1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET An implementation of the SOCKET network access protocol.
5 * Version: @(#)socket.c 1.1.93 18/02/95
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
49 * This module is effectively the top level interface to the BSD socket
52 * Based upon Swansea University Computer Society NET3.039
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
93 #include <net/compat.h>
95 #include <net/cls_cgroup.h>
98 #include <linux/netfilter.h>
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/sockios.h>
104 #include <net/busy_poll.h>
105 #include <linux/errqueue.h>
107 #ifdef CONFIG_NET_RX_BUSY_POLL
108 unsigned int sysctl_net_busy_read __read_mostly
;
109 unsigned int sysctl_net_busy_poll __read_mostly
;
112 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
);
113 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
);
114 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
116 static int sock_close(struct inode
*inode
, struct file
*file
);
117 static __poll_t
sock_poll(struct file
*file
,
118 struct poll_table_struct
*wait
);
119 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
121 static long compat_sock_ioctl(struct file
*file
,
122 unsigned int cmd
, unsigned long arg
);
124 static int sock_fasync(int fd
, struct file
*filp
, int on
);
125 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
126 int offset
, size_t size
, loff_t
*ppos
, int more
);
127 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
128 struct pipe_inode_info
*pipe
, size_t len
,
132 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
133 * in the operation structures but are done directly via the socketcall() multiplexor.
136 static const struct file_operations socket_file_ops
= {
137 .owner
= THIS_MODULE
,
139 .read_iter
= sock_read_iter
,
140 .write_iter
= sock_write_iter
,
142 .unlocked_ioctl
= sock_ioctl
,
144 .compat_ioctl
= compat_sock_ioctl
,
147 .release
= sock_close
,
148 .fasync
= sock_fasync
,
149 .sendpage
= sock_sendpage
,
150 .splice_write
= generic_splice_sendpage
,
151 .splice_read
= sock_splice_read
,
155 * The protocol list. Each protocol is registered in here.
158 static DEFINE_SPINLOCK(net_family_lock
);
159 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
163 * Move socket addresses back and forth across the kernel/user
164 * divide and look after the messy bits.
168 * move_addr_to_kernel - copy a socket address into kernel space
169 * @uaddr: Address in user space
170 * @kaddr: Address in kernel space
171 * @ulen: Length in user space
173 * The address is copied into kernel space. If the provided address is
174 * too long an error code of -EINVAL is returned. If the copy gives
175 * invalid addresses -EFAULT is returned. On a success 0 is returned.
178 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr_storage
*kaddr
)
180 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
184 if (copy_from_user(kaddr
, uaddr
, ulen
))
186 return audit_sockaddr(ulen
, kaddr
);
190 * move_addr_to_user - copy an address to user space
191 * @kaddr: kernel space address
192 * @klen: length of address in kernel
193 * @uaddr: user space address
194 * @ulen: pointer to user length field
196 * The value pointed to by ulen on entry is the buffer length available.
197 * This is overwritten with the buffer space used. -EINVAL is returned
198 * if an overlong buffer is specified or a negative buffer size. -EFAULT
199 * is returned if either the buffer or the length field are not
201 * After copying the data up to the limit the user specifies, the true
202 * length of the data is written over the length limit the user
203 * specified. Zero is returned for a success.
206 static int move_addr_to_user(struct sockaddr_storage
*kaddr
, int klen
,
207 void __user
*uaddr
, int __user
*ulen
)
212 BUG_ON(klen
> sizeof(struct sockaddr_storage
));
213 err
= get_user(len
, ulen
);
221 if (audit_sockaddr(klen
, kaddr
))
223 if (copy_to_user(uaddr
, kaddr
, len
))
227 * "fromlen shall refer to the value before truncation.."
230 return __put_user(klen
, ulen
);
233 static struct kmem_cache
*sock_inode_cachep __ro_after_init
;
235 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
237 struct socket_alloc
*ei
;
239 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
242 init_waitqueue_head(&ei
->socket
.wq
.wait
);
243 ei
->socket
.wq
.fasync_list
= NULL
;
244 ei
->socket
.wq
.flags
= 0;
246 ei
->socket
.state
= SS_UNCONNECTED
;
247 ei
->socket
.flags
= 0;
248 ei
->socket
.ops
= NULL
;
249 ei
->socket
.sk
= NULL
;
250 ei
->socket
.file
= NULL
;
252 return &ei
->vfs_inode
;
255 static void sock_free_inode(struct inode
*inode
)
257 struct socket_alloc
*ei
;
259 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
260 kmem_cache_free(sock_inode_cachep
, ei
);
263 static void init_once(void *foo
)
265 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
267 inode_init_once(&ei
->vfs_inode
);
270 static void init_inodecache(void)
272 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
273 sizeof(struct socket_alloc
),
275 (SLAB_HWCACHE_ALIGN
|
276 SLAB_RECLAIM_ACCOUNT
|
277 SLAB_MEM_SPREAD
| SLAB_ACCOUNT
),
279 BUG_ON(sock_inode_cachep
== NULL
);
282 static const struct super_operations sockfs_ops
= {
283 .alloc_inode
= sock_alloc_inode
,
284 .free_inode
= sock_free_inode
,
285 .statfs
= simple_statfs
,
289 * sockfs_dname() is called from d_path().
291 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
293 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
294 d_inode(dentry
)->i_ino
);
297 static const struct dentry_operations sockfs_dentry_operations
= {
298 .d_dname
= sockfs_dname
,
301 static int sockfs_xattr_get(const struct xattr_handler
*handler
,
302 struct dentry
*dentry
, struct inode
*inode
,
303 const char *suffix
, void *value
, size_t size
)
306 if (dentry
->d_name
.len
+ 1 > size
)
308 memcpy(value
, dentry
->d_name
.name
, dentry
->d_name
.len
+ 1);
310 return dentry
->d_name
.len
+ 1;
313 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
314 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
315 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
317 static const struct xattr_handler sockfs_xattr_handler
= {
318 .name
= XATTR_NAME_SOCKPROTONAME
,
319 .get
= sockfs_xattr_get
,
322 static int sockfs_security_xattr_set(const struct xattr_handler
*handler
,
323 struct dentry
*dentry
, struct inode
*inode
,
324 const char *suffix
, const void *value
,
325 size_t size
, int flags
)
327 /* Handled by LSM. */
331 static const struct xattr_handler sockfs_security_xattr_handler
= {
332 .prefix
= XATTR_SECURITY_PREFIX
,
333 .set
= sockfs_security_xattr_set
,
336 static const struct xattr_handler
*sockfs_xattr_handlers
[] = {
337 &sockfs_xattr_handler
,
338 &sockfs_security_xattr_handler
,
342 static int sockfs_init_fs_context(struct fs_context
*fc
)
344 struct pseudo_fs_context
*ctx
= init_pseudo(fc
, SOCKFS_MAGIC
);
347 ctx
->ops
= &sockfs_ops
;
348 ctx
->dops
= &sockfs_dentry_operations
;
349 ctx
->xattr
= sockfs_xattr_handlers
;
353 static struct vfsmount
*sock_mnt __read_mostly
;
355 static struct file_system_type sock_fs_type
= {
357 .init_fs_context
= sockfs_init_fs_context
,
358 .kill_sb
= kill_anon_super
,
362 * Obtains the first available file descriptor and sets it up for use.
364 * These functions create file structures and maps them to fd space
365 * of the current process. On success it returns file descriptor
366 * and file struct implicitly stored in sock->file.
367 * Note that another thread may close file descriptor before we return
368 * from this function. We use the fact that now we do not refer
369 * to socket after mapping. If one day we will need it, this
370 * function will increment ref. count on file by 1.
372 * In any case returned fd MAY BE not valid!
373 * This race condition is unavoidable
374 * with shared fd spaces, we cannot solve it inside kernel,
375 * but we take care of internal coherence yet.
379 * sock_alloc_file - Bind a &socket to a &file
381 * @flags: file status flags
382 * @dname: protocol name
384 * Returns the &file bound with @sock, implicitly storing it
385 * in sock->file. If dname is %NULL, sets to "".
386 * On failure the return is a ERR pointer (see linux/err.h).
387 * This function uses GFP_KERNEL internally.
390 struct file
*sock_alloc_file(struct socket
*sock
, int flags
, const char *dname
)
395 dname
= sock
->sk
? sock
->sk
->sk_prot_creator
->name
: "";
397 file
= alloc_file_pseudo(SOCK_INODE(sock
), sock_mnt
, dname
,
398 O_RDWR
| (flags
& O_NONBLOCK
),
406 file
->private_data
= sock
;
409 EXPORT_SYMBOL(sock_alloc_file
);
411 static int sock_map_fd(struct socket
*sock
, int flags
)
413 struct file
*newfile
;
414 int fd
= get_unused_fd_flags(flags
);
415 if (unlikely(fd
< 0)) {
420 newfile
= sock_alloc_file(sock
, flags
, NULL
);
421 if (!IS_ERR(newfile
)) {
422 fd_install(fd
, newfile
);
427 return PTR_ERR(newfile
);
431 * sock_from_file - Return the &socket bounded to @file.
433 * @err: pointer to an error code return
435 * On failure returns %NULL and assigns -ENOTSOCK to @err.
438 struct socket
*sock_from_file(struct file
*file
, int *err
)
440 if (file
->f_op
== &socket_file_ops
)
441 return file
->private_data
; /* set in sock_map_fd */
446 EXPORT_SYMBOL(sock_from_file
);
449 * sockfd_lookup - Go from a file number to its socket slot
451 * @err: pointer to an error code return
453 * The file handle passed in is locked and the socket it is bound
454 * to is returned. If an error occurs the err pointer is overwritten
455 * with a negative errno code and NULL is returned. The function checks
456 * for both invalid handles and passing a handle which is not a socket.
458 * On a success the socket object pointer is returned.
