2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 #include <linux/export.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <linux/iversion.h>
22 #include <trace/events/writeback.h>
26 * Inode locking rules:
28 * inode->i_lock protects:
29 * inode->i_state, inode->i_hash, __iget()
30 * Inode LRU list locks protect:
31 * inode->i_sb->s_inode_lru, inode->i_lru
32 * inode->i_sb->s_inode_list_lock protects:
33 * inode->i_sb->s_inodes, inode->i_sb_list
34 * bdi->wb.list_lock protects:
35 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
36 * inode_hash_lock protects:
37 * inode_hashtable, inode->i_hash
41 * inode->i_sb->s_inode_list_lock
43 * Inode LRU list locks
49 * inode->i_sb->s_inode_list_lock
56 static unsigned int i_hash_mask __read_mostly
;
57 static unsigned int i_hash_shift __read_mostly
;
58 static struct hlist_head
*inode_hashtable __read_mostly
;
59 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_hash_lock
);
62 * Empty aops. Can be used for the cases where the user does not
63 * define any of the address_space operations.
65 const struct address_space_operations empty_aops
= {
67 EXPORT_SYMBOL(empty_aops
);
70 * Statistics gathering..
72 struct inodes_stat_t inodes_stat
;
74 static DEFINE_PER_CPU(unsigned long, nr_inodes
);
75 static DEFINE_PER_CPU(unsigned long, nr_unused
);
77 static struct kmem_cache
*inode_cachep __read_mostly
;
79 static long get_nr_inodes(void)
83 for_each_possible_cpu(i
)
84 sum
+= per_cpu(nr_inodes
, i
);
85 return sum
< 0 ? 0 : sum
;
88 static inline long get_nr_inodes_unused(void)
92 for_each_possible_cpu(i
)
93 sum
+= per_cpu(nr_unused
, i
);
94 return sum
< 0 ? 0 : sum
;
97 long get_nr_dirty_inodes(void)
99 /* not actually dirty inodes, but a wild approximation */
100 long nr_dirty
= get_nr_inodes() - get_nr_inodes_unused();
101 return nr_dirty
> 0 ? nr_dirty
: 0;
105 * Handle nr_inode sysctl
108 int proc_nr_inodes(struct ctl_table
*table
, int write
,
109 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
111 inodes_stat
.nr_inodes
= get_nr_inodes();
112 inodes_stat
.nr_unused
= get_nr_inodes_unused();
113 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
117 static int no_open(struct inode
*inode
, struct file
*file
)
123 * inode_init_always - perform inode structure initialisation
124 * @sb: superblock inode belongs to
125 * @inode: inode to initialise
127 * These are initializations that need to be done on every inode
128 * allocation as the fields are not initialised by slab allocation.
130 int inode_init_always(struct super_block
*sb
, struct inode
*inode
)
132 static const struct inode_operations empty_iops
;
133 static const struct file_operations no_open_fops
= {.open
= no_open
};
134 struct address_space
*const mapping
= &inode
->i_data
;
137 inode
->i_blkbits
= sb
->s_blocksize_bits
;
139 atomic64_set(&inode
->i_sequence
, 0);
140 atomic_set(&inode
->i_count
, 1);
141 inode
->i_op
= &empty_iops
;
142 inode
->i_fop
= &no_open_fops
;
143 inode
->__i_nlink
= 1;
144 inode
->i_opflags
= 0;
146 inode
->i_opflags
|= IOP_XATTR
;
147 i_uid_write(inode
, 0);
148 i_gid_write(inode
, 0);
149 atomic_set(&inode
->i_writecount
, 0);
151 inode
->i_write_hint
= WRITE_LIFE_NOT_SET
;
154 inode
->i_generation
= 0;
155 inode
->i_pipe
= NULL
;
156 inode
->i_bdev
= NULL
;
157 inode
->i_cdev
= NULL
;
158 inode
->i_link
= NULL
;
159 inode
->i_dir_seq
= 0;
161 inode
->dirtied_when
= 0;
163 #ifdef CONFIG_CGROUP_WRITEBACK
164 inode
->i_wb_frn_winner
= 0;
165 inode
->i_wb_frn_avg_time
= 0;
166 inode
->i_wb_frn_history
= 0;
169 if (security_inode_alloc(inode
))
171 spin_lock_init(&inode
->i_lock
);
172 lockdep_set_class(&inode
->i_lock
, &sb
->s_type
->i_lock_key
);
174 init_rwsem(&inode
->i_rwsem
);
175 lockdep_set_class(&inode
->i_rwsem
, &sb
->s_type
->i_mutex_key
);
177 atomic_set(&inode
->i_dio_count
, 0);
179 mapping
->a_ops
= &empty_aops
;
180 mapping
->host
= inode
;
183 atomic_set(&mapping
->i_mmap_writable
, 0);
184 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER_MOVABLE
);
185 mapping
->private_data
= NULL
;
186 mapping
->writeback_index
= 0;
187 inode
->i_private
= NULL
;
188 inode
->i_mapping
= mapping
;
189 INIT_HLIST_HEAD(&inode
->i_dentry
); /* buggered by rcu freeing */
190 #ifdef CONFIG_FS_POSIX_ACL
191 inode
->i_acl
= inode
->i_default_acl
= ACL_NOT_CACHED
;
194 #ifdef CONFIG_FSNOTIFY
195 inode
->i_fsnotify_mask
= 0;
197 inode
->i_flctx
= NULL
;
198 this_cpu_inc(nr_inodes
);
204 EXPORT_SYMBOL(inode_init_always
);
206 static struct inode
*alloc_inode(struct super_block
*sb
)
210 if (sb
->s_op
->alloc_inode
)
211 inode
= sb
->s_op
->alloc_inode(sb
);
213 inode
= kmem_cache_alloc(inode_cachep
, GFP_KERNEL
);
218 if (unlikely(inode_init_always(sb
, inode
))) {
219 if (inode
->i_sb
->s_op
->destroy_inode
)
220 inode
->i_sb
->s_op
->destroy_inode(inode
);
222 kmem_cache_free(inode_cachep
, inode
);
229 void free_inode_nonrcu(struct inode
*inode
)
231 kmem_cache_free(inode_cachep
, inode
);
233 EXPORT_SYMBOL(free_inode_nonrcu
);
235 void __destroy_inode(struct inode
*inode
)
237 BUG_ON(inode_has_buffers(inode
));
238 inode_detach_wb(inode
);
239 security_inode_free(inode
);
240 fsnotify_inode_delete(inode
);
241 locks_free_lock_context(inode
);
242 if (!inode
->i_nlink
) {
243 WARN_ON(atomic_long_read(&inode
->i_sb
->s_remove_count
) == 0);
244 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
247 #ifdef CONFIG_FS_POSIX_ACL
248 if (inode
->i_acl
&& !is_uncached_acl(inode
->i_acl
))
249 posix_acl_release(inode
->i_acl
);
250 if (inode
->i_default_acl
&& !is_uncached_acl(inode
->i_default_acl
))
251 posix_acl_release(inode
->i_default_acl
);
253 this_cpu_dec(nr_inodes
);
255 EXPORT_SYMBOL(__destroy_inode
);
257 static void i_callback(struct rcu_head
*head
)
259 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
260 kmem_cache_free(inode_cachep
, inode
);
263 static void destroy_inode(struct inode
*inode
)
265 BUG_ON(!list_empty(&inode
->i_lru
));
266 __destroy_inode(inode
);
267 if (inode
->i_sb
->s_op
->destroy_inode
)
268 inode
->i_sb
->s_op
->destroy_inode(inode
);
270 call_rcu(&inode
->i_rcu
, i_callback
);
274 * drop_nlink - directly drop an inode's link count
277 * This is a low-level filesystem helper to replace any
278 * direct filesystem manipulation of i_nlink. In cases
279 * where we are attempting to track writes to the
280 * filesystem, a decrement to zero means an imminent
281 * write when the file is truncated and actually unlinked
284 void drop_nlink(struct inode
*inode
)
286 WARN_ON(inode
->i_nlink
== 0);
289 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
291 EXPORT_SYMBOL(drop_nlink
);
294 * clear_nlink - directly zero an inode's link count
297 * This is a low-level filesystem helper to replace any
298 * direct filesystem manipulation of i_nlink. See
299 * drop_nlink() for why we care about i_nlink hitting zero.
