /* !CONFIG_SCHED_DEBUG */
5652 # define sched_domain_debug(sd, cpu) do { } while (0)
5653 static inline bool sched_debug(void)
5657 #endif /* CONFIG_SCHED_DEBUG */
5659 static int sd_degenerate(struct sched_domain
*sd
)
5661 if (cpumask_weight(sched_domain_span(sd
)) == 1)
5664 /* Following flags need at least 2 groups */
5665 if (sd
->flags
& (SD_LOAD_BALANCE
|
5666 SD_BALANCE_NEWIDLE
|
5669 SD_SHARE_CPUCAPACITY
|
5670 SD_SHARE_PKG_RESOURCES
|
5671 SD_SHARE_POWERDOMAIN
)) {
5672 if (sd
->groups
!= sd
->groups
->next
)
5676 /* Following flags don't use groups */
5677 if (sd
->flags
& (SD_WAKE_AFFINE
))
5684 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5686 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5688 if (sd_degenerate(parent
))
5691 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
5694 /* Flags needing groups don't count if only 1 group in parent */
5695 if (parent
->groups
== parent
->groups
->next
) {
5696 pflags
&= ~(SD_LOAD_BALANCE
|
5697 SD_BALANCE_NEWIDLE
|
5700 SD_SHARE_CPUCAPACITY
|
5701 SD_SHARE_PKG_RESOURCES
|
5703 SD_SHARE_POWERDOMAIN
);
5704 if (nr_node_ids
== 1)
5705 pflags
&= ~SD_SERIALIZE
;
5707 if (~cflags
& pflags
)
5713 static void free_rootdomain(struct rcu_head
*rcu
)
5715 struct root_domain
*rd
= container_of(rcu
, struct root_domain
, rcu
);
5717 cpupri_cleanup(&rd
->cpupri
);
5718 cpudl_cleanup(&rd
->cpudl
);
5719 free_cpumask_var(rd
->dlo_mask
);
5720 free_cpumask_var(rd
->rto_mask
);
5721 free_cpumask_var(rd
->online
);
5722 free_cpumask_var(rd
->span
);
5726 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
5728 struct root_domain
*old_rd
= NULL
;
5729 unsigned long flags
;
5731 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5736 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
5739 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
5742 * If we dont want to free the old_rd yet then
5743 * set old_rd to NULL to skip the freeing later
5746 if (!atomic_dec_and_test(&old_rd
->refcount
))
5750 atomic_inc(&rd
->refcount
);
5753 cpumask_set_cpu(rq
->cpu
, rd
->span
);
5754 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
5757 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5760 call_rcu_sched(&old_rd
->rcu
, free_rootdomain
);
5763 static int init_rootdomain(struct root_domain
*rd
)
5765 memset(rd
, 0, sizeof(*rd
));
5767 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
5769 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
5771 if (!alloc_cpumask_var(&rd
->dlo_mask
, GFP_KERNEL
))
5773 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
5776 init_dl_bw(&rd
->dl_bw
);
5777 if (cpudl_init(&rd
->cpudl
) != 0)
5780 if (cpupri_init(&rd
->cpupri
) != 0)
5785 free_cpumask_var(rd
->rto_mask
);
5787 free_cpumask_var(rd
->dlo_mask
);
5789 free_cpumask_var(rd
->online
);
5791 free_cpumask_var(rd
->span
);
5797 * By default the system creates a single root-domain with all cpus as
5798 * members (mimicking the global state we have today).
5800 struct root_domain def_root_domain
;
5802 static void init_defrootdomain(void)
5804 init_rootdomain(&def_root_domain
);
5806 atomic_set(&def_root_domain
.refcount
, 1);
5809 static struct root_domain
*alloc_rootdomain(void)
5811 struct root_domain
*rd
;
5813 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
5817 if (init_rootdomain(rd
) != 0) {
5825 static void free_sched_groups(struct sched_group
*sg
, int free_sgc
)
5827 struct sched_group
*tmp
, *first
;
5836 if (free_sgc
&& atomic_dec_and_test(&sg
->sgc
->ref
))
5841 } while (sg
!= first
);
5844 static void free_sched_domain(struct rcu_head
*rcu
)
5846 struct sched_domain
*sd
= container_of(rcu
, struct sched_domain
, rcu
);
5849 * If its an overlapping domain it has private groups, iterate and
5852 if (sd
->flags
& SD_OVERLAP
) {
5853 free_sched_groups(sd
->groups
, 1);
5854 } else if (atomic_dec_and_test(&sd
->groups
->ref
)) {
5855 kfree(sd
->groups
->sgc
);
5861 static void destroy_sched_domain(struct sched_domain
*sd
, int cpu
)
5863 call_rcu(&sd
->rcu
, free_sched_domain
);
5866 static void destroy_sched_domains(struct sched_domain
*sd
, int cpu
)
5868 for (; sd
; sd
= sd
->parent
)
5869 destroy_sched_domain(sd
, cpu
);
5873 * Keep a special pointer to the highest sched_domain that has
5874 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5875 * allows us to avoid some pointer chasing select_idle_sibling().
5877 * Also keep a unique ID per domain (we use the first cpu number in
5878 * the cpumask of the domain), this allows us to quickly tell if
5879 * two cpus are in the same cache domain, see cpus_share_cache().
5881 DEFINE_PER_CPU(struct sched_domain
*, sd_llc
);
5882 DEFINE_PER_CPU(int, sd_llc_size
);
5883 DEFINE_PER_CPU(int, sd_llc_id
);
5884 DEFINE_PER_CPU(struct sched_domain
*, sd_numa
);
5885 DEFINE_PER_CPU(struct sched_domain
*, sd_busy
);
5886 DEFINE_PER_CPU(struct sched_domain
*, sd_asym
);
5888 static void update_top_cache_domain(int cpu
)
5890 struct sched_domain
*sd
;
5891 struct sched_domain
*busy_sd
= NULL
;
5895 sd
= highest_flag_domain(cpu
, SD_SHARE_PKG_RESOURCES
);
5897 id
= cpumask_first(sched_domain_span(sd
));
5898 size
= cpumask_weight(sched_domain_span(sd
));
5899 busy_sd
= sd
->parent
; /* sd_busy */
5901 rcu_assign_pointer(per_cpu(sd_busy
, cpu
), busy_sd
);
5903 rcu_assign_pointer(per_cpu(sd_llc
, cpu
), sd
);
5904 per_cpu(sd_llc_size
, cpu
) = size
;
5905 per_cpu(sd_llc_id
, cpu
) = id
;
5907 sd
= lowest_flag_domain(cpu
, SD_NUMA
);
5908 rcu_assign_pointer(per_cpu(sd_numa
, cpu
), sd
);
5910 sd
= highest_flag_domain(cpu
, SD_ASYM_PACKING
);
5911 rcu_assign_pointer(per_cpu(sd_asym
, cpu
), sd
);
5915 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5916 * hold the hotplug lock.
5919 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
5921 struct rq
*rq
= cpu_rq(cpu
);
5922 struct sched_domain
*tmp
;
5924 /* Remove the sched domains which do not contribute to scheduling. */
5925 for (tmp
= sd
; tmp
; ) {
5926 struct sched_domain
*parent
= tmp
->parent
;
5930 if (sd_parent_degenerate(tmp
, parent
)) {
5931 tmp
->parent
= parent
->parent
;
5933 parent
->parent
->child
= tmp
;
5935 * Transfer SD_PREFER_SIBLING down in case of a
5936 * degenerate parent; the spans match for this
5937 * so the property transfers.
5939 if (parent
->flags
& SD_PREFER_SIBLING
)
5940 tmp
->flags
|= SD_PREFER_SIBLING
;
5941 destroy_sched_domain(parent
, cpu
);
5946 if (sd
&& sd_degenerate(sd
)) {
5949 destroy_sched_domain(tmp
, cpu
);
5954 sched_domain_debug(sd
, cpu
);
5956 rq_attach_root(rq
, rd
);
5958 rcu_assign_pointer(rq
->sd
, sd
);
5959 destroy_sched_domains(tmp
, cpu
);
5961 update_top_cache_domain(cpu
);
5964 /* Setup the mask of cpus configured for isolated domains */
5965 static int __init
isolated_cpu_setup(char *str
)
5967 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
5968 cpulist_parse(str
, cpu_isolated_map
);
5972 __setup("isolcpus=", isolated_cpu_setup
);
5975 struct sched_domain
** __percpu sd
;
5976 struct root_domain
*rd
;
5987 * Build an iteration mask that can exclude certain CPUs from the upwards
5990 * Asymmetric node setups can result in situations where the domain tree is of
5991 * unequal depth, make sure to skip domains that already cover the entire
5994 * In that case build_sched_domains() will have terminated the iteration early
5995 * and our sibling sd spans will be empty. Domains should always include the
5996 * cpu they're built on, so check that.
5999 static void build_group_mask(struct sched_domain
*sd
, struct sched_group
*sg
)
6001 const struct cpumask
*span
= sched_domain_span(sd
);
6002 struct sd_data
*sdd
= sd
->private;
6003 struct sched_domain
*sibling
;
6006 for_each_cpu(i
, span
) {
6007 sibling
= *per_cpu_ptr(sdd
->sd
, i
);
6008 if (!cpumask_test_cpu(i
, sched_domain_span(sibling
)))
6011 cpumask_set_cpu(i
, sched_group_mask(sg
));
6016 * Return the canonical balance cpu for this group, this is the first cpu
6017 * of this group that's also in the iteration mask.
