btrfs: root->fs_info cleanup, use fs_info->dev_root everywhere
[linux/fpc-iii.git] / fs / btrfs / delayed-inode.c
blobd90d4446f9fe88371e114afaee02f894ad75db63
1 /*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "ctree.h"
26 #define BTRFS_DELAYED_WRITEBACK 512
27 #define BTRFS_DELAYED_BACKGROUND 128
28 #define BTRFS_DELAYED_BATCH 16
30 static struct kmem_cache *delayed_node_cache;
32 int __init btrfs_delayed_inode_init(void)
34 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 sizeof(struct btrfs_delayed_node),
37 SLAB_MEM_SPREAD,
38 NULL);
39 if (!delayed_node_cache)
40 return -ENOMEM;
41 return 0;
44 void btrfs_delayed_inode_exit(void)
46 kmem_cache_destroy(delayed_node_cache);
49 static inline void btrfs_init_delayed_node(
50 struct btrfs_delayed_node *delayed_node,
51 struct btrfs_root *root, u64 inode_id)
53 delayed_node->root = root;
54 delayed_node->inode_id = inode_id;
55 atomic_set(&delayed_node->refs, 0);
56 delayed_node->ins_root = RB_ROOT;
57 delayed_node->del_root = RB_ROOT;
58 mutex_init(&delayed_node->mutex);
59 INIT_LIST_HEAD(&delayed_node->n_list);
60 INIT_LIST_HEAD(&delayed_node->p_list);
63 static inline int btrfs_is_continuous_delayed_item(
64 struct btrfs_delayed_item *item1,
65 struct btrfs_delayed_item *item2)
67 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
68 item1->key.objectid == item2->key.objectid &&
69 item1->key.type == item2->key.type &&
70 item1->key.offset + 1 == item2->key.offset)
71 return 1;
72 return 0;
75 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
76 struct btrfs_root *root)
78 return root->fs_info->delayed_root;
81 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
83 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
84 struct btrfs_root *root = btrfs_inode->root;
85 u64 ino = btrfs_ino(inode);
86 struct btrfs_delayed_node *node;
88 node = ACCESS_ONCE(btrfs_inode->delayed_node);
89 if (node) {
90 atomic_inc(&node->refs);
91 return node;
94 spin_lock(&root->inode_lock);
95 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
96 if (node) {
97 if (btrfs_inode->delayed_node) {
98 atomic_inc(&node->refs); /* can be accessed */
99 BUG_ON(btrfs_inode->delayed_node != node);
100 spin_unlock(&root->inode_lock);
101 return node;
103 btrfs_inode->delayed_node = node;
104 /* can be accessed and cached in the inode */
105 atomic_add(2, &node->refs);
106 spin_unlock(&root->inode_lock);
107 return node;
109 spin_unlock(&root->inode_lock);
111 return NULL;
114 /* Will return either the node or PTR_ERR(-ENOMEM) */
115 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
116 struct inode *inode)
118 struct btrfs_delayed_node *node;
119 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
120 struct btrfs_root *root = btrfs_inode->root;
121 u64 ino = btrfs_ino(inode);
122 int ret;
124 again:
125 node = btrfs_get_delayed_node(inode);
126 if (node)
127 return node;
129 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
130 if (!node)
131 return ERR_PTR(-ENOMEM);
132 btrfs_init_delayed_node(node, root, ino);
134 /* cached in the btrfs inode and can be accessed */
135 atomic_add(2, &node->refs);
137 ret = radix_tree_preload(GFP_NOFS);
138 if (ret) {
139 kmem_cache_free(delayed_node_cache, node);
140 return ERR_PTR(ret);
143 spin_lock(&root->inode_lock);
144 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
145 if (ret == -EEXIST) {
146 spin_unlock(&root->inode_lock);
147 kmem_cache_free(delayed_node_cache, node);
148 radix_tree_preload_end();
149 goto again;
151 btrfs_inode->delayed_node = node;
152 spin_unlock(&root->inode_lock);
153 radix_tree_preload_end();
155 return node;
159 * Call it when holding delayed_node->mutex
161 * If mod = 1, add this node into the prepared list.
163 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
164 struct btrfs_delayed_node *node,
165 int mod)
167 spin_lock(&root->lock);
168 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
169 if (!list_empty(&node->p_list))
170 list_move_tail(&node->p_list, &root->prepare_list);
171 else if (mod)
172 list_add_tail(&node->p_list, &root->prepare_list);
173 } else {
174 list_add_tail(&node->n_list, &root->node_list);
175 list_add_tail(&node->p_list, &root->prepare_list);
176 atomic_inc(&node->refs); /* inserted into list */
177 root->nodes++;
178 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
180 spin_unlock(&root->lock);
183 /* Call it when holding delayed_node->mutex */
184 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
185 struct btrfs_delayed_node *node)
187 spin_lock(&root->lock);
188 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
189 root->nodes--;
190 atomic_dec(&node->refs); /* not in the list */
191 list_del_init(&node->n_list);
192 if (!list_empty(&node->p_list))
193 list_del_init(&node->p_list);
194 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
196 spin_unlock(&root->lock);
199 static struct btrfs_delayed_node *btrfs_first_delayed_node(
200 struct btrfs_delayed_root *delayed_root)
202 struct list_head *p;
203 struct btrfs_delayed_node *node = NULL;
205 spin_lock(&delayed_root->lock);
206 if (list_empty(&delayed_root->node_list))
207 goto out;
209 p = delayed_root->node_list.next;
210 node = list_entry(p, struct btrfs_delayed_node, n_list);
211 atomic_inc(&node->refs);
212 out:
213 spin_unlock(&delayed_root->lock);
215 return node;
218 static struct btrfs_delayed_node *btrfs_next_delayed_node(
219 struct btrfs_delayed_node *node)
221 struct btrfs_delayed_root *delayed_root;
222 struct list_head *p;
223 struct btrfs_delayed_node *next = NULL;
225 delayed_root = node->root->fs_info->delayed_root;
226 spin_lock(&delayed_root->lock);
227 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
228 /* not in the list */
229 if (list_empty(&delayed_root->node_list))
230 goto out;
231 p = delayed_root->node_list.next;
232 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
233 goto out;
234 else
235 p = node->n_list.next;
237 next = list_entry(p, struct btrfs_delayed_node, n_list);
238 atomic_inc(&next->refs);
239 out:
240 spin_unlock(&delayed_root->lock);
242 return next;
245 static void __btrfs_release_delayed_node(
246 struct btrfs_delayed_node *delayed_node,
247 int mod)
249 struct btrfs_delayed_root *delayed_root;
251 if (!delayed_node)
252 return;
254 delayed_root = delayed_node->root->fs_info->delayed_root;
256 mutex_lock(&delayed_node->mutex);
257 if (delayed_node->count)
258 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
259 else
260 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
261 mutex_unlock(&delayed_node->mutex);
263 if (atomic_dec_and_test(&delayed_node->refs)) {