301 void clear_nlink(struct inode
*inode
)
303 if (inode
->i_nlink
) {
304 inode
->__i_nlink
= 0;
305 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
308 EXPORT_SYMBOL(clear_nlink
);
311 * set_nlink - directly set an inode's link count
313 * @nlink: new nlink (should be non-zero)
315 * This is a low-level filesystem helper to replace any
316 * direct filesystem manipulation of i_nlink.
318 void set_nlink(struct inode
*inode
, unsigned int nlink
)
323 /* Yes, some filesystems do change nlink from zero to one */
324 if (inode
->i_nlink
== 0)
325 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
327 inode
->__i_nlink
= nlink
;
330 EXPORT_SYMBOL(set_nlink
);
333 * inc_nlink - directly increment an inode's link count
336 * This is a low-level filesystem helper to replace any
337 * direct filesystem manipulation of i_nlink. Currently,
338 * it is only here for parity with dec_nlink().
340 void inc_nlink(struct inode
*inode
)
342 if (unlikely(inode
->i_nlink
== 0)) {
343 WARN_ON(!(inode
->i_state
& I_LINKABLE
));
344 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
349 EXPORT_SYMBOL(inc_nlink
);
351 static void __address_space_init_once(struct address_space
*mapping
)
353 INIT_RADIX_TREE(&mapping
->i_pages
, GFP_ATOMIC
| __GFP_ACCOUNT
);
354 init_rwsem(&mapping
->i_mmap_rwsem
);
355 INIT_LIST_HEAD(&mapping
->private_list
);
356 spin_lock_init(&mapping
->private_lock
);
357 mapping
->i_mmap
= RB_ROOT_CACHED
;
360 void address_space_init_once(struct address_space
*mapping
)
362 memset(mapping
, 0, sizeof(*mapping
));
363 __address_space_init_once(mapping
);
365 EXPORT_SYMBOL(address_space_init_once
);
368 * These are initializations that only need to be done
369 * once, because the fields are idempotent across use
370 * of the inode, so let the slab aware of that.
372 void inode_init_once(struct inode
*inode
)
374 memset(inode
, 0, sizeof(*inode
));
375 INIT_HLIST_NODE(&inode
->i_hash
);
376 INIT_LIST_HEAD(&inode
->i_devices
);
377 INIT_LIST_HEAD(&inode
->i_io_list
);
378 INIT_LIST_HEAD(&inode
->i_wb_list
);
379 INIT_LIST_HEAD(&inode
->i_lru
);
380 __address_space_init_once(&inode
->i_data
);
381 i_size_ordered_init(inode
);
383 EXPORT_SYMBOL(inode_init_once
);
385 static void init_once(void *foo
)
387 struct inode
*inode
= (struct inode
*) foo
;
389 inode_init_once(inode
);
393 * inode->i_lock must be held
395 void __iget(struct inode
*inode
)
397 atomic_inc(&inode
->i_count
);
401 * get additional reference to inode; caller must already hold one.
403 void ihold(struct inode
*inode
)
405 WARN_ON(atomic_inc_return(&inode
->i_count
) < 2);
407 EXPORT_SYMBOL(ihold
);
409 static void inode_lru_list_add(struct inode
*inode
)
411 if (list_lru_add(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
412 this_cpu_inc(nr_unused
);
414 inode
->i_state
|= I_REFERENCED
;
418 * Add inode to LRU if needed (inode is unused and clean).
420 * Needs inode->i_lock held.
422 void inode_add_lru(struct inode
*inode
)
424 if (!(inode
->i_state
& (I_DIRTY_ALL
| I_SYNC
|
425 I_FREEING
| I_WILL_FREE
)) &&
426 !atomic_read(&inode
->i_count
) && inode
->i_sb
->s_flags
& SB_ACTIVE
)
427 inode_lru_list_add(inode
);
431 static void inode_lru_list_del(struct inode
*inode
)
434 if (list_lru_del(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
435 this_cpu_dec(nr_unused
);
439 * inode_sb_list_add - add inode to the superblock list of inodes
440 * @inode: inode to add
442 void inode_sb_list_add(struct inode
*inode
)
444 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
445 list_add(&inode
->i_sb_list
, &inode
->i_sb
->s_inodes
);
446 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
448 EXPORT_SYMBOL_GPL(inode_sb_list_add
);
450 static inline void inode_sb_list_del(struct inode
*inode
)
452 if (!list_empty(&inode
->i_sb_list
)) {
453 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
454 list_del_init(&inode
->i_sb_list
);
455 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
459 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
463 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
465 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> i_hash_shift
);
466 return tmp
& i_hash_mask
;
470 * __insert_inode_hash - hash an inode
471 * @inode: unhashed inode
472 * @hashval: unsigned long value used to locate this object in the
475 * Add an inode to the inode hash for this superblock.
477 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
479 struct hlist_head
*b
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
481 spin_lock(&inode_hash_lock
);
482 spin_lock(&inode
->i_lock
);
483 hlist_add_head(&inode
->i_hash
, b
);
484 spin_unlock(&inode
->i_lock
);
485 spin_unlock(&inode_hash_lock
);
487 EXPORT_SYMBOL(__insert_inode_hash
);
490 * __remove_inode_hash - remove an inode from the hash
491 * @inode: inode to unhash
493 * Remove an inode from the superblock.
495 void __remove_inode_hash(struct inode
*inode
)
497 spin_lock(&inode_hash_lock
);
498 spin_lock(&inode
->i_lock
);
499 hlist_del_init(&inode
->i_hash
);
500 spin_unlock(&inode
->i_lock
);
501 spin_unlock(&inode_hash_lock
);
503 EXPORT_SYMBOL(__remove_inode_hash
);
505 void clear_inode(struct inode
*inode
)
508 * We have to cycle the i_pages lock here because reclaim can be in the
509 * process of removing the last page (in __delete_from_page_cache())
510 * and we must not free the mapping under it.
512 xa_lock_irq(&inode
->i_data
.i_pages
);
513 BUG_ON(inode
->i_data
.nrpages
);
514 BUG_ON(inode
->i_data
.nrexceptional
);
515 xa_unlock_irq(&inode
->i_data
.i_pages
);
516 BUG_ON(!list_empty(&inode
->i_data
.private_list
));
517 BUG_ON(!(inode
->i_state
& I_FREEING
));
518 BUG_ON(inode
->i_state
& I_CLEAR
);
519 BUG_ON(!list_empty(&inode
->i_wb_list
));
520 /* don't need i_lock here, no concurrent mods to i_state */
521 inode
->i_state
= I_FREEING
| I_CLEAR
;
523 EXPORT_SYMBOL(clear_inode
);
526 * Free the inode passed in, removing it from the lists it is still connected
527 * to. We remove any pages still attached to the inode and wait for any IO that
528 * is still in progress before finally destroying the inode.
530 * An inode must already be marked I_FREEING so that we avoid the inode being
531 * moved back onto lists if we race with other code that manipulates the lists
532 * (e.g. writeback_single_inode). The caller is responsible for setting this.