6019 int group_balance_cpu(struct sched_group
*sg
)
6021 return cpumask_first_and(sched_group_cpus(sg
), sched_group_mask(sg
));
6025 build_overlap_sched_groups(struct sched_domain
*sd
, int cpu
)
6027 struct sched_group
*first
= NULL
, *last
= NULL
, *groups
= NULL
, *sg
;
6028 const struct cpumask
*span
= sched_domain_span(sd
);
6029 struct cpumask
*covered
= sched_domains_tmpmask
;
6030 struct sd_data
*sdd
= sd
->private;
6031 struct sched_domain
*sibling
;
6034 cpumask_clear(covered
);
6036 for_each_cpu(i
, span
) {
6037 struct cpumask
*sg_span
;
6039 if (cpumask_test_cpu(i
, covered
))
6042 sibling
= *per_cpu_ptr(sdd
->sd
, i
);
6044 /* See the comment near build_group_mask(). */
6045 if (!cpumask_test_cpu(i
, sched_domain_span(sibling
)))
6048 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6049 GFP_KERNEL
, cpu_to_node(cpu
));
6054 sg_span
= sched_group_cpus(sg
);
6056 cpumask_copy(sg_span
, sched_domain_span(sibling
->child
));
6058 cpumask_set_cpu(i
, sg_span
);
6060 cpumask_or(covered
, covered
, sg_span
);
6062 sg
->sgc
= *per_cpu_ptr(sdd
->sgc
, i
);
6063 if (atomic_inc_return(&sg
->sgc
->ref
) == 1)
6064 build_group_mask(sd
, sg
);
6067 * Initialize sgc->capacity such that even if we mess up the
6068 * domains and no possible iteration will get us here, we won't
6071 sg
->sgc
->capacity
= SCHED_CAPACITY_SCALE
* cpumask_weight(sg_span
);
6074 * Make sure the first group of this domain contains the
6075 * canonical balance cpu. Otherwise the sched_domain iteration
6076 * breaks. See update_sg_lb_stats().
6078 if ((!groups
&& cpumask_test_cpu(cpu
, sg_span
)) ||
6079 group_balance_cpu(sg
) == cpu
)
6089 sd
->groups
= groups
;
6094 free_sched_groups(first
, 0);
6099 static int get_group(int cpu
, struct sd_data
*sdd
, struct sched_group
**sg
)
6101 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
6102 struct sched_domain
*child
= sd
->child
;
6105 cpu
= cpumask_first(sched_domain_span(child
));
6108 *sg
= *per_cpu_ptr(sdd
->sg
, cpu
);
6109 (*sg
)->sgc
= *per_cpu_ptr(sdd
->sgc
, cpu
);
6110 atomic_set(&(*sg
)->sgc
->ref
, 1); /* for claim_allocations */
6117 * build_sched_groups will build a circular linked list of the groups
6118 * covered by the given span, and will set each group's ->cpumask correctly,
6119 * and ->cpu_capacity to 0.
6121 * Assumes the sched_domain tree is fully constructed
6124 build_sched_groups(struct sched_domain
*sd
, int cpu
)
6126 struct sched_group
*first
= NULL
, *last
= NULL
;
6127 struct sd_data
*sdd
= sd
->private;
6128 const struct cpumask
*span
= sched_domain_span(sd
);
6129 struct cpumask
*covered
;
6132 get_group(cpu
, sdd
, &sd
->groups
);
6133 atomic_inc(&sd
->groups
->ref
);
6135 if (cpu
!= cpumask_first(span
))
6138 lockdep_assert_held(&sched_domains_mutex
);
6139 covered
= sched_domains_tmpmask
;
6141 cpumask_clear(covered
);
6143 for_each_cpu(i
, span
) {
6144 struct sched_group
*sg
;
6147 if (cpumask_test_cpu(i
, covered
))
6150 group
= get_group(i
, sdd
, &sg
);
6151 cpumask_setall(sched_group_mask(sg
));
6153 for_each_cpu(j
, span
) {
6154 if (get_group(j
, sdd
, NULL
) != group
)
6157 cpumask_set_cpu(j
, covered
);
6158 cpumask_set_cpu(j
, sched_group_cpus(sg
));
6173 * Initialize sched groups cpu_capacity.
6175 * cpu_capacity indicates the capacity of sched group, which is used while
6176 * distributing the load between different sched groups in a sched domain.
6177 * Typically cpu_capacity for all the groups in a sched domain will be same
6178 * unless there are asymmetries in the topology. If there are asymmetries,
6179 * group having more cpu_capacity will pickup more load compared to the
6180 * group having less cpu_capacity.
6182 static void init_sched_groups_capacity(int cpu
, struct sched_domain
*sd
)
6184 struct sched_group
*sg
= sd
->groups
;
6189 sg
->group_weight
= cpumask_weight(sched_group_cpus(sg
));
6191 } while (sg
!= sd
->groups
);
6193 if (cpu
!= group_balance_cpu(sg
))
6196 update_group_capacity(sd
, cpu
);
6197 atomic_set(&sg
->sgc
->nr_busy_cpus
, sg
->group_weight
);
6201 * Initializers for schedule domains
6202 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6205 static int default_relax_domain_level
= -1;
6206 int sched_domain_level_max
;
6208 static int __init
setup_relax_domain_level(char *str
)
6210 if (kstrtoint(str
, 0, &default_relax_domain_level
))
6211 pr_warn("Unable to set relax_domain_level\n");
6215 __setup("relax_domain_level=", setup_relax_domain_level
);
6217 static void set_domain_attribute(struct sched_domain
*sd
,
6218 struct sched_domain_attr
*attr
)
6222 if (!attr
|| attr
->relax_domain_level
< 0) {
6223 if (default_relax_domain_level
< 0)
6226 request
= default_relax_domain_level
;
6228 request
= attr
->relax_domain_level
;
6229 if (request
< sd
->level
) {
6230 /* turn off idle balance on this domain */
6231 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6233 /* turn on idle balance on this domain */
6234 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6238 static void __sdt_free(const struct cpumask
*cpu_map
);
6239 static int __sdt_alloc(const struct cpumask
*cpu_map
);
6241 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
6242 const struct cpumask
*cpu_map
)
6246 if (!atomic_read(&d
->rd
->refcount
))
6247 free_rootdomain(&d
->rd
->rcu
); /* fall through */
6249 free_percpu(d
->sd
); /* fall through */
6251 __sdt_free(cpu_map
); /* fall through */
6257 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
6258 const struct cpumask
*cpu_map
)
6260 memset(d
, 0, sizeof(*d
));
6262 if (__sdt_alloc(cpu_map
))
6263 return sa_sd_storage
;
6264 d
->sd
= alloc_percpu(struct sched_domain
*);
6266 return sa_sd_storage
;
6267 d
->rd
= alloc_rootdomain();
6270 return sa_rootdomain
;
6274 * NULL the sd_data elements we've used to build the sched_domain and
6275 * sched_group structure so that the subsequent __free_domain_allocs()
6276 * will not free the data we're using.
6278 static void claim_allocations(int cpu
, struct sched_domain
*sd
)
6280 struct sd_data
*sdd
= sd
->private;
6282 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sd
, cpu
) != sd
);
6283 *per_cpu_ptr(sdd
->sd
, cpu
) = NULL
;
6285 if (atomic_read(&(*per_cpu_ptr(sdd
->sg
, cpu
))->ref
))
6286 *per_cpu_ptr(sdd
->sg
, cpu
) = NULL
;
6288 if (atomic_read(&(*per_cpu_ptr(sdd
->sgc
, cpu
))->ref
))
6289 *per_cpu_ptr(sdd
->sgc
, cpu
) = NULL
;
6293 static int sched_domains_numa_levels
;
6294 enum numa_topology_type sched_numa_topology_type
;
6295 static int *sched_domains_numa_distance
;
6296 int sched_max_numa_distance
;
6297 static struct cpumask
***sched_domains_numa_masks
;
6298 static int sched_domains_curr_level
;
6302 * SD_flags allowed in topology descriptions.
6304 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6305 * SD_SHARE_PKG_RESOURCES - describes shared caches
6306 * SD_NUMA - describes NUMA topologies
6307 * SD_SHARE_POWERDOMAIN - describes shared power domain
6310 * SD_ASYM_PACKING - describes SMT quirks
6312 #define TOPOLOGY_SD_FLAGS \
6313 (SD_SHARE_CPUCAPACITY | \
6314 SD_SHARE_PKG_RESOURCES | \
6317 SD_SHARE_POWERDOMAIN)
6319 static struct sched_domain
*
6320 sd_init(struct sched_domain_topology_level
*tl
, int cpu
)
6322 struct sched_domain
*sd
= *per_cpu_ptr(tl
->data
.sd
, cpu
);
6323 int sd_weight
, sd_flags
= 0;
6327 * Ugly hack to pass state to sd_numa_mask()...
6329 sched_domains_curr_level
= tl
->numa_level
;
6332 sd_weight
= cpumask_weight(tl
->mask(cpu
));
6335 sd_flags
= (*tl
->sd_flags
)();
6336 if (WARN_ONCE(sd_flags
& ~TOPOLOGY_SD_FLAGS
,
6337 "wrong sd_flags in topology description\n"))
6338 sd_flags
&= ~TOPOLOGY_SD_FLAGS
;
6340 *sd
= (struct sched_domain
){
6341 .min_interval
= sd_weight
,
6342 .max_interval
= 2*sd_weight
,
6344 .imbalance_pct
= 125,
6346 .cache_nice_tries
= 0,
6353 .flags
= 1*SD_LOAD_BALANCE
6354 | 1*SD_BALANCE_NEWIDLE
6359 | 0*SD_SHARE_CPUCAPACITY
6360 | 0*SD_SHARE_PKG_RESOURCES
6362 | 0*SD_PREFER_SIBLING
6367 .last_balance
= jiffies
,
6368 .balance_interval
= sd_weight
,
6370 .max_newidle_lb_cost
= 0,
6371 .next_decay_max_lb_cost
= jiffies
,
6372 #ifdef CONFIG_SCHED_DEBUG
6378 * Convert topological properties into behaviour.