461 struct socket
*sockfd_lookup(int fd
, int *err
)
472 sock
= sock_from_file(file
, err
);
477 EXPORT_SYMBOL(sockfd_lookup
);
479 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
481 struct fd f
= fdget(fd
);
486 sock
= sock_from_file(f
.file
, err
);
488 *fput_needed
= f
.flags
;
496 static ssize_t
sockfs_listxattr(struct dentry
*dentry
, char *buffer
,
502 len
= security_inode_listsecurity(d_inode(dentry
), buffer
, size
);
512 len
= (XATTR_NAME_SOCKPROTONAME_LEN
+ 1);
517 memcpy(buffer
, XATTR_NAME_SOCKPROTONAME
, len
);
524 static int sockfs_setattr(struct dentry
*dentry
, struct iattr
*iattr
)
526 int err
= simple_setattr(dentry
, iattr
);
528 if (!err
&& (iattr
->ia_valid
& ATTR_UID
)) {
529 struct socket
*sock
= SOCKET_I(d_inode(dentry
));
532 sock
->sk
->sk_uid
= iattr
->ia_uid
;
540 static const struct inode_operations sockfs_inode_ops
= {
541 .listxattr
= sockfs_listxattr
,
542 .setattr
= sockfs_setattr
,
546 * sock_alloc - allocate a socket
548 * Allocate a new inode and socket object. The two are bound together
549 * and initialised. The socket is then returned. If we are out of inodes
550 * NULL is returned. This functions uses GFP_KERNEL internally.
553 struct socket
*sock_alloc(void)
558 inode
= new_inode_pseudo(sock_mnt
->mnt_sb
);
562 sock
= SOCKET_I(inode
);
564 inode
->i_ino
= get_next_ino();
565 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
566 inode
->i_uid
= current_fsuid();
567 inode
->i_gid
= current_fsgid();
568 inode
->i_op
= &sockfs_inode_ops
;
572 EXPORT_SYMBOL(sock_alloc
);
575 * sock_release - close a socket
576 * @sock: socket to close
578 * The socket is released from the protocol stack if it has a release
579 * callback, and the inode is then released if the socket is bound to
580 * an inode not a file.
583 static void __sock_release(struct socket
*sock
, struct inode
*inode
)
586 struct module
*owner
= sock
->ops
->owner
;
590 sock
->ops
->release(sock
);
598 if (sock
->wq
.fasync_list
)
599 pr_err("%s: fasync list not empty!\n", __func__
);
602 iput(SOCK_INODE(sock
));
608 void sock_release(struct socket
*sock
)
610 __sock_release(sock
, NULL
);
612 EXPORT_SYMBOL(sock_release
);
614 void __sock_tx_timestamp(__u16 tsflags
, __u8
*tx_flags
)
616 u8 flags
= *tx_flags
;
618 if (tsflags
& SOF_TIMESTAMPING_TX_HARDWARE
)
619 flags
|= SKBTX_HW_TSTAMP
;
621 if (tsflags
& SOF_TIMESTAMPING_TX_SOFTWARE
)
622 flags
|= SKBTX_SW_TSTAMP
;
624 if (tsflags
& SOF_TIMESTAMPING_TX_SCHED
)
625 flags
|= SKBTX_SCHED_TSTAMP
;
629 EXPORT_SYMBOL(__sock_tx_timestamp
);
631 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket
*, struct msghdr
*,
633 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket
*, struct msghdr
*,
635 static inline int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
)
637 int ret
= INDIRECT_CALL_INET(sock
->ops
->sendmsg
, inet6_sendmsg
,
638 inet_sendmsg
, sock
, msg
,
640 BUG_ON(ret
== -EIOCBQUEUED
);
645 * sock_sendmsg - send a message through @sock
647 * @msg: message to send
649 * Sends @msg through @sock, passing through LSM.
650 * Returns the number of bytes sent, or an error code.
652 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
)
654 int err
= security_socket_sendmsg(sock
, msg
,
657 return err
?: sock_sendmsg_nosec(sock
, msg
);
659 EXPORT_SYMBOL(sock_sendmsg
);
662 * kernel_sendmsg - send a message through @sock (kernel-space)
664 * @msg: message header
666 * @num: vec array length
667 * @size: total message data size
669 * Builds the message data with @vec and sends it through @sock.
670 * Returns the number of bytes sent, or an error code.
673 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
674 struct kvec
*vec
, size_t num
, size_t size
)
676 iov_iter_kvec(&msg
->msg_iter
, WRITE
, vec
, num
, size
);
677 return sock_sendmsg(sock
, msg
);
679 EXPORT_SYMBOL(kernel_sendmsg
);
682 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
684 * @msg: message header
685 * @vec: output s/g array
686 * @num: output s/g array length
687 * @size: total message data size
689 * Builds the message data with @vec and sends it through @sock.
690 * Returns the number of bytes sent, or an error code.
691 * Caller must hold @sk.
694 int kernel_sendmsg_locked(struct sock
*sk
, struct msghdr
*msg
,
695 struct kvec
*vec
, size_t num
, size_t size
)
697 struct socket
*sock
= sk
->sk_socket
;
699 if (!sock
->ops
->sendmsg_locked
)
700 return sock_no_sendmsg_locked(sk
, msg
, size
);
702 iov_iter_kvec(&msg
->msg_iter
, WRITE
, vec
, num
, size
);
704 return sock
->ops
->sendmsg_locked(sk
, msg
, msg_data_left(msg
));
706 EXPORT_SYMBOL(kernel_sendmsg_locked
);
708 static bool skb_is_err_queue(const struct sk_buff
*skb
)
710 /* pkt_type of skbs enqueued on the error queue are set to
711 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
712 * in recvmsg, since skbs received on a local socket will never
713 * have a pkt_type of PACKET_OUTGOING.
715 return skb
->pkt_type
== PACKET_OUTGOING
;
718 /* On transmit, software and hardware timestamps are returned independently.
719 * As the two skb clones share the hardware timestamp, which may be updated
720 * before the software timestamp is received, a hardware TX timestamp may be
721 * returned only if there is no software TX timestamp. Ignore false software
722 * timestamps, which may be made in the __sock_recv_timestamp() call when the
723 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
724 * hardware timestamp.
726 static bool skb_is_swtx_tstamp(const struct sk_buff
*skb
, int false_tstamp
)
728 return skb
->tstamp
&& !false_tstamp
&& skb_is_err_queue(skb
);
731 static void put_ts_pktinfo(struct msghdr
*msg
, struct sk_buff
*skb
)
733 struct scm_ts_pktinfo ts_pktinfo
;
734 struct net_device
*orig_dev
;
736 if (!skb_mac_header_was_set(skb
))
739 memset(&ts_pktinfo
, 0, sizeof(ts_pktinfo
));
742 orig_dev
= dev_get_by_napi_id(skb_napi_id(skb
));
744 ts_pktinfo
.if_index
= orig_dev
->ifindex
;
747 ts_pktinfo
.pkt_length
= skb
->len
- skb_mac_offset(skb
);
748 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING_PKTINFO
,
749 sizeof(ts_pktinfo
), &ts_pktinfo
);
753 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
755 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
758 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
759 int new_tstamp
= sock_flag(sk
, SOCK_TSTAMP_NEW
);
760 struct scm_timestamping_internal tss
;
762 int empty
= 1, false_tstamp
= 0;
763 struct skb_shared_hwtstamps
*shhwtstamps
=
766 /* Race occurred between timestamp enabling and packet
767 receiving. Fill in the current time for now. */
768 if (need_software_tstamp
&& skb
->tstamp
== 0) {
769 __net_timestamp(skb
);
773 if (need_software_tstamp
) {
774 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
776 struct __kernel_sock_timeval tv
;
778 skb_get_new_timestamp(skb
, &tv
);
779 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMP_NEW
,
782 struct __kernel_old_timeval tv
;
784 skb_get_timestamp(skb
, &tv
);
785 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMP_OLD
,
790 struct __kernel_timespec ts
;
792 skb_get_new_timestampns(skb
, &ts
);
793 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMPNS_NEW
,
798 skb_get_timestampns(skb
, &ts
);
799 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMPNS_OLD
,
805 memset(&tss
, 0, sizeof(tss
));
806 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_SOFTWARE
) &&
807 ktime_to_timespec64_cond(skb
->tstamp
, tss
.ts
+ 0))
810 (sk
->sk_tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
) &&
811 !skb_is_swtx_tstamp(skb
, false_tstamp
) &&
812 ktime_to_timespec64_cond(shhwtstamps
->hwtstamp
, tss
.ts
+ 2)) {
814 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_PKTINFO
) &&
815 !skb_is_err_queue(skb
))
816 put_ts_pktinfo(msg
, skb
);
819 if (sock_flag(sk
, SOCK_TSTAMP_NEW
))
820 put_cmsg_scm_timestamping64(msg
, &tss
);
822 put_cmsg_scm_timestamping(msg
, &tss
);
824 if (skb_is_err_queue(skb
) && skb
->len
&&
825 SKB_EXT_ERR(skb
)->opt_stats
)
826 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING_OPT_STATS
,
827 skb
->len
, skb
->data
);
830 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
832 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
837 if (!sock_flag(sk
, SOCK_WIFI_STATUS
))
839 if (!skb
->wifi_acked_valid
)
842 ack
= skb
->wifi_acked
;
844 put_cmsg(msg
, SOL_SOCKET
, SCM_WIFI_STATUS
, sizeof(ack
), &ack
);
846 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status
);
848 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
851 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& SOCK_SKB_CB(skb
)->dropcount
)
852 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
853 sizeof(__u32
), &SOCK_SKB_CB(skb
)->dropcount
);
856 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
859 sock_recv_timestamp(msg
, sk
, skb
);
860 sock_recv_drops(msg
, sk
, skb
);
862 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
864 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket
*, struct msghdr
*,
866 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket
*, struct msghdr
*,
868 static inline int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
871 return INDIRECT_CALL_INET(sock
->ops
->recvmsg
, inet6_recvmsg
,
872 inet_recvmsg
, sock
, msg
, msg_data_left(msg
),
877 * sock_recvmsg - receive a message from @sock
879 * @msg: message to receive
880 * @flags: message flags
882 * Receives @msg from @sock, passing through LSM. Returns the total number
883 * of bytes received, or an error.
885 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
, int flags
)
887 int err
= security_socket_recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
889 return err
?: sock_recvmsg_nosec(sock
, msg
, flags
);
891 EXPORT_SYMBOL(sock_recvmsg
);
894 * kernel_recvmsg - Receive a message from a socket (kernel space)
895 * @sock: The socket to receive the message from
896 * @msg: Received message
897 * @vec: Input s/g array for message data
898 * @num: Size of input s/g array
899 * @size: Number of bytes to read
900 * @flags: Message flags (MSG_DONTWAIT, etc...)
902 * On return the msg structure contains the scatter/gather array passed in the
903 * vec argument. The array is modified so that it consists of the unfilled
904 * portion of the original array.
906 * The returned value is the total number of bytes received, or an error.