264 bool free = false;
265 struct btrfs_root *root = delayed_node->root;
266 spin_lock(&root->inode_lock);
267 if (atomic_read(&delayed_node->refs) == 0) {
268 radix_tree_delete(&root->delayed_nodes_tree,
269 delayed_node->inode_id);
270 free = true;
272 spin_unlock(&root->inode_lock);
273 if (free)
274 kmem_cache_free(delayed_node_cache, delayed_node);
278 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
280 __btrfs_release_delayed_node(node, 0);
283 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
284 struct btrfs_delayed_root *delayed_root)
286 struct list_head *p;
287 struct btrfs_delayed_node *node = NULL;
289 spin_lock(&delayed_root->lock);
290 if (list_empty(&delayed_root->prepare_list))
291 goto out;
293 p = delayed_root->prepare_list.next;
294 list_del_init(p);
295 node = list_entry(p, struct btrfs_delayed_node, p_list);
296 atomic_inc(&node->refs);
297 out:
298 spin_unlock(&delayed_root->lock);
300 return node;
303 static inline void btrfs_release_prepared_delayed_node(
304 struct btrfs_delayed_node *node)
306 __btrfs_release_delayed_node(node, 1);
309 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
311 struct btrfs_delayed_item *item;
312 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
313 if (item) {
314 item->data_len = data_len;
315 item->ins_or_del = 0;
316 item->bytes_reserved = 0;
317 item->delayed_node = NULL;
318 atomic_set(&item->refs, 1);
320 return item;
324 * __btrfs_lookup_delayed_item - look up the delayed item by key
325 * @delayed_node: pointer to the delayed node
326 * @key: the key to look up
327 * @prev: used to store the prev item if the right item isn't found
328 * @next: used to store the next item if the right item isn't found
330 * Note: if we don't find the right item, we will return the prev item and
331 * the next item.
333 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
334 struct rb_root *root,
335 struct btrfs_key *key,
336 struct btrfs_delayed_item **prev,
337 struct btrfs_delayed_item **next)
339 struct rb_node *node, *prev_node = NULL;
340 struct btrfs_delayed_item *delayed_item = NULL;
341 int ret = 0;
343 node = root->rb_node;
345 while (node) {
346 delayed_item = rb_entry(node, struct btrfs_delayed_item,
347 rb_node);
348 prev_node = node;
349 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
350 if (ret < 0)
351 node = node->rb_right;
352 else if (ret > 0)
353 node = node->rb_left;
354 else
355 return delayed_item;
358 if (prev) {
359 if (!prev_node)
360 *prev = NULL;
361 else if (ret < 0)
362 *prev = delayed_item;
363 else if ((node = rb_prev(prev_node)) != NULL) {
364 *prev = rb_entry(node, struct btrfs_delayed_item,
365 rb_node);
366 } else
367 *prev = NULL;
370 if (next) {
371 if (!prev_node)
372 *next = NULL;
373 else if (ret > 0)
374 *next = delayed_item;
375 else if ((node = rb_next(prev_node)) != NULL) {
376 *next = rb_entry(node, struct btrfs_delayed_item,
377 rb_node);
378 } else
379 *next = NULL;
381 return NULL;
384 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
385 struct btrfs_delayed_node *delayed_node,
386 struct btrfs_key *key)
388 return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
389 NULL, NULL);
392 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
393 struct btrfs_delayed_item *ins,
394 int action)
396 struct rb_node **p, *node;
397 struct rb_node *parent_node = NULL;
398 struct rb_root *root;
399 struct btrfs_delayed_item *item;
400 int cmp;
402 if (action == BTRFS_DELAYED_INSERTION_ITEM)
403 root = &delayed_node->ins_root;
404 else if (action == BTRFS_DELAYED_DELETION_ITEM)
405 root = &delayed_node->del_root;
406 else
407 BUG();
408 p = &root->rb_node;
409 node = &ins->rb_node;
411 while (*p) {
412 parent_node = *p;
413 item = rb_entry(parent_node, struct btrfs_delayed_item,
414 rb_node);
416 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
417 if (cmp < 0)
418 p = &(*p)->rb_right;
419 else if (cmp > 0)
420 p = &(*p)->rb_left;
421 else
422 return -EEXIST;
425 rb_link_node(node, parent_node, p);
426 rb_insert_color(node, root);
427 ins->delayed_node = delayed_node;
428 ins->ins_or_del = action;
430 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
431 action == BTRFS_DELAYED_INSERTION_ITEM &&
432 ins->key.offset >= delayed_node->index_cnt)
433 delayed_node->index_cnt = ins->key.offset + 1;
435 delayed_node->count++;
436 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
437 return 0;
440 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
441 struct btrfs_delayed_item *item)
443 return __btrfs_add_delayed_item(node, item,
444 BTRFS_DELAYED_INSERTION_ITEM);
447 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
448 struct btrfs_delayed_item *item)
450 return __btrfs_add_delayed_item(node, item,
451 BTRFS_DELAYED_DELETION_ITEM);
454 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
456 int seq = atomic_inc_return(&delayed_root->items_seq);
459 * atomic_dec_return implies a barrier for waitqueue_active
461 if ((atomic_dec_return(&delayed_root->items) <
462 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
463 waitqueue_active(&delayed_root->wait))
464 wake_up(&delayed_root->wait);
467 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
469 struct rb_root *root;
470 struct btrfs_delayed_root *delayed_root;
472 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
474 BUG_ON(!delayed_root);
475 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
476 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
478 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
479 root = &delayed_item->delayed_node->ins_root;
480 else
481 root = &delayed_item->delayed_node->del_root;
483 rb_erase(&delayed_item->rb_node, root);
484 delayed_item->delayed_node->count--;
486 finish_one_item(delayed_root);
489 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
491 if (item) {
492 __btrfs_remove_delayed_item(item);
493 if (atomic_dec_and_test(&item->refs))
494 kfree(item);
498 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
499 struct btrfs_delayed_node *delayed_node)
501 struct rb_node *p;
502 struct btrfs_delayed_item *item = NULL;
504 p = rb_first(&delayed_node->ins_root);
505 if (p)
506 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
508 return item;
511 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
512 struct btrfs_delayed_node *delayed_node)
514 struct rb_node *p;
515 struct btrfs_delayed_item *item = NULL;
517 p = rb_first(&delayed_node->del_root);
518 if (p)
519 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
521 return item;
524 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