6381 if (sd
->flags
& SD_SHARE_CPUCAPACITY
) {
6382 sd
->flags
|= SD_PREFER_SIBLING
;
6383 sd
->imbalance_pct
= 110;
6384 sd
->smt_gain
= 1178; /* ~15% */
6386 } else if (sd
->flags
& SD_SHARE_PKG_RESOURCES
) {
6387 sd
->imbalance_pct
= 117;
6388 sd
->cache_nice_tries
= 1;
6392 } else if (sd
->flags
& SD_NUMA
) {
6393 sd
->cache_nice_tries
= 2;
6397 sd
->flags
|= SD_SERIALIZE
;
6398 if (sched_domains_numa_distance
[tl
->numa_level
] > RECLAIM_DISTANCE
) {
6399 sd
->flags
&= ~(SD_BALANCE_EXEC
|
6406 sd
->flags
|= SD_PREFER_SIBLING
;
6407 sd
->cache_nice_tries
= 1;
6412 sd
->private = &tl
->data
;
6418 * Topology list, bottom-up.
6420 static struct sched_domain_topology_level default_topology
[] = {
6421 #ifdef CONFIG_SCHED_SMT
6422 { cpu_smt_mask
, cpu_smt_flags
, SD_INIT_NAME(SMT
) },
6424 #ifdef CONFIG_SCHED_MC
6425 { cpu_coregroup_mask
, cpu_core_flags
, SD_INIT_NAME(MC
) },
6427 { cpu_cpu_mask
, SD_INIT_NAME(DIE
) },
6431 struct sched_domain_topology_level
*sched_domain_topology
= default_topology
;
6433 #define for_each_sd_topology(tl) \
6434 for (tl = sched_domain_topology; tl->mask; tl++)
6436 void set_sched_topology(struct sched_domain_topology_level
*tl
)
6438 sched_domain_topology
= tl
;
6443 static const struct cpumask
*sd_numa_mask(int cpu
)
6445 return sched_domains_numa_masks
[sched_domains_curr_level
][cpu_to_node(cpu
)];
6448 static void sched_numa_warn(const char *str
)
6450 static int done
= false;
6458 printk(KERN_WARNING
"ERROR: %s\n\n", str
);
6460 for (i
= 0; i
< nr_node_ids
; i
++) {
6461 printk(KERN_WARNING
" ");
6462 for (j
= 0; j
< nr_node_ids
; j
++)
6463 printk(KERN_CONT
"%02d ", node_distance(i
,j
));
6464 printk(KERN_CONT
"\n");
6466 printk(KERN_WARNING
"\n");
6469 bool find_numa_distance(int distance
)
6473 if (distance
== node_distance(0, 0))
6476 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
6477 if (sched_domains_numa_distance
[i
] == distance
)
6485 * A system can have three types of NUMA topology:
6486 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6487 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6488 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6490 * The difference between a glueless mesh topology and a backplane
6491 * topology lies in whether communication between not directly
6492 * connected nodes goes through intermediary nodes (where programs
6493 * could run), or through backplane controllers. This affects
6494 * placement of programs.
6496 * The type of topology can be discerned with the following tests:
6497 * - If the maximum distance between any nodes is 1 hop, the system
6498 * is directly connected.
6499 * - If for two nodes A and B, located N > 1 hops away from each other,
6500 * there is an intermediary node C, which is < N hops away from both
6501 * nodes A and B, the system is a glueless mesh.
6503 static void init_numa_topology_type(void)
6507 n
= sched_max_numa_distance
;
6509 if (sched_domains_numa_levels
<= 1) {
6510 sched_numa_topology_type
= NUMA_DIRECT
;
6514 for_each_online_node(a
) {
6515 for_each_online_node(b
) {
6516 /* Find two nodes furthest removed from each other. */
6517 if (node_distance(a
, b
) < n
)
6520 /* Is there an intermediary node between a and b? */
6521 for_each_online_node(c
) {
6522 if (node_distance(a
, c
) < n
&&
6523 node_distance(b
, c
) < n
) {
6524 sched_numa_topology_type
=
6530 sched_numa_topology_type
= NUMA_BACKPLANE
;
6536 static void sched_init_numa(void)
6538 int next_distance
, curr_distance
= node_distance(0, 0);
6539 struct sched_domain_topology_level
*tl
;
6543 sched_domains_numa_distance
= kzalloc(sizeof(int) * nr_node_ids
, GFP_KERNEL
);
6544 if (!sched_domains_numa_distance
)
6548 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6549 * unique distances in the node_distance() table.
6551 * Assumes node_distance(0,j) includes all distances in
6552 * node_distance(i,j) in order to avoid cubic time.
6554 next_distance
= curr_distance
;
6555 for (i
= 0; i
< nr_node_ids
; i
++) {
6556 for (j
= 0; j
< nr_node_ids
; j
++) {
6557 for (k
= 0; k
< nr_node_ids
; k
++) {
6558 int distance
= node_distance(i
, k
);
6560 if (distance
> curr_distance
&&
6561 (distance
< next_distance
||
6562 next_distance
== curr_distance
))
6563 next_distance
= distance
;
6566 * While not a strong assumption it would be nice to know
6567 * about cases where if node A is connected to B, B is not
6568 * equally connected to A.
6570 if (sched_debug() && node_distance(k
, i
) != distance
)
6571 sched_numa_warn("Node-distance not symmetric");
6573 if (sched_debug() && i
&& !find_numa_distance(distance
))
6574 sched_numa_warn("Node-0 not representative");
6576 if (next_distance
!= curr_distance
) {
6577 sched_domains_numa_distance
[level
++] = next_distance
;
6578 sched_domains_numa_levels
= level
;
6579 curr_distance
= next_distance
;
6584 * In case of sched_debug() we verify the above assumption.
6594 * 'level' contains the number of unique distances, excluding the
6595 * identity distance node_distance(i,i).
6597 * The sched_domains_numa_distance[] array includes the actual distance
6602 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6603 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6604 * the array will contain less then 'level' members. This could be
6605 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6606 * in other functions.
6608 * We reset it to 'level' at the end of this function.
6610 sched_domains_numa_levels
= 0;
6612 sched_domains_numa_masks
= kzalloc(sizeof(void *) * level
, GFP_KERNEL
);
6613 if (!sched_domains_numa_masks
)
6617 * Now for each level, construct a mask per node which contains all
6618 * cpus of nodes that are that many hops away from us.
6620 for (i
= 0; i
< level
; i
++) {
6621 sched_domains_numa_masks
[i
] =
6622 kzalloc(nr_node_ids
* sizeof(void *), GFP_KERNEL
);
6623 if (!sched_domains_numa_masks
[i
])
6626 for (j
= 0; j
< nr_node_ids
; j
++) {
6627 struct cpumask
*mask
= kzalloc(cpumask_size(), GFP_KERNEL
);
6631 sched_domains_numa_masks
[i
][j
] = mask
;
6633 for (k
= 0; k
< nr_node_ids
; k
++) {
6634 if (node_distance(j
, k
) > sched_domains_numa_distance
[i
])
6637 cpumask_or(mask
, mask
, cpumask_of_node(k
));
6642 /* Compute default topology size */
6643 for (i
= 0; sched_domain_topology
[i
].mask
; i
++);
6645 tl
= kzalloc((i
+ level
+ 1) *
6646 sizeof(struct sched_domain_topology_level
), GFP_KERNEL
);
6651 * Copy the default topology bits..
6653 for (i
= 0; sched_domain_topology
[i
].mask
; i
++)
6654 tl
[i
] = sched_domain_topology
[i
];
6657 * .. and append 'j' levels of NUMA goodness.