909 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
910 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
912 mm_segment_t oldfs
= get_fs();
915 iov_iter_kvec(&msg
->msg_iter
, READ
, vec
, num
, size
);
917 result
= sock_recvmsg(sock
, msg
, flags
);
921 EXPORT_SYMBOL(kernel_recvmsg
);
923 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
924 int offset
, size_t size
, loff_t
*ppos
, int more
)
929 sock
= file
->private_data
;
931 flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
932 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
935 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
938 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
939 struct pipe_inode_info
*pipe
, size_t len
,
942 struct socket
*sock
= file
->private_data
;
944 if (unlikely(!sock
->ops
->splice_read
))
945 return generic_file_splice_read(file
, ppos
, pipe
, len
, flags
);
947 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
950 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
952 struct file
*file
= iocb
->ki_filp
;
953 struct socket
*sock
= file
->private_data
;
954 struct msghdr msg
= {.msg_iter
= *to
,
958 if (file
->f_flags
& O_NONBLOCK
)
959 msg
.msg_flags
= MSG_DONTWAIT
;
961 if (iocb
->ki_pos
!= 0)
964 if (!iov_iter_count(to
)) /* Match SYS5 behaviour */
967 res
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
972 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
974 struct file
*file
= iocb
->ki_filp
;
975 struct socket
*sock
= file
->private_data
;
976 struct msghdr msg
= {.msg_iter
= *from
,
980 if (iocb
->ki_pos
!= 0)
983 if (file
->f_flags
& O_NONBLOCK
)
984 msg
.msg_flags
= MSG_DONTWAIT
;
986 if (sock
->type
== SOCK_SEQPACKET
)
987 msg
.msg_flags
|= MSG_EOR
;
989 res
= sock_sendmsg(sock
, &msg
);
990 *from
= msg
.msg_iter
;
995 * Atomic setting of ioctl hooks to avoid race
996 * with module unload.
999 static DEFINE_MUTEX(br_ioctl_mutex
);
1000 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
1002 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
1004 mutex_lock(&br_ioctl_mutex
);
1005 br_ioctl_hook
= hook
;
1006 mutex_unlock(&br_ioctl_mutex
);
1008 EXPORT_SYMBOL(brioctl_set
);
1010 static DEFINE_MUTEX(vlan_ioctl_mutex
);
1011 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
1013 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
1015 mutex_lock(&vlan_ioctl_mutex
);
1016 vlan_ioctl_hook
= hook
;
1017 mutex_unlock(&vlan_ioctl_mutex
);
1019 EXPORT_SYMBOL(vlan_ioctl_set
);
1021 static DEFINE_MUTEX(dlci_ioctl_mutex
);
1022 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
1024 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
1026 mutex_lock(&dlci_ioctl_mutex
);
1027 dlci_ioctl_hook
= hook
;
1028 mutex_unlock(&dlci_ioctl_mutex
);
1030 EXPORT_SYMBOL(dlci_ioctl_set
);
1032 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
1033 unsigned int cmd
, unsigned long arg
)
1036 void __user
*argp
= (void __user
*)arg
;
1038 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
1041 * If this ioctl is unknown try to hand it down
1042 * to the NIC driver.
1044 if (err
!= -ENOIOCTLCMD
)
1047 if (cmd
== SIOCGIFCONF
) {
1049 if (copy_from_user(&ifc
, argp
, sizeof(struct ifconf
)))
1052 err
= dev_ifconf(net
, &ifc
, sizeof(struct ifreq
));
1054 if (!err
&& copy_to_user(argp
, &ifc
, sizeof(struct ifconf
)))
1059 if (copy_from_user(&ifr
, argp
, sizeof(struct ifreq
)))
1061 err
= dev_ioctl(net
, cmd
, &ifr
, &need_copyout
);
1062 if (!err
&& need_copyout
)
1063 if (copy_to_user(argp
, &ifr
, sizeof(struct ifreq
)))
1070 * With an ioctl, arg may well be a user mode pointer, but we don't know
1071 * what to do with it - that's up to the protocol still.
1075 * get_net_ns - increment the refcount of the network namespace
1076 * @ns: common namespace (net)
1078 * Returns the net's common namespace.
1081 struct ns_common
*get_net_ns(struct ns_common
*ns
)
1083 return &get_net(container_of(ns
, struct net
, ns
))->ns
;
1085 EXPORT_SYMBOL_GPL(get_net_ns
);
1087 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
1089 struct socket
*sock
;
1091 void __user
*argp
= (void __user
*)arg
;
1095 sock
= file
->private_data
;
1098 if (unlikely(cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))) {
1101 if (copy_from_user(&ifr
, argp
, sizeof(struct ifreq
)))
1103 err
= dev_ioctl(net
, cmd
, &ifr
, &need_copyout
);
1104 if (!err
&& need_copyout
)
1105 if (copy_to_user(argp
, &ifr
, sizeof(struct ifreq
)))
1108 #ifdef CONFIG_WEXT_CORE
1109 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
1110 err
= wext_handle_ioctl(net
, cmd
, argp
);
1117 if (get_user(pid
, (int __user
*)argp
))
1119 err
= f_setown(sock
->file
, pid
, 1);
1123 err
= put_user(f_getown(sock
->file
),
1124 (int __user
*)argp
);
1132 request_module("bridge");
1134 mutex_lock(&br_ioctl_mutex
);
1136 err
= br_ioctl_hook(net
, cmd
, argp
);
1137 mutex_unlock(&br_ioctl_mutex
);
1142 if (!vlan_ioctl_hook
)
1143 request_module("8021q");
1145 mutex_lock(&vlan_ioctl_mutex
);
1146 if (vlan_ioctl_hook
)
1147 err
= vlan_ioctl_hook(net
, argp
);
1148 mutex_unlock(&vlan_ioctl_mutex
);
1153 if (!dlci_ioctl_hook
)
1154 request_module("dlci");
1156 mutex_lock(&dlci_ioctl_mutex
);
1157 if (dlci_ioctl_hook
)
1158 err
= dlci_ioctl_hook(cmd
, argp
);
1159 mutex_unlock(&dlci_ioctl_mutex
);
1163 if (!ns_capable(net
->user_ns
, CAP_NET_ADMIN
))
1166 err
= open_related_ns(&net
->ns
, get_net_ns
);
1168 case SIOCGSTAMP_OLD
:
1169 case SIOCGSTAMPNS_OLD
:
1170 if (!sock
->ops
->gettstamp
) {
1174 err
= sock
->ops
->gettstamp(sock
, argp
,
1175 cmd
== SIOCGSTAMP_OLD
,
1176 !IS_ENABLED(CONFIG_64BIT
));
1178 case SIOCGSTAMP_NEW
:
1179 case SIOCGSTAMPNS_NEW
:
1180 if (!sock
->ops
->gettstamp
) {
1184 err
= sock
->ops
->gettstamp(sock
, argp
,
1185 cmd
== SIOCGSTAMP_NEW
,
1189 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
1196 * sock_create_lite - creates a socket
1197 * @family: protocol family (AF_INET, ...)
1198 * @type: communication type (SOCK_STREAM, ...)
1199 * @protocol: protocol (0, ...)
1202 * Creates a new socket and assigns it to @res, passing through LSM.
1203 * The new socket initialization is not complete, see kernel_accept().
1204 * Returns 0 or an error. On failure @res is set to %NULL.
1205 * This function internally uses GFP_KERNEL.
1208 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
1211 struct socket
*sock
= NULL
;
1213 err
= security_socket_create(family
, type
, protocol
, 1);
1217 sock
= sock_alloc();
1224 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1236 EXPORT_SYMBOL(sock_create_lite
);
1238 /* No kernel lock held - perfect */
1239 static __poll_t
sock_poll(struct file
*file
, poll_table
*wait
)
1241 struct socket
*sock
= file
->private_data
;
1242 __poll_t events
= poll_requested_events(wait
), flag
= 0;
1244 if (!sock
->ops
->poll
)
1247 if (sk_can_busy_loop(sock
->sk
)) {
1248 /* poll once if requested by the syscall */
1249 if (events
& POLL_BUSY_LOOP
)
1250 sk_busy_loop(sock
->sk
, 1);
1252 /* if this socket can poll_ll, tell the system call */
1253 flag
= POLL_BUSY_LOOP
;
1256 return sock
->ops
->poll(file
, sock
, wait
) | flag
;
1259 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1261 struct socket
*sock
= file
->private_data
;
1263 return sock
->ops
->mmap(file
, sock
, vma
);
1266 static int sock_close(struct inode
*inode
, struct file
*filp
)
1268 __sock_release(SOCKET_I(inode
), inode
);
1273 * Update the socket async list
1275 * Fasync_list locking strategy.
1277 * 1. fasync_list is modified only under process context socket lock
1278 * i.e. under semaphore.
1279 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1280 * or under socket lock
1283 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1285 struct socket
*sock
= filp
->private_data
;
1286 struct sock
*sk
= sock
->sk
;
1287 struct socket_wq
*wq
= &sock
->wq
;
1293 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1295 if (!wq
->fasync_list
)
1296 sock_reset_flag(sk
, SOCK_FASYNC
);
1298 sock_set_flag(sk
, SOCK_FASYNC
);
1304 /* This function may be called only under rcu_lock */
1306 int sock_wake_async(struct socket_wq
*wq
, int how
, int band
)
1308 if (!wq
|| !wq
->fasync_list
)
1312 case SOCK_WAKE_WAITD
:
1313 if (test_bit(SOCKWQ_ASYNC_WAITDATA
, &wq
->flags
))
1316 case SOCK_WAKE_SPACE
:
1317 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE
, &wq
->flags
))
1322 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1325 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1330 EXPORT_SYMBOL(sock_wake_async
);
1333 * __sock_create - creates a socket
1334 * @net: net namespace
1335 * @family: protocol family (AF_INET, ...)
1336 * @type: communication type (SOCK_STREAM, ...)
1337 * @protocol: protocol (0, ...)
1339 * @kern: boolean for kernel space sockets
1341 * Creates a new socket and assigns it to @res, passing through LSM.
1342 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1343 * be set to true if the socket resides in kernel space.
1344 * This function internally uses GFP_KERNEL.
1347 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1348 struct socket
**res
, int kern
)
1351 struct socket
*sock
;
1352 const struct net_proto_family
*pf
;
1355 * Check protocol is in range
1357 if (family
< 0 || family
>= NPROTO
)
1358 return -EAFNOSUPPORT
;
1359 if (type
< 0 || type
>= SOCK_MAX
)
1364 This uglymoron is moved from INET layer to here to avoid
1365 deadlock in module load.