534 * An inode must already be removed from the LRU list before being evicted from
535 * the cache. This should occur atomically with setting the I_FREEING state
536 * flag, so no inodes here should ever be on the LRU when being evicted.
538 static void evict(struct inode
*inode
)
540 const struct super_operations
*op
= inode
->i_sb
->s_op
;
542 BUG_ON(!(inode
->i_state
& I_FREEING
));
543 BUG_ON(!list_empty(&inode
->i_lru
));
545 if (!list_empty(&inode
->i_io_list
))
546 inode_io_list_del(inode
);
548 inode_sb_list_del(inode
);
551 * Wait for flusher thread to be done with the inode so that filesystem
552 * does not start destroying it while writeback is still running. Since
553 * the inode has I_FREEING set, flusher thread won't start new work on
554 * the inode. We just have to wait for running writeback to finish.
556 inode_wait_for_writeback(inode
);
558 if (op
->evict_inode
) {
559 op
->evict_inode(inode
);
561 truncate_inode_pages_final(&inode
->i_data
);
564 if (S_ISBLK(inode
->i_mode
) && inode
->i_bdev
)
566 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
569 remove_inode_hash(inode
);
571 spin_lock(&inode
->i_lock
);
572 wake_up_bit(&inode
->i_state
, __I_NEW
);
573 BUG_ON(inode
->i_state
!= (I_FREEING
| I_CLEAR
));
574 spin_unlock(&inode
->i_lock
);
576 destroy_inode(inode
);
580 * dispose_list - dispose of the contents of a local list
581 * @head: the head of the list to free
583 * Dispose-list gets a local list with local inodes in it, so it doesn't
584 * need to worry about list corruption and SMP locks.
586 static void dispose_list(struct list_head
*head
)
588 while (!list_empty(head
)) {
591 inode
= list_first_entry(head
, struct inode
, i_lru
);
592 list_del_init(&inode
->i_lru
);
600 * evict_inodes - evict all evictable inodes for a superblock
601 * @sb: superblock to operate on
603 * Make sure that no inodes with zero refcount are retained. This is
604 * called by superblock shutdown after having SB_ACTIVE flag removed,
605 * so any inode reaching zero refcount during or after that call will
606 * be immediately evicted.
608 void evict_inodes(struct super_block
*sb
)
610 struct inode
*inode
, *next
;
614 spin_lock(&sb
->s_inode_list_lock
);
615 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
616 if (atomic_read(&inode
->i_count
))
619 spin_lock(&inode
->i_lock
);
620 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
621 spin_unlock(&inode
->i_lock
);
625 inode
->i_state
|= I_FREEING
;
626 inode_lru_list_del(inode
);
627 spin_unlock(&inode
->i_lock
);
628 list_add(&inode
->i_lru
, &dispose
);
631 * We can have a ton of inodes to evict at unmount time given
632 * enough memory, check to see if we need to go to sleep for a
633 * bit so we don't livelock.
635 if (need_resched()) {
636 spin_unlock(&sb
->s_inode_list_lock
);
638 dispose_list(&dispose
);
642 spin_unlock(&sb
->s_inode_list_lock
);
644 dispose_list(&dispose
);
646 EXPORT_SYMBOL_GPL(evict_inodes
);
649 * invalidate_inodes - attempt to free all inodes on a superblock
650 * @sb: superblock to operate on
651 * @kill_dirty: flag to guide handling of dirty inodes
653 * Attempts to free all inodes for a given superblock. If there were any
654 * busy inodes return a non-zero value, else zero.
655 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
658 int invalidate_inodes(struct super_block
*sb
, bool kill_dirty
)
661 struct inode
*inode
, *next
;
665 spin_lock(&sb
->s_inode_list_lock
);
666 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
667 spin_lock(&inode
->i_lock
);
668 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
669 spin_unlock(&inode
->i_lock
);
672 if (inode
->i_state
& I_DIRTY_ALL
&& !kill_dirty
) {
673 spin_unlock(&inode
->i_lock
);
677 if (atomic_read(&inode
->i_count
)) {
678 spin_unlock(&inode
->i_lock
);
683 inode
->i_state
|= I_FREEING
;
684 inode_lru_list_del(inode
);
685 spin_unlock(&inode
->i_lock
);
686 list_add(&inode
->i_lru
, &dispose
);
687 if (need_resched()) {
688 spin_unlock(&sb
->s_inode_list_lock
);
690 dispose_list(&dispose
);
694 spin_unlock(&sb
->s_inode_list_lock
);
696 dispose_list(&dispose
);
702 * Isolate the inode from the LRU in preparation for freeing it.
704 * Any inodes which are pinned purely because of attached pagecache have their
705 * pagecache removed. If the inode has metadata buffers attached to
706 * mapping->private_list then try to remove them.
708 * If the inode has the I_REFERENCED flag set, then it means that it has been
709 * used recently - the flag is set in iput_final(). When we encounter such an
710 * inode, clear the flag and move it to the back of the LRU so it gets another
711 * pass through the LRU before it gets reclaimed. This is necessary because of
712 * the fact we are doing lazy LRU updates to minimise lock contention so the
713 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
714 * with this flag set because they are the inodes that are out of order.
716 static enum lru_status
inode_lru_isolate(struct list_head
*item
,
717 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
719 struct list_head
*freeable
= arg
;
720 struct inode
*inode
= container_of(item
, struct inode
, i_lru
);
723 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
724 * If we fail to get the lock, just skip it.
726 if (!spin_trylock(&inode
->i_lock
))
730 * Referenced or dirty inodes are still in use. Give them another pass
731 * through the LRU as we canot reclaim them now.
733 if (atomic_read(&inode
->i_count
) ||
734 (inode
->i_state
& ~I_REFERENCED
)) {
735 list_lru_isolate(lru
, &inode
->i_lru
);
736 spin_unlock(&inode
->i_lock
);
737 this_cpu_dec(nr_unused
);
741 /* recently referenced inodes get one more pass */
742 if (inode
->i_state
& I_REFERENCED
) {
743 inode
->i_state
&= ~I_REFERENCED
;
744 spin_unlock(&inode
->i_lock
);
748 if (inode_has_buffers(inode
) || inode
->i_data
.nrpages
) {
750 spin_unlock(&inode
->i_lock
);
751 spin_unlock(lru_lock
);
752 if (remove_inode_buffers(inode
)) {
754 reap
= invalidate_mapping_pages(&inode
->i_data
, 0, -1);
755 if (current_is_kswapd())
756 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
758 __count_vm_events(PGINODESTEAL
, reap
);
759 if (current
->reclaim_state
)
760 current
->reclaim_state
->reclaimed_slab
+= reap
;
767 WARN_ON(inode
->i_state
& I_NEW
);
768 inode
->i_state
|= I_FREEING
;
769 list_lru_isolate_move(lru
, &inode
->i_lru
, freeable
);
770 spin_unlock(&inode
->i_lock
);
772 this_cpu_dec(nr_unused
);
777 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
778 * This is called from the superblock shrinker function with a number of inodes
779 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
780 * then are freed outside inode_lock by dispose_list().
782 long prune_icache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
787 freed
= list_lru_shrink_walk(&sb
->s_inode_lru
, sc
,
788 inode_lru_isolate
, &freeable
);
789 dispose_list(&freeable
);
793 static void __wait_on_freeing_inode(struct inode
*inode
);
795 * Called with the inode lock held.