6659 for (j
= 0; j
< level
; i
++, j
++) {
6660 tl
[i
] = (struct sched_domain_topology_level
){
6661 .mask
= sd_numa_mask
,
6662 .sd_flags
= cpu_numa_flags
,
6663 .flags
= SDTL_OVERLAP
,
6669 sched_domain_topology
= tl
;
6671 sched_domains_numa_levels
= level
;
6672 sched_max_numa_distance
= sched_domains_numa_distance
[level
- 1];
6674 init_numa_topology_type();
6677 static void sched_domains_numa_masks_set(int cpu
)
6680 int node
= cpu_to_node(cpu
);
6682 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
6683 for (j
= 0; j
< nr_node_ids
; j
++) {
6684 if (node_distance(j
, node
) <= sched_domains_numa_distance
[i
])
6685 cpumask_set_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
6690 static void sched_domains_numa_masks_clear(int cpu
)
6693 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
6694 for (j
= 0; j
< nr_node_ids
; j
++)
6695 cpumask_clear_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
6700 * Update sched_domains_numa_masks[level][node] array when new cpus
6703 static int sched_domains_numa_masks_update(struct notifier_block
*nfb
,
6704 unsigned long action
,
6707 int cpu
= (long)hcpu
;
6709 switch (action
& ~CPU_TASKS_FROZEN
) {
6711 sched_domains_numa_masks_set(cpu
);
6715 sched_domains_numa_masks_clear(cpu
);
6725 static inline void sched_init_numa(void)
6729 static int sched_domains_numa_masks_update(struct notifier_block
*nfb
,
6730 unsigned long action
,
6735 #endif /* CONFIG_NUMA */
6737 static int __sdt_alloc(const struct cpumask
*cpu_map
)
6739 struct sched_domain_topology_level
*tl
;
6742 for_each_sd_topology(tl
) {
6743 struct sd_data
*sdd
= &tl
->data
;
6745 sdd
->sd
= alloc_percpu(struct sched_domain
*);
6749 sdd
->sg
= alloc_percpu(struct sched_group
*);
6753 sdd
->sgc
= alloc_percpu(struct sched_group_capacity
*);
6757 for_each_cpu(j
, cpu_map
) {
6758 struct sched_domain
*sd
;
6759 struct sched_group
*sg
;
6760 struct sched_group_capacity
*sgc
;
6762 sd
= kzalloc_node(sizeof(struct sched_domain
) + cpumask_size(),
6763 GFP_KERNEL
, cpu_to_node(j
));
6767 *per_cpu_ptr(sdd
->sd
, j
) = sd
;
6769 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6770 GFP_KERNEL
, cpu_to_node(j
));
6776 *per_cpu_ptr(sdd
->sg
, j
) = sg
;
6778 sgc
= kzalloc_node(sizeof(struct sched_group_capacity
) + cpumask_size(),
6779 GFP_KERNEL
, cpu_to_node(j
));
6783 *per_cpu_ptr(sdd
->sgc
, j
) = sgc
;
6790 static void __sdt_free(const struct cpumask
*cpu_map
)
6792 struct sched_domain_topology_level
*tl
;
6795 for_each_sd_topology(tl
) {
6796 struct sd_data
*sdd
= &tl
->data
;
6798 for_each_cpu(j
, cpu_map
) {
6799 struct sched_domain
*sd
;
6802 sd
= *per_cpu_ptr(sdd
->sd
, j
);
6803 if (sd
&& (sd
->flags
& SD_OVERLAP
))
6804 free_sched_groups(sd
->groups
, 0);
6805 kfree(*per_cpu_ptr(sdd
->sd
, j
));
6809 kfree(*per_cpu_ptr(sdd
->sg
, j
));
6811 kfree(*per_cpu_ptr(sdd
->sgc
, j
));
6813 free_percpu(sdd
->sd
);
6815 free_percpu(sdd
->sg
);
6817 free_percpu(sdd
->sgc
);
6822 struct sched_domain
*build_sched_domain(struct sched_domain_topology_level
*tl
,
6823 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
6824 struct sched_domain
*child
, int cpu
)
6826 struct sched_domain
*sd
= sd_init(tl
, cpu
);
6830 cpumask_and(sched_domain_span(sd
), cpu_map
, tl
->mask(cpu
));
6832 sd
->level
= child
->level
+ 1;
6833 sched_domain_level_max
= max(sched_domain_level_max
, sd
->level
);
6837 if (!cpumask_subset(sched_domain_span(child
),
6838 sched_domain_span(sd
))) {
6839 pr_err("BUG: arch topology borken\n");
6840 #ifdef CONFIG_SCHED_DEBUG
6841 pr_err(" the %s domain not a subset of the %s domain\n",
6842 child
->name
, sd
->name
);
6844 /* Fixup, ensure @sd has at least @child cpus. */
6845 cpumask_or(sched_domain_span(sd
),
6846 sched_domain_span(sd
),
6847 sched_domain_span(child
));
6851 set_domain_attribute(sd
, attr
);
6857 * Build sched domains for a given set of cpus and attach the sched domains
6858 * to the individual cpus
6860 static int build_sched_domains(const struct cpumask
*cpu_map
,
6861 struct sched_domain_attr
*attr
)
6863 enum s_alloc alloc_state
;
6864 struct sched_domain
*sd
;
6866 int i
, ret
= -ENOMEM
;
6868 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
6869 if (alloc_state
!= sa_rootdomain
)
6872 /* Set up domains for cpus specified by the cpu_map. */
6873 for_each_cpu(i
, cpu_map
) {
6874 struct sched_domain_topology_level
*tl
;
6877 for_each_sd_topology(tl
) {
6878 sd
= build_sched_domain(tl
, cpu_map
, attr
, sd
, i
);
6879 if (tl
== sched_domain_topology
)
6880 *per_cpu_ptr(d
.sd
, i
) = sd
;
6881 if (tl
->flags
& SDTL_OVERLAP
|| sched_feat(FORCE_SD_OVERLAP
))
6882 sd
->flags
|= SD_OVERLAP
;
6883 if (cpumask_equal(cpu_map
, sched_domain_span(sd
)))
6888 /* Build the groups for the domains */
6889 for_each_cpu(i
, cpu_map
) {
6890 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
6891 sd
->span_weight
= cpumask_weight(sched_domain_span(sd
));
6892 if (sd
->flags
& SD_OVERLAP
) {
6893 if (build_overlap_sched_groups(sd
, i
))
6896 if (build_sched_groups(sd
, i
))
6902 /* Calculate CPU capacity for physical packages and nodes */
6903 for (i
= nr_cpumask_bits
-1; i
>= 0; i
--) {
6904 if (!cpumask_test_cpu(i
, cpu_map
))
6907 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
6908 claim_allocations(i
, sd
);
6909 init_sched_groups_capacity(i
, sd
);
6913 /* Attach the domains */
6915 for_each_cpu(i
, cpu_map
) {
6916 sd
= *per_cpu_ptr(d
.sd
, i
);
6917 cpu_attach_domain(sd
, d
.rd
, i
);
6923 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
6927 static cpumask_var_t
*doms_cur
; /* current sched domains */
6928 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
6929 static struct sched_domain_attr
*dattr_cur
;
6930 /* attribues of custom domains in 'doms_cur' */
6933 * Special case: If a kmalloc of a doms_cur partition (array of
6934 * cpumask) fails, then fallback to a single sched domain,
6935 * as determined by the single cpumask fallback_doms.
6937 static cpumask_var_t fallback_doms
;
6940 * arch_update_cpu_topology lets virtualized architectures update the
6941 * cpu core maps. It is supposed to return 1 if the topology changed
6942 * or 0 if it stayed the same.
6944 int __weak
arch_update_cpu_topology(void)
6949 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
6952 cpumask_var_t
*doms
;
6954 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
6957 for (i
= 0; i
< ndoms
; i
++) {
6958 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
6959 free_sched_domains(doms
, i
);
6966 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
6969 for (i
= 0; i
< ndoms
; i
++)
6970 free_cpumask_var(doms
[i
]);
6975 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6976 * For now this just excludes isolated cpus, but could be used to
6977 * exclude other special cases in the future.
6979 static int init_sched_domains(const struct cpumask
*cpu_map
)
6983 arch_update_cpu_topology();
6985 doms_cur
= alloc_sched_domains(ndoms_cur
);
6987 doms_cur
= &fallback_doms
;
6988 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
6989 err
= build_sched_domains(doms_cur
[0], NULL
);
6990 register_sched_domain_sysctl();
6996 * Detach sched domains from a group of cpus specified in cpu_map
6997 * These cpus will now be attached to the NULL domain
6999 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7004 for_each_cpu(i
, cpu_map
)
7005 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7009 /* handle null as "default" */
7010 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7011 struct sched_domain_attr
*new, int idx_new
)
7013 struct sched_domain_attr tmp
;
7020 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7021 new ? (new + idx_new
) : &tmp
,
7022 sizeof(struct sched_domain_attr
));
7026 * Partition sched domains as specified by the 'ndoms_new'
7027 * cpumasks in the array doms_new[] of cpumasks. This compares
7028 * doms_new[] to the current sched domain partitioning, doms_cur[].
7029 * It destroys each deleted domain and builds each new domain.
7031 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7032 * The masks don't intersect (don't overlap.) We should setup one
7033 * sched domain for each mask. CPUs not in any of the cpumasks will
7034 * not be load balanced. If the same cpumask appears both in the
7035 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7038 * The passed in 'doms_new' should be allocated using
7039 * alloc_sched_domains. This routine takes ownership of it and will
7040 * free_sched_domains it when done with it. If the caller failed the
7041 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7042 * and partition_sched_domains() will fallback to the single partition
7043 * 'fallback_doms', it also forces the domains to be rebuilt.
7045 * If doms_new == NULL it will be replaced with cpu_online_mask.
7046 * ndoms_new == 0 is a special case for destroying existing domains,
7047 * and it will not create the default domain.
7049 * Call with hotplug lock held
7051 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
7052 struct sched_domain_attr
*dattr_new
)
7057 mutex_lock(&sched_domains_mutex
);
7059 /* always unregister in case we don't destroy any domains */
7060 unregister_sched_domain_sysctl();
7062 /* Let architecture update cpu core mappings. */
7063 new_topology
= arch_update_cpu_topology();
7065 n
= doms_new
? ndoms_new
: 0;
7067 /* Destroy deleted domains */
7068 for (i
= 0; i
< ndoms_cur
; i
++) {
7069 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7070 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
7071 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7074 /* no match - a current sched domain not in new doms_new[] */
7075 detach_destroy_domains(doms_cur
[i
]);
7081 if (doms_new
== NULL
) {
7083 doms_new
= &fallback_doms
;
7084 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
7085 WARN_ON_ONCE(dattr_new
);
7088 /* Build new domains */
7089 for (i
= 0; i
< ndoms_new
; i
++) {
7090 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7091 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
7092 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7095 /* no match - add a new doms_new */
7096 build_sched_domains(doms_new
[i
], dattr_new
? dattr_new
+ i
: NULL
);
7101 /* Remember the new sched domains */
7102 if (doms_cur
!= &fallback_doms
)
7103 free_sched_domains(doms_cur
, ndoms_cur
);
7104 kfree(dattr_cur
); /* kfree(NULL) is safe */
7105 doms_cur
= doms_new
;
7106 dattr_cur
= dattr_new
;
7107 ndoms_cur
= ndoms_new
;
7109 register_sched_domain_sysctl();
7111 mutex_unlock(&sched_domains_mutex
);
7114 static int num_cpus_frozen
; /* used to mark begin/end of suspend/resume */
7117 * Update cpusets according to cpu_active mask. If cpusets are
7118 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7119 * around partition_sched_domains().