1367 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1368 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1373 err
= security_socket_create(family
, type
, protocol
, kern
);
1378 * Allocate the socket and allow the family to set things up. if
1379 * the protocol is 0, the family is instructed to select an appropriate
1382 sock
= sock_alloc();
1384 net_warn_ratelimited("socket: no more sockets\n");
1385 return -ENFILE
; /* Not exactly a match, but its the
1386 closest posix thing */
1391 #ifdef CONFIG_MODULES
1392 /* Attempt to load a protocol module if the find failed.
1394 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1395 * requested real, full-featured networking support upon configuration.
1396 * Otherwise module support will break!
1398 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1399 request_module("net-pf-%d", family
);
1403 pf
= rcu_dereference(net_families
[family
]);
1404 err
= -EAFNOSUPPORT
;
1409 * We will call the ->create function, that possibly is in a loadable
1410 * module, so we have to bump that loadable module refcnt first.
1412 if (!try_module_get(pf
->owner
))
1415 /* Now protected by module ref count */
1418 err
= pf
->create(net
, sock
, protocol
, kern
);
1420 goto out_module_put
;
1423 * Now to bump the refcnt of the [loadable] module that owns this
1424 * socket at sock_release time we decrement its refcnt.
1426 if (!try_module_get(sock
->ops
->owner
))
1427 goto out_module_busy
;
1430 * Now that we're done with the ->create function, the [loadable]
1431 * module can have its refcnt decremented
1433 module_put(pf
->owner
);
1434 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1436 goto out_sock_release
;
1442 err
= -EAFNOSUPPORT
;
1445 module_put(pf
->owner
);
1452 goto out_sock_release
;
1454 EXPORT_SYMBOL(__sock_create
);
1457 * sock_create - creates a socket
1458 * @family: protocol family (AF_INET, ...)
1459 * @type: communication type (SOCK_STREAM, ...)
1460 * @protocol: protocol (0, ...)
1463 * A wrapper around __sock_create().
1464 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1467 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1469 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1471 EXPORT_SYMBOL(sock_create
);
1474 * sock_create_kern - creates a socket (kernel space)
1475 * @net: net namespace
1476 * @family: protocol family (AF_INET, ...)
1477 * @type: communication type (SOCK_STREAM, ...)
1478 * @protocol: protocol (0, ...)
1481 * A wrapper around __sock_create().
1482 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1485 int sock_create_kern(struct net
*net
, int family
, int type
, int protocol
, struct socket
**res
)
1487 return __sock_create(net
, family
, type
, protocol
, res
, 1);
1489 EXPORT_SYMBOL(sock_create_kern
);
1491 int __sys_socket(int family
, int type
, int protocol
)
1494 struct socket
*sock
;
1497 /* Check the SOCK_* constants for consistency. */
1498 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1499 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1500 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1501 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1503 flags
= type
& ~SOCK_TYPE_MASK
;
1504 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1506 type
&= SOCK_TYPE_MASK
;
1508 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1509 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1511 retval
= sock_create(family
, type
, protocol
, &sock
);
1515 return sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1518 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1520 return __sys_socket(family
, type
, protocol
);
1524 * Create a pair of connected sockets.
1527 int __sys_socketpair(int family
, int type
, int protocol
, int __user
*usockvec
)
1529 struct socket
*sock1
, *sock2
;
1531 struct file
*newfile1
, *newfile2
;
1534 flags
= type
& ~SOCK_TYPE_MASK
;
1535 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1537 type
&= SOCK_TYPE_MASK
;
1539 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1540 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1543 * reserve descriptors and make sure we won't fail
1544 * to return them to userland.
1546 fd1
= get_unused_fd_flags(flags
);
1547 if (unlikely(fd1
< 0))
1550 fd2
= get_unused_fd_flags(flags
);
1551 if (unlikely(fd2
< 0)) {
1556 err
= put_user(fd1
, &usockvec
[0]);
1560 err
= put_user(fd2
, &usockvec
[1]);
1565 * Obtain the first socket and check if the underlying protocol
1566 * supports the socketpair call.
1569 err
= sock_create(family
, type
, protocol
, &sock1
);
1570 if (unlikely(err
< 0))
1573 err
= sock_create(family
, type
, protocol
, &sock2
);
1574 if (unlikely(err
< 0)) {
1575 sock_release(sock1
);
1579 err
= security_socket_socketpair(sock1
, sock2
);
1580 if (unlikely(err
)) {
1581 sock_release(sock2
);
1582 sock_release(sock1
);
1586 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1587 if (unlikely(err
< 0)) {
1588 sock_release(sock2
);
1589 sock_release(sock1
);
1593 newfile1
= sock_alloc_file(sock1
, flags
, NULL
);
1594 if (IS_ERR(newfile1
)) {
1595 err
= PTR_ERR(newfile1
);
1596 sock_release(sock2
);
1600 newfile2
= sock_alloc_file(sock2
, flags
, NULL
);
1601 if (IS_ERR(newfile2
)) {
1602 err
= PTR_ERR(newfile2
);
1607 audit_fd_pair(fd1
, fd2
);
1609 fd_install(fd1
, newfile1
);
1610 fd_install(fd2
, newfile2
);
1619 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1620 int __user
*, usockvec
)
1622 return __sys_socketpair(family
, type
, protocol
, usockvec
);
1626 * Bind a name to a socket. Nothing much to do here since it's
1627 * the protocol's responsibility to handle the local address.
1629 * We move the socket address to kernel space before we call
1630 * the protocol layer (having also checked the address is ok).
1633 int __sys_bind(int fd
, struct sockaddr __user
*umyaddr
, int addrlen
)
1635 struct socket
*sock
;
1636 struct sockaddr_storage address
;
1637 int err
, fput_needed
;
1639 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1641 err
= move_addr_to_kernel(umyaddr
, addrlen
, &address
);
1643 err
= security_socket_bind(sock
,
1644 (struct sockaddr
*)&address
,
1647 err
= sock
->ops
->bind(sock
,
1651 fput_light(sock
->file
, fput_needed
);
1656 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1658 return __sys_bind(fd
, umyaddr
, addrlen
);
1662 * Perform a listen. Basically, we allow the protocol to do anything
1663 * necessary for a listen, and if that works, we mark the socket as
1664 * ready for listening.
1667 int __sys_listen(int fd
, int backlog
)
1669 struct socket
*sock
;
1670 int err
, fput_needed
;
1673 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1675 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1676 if ((unsigned int)backlog
> somaxconn
)
1677 backlog
= somaxconn
;
1679 err
= security_socket_listen(sock
, backlog
);
1681 err
= sock
->ops
->listen(sock
, backlog
);
1683 fput_light(sock
->file
, fput_needed
);
1688 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1690 return __sys_listen(fd
, backlog
);
1694 * For accept, we attempt to create a new socket, set up the link
1695 * with the client, wake up the client, then return the new
1696 * connected fd. We collect the address of the connector in kernel
1697 * space and move it to user at the very end. This is unclean because
1698 * we open the socket then return an error.
1700 * 1003.1g adds the ability to recvmsg() to query connection pending
1701 * status to recvmsg. We need to add that support in a way thats
1702 * clean when we restructure accept also.
1705 int __sys_accept4(int fd
, struct sockaddr __user
*upeer_sockaddr
,
1706 int __user
*upeer_addrlen
, int flags
)
1708 struct socket
*sock
, *newsock
;
1709 struct file
*newfile
;
1710 int err
, len
, newfd
, fput_needed
;
1711 struct sockaddr_storage address
;
1713 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1716 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1717 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1719 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1724 newsock
= sock_alloc();
1728 newsock
->type
= sock
->type
;
1729 newsock
->ops
= sock
->ops
;
1732 * We don't need try_module_get here, as the listening socket (sock)
1733 * has the protocol module (sock->ops->owner) held.
1735 __module_get(newsock
->ops
->owner
);
1737 newfd
= get_unused_fd_flags(flags
);
1738 if (unlikely(newfd
< 0)) {
1740 sock_release(newsock
);
1743 newfile
= sock_alloc_file(newsock
, flags
, sock
->sk
->sk_prot_creator
->name
);
1744 if (IS_ERR(newfile
)) {
1745 err
= PTR_ERR(newfile
);
1746 put_unused_fd(newfd
);
1750 err
= security_socket_accept(sock
, newsock
);
1754 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
, false);
1758 if (upeer_sockaddr
) {
1759 len
= newsock
->ops
->getname(newsock
,
1760 (struct sockaddr
*)&address
, 2);
1762 err
= -ECONNABORTED
;
1765 err
= move_addr_to_user(&address
,
1766 len
, upeer_sockaddr
, upeer_addrlen
);
1771 /* File flags are not inherited via accept() unlike another OSes. */
1773 fd_install(newfd
, newfile
);
1777 fput_light(sock
->file
, fput_needed
);
1782 put_unused_fd(newfd
);
1786 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1787 int __user
*, upeer_addrlen
, int, flags
)
1789 return __sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, flags
);
1792 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1793 int __user
*, upeer_addrlen
)
1795 return __sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1799 * Attempt to connect to a socket with the server address. The address
1800 * is in user space so we verify it is OK and move it to kernel space.
1802 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1805 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1806 * other SEQPACKET protocols that take time to connect() as it doesn't
1807 * include the -EINPROGRESS status for such sockets.
1810 int __sys_connect(int fd
, struct sockaddr __user
*uservaddr
, int addrlen
)
1812 struct socket
*sock
;
1813 struct sockaddr_storage address
;
1814 int err
, fput_needed
;
1816 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1819 err
= move_addr_to_kernel(uservaddr
, addrlen
, &address
);
1824 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1828 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1829 sock
->file
->f_flags
);
1831 fput_light(sock
->file
, fput_needed
);
1836 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1839 return __sys_connect(fd
, uservaddr
, addrlen
);
1843 * Get the local address ('name') of a socket object. Move the obtained
1844 * name to user space.
1847 int __sys_getsockname(int fd
, struct sockaddr __user
*usockaddr
,
1848 int __user
*usockaddr_len
)
1850 struct socket
*sock
;
1851 struct sockaddr_storage address
;
1852 int err
, fput_needed
;
1854 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1858 err
= security_socket_getsockname(sock
);
1862 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, 0);
1865 /* "err" is actually length in this case */
1866 err
= move_addr_to_user(&address
, err
, usockaddr
, usockaddr_len
);
1869 fput_light(sock
->file
, fput_needed
);
1874 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1875 int __user
*, usockaddr_len
)
1877 return __sys_getsockname(fd
, usockaddr
, usockaddr_len
);
1881 * Get the remote address ('name') of a socket object. Move the obtained
1882 * name to user space.