525 struct btrfs_delayed_item *item)
527 struct rb_node *p;
528 struct btrfs_delayed_item *next = NULL;
530 p = rb_next(&item->rb_node);
531 if (p)
532 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
534 return next;
537 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
538 struct btrfs_root *root,
539 struct btrfs_delayed_item *item)
541 struct btrfs_block_rsv *src_rsv;
542 struct btrfs_block_rsv *dst_rsv;
543 u64 num_bytes;
544 int ret;
546 if (!trans->bytes_reserved)
547 return 0;
549 src_rsv = trans->block_rsv;
550 dst_rsv = &root->fs_info->delayed_block_rsv;
552 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
553 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
554 if (!ret) {
555 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
556 item->key.objectid,
557 num_bytes, 1);
558 item->bytes_reserved = num_bytes;
561 return ret;
564 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
565 struct btrfs_delayed_item *item)
567 struct btrfs_block_rsv *rsv;
569 if (!item->bytes_reserved)
570 return;
572 rsv = &root->fs_info->delayed_block_rsv;
573 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
574 item->key.objectid, item->bytes_reserved,
576 btrfs_block_rsv_release(root, rsv,
577 item->bytes_reserved);
580 static int btrfs_delayed_inode_reserve_metadata(
581 struct btrfs_trans_handle *trans,
582 struct btrfs_root *root,
583 struct inode *inode,
584 struct btrfs_delayed_node *node)
586 struct btrfs_block_rsv *src_rsv;
587 struct btrfs_block_rsv *dst_rsv;
588 u64 num_bytes;
589 int ret;
590 bool release = false;
592 src_rsv = trans->block_rsv;
593 dst_rsv = &root->fs_info->delayed_block_rsv;
595 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
598 * If our block_rsv is the delalloc block reserve then check and see if
599 * we have our extra reservation for updating the inode. If not fall
600 * through and try to reserve space quickly.
602 * We used to try and steal from the delalloc block rsv or the global
603 * reserve, but we'd steal a full reservation, which isn't kind. We are
604 * here through delalloc which means we've likely just cowed down close
605 * to the leaf that contains the inode, so we would steal less just
606 * doing the fallback inode update, so if we do end up having to steal
607 * from the global block rsv we hopefully only steal one or two blocks
608 * worth which is less likely to hurt us.
610 if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
611 spin_lock(&BTRFS_I(inode)->lock);
612 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
613 &BTRFS_I(inode)->runtime_flags))
614 release = true;
615 else
616 src_rsv = NULL;
617 spin_unlock(&BTRFS_I(inode)->lock);
621 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
622 * which doesn't reserve space for speed. This is a problem since we
623 * still need to reserve space for this update, so try to reserve the
624 * space.
626 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
627 * we're accounted for.
629 if (!src_rsv || (!trans->bytes_reserved &&
630 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
631 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
632 BTRFS_RESERVE_NO_FLUSH);
634 * Since we're under a transaction reserve_metadata_bytes could
635 * try to commit the transaction which will make it return
636 * EAGAIN to make us stop the transaction we have, so return
637 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
639 if (ret == -EAGAIN)
640 ret = -ENOSPC;
641 if (!ret) {
642 node->bytes_reserved = num_bytes;
643 trace_btrfs_space_reservation(root->fs_info,
644 "delayed_inode",
645 btrfs_ino(inode),
646 num_bytes, 1);
648 return ret;
651 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
654 * Migrate only takes a reservation, it doesn't touch the size of the
655 * block_rsv. This is to simplify people who don't normally have things
656 * migrated from their block rsv. If they go to release their
657 * reservation, that will decrease the size as well, so if migrate
658 * reduced size we'd end up with a negative size. But for the
659 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
660 * but we could in fact do this reserve/migrate dance several times
661 * between the time we did the original reservation and we'd clean it
662 * up. So to take care of this, release the space for the meta
663 * reservation here. I think it may be time for a documentation page on
664 * how block rsvs. work.
666 if (!ret) {
667 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
668 btrfs_ino(inode), num_bytes, 1);
669 node->bytes_reserved = num_bytes;
672 if (release) {
673 trace_btrfs_space_reservation(root->fs_info, "delalloc",
674 btrfs_ino(inode), num_bytes, 0);
675 btrfs_block_rsv_release(root, src_rsv, num_bytes);
678 return ret;
681 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
682 struct btrfs_delayed_node *node)
684 struct btrfs_block_rsv *rsv;
686 if (!node->bytes_reserved)
687 return;
689 rsv = &root->fs_info->delayed_block_rsv;
690 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
691 node->inode_id, node->bytes_reserved, 0);
692 btrfs_block_rsv_release(root, rsv,
693 node->bytes_reserved);
694 node->bytes_reserved = 0;
698 * This helper will insert some continuous items into the same leaf according
699 * to the free space of the leaf.
701 static int btrfs_batch_insert_items(struct btrfs_root *root,
702 struct btrfs_path *path,
703 struct btrfs_delayed_item *item)
705 struct btrfs_delayed_item *curr, *next;
706 int free_space;
707 int total_data_size = 0, total_size = 0;
708 struct extent_buffer *leaf;
709 char *data_ptr;
710 struct btrfs_key *keys;
711 u32 *data_size;
712 struct list_head head;
713 int slot;
714 int nitems;
715 int i;
716 int ret = 0;
718 BUG_ON(!path->nodes[0]);
720 leaf = path->nodes[0];
721 free_space = btrfs_leaf_free_space(root, leaf);
722 INIT_LIST_HEAD(&head);
724 next = item;
725 nitems = 0;
728 * count the number of the continuous items that we can insert in batch
730 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
731 free_space) {
732 total_data_size += next->data_len;
733 total_size += next->data_len + sizeof(struct btrfs_item);
734 list_add_tail(&next->tree_list, &head);
735 nitems++;
737 curr = next;
738 next = __btrfs_next_delayed_item(curr);
739 if (!next)
740 break;
742 if (!btrfs_is_continuous_delayed_item(curr, next))
743 break;
746 if (!nitems) {
747 ret = 0;
748 goto out;
752 * we need allocate some memory space, but it might cause the task
753 * to sleep, so we set all locked nodes in the path to blocking locks
754 * first.