7121 * If we come here as part of a suspend/resume, don't touch cpusets because we
7122 * want to restore it back to its original state upon resume anyway.
7124 static int cpuset_cpu_active(struct notifier_block
*nfb
, unsigned long action
,
7128 case CPU_ONLINE_FROZEN
:
7129 case CPU_DOWN_FAILED_FROZEN
:
7132 * num_cpus_frozen tracks how many CPUs are involved in suspend
7133 * resume sequence. As long as this is not the last online
7134 * operation in the resume sequence, just build a single sched
7135 * domain, ignoring cpusets.
7138 if (likely(num_cpus_frozen
)) {
7139 partition_sched_domains(1, NULL
, NULL
);
7144 * This is the last CPU online operation. So fall through and
7145 * restore the original sched domains by considering the
7146 * cpuset configurations.
7150 cpuset_update_active_cpus(true);
7158 static int cpuset_cpu_inactive(struct notifier_block
*nfb
, unsigned long action
,
7161 unsigned long flags
;
7162 long cpu
= (long)hcpu
;
7168 case CPU_DOWN_PREPARE
:
7169 rcu_read_lock_sched();
7170 dl_b
= dl_bw_of(cpu
);
7172 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
7173 cpus
= dl_bw_cpus(cpu
);
7174 overflow
= __dl_overflow(dl_b
, cpus
, 0, 0);
7175 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
7177 rcu_read_unlock_sched();
7180 return notifier_from_errno(-EBUSY
);
7181 cpuset_update_active_cpus(false);
7183 case CPU_DOWN_PREPARE_FROZEN
:
7185 partition_sched_domains(1, NULL
, NULL
);
7193 void __init
sched_init_smp(void)
7195 cpumask_var_t non_isolated_cpus
;
7197 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
7198 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
7200 /* nohz_full won't take effect without isolating the cpus. */
7201 tick_nohz_full_add_cpus_to(cpu_isolated_map
);
7206 * There's no userspace yet to cause hotplug operations; hence all the
7207 * cpu masks are stable and all blatant races in the below code cannot
7210 mutex_lock(&sched_domains_mutex
);
7211 init_sched_domains(cpu_active_mask
);
7212 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
7213 if (cpumask_empty(non_isolated_cpus
))
7214 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
7215 mutex_unlock(&sched_domains_mutex
);
7217 hotcpu_notifier(sched_domains_numa_masks_update
, CPU_PRI_SCHED_ACTIVE
);
7218 hotcpu_notifier(cpuset_cpu_active
, CPU_PRI_CPUSET_ACTIVE
);
7219 hotcpu_notifier(cpuset_cpu_inactive
, CPU_PRI_CPUSET_INACTIVE
);
7223 /* Move init over to a non-isolated CPU */
7224 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
7226 sched_init_granularity();
7227 free_cpumask_var(non_isolated_cpus
);
7229 init_sched_rt_class();
7230 init_sched_dl_class();
7233 void __init
sched_init_smp(void)
7235 sched_init_granularity();
7237 #endif /* CONFIG_SMP */
7239 int in_sched_functions(unsigned long addr
)
7241 return in_lock_functions(addr
) ||
7242 (addr
>= (unsigned long)__sched_text_start
7243 && addr
< (unsigned long)__sched_text_end
);
7246 #ifdef CONFIG_CGROUP_SCHED
7248 * Default task group.
7249 * Every task in system belongs to this group at bootup.
7251 struct task_group root_task_group
;
7252 LIST_HEAD(task_groups
);
7255 DECLARE_PER_CPU(cpumask_var_t
, load_balance_mask
);
7257 void __init
sched_init(void)
7260 unsigned long alloc_size
= 0, ptr
;
7262 #ifdef CONFIG_FAIR_GROUP_SCHED
7263 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7265 #ifdef CONFIG_RT_GROUP_SCHED
7266 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7269 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
7271 #ifdef CONFIG_FAIR_GROUP_SCHED
7272 root_task_group
.se
= (struct sched_entity
**)ptr
;
7273 ptr
+= nr_cpu_ids
* sizeof(void **);
7275 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7276 ptr
+= nr_cpu_ids
* sizeof(void **);
7278 #endif /* CONFIG_FAIR_GROUP_SCHED */
7279 #ifdef CONFIG_RT_GROUP_SCHED
7280 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7281 ptr
+= nr_cpu_ids
* sizeof(void **);
7283 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7284 ptr
+= nr_cpu_ids
* sizeof(void **);
7286 #endif /* CONFIG_RT_GROUP_SCHED */
7288 #ifdef CONFIG_CPUMASK_OFFSTACK
7289 for_each_possible_cpu(i
) {
7290 per_cpu(load_balance_mask
, i
) = (cpumask_var_t
)kzalloc_node(
7291 cpumask_size(), GFP_KERNEL
, cpu_to_node(i
));
7293 #endif /* CONFIG_CPUMASK_OFFSTACK */
7295 init_rt_bandwidth(&def_rt_bandwidth
,
7296 global_rt_period(), global_rt_runtime());
7297 init_dl_bandwidth(&def_dl_bandwidth
,
7298 global_rt_period(), global_rt_runtime());
7301 init_defrootdomain();
7304 #ifdef CONFIG_RT_GROUP_SCHED
7305 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
7306 global_rt_period(), global_rt_runtime());
7307 #endif /* CONFIG_RT_GROUP_SCHED */
7309 #ifdef CONFIG_CGROUP_SCHED
7310 list_add(&root_task_group
.list
, &task_groups
);
7311 INIT_LIST_HEAD(&root_task_group
.children
);
7312 INIT_LIST_HEAD(&root_task_group
.siblings
);
7313 autogroup_init(&init_task
);
7315 #endif /* CONFIG_CGROUP_SCHED */
7317 for_each_possible_cpu(i
) {
7321 raw_spin_lock_init(&rq
->lock
);
7323 rq
->calc_load_active
= 0;
7324 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
7325 init_cfs_rq(&rq
->cfs
);
7326 init_rt_rq(&rq
->rt
);
7327 init_dl_rq(&rq
->dl
);
7328 #ifdef CONFIG_FAIR_GROUP_SCHED
7329 root_task_group
.shares
= ROOT_TASK_GROUP_LOAD
;
7330 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7332 * How much cpu bandwidth does root_task_group get?
7334 * In case of task-groups formed thr' the cgroup filesystem, it
7335 * gets 100% of the cpu resources in the system. This overall
7336 * system cpu resource is divided among the tasks of
7337 * root_task_group and its child task-groups in a fair manner,
7338 * based on each entity's (task or task-group's) weight
7339 * (se->load.weight).
7341 * In other words, if root_task_group has 10 tasks of weight
7342 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7343 * then A0's share of the cpu resource is:
7345 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7347 * We achieve this by letting root_task_group's tasks sit
7348 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7350 init_cfs_bandwidth(&root_task_group
.cfs_bandwidth
);
7351 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
7352 #endif /* CONFIG_FAIR_GROUP_SCHED */
7354 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
7355 #ifdef CONFIG_RT_GROUP_SCHED
7356 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
7359 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7360 rq
->cpu_load
[j
] = 0;
7362 rq
->last_load_update_tick
= jiffies
;
7367 rq
->cpu_capacity
= rq
->cpu_capacity_orig
= SCHED_CAPACITY_SCALE
;
7368 rq
->balance_callback
= NULL
;
7369 rq
->active_balance
= 0;
7370 rq
->next_balance
= jiffies
;
7375 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
7376 rq
->max_idle_balance_cost
= sysctl_sched_migration_cost
;
7378 INIT_LIST_HEAD(&rq
->cfs_tasks
);
7380 rq_attach_root(rq
, &def_root_domain
);
7381 #ifdef CONFIG_NO_HZ_COMMON
7384 #ifdef CONFIG_NO_HZ_FULL
7385 rq
->last_sched_tick
= 0;
7389 atomic_set(&rq
->nr_iowait
, 0);
7392 set_load_weight(&init_task
);
7394 #ifdef CONFIG_PREEMPT_NOTIFIERS
7395 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7399 * The boot idle thread does lazy MMU switching as well:
7401 atomic_inc(&init_mm
.mm_count
);
7402 enter_lazy_tlb(&init_mm
, current
);
7405 * During early bootup we pretend to be a normal task:
7407 current
->sched_class
= &fair_sched_class
;
7410 * Make us the idle thread. Technically, schedule() should not be
7411 * called from this thread, however somewhere below it might be,
7412 * but because we are the idle thread, we just pick up running again
7413 * when this runqueue becomes "idle".
7415 init_idle(current
, smp_processor_id());
7417 calc_load_update
= jiffies
+ LOAD_FREQ
;
7420 zalloc_cpumask_var(&sched_domains_tmpmask
, GFP_NOWAIT
);
7421 /* May be allocated at isolcpus cmdline parse time */
7422 if (cpu_isolated_map
== NULL
)
7423 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
7424 idle_thread_set_boot_cpu();
7425 set_cpu_rq_start_time();
7427 init_sched_fair_class();
7429 scheduler_running
= 1;
7432 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7433 static inline int preempt_count_equals(int preempt_offset
)
7435 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
7437 return (nested
== preempt_offset
);
7440 void __might_sleep(const char *file
, int line
, int preempt_offset
)
7443 * Blocking primitives will set (and therefore destroy) current->state,
7444 * since we will exit with TASK_RUNNING make sure we enter with it,
7445 * otherwise we will destroy state.