1885 int __sys_getpeername(int fd
, struct sockaddr __user
*usockaddr
,
1886 int __user
*usockaddr_len
)
1888 struct socket
*sock
;
1889 struct sockaddr_storage address
;
1890 int err
, fput_needed
;
1892 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1894 err
= security_socket_getpeername(sock
);
1896 fput_light(sock
->file
, fput_needed
);
1900 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, 1);
1902 /* "err" is actually length in this case */
1903 err
= move_addr_to_user(&address
, err
, usockaddr
,
1905 fput_light(sock
->file
, fput_needed
);
1910 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1911 int __user
*, usockaddr_len
)
1913 return __sys_getpeername(fd
, usockaddr
, usockaddr_len
);
1917 * Send a datagram to a given address. We move the address into kernel
1918 * space and check the user space data area is readable before invoking
1921 int __sys_sendto(int fd
, void __user
*buff
, size_t len
, unsigned int flags
,
1922 struct sockaddr __user
*addr
, int addr_len
)
1924 struct socket
*sock
;
1925 struct sockaddr_storage address
;
1931 err
= import_single_range(WRITE
, buff
, len
, &iov
, &msg
.msg_iter
);
1934 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1938 msg
.msg_name
= NULL
;
1939 msg
.msg_control
= NULL
;
1940 msg
.msg_controllen
= 0;
1941 msg
.msg_namelen
= 0;
1943 err
= move_addr_to_kernel(addr
, addr_len
, &address
);
1946 msg
.msg_name
= (struct sockaddr
*)&address
;
1947 msg
.msg_namelen
= addr_len
;
1949 if (sock
->file
->f_flags
& O_NONBLOCK
)
1950 flags
|= MSG_DONTWAIT
;
1951 msg
.msg_flags
= flags
;
1952 err
= sock_sendmsg(sock
, &msg
);
1955 fput_light(sock
->file
, fput_needed
);
1960 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1961 unsigned int, flags
, struct sockaddr __user
*, addr
,
1964 return __sys_sendto(fd
, buff
, len
, flags
, addr
, addr_len
);
1968 * Send a datagram down a socket.
1971 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1972 unsigned int, flags
)
1974 return __sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1978 * Receive a frame from the socket and optionally record the address of the
1979 * sender. We verify the buffers are writable and if needed move the
1980 * sender address from kernel to user space.
1982 int __sys_recvfrom(int fd
, void __user
*ubuf
, size_t size
, unsigned int flags
,
1983 struct sockaddr __user
*addr
, int __user
*addr_len
)
1985 struct socket
*sock
;
1988 struct sockaddr_storage address
;
1992 err
= import_single_range(READ
, ubuf
, size
, &iov
, &msg
.msg_iter
);
1995 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1999 msg
.msg_control
= NULL
;
2000 msg
.msg_controllen
= 0;
2001 /* Save some cycles and don't copy the address if not needed */
2002 msg
.msg_name
= addr
? (struct sockaddr
*)&address
: NULL
;
2003 /* We assume all kernel code knows the size of sockaddr_storage */
2004 msg
.msg_namelen
= 0;
2005 msg
.msg_iocb
= NULL
;
2007 if (sock
->file
->f_flags
& O_NONBLOCK
)
2008 flags
|= MSG_DONTWAIT
;
2009 err
= sock_recvmsg(sock
, &msg
, flags
);
2011 if (err
>= 0 && addr
!= NULL
) {
2012 err2
= move_addr_to_user(&address
,
2013 msg
.msg_namelen
, addr
, addr_len
);
2018 fput_light(sock
->file
, fput_needed
);
2023 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
2024 unsigned int, flags
, struct sockaddr __user
*, addr
,
2025 int __user
*, addr_len
)
2027 return __sys_recvfrom(fd
, ubuf
, size
, flags
, addr
, addr_len
);
2031 * Receive a datagram from a socket.
2034 SYSCALL_DEFINE4(recv
, int, fd
, void __user
*, ubuf
, size_t, size
,
2035 unsigned int, flags
)
2037 return __sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
2041 * Set a socket option. Because we don't know the option lengths we have
2042 * to pass the user mode parameter for the protocols to sort out.
2045 static int __sys_setsockopt(int fd
, int level
, int optname
,
2046 char __user
*optval
, int optlen
)
2048 mm_segment_t oldfs
= get_fs();
2049 char *kernel_optval
= NULL
;
2050 int err
, fput_needed
;
2051 struct socket
*sock
;
2056 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2058 err
= security_socket_setsockopt(sock
, level
, optname
);
2062 err
= BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock
->sk
, &level
,
2063 &optname
, optval
, &optlen
,
2068 } else if (err
> 0) {
2073 if (kernel_optval
) {
2075 optval
= (char __user __force
*)kernel_optval
;
2078 if (level
== SOL_SOCKET
)
2080 sock_setsockopt(sock
, level
, optname
, optval
,
2084 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
2087 if (kernel_optval
) {
2089 kfree(kernel_optval
);
2092 fput_light(sock
->file
, fput_needed
);
2097 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
2098 char __user
*, optval
, int, optlen
)
2100 return __sys_setsockopt(fd
, level
, optname
, optval
, optlen
);
2104 * Get a socket option. Because we don't know the option lengths we have
2105 * to pass a user mode parameter for the protocols to sort out.
2108 static int __sys_getsockopt(int fd
, int level
, int optname
,
2109 char __user
*optval
, int __user
*optlen
)
2111 int err
, fput_needed
;
2112 struct socket
*sock
;
2115 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2117 err
= security_socket_getsockopt(sock
, level
, optname
);
2121 max_optlen
= BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen
);
2123 if (level
== SOL_SOCKET
)
2125 sock_getsockopt(sock
, level
, optname
, optval
,
2129 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
2132 err
= BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock
->sk
, level
, optname
,
2136 fput_light(sock
->file
, fput_needed
);
2141 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
2142 char __user
*, optval
, int __user
*, optlen
)
2144 return __sys_getsockopt(fd
, level
, optname
, optval
, optlen
);
2148 * Shutdown a socket.
2151 int __sys_shutdown(int fd
, int how
)
2153 int err
, fput_needed
;
2154 struct socket
*sock
;
2156 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2158 err
= security_socket_shutdown(sock
, how
);
2160 err
= sock
->ops
->shutdown(sock
, how
);
2161 fput_light(sock
->file
, fput_needed
);
2166 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
2168 return __sys_shutdown(fd
, how
);
2171 /* A couple of helpful macros for getting the address of the 32/64 bit
2172 * fields which are the same type (int / unsigned) on our platforms.
2174 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2175 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2176 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2178 struct used_address
{
2179 struct sockaddr_storage name
;
2180 unsigned int name_len
;
2183 static int copy_msghdr_from_user(struct msghdr
*kmsg
,
2184 struct user_msghdr __user
*umsg
,
2185 struct sockaddr __user
**save_addr
,
2188 struct user_msghdr msg
;
2191 if (copy_from_user(&msg
, umsg
, sizeof(*umsg
)))
2194 kmsg
->msg_control
= (void __force
*)msg
.msg_control
;
2195 kmsg
->msg_controllen
= msg
.msg_controllen
;
2196 kmsg
->msg_flags
= msg
.msg_flags
;
2198 kmsg
->msg_namelen
= msg
.msg_namelen
;
2200 kmsg
->msg_namelen
= 0;
2202 if (kmsg
->msg_namelen
< 0)
2205 if (kmsg
->msg_namelen
> sizeof(struct sockaddr_storage
))
2206 kmsg
->msg_namelen
= sizeof(struct sockaddr_storage
);
2209 *save_addr
= msg
.msg_name
;
2211 if (msg
.msg_name
&& kmsg
->msg_namelen
) {
2213 err
= move_addr_to_kernel(msg
.msg_name
,
2220 kmsg
->msg_name
= NULL
;
2221 kmsg
->msg_namelen
= 0;
2224 if (msg
.msg_iovlen
> UIO_MAXIOV
)
2227 kmsg
->msg_iocb
= NULL
;
2229 err
= import_iovec(save_addr
? READ
: WRITE
,
2230 msg
.msg_iov
, msg
.msg_iovlen
,
2231 UIO_FASTIOV
, iov
, &kmsg
->msg_iter
);
2232 return err
< 0 ? err
: 0;
2235 static int ___sys_sendmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2236 struct msghdr
*msg_sys
, unsigned int flags
,
2237 struct used_address
*used_address
,
2238 unsigned int allowed_msghdr_flags
)
2240 struct compat_msghdr __user
*msg_compat
=
2241 (struct compat_msghdr __user
*)msg
;
2242 struct sockaddr_storage address
;
2243 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
2244 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
2245 __aligned(sizeof(__kernel_size_t
));
2246 /* 20 is size of ipv6_pktinfo */
2247 unsigned char *ctl_buf
= ctl
;
2251 msg_sys
->msg_name
= &address
;
2253 if (MSG_CMSG_COMPAT
& flags
)
2254 err
= get_compat_msghdr(msg_sys
, msg_compat
, NULL
, &iov
);
2256 err
= copy_msghdr_from_user(msg_sys
, msg
, NULL
, &iov
);
2262 if (msg_sys
->msg_controllen
> INT_MAX
)
2264 flags
|= (msg_sys
->msg_flags
& allowed_msghdr_flags
);
2265 ctl_len
= msg_sys
->msg_controllen
;
2266 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
2268 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
2272 ctl_buf
= msg_sys
->msg_control
;
2273 ctl_len
= msg_sys
->msg_controllen
;
2274 } else if (ctl_len
) {
2275 BUILD_BUG_ON(sizeof(struct cmsghdr
) !=
2276 CMSG_ALIGN(sizeof(struct cmsghdr
)));
2277 if (ctl_len
> sizeof(ctl
)) {
2278 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
2279 if (ctl_buf
== NULL
)
2284 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2285 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2286 * checking falls down on this.
2288 if (copy_from_user(ctl_buf
,
2289 (void __user __force
*)msg_sys
->msg_control
,
2292 msg_sys
->msg_control
= ctl_buf
;
2294 msg_sys
->msg_flags
= flags
;
2296 if (sock
->file
->f_flags
& O_NONBLOCK
)
2297 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
2299 * If this is sendmmsg() and current destination address is same as
2300 * previously succeeded address, omit asking LSM's decision.