756 btrfs_set_path_blocking(path);
758 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
759 if (!keys) {
760 ret = -ENOMEM;
761 goto out;
764 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
765 if (!data_size) {
766 ret = -ENOMEM;
767 goto error;
770 /* get keys of all the delayed items */
771 i = 0;
772 list_for_each_entry(next, &head, tree_list) {
773 keys[i] = next->key;
774 data_size[i] = next->data_len;
775 i++;
778 /* reset all the locked nodes in the patch to spinning locks. */
779 btrfs_clear_path_blocking(path, NULL, 0);
781 /* insert the keys of the items */
782 setup_items_for_insert(root, path, keys, data_size,
783 total_data_size, total_size, nitems);
785 /* insert the dir index items */
786 slot = path->slots[0];
787 list_for_each_entry_safe(curr, next, &head, tree_list) {
788 data_ptr = btrfs_item_ptr(leaf, slot, char);
789 write_extent_buffer(leaf, &curr->data,
790 (unsigned long)data_ptr,
791 curr->data_len);
792 slot++;
794 btrfs_delayed_item_release_metadata(root, curr);
796 list_del(&curr->tree_list);
797 btrfs_release_delayed_item(curr);
800 error:
801 kfree(data_size);
802 kfree(keys);
803 out:
804 return ret;
808 * This helper can just do simple insertion that needn't extend item for new
809 * data, such as directory name index insertion, inode insertion.
811 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
812 struct btrfs_root *root,
813 struct btrfs_path *path,
814 struct btrfs_delayed_item *delayed_item)
816 struct extent_buffer *leaf;
817 char *ptr;
818 int ret;
820 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
821 delayed_item->data_len);
822 if (ret < 0 && ret != -EEXIST)
823 return ret;
825 leaf = path->nodes[0];
827 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
829 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
830 delayed_item->data_len);
831 btrfs_mark_buffer_dirty(leaf);
833 btrfs_delayed_item_release_metadata(root, delayed_item);
834 return 0;
838 * we insert an item first, then if there are some continuous items, we try
839 * to insert those items into the same leaf.
841 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
842 struct btrfs_path *path,
843 struct btrfs_root *root,
844 struct btrfs_delayed_node *node)
846 struct btrfs_delayed_item *curr, *prev;
847 int ret = 0;
849 do_again:
850 mutex_lock(&node->mutex);
851 curr = __btrfs_first_delayed_insertion_item(node);
852 if (!curr)
853 goto insert_end;
855 ret = btrfs_insert_delayed_item(trans, root, path, curr);
856 if (ret < 0) {
857 btrfs_release_path(path);
858 goto insert_end;
861 prev = curr;
862 curr = __btrfs_next_delayed_item(prev);
863 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
864 /* insert the continuous items into the same leaf */
865 path->slots[0]++;
866 btrfs_batch_insert_items(root, path, curr);
868 btrfs_release_delayed_item(prev);
869 btrfs_mark_buffer_dirty(path->nodes[0]);
871 btrfs_release_path(path);
872 mutex_unlock(&node->mutex);
873 goto do_again;
875 insert_end:
876 mutex_unlock(&node->mutex);
877 return ret;
880 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
881 struct btrfs_root *root,
882 struct btrfs_path *path,
883 struct btrfs_delayed_item *item)
885 struct btrfs_delayed_item *curr, *next;
886 struct extent_buffer *leaf;
887 struct btrfs_key key;
888 struct list_head head;
889 int nitems, i, last_item;
890 int ret = 0;
892 BUG_ON(!path->nodes[0]);
894 leaf = path->nodes[0];
896 i = path->slots[0];
897 last_item = btrfs_header_nritems(leaf) - 1;
898 if (i > last_item)
899 return -ENOENT; /* FIXME: Is errno suitable? */
901 next = item;
902 INIT_LIST_HEAD(&head);
903 btrfs_item_key_to_cpu(leaf, &key, i);
904 nitems = 0;
906 * count the number of the dir index items that we can delete in batch
908 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
909 list_add_tail(&next->tree_list, &head);
910 nitems++;
912 curr = next;
913 next = __btrfs_next_delayed_item(curr);
914 if (!next)
915 break;
917 if (!btrfs_is_continuous_delayed_item(curr, next))
918 break;
920 i++;
921 if (i > last_item)
922 break;
923 btrfs_item_key_to_cpu(leaf, &key, i);
926 if (!nitems)
927 return 0;
929 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
930 if (ret)
931 goto out;
933 list_for_each_entry_safe(curr, next, &head, tree_list) {
934 btrfs_delayed_item_release_metadata(root, curr);
935 list_del(&curr->tree_list);
936 btrfs_release_delayed_item(curr);
939 out:
940 return ret;
943 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
944 struct btrfs_path *path,
945 struct btrfs_root *root,
946 struct btrfs_delayed_node *node)
948 struct btrfs_delayed_item *curr, *prev;
949 int ret = 0;
951 do_again:
952 mutex_lock(&node->mutex);
953 curr = __btrfs_first_delayed_deletion_item(node);
954 if (!curr)
955 goto delete_fail;
957 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
958 if (ret < 0)
959 goto delete_fail;
960 else if (ret > 0) {
962 * can't find the item which the node points to, so this node
963 * is invalid, just drop it.
