1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/arch/arm/mm/dma-mapping.c
5 * Copyright (C) 2000-2004 Russell King
7 * DMA uncached mapping support.
9 #include <linux/module.h>
11 #include <linux/genalloc.h>
12 #include <linux/gfp.h>
13 #include <linux/errno.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/dma-direct.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dma-noncoherent.h>
20 #include <linux/dma-contiguous.h>
21 #include <linux/highmem.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/iommu.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sizes.h>
28 #include <linux/cma.h>
30 #include <asm/memory.h>
31 #include <asm/highmem.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mach/arch.h>
35 #include <asm/dma-iommu.h>
36 #include <asm/mach/map.h>
37 #include <asm/system_info.h>
38 #include <asm/dma-contiguous.h>
39 #include <xen/swiotlb-xen.h>
44 struct arm_dma_alloc_args
{
54 struct arm_dma_free_args
{
65 struct arm_dma_allocator
{
66 void *(*alloc
)(struct arm_dma_alloc_args
*args
,
67 struct page
**ret_page
);
68 void (*free
)(struct arm_dma_free_args
*args
);
71 struct arm_dma_buffer
{
72 struct list_head list
;
74 struct arm_dma_allocator
*allocator
;
77 static LIST_HEAD(arm_dma_bufs
);
78 static DEFINE_SPINLOCK(arm_dma_bufs_lock
);
80 static struct arm_dma_buffer
*arm_dma_buffer_find(void *virt
)
82 struct arm_dma_buffer
*buf
, *found
= NULL
;
85 spin_lock_irqsave(&arm_dma_bufs_lock
, flags
);
86 list_for_each_entry(buf
, &arm_dma_bufs
, list
) {
87 if (buf
->virt
== virt
) {
93 spin_unlock_irqrestore(&arm_dma_bufs_lock
, flags
);
98 * The DMA API is built upon the notion of "buffer ownership". A buffer
99 * is either exclusively owned by the CPU (and therefore may be accessed
100 * by it) or exclusively owned by the DMA device. These helper functions
101 * represent the transitions between these two ownership states.
103 * Note, however, that on later ARMs, this notion does not work due to
104 * speculative prefetches. We model our approach on the assumption that
105 * the CPU does do speculative prefetches, which means we clean caches
106 * before transfers and delay cache invalidation until transfer completion.
109 static void __dma_page_cpu_to_dev(struct page
*, unsigned long,
110 size_t, enum dma_data_direction
);
111 static void __dma_page_dev_to_cpu(struct page
*, unsigned long,
112 size_t, enum dma_data_direction
);
115 * arm_dma_map_page - map a portion of a page for streaming DMA
116 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
117 * @page: page that buffer resides in
118 * @offset: offset into page for start of buffer
119 * @size: size of buffer to map
120 * @dir: DMA transfer direction
122 * Ensure that any data held in the cache is appropriately discarded
125 * The device owns this memory once this call has completed. The CPU
126 * can regain ownership by calling dma_unmap_page().
128 static dma_addr_t
arm_dma_map_page(struct device
*dev
, struct page
*page
,
129 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
132 if ((attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
133 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
134 return pfn_to_dma(dev
, page_to_pfn(page
)) + offset
;
137 static dma_addr_t
arm_coherent_dma_map_page(struct device
*dev
, struct page
*page
,
138 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
141 return pfn_to_dma(dev
, page_to_pfn(page
)) + offset
;
145 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
146 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
147 * @handle: DMA address of buffer
148 * @size: size of buffer (same as passed to dma_map_page)
149 * @dir: DMA transfer direction (same as passed to dma_map_page)
151 * Unmap a page streaming mode DMA translation. The handle and size
152 * must match what was provided in the previous dma_map_page() call.
153 * All other usages are undefined.
155 * After this call, reads by the CPU to the buffer are guaranteed to see
156 * whatever the device wrote there.
158 static void arm_dma_unmap_page(struct device
*dev
, dma_addr_t handle
,
159 size_t size
, enum dma_data_direction dir
, unsigned long attrs
)
161 if ((attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
162 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev
, handle
)),
163 handle
& ~PAGE_MASK
, size
, dir
);
166 static void arm_dma_sync_single_for_cpu(struct device
*dev
,
167 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
169 unsigned int offset
= handle
& (PAGE_SIZE
- 1);
170 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
-offset
));
171 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
174 static void arm_dma_sync_single_for_device(struct device
*dev
,
175 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
177 unsigned int offset
= handle
& (PAGE_SIZE
- 1);
178 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
-offset
));
179 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
183 * Return whether the given device DMA address mask can be supported
184 * properly. For example, if your device can only drive the low 24-bits
185 * during bus mastering, then you would pass 0x00ffffff as the mask
188 static int arm_dma_supported(struct device
*dev
, u64 mask
)
190 unsigned long max_dma_pfn
= min(max_pfn
- 1, arm_dma_pfn_limit
);
193 * Translate the device's DMA mask to a PFN limit. This
194 * PFN number includes the page which we can DMA to.
196 return dma_to_pfn(dev
, mask
) >= max_dma_pfn
;
199 const struct dma_map_ops arm_dma_ops
= {
200 .alloc
= arm_dma_alloc
,
201 .free
= arm_dma_free
,
202 .mmap
= arm_dma_mmap
,
203 .get_sgtable
= arm_dma_get_sgtable
,
204 .map_page
= arm_dma_map_page
,
205 .unmap_page
= arm_dma_unmap_page
,
206 .map_sg
= arm_dma_map_sg
,
207 .unmap_sg
= arm_dma_unmap_sg
,
208 .map_resource
= dma_direct_map_resource
,
209 .sync_single_for_cpu
= arm_dma_sync_single_for_cpu
,
210 .sync_single_for_device
= arm_dma_sync_single_for_device
,
211 .sync_sg_for_cpu
= arm_dma_sync_sg_for_cpu
,
212 .sync_sg_for_device
= arm_dma_sync_sg_for_device
,
213 .dma_supported
= arm_dma_supported
,
214 .get_required_mask
= dma_direct_get_required_mask
,
216 EXPORT_SYMBOL(arm_dma_ops
);
218 static void *arm_coherent_dma_alloc(struct device
*dev
, size_t size
,
219 dma_addr_t
*handle
, gfp_t gfp
, unsigned long attrs
);
220 static void arm_coherent_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
221 dma_addr_t handle
, unsigned long attrs
);
222 static int arm_coherent_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
223 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
224 unsigned long attrs
);
226 const struct dma_map_ops arm_coherent_dma_ops
= {
227 .alloc
= arm_coherent_dma_alloc
,
228 .free
= arm_coherent_dma_free
,
229 .mmap
= arm_coherent_dma_mmap
,
230 .get_sgtable
= arm_dma_get_sgtable
,
231 .map_page
= arm_coherent_dma_map_page
,
232 .map_sg
= arm_dma_map_sg
,
233 .map_resource
= dma_direct_map_resource
,
234 .dma_supported
= arm_dma_supported
,
235 .get_required_mask
= dma_direct_get_required_mask
,
237 EXPORT_SYMBOL(arm_coherent_dma_ops
);
239 static void __dma_clear_buffer(struct page
*page
, size_t size
, int coherent_flag
)
242 * Ensure that the allocated pages are zeroed, and that any data
243 * lurking in the kernel direct-mapped region is invalidated.