797 static struct inode
*find_inode(struct super_block
*sb
,
798 struct hlist_head
*head
,
799 int (*test
)(struct inode
*, void *),
802 struct inode
*inode
= NULL
;
805 hlist_for_each_entry(inode
, head
, i_hash
) {
806 if (inode
->i_sb
!= sb
)
808 if (!test(inode
, data
))
810 spin_lock(&inode
->i_lock
);
811 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
812 __wait_on_freeing_inode(inode
);
815 if (unlikely(inode
->i_state
& I_CREATING
)) {
816 spin_unlock(&inode
->i_lock
);
817 return ERR_PTR(-ESTALE
);
820 spin_unlock(&inode
->i_lock
);
827 * find_inode_fast is the fast path version of find_inode, see the comment at
828 * iget_locked for details.
830 static struct inode
*find_inode_fast(struct super_block
*sb
,
831 struct hlist_head
*head
, unsigned long ino
)
833 struct inode
*inode
= NULL
;
836 hlist_for_each_entry(inode
, head
, i_hash
) {
837 if (inode
->i_ino
!= ino
)
839 if (inode
->i_sb
!= sb
)
841 spin_lock(&inode
->i_lock
);
842 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
843 __wait_on_freeing_inode(inode
);
846 if (unlikely(inode
->i_state
& I_CREATING
)) {
847 spin_unlock(&inode
->i_lock
);
848 return ERR_PTR(-ESTALE
);
851 spin_unlock(&inode
->i_lock
);
858 * Each cpu owns a range of LAST_INO_BATCH numbers.
859 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
860 * to renew the exhausted range.
862 * This does not significantly increase overflow rate because every CPU can
863 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
864 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
865 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
866 * overflow rate by 2x, which does not seem too significant.
868 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
869 * error if st_ino won't fit in target struct field. Use 32bit counter
870 * here to attempt to avoid that.
872 #define LAST_INO_BATCH 1024
873 static DEFINE_PER_CPU(unsigned int, last_ino
);
875 unsigned int get_next_ino(void)
877 unsigned int *p
= &get_cpu_var(last_ino
);
878 unsigned int res
= *p
;
881 if (unlikely((res
& (LAST_INO_BATCH
-1)) == 0)) {
882 static atomic_t shared_last_ino
;
883 int next
= atomic_add_return(LAST_INO_BATCH
, &shared_last_ino
);
885 res
= next
- LAST_INO_BATCH
;
890 /* get_next_ino should not provide a 0 inode number */
894 put_cpu_var(last_ino
);
897 EXPORT_SYMBOL(get_next_ino
);
900 * new_inode_pseudo - obtain an inode
903 * Allocates a new inode for given superblock.
904 * Inode wont be chained in superblock s_inodes list
906 * - fs can't be unmount
907 * - quotas, fsnotify, writeback can't work
909 struct inode
*new_inode_pseudo(struct super_block
*sb
)
911 struct inode
*inode
= alloc_inode(sb
);
914 spin_lock(&inode
->i_lock
);
916 spin_unlock(&inode
->i_lock
);
917 INIT_LIST_HEAD(&inode
->i_sb_list
);
923 * new_inode - obtain an inode
926 * Allocates a new inode for given superblock. The default gfp_mask
927 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
928 * If HIGHMEM pages are unsuitable or it is known that pages allocated
929 * for the page cache are not reclaimable or migratable,
930 * mapping_set_gfp_mask() must be called with suitable flags on the
931 * newly created inode's mapping
934 struct inode
*new_inode(struct super_block
*sb
)
938 spin_lock_prefetch(&sb
->s_inode_list_lock
);
940 inode
= new_inode_pseudo(sb
);
942 inode_sb_list_add(inode
);
945 EXPORT_SYMBOL(new_inode
);
947 #ifdef CONFIG_DEBUG_LOCK_ALLOC
948 void lockdep_annotate_inode_mutex_key(struct inode
*inode
)
950 if (S_ISDIR(inode
->i_mode
)) {
951 struct file_system_type
*type
= inode
->i_sb
->s_type
;
953 /* Set new key only if filesystem hasn't already changed it */
954 if (lockdep_match_class(&inode
->i_rwsem
, &type
->i_mutex_key
)) {
956 * ensure nobody is actually holding i_mutex
958 // mutex_destroy(&inode->i_mutex);
959 init_rwsem(&inode
->i_rwsem
);
960 lockdep_set_class(&inode
->i_rwsem
,
961 &type
->i_mutex_dir_key
);
965 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key
);
969 * unlock_new_inode - clear the I_NEW state and wake up any waiters
970 * @inode: new inode to unlock
972 * Called when the inode is fully initialised to clear the new state of the
973 * inode and wake up anyone waiting for the inode to finish initialisation.
975 void unlock_new_inode(struct inode
*inode
)
977 lockdep_annotate_inode_mutex_key(inode
);
978 spin_lock(&inode
->i_lock
);
979 WARN_ON(!(inode
->i_state
& I_NEW
));
980 inode
->i_state
&= ~I_NEW
& ~I_CREATING
;
982 wake_up_bit(&inode
->i_state
, __I_NEW
);
983 spin_unlock(&inode
->i_lock
);
985 EXPORT_SYMBOL(unlock_new_inode
);
987 void discard_new_inode(struct inode
*inode
)
989 lockdep_annotate_inode_mutex_key(inode
);
990 spin_lock(&inode
->i_lock
);
991 WARN_ON(!(inode
->i_state
& I_NEW
));
992 inode
->i_state
&= ~I_NEW
;
994 wake_up_bit(&inode
->i_state
, __I_NEW
);
995 spin_unlock(&inode
->i_lock
);
998 EXPORT_SYMBOL(discard_new_inode
);
1001 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1003 * Lock any non-NULL argument that is not a directory.
1004 * Zero, one or two objects may be locked by this function.
1006 * @inode1: first inode to lock
1007 * @inode2: second inode to lock
1009 void lock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
1011 if (inode1
> inode2
)
1012 swap(inode1
, inode2
);
1014 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
1016 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
1017 inode_lock_nested(inode2
, I_MUTEX_NONDIR2
);
1019 EXPORT_SYMBOL(lock_two_nondirectories
);
1022 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1023 * @inode1: first inode to unlock
1024 * @inode2: second inode to unlock
1026 void unlock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
1028 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
1029 inode_unlock(inode1
);
1030 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
1031 inode_unlock(inode2
);
1033 EXPORT_SYMBOL(unlock_two_nondirectories
);
1036 * inode_insert5 - obtain an inode from a mounted file system
1037 * @inode: pre-allocated inode to use for insert to cache
1038 * @hashval: hash value (usually inode number) to get
1039 * @test: callback used for comparisons between inodes
1040 * @set: callback used to initialize a new struct inode
1041 * @data: opaque data pointer to pass to @test and @set
1043 * Search for the inode specified by @hashval and @data in the inode cache,
1044 * and if present it is return it with an increased reference count. This is
1045 * a variant of iget5_locked() for callers that don't want to fail on memory
1046 * allocation of inode.
1048 * If the inode is not in cache, insert the pre-allocated inode to cache and
1049 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1050 * to fill it in before unlocking it via unlock_new_inode().
1052 * Note both @test and @set are called with the inode_hash_lock held, so can't
1055 struct inode
*inode_insert5(struct inode
*inode
, unsigned long hashval
,
1056 int (*test
)(struct inode
*, void *),
1057 int (*set
)(struct inode
*, void *), void *data
)
1059 struct hlist_head
*head
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
1061 bool creating
= inode
->i_state
& I_CREATING
;
1064 spin_lock(&inode_hash_lock
);
1065 old
= find_inode(inode
->i_sb
, head
, test
, data
);
1066 if (unlikely(old
)) {
1068 * Uhhuh, somebody else created the same inode under us.
1069 * Use the old inode instead of the preallocated one.