7447 WARN_ONCE(current
->state
!= TASK_RUNNING
&& current
->task_state_change
,
7448 "do not call blocking ops when !TASK_RUNNING; "
7449 "state=%lx set at [<%p>] %pS\n",
7451 (void *)current
->task_state_change
,
7452 (void *)current
->task_state_change
);
7454 ___might_sleep(file
, line
, preempt_offset
);
7456 EXPORT_SYMBOL(__might_sleep
);
7458 void ___might_sleep(const char *file
, int line
, int preempt_offset
)
7460 static unsigned long prev_jiffy
; /* ratelimiting */
7462 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7463 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled() &&
7464 !is_idle_task(current
)) ||
7465 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
7467 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7469 prev_jiffy
= jiffies
;
7472 "BUG: sleeping function called from invalid context at %s:%d\n",
7475 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7476 in_atomic(), irqs_disabled(),
7477 current
->pid
, current
->comm
);
7479 if (task_stack_end_corrupted(current
))
7480 printk(KERN_EMERG
"Thread overran stack, or stack corrupted\n");
7482 debug_show_held_locks(current
);
7483 if (irqs_disabled())
7484 print_irqtrace_events(current
);
7485 #ifdef CONFIG_DEBUG_PREEMPT
7486 if (!preempt_count_equals(preempt_offset
)) {
7487 pr_err("Preemption disabled at:");
7488 print_ip_sym(current
->preempt_disable_ip
);
7494 EXPORT_SYMBOL(___might_sleep
);
7497 #ifdef CONFIG_MAGIC_SYSRQ
7498 void normalize_rt_tasks(void)
7500 struct task_struct
*g
, *p
;
7501 struct sched_attr attr
= {
7502 .sched_policy
= SCHED_NORMAL
,
7505 read_lock(&tasklist_lock
);
7506 for_each_process_thread(g
, p
) {
7508 * Only normalize user tasks:
7510 if (p
->flags
& PF_KTHREAD
)
7513 p
->se
.exec_start
= 0;
7514 #ifdef CONFIG_SCHEDSTATS
7515 p
->se
.statistics
.wait_start
= 0;
7516 p
->se
.statistics
.sleep_start
= 0;
7517 p
->se
.statistics
.block_start
= 0;
7520 if (!dl_task(p
) && !rt_task(p
)) {
7522 * Renice negative nice level userspace
7525 if (task_nice(p
) < 0)
7526 set_user_nice(p
, 0);
7530 __sched_setscheduler(p
, &attr
, false, false);
7532 read_unlock(&tasklist_lock
);
7535 #endif /* CONFIG_MAGIC_SYSRQ */
7537 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7539 * These functions are only useful for the IA64 MCA handling, or kdb.
7541 * They can only be called when the whole system has been
7542 * stopped - every CPU needs to be quiescent, and no scheduling
7543 * activity can take place. Using them for anything else would
7544 * be a serious bug, and as a result, they aren't even visible
7545 * under any other configuration.
7549 * curr_task - return the current task for a given cpu.
7550 * @cpu: the processor in question.
7552 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7554 * Return: The current task for @cpu.
7556 struct task_struct
*curr_task(int cpu
)
7558 return cpu_curr(cpu
);
7561 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7565 * set_curr_task - set the current task for a given cpu.
7566 * @cpu: the processor in question.
7567 * @p: the task pointer to set.
7569 * Description: This function must only be used when non-maskable interrupts
7570 * are serviced on a separate stack. It allows the architecture to switch the
7571 * notion of the current task on a cpu in a non-blocking manner. This function
7572 * must be called with all CPU's synchronized, and interrupts disabled, the
7573 * and caller must save the original value of the current task (see
7574 * curr_task() above) and restore that value before reenabling interrupts and
7575 * re-starting the system.
7577 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7579 void set_curr_task(int cpu
, struct task_struct
*p
)
7586 #ifdef CONFIG_CGROUP_SCHED
7587 /* task_group_lock serializes the addition/removal of task groups */
7588 static DEFINE_SPINLOCK(task_group_lock
);
7590 static void free_sched_group(struct task_group
*tg
)
7592 free_fair_sched_group(tg
);
7593 free_rt_sched_group(tg
);
7598 /* allocate runqueue etc for a new task group */
7599 struct task_group
*sched_create_group(struct task_group
*parent
)
7601 struct task_group
*tg
;
7603 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
7605 return ERR_PTR(-ENOMEM
);
7607 if (!alloc_fair_sched_group(tg
, parent
))
7610 if (!alloc_rt_sched_group(tg
, parent
))
7616 free_sched_group(tg
);
7617 return ERR_PTR(-ENOMEM
);
7620 void sched_online_group(struct task_group
*tg
, struct task_group
*parent
)
7622 unsigned long flags
;
7624 spin_lock_irqsave(&task_group_lock
, flags
);
7625 list_add_rcu(&tg
->list
, &task_groups
);
7627 WARN_ON(!parent
); /* root should already exist */
7629 tg
->parent
= parent
;
7630 INIT_LIST_HEAD(&tg
->children
);
7631 list_add_rcu(&tg
->siblings
, &parent
->children
);
7632 spin_unlock_irqrestore(&task_group_lock
, flags
);
7635 /* rcu callback to free various structures associated with a task group */
7636 static void free_sched_group_rcu(struct rcu_head
*rhp
)
7638 /* now it should be safe to free those cfs_rqs */
7639 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
7642 /* Destroy runqueue etc associated with a task group */
7643 void sched_destroy_group(struct task_group
*tg
)
7645 /* wait for possible concurrent references to cfs_rqs complete */
7646 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
7649 void sched_offline_group(struct task_group
*tg
)
7651 unsigned long flags
;
7654 /* end participation in shares distribution */
7655 for_each_possible_cpu(i
)
7656 unregister_fair_sched_group(tg
, i
);
7658 spin_lock_irqsave(&task_group_lock
, flags
);
7659 list_del_rcu(&tg
->list
);
7660 list_del_rcu(&tg
->siblings
);
7661 spin_unlock_irqrestore(&task_group_lock
, flags
);
7664 /* change task's runqueue when it moves between groups.
7665 * The caller of this function should have put the task in its new group
7666 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7667 * reflect its new group.
7669 void sched_move_task(struct task_struct
*tsk
)
7671 struct task_group
*tg
;
7672 int queued
, running
;
7673 unsigned long flags
;
7676 rq
= task_rq_lock(tsk
, &flags
);
7678 running
= task_current(rq
, tsk
);
7679 queued
= task_on_rq_queued(tsk
);
7682 dequeue_task(rq
, tsk
, 0);
7683 if (unlikely(running
))
7684 put_prev_task(rq
, tsk
);
7687 * All callers are synchronized by task_rq_lock(); we do not use RCU
7688 * which is pointless here. Thus, we pass "true" to task_css_check()
7689 * to prevent lockdep warnings.
7691 tg
= container_of(task_css_check(tsk
, cpu_cgrp_id
, true),
7692 struct task_group
, css
);
7693 tg
= autogroup_task_group(tsk
, tg
);
7694 tsk
->sched_task_group
= tg
;
7696 #ifdef CONFIG_FAIR_GROUP_SCHED
7697 if (tsk
->sched_class
->task_move_group
)
7698 tsk
->sched_class
->task_move_group(tsk
, queued
);
7701 set_task_rq(tsk
, task_cpu(tsk
));
7703 if (unlikely(running
))
7704 tsk
->sched_class
->set_curr_task(rq
);
7706 enqueue_task(rq
, tsk
, 0);
7708 task_rq_unlock(rq
, tsk
, &flags
);
7710 #endif /* CONFIG_CGROUP_SCHED */
7712 #ifdef CONFIG_RT_GROUP_SCHED
7714 * Ensure that the real time constraints are schedulable.
7716 static DEFINE_MUTEX(rt_constraints_mutex
);
7718 /* Must be called with tasklist_lock held */
7719 static inline int tg_has_rt_tasks(struct task_group
*tg
)
7721 struct task_struct
*g
, *p
;
7724 * Autogroups do not have RT tasks; see autogroup_create().
7726 if (task_group_is_autogroup(tg
))
7729 for_each_process_thread(g
, p
) {
7730 if (rt_task(p
) && task_group(p
) == tg
)
7737 struct rt_schedulable_data
{
7738 struct task_group
*tg
;
7743 static int tg_rt_schedulable(struct task_group
*tg
, void *data
)
7745 struct rt_schedulable_data
*d
= data
;
7746 struct task_group
*child
;
7747 unsigned long total
, sum
= 0;
7748 u64 period
, runtime
;
7750 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
7751 runtime
= tg
->rt_bandwidth
.rt_runtime
;
7754 period
= d
->rt_period
;
7755 runtime
= d
->rt_runtime
;
7759 * Cannot have more runtime than the period.
7761 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
7765 * Ensure we don't starve existing RT tasks.
7767 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
7770 total
= to_ratio(period
, runtime
);
7773 * Nobody can have more than the global setting allows.
7775 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
7779 * The sum of our children's runtime should not exceed our own.