2301 * used_address->name_len is initialized to UINT_MAX so that the first
2302 * destination address never matches.
2304 if (used_address
&& msg_sys
->msg_name
&&
2305 used_address
->name_len
== msg_sys
->msg_namelen
&&
2306 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
2307 used_address
->name_len
)) {
2308 err
= sock_sendmsg_nosec(sock
, msg_sys
);
2311 err
= sock_sendmsg(sock
, msg_sys
);
2313 * If this is sendmmsg() and sending to current destination address was
2314 * successful, remember it.
2316 if (used_address
&& err
>= 0) {
2317 used_address
->name_len
= msg_sys
->msg_namelen
;
2318 if (msg_sys
->msg_name
)
2319 memcpy(&used_address
->name
, msg_sys
->msg_name
,
2320 used_address
->name_len
);
2325 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
2332 * BSD sendmsg interface
2334 long __sys_sendmsg_sock(struct socket
*sock
, struct user_msghdr __user
*msg
,
2337 struct msghdr msg_sys
;
2339 return ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
, 0);
2342 long __sys_sendmsg(int fd
, struct user_msghdr __user
*msg
, unsigned int flags
,
2343 bool forbid_cmsg_compat
)
2345 int fput_needed
, err
;
2346 struct msghdr msg_sys
;
2347 struct socket
*sock
;
2349 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2352 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2356 err
= ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
, 0);
2358 fput_light(sock
->file
, fput_needed
);
2363 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct user_msghdr __user
*, msg
, unsigned int, flags
)
2365 return __sys_sendmsg(fd
, msg
, flags
, true);
2369 * Linux sendmmsg interface
2372 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2373 unsigned int flags
, bool forbid_cmsg_compat
)
2375 int fput_needed
, err
, datagrams
;
2376 struct socket
*sock
;
2377 struct mmsghdr __user
*entry
;
2378 struct compat_mmsghdr __user
*compat_entry
;
2379 struct msghdr msg_sys
;
2380 struct used_address used_address
;
2381 unsigned int oflags
= flags
;
2383 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2386 if (vlen
> UIO_MAXIOV
)
2391 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2395 used_address
.name_len
= UINT_MAX
;
2397 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2401 while (datagrams
< vlen
) {
2402 if (datagrams
== vlen
- 1)
2405 if (MSG_CMSG_COMPAT
& flags
) {
2406 err
= ___sys_sendmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2407 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2410 err
= __put_user(err
, &compat_entry
->msg_len
);
2413 err
= ___sys_sendmsg(sock
,
2414 (struct user_msghdr __user
*)entry
,
2415 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2418 err
= put_user(err
, &entry
->msg_len
);
2425 if (msg_data_left(&msg_sys
))
2430 fput_light(sock
->file
, fput_needed
);
2432 /* We only return an error if no datagrams were able to be sent */
2439 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2440 unsigned int, vlen
, unsigned int, flags
)
2442 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
, true);
2445 static int ___sys_recvmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2446 struct msghdr
*msg_sys
, unsigned int flags
, int nosec
)
2448 struct compat_msghdr __user
*msg_compat
=
2449 (struct compat_msghdr __user
*)msg
;
2450 struct iovec iovstack
[UIO_FASTIOV
];
2451 struct iovec
*iov
= iovstack
;
2452 unsigned long cmsg_ptr
;
2456 /* kernel mode address */
2457 struct sockaddr_storage addr
;
2459 /* user mode address pointers */
2460 struct sockaddr __user
*uaddr
;
2461 int __user
*uaddr_len
= COMPAT_NAMELEN(msg
);
2463 msg_sys
->msg_name
= &addr
;
2465 if (MSG_CMSG_COMPAT
& flags
)
2466 err
= get_compat_msghdr(msg_sys
, msg_compat
, &uaddr
, &iov
);
2468 err
= copy_msghdr_from_user(msg_sys
, msg
, &uaddr
, &iov
);
2472 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2473 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2475 /* We assume all kernel code knows the size of sockaddr_storage */
2476 msg_sys
->msg_namelen
= 0;
2478 if (sock
->file
->f_flags
& O_NONBLOCK
)
2479 flags
|= MSG_DONTWAIT
;
2480 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
, flags
);
2485 if (uaddr
!= NULL
) {
2486 err
= move_addr_to_user(&addr
,
2487 msg_sys
->msg_namelen
, uaddr
,
2492 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2496 if (MSG_CMSG_COMPAT
& flags
)
2497 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2498 &msg_compat
->msg_controllen
);
2500 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2501 &msg
->msg_controllen
);
2512 * BSD recvmsg interface
2515 long __sys_recvmsg_sock(struct socket
*sock
, struct user_msghdr __user
*msg
,
2518 struct msghdr msg_sys
;
2520 return ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2523 long __sys_recvmsg(int fd
, struct user_msghdr __user
*msg
, unsigned int flags
,
2524 bool forbid_cmsg_compat
)
2526 int fput_needed
, err
;
2527 struct msghdr msg_sys
;
2528 struct socket
*sock
;
2530 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2533 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2537 err
= ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2539 fput_light(sock
->file
, fput_needed
);
2544 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct user_msghdr __user
*, msg
,
2545 unsigned int, flags
)
2547 return __sys_recvmsg(fd
, msg
, flags
, true);
2551 * Linux recvmmsg interface
2554 static int do_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
,
2555 unsigned int vlen
, unsigned int flags
,
2556 struct timespec64
*timeout
)
2558 int fput_needed
, err
, datagrams
;
2559 struct socket
*sock
;
2560 struct mmsghdr __user
*entry
;
2561 struct compat_mmsghdr __user
*compat_entry
;
2562 struct msghdr msg_sys
;
2563 struct timespec64 end_time
;
2564 struct timespec64 timeout64
;
2567 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2573 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2577 if (likely(!(flags
& MSG_ERRQUEUE
))) {
2578 err
= sock_error(sock
->sk
);
2586 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2588 while (datagrams
< vlen
) {
2590 * No need to ask LSM for more than the first datagram.
2592 if (MSG_CMSG_COMPAT
& flags
) {
2593 err
= ___sys_recvmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2594 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2598 err
= __put_user(err
, &compat_entry
->msg_len
);
2601 err
= ___sys_recvmsg(sock
,
2602 (struct user_msghdr __user
*)entry
,
2603 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2607 err
= put_user(err
, &entry
->msg_len
);
2615 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2616 if (flags
& MSG_WAITFORONE
)
2617 flags
|= MSG_DONTWAIT
;
2620 ktime_get_ts64(&timeout64
);
2621 *timeout
= timespec64_sub(end_time
, timeout64
);
2622 if (timeout
->tv_sec
< 0) {
2623 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2627 /* Timeout, return less than vlen datagrams */
2628 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2632 /* Out of band data, return right away */
2633 if (msg_sys
.msg_flags
& MSG_OOB
)
2641 if (datagrams
== 0) {
2647 * We may return less entries than requested (vlen) if the
2648 * sock is non block and there aren't enough datagrams...
2650 if (err
!= -EAGAIN
) {
2652 * ... or if recvmsg returns an error after we
2653 * received some datagrams, where we record the
2654 * error to return on the next call or if the
2655 * app asks about it using getsockopt(SO_ERROR).
2657 sock
->sk
->sk_err
= -err
;
2660 fput_light(sock
->file
, fput_needed
);
2665 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
,
2666 unsigned int vlen
, unsigned int flags
,
2667 struct __kernel_timespec __user
*timeout
,
2668 struct old_timespec32 __user
*timeout32
)
2671 struct timespec64 timeout_sys
;
2673 if (timeout
&& get_timespec64(&timeout_sys
, timeout
))
2676 if (timeout32
&& get_old_timespec32(&timeout_sys
, timeout32
))
2679 if (!timeout
&& !timeout32
)
2680 return do_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2682 datagrams
= do_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2687 if (timeout
&& put_timespec64(&timeout_sys
, timeout
))
2688 datagrams
= -EFAULT
;
2690 if (timeout32
&& put_old_timespec32(&timeout_sys
, timeout32
))
2691 datagrams
= -EFAULT
;
2696 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2697 unsigned int, vlen
, unsigned int, flags
,
2698 struct __kernel_timespec __user
*, timeout
)
2700 if (flags
& MSG_CMSG_COMPAT
)
2703 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, timeout
, NULL
);
2706 #ifdef CONFIG_COMPAT_32BIT_TIME
2707 SYSCALL_DEFINE5(recvmmsg_time32
, int, fd
, struct mmsghdr __user
*, mmsg
,
2708 unsigned int, vlen
, unsigned int, flags
,
2709 struct old_timespec32 __user
*, timeout
)
2711 if (flags
& MSG_CMSG_COMPAT
)
2714 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
, timeout
);
2718 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2719 /* Argument list sizes for sys_socketcall */
2720 #define AL(x) ((x) * sizeof(unsigned long))
2721 static const unsigned char nargs
[21] = {
2722 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2723 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2724 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2731 * System call vectors.
2733 * Argument checking cleaned up. Saved 20% in size.
2734 * This function doesn't need to set the kernel lock because
2735 * it is set by the callees.
2738 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2740 unsigned long a
[AUDITSC_ARGS
];
2741 unsigned long a0
, a1
;
2745 if (call
< 1 || call
> SYS_SENDMMSG
)
2747 call
= array_index_nospec(call
, SYS_SENDMMSG
+ 1);
2750 if (len
> sizeof(a
))
2753 /* copy_from_user should be SMP safe. */
2754 if (copy_from_user(a
, args
, len
))
2757 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2766 err
= __sys_socket(a0
, a1
, a
[2]);
2769 err
= __sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2772 err
= __sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2775 err
= __sys_listen(a0
, a1
);
2778 err
= __sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2779 (int __user
*)a
[2], 0);
2781 case SYS_GETSOCKNAME
:
2783 __sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2784 (int __user
*)a
[2]);
2786 case SYS_GETPEERNAME
:
2788 __sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2789 (int __user
*)a
[2]);
2791 case SYS_SOCKETPAIR
:
2792 err
= __sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2795 err
= __sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2799 err
= __sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2800 (struct sockaddr __user
*)a
[4], a
[5]);
2803 err
= __sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2807 err
= __sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2808 (struct sockaddr __user
*)a
[4],
2809 (int __user
*)a
[5]);
2812 err
= __sys_shutdown(a0
, a1
);
2814 case SYS_SETSOCKOPT
:
2815 err
= __sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2818 case SYS_GETSOCKOPT
:
2820 __sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2821 (int __user
*)a
[4]);
2824 err
= __sys_sendmsg(a0
, (struct user_msghdr __user
*)a1
,
2828 err
= __sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2],
2832 err
= __sys_recvmsg(a0
, (struct user_msghdr __user
*)a1
,
2836 if (IS_ENABLED(CONFIG_64BIT
) || !IS_ENABLED(CONFIG_64BIT_TIME
))
2837 err
= __sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
,
2839 (struct __kernel_timespec __user
*)a
[4],
2842 err
= __sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
,
2844 (struct old_timespec32 __user
*)a
[4]);
2847 err
= __sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2848 (int __user
*)a
[2], a
[3]);
2857 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2860 * sock_register - add a socket protocol handler
2861 * @ops: description of protocol
2863 * This function is called by a protocol handler that wants to
2864 * advertise its address family, and have it linked into the
2865 * socket interface. The value ops->family corresponds to the
2866 * socket system call protocol family.