965 prev = curr;
966 curr = __btrfs_next_delayed_item(prev);
967 btrfs_release_delayed_item(prev);
968 ret = 0;
969 btrfs_release_path(path);
970 if (curr) {
971 mutex_unlock(&node->mutex);
972 goto do_again;
973 } else
974 goto delete_fail;
977 btrfs_batch_delete_items(trans, root, path, curr);
978 btrfs_release_path(path);
979 mutex_unlock(&node->mutex);
980 goto do_again;
982 delete_fail:
983 btrfs_release_path(path);
984 mutex_unlock(&node->mutex);
985 return ret;
988 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
990 struct btrfs_delayed_root *delayed_root;
992 if (delayed_node &&
993 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
994 BUG_ON(!delayed_node->root);
995 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
996 delayed_node->count--;
998 delayed_root = delayed_node->root->fs_info->delayed_root;
999 finish_one_item(delayed_root);
1003 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1005 struct btrfs_delayed_root *delayed_root;
1007 ASSERT(delayed_node->root);
1008 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1009 delayed_node->count--;
1011 delayed_root = delayed_node->root->fs_info->delayed_root;
1012 finish_one_item(delayed_root);
1015 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1016 struct btrfs_root *root,
1017 struct btrfs_path *path,
1018 struct btrfs_delayed_node *node)
1020 struct btrfs_key key;
1021 struct btrfs_inode_item *inode_item;
1022 struct extent_buffer *leaf;
1023 int mod;
1024 int ret;
1026 key.objectid = node->inode_id;
1027 key.type = BTRFS_INODE_ITEM_KEY;
1028 key.offset = 0;
1030 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1031 mod = -1;
1032 else
1033 mod = 1;
1035 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1036 if (ret > 0) {
1037 btrfs_release_path(path);
1038 return -ENOENT;
1039 } else if (ret < 0) {
1040 return ret;
1043 leaf = path->nodes[0];
1044 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1045 struct btrfs_inode_item);
1046 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1047 sizeof(struct btrfs_inode_item));
1048 btrfs_mark_buffer_dirty(leaf);
1050 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1051 goto no_iref;
1053 path->slots[0]++;
1054 if (path->slots[0] >= btrfs_header_nritems(leaf))
1055 goto search;
1056 again:
1057 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1058 if (key.objectid != node->inode_id)
1059 goto out;
1061 if (key.type != BTRFS_INODE_REF_KEY &&
1062 key.type != BTRFS_INODE_EXTREF_KEY)
1063 goto out;
1066 * Delayed iref deletion is for the inode who has only one link,
1067 * so there is only one iref. The case that several irefs are
1068 * in the same item doesn't exist.
1070 btrfs_del_item(trans, root, path);
1071 out:
1072 btrfs_release_delayed_iref(node);
1073 no_iref:
1074 btrfs_release_path(path);
1075 err_out:
1076 btrfs_delayed_inode_release_metadata(root, node);
1077 btrfs_release_delayed_inode(node);
1079 return ret;
1081 search:
1082 btrfs_release_path(path);
1084 key.type = BTRFS_INODE_EXTREF_KEY;
1085 key.offset = -1;
1086 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1087 if (ret < 0)
1088 goto err_out;
1089 ASSERT(ret);
1091 ret = 0;
1092 leaf = path->nodes[0];
1093 path->slots[0]--;
1094 goto again;
1097 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1098 struct btrfs_root *root,
1099 struct btrfs_path *path,
1100 struct btrfs_delayed_node *node)
1102 int ret;
1104 mutex_lock(&node->mutex);
1105 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1106 mutex_unlock(&node->mutex);
1107 return 0;
1110 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1111 mutex_unlock(&node->mutex);
1112 return ret;
1115 static inline int
1116 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1117 struct btrfs_path *path,
1118 struct btrfs_delayed_node *node)
1120 int ret;
1122 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1123 if (ret)
1124 return ret;
1126 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1127 if (ret)
1128 return ret;
1130 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1131 return ret;
1135 * Called when committing the transaction.
1136 * Returns 0 on success.
1137 * Returns < 0 on error and returns with an aborted transaction with any
1138 * outstanding delayed items cleaned up.
1140 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1141 struct btrfs_root *root, int nr)
1143 struct btrfs_delayed_root *delayed_root;
1144 struct btrfs_delayed_node *curr_node, *prev_node;
1145 struct btrfs_path *path;
1146 struct btrfs_block_rsv *block_rsv;
1147 int ret = 0;
1148 bool count = (nr > 0);
1150 if (trans->aborted)
1151 return -EIO;
1153 path = btrfs_alloc_path();
1154 if (!path)
1155 return -ENOMEM;
1156 path->leave_spinning = 1;
1158 block_rsv = trans->block_rsv;
1159 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1161 delayed_root = btrfs_get_delayed_root(root);
1163 curr_node = btrfs_first_delayed_node(delayed_root);
1164 while (curr_node && (!count || (count && nr--))) {
1165 ret = __btrfs_commit_inode_delayed_items(trans, path,
1166 curr_node);
1167 if (ret) {
1168 btrfs_release_delayed_node(curr_node);
1169 curr_node = NULL;
1170 btrfs_abort_transaction(trans, ret);
1171 break;
1174 prev_node = curr_node;
1175 curr_node = btrfs_next_delayed_node(curr_node);
1176 btrfs_release_delayed_node(prev_node);
1179 if (curr_node)
1180 btrfs_release_delayed_node(curr_node);
1181 btrfs_free_path(path);
1182 trans->block_rsv = block_rsv;
1184 return ret;
1187 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1188 struct btrfs_root *root)
1190 return __btrfs_run_delayed_items(trans, root, -1);
1193 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1194 struct btrfs_root *root, int nr)
1196 return __btrfs_run_delayed_items(trans, root, nr);
1199 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1200 struct inode *inode)
1202 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1203 struct btrfs_path *path;
1204 struct btrfs_block_rsv *block_rsv;
1205 int ret;
1207 if (!delayed_node)
1208 return 0;
1210 mutex_lock(&delayed_node->mutex);
1211 if (!delayed_node->count) {
1212 mutex_unlock(&delayed_node->mutex);
1213 btrfs_release_delayed_node(delayed_node);
1214 return 0;
1216 mutex_unlock(&delayed_node->mutex);
1218 path = btrfs_alloc_path();
1219 if (!path) {
1220 btrfs_release_delayed_node(delayed_node);
1221 return -ENOMEM;
1223 path->leave_spinning = 1;
1225 block_rsv = trans->block_rsv;
1226 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1228 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1230 btrfs_release_delayed_node(delayed_node);
1231 btrfs_free_path(path);
1232 trans->block_rsv = block_rsv;
1234 return ret;
1237 int btrfs_commit_inode_delayed_inode(struct inode *inode)
1239 struct btrfs_trans_handle *trans;
1240 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1241 struct btrfs_path *path;
1242 struct btrfs_block_rsv *block_rsv;
1243 int ret;
1245 if (!delayed_node)
1246 return 0;
1248 mutex_lock(&delayed_node->mutex);
1249 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1250 mutex_unlock(&delayed_node->mutex);
1251 btrfs_release_delayed_node(delayed_node);
1252 return 0;
1254 mutex_unlock(&delayed_node->mutex);
1256 trans = btrfs_join_transaction(delayed_node->root);
1257 if (IS_ERR(trans)) {
1258 ret = PTR_ERR(trans);
1259 goto out;
1262 path = btrfs_alloc_path();
1263 if (!path) {