1071 spin_unlock(&inode_hash_lock
);
1075 if (unlikely(inode_unhashed(old
))) {
1082 if (set
&& unlikely(set(inode
, data
))) {
1088 * Return the locked inode with I_NEW set, the
1089 * caller is responsible for filling in the contents
1091 spin_lock(&inode
->i_lock
);
1092 inode
->i_state
|= I_NEW
;
1093 hlist_add_head(&inode
->i_hash
, head
);
1094 spin_unlock(&inode
->i_lock
);
1096 inode_sb_list_add(inode
);
1098 spin_unlock(&inode_hash_lock
);
1102 EXPORT_SYMBOL(inode_insert5
);
1105 * iget5_locked - obtain an inode from a mounted file system
1106 * @sb: super block of file system
1107 * @hashval: hash value (usually inode number) to get
1108 * @test: callback used for comparisons between inodes
1109 * @set: callback used to initialize a new struct inode
1110 * @data: opaque data pointer to pass to @test and @set
1112 * Search for the inode specified by @hashval and @data in the inode cache,
1113 * and if present it is return it with an increased reference count. This is
1114 * a generalized version of iget_locked() for file systems where the inode
1115 * number is not sufficient for unique identification of an inode.
1117 * If the inode is not in cache, allocate a new inode and return it locked,
1118 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1119 * before unlocking it via unlock_new_inode().
1121 * Note both @test and @set are called with the inode_hash_lock held, so can't
1124 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
1125 int (*test
)(struct inode
*, void *),
1126 int (*set
)(struct inode
*, void *), void *data
)
1128 struct inode
*inode
= ilookup5(sb
, hashval
, test
, data
);
1131 struct inode
*new = alloc_inode(sb
);
1135 inode
= inode_insert5(new, hashval
, test
, set
, data
);
1136 if (unlikely(inode
!= new))
1142 EXPORT_SYMBOL(iget5_locked
);
1145 * iget_locked - obtain an inode from a mounted file system
1146 * @sb: super block of file system
1147 * @ino: inode number to get
1149 * Search for the inode specified by @ino in the inode cache and if present
1150 * return it with an increased reference count. This is for file systems
1151 * where the inode number is sufficient for unique identification of an inode.
1153 * If the inode is not in cache, allocate a new inode and return it locked,
1154 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1155 * before unlocking it via unlock_new_inode().
1157 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
1159 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1160 struct inode
*inode
;
1162 spin_lock(&inode_hash_lock
);
1163 inode
= find_inode_fast(sb
, head
, ino
);
1164 spin_unlock(&inode_hash_lock
);
1168 wait_on_inode(inode
);
1169 if (unlikely(inode_unhashed(inode
))) {
1176 inode
= alloc_inode(sb
);
1180 spin_lock(&inode_hash_lock
);
1181 /* We released the lock, so.. */
1182 old
= find_inode_fast(sb
, head
, ino
);
1185 spin_lock(&inode
->i_lock
);
1186 inode
->i_state
= I_NEW
;
1187 hlist_add_head(&inode
->i_hash
, head
);
1188 spin_unlock(&inode
->i_lock
);
1189 inode_sb_list_add(inode
);
1190 spin_unlock(&inode_hash_lock
);
1192 /* Return the locked inode with I_NEW set, the
1193 * caller is responsible for filling in the contents
1199 * Uhhuh, somebody else created the same inode under
1200 * us. Use the old inode instead of the one we just
1203 spin_unlock(&inode_hash_lock
);
1204 destroy_inode(inode
);
1208 wait_on_inode(inode
);
1209 if (unlikely(inode_unhashed(inode
))) {
1216 EXPORT_SYMBOL(iget_locked
);
1219 * search the inode cache for a matching inode number.
1220 * If we find one, then the inode number we are trying to
1221 * allocate is not unique and so we should not use it.
1223 * Returns 1 if the inode number is unique, 0 if it is not.
1225 static int test_inode_iunique(struct super_block
*sb
, unsigned long ino
)
1227 struct hlist_head
*b
= inode_hashtable
+ hash(sb
, ino
);
1228 struct inode
*inode
;
1230 spin_lock(&inode_hash_lock
);
1231 hlist_for_each_entry(inode
, b
, i_hash
) {
1232 if (inode
->i_ino
== ino
&& inode
->i_sb
== sb
) {
1233 spin_unlock(&inode_hash_lock
);
1237 spin_unlock(&inode_hash_lock
);
1243 * iunique - get a unique inode number
1245 * @max_reserved: highest reserved inode number
1247 * Obtain an inode number that is unique on the system for a given
1248 * superblock. This is used by file systems that have no natural
1249 * permanent inode numbering system. An inode number is returned that
1250 * is higher than the reserved limit but unique.
1253 * With a large number of inodes live on the file system this function
1254 * currently becomes quite slow.
1256 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
1259 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1260 * error if st_ino won't fit in target struct field. Use 32bit counter
1261 * here to attempt to avoid that.
1263 static DEFINE_SPINLOCK(iunique_lock
);
1264 static unsigned int counter
;
1267 spin_lock(&iunique_lock
);
1269 if (counter
<= max_reserved
)
1270 counter
= max_reserved
+ 1;
1272 } while (!test_inode_iunique(sb
, res
));
1273 spin_unlock(&iunique_lock
);
1277 EXPORT_SYMBOL(iunique
);
1279 struct inode
*igrab(struct inode
*inode
)
1281 spin_lock(&inode
->i_lock
);
1282 if (!(inode
->i_state
& (I_FREEING
|I_WILL_FREE
))) {
1284 spin_unlock(&inode
->i_lock
);
1286 spin_unlock(&inode
->i_lock
);
1288 * Handle the case where s_op->clear_inode is not been
1289 * called yet, and somebody is calling igrab
1290 * while the inode is getting freed.
1296 EXPORT_SYMBOL(igrab
);
1299 * ilookup5_nowait - search for an inode in the inode cache
1300 * @sb: super block of file system to search
1301 * @hashval: hash value (usually inode number) to search for
1302 * @test: callback used for comparisons between inodes
1303 * @data: opaque data pointer to pass to @test
1305 * Search for the inode specified by @hashval and @data in the inode cache.
1306 * If the inode is in the cache, the inode is returned with an incremented
1309 * Note: I_NEW is not waited upon so you have to be very careful what you do
1310 * with the returned inode. You probably should be using ilookup5() instead.
1312 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1314 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
1315 int (*test
)(struct inode
*, void *), void *data
)
1317 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1318 struct inode
*inode
;
1320 spin_lock(&inode_hash_lock
);
1321 inode
= find_inode(sb
, head
, test
, data
);
1322 spin_unlock(&inode_hash_lock
);
1324 return IS_ERR(inode
) ? NULL
: inode
;
1326 EXPORT_SYMBOL(ilookup5_nowait
);
1329 * ilookup5 - search for an inode in the inode cache
1330 * @sb: super block of file system to search
1331 * @hashval: hash value (usually inode number) to search for
1332 * @test: callback used for comparisons between inodes
1333 * @data: opaque data pointer to pass to @test
1335 * Search for the inode specified by @hashval and @data in the inode cache,
1336 * and if the inode is in the cache, return the inode with an incremented
1337 * reference count. Waits on I_NEW before returning the inode.
1338 * returned with an incremented reference count.
1340 * This is a generalized version of ilookup() for file systems where the
1341 * inode number is not sufficient for unique identification of an inode.
1343 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1345 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
1346 int (*test
)(struct inode
*, void *), void *data
)
1348 struct inode
*inode
;
1350 inode
= ilookup5_nowait(sb
, hashval
, test
, data
);
1352 wait_on_inode(inode
);
1353 if (unlikely(inode_unhashed(inode
))) {
1360 EXPORT_SYMBOL(ilookup5
);
1363 * ilookup - search for an inode in the inode cache
1364 * @sb: super block of file system to search
1365 * @ino: inode number to search for
1367 * Search for the inode @ino in the inode cache, and if the inode is in the
1368 * cache, the inode is returned with an incremented reference count.