2868 int sock_register(const struct net_proto_family
*ops
)
2872 if (ops
->family
>= NPROTO
) {
2873 pr_crit("protocol %d >= NPROTO(%d)\n", ops
->family
, NPROTO
);
2877 spin_lock(&net_family_lock
);
2878 if (rcu_dereference_protected(net_families
[ops
->family
],
2879 lockdep_is_held(&net_family_lock
)))
2882 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2885 spin_unlock(&net_family_lock
);
2887 pr_info("NET: Registered protocol family %d\n", ops
->family
);
2890 EXPORT_SYMBOL(sock_register
);
2893 * sock_unregister - remove a protocol handler
2894 * @family: protocol family to remove
2896 * This function is called by a protocol handler that wants to
2897 * remove its address family, and have it unlinked from the
2898 * new socket creation.
2900 * If protocol handler is a module, then it can use module reference
2901 * counts to protect against new references. If protocol handler is not
2902 * a module then it needs to provide its own protection in
2903 * the ops->create routine.
2905 void sock_unregister(int family
)
2907 BUG_ON(family
< 0 || family
>= NPROTO
);
2909 spin_lock(&net_family_lock
);
2910 RCU_INIT_POINTER(net_families
[family
], NULL
);
2911 spin_unlock(&net_family_lock
);
2915 pr_info("NET: Unregistered protocol family %d\n", family
);
2917 EXPORT_SYMBOL(sock_unregister
);
2919 bool sock_is_registered(int family
)
2921 return family
< NPROTO
&& rcu_access_pointer(net_families
[family
]);
2924 static int __init
sock_init(void)
2928 * Initialize the network sysctl infrastructure.
2930 err
= net_sysctl_init();
2935 * Initialize skbuff SLAB cache
2940 * Initialize the protocols module.
2945 err
= register_filesystem(&sock_fs_type
);
2948 sock_mnt
= kern_mount(&sock_fs_type
);
2949 if (IS_ERR(sock_mnt
)) {
2950 err
= PTR_ERR(sock_mnt
);
2954 /* The real protocol initialization is performed in later initcalls.
2957 #ifdef CONFIG_NETFILTER
2958 err
= netfilter_init();
2963 ptp_classifier_init();
2969 unregister_filesystem(&sock_fs_type
);
2974 core_initcall(sock_init
); /* early initcall */
2976 #ifdef CONFIG_PROC_FS
2977 void socket_seq_show(struct seq_file
*seq
)
2979 seq_printf(seq
, "sockets: used %d\n",
2980 sock_inuse_get(seq
->private));
2982 #endif /* CONFIG_PROC_FS */
2984 #ifdef CONFIG_COMPAT
2985 static int compat_dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
2987 struct compat_ifconf ifc32
;
2991 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
2994 ifc
.ifc_len
= ifc32
.ifc_len
;
2995 ifc
.ifc_req
= compat_ptr(ifc32
.ifcbuf
);
2998 err
= dev_ifconf(net
, &ifc
, sizeof(struct compat_ifreq
));
3003 ifc32
.ifc_len
= ifc
.ifc_len
;
3004 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
3010 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
3012 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
3013 bool convert_in
= false, convert_out
= false;
3014 size_t buf_size
= 0;
3015 struct ethtool_rxnfc __user
*rxnfc
= NULL
;
3017 u32 rule_cnt
= 0, actual_rule_cnt
;
3022 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
3025 compat_rxnfc
= compat_ptr(data
);
3027 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
3030 /* Most ethtool structures are defined without padding.
3031 * Unfortunately struct ethtool_rxnfc is an exception.
3036 case ETHTOOL_GRXCLSRLALL
:
3037 /* Buffer size is variable */
3038 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
3040 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
3042 buf_size
+= rule_cnt
* sizeof(u32
);
3044 case ETHTOOL_GRXRINGS
:
3045 case ETHTOOL_GRXCLSRLCNT
:
3046 case ETHTOOL_GRXCLSRULE
:
3047 case ETHTOOL_SRXCLSRLINS
:
3050 case ETHTOOL_SRXCLSRLDEL
:
3051 buf_size
+= sizeof(struct ethtool_rxnfc
);
3053 rxnfc
= compat_alloc_user_space(buf_size
);
3057 if (copy_from_user(&ifr
.ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
3060 ifr
.ifr_data
= convert_in
? rxnfc
: (void __user
*)compat_rxnfc
;
3063 /* We expect there to be holes between fs.m_ext and
3064 * fs.ring_cookie and at the end of fs, but nowhere else.
3066 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
3067 sizeof(compat_rxnfc
->fs
.m_ext
) !=
3068 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
3069 sizeof(rxnfc
->fs
.m_ext
));
3071 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
3072 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
3073 offsetof(struct ethtool_rxnfc
, fs
.location
) -
3074 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
3076 if (copy_in_user(rxnfc
, compat_rxnfc
,
3077 (void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
3078 (void __user
*)rxnfc
) ||
3079 copy_in_user(&rxnfc
->fs
.ring_cookie
,
3080 &compat_rxnfc
->fs
.ring_cookie
,
3081 (void __user
*)(&rxnfc
->fs
.location
+ 1) -
3082 (void __user
*)&rxnfc
->fs
.ring_cookie
))
3084 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
3085 if (put_user(rule_cnt
, &rxnfc
->rule_cnt
))
3087 } else if (copy_in_user(&rxnfc
->rule_cnt
,
3088 &compat_rxnfc
->rule_cnt
,
3089 sizeof(rxnfc
->rule_cnt
)))
3093 ret
= dev_ioctl(net
, SIOCETHTOOL
, &ifr
, NULL
);
3098 if (copy_in_user(compat_rxnfc
, rxnfc
,
3099 (const void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
3100 (const void __user
*)rxnfc
) ||
3101 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
3102 &rxnfc
->fs
.ring_cookie
,
3103 (const void __user
*)(&rxnfc
->fs
.location
+ 1) -
3104 (const void __user
*)&rxnfc
->fs
.ring_cookie
) ||
3105 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
3106 sizeof(rxnfc
->rule_cnt
)))
3109 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
3110 /* As an optimisation, we only copy the actual
3111 * number of rules that the underlying
3112 * function returned. Since Mallory might
3113 * change the rule count in user memory, we
3114 * check that it is less than the rule count
3115 * originally given (as the user buffer size),
3116 * which has been range-checked.
3118 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
3120 if (actual_rule_cnt
< rule_cnt
)
3121 rule_cnt
= actual_rule_cnt
;
3122 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
3123 &rxnfc
->rule_locs
[0],
3124 rule_cnt
* sizeof(u32
)))
3132 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
3134 compat_uptr_t uptr32
;
3139 if (copy_from_user(&ifr
, uifr32
, sizeof(struct compat_ifreq
)))
3142 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
3145 saved
= ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
;
3146 ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
= compat_ptr(uptr32
);
3148 err
= dev_ioctl(net
, SIOCWANDEV
, &ifr
, NULL
);
3150 ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
= saved
;
3151 if (copy_to_user(uifr32
, &ifr
, sizeof(struct compat_ifreq
)))
3157 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3158 static int compat_ifr_data_ioctl(struct net
*net
, unsigned int cmd
,
3159 struct compat_ifreq __user
*u_ifreq32
)
3164 if (copy_from_user(ifreq
.ifr_name
, u_ifreq32
->ifr_name
, IFNAMSIZ
))
3166 if (get_user(data32
, &u_ifreq32
->ifr_data
))
3168 ifreq
.ifr_data
= compat_ptr(data32
);
3170 return dev_ioctl(net
, cmd
, &ifreq
, NULL
);
3173 static int compat_ifreq_ioctl(struct net
*net
, struct socket
*sock
,
3175 struct compat_ifreq __user
*uifr32
)
3177 struct ifreq __user
*uifr
;
3180 /* Handle the fact that while struct ifreq has the same *layout* on
3181 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3182 * which are handled elsewhere, it still has different *size* due to
3183 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3184 * resulting in struct ifreq being 32 and 40 bytes respectively).
3185 * As a result, if the struct happens to be at the end of a page and
3186 * the next page isn't readable/writable, we get a fault. To prevent
3187 * that, copy back and forth to the full size.