1264 ret = -ENOMEM;
1265 goto trans_out;
1267 path->leave_spinning = 1;
1269 block_rsv = trans->block_rsv;
1270 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1272 mutex_lock(&delayed_node->mutex);
1273 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1274 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1275 path, delayed_node);
1276 else
1277 ret = 0;
1278 mutex_unlock(&delayed_node->mutex);
1280 btrfs_free_path(path);
1281 trans->block_rsv = block_rsv;
1282 trans_out:
1283 btrfs_end_transaction(trans, delayed_node->root);
1284 btrfs_btree_balance_dirty(delayed_node->root);
1285 out:
1286 btrfs_release_delayed_node(delayed_node);
1288 return ret;
1291 void btrfs_remove_delayed_node(struct inode *inode)
1293 struct btrfs_delayed_node *delayed_node;
1295 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1296 if (!delayed_node)
1297 return;
1299 BTRFS_I(inode)->delayed_node = NULL;
1300 btrfs_release_delayed_node(delayed_node);
1303 struct btrfs_async_delayed_work {
1304 struct btrfs_delayed_root *delayed_root;
1305 int nr;
1306 struct btrfs_work work;
1309 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1311 struct btrfs_async_delayed_work *async_work;
1312 struct btrfs_delayed_root *delayed_root;
1313 struct btrfs_trans_handle *trans;
1314 struct btrfs_path *path;
1315 struct btrfs_delayed_node *delayed_node = NULL;
1316 struct btrfs_root *root;
1317 struct btrfs_block_rsv *block_rsv;
1318 int total_done = 0;
1320 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1321 delayed_root = async_work->delayed_root;
1323 path = btrfs_alloc_path();
1324 if (!path)
1325 goto out;
1327 again:
1328 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1329 goto free_path;
1331 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1332 if (!delayed_node)
1333 goto free_path;
1335 path->leave_spinning = 1;
1336 root = delayed_node->root;
1338 trans = btrfs_join_transaction(root);
1339 if (IS_ERR(trans))
1340 goto release_path;
1342 block_rsv = trans->block_rsv;
1343 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1345 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1347 trans->block_rsv = block_rsv;
1348 btrfs_end_transaction(trans, root);
1349 btrfs_btree_balance_dirty_nodelay(root);
1351 release_path:
1352 btrfs_release_path(path);
1353 total_done++;
1355 btrfs_release_prepared_delayed_node(delayed_node);
1356 if (async_work->nr == 0 || total_done < async_work->nr)
1357 goto again;
1359 free_path:
1360 btrfs_free_path(path);
1361 out:
1362 wake_up(&delayed_root->wait);
1363 kfree(async_work);
1367 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1368 struct btrfs_fs_info *fs_info, int nr)
1370 struct btrfs_async_delayed_work *async_work;
1372 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1373 return 0;
1375 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1376 if (!async_work)
1377 return -ENOMEM;
1379 async_work->delayed_root = delayed_root;
1380 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1381 btrfs_async_run_delayed_root, NULL, NULL);
1382 async_work->nr = nr;
1384 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1385 return 0;
1388 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1390 struct btrfs_delayed_root *delayed_root;
1391 delayed_root = btrfs_get_delayed_root(root);
1392 WARN_ON(btrfs_first_delayed_node(delayed_root));
1395 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1397 int val = atomic_read(&delayed_root->items_seq);
1399 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1400 return 1;
1402 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1403 return 1;
1405 return 0;
1408 void btrfs_balance_delayed_items(struct btrfs_root *root)
1410 struct btrfs_delayed_root *delayed_root;
1411 struct btrfs_fs_info *fs_info = root->fs_info;
1413 delayed_root = btrfs_get_delayed_root(root);
1415 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1416 return;
1418 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1419 int seq;
1420 int ret;
1422 seq = atomic_read(&delayed_root->items_seq);
1424 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1425 if (ret)
1426 return;
1428 wait_event_interruptible(delayed_root->wait,
1429 could_end_wait(delayed_root, seq));
1430 return;
1433 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1436 /* Will return 0 or -ENOMEM */
1437 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1438 struct btrfs_root *root, const char *name,
1439 int name_len, struct inode *dir,
1440 struct btrfs_disk_key *disk_key, u8 type,
1441 u64 index)
1443 struct btrfs_delayed_node *delayed_node;
1444 struct btrfs_delayed_item *delayed_item;
1445 struct btrfs_dir_item *dir_item;
1446 int ret;
1448 delayed_node = btrfs_get_or_create_delayed_node(dir);
1449 if (IS_ERR(delayed_node))
1450 return PTR_ERR(delayed_node);
1452 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1453 if (!delayed_item) {
1454 ret = -ENOMEM;
1455 goto release_node;
1458 delayed_item->key.objectid = btrfs_ino(dir);
1459 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1460 delayed_item->key.offset = index;
1462 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1463 dir_item->location = *disk_key;
1464 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1465 btrfs_set_stack_dir_data_len(dir_item, 0);
1466 btrfs_set_stack_dir_name_len(dir_item, name_len);
1467 btrfs_set_stack_dir_type(dir_item, type);
1468 memcpy((char *)(dir_item + 1), name, name_len);
1470 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1472 * we have reserved enough space when we start a new transaction,
1473 * so reserving metadata failure is impossible
1475 BUG_ON(ret);
1478 mutex_lock(&delayed_node->mutex);
1479 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1480 if (unlikely(ret)) {
1481 btrfs_err(root->fs_info,
1482 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1483 name_len, name, delayed_node->root->objectid,
1484 delayed_node->inode_id, ret);
1485 BUG();
1487 mutex_unlock(&delayed_node->mutex);
1489 release_node:
1490 btrfs_release_delayed_node(delayed_node);
1491 return ret;
1494 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1495 struct btrfs_delayed_node *node,
1496 struct btrfs_key *key)
1498 struct btrfs_delayed_item *item;
1500 mutex_lock(&node->mutex);
1501 item = __btrfs_lookup_delayed_insertion_item(node, key);
1502 if (!item) {
1503 mutex_unlock(&node->mutex);
1504 return 1;
1507 btrfs_delayed_item_release_metadata(root, item);
1508 btrfs_release_delayed_item(item);
1509 mutex_unlock(&node->mutex);
1510 return 0;
1513 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1514 struct btrfs_root *root, struct inode *dir,
1515 u64 index)
1517 struct btrfs_delayed_node *node;
1518 struct btrfs_delayed_item *item;
1519 struct btrfs_key item_key;
1520 int ret;
1522 node = btrfs_get_or_create_delayed_node(dir);
1523 if (IS_ERR(node))
1524 return PTR_ERR(node);
1526 item_key.objectid = btrfs_ino(dir);
1527 item_key.type = BTRFS_DIR_INDEX_KEY;
1528 item_key.offset = index;
1530 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1531 if (!ret)
1532 goto end;
1534 item = btrfs_alloc_delayed_item(0);
1535 if (!item) {
1536 ret = -ENOMEM;
1537 goto end;
1540 item->key = item_key;
1542 ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1544 * we have reserved enough space when we start a new transaction,
1545 * so reserving metadata failure is impossible.
1547 BUG_ON(ret);
1549 mutex_lock(&node->mutex);
1550 ret = __btrfs_add_delayed_deletion_item(node, item);
1551 if (unlikely(ret)) {
1552 btrfs_err(root->fs_info,
1553 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1554 index, node->root->objectid, node->inode_id, ret);
1555 BUG();
1557 mutex_unlock(&node->mutex);
1558 end:
1559 btrfs_release_delayed_node(node);
1560 return ret;
1563 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1565 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1567 if (!delayed_node)
1568 return -ENOENT;
1571 * Since we have held i_mutex of this directory, it is impossible that
1572 * a new directory index is added into the delayed node and index_cnt
1573 * is updated now. So we needn't lock the delayed node.
1575 if (!delayed_node->index_cnt) {
1576 btrfs_release_delayed_node(delayed_node);
1577 return -EINVAL;
1580 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1581 btrfs_release_delayed_node(delayed_node);
1582 return 0;
1585 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1586 struct list_head *ins_list,
1587 struct list_head *del_list)
1589 struct btrfs_delayed_node *delayed_node;
1590 struct btrfs_delayed_item *item;
1592 delayed_node = btrfs_get_delayed_node(inode);
1593 if (!delayed_node)
1594 return false;
1597 * We can only do one readdir with delayed items at a time because of
1598 * item->readdir_list.
1600 inode_unlock_shared(inode);
1601 inode_lock(inode);
1603 mutex_lock(&delayed_node->mutex);
1604 item = __btrfs_first_delayed_insertion_item(delayed_node);
1605 while (item) {
1606 atomic_inc(&item->refs);
1607 list_add_tail(&item->readdir_list, ins_list);
1608 item = __btrfs_next_delayed_item(item);
1611 item = __btrfs_first_delayed_deletion_item(delayed_node);
1612 while (item) {
1613 atomic_inc(&item->refs);
1614 list_add_tail(&item->readdir_list, del_list);
1615 item = __btrfs_next_delayed_item(item);
1617 mutex_unlock(&delayed_node->mutex);
1619 * This delayed node is still cached in the btrfs inode, so refs
1620 * must be > 1 now, and we needn't check it is going to be freed
1621 * or not.
1623 * Besides that, this function is used to read dir, we do not
1624 * insert/delete delayed items in this period. So we also needn't
1625 * requeue or dequeue this delayed node.
1627 atomic_dec(&delayed_node->refs);
1629 return true;
1632 void btrfs_readdir_put_delayed_items(struct inode *inode,
1633 struct list_head *ins_list,
1634 struct list_head *del_list)
1636 struct btrfs_delayed_item *curr, *next;
1638 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1639 list_del(&curr->readdir_list);
1640 if (atomic_dec_and_test(&curr->refs))
1641 kfree(curr);
1644 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1645 list_del(&curr->readdir_list);
1646 if (atomic_dec_and_test(&curr->refs))
1647 kfree(curr);
1651 * The VFS is going to do up_read(), so we need to downgrade back to a
1652 * read lock.
1654 downgrade_write(&inode->i_rwsem);
1657 int btrfs_should_delete_dir_index(struct list_head *del_list,
1658 u64 index)
1660 struct btrfs_delayed_item *curr, *next;
1661 int ret;
1663 if (list_empty(del_list))
1664 return 0;
1666 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1667 if (curr->key.offset > index)
1668 break;
1670 list_del(&curr->readdir_list);
1671 ret = (curr->key.offset == index);
1673 if (atomic_dec_and_test(&curr->refs))
1674 kfree(curr);
1676 if (ret)
1677 return 1;
1678 else
1679 continue;
1681 return 0;
1685 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1688 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1689 struct list_head *ins_list)
1691 struct btrfs_dir_item *di;
1692 struct btrfs_delayed_item *curr, *next;
1693 struct btrfs_key location;
1694 char *name;
1695 int name_len;
1696 int over = 0;
1697 unsigned char d_type;
1699 if (list_empty(ins_list))
1700 return 0;
1703 * Changing the data of the delayed item is impossible. So
1704 * we needn't lock them. And we have held i_mutex of the
1705 * directory, nobody can delete any directory indexes now.