7781 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
7782 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
7783 runtime
= child
->rt_bandwidth
.rt_runtime
;
7785 if (child
== d
->tg
) {
7786 period
= d
->rt_period
;
7787 runtime
= d
->rt_runtime
;
7790 sum
+= to_ratio(period
, runtime
);
7799 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
7803 struct rt_schedulable_data data
= {
7805 .rt_period
= period
,
7806 .rt_runtime
= runtime
,
7810 ret
= walk_tg_tree(tg_rt_schedulable
, tg_nop
, &data
);
7816 static int tg_set_rt_bandwidth(struct task_group
*tg
,
7817 u64 rt_period
, u64 rt_runtime
)
7822 * Disallowing the root group RT runtime is BAD, it would disallow the
7823 * kernel creating (and or operating) RT threads.
7825 if (tg
== &root_task_group
&& rt_runtime
== 0)
7828 /* No period doesn't make any sense. */
7832 mutex_lock(&rt_constraints_mutex
);
7833 read_lock(&tasklist_lock
);
7834 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
7838 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
7839 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
7840 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
7842 for_each_possible_cpu(i
) {
7843 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
7845 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
7846 rt_rq
->rt_runtime
= rt_runtime
;
7847 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
7849 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
7851 read_unlock(&tasklist_lock
);
7852 mutex_unlock(&rt_constraints_mutex
);
7857 static int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
7859 u64 rt_runtime
, rt_period
;
7861 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
7862 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
7863 if (rt_runtime_us
< 0)
7864 rt_runtime
= RUNTIME_INF
;
7866 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
7869 static long sched_group_rt_runtime(struct task_group
*tg
)
7873 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
7876 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
7877 do_div(rt_runtime_us
, NSEC_PER_USEC
);
7878 return rt_runtime_us
;
7881 static int sched_group_set_rt_period(struct task_group
*tg
, u64 rt_period_us
)
7883 u64 rt_runtime
, rt_period
;
7885 rt_period
= rt_period_us
* NSEC_PER_USEC
;
7886 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7888 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
7891 static long sched_group_rt_period(struct task_group
*tg
)
7895 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
7896 do_div(rt_period_us
, NSEC_PER_USEC
);
7897 return rt_period_us
;
7899 #endif /* CONFIG_RT_GROUP_SCHED */
7901 #ifdef CONFIG_RT_GROUP_SCHED
7902 static int sched_rt_global_constraints(void)
7906 mutex_lock(&rt_constraints_mutex
);
7907 read_lock(&tasklist_lock
);
7908 ret
= __rt_schedulable(NULL
, 0, 0);
7909 read_unlock(&tasklist_lock
);
7910 mutex_unlock(&rt_constraints_mutex
);
7915 static int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
7917 /* Don't accept realtime tasks when there is no way for them to run */
7918 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
7924 #else /* !CONFIG_RT_GROUP_SCHED */
7925 static int sched_rt_global_constraints(void)
7927 unsigned long flags
;
7930 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
7931 for_each_possible_cpu(i
) {
7932 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
7934 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
7935 rt_rq
->rt_runtime
= global_rt_runtime();
7936 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
7938 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
7942 #endif /* CONFIG_RT_GROUP_SCHED */
7944 static int sched_dl_global_validate(void)
7946 u64 runtime
= global_rt_runtime();
7947 u64 period
= global_rt_period();
7948 u64 new_bw
= to_ratio(period
, runtime
);
7951 unsigned long flags
;
7954 * Here we want to check the bandwidth not being set to some
7955 * value smaller than the currently allocated bandwidth in
7956 * any of the root_domains.
7958 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7959 * cycling on root_domains... Discussion on different/better
7960 * solutions is welcome!
7962 for_each_possible_cpu(cpu
) {
7963 rcu_read_lock_sched();
7964 dl_b
= dl_bw_of(cpu
);
7966 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
7967 if (new_bw
< dl_b
->total_bw
)
7969 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
7971 rcu_read_unlock_sched();
7980 static void sched_dl_do_global(void)
7985 unsigned long flags
;
7987 def_dl_bandwidth
.dl_period
= global_rt_period();
7988 def_dl_bandwidth
.dl_runtime
= global_rt_runtime();
7990 if (global_rt_runtime() != RUNTIME_INF
)
7991 new_bw
= to_ratio(global_rt_period(), global_rt_runtime());
7994 * FIXME: As above...
7996 for_each_possible_cpu(cpu
) {
7997 rcu_read_lock_sched();
7998 dl_b
= dl_bw_of(cpu
);
8000 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
8002 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
8004 rcu_read_unlock_sched();
8008 static int sched_rt_global_validate(void)
8010 if (sysctl_sched_rt_period
<= 0)
8013 if ((sysctl_sched_rt_runtime
!= RUNTIME_INF
) &&
8014 (sysctl_sched_rt_runtime
> sysctl_sched_rt_period
))
8020 static void sched_rt_do_global(void)
8022 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8023 def_rt_bandwidth
.rt_period
= ns_to_ktime(global_rt_period());
8026 int sched_rt_handler(struct ctl_table
*table
, int write
,
8027 void __user
*buffer
, size_t *lenp
,
8030 int old_period
, old_runtime
;
8031 static DEFINE_MUTEX(mutex
);
8035 old_period
= sysctl_sched_rt_period
;
8036 old_runtime
= sysctl_sched_rt_runtime
;
8038 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
8040 if (!ret
&& write
) {
8041 ret
= sched_rt_global_validate();
8045 ret
= sched_dl_global_validate();
8049 ret
= sched_rt_global_constraints();
8053 sched_rt_do_global();
8054 sched_dl_do_global();
8058 sysctl_sched_rt_period
= old_period
;
8059 sysctl_sched_rt_runtime
= old_runtime
;
8061 mutex_unlock(&mutex
);
8066 int sched_rr_handler(struct ctl_table
*table
, int write
,
8067 void __user
*buffer
, size_t *lenp
,
8071 static DEFINE_MUTEX(mutex
);
8074 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
8075 /* make sure that internally we keep jiffies */
8076 /* also, writing zero resets timeslice to default */
8077 if (!ret
&& write
) {
8078 sched_rr_timeslice
= sched_rr_timeslice
<= 0 ?
8079 RR_TIMESLICE
: msecs_to_jiffies(sched_rr_timeslice
);
8081 mutex_unlock(&mutex
);
8085 #ifdef CONFIG_CGROUP_SCHED
8087 static inline struct task_group
*css_tg(struct cgroup_subsys_state
*css
)
8089 return css
? container_of(css
, struct task_group
, css
) : NULL
;
8092 static struct cgroup_subsys_state
*
8093 cpu_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
8095 struct task_group
*parent
= css_tg(parent_css
);
8096 struct task_group
*tg
;
8099 /* This is early initialization for the top cgroup */
8100 return &root_task_group
.css
;
8103 tg
= sched_create_group(parent
);
8105 return ERR_PTR(-ENOMEM
);
8110 static int cpu_cgroup_css_online(struct cgroup_subsys_state
*css
)
8112 struct task_group
*tg
= css_tg(css
);
8113 struct task_group
*parent
= css_tg(css
->parent
);
8116 sched_online_group(tg
, parent
);
8120 static void cpu_cgroup_css_free(struct cgroup_subsys_state
*css
)
8122 struct task_group
*tg
= css_tg(css
);
8124 sched_destroy_group(tg
);
8127 static void cpu_cgroup_css_offline(struct cgroup_subsys_state
*css
)
8129 struct task_group
*tg
= css_tg(css
);
8131 sched_offline_group(tg
);
8134 static void cpu_cgroup_fork(struct task_struct
*task
, void *private)
8136 sched_move_task(task
);
8139 static int cpu_cgroup_can_attach(struct cgroup_subsys_state
*css
,
8140 struct cgroup_taskset
*tset
)
8142 struct task_struct
*task
;
8144 cgroup_taskset_for_each(task
, tset
) {
8145 #ifdef CONFIG_RT_GROUP_SCHED
8146 if (!sched_rt_can_attach(css_tg(css
), task
))
8149 /* We don't support RT-tasks being in separate groups */
8150 if (task
->sched_class
!= &fair_sched_class
)
8157 static void cpu_cgroup_attach(struct cgroup_subsys_state
*css
,
8158 struct cgroup_taskset
*tset
)
8160 struct task_struct
*task
;
8162 cgroup_taskset_for_each(task
, tset
)
8163 sched_move_task(task
);
8166 static void cpu_cgroup_exit(struct cgroup_subsys_state
*css
,
8167 struct cgroup_subsys_state
*old_css
,
8168 struct task_struct
*task
)
8171 * cgroup_exit() is called in the copy_process() failure path.
8172 * Ignore this case since the task hasn't ran yet, this avoids
8173 * trying to poke a half freed task state from generic code.
8175 if (!(task
->flags
& PF_EXITING
))
8178 sched_move_task(task
);
8181 #ifdef CONFIG_FAIR_GROUP_SCHED
8182 static int cpu_shares_write_u64(struct cgroup_subsys_state
*css
,
8183 struct cftype
*cftype
, u64 shareval
)
8185 return sched_group_set_shares(css_tg(css
), scale_load(shareval
));
8188 static u64
cpu_shares_read_u64(struct cgroup_subsys_state
*css
,
8191 struct task_group
*tg
= css_tg(css
);
8193 return (u64
) scale_load_down(tg
->shares
);
8196 #ifdef CONFIG_CFS_BANDWIDTH
8197 static DEFINE_MUTEX(cfs_constraints_mutex
);
8199 const u64 max_cfs_quota_period
= 1 * NSEC_PER_SEC
; /* 1s */
8200 const u64 min_cfs_quota_period
= 1 * NSEC_PER_MSEC
; /* 1ms */
8202 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
);
8204 static int tg_set_cfs_bandwidth(struct task_group
*tg
, u64 period
, u64 quota
)
8206 int i
, ret
= 0, runtime_enabled
, runtime_was_enabled
;
8207 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
8209 if (tg
== &root_task_group
)
8213 * Ensure we have at some amount of bandwidth every period. This is
8214 * to prevent reaching a state of large arrears when throttled via
8215 * entity_tick() resulting in prolonged exit starvation.