3190 uifr
= compat_alloc_user_space(sizeof(*uifr
));
3191 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
3194 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
3205 case SIOCGIFBRDADDR
:
3206 case SIOCGIFDSTADDR
:
3207 case SIOCGIFNETMASK
:
3213 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
3221 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
3222 struct compat_ifreq __user
*uifr32
)
3225 struct compat_ifmap __user
*uifmap32
;
3228 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
3229 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
3230 err
|= get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3231 err
|= get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3232 err
|= get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3233 err
|= get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3234 err
|= get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3235 err
|= get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3239 err
= dev_ioctl(net
, cmd
, &ifr
, NULL
);
3241 if (cmd
== SIOCGIFMAP
&& !err
) {
3242 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
3243 err
|= put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3244 err
|= put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3245 err
|= put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3246 err
|= put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3247 err
|= put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3248 err
|= put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3257 struct sockaddr rt_dst
; /* target address */
3258 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
3259 struct sockaddr rt_genmask
; /* target network mask (IP) */
3260 unsigned short rt_flags
;
3263 unsigned char rt_tos
;
3264 unsigned char rt_class
;
3266 short rt_metric
; /* +1 for binary compatibility! */
3267 /* char * */ u32 rt_dev
; /* forcing the device at add */
3268 u32 rt_mtu
; /* per route MTU/Window */
3269 u32 rt_window
; /* Window clamping */
3270 unsigned short rt_irtt
; /* Initial RTT */
3273 struct in6_rtmsg32
{
3274 struct in6_addr rtmsg_dst
;
3275 struct in6_addr rtmsg_src
;
3276 struct in6_addr rtmsg_gateway
;
3286 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
3287 unsigned int cmd
, void __user
*argp
)
3291 struct in6_rtmsg r6
;
3295 mm_segment_t old_fs
= get_fs();
3297 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
3298 struct in6_rtmsg32 __user
*ur6
= argp
;
3299 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
3300 3 * sizeof(struct in6_addr
));
3301 ret
|= get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
3302 ret
|= get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
3303 ret
|= get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
3304 ret
|= get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
3305 ret
|= get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
3306 ret
|= get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
3307 ret
|= get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
3311 struct rtentry32 __user
*ur4
= argp
;
3312 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
3313 3 * sizeof(struct sockaddr
));
3314 ret
|= get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
3315 ret
|= get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
3316 ret
|= get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
3317 ret
|= get_user(r4
.rt_window
, &(ur4
->rt_window
));
3318 ret
|= get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
3319 ret
|= get_user(rtdev
, &(ur4
->rt_dev
));
3321 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
3322 r4
.rt_dev
= (char __user __force
*)devname
;
3336 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
3343 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3344 * for some operations; this forces use of the newer bridge-utils that
3345 * use compatible ioctls
3347 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
3351 if (get_user(tmp
, argp
))
3353 if (tmp
== BRCTL_GET_VERSION
)
3354 return BRCTL_VERSION
+ 1;
3358 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3359 unsigned int cmd
, unsigned long arg
)
3361 void __user
*argp
= compat_ptr(arg
);
3362 struct sock
*sk
= sock
->sk
;
3363 struct net
*net
= sock_net(sk
);
3365 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3366 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3371 return old_bridge_ioctl(argp
);
3373 return compat_dev_ifconf(net
, argp
);
3375 return ethtool_ioctl(net
, argp
);
3377 return compat_siocwandev(net
, argp
);
3380 return compat_sioc_ifmap(net
, cmd
, argp
);
3383 return routing_ioctl(net
, sock
, cmd
, argp
);
3384 case SIOCGSTAMP_OLD
:
3385 case SIOCGSTAMPNS_OLD
:
3386 if (!sock
->ops
->gettstamp
)
3387 return -ENOIOCTLCMD
;
3388 return sock
->ops
->gettstamp(sock
, argp
, cmd
== SIOCGSTAMP_OLD
,
3389 !COMPAT_USE_64BIT_TIME
);
3391 case SIOCBONDSLAVEINFOQUERY
:
3392 case SIOCBONDINFOQUERY
:
3395 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3408 case SIOCGSTAMP_NEW
:
3409 case SIOCGSTAMPNS_NEW
:
3410 return sock_ioctl(file
, cmd
, arg
);
3427 case SIOCSIFHWBROADCAST
:
3429 case SIOCGIFBRDADDR
:
3430 case SIOCSIFBRDADDR
:
3431 case SIOCGIFDSTADDR
:
3432 case SIOCSIFDSTADDR
:
3433 case SIOCGIFNETMASK
:
3434 case SIOCSIFNETMASK
:
3446 case SIOCBONDENSLAVE
:
3447 case SIOCBONDRELEASE
:
3448 case SIOCBONDSETHWADDR
:
3449 case SIOCBONDCHANGEACTIVE
:
3450 return compat_ifreq_ioctl(net
, sock
, cmd
, argp
);
3456 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3459 return -ENOIOCTLCMD
;
3462 static long compat_sock_ioctl(struct file
*file
, unsigned int cmd
,
3465 struct socket
*sock
= file
->private_data
;
3466 int ret
= -ENOIOCTLCMD
;
3473 if (sock
->ops
->compat_ioctl
)
3474 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3476 if (ret
== -ENOIOCTLCMD
&&
3477 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3478 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3480 if (ret
== -ENOIOCTLCMD
)
3481 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3488 * kernel_bind - bind an address to a socket (kernel space)
3491 * @addrlen: length of address
3493 * Returns 0 or an error.
3496 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3498 return sock
->ops
->bind(sock
, addr
, addrlen
);
3500 EXPORT_SYMBOL(kernel_bind
);
3503 * kernel_listen - move socket to listening state (kernel space)
3505 * @backlog: pending connections queue size
3507 * Returns 0 or an error.
3510 int kernel_listen(struct socket
*sock
, int backlog
)
3512 return sock
->ops
->listen(sock
, backlog
);
3514 EXPORT_SYMBOL(kernel_listen
);
3517 * kernel_accept - accept a connection (kernel space)
3518 * @sock: listening socket
3519 * @newsock: new connected socket
3522 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3523 * If it fails, @newsock is guaranteed to be %NULL.
3524 * Returns 0 or an error.
3527 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3529 struct sock
*sk
= sock
->sk
;
3532 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3537 err
= sock
->ops
->accept(sock
, *newsock
, flags
, true);
3539 sock_release(*newsock
);
3544 (*newsock
)->ops
= sock
->ops
;
3545 __module_get((*newsock
)->ops
->owner
);
3550 EXPORT_SYMBOL(kernel_accept
);
3553 * kernel_connect - connect a socket (kernel space)
3556 * @addrlen: address length
3557 * @flags: flags (O_NONBLOCK, ...)
3559 * For datagram sockets, @addr is the addres to which datagrams are sent
3560 * by default, and the only address from which datagrams are received.
3561 * For stream sockets, attempts to connect to @addr.
3562 * Returns 0 or an error code.
3565 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3568 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3570 EXPORT_SYMBOL(kernel_connect
);
3573 * kernel_getsockname - get the address which the socket is bound (kernel space)
3575 * @addr: address holder
3577 * Fills the @addr pointer with the address which the socket is bound.
3578 * Returns 0 or an error code.
3581 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
)
3583 return sock
->ops
->getname(sock
, addr
, 0);
3585 EXPORT_SYMBOL(kernel_getsockname
);
3588 * kernel_peername - get the address which the socket is connected (kernel space)
3590 * @addr: address holder
3592 * Fills the @addr pointer with the address which the socket is connected.
3593 * Returns 0 or an error code.
3596 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
)
3598 return sock
->ops
->getname(sock
, addr
, 1);
3600 EXPORT_SYMBOL(kernel_getpeername
);
3603 * kernel_getsockopt - get a socket option (kernel space)
3605 * @level: API level (SOL_SOCKET, ...)
3606 * @optname: option tag
3607 * @optval: option value
3608 * @optlen: option length
3610 * Assigns the option length to @optlen.
3611 * Returns 0 or an error.
3614 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3615 char *optval
, int *optlen
)
3617 mm_segment_t oldfs
= get_fs();
3618 char __user
*uoptval
;
3619 int __user
*uoptlen
;
3622 uoptval
= (char __user __force
*) optval
;
3623 uoptlen
= (int __user __force
*) optlen
;
3626 if (level
== SOL_SOCKET
)
3627 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3629 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3634 EXPORT_SYMBOL(kernel_getsockopt
);
3637 * kernel_setsockopt - set a socket option (kernel space)
3639 * @level: API level (SOL_SOCKET, ...)
3640 * @optname: option tag
3641 * @optval: option value
3642 * @optlen: option length
3644 * Returns 0 or an error.
3647 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3648 char *optval
, unsigned int optlen
)
3650 mm_segment_t oldfs
= get_fs();
3651 char __user
*uoptval
;
3654 uoptval
= (char __user __force
*) optval
;
3657 if (level
== SOL_SOCKET
)
3658 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3660 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3665 EXPORT_SYMBOL(kernel_setsockopt
);
3668 * kernel_sendpage - send a &page through a socket (kernel space)
3671 * @offset: page offset
3672 * @size: total size in bytes
3673 * @flags: flags (MSG_DONTWAIT, ...)
3675 * Returns the total amount sent in bytes or an error.
3678 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3679 size_t size
, int flags
)
3681 if (sock
->ops
->sendpage
)
3682 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3684 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3686 EXPORT_SYMBOL(kernel_sendpage
);
3689 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3692 * @offset: page offset
3693 * @size: total size in bytes
3694 * @flags: flags (MSG_DONTWAIT, ...)
3696 * Returns the total amount sent in bytes or an error.
3697 * Caller must hold @sk.
3700 int kernel_sendpage_locked(struct sock
*sk
, struct page
*page
, int offset
,
3701 size_t size
, int flags
)
3703 struct socket
*sock
= sk
->sk_socket
;
3705 if (sock
->ops
->sendpage_locked
)
3706 return sock
->ops
->sendpage_locked(sk
, page
, offset
, size
,
3709 return sock_no_sendpage_locked(sk
, page
, offset
, size
, flags
);
3711 EXPORT_SYMBOL(kernel_sendpage_locked
);
3714 * kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3716 * @how: connection part
3718 * Returns 0 or an error.
3721 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3723 return sock
->ops
->shutdown(sock
, how
);
3725 EXPORT_SYMBOL(kernel_sock_shutdown
);
3728 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3731 * This routine returns the IP overhead imposed by a socket i.e.
3732 * the length of the underlying IP header, depending on whether
3733 * this is an IPv4 or IPv6 socket and the length from IP options turned
3734 * on at the socket. Assumes that the caller has a lock on the socket.
3737 u32
kernel_sock_ip_overhead(struct sock
*sk
)
3739 struct inet_sock
*inet
;
3740 struct ip_options_rcu
*opt
;
3742 #if IS_ENABLED(CONFIG_IPV6)
3743 struct ipv6_pinfo
*np
;
3744 struct ipv6_txoptions
*optv6
= NULL
;
3745 #endif /* IS_ENABLED(CONFIG_IPV6) */
3750 switch (sk
->sk_family
) {
3753 overhead
+= sizeof(struct iphdr
);
3754 opt
= rcu_dereference_protected(inet
->inet_opt
,
3755 sock_owned_by_user(sk
));
3757 overhead
+= opt
->opt
.optlen
;
3759 #if IS_ENABLED(CONFIG_IPV6)
3762 overhead
+= sizeof(struct ipv6hdr
);
3764 optv6
= rcu_dereference_protected(np
->opt
,
3765 sock_owned_by_user(sk
));
3767 overhead
+= (optv6
->opt_flen
+ optv6
->opt_nflen
);
3769 #endif /* IS_ENABLED(CONFIG_IPV6) */
3770 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3774 EXPORT_SYMBOL(kernel_sock_ip_overhead
);