1370 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
1372 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1373 struct inode
*inode
;
1375 spin_lock(&inode_hash_lock
);
1376 inode
= find_inode_fast(sb
, head
, ino
);
1377 spin_unlock(&inode_hash_lock
);
1382 wait_on_inode(inode
);
1383 if (unlikely(inode_unhashed(inode
))) {
1390 EXPORT_SYMBOL(ilookup
);
1393 * find_inode_nowait - find an inode in the inode cache
1394 * @sb: super block of file system to search
1395 * @hashval: hash value (usually inode number) to search for
1396 * @match: callback used for comparisons between inodes
1397 * @data: opaque data pointer to pass to @match
1399 * Search for the inode specified by @hashval and @data in the inode
1400 * cache, where the helper function @match will return 0 if the inode
1401 * does not match, 1 if the inode does match, and -1 if the search
1402 * should be stopped. The @match function must be responsible for
1403 * taking the i_lock spin_lock and checking i_state for an inode being
1404 * freed or being initialized, and incrementing the reference count
1405 * before returning 1. It also must not sleep, since it is called with
1406 * the inode_hash_lock spinlock held.
1408 * This is a even more generalized version of ilookup5() when the
1409 * function must never block --- find_inode() can block in
1410 * __wait_on_freeing_inode() --- or when the caller can not increment
1411 * the reference count because the resulting iput() might cause an
1412 * inode eviction. The tradeoff is that the @match funtion must be
1413 * very carefully implemented.
1415 struct inode
*find_inode_nowait(struct super_block
*sb
,
1416 unsigned long hashval
,
1417 int (*match
)(struct inode
*, unsigned long,
1421 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1422 struct inode
*inode
, *ret_inode
= NULL
;
1425 spin_lock(&inode_hash_lock
);
1426 hlist_for_each_entry(inode
, head
, i_hash
) {
1427 if (inode
->i_sb
!= sb
)
1429 mval
= match(inode
, hashval
, data
);
1437 spin_unlock(&inode_hash_lock
);
1440 EXPORT_SYMBOL(find_inode_nowait
);
1442 int insert_inode_locked(struct inode
*inode
)
1444 struct super_block
*sb
= inode
->i_sb
;
1445 ino_t ino
= inode
->i_ino
;
1446 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1449 struct inode
*old
= NULL
;
1450 spin_lock(&inode_hash_lock
);
1451 hlist_for_each_entry(old
, head
, i_hash
) {
1452 if (old
->i_ino
!= ino
)
1454 if (old
->i_sb
!= sb
)
1456 spin_lock(&old
->i_lock
);
1457 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1458 spin_unlock(&old
->i_lock
);
1464 spin_lock(&inode
->i_lock
);
1465 inode
->i_state
|= I_NEW
| I_CREATING
;
1466 hlist_add_head(&inode
->i_hash
, head
);
1467 spin_unlock(&inode
->i_lock
);
1468 spin_unlock(&inode_hash_lock
);
1471 if (unlikely(old
->i_state
& I_CREATING
)) {
1472 spin_unlock(&old
->i_lock
);
1473 spin_unlock(&inode_hash_lock
);
1477 spin_unlock(&old
->i_lock
);
1478 spin_unlock(&inode_hash_lock
);
1480 if (unlikely(!inode_unhashed(old
))) {
1487 EXPORT_SYMBOL(insert_inode_locked
);
1489 int insert_inode_locked4(struct inode
*inode
, unsigned long hashval
,
1490 int (*test
)(struct inode
*, void *), void *data
)
1494 inode
->i_state
|= I_CREATING
;
1495 old
= inode_insert5(inode
, hashval
, test
, NULL
, data
);
1503 EXPORT_SYMBOL(insert_inode_locked4
);
1506 int generic_delete_inode(struct inode
*inode
)
1510 EXPORT_SYMBOL(generic_delete_inode
);
1513 * Called when we're dropping the last reference
1516 * Call the FS "drop_inode()" function, defaulting to
1517 * the legacy UNIX filesystem behaviour. If it tells
1518 * us to evict inode, do so. Otherwise, retain inode
1519 * in cache if fs is alive, sync and evict if fs is
1522 static void iput_final(struct inode
*inode
)
1524 struct super_block
*sb
= inode
->i_sb
;
1525 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1528 WARN_ON(inode
->i_state
& I_NEW
);
1531 drop
= op
->drop_inode(inode
);
1533 drop
= generic_drop_inode(inode
);
1535 if (!drop
&& (sb
->s_flags
& SB_ACTIVE
)) {
1536 inode_add_lru(inode
);
1537 spin_unlock(&inode
->i_lock
);
1542 inode
->i_state
|= I_WILL_FREE
;
1543 spin_unlock(&inode
->i_lock
);
1544 write_inode_now(inode
, 1);
1545 spin_lock(&inode
->i_lock
);
1546 WARN_ON(inode
->i_state
& I_NEW
);
1547 inode
->i_state
&= ~I_WILL_FREE
;
1550 inode
->i_state
|= I_FREEING
;
1551 if (!list_empty(&inode
->i_lru
))
1552 inode_lru_list_del(inode
);
1553 spin_unlock(&inode
->i_lock
);
1559 * iput - put an inode
1560 * @inode: inode to put
1562 * Puts an inode, dropping its usage count. If the inode use count hits
1563 * zero, the inode is then freed and may also be destroyed.
1565 * Consequently, iput() can sleep.
1567 void iput(struct inode
*inode
)
1571 BUG_ON(inode
->i_state
& I_CLEAR
);
1573 if (atomic_dec_and_lock(&inode
->i_count
, &inode
->i_lock
)) {
1574 if (inode
->i_nlink
&& (inode
->i_state
& I_DIRTY_TIME
)) {
1575 atomic_inc(&inode
->i_count
);
1576 spin_unlock(&inode
->i_lock
);
1577 trace_writeback_lazytime_iput(inode
);
1578 mark_inode_dirty_sync(inode
);
1584 EXPORT_SYMBOL(iput
);
1587 * bmap - find a block number in a file
1588 * @inode: inode of file
1589 * @block: block to find
1591 * Returns the block number on the device holding the inode that
1592 * is the disk block number for the block of the file requested.
1593 * That is, asked for block 4 of inode 1 the function will return the
1594 * disk block relative to the disk start that holds that block of the
1597 sector_t
bmap(struct inode
*inode
, sector_t block
)
1600 if (inode
->i_mapping
->a_ops
->bmap
)
1601 res
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, block
);
1604 EXPORT_SYMBOL(bmap
);
1607 * With relative atime, only update atime if the previous atime is
1608 * earlier than either the ctime or mtime or if at least a day has
1609 * passed since the last atime update.