8217 if (quota
< min_cfs_quota_period
|| period
< min_cfs_quota_period
)
8221 * Likewise, bound things on the otherside by preventing insane quota
8222 * periods. This also allows us to normalize in computing quota
8225 if (period
> max_cfs_quota_period
)
8229 * Prevent race between setting of cfs_rq->runtime_enabled and
8230 * unthrottle_offline_cfs_rqs().
8233 mutex_lock(&cfs_constraints_mutex
);
8234 ret
= __cfs_schedulable(tg
, period
, quota
);
8238 runtime_enabled
= quota
!= RUNTIME_INF
;
8239 runtime_was_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
8241 * If we need to toggle cfs_bandwidth_used, off->on must occur
8242 * before making related changes, and on->off must occur afterwards
8244 if (runtime_enabled
&& !runtime_was_enabled
)
8245 cfs_bandwidth_usage_inc();
8246 raw_spin_lock_irq(&cfs_b
->lock
);
8247 cfs_b
->period
= ns_to_ktime(period
);
8248 cfs_b
->quota
= quota
;
8250 __refill_cfs_bandwidth_runtime(cfs_b
);
8251 /* restart the period timer (if active) to handle new period expiry */
8252 if (runtime_enabled
)
8253 start_cfs_bandwidth(cfs_b
);
8254 raw_spin_unlock_irq(&cfs_b
->lock
);
8256 for_each_online_cpu(i
) {
8257 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[i
];
8258 struct rq
*rq
= cfs_rq
->rq
;
8260 raw_spin_lock_irq(&rq
->lock
);
8261 cfs_rq
->runtime_enabled
= runtime_enabled
;
8262 cfs_rq
->runtime_remaining
= 0;
8264 if (cfs_rq
->throttled
)
8265 unthrottle_cfs_rq(cfs_rq
);
8266 raw_spin_unlock_irq(&rq
->lock
);
8268 if (runtime_was_enabled
&& !runtime_enabled
)
8269 cfs_bandwidth_usage_dec();
8271 mutex_unlock(&cfs_constraints_mutex
);
8277 int tg_set_cfs_quota(struct task_group
*tg
, long cfs_quota_us
)
8281 period
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
8282 if (cfs_quota_us
< 0)
8283 quota
= RUNTIME_INF
;
8285 quota
= (u64
)cfs_quota_us
* NSEC_PER_USEC
;
8287 return tg_set_cfs_bandwidth(tg
, period
, quota
);
8290 long tg_get_cfs_quota(struct task_group
*tg
)
8294 if (tg
->cfs_bandwidth
.quota
== RUNTIME_INF
)
8297 quota_us
= tg
->cfs_bandwidth
.quota
;
8298 do_div(quota_us
, NSEC_PER_USEC
);
8303 int tg_set_cfs_period(struct task_group
*tg
, long cfs_period_us
)
8307 period
= (u64
)cfs_period_us
* NSEC_PER_USEC
;
8308 quota
= tg
->cfs_bandwidth
.quota
;
8310 return tg_set_cfs_bandwidth(tg
, period
, quota
);
8313 long tg_get_cfs_period(struct task_group
*tg
)
8317 cfs_period_us
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
8318 do_div(cfs_period_us
, NSEC_PER_USEC
);
8320 return cfs_period_us
;
8323 static s64
cpu_cfs_quota_read_s64(struct cgroup_subsys_state
*css
,
8326 return tg_get_cfs_quota(css_tg(css
));
8329 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state
*css
,
8330 struct cftype
*cftype
, s64 cfs_quota_us
)
8332 return tg_set_cfs_quota(css_tg(css
), cfs_quota_us
);
8335 static u64
cpu_cfs_period_read_u64(struct cgroup_subsys_state
*css
,
8338 return tg_get_cfs_period(css_tg(css
));
8341 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state
*css
,
8342 struct cftype
*cftype
, u64 cfs_period_us
)
8344 return tg_set_cfs_period(css_tg(css
), cfs_period_us
);
8347 struct cfs_schedulable_data
{
8348 struct task_group
*tg
;
8353 * normalize group quota/period to be quota/max_period
8354 * note: units are usecs
8356 static u64
normalize_cfs_quota(struct task_group
*tg
,
8357 struct cfs_schedulable_data
*d
)
8365 period
= tg_get_cfs_period(tg
);
8366 quota
= tg_get_cfs_quota(tg
);
8369 /* note: these should typically be equivalent */
8370 if (quota
== RUNTIME_INF
|| quota
== -1)
8373 return to_ratio(period
, quota
);
8376 static int tg_cfs_schedulable_down(struct task_group
*tg
, void *data
)
8378 struct cfs_schedulable_data
*d
= data
;
8379 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
8380 s64 quota
= 0, parent_quota
= -1;
8383 quota
= RUNTIME_INF
;
8385 struct cfs_bandwidth
*parent_b
= &tg
->parent
->cfs_bandwidth
;
8387 quota
= normalize_cfs_quota(tg
, d
);
8388 parent_quota
= parent_b
->hierarchical_quota
;
8391 * ensure max(child_quota) <= parent_quota, inherit when no
8394 if (quota
== RUNTIME_INF
)
8395 quota
= parent_quota
;
8396 else if (parent_quota
!= RUNTIME_INF
&& quota
> parent_quota
)
8399 cfs_b
->hierarchical_quota
= quota
;
8404 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 quota
)
8407 struct cfs_schedulable_data data
= {
8413 if (quota
!= RUNTIME_INF
) {
8414 do_div(data
.period
, NSEC_PER_USEC
);
8415 do_div(data
.quota
, NSEC_PER_USEC
);
8419 ret
= walk_tg_tree(tg_cfs_schedulable_down
, tg_nop
, &data
);
8425 static int cpu_stats_show(struct seq_file
*sf
, void *v
)
8427 struct task_group
*tg
= css_tg(seq_css(sf
));
8428 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
8430 seq_printf(sf
, "nr_periods %d\n", cfs_b
->nr_periods
);
8431 seq_printf(sf
, "nr_throttled %d\n", cfs_b
->nr_throttled
);
8432 seq_printf(sf
, "throttled_time %llu\n", cfs_b
->throttled_time
);
8436 #endif /* CONFIG_CFS_BANDWIDTH */
8437 #endif /* CONFIG_FAIR_GROUP_SCHED */
8439 #ifdef CONFIG_RT_GROUP_SCHED
8440 static int cpu_rt_runtime_write(struct cgroup_subsys_state
*css
,
8441 struct cftype
*cft
, s64 val
)
8443 return sched_group_set_rt_runtime(css_tg(css
), val
);
8446 static s64
cpu_rt_runtime_read(struct cgroup_subsys_state
*css
,
8449 return sched_group_rt_runtime(css_tg(css
));
8452 static int cpu_rt_period_write_uint(struct cgroup_subsys_state
*css
,
8453 struct cftype
*cftype
, u64 rt_period_us
)
8455 return sched_group_set_rt_period(css_tg(css
), rt_period_us
);
8458 static u64
cpu_rt_period_read_uint(struct cgroup_subsys_state
*css
,
8461 return sched_group_rt_period(css_tg(css
));
8463 #endif /* CONFIG_RT_GROUP_SCHED */
8465 static struct cftype cpu_files
[] = {
8466 #ifdef CONFIG_FAIR_GROUP_SCHED
8469 .read_u64
= cpu_shares_read_u64
,
8470 .write_u64
= cpu_shares_write_u64
,
8473 #ifdef CONFIG_CFS_BANDWIDTH
8475 .name
= "cfs_quota_us",
8476 .read_s64
= cpu_cfs_quota_read_s64
,
8477 .write_s64
= cpu_cfs_quota_write_s64
,
8480 .name
= "cfs_period_us",
8481 .read_u64
= cpu_cfs_period_read_u64
,
8482 .write_u64
= cpu_cfs_period_write_u64
,
8486 .seq_show
= cpu_stats_show
,
8489 #ifdef CONFIG_RT_GROUP_SCHED
8491 .name
= "rt_runtime_us",
8492 .read_s64
= cpu_rt_runtime_read
,
8493 .write_s64
= cpu_rt_runtime_write
,
8496 .name
= "rt_period_us",
8497 .read_u64
= cpu_rt_period_read_uint
,
8498 .write_u64
= cpu_rt_period_write_uint
,
8504 struct cgroup_subsys cpu_cgrp_subsys
= {
8505 .css_alloc
= cpu_cgroup_css_alloc
,
8506 .css_free
= cpu_cgroup_css_free
,
8507 .css_online
= cpu_cgroup_css_online
,
8508 .css_offline
= cpu_cgroup_css_offline
,
8509 .fork
= cpu_cgroup_fork
,
8510 .can_attach
= cpu_cgroup_can_attach
,
8511 .attach
= cpu_cgroup_attach
,
8512 .exit
= cpu_cgroup_exit
,
8513 .legacy_cftypes
= cpu_files
,
8517 #endif /* CONFIG_CGROUP_SCHED */
8519 void dump_cpu_task(int cpu
)
8521 pr_info("Task dump for CPU %d:\n", cpu
);
8522 sched_show_task(cpu_curr(cpu
));