245 if (PageHighMem(page
)) {
246 phys_addr_t base
= __pfn_to_phys(page_to_pfn(page
));
247 phys_addr_t end
= base
+ size
;
249 void *ptr
= kmap_atomic(page
);
250 memset(ptr
, 0, PAGE_SIZE
);
251 if (coherent_flag
!= COHERENT
)
252 dmac_flush_range(ptr
, ptr
+ PAGE_SIZE
);
257 if (coherent_flag
!= COHERENT
)
258 outer_flush_range(base
, end
);
260 void *ptr
= page_address(page
);
261 memset(ptr
, 0, size
);
262 if (coherent_flag
!= COHERENT
) {
263 dmac_flush_range(ptr
, ptr
+ size
);
264 outer_flush_range(__pa(ptr
), __pa(ptr
) + size
);
270 * Allocate a DMA buffer for 'dev' of size 'size' using the
271 * specified gfp mask. Note that 'size' must be page aligned.
273 static struct page
*__dma_alloc_buffer(struct device
*dev
, size_t size
,
274 gfp_t gfp
, int coherent_flag
)
276 unsigned long order
= get_order(size
);
277 struct page
*page
, *p
, *e
;
279 page
= alloc_pages(gfp
, order
);
284 * Now split the huge page and free the excess pages
286 split_page(page
, order
);
287 for (p
= page
+ (size
>> PAGE_SHIFT
), e
= page
+ (1 << order
); p
< e
; p
++)
290 __dma_clear_buffer(page
, size
, coherent_flag
);
296 * Free a DMA buffer. 'size' must be page aligned.
298 static void __dma_free_buffer(struct page
*page
, size_t size
)
300 struct page
*e
= page
+ (size
>> PAGE_SHIFT
);
308 static void *__alloc_from_contiguous(struct device
*dev
, size_t size
,
309 pgprot_t prot
, struct page
**ret_page
,
310 const void *caller
, bool want_vaddr
,
311 int coherent_flag
, gfp_t gfp
);
313 static void *__alloc_remap_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
314 pgprot_t prot
, struct page
**ret_page
,
315 const void *caller
, bool want_vaddr
);
317 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
318 static struct gen_pool
*atomic_pool __ro_after_init
;
320 static size_t atomic_pool_size __initdata
= DEFAULT_DMA_COHERENT_POOL_SIZE
;
322 static int __init
early_coherent_pool(char *p
)
324 atomic_pool_size
= memparse(p
, &p
);
327 early_param("coherent_pool", early_coherent_pool
);
330 * Initialise the coherent pool for atomic allocations.
332 static int __init
atomic_pool_init(void)
334 pgprot_t prot
= pgprot_dmacoherent(PAGE_KERNEL
);
335 gfp_t gfp
= GFP_KERNEL
| GFP_DMA
;
339 atomic_pool
= gen_pool_create(PAGE_SHIFT
, -1);
343 * The atomic pool is only used for non-coherent allocations
344 * so we must pass NORMAL for coherent_flag.
346 if (dev_get_cma_area(NULL
))
347 ptr
= __alloc_from_contiguous(NULL
, atomic_pool_size
, prot
,
348 &page
, atomic_pool_init
, true, NORMAL
,
351 ptr
= __alloc_remap_buffer(NULL
, atomic_pool_size
, gfp
, prot
,
352 &page
, atomic_pool_init
, true);
356 ret
= gen_pool_add_virt(atomic_pool
, (unsigned long)ptr
,
358 atomic_pool_size
, -1);
360 goto destroy_genpool
;
362 gen_pool_set_algo(atomic_pool
,
363 gen_pool_first_fit_order_align
,
365 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
366 atomic_pool_size
/ 1024);
371 gen_pool_destroy(atomic_pool
);
374 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
375 atomic_pool_size
/ 1024);
379 * CMA is activated by core_initcall, so we must be called after it.
381 postcore_initcall(atomic_pool_init
);
383 struct dma_contig_early_reserve
{
388 static struct dma_contig_early_reserve dma_mmu_remap
[MAX_CMA_AREAS
] __initdata
;
390 static int dma_mmu_remap_num __initdata
;
392 void __init
dma_contiguous_early_fixup(phys_addr_t base
, unsigned long size
)
394 dma_mmu_remap
[dma_mmu_remap_num
].base
= base
;
395 dma_mmu_remap
[dma_mmu_remap_num
].size
= size
;
399 void __init
dma_contiguous_remap(void)
402 for (i
= 0; i
< dma_mmu_remap_num
; i
++) {
403 phys_addr_t start
= dma_mmu_remap
[i
].base
;
404 phys_addr_t end
= start
+ dma_mmu_remap
[i
].size
;
408 if (end
> arm_lowmem_limit
)
409 end
= arm_lowmem_limit
;
413 map
.pfn
= __phys_to_pfn(start
);
414 map
.virtual = __phys_to_virt(start
);
415 map
.length
= end
- start
;
416 map
.type
= MT_MEMORY_DMA_READY
;
419 * Clear previous low-memory mapping to ensure that the
420 * TLB does not see any conflicting entries, then flush
421 * the TLB of the old entries before creating new mappings.
423 * This ensures that any speculatively loaded TLB entries
424 * (even though they may be rare) can not cause any problems,
425 * and ensures that this code is architecturally compliant.