1611 static int relatime_need_update(struct vfsmount
*mnt
, struct inode
*inode
,
1612 struct timespec now
)
1615 if (!(mnt
->mnt_flags
& MNT_RELATIME
))
1618 * Is mtime younger than atime? If yes, update atime:
1620 if (timespec64_compare(&inode
->i_mtime
, &inode
->i_atime
) >= 0)
1623 * Is ctime younger than atime? If yes, update atime:
1625 if (timespec64_compare(&inode
->i_ctime
, &inode
->i_atime
) >= 0)
1629 * Is the previous atime value older than a day? If yes,
1632 if ((long)(now
.tv_sec
- inode
->i_atime
.tv_sec
) >= 24*60*60)
1635 * Good, we can skip the atime update:
1640 int generic_update_time(struct inode
*inode
, struct timespec64
*time
, int flags
)
1642 int iflags
= I_DIRTY_TIME
;
1645 if (flags
& S_ATIME
)
1646 inode
->i_atime
= *time
;
1647 if (flags
& S_VERSION
)
1648 dirty
= inode_maybe_inc_iversion(inode
, false);
1649 if (flags
& S_CTIME
)
1650 inode
->i_ctime
= *time
;
1651 if (flags
& S_MTIME
)
1652 inode
->i_mtime
= *time
;
1653 if ((flags
& (S_ATIME
| S_CTIME
| S_MTIME
)) &&
1654 !(inode
->i_sb
->s_flags
& SB_LAZYTIME
))
1658 iflags
|= I_DIRTY_SYNC
;
1659 __mark_inode_dirty(inode
, iflags
);
1662 EXPORT_SYMBOL(generic_update_time
);
1665 * This does the actual work of updating an inodes time or version. Must have
1666 * had called mnt_want_write() before calling this.
1668 static int update_time(struct inode
*inode
, struct timespec64
*time
, int flags
)
1670 int (*update_time
)(struct inode
*, struct timespec64
*, int);
1672 update_time
= inode
->i_op
->update_time
? inode
->i_op
->update_time
:
1673 generic_update_time
;
1675 return update_time(inode
, time
, flags
);
1679 * touch_atime - update the access time
1680 * @path: the &struct path to update
1681 * @inode: inode to update
1683 * Update the accessed time on an inode and mark it for writeback.
1684 * This function automatically handles read only file systems and media,
1685 * as well as the "noatime" flag and inode specific "noatime" markers.
1687 bool atime_needs_update(const struct path
*path
, struct inode
*inode
)
1689 struct vfsmount
*mnt
= path
->mnt
;
1690 struct timespec64 now
;
1692 if (inode
->i_flags
& S_NOATIME
)
1695 /* Atime updates will likely cause i_uid and i_gid to be written
1696 * back improprely if their true value is unknown to the vfs.
1698 if (HAS_UNMAPPED_ID(inode
))
1701 if (IS_NOATIME(inode
))
1703 if ((inode
->i_sb
->s_flags
& SB_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1706 if (mnt
->mnt_flags
& MNT_NOATIME
)
1708 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1711 now
= current_time(inode
);
1713 if (!relatime_need_update(mnt
, inode
, timespec64_to_timespec(now
)))
1716 if (timespec64_equal(&inode
->i_atime
, &now
))
1722 void touch_atime(const struct path
*path
)
1724 struct vfsmount
*mnt
= path
->mnt
;
1725 struct inode
*inode
= d_inode(path
->dentry
);
1726 struct timespec64 now
;
1728 if (!atime_needs_update(path
, inode
))
1731 if (!sb_start_write_trylock(inode
->i_sb
))
1734 if (__mnt_want_write(mnt
) != 0)
1737 * File systems can error out when updating inodes if they need to
1738 * allocate new space to modify an inode (such is the case for
1739 * Btrfs), but since we touch atime while walking down the path we
1740 * really don't care if we failed to update the atime of the file,
1741 * so just ignore the return value.
1742 * We may also fail on filesystems that have the ability to make parts
1743 * of the fs read only, e.g. subvolumes in Btrfs.
1745 now
= current_time(inode
);
1746 update_time(inode
, &now
, S_ATIME
);
1747 __mnt_drop_write(mnt
);
1749 sb_end_write(inode
->i_sb
);
1751 EXPORT_SYMBOL(touch_atime
);
1754 * The logic we want is
1756 * if suid or (sgid and xgrp)
1759 int should_remove_suid(struct dentry
*dentry
)
1761 umode_t mode
= d_inode(dentry
)->i_mode
;
1764 /* suid always must be killed */
1765 if (unlikely(mode
& S_ISUID
))
1766 kill
= ATTR_KILL_SUID
;
1769 * sgid without any exec bits is just a mandatory locking mark; leave
1770 * it alone. If some exec bits are set, it's a real sgid; kill it.
1772 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1773 kill
|= ATTR_KILL_SGID
;
1775 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1780 EXPORT_SYMBOL(should_remove_suid
);
1783 * Return mask of changes for notify_change() that need to be done as a
1784 * response to write or truncate. Return 0 if nothing has to be changed.
1785 * Negative value on error (change should be denied).
1787 int dentry_needs_remove_privs(struct dentry
*dentry
)
1789 struct inode
*inode
= d_inode(dentry
);
1793 if (IS_NOSEC(inode
))
1796 mask
= should_remove_suid(dentry
);
1797 ret
= security_inode_need_killpriv(dentry
);
1801 mask
|= ATTR_KILL_PRIV
;
1805 static int __remove_privs(struct dentry
*dentry
, int kill
)
1807 struct iattr newattrs
;
1809 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1811 * Note we call this on write, so notify_change will not
1812 * encounter any conflicting delegations:
1814 return notify_change(dentry
, &newattrs
, NULL
);
1818 * Remove special file priviledges (suid, capabilities) when file is written
1821 int file_remove_privs(struct file
*file
)
1823 struct dentry
*dentry
= file_dentry(file
);
1824 struct inode
*inode
= file_inode(file
);
1829 * Fast path for nothing security related.
1830 * As well for non-regular files, e.g. blkdev inodes.
1831 * For example, blkdev_write_iter() might get here
1832 * trying to remove privs which it is not allowed to.
1834 if (IS_NOSEC(inode
) || !S_ISREG(inode
->i_mode
))
1837 kill
= dentry_needs_remove_privs(dentry
);
1841 error
= __remove_privs(dentry
, kill
);
1843 inode_has_no_xattr(inode
);
1847 EXPORT_SYMBOL(file_remove_privs
);
1850 * file_update_time - update mtime and ctime time
1851 * @file: file accessed
1853 * Update the mtime and ctime members of an inode and mark the inode
1854 * for writeback. Note that this function is meant exclusively for
1855 * usage in the file write path of filesystems, and filesystems may
1856 * choose to explicitly ignore update via this function with the
1857 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1858 * timestamps are handled by the server. This can return an error for
1859 * file systems who need to allocate space in order to update an inode.
1862 int file_update_time(struct file
*file
)
1864 struct inode
*inode
= file_inode(file
);
1865 struct timespec64 now
;
1869 /* First try to exhaust all avenues to not sync */
1870 if (IS_NOCMTIME(inode
))
1873 now
= current_time(inode
);
1874 if (!timespec64_equal(&inode
->i_mtime
, &now
))
1877 if (!timespec64_equal(&inode
->i_ctime
, &now
))
1880 if (IS_I_VERSION(inode
) && inode_iversion_need_inc(inode
))
1881 sync_it
|= S_VERSION
;
1886 /* Finally allowed to write? Takes lock. */
1887 if (__mnt_want_write_file(file
))
1890 ret
= update_time(inode
, &now
, sync_it
);
1891 __mnt_drop_write_file(file
);
1895 EXPORT_SYMBOL(file_update_time
);
1897 int inode_needs_sync(struct inode
*inode
)
1901 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
1905 EXPORT_SYMBOL(inode_needs_sync
);
1908 * If we try to find an inode in the inode hash while it is being
1909 * deleted, we have to wait until the filesystem completes its
1910 * deletion before reporting that it isn't found. This function waits
1911 * until the deletion _might_ have completed. Callers are responsible
1912 * to recheck inode state.