1707 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1708 list_del(&curr->readdir_list);
1710 if (curr->key.offset < ctx->pos) {
1711 if (atomic_dec_and_test(&curr->refs))
1712 kfree(curr);
1713 continue;
1716 ctx->pos = curr->key.offset;
1718 di = (struct btrfs_dir_item *)curr->data;
1719 name = (char *)(di + 1);
1720 name_len = btrfs_stack_dir_name_len(di);
1722 d_type = btrfs_filetype_table[di->type];
1723 btrfs_disk_key_to_cpu(&location, &di->location);
1725 over = !dir_emit(ctx, name, name_len,
1726 location.objectid, d_type);
1728 if (atomic_dec_and_test(&curr->refs))
1729 kfree(curr);
1731 if (over)
1732 return 1;
1734 return 0;
1737 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1738 struct btrfs_inode_item *inode_item,
1739 struct inode *inode)
1741 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1742 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1743 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1744 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1745 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1746 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1747 btrfs_set_stack_inode_generation(inode_item,
1748 BTRFS_I(inode)->generation);
1749 btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1750 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1751 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1752 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1753 btrfs_set_stack_inode_block_group(inode_item, 0);
1755 btrfs_set_stack_timespec_sec(&inode_item->atime,
1756 inode->i_atime.tv_sec);
1757 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1758 inode->i_atime.tv_nsec);
1760 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1761 inode->i_mtime.tv_sec);
1762 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1763 inode->i_mtime.tv_nsec);
1765 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1766 inode->i_ctime.tv_sec);
1767 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1768 inode->i_ctime.tv_nsec);
1770 btrfs_set_stack_timespec_sec(&inode_item->otime,
1771 BTRFS_I(inode)->i_otime.tv_sec);
1772 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1773 BTRFS_I(inode)->i_otime.tv_nsec);
1776 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1778 struct btrfs_delayed_node *delayed_node;
1779 struct btrfs_inode_item *inode_item;
1781 delayed_node = btrfs_get_delayed_node(inode);
1782 if (!delayed_node)
1783 return -ENOENT;
1785 mutex_lock(&delayed_node->mutex);
1786 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1787 mutex_unlock(&delayed_node->mutex);
1788 btrfs_release_delayed_node(delayed_node);
1789 return -ENOENT;
1792 inode_item = &delayed_node->inode_item;
1794 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1795 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1796 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1797 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1798 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1799 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1800 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1801 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1803 inode->i_version = btrfs_stack_inode_sequence(inode_item);
1804 inode->i_rdev = 0;
1805 *rdev = btrfs_stack_inode_rdev(inode_item);
1806 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1808 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1809 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1811 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1812 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1814 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1815 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1817 BTRFS_I(inode)->i_otime.tv_sec =
1818 btrfs_stack_timespec_sec(&inode_item->otime);
1819 BTRFS_I(inode)->i_otime.tv_nsec =
1820 btrfs_stack_timespec_nsec(&inode_item->otime);
1822 inode->i_generation = BTRFS_I(inode)->generation;
1823 BTRFS_I(inode)->index_cnt = (u64)-1;
1825 mutex_unlock(&delayed_node->mutex);
1826 btrfs_release_delayed_node(delayed_node);
1827 return 0;
1830 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1831 struct btrfs_root *root, struct inode *inode)
1833 struct btrfs_delayed_node *delayed_node;
1834 int ret = 0;
1836 delayed_node = btrfs_get_or_create_delayed_node(inode);
1837 if (IS_ERR(delayed_node))
1838 return PTR_ERR(delayed_node);
1840 mutex_lock(&delayed_node->mutex);
1841 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1842 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1843 goto release_node;
1846 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1847 delayed_node);
1848 if (ret)
1849 goto release_node;
1851 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1852 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1853 delayed_node->count++;
1854 atomic_inc(&root->fs_info->delayed_root->items);
1855 release_node:
1856 mutex_unlock(&delayed_node->mutex);
1857 btrfs_release_delayed_node(delayed_node);
1858 return ret;
1861 int btrfs_delayed_delete_inode_ref(struct inode *inode)
1863 struct btrfs_delayed_node *delayed_node;
1866 * we don't do delayed inode updates during log recovery because it
1867 * leads to enospc problems. This means we also can't do
1868 * delayed inode refs
1870 if (test_bit(BTRFS_FS_LOG_RECOVERING,
1871 &BTRFS_I(inode)->root->fs_info->flags))
1872 return -EAGAIN;
1874 delayed_node = btrfs_get_or_create_delayed_node(inode);
1875 if (IS_ERR(delayed_node))
1876 return PTR_ERR(delayed_node);
1879 * We don't reserve space for inode ref deletion is because:
1880 * - We ONLY do async inode ref deletion for the inode who has only
1881 * one link(i_nlink == 1), it means there is only one inode ref.
1882 * And in most case, the inode ref and the inode item are in the
1883 * same leaf, and we will deal with them at the same time.
1884 * Since we are sure we will reserve the space for the inode item,
1885 * it is unnecessary to reserve space for inode ref deletion.
1886 * - If the inode ref and the inode item are not in the same leaf,
1887 * We also needn't worry about enospc problem, because we reserve
1888 * much more space for the inode update than it needs.
1889 * - At the worst, we can steal some space from the global reservation.
1890 * It is very rare.
1892 mutex_lock(&delayed_node->mutex);
1893 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1894 goto release_node;
1896 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1897 delayed_node->count++;
1898 atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
1899 release_node:
1900 mutex_unlock(&delayed_node->mutex);
1901 btrfs_release_delayed_node(delayed_node);
1902 return 0;
1905 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1907 struct btrfs_root *root = delayed_node->root;
1908 struct btrfs_delayed_item *curr_item, *prev_item;
1910 mutex_lock(&delayed_node->mutex);
1911 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1912 while (curr_item) {
1913 btrfs_delayed_item_release_metadata(root, curr_item);
1914 prev_item = curr_item;
1915 curr_item = __btrfs_next_delayed_item(prev_item);
1916 btrfs_release_delayed_item(prev_item);
1919 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1920 while (curr_item) {
1921 btrfs_delayed_item_release_metadata(root, curr_item);
1922 prev_item = curr_item;
1923 curr_item = __btrfs_next_delayed_item(prev_item);
1924 btrfs_release_delayed_item(prev_item);
1927 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1928 btrfs_release_delayed_iref(delayed_node);
1930 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1931 btrfs_delayed_inode_release_metadata(root, delayed_node);
1932 btrfs_release_delayed_inode(delayed_node);
1934 mutex_unlock(&delayed_node->mutex);
1937 void btrfs_kill_delayed_inode_items(struct inode *inode)
1939 struct btrfs_delayed_node *delayed_node;
1941 delayed_node = btrfs_get_delayed_node(inode);
1942 if (!delayed_node)
1943 return;
1945 __btrfs_kill_delayed_node(delayed_node);
1946 btrfs_release_delayed_node(delayed_node);
1949 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1951 u64 inode_id = 0;
1952 struct btrfs_delayed_node *delayed_nodes[8];
1953 int i, n;
1955 while (1) {
1956 spin_lock(&root->inode_lock);
1957 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1958 (void **)delayed_nodes, inode_id,
1959 ARRAY_SIZE(delayed_nodes));
1960 if (!n) {
1961 spin_unlock(&root->inode_lock);
1962 break;
1965 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1967 for (i = 0; i < n; i++)
1968 atomic_inc(&delayed_nodes[i]->refs);
1969 spin_unlock(&root->inode_lock);
1971 for (i = 0; i < n; i++) {
1972 __btrfs_kill_delayed_node(delayed_nodes[i]);
1973 btrfs_release_delayed_node(delayed_nodes[i]);
1978 void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1980 struct btrfs_delayed_root *delayed_root;
1981 struct btrfs_delayed_node *curr_node, *prev_node;
1983 delayed_root = btrfs_get_delayed_root(root);
1985 curr_node = btrfs_first_delayed_node(delayed_root);
1986 while (curr_node) {
1987 __btrfs_kill_delayed_node(curr_node);
1989 prev_node = curr_node;
1990 curr_node = btrfs_next_delayed_node(curr_node);
1991 btrfs_release_delayed_node(prev_node);