427 for (addr
= __phys_to_virt(start
); addr
< __phys_to_virt(end
);
429 pmd_clear(pmd_off_k(addr
));
431 flush_tlb_kernel_range(__phys_to_virt(start
),
432 __phys_to_virt(end
));
434 iotable_init(&map
, 1);
438 static int __dma_update_pte(pte_t
*pte
, unsigned long addr
, void *data
)
440 struct page
*page
= virt_to_page(addr
);
441 pgprot_t prot
= *(pgprot_t
*)data
;
443 set_pte_ext(pte
, mk_pte(page
, prot
), 0);
447 static void __dma_remap(struct page
*page
, size_t size
, pgprot_t prot
)
449 unsigned long start
= (unsigned long) page_address(page
);
450 unsigned end
= start
+ size
;
452 apply_to_page_range(&init_mm
, start
, size
, __dma_update_pte
, &prot
);
453 flush_tlb_kernel_range(start
, end
);
456 static void *__alloc_remap_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
457 pgprot_t prot
, struct page
**ret_page
,
458 const void *caller
, bool want_vaddr
)
463 * __alloc_remap_buffer is only called when the device is
466 page
= __dma_alloc_buffer(dev
, size
, gfp
, NORMAL
);
472 ptr
= dma_common_contiguous_remap(page
, size
, prot
, caller
);
474 __dma_free_buffer(page
, size
);
483 static void *__alloc_from_pool(size_t size
, struct page
**ret_page
)
489 WARN(1, "coherent pool not initialised!\n");
493 val
= gen_pool_alloc(atomic_pool
, size
);
495 phys_addr_t phys
= gen_pool_virt_to_phys(atomic_pool
, val
);
497 *ret_page
= phys_to_page(phys
);
504 static bool __in_atomic_pool(void *start
, size_t size
)
506 return gen_pool_has_addr(atomic_pool
, (unsigned long)start
, size
);
509 static int __free_from_pool(void *start
, size_t size
)
511 if (!__in_atomic_pool(start
, size
))
514 gen_pool_free(atomic_pool
, (unsigned long)start
, size
);
519 static void *__alloc_from_contiguous(struct device
*dev
, size_t size
,
520 pgprot_t prot
, struct page
**ret_page
,
521 const void *caller
, bool want_vaddr
,
522 int coherent_flag
, gfp_t gfp
)
524 unsigned long order
= get_order(size
);
525 size_t count
= size
>> PAGE_SHIFT
;
529 page
= dma_alloc_from_contiguous(dev
, count
, order
, gfp
& __GFP_NOWARN
);
533 __dma_clear_buffer(page
, size
, coherent_flag
);
538 if (PageHighMem(page
)) {
539 ptr
= dma_common_contiguous_remap(page
, size
, prot
, caller
);
541 dma_release_from_contiguous(dev
, page
, count
);
545 __dma_remap(page
, size
, prot
);
546 ptr
= page_address(page
);
554 static void __free_from_contiguous(struct device
*dev
, struct page
*page
,
555 void *cpu_addr
, size_t size
, bool want_vaddr
)
558 if (PageHighMem(page
))
559 dma_common_free_remap(cpu_addr
, size
);
561 __dma_remap(page
, size
, PAGE_KERNEL
);
563 dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
);
566 static inline pgprot_t
__get_dma_pgprot(unsigned long attrs
, pgprot_t prot
)
568 prot
= (attrs
& DMA_ATTR_WRITE_COMBINE
) ?
569 pgprot_writecombine(prot
) :
570 pgprot_dmacoherent(prot
);
574 static void *__alloc_simple_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
575 struct page
**ret_page
)
578 /* __alloc_simple_buffer is only called when the device is coherent */
579 page
= __dma_alloc_buffer(dev
, size
, gfp
, COHERENT
);
584 return page_address(page
);
587 static void *simple_allocator_alloc(struct arm_dma_alloc_args
*args
,
588 struct page
**ret_page
)
590 return __alloc_simple_buffer(args
->dev
, args
->size
, args
->gfp
,
594 static void simple_allocator_free(struct arm_dma_free_args
*args
)
596 __dma_free_buffer(args
->page
, args
->size
);
599 static struct arm_dma_allocator simple_allocator
= {
600 .alloc
= simple_allocator_alloc
,
601 .free
= simple_allocator_free
,
604 static void *cma_allocator_alloc(struct arm_dma_alloc_args
*args
,
605 struct page
**ret_page
)
607 return __alloc_from_contiguous(args
->dev
, args
->size
, args
->prot
,
608 ret_page
, args
->caller
,
609 args
->want_vaddr
, args
->coherent_flag
,
613 static void cma_allocator_free(struct arm_dma_free_args
*args
)
615 __free_from_contiguous(args
->dev
, args
->page
, args
->cpu_addr
,
616 args
->size
, args
->want_vaddr
);
619 static struct arm_dma_allocator cma_allocator
= {
620 .alloc
= cma_allocator_alloc
,
621 .free
= cma_allocator_free
,
624 static void *pool_allocator_alloc(struct arm_dma_alloc_args
*args
,
625 struct page
**ret_page
)
627 return __alloc_from_pool(args
->size
, ret_page
);
630 static void pool_allocator_free(struct arm_dma_free_args
*args
)
632 __free_from_pool(args
->cpu_addr
, args
->size
);
635 static struct arm_dma_allocator pool_allocator
= {
636 .alloc
= pool_allocator_alloc
,
637 .free
= pool_allocator_free
,
640 static void *remap_allocator_alloc(struct arm_dma_alloc_args
*args
,
641 struct page
**ret_page
)
643 return __alloc_remap_buffer(args
->dev
, args
->size
, args
->gfp
,
644 args
->prot
, ret_page
, args
->caller
,
648 static void remap_allocator_free(struct arm_dma_free_args
*args
)
650 if (args
->want_vaddr
)
651 dma_common_free_remap(args
->cpu_addr
, args
->size
);
653 __dma_free_buffer(args
->page
, args
->size
);
656 static struct arm_dma_allocator remap_allocator
= {
657 .alloc
= remap_allocator_alloc
,
658 .free
= remap_allocator_free
,
661 static void *__dma_alloc(struct device
*dev
, size_t size
, dma_addr_t
*handle
,
662 gfp_t gfp
, pgprot_t prot
, bool is_coherent
,
663 unsigned long attrs
, const void *caller
)
665 u64 mask
= min_not_zero(dev
->coherent_dma_mask
, dev
->bus_dma_limit
);
666 struct page
*page
= NULL
;
668 bool allowblock
, cma
;
669 struct arm_dma_buffer
*buf
;
670 struct arm_dma_alloc_args args
= {
672 .size
= PAGE_ALIGN(size
),
676 .want_vaddr
= ((attrs
& DMA_ATTR_NO_KERNEL_MAPPING
) == 0),
677 .coherent_flag
= is_coherent
? COHERENT
: NORMAL
,
680 #ifdef CONFIG_DMA_API_DEBUG
681 u64 limit
= (mask
+ 1) & ~mask
;
682 if (limit
&& size
>= limit
) {
683 dev_warn(dev
, "coherent allocation too big (requested %#x mask %#llx)\n",
689 buf
= kzalloc(sizeof(*buf
),
690 gfp
& ~(__GFP_DMA
| __GFP_DMA32
| __GFP_HIGHMEM
));
694 if (mask
< 0xffffffffULL
)
698 * Following is a work-around (a.k.a. hack) to prevent pages
699 * with __GFP_COMP being passed to split_page() which cannot
700 * handle them. The real problem is that this flag probably
701 * should be 0 on ARM as it is not supported on this
702 * platform; see CONFIG_HUGETLBFS.
704 gfp
&= ~(__GFP_COMP
);
707 *handle
= DMA_MAPPING_ERROR
;
708 allowblock
= gfpflags_allow_blocking(gfp
);
709 cma
= allowblock
? dev_get_cma_area(dev
) : false;
712 buf
->allocator
= &cma_allocator
;
713 else if (is_coherent
)
714 buf
->allocator
= &simple_allocator
;
716 buf
->allocator
= &remap_allocator
;
718 buf
->allocator
= &pool_allocator
;
720 addr
= buf
->allocator
->alloc(&args
, &page
);
725 *handle
= pfn_to_dma(dev
, page_to_pfn(page
));
726 buf
->virt
= args
.want_vaddr
? addr
: page
;
728 spin_lock_irqsave(&arm_dma_bufs_lock
, flags
);
729 list_add(&buf
->list
, &arm_dma_bufs
);
730 spin_unlock_irqrestore(&arm_dma_bufs_lock
, flags
);
735 return args
.want_vaddr
? addr
: page
;
739 * Allocate DMA-coherent memory space and return both the kernel remapped
740 * virtual and bus address for that space.
742 void *arm_dma_alloc(struct device
*dev
, size_t size
, dma_addr_t
*handle
,
743 gfp_t gfp
, unsigned long attrs
)
745 pgprot_t prot
= __get_dma_pgprot(attrs
, PAGE_KERNEL
);
747 return __dma_alloc(dev
, size
, handle
, gfp
, prot
, false,
748 attrs
, __builtin_return_address(0));
751 static void *arm_coherent_dma_alloc(struct device
*dev
, size_t size
,
752 dma_addr_t
*handle
, gfp_t gfp
, unsigned long attrs
)
754 return __dma_alloc(dev
, size
, handle
, gfp
, PAGE_KERNEL
, true,
755 attrs
, __builtin_return_address(0));
758 static int __arm_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
759 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
763 unsigned long nr_vma_pages
= vma_pages(vma
);
764 unsigned long nr_pages
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
765 unsigned long pfn
= dma_to_pfn(dev
, dma_addr
);
766 unsigned long off
= vma
->vm_pgoff
;
768 if (dma_mmap_from_dev_coherent(dev
, vma
, cpu_addr
, size
, &ret
))
771 if (off
< nr_pages
&& nr_vma_pages
<= (nr_pages
- off
)) {
772 ret
= remap_pfn_range(vma
, vma
->vm_start
,
774 vma
->vm_end
- vma
->vm_start
,
782 * Create userspace mapping for the DMA-coherent memory.
784 static int arm_coherent_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
785 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
788 return __arm_dma_mmap(dev
, vma
, cpu_addr
, dma_addr
, size
, attrs
);
791 int arm_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
792 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
795 vma
->vm_page_prot
= __get_dma_pgprot(attrs
, vma
->vm_page_prot
);
796 return __arm_dma_mmap(dev
, vma
, cpu_addr
, dma_addr
, size
, attrs
);
800 * Free a buffer as defined by the above mapping.
802 static void __arm_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
803 dma_addr_t handle
, unsigned long attrs
,
806 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
));
807 struct arm_dma_buffer
*buf
;
808 struct arm_dma_free_args args
= {
810 .size
= PAGE_ALIGN(size
),
811 .cpu_addr
= cpu_addr
,
813 .want_vaddr
= ((attrs
& DMA_ATTR_NO_KERNEL_MAPPING
) == 0),
816 buf
= arm_dma_buffer_find(cpu_addr
);
817 if (WARN(!buf
, "Freeing invalid buffer %p\n", cpu_addr
))
820 buf
->allocator
->free(&args
);
824 void arm_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
825 dma_addr_t handle
, unsigned long attrs
)
827 __arm_dma_free(dev
, size
, cpu_addr
, handle
, attrs
, false);
830 static void arm_coherent_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
831 dma_addr_t handle
, unsigned long attrs
)
833 __arm_dma_free(dev
, size
, cpu_addr
, handle
, attrs
, true);
836 int arm_dma_get_sgtable(struct device
*dev
, struct sg_table
*sgt
,
837 void *cpu_addr
, dma_addr_t handle
, size_t size
,
840 unsigned long pfn
= dma_to_pfn(dev
, handle
);
844 /* If the PFN is not valid, we do not have a struct page */
848 page
= pfn_to_page(pfn
);
850 ret
= sg_alloc_table(sgt
, 1, GFP_KERNEL
);
854 sg_set_page(sgt
->sgl
, page
, PAGE_ALIGN(size
), 0);
858 static void dma_cache_maint_page(struct page
*page
, unsigned long offset
,
859 size_t size
, enum dma_data_direction dir
,
860 void (*op
)(const void *, size_t, int))
865 pfn
= page_to_pfn(page
) + offset
/ PAGE_SIZE
;
869 * A single sg entry may refer to multiple physically contiguous
870 * pages. But we still need to process highmem pages individually.
871 * If highmem is not configured then the bulk of this loop gets
878 page
= pfn_to_page(pfn
);
880 if (PageHighMem(page
)) {
881 if (len
+ offset
> PAGE_SIZE
)
882 len
= PAGE_SIZE
- offset
;
884 if (cache_is_vipt_nonaliasing()) {
885 vaddr
= kmap_atomic(page
);
886 op(vaddr
+ offset
, len
, dir
);
887 kunmap_atomic(vaddr
);
889 vaddr
= kmap_high_get(page
);
891 op(vaddr
+ offset
, len
, dir
);
896 vaddr
= page_address(page
) + offset
;
906 * Make an area consistent for devices.
907 * Note: Drivers should NOT use this function directly, as it will break
908 * platforms with CONFIG_DMABOUNCE.
909 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
911 static void __dma_page_cpu_to_dev(struct page
*page
, unsigned long off
,
912 size_t size
, enum dma_data_direction dir
)
916 dma_cache_maint_page(page
, off
, size
, dir
, dmac_map_area
);
918 paddr
= page_to_phys(page
) + off
;
919 if (dir
== DMA_FROM_DEVICE
) {
920 outer_inv_range(paddr
, paddr
+ size
);
922 outer_clean_range(paddr
, paddr
+ size
);
924 /* FIXME: non-speculating: flush on bidirectional mappings? */
927 static void __dma_page_dev_to_cpu(struct page
*page
, unsigned long off
,
928 size_t size
, enum dma_data_direction dir
)
930 phys_addr_t paddr
= page_to_phys(page
) + off
;
932 /* FIXME: non-speculating: not required */
933 /* in any case, don't bother invalidating if DMA to device */
934 if (dir
!= DMA_TO_DEVICE
) {
935 outer_inv_range(paddr
, paddr
+ size
);
937 dma_cache_maint_page(page
, off
, size
, dir
, dmac_unmap_area
);
941 * Mark the D-cache clean for these pages to avoid extra flushing.
943 if (dir
!= DMA_TO_DEVICE
&& size
>= PAGE_SIZE
) {
947 pfn
= page_to_pfn(page
) + off
/ PAGE_SIZE
;
951 left
-= PAGE_SIZE
- off
;
953 while (left
>= PAGE_SIZE
) {
954 page
= pfn_to_page(pfn
++);
955 set_bit(PG_dcache_clean
, &page
->flags
);
962 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
963 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
964 * @sg: list of buffers
965 * @nents: number of buffers to map
966 * @dir: DMA transfer direction
968 * Map a set of buffers described by scatterlist in streaming mode for DMA.
969 * This is the scatter-gather version of the dma_map_single interface.
970 * Here the scatter gather list elements are each tagged with the
971 * appropriate dma address and length. They are obtained via
972 * sg_dma_{address,length}.
974 * Device ownership issues as mentioned for dma_map_single are the same
977 int arm_dma_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
978 enum dma_data_direction dir
, unsigned long attrs
)
980 const struct dma_map_ops
*ops
= get_dma_ops(dev
);
981 struct scatterlist
*s
;
984 for_each_sg(sg
, s
, nents
, i
) {
985 #ifdef CONFIG_NEED_SG_DMA_LENGTH
986 s
->dma_length
= s
->length
;
988 s
->dma_address
= ops
->map_page(dev
, sg_page(s
), s
->offset
,
989 s
->length
, dir
, attrs
);
990 if (dma_mapping_error(dev
, s
->dma_address
))
996 for_each_sg(sg
, s
, i
, j
)
997 ops
->unmap_page(dev
, sg_dma_address(s
), sg_dma_len(s
), dir
, attrs
);
1002 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1003 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1004 * @sg: list of buffers
1005 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1006 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1008 * Unmap a set of streaming mode DMA translations. Again, CPU access
1009 * rules concerning calls here are the same as for dma_unmap_single().
1011 void arm_dma_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
1012 enum dma_data_direction dir
, unsigned long attrs
)
1014 const struct dma_map_ops
*ops
= get_dma_ops(dev
);
1015 struct scatterlist
*s
;
1019 for_each_sg(sg
, s
, nents
, i
)
1020 ops
->unmap_page(dev
, sg_dma_address(s
), sg_dma_len(s
), dir
, attrs
);
1024 * arm_dma_sync_sg_for_cpu
1025 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1026 * @sg: list of buffers
1027 * @nents: number of buffers to map (returned from dma_map_sg)
1028 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1030 void arm_dma_sync_sg_for_cpu(struct device
*dev
, struct scatterlist
*sg
,
1031 int nents
, enum dma_data_direction dir
)
1033 const struct dma_map_ops
*ops
= get_dma_ops(dev
);
1034 struct scatterlist
*s
;
1037 for_each_sg(sg
, s
, nents
, i
)
1038 ops
->sync_single_for_cpu(dev
, sg_dma_address(s
), s
->length
,
1043 * arm_dma_sync_sg_for_device
1044 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1045 * @sg: list of buffers
1046 * @nents: number of buffers to map (returned from dma_map_sg)
1047 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1049 void arm_dma_sync_sg_for_device(struct device
*dev
, struct scatterlist
*sg
,
1050 int nents
, enum dma_data_direction dir
)
1052 const struct dma_map_ops
*ops
= get_dma_ops(dev
);
1053 struct scatterlist
*s
;
1056 for_each_sg(sg
, s
, nents
, i
)
1057 ops
->sync_single_for_device(dev
, sg_dma_address(s
), s
->length
,
1061 static const struct dma_map_ops
*arm_get_dma_map_ops(bool coherent
)
1064 * When CONFIG_ARM_LPAE is set, physical address can extend above
1065 * 32-bits, which then can't be addressed by devices that only support
1067 * Use the generic dma-direct / swiotlb ops code in that case, as that
1068 * handles bounce buffering for us.
1070 if (IS_ENABLED(CONFIG_ARM_LPAE
))
1072 return coherent
? &arm_coherent_dma_ops
: &arm_dma_ops
;
1075 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1077 static int __dma_info_to_prot(enum dma_data_direction dir
, unsigned long attrs
)
1081 if (attrs
& DMA_ATTR_PRIVILEGED
)
1085 case DMA_BIDIRECTIONAL
:
1086 return prot
| IOMMU_READ
| IOMMU_WRITE
;
1088 return prot
| IOMMU_READ
;
1089 case DMA_FROM_DEVICE
:
1090 return prot
| IOMMU_WRITE
;
1098 static int extend_iommu_mapping(struct dma_iommu_mapping
*mapping
);
1100 static inline dma_addr_t
__alloc_iova(struct dma_iommu_mapping
*mapping
,
1103 unsigned int order
= get_order(size
);
1104 unsigned int align
= 0;
1105 unsigned int count
, start
;
1106 size_t mapping_size
= mapping
->bits
<< PAGE_SHIFT
;
1107 unsigned long flags
;
1111 if (order
> CONFIG_ARM_DMA_IOMMU_ALIGNMENT
)
1112 order
= CONFIG_ARM_DMA_IOMMU_ALIGNMENT
;
1114 count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1115 align
= (1 << order
) - 1;
1117 spin_lock_irqsave(&mapping
->lock
, flags
);
1118 for (i
= 0; i
< mapping
->nr_bitmaps
; i
++) {
1119 start
= bitmap_find_next_zero_area(mapping
->bitmaps
[i
],
1120 mapping
->bits
, 0, count
, align
);
1122 if (start
> mapping
->bits
)
1125 bitmap_set(mapping
->bitmaps
[i
], start
, count
);
1130 * No unused range found. Try to extend the existing mapping
1131 * and perform a second attempt to reserve an IO virtual
1132 * address range of size bytes.
1134 if (i
== mapping
->nr_bitmaps
) {
1135 if (extend_iommu_mapping(mapping
)) {
1136 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1137 return DMA_MAPPING_ERROR
;
1140 start
= bitmap_find_next_zero_area(mapping
->bitmaps
[i
],
1141 mapping
->bits
, 0, count
, align
);
1143 if (start
> mapping
->bits
) {
1144 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1145 return DMA_MAPPING_ERROR
;
1148 bitmap_set(mapping
->bitmaps
[i
], start
, count
);
1150 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1152 iova
= mapping
->base
+ (mapping_size
* i
);
1153 iova
+= start
<< PAGE_SHIFT
;
1158 static inline void __free_iova(struct dma_iommu_mapping
*mapping
,
1159 dma_addr_t addr
, size_t size
)
1161 unsigned int start
, count
;
1162 size_t mapping_size
= mapping
->bits
<< PAGE_SHIFT
;
1163 unsigned long flags
;
1164 dma_addr_t bitmap_base
;
1170 bitmap_index
= (u32
) (addr
- mapping
->base
) / (u32
) mapping_size
;
1171 BUG_ON(addr
< mapping
->base
|| bitmap_index
> mapping
->extensions
);
1173 bitmap_base
= mapping
->base
+ mapping_size
* bitmap_index
;
1175 start
= (addr
- bitmap_base
) >> PAGE_SHIFT
;
1177 if (addr
+ size
> bitmap_base
+ mapping_size
) {
1179 * The address range to be freed reaches into the iova
1180 * range of the next bitmap. This should not happen as
1181 * we don't allow this in __alloc_iova (at the
1186 count
= size
>> PAGE_SHIFT
;
1188 spin_lock_irqsave(&mapping
->lock
, flags
);
1189 bitmap_clear(mapping
->bitmaps
[bitmap_index
], start
, count
);
1190 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1193 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1194 static const int iommu_order_array
[] = { 9, 8, 4, 0 };
1196 static struct page
**__iommu_alloc_buffer(struct device
*dev
, size_t size
,
1197 gfp_t gfp
, unsigned long attrs
,
1200 struct page
**pages
;
1201 int count
= size
>> PAGE_SHIFT
;
1202 int array_size
= count
* sizeof(struct page
*);
1206 if (array_size
<= PAGE_SIZE
)
1207 pages
= kzalloc(array_size
, GFP_KERNEL
);
1209 pages
= vzalloc(array_size
);
1213 if (attrs
& DMA_ATTR_FORCE_CONTIGUOUS
)
1215 unsigned long order
= get_order(size
);
1218 page
= dma_alloc_from_contiguous(dev
, count
, order
,
1219 gfp
& __GFP_NOWARN
);
1223 __dma_clear_buffer(page
, size
, coherent_flag
);
1225 for (i
= 0; i
< count
; i
++)
1226 pages
[i
] = page
+ i
;
1231 /* Go straight to 4K chunks if caller says it's OK. */
1232 if (attrs
& DMA_ATTR_ALLOC_SINGLE_PAGES
)
1233 order_idx
= ARRAY_SIZE(iommu_order_array
) - 1;
1236 * IOMMU can map any pages, so himem can also be used here
1238 gfp
|= __GFP_NOWARN
| __GFP_HIGHMEM
;
1243 order
= iommu_order_array
[order_idx
];
1245 /* Drop down when we get small */
1246 if (__fls(count
) < order
) {
1252 /* See if it's easy to allocate a high-order chunk */
1253 pages
[i
] = alloc_pages(gfp
| __GFP_NORETRY
, order
);
1255 /* Go down a notch at first sign of pressure */
1261 pages
[i
] = alloc_pages(gfp
, 0);
1267 split_page(pages
[i
], order
);
1270 pages
[i
+ j
] = pages
[i
] + j
;
1273 __dma_clear_buffer(pages
[i
], PAGE_SIZE
<< order
, coherent_flag
);
1275 count
-= 1 << order
;
1282 __free_pages(pages
[i
], 0);
1287 static int __iommu_free_buffer(struct device
*dev
, struct page
**pages
,
1288 size_t size
, unsigned long attrs
)
1290 int count
= size
>> PAGE_SHIFT
;
1293 if (attrs
& DMA_ATTR_FORCE_CONTIGUOUS
) {
1294 dma_release_from_contiguous(dev
, pages
[0], count
);
1296 for (i
= 0; i
< count
; i
++)
1298 __free_pages(pages
[i
], 0);
1306 * Create a mapping in device IO address space for specified pages
1309 __iommu_create_mapping(struct device
*dev
, struct page
**pages
, size_t size
,
1310 unsigned long attrs
)
1312 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1313 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1314 dma_addr_t dma_addr
, iova
;
1317 dma_addr
= __alloc_iova(mapping
, size
);
1318 if (dma_addr
== DMA_MAPPING_ERROR
)
1322 for (i
= 0; i
< count
; ) {
1325 unsigned int next_pfn
= page_to_pfn(pages
[i
]) + 1;
1326 phys_addr_t phys
= page_to_phys(pages
[i
]);
1327 unsigned int len
, j
;
1329 for (j
= i
+ 1; j
< count
; j
++, next_pfn
++)
1330 if (page_to_pfn(pages
[j
]) != next_pfn
)
1333 len
= (j
- i
) << PAGE_SHIFT
;
1334 ret
= iommu_map(mapping
->domain
, iova
, phys
, len
,
1335 __dma_info_to_prot(DMA_BIDIRECTIONAL
, attrs
));
1343 iommu_unmap(mapping
->domain
, dma_addr
, iova
-dma_addr
);
1344 __free_iova(mapping
, dma_addr
, size
);
1345 return DMA_MAPPING_ERROR
;
1348 static int __iommu_remove_mapping(struct device
*dev
, dma_addr_t iova
, size_t size
)
1350 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1353 * add optional in-page offset from iova to size and align
1354 * result to page size
1356 size
= PAGE_ALIGN((iova
& ~PAGE_MASK
) + size
);
1359 iommu_unmap(mapping
->domain
, iova
, size
);
1360 __free_iova(mapping
, iova
, size
);
1364 static struct page
**__atomic_get_pages(void *addr
)
1369 phys
= gen_pool_virt_to_phys(atomic_pool
, (unsigned long)addr
);
1370 page
= phys_to_page(phys
);
1372 return (struct page
**)page
;
1375 static struct page
**__iommu_get_pages(void *cpu_addr
, unsigned long attrs
)
1377 if (__in_atomic_pool(cpu_addr
, PAGE_SIZE
))
1378 return __atomic_get_pages(cpu_addr
);
1380 if (attrs
& DMA_ATTR_NO_KERNEL_MAPPING
)
1383 return dma_common_find_pages(cpu_addr
);
1386 static void *__iommu_alloc_simple(struct device
*dev
, size_t size
, gfp_t gfp
,
1387 dma_addr_t
*handle
, int coherent_flag
,
1388 unsigned long attrs
)
1393 if (coherent_flag
== COHERENT
)
1394 addr
= __alloc_simple_buffer(dev
, size
, gfp
, &page
);
1396 addr
= __alloc_from_pool(size
, &page
);
1400 *handle
= __iommu_create_mapping(dev
, &page
, size
, attrs
);
1401 if (*handle
== DMA_MAPPING_ERROR
)
1407 __free_from_pool(addr
, size
);
1411 static void __iommu_free_atomic(struct device
*dev
, void *cpu_addr
,
1412 dma_addr_t handle
, size_t size
, int coherent_flag
)
1414 __iommu_remove_mapping(dev
, handle
, size
);
1415 if (coherent_flag
== COHERENT
)
1416 __dma_free_buffer(virt_to_page(cpu_addr
), size
);
1418 __free_from_pool(cpu_addr
, size
);
1421 static void *__arm_iommu_alloc_attrs(struct device
*dev
, size_t size
,
1422 dma_addr_t
*handle
, gfp_t gfp
, unsigned long attrs
,
1425 pgprot_t prot
= __get_dma_pgprot(attrs
, PAGE_KERNEL
);
1426 struct page
**pages
;
1429 *handle
= DMA_MAPPING_ERROR
;
1430 size
= PAGE_ALIGN(size
);
1432 if (coherent_flag
== COHERENT
|| !gfpflags_allow_blocking(gfp
))
1433 return __iommu_alloc_simple(dev
, size
, gfp
, handle
,
1434 coherent_flag
, attrs
);
1437 * Following is a work-around (a.k.a. hack) to prevent pages
1438 * with __GFP_COMP being passed to split_page() which cannot
1439 * handle them. The real problem is that this flag probably
1440 * should be 0 on ARM as it is not supported on this
1441 * platform; see CONFIG_HUGETLBFS.
1443 gfp
&= ~(__GFP_COMP
);
1445 pages
= __iommu_alloc_buffer(dev
, size
, gfp
, attrs
, coherent_flag
);
1449 *handle
= __iommu_create_mapping(dev
, pages
, size
, attrs
);
1450 if (*handle
== DMA_MAPPING_ERROR
)
1453 if (attrs
& DMA_ATTR_NO_KERNEL_MAPPING
)
1456 addr
= dma_common_pages_remap(pages
, size
, prot
,
1457 __builtin_return_address(0));
1464 __iommu_remove_mapping(dev
, *handle
, size
);
1466 __iommu_free_buffer(dev
, pages
, size
, attrs
);
1470 static void *arm_iommu_alloc_attrs(struct device
*dev
, size_t size
,
1471 dma_addr_t
*handle
, gfp_t gfp
, unsigned long attrs
)
1473 return __arm_iommu_alloc_attrs(dev
, size
, handle
, gfp
, attrs
, NORMAL
);
1476 static void *arm_coherent_iommu_alloc_attrs(struct device
*dev
, size_t size
,
1477 dma_addr_t
*handle
, gfp_t gfp
, unsigned long attrs
)
1479 return __arm_iommu_alloc_attrs(dev
, size
, handle
, gfp
, attrs
, COHERENT
);
1482 static int __arm_iommu_mmap_attrs(struct device
*dev
, struct vm_area_struct
*vma
,
1483 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
1484 unsigned long attrs
)
1486 struct page
**pages
= __iommu_get_pages(cpu_addr
, attrs
);
1487 unsigned long nr_pages
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1493 if (vma
->vm_pgoff
>= nr_pages
)
1496 err
= vm_map_pages(vma
, pages
, nr_pages
);
1498 pr_err("Remapping memory failed: %d\n", err
);
1502 static int arm_iommu_mmap_attrs(struct device
*dev
,
1503 struct vm_area_struct
*vma
, void *cpu_addr
,
1504 dma_addr_t dma_addr
, size_t size
, unsigned long attrs
)
1506 vma
->vm_page_prot
= __get_dma_pgprot(attrs
, vma
->vm_page_prot
);
1508 return __arm_iommu_mmap_attrs(dev
, vma
, cpu_addr
, dma_addr
, size
, attrs
);
1511 static int arm_coherent_iommu_mmap_attrs(struct device
*dev
,
1512 struct vm_area_struct
*vma
, void *cpu_addr
,
1513 dma_addr_t dma_addr
, size_t size
, unsigned long attrs
)
1515 return __arm_iommu_mmap_attrs(dev
, vma
, cpu_addr
, dma_addr
, size
, attrs
);
1519 * free a page as defined by the above mapping.
1520 * Must not be called with IRQs disabled.
1522 static void __arm_iommu_free_attrs(struct device
*dev
, size_t size
, void *cpu_addr
,
1523 dma_addr_t handle
, unsigned long attrs
, int coherent_flag
)
1525 struct page
**pages
;
1526 size
= PAGE_ALIGN(size
);
1528 if (coherent_flag
== COHERENT
|| __in_atomic_pool(cpu_addr
, size
)) {
1529 __iommu_free_atomic(dev
, cpu_addr
, handle
, size
, coherent_flag
);
1533 pages
= __iommu_get_pages(cpu_addr
, attrs
);
1535 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr
);
1539 if ((attrs
& DMA_ATTR_NO_KERNEL_MAPPING
) == 0)
1540 dma_common_free_remap(cpu_addr
, size
);
1542 __iommu_remove_mapping(dev
, handle
, size
);
1543 __iommu_free_buffer(dev
, pages
, size
, attrs
);
1546 static void arm_iommu_free_attrs(struct device
*dev
, size_t size
,
1547 void *cpu_addr
, dma_addr_t handle
,
1548 unsigned long attrs
)
1550 __arm_iommu_free_attrs(dev
, size
, cpu_addr
, handle
, attrs
, NORMAL
);
1553 static void arm_coherent_iommu_free_attrs(struct device
*dev
, size_t size
,
1554 void *cpu_addr
, dma_addr_t handle
, unsigned long attrs
)
1556 __arm_iommu_free_attrs(dev
, size
, cpu_addr
, handle
, attrs
, COHERENT
);
1559 static int arm_iommu_get_sgtable(struct device
*dev
, struct sg_table
*sgt
,
1560 void *cpu_addr
, dma_addr_t dma_addr
,
1561 size_t size
, unsigned long attrs
)
1563 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1564 struct page
**pages
= __iommu_get_pages(cpu_addr
, attrs
);
1569 return sg_alloc_table_from_pages(sgt
, pages
, count
, 0, size
,
1574 * Map a part of the scatter-gather list into contiguous io address space
1576 static int __map_sg_chunk(struct device
*dev
, struct scatterlist
*sg
,
1577 size_t size
, dma_addr_t
*handle
,
1578 enum dma_data_direction dir
, unsigned long attrs
,
1581 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1582 dma_addr_t iova
, iova_base
;
1585 struct scatterlist
*s
;
1588 size
= PAGE_ALIGN(size
);
1589 *handle
= DMA_MAPPING_ERROR
;
1591 iova_base
= iova
= __alloc_iova(mapping
, size
);
1592 if (iova
== DMA_MAPPING_ERROR
)
1595 for (count
= 0, s
= sg
; count
< (size
>> PAGE_SHIFT
); s
= sg_next(s
)) {
1596 phys_addr_t phys
= page_to_phys(sg_page(s
));
1597 unsigned int len
= PAGE_ALIGN(s
->offset
+ s
->length
);
1599 if (!is_coherent
&& (attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
1600 __dma_page_cpu_to_dev(sg_page(s
), s
->offset
, s
->length
, dir
);
1602 prot
= __dma_info_to_prot(dir
, attrs
);
1604 ret
= iommu_map(mapping
->domain
, iova
, phys
, len
, prot
);
1607 count
+= len
>> PAGE_SHIFT
;
1610 *handle
= iova_base
;
1614 iommu_unmap(mapping
->domain
, iova_base
, count
* PAGE_SIZE
);
1615 __free_iova(mapping
, iova_base
, size
);
1619 static int __iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
1620 enum dma_data_direction dir
, unsigned long attrs
,
1623 struct scatterlist
*s
= sg
, *dma
= sg
, *start
= sg
;
1625 unsigned int offset
= s
->offset
;
1626 unsigned int size
= s
->offset
+ s
->length
;
1627 unsigned int max
= dma_get_max_seg_size(dev
);
1629 for (i
= 1; i
< nents
; i
++) {
1632 s
->dma_address
= DMA_MAPPING_ERROR
;
1635 if (s
->offset
|| (size
& ~PAGE_MASK
) || size
+ s
->length
> max
) {
1636 if (__map_sg_chunk(dev
, start
, size
, &dma
->dma_address
,
1637 dir
, attrs
, is_coherent
) < 0)
1640 dma
->dma_address
+= offset
;
1641 dma
->dma_length
= size
- offset
;
1643 size
= offset
= s
->offset
;
1650 if (__map_sg_chunk(dev
, start
, size
, &dma
->dma_address
, dir
, attrs
,
1654 dma
->dma_address
+= offset
;
1655 dma
->dma_length
= size
- offset
;
1660 for_each_sg(sg
, s
, count
, i
)
1661 __iommu_remove_mapping(dev
, sg_dma_address(s
), sg_dma_len(s
));
1666 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1667 * @dev: valid struct device pointer
1668 * @sg: list of buffers
1669 * @nents: number of buffers to map
1670 * @dir: DMA transfer direction
1672 * Map a set of i/o coherent buffers described by scatterlist in streaming
1673 * mode for DMA. The scatter gather list elements are merged together (if
1674 * possible) and tagged with the appropriate dma address and length. They are
1675 * obtained via sg_dma_{address,length}.
1677 static int arm_coherent_iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
,
1678 int nents
, enum dma_data_direction dir
, unsigned long attrs
)
1680 return __iommu_map_sg(dev
, sg
, nents
, dir
, attrs
, true);
1684 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1685 * @dev: valid struct device pointer
1686 * @sg: list of buffers
1687 * @nents: number of buffers to map
1688 * @dir: DMA transfer direction
1690 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1691 * The scatter gather list elements are merged together (if possible) and
1692 * tagged with the appropriate dma address and length. They are obtained via
1693 * sg_dma_{address,length}.
1695 static int arm_iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
,
1696 int nents
, enum dma_data_direction dir
, unsigned long attrs
)
1698 return __iommu_map_sg(dev
, sg
, nents
, dir
, attrs
, false);
1701 static void __iommu_unmap_sg(struct device
*dev
, struct scatterlist
*sg
,
1702 int nents
, enum dma_data_direction dir
,
1703 unsigned long attrs
, bool is_coherent
)
1705 struct scatterlist
*s
;
1708 for_each_sg(sg
, s
, nents
, i
) {
1710 __iommu_remove_mapping(dev
, sg_dma_address(s
),
1712 if (!is_coherent
&& (attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
1713 __dma_page_dev_to_cpu(sg_page(s
), s
->offset
,
1719 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1720 * @dev: valid struct device pointer
1721 * @sg: list of buffers
1722 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1723 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1725 * Unmap a set of streaming mode DMA translations. Again, CPU access
1726 * rules concerning calls here are the same as for dma_unmap_single().
1728 static void arm_coherent_iommu_unmap_sg(struct device
*dev
,
1729 struct scatterlist
*sg
, int nents
, enum dma_data_direction dir
,
1730 unsigned long attrs
)
1732 __iommu_unmap_sg(dev
, sg
, nents
, dir
, attrs
, true);
1736 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1737 * @dev: valid struct device pointer
1738 * @sg: list of buffers
1739 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1740 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1742 * Unmap a set of streaming mode DMA translations. Again, CPU access
1743 * rules concerning calls here are the same as for dma_unmap_single().
1745 static void arm_iommu_unmap_sg(struct device
*dev
,
1746 struct scatterlist
*sg
, int nents
,
1747 enum dma_data_direction dir
,
1748 unsigned long attrs
)
1750 __iommu_unmap_sg(dev
, sg
, nents
, dir
, attrs
, false);
1754 * arm_iommu_sync_sg_for_cpu
1755 * @dev: valid struct device pointer
1756 * @sg: list of buffers
1757 * @nents: number of buffers to map