1914 * It doesn't matter if I_NEW is not set initially, a call to
1915 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1918 static void __wait_on_freeing_inode(struct inode
*inode
)
1920 wait_queue_head_t
*wq
;
1921 DEFINE_WAIT_BIT(wait
, &inode
->i_state
, __I_NEW
);
1922 wq
= bit_waitqueue(&inode
->i_state
, __I_NEW
);
1923 prepare_to_wait(wq
, &wait
.wq_entry
, TASK_UNINTERRUPTIBLE
);
1924 spin_unlock(&inode
->i_lock
);
1925 spin_unlock(&inode_hash_lock
);
1927 finish_wait(wq
, &wait
.wq_entry
);
1928 spin_lock(&inode_hash_lock
);
1931 static __initdata
unsigned long ihash_entries
;
1932 static int __init
set_ihash_entries(char *str
)
1936 ihash_entries
= simple_strtoul(str
, &str
, 0);
1939 __setup("ihash_entries=", set_ihash_entries
);
1942 * Initialize the waitqueues and inode hash table.
1944 void __init
inode_init_early(void)
1946 /* If hashes are distributed across NUMA nodes, defer
1947 * hash allocation until vmalloc space is available.
1953 alloc_large_system_hash("Inode-cache",
1954 sizeof(struct hlist_head
),
1957 HASH_EARLY
| HASH_ZERO
,
1964 void __init
inode_init(void)
1966 /* inode slab cache */
1967 inode_cachep
= kmem_cache_create("inode_cache",
1968 sizeof(struct inode
),
1970 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1971 SLAB_MEM_SPREAD
|SLAB_ACCOUNT
),
1974 /* Hash may have been set up in inode_init_early */
1979 alloc_large_system_hash("Inode-cache",
1980 sizeof(struct hlist_head
),
1990 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
1992 inode
->i_mode
= mode
;
1993 if (S_ISCHR(mode
)) {
1994 inode
->i_fop
= &def_chr_fops
;
1995 inode
->i_rdev
= rdev
;
1996 } else if (S_ISBLK(mode
)) {
1997 inode
->i_fop
= &def_blk_fops
;
1998 inode
->i_rdev
= rdev
;
1999 } else if (S_ISFIFO(mode
))
2000 inode
->i_fop
= &pipefifo_fops
;
2001 else if (S_ISSOCK(mode
))
2002 ; /* leave it no_open_fops */
2004 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o) for"
2005 " inode %s:%lu\n", mode
, inode
->i_sb
->s_id
,
2008 EXPORT_SYMBOL(init_special_inode
);
2011 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2013 * @dir: Directory inode
2014 * @mode: mode of the new inode
2016 void inode_init_owner(struct inode
*inode
, const struct inode
*dir
,
2019 inode
->i_uid
= current_fsuid();
2020 if (dir
&& dir
->i_mode
& S_ISGID
) {
2021 inode
->i_gid
= dir
->i_gid
;
2023 /* Directories are special, and always inherit S_ISGID */
2026 else if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
) &&
2027 !in_group_p(inode
->i_gid
) &&
2028 !capable_wrt_inode_uidgid(dir
, CAP_FSETID
))
2031 inode
->i_gid
= current_fsgid();
2032 inode
->i_mode
= mode
;
2034 EXPORT_SYMBOL(inode_init_owner
);
2037 * inode_owner_or_capable - check current task permissions to inode
2038 * @inode: inode being checked
2040 * Return true if current either has CAP_FOWNER in a namespace with the
2041 * inode owner uid mapped, or owns the file.
2043 bool inode_owner_or_capable(const struct inode
*inode
)
2045 struct user_namespace
*ns
;
2047 if (uid_eq(current_fsuid(), inode
->i_uid
))
2050 ns
= current_user_ns();
2051 if (kuid_has_mapping(ns
, inode
->i_uid
) && ns_capable(ns
, CAP_FOWNER
))
2055 EXPORT_SYMBOL(inode_owner_or_capable
);
2058 * Direct i/o helper functions
2060 static void __inode_dio_wait(struct inode
*inode
)
2062 wait_queue_head_t
*wq
= bit_waitqueue(&inode
->i_state
, __I_DIO_WAKEUP
);
2063 DEFINE_WAIT_BIT(q
, &inode
->i_state
, __I_DIO_WAKEUP
);
2066 prepare_to_wait(wq
, &q
.wq_entry
, TASK_UNINTERRUPTIBLE
);
2067 if (atomic_read(&inode
->i_dio_count
))
2069 } while (atomic_read(&inode
->i_dio_count
));
2070 finish_wait(wq
, &q
.wq_entry
);
2074 * inode_dio_wait - wait for outstanding DIO requests to finish
2075 * @inode: inode to wait for
2077 * Waits for all pending direct I/O requests to finish so that we can
2078 * proceed with a truncate or equivalent operation.
2080 * Must be called under a lock that serializes taking new references
2081 * to i_dio_count, usually by inode->i_mutex.
2083 void inode_dio_wait(struct inode
*inode
)
2085 if (atomic_read(&inode
->i_dio_count
))
2086 __inode_dio_wait(inode
);
2088 EXPORT_SYMBOL(inode_dio_wait
);
2091 * inode_set_flags - atomically set some inode flags
2093 * Note: the caller should be holding i_mutex, or else be sure that
2094 * they have exclusive access to the inode structure (i.e., while the
2095 * inode is being instantiated). The reason for the cmpxchg() loop
2096 * --- which wouldn't be necessary if all code paths which modify
2097 * i_flags actually followed this rule, is that there is at least one
2098 * code path which doesn't today so we use cmpxchg() out of an abundance
2101 * In the long run, i_mutex is overkill, and we should probably look
2102 * at using the i_lock spinlock to protect i_flags, and then make sure
2103 * it is so documented in include/linux/fs.h and that all code follows
2104 * the locking convention!!
2106 void inode_set_flags(struct inode
*inode
, unsigned int flags
,
2109 unsigned int old_flags
, new_flags
;
2111 WARN_ON_ONCE(flags
& ~mask
);
2113 old_flags
= READ_ONCE(inode
->i_flags
);
2114 new_flags
= (old_flags
& ~mask
) | flags
;
2115 } while (unlikely(cmpxchg(&inode
->i_flags
, old_flags
,
2116 new_flags
) != old_flags
));
2118 EXPORT_SYMBOL(inode_set_flags
);
2120 void inode_nohighmem(struct inode
*inode
)
2122 mapping_set_gfp_mask(inode
->i_mapping
, GFP_USER
);
2124 EXPORT_SYMBOL(inode_nohighmem
);
2127 * timespec64_trunc - Truncate timespec64 to a granularity
2129 * @gran: Granularity in ns.
2131 * Truncate a timespec64 to a granularity. Always rounds down. gran must
2132 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2134 struct timespec64
timespec64_trunc(struct timespec64 t
, unsigned gran
)
2136 /* Avoid division in the common cases 1 ns and 1 s. */
2139 } else if (gran
== NSEC_PER_SEC
) {
2141 } else if (gran
> 1 && gran
< NSEC_PER_SEC
) {
2142 t
.tv_nsec
-= t
.tv_nsec
% gran
;
2144 WARN(1, "illegal file time granularity: %u", gran
);
2148 EXPORT_SYMBOL(timespec64_trunc
);
2151 * current_time - Return FS time
2154 * Return the current time truncated to the time granularity supported by
2157 * Note that inode and inode->sb cannot be NULL.
2158 * Otherwise, the function warns and returns time without truncation.
2160 struct timespec64
current_time(struct inode
*inode
)
2162 struct timespec64 now
= current_kernel_time64();
2164 if (unlikely(!inode
->i_sb
)) {
2165 WARN(1, "current_time() called with uninitialized super_block in the inode");
2169 return timespec64_trunc(now
, inode
->i_sb
->s_time_gran
);
2171 EXPORT_SYMBOL(current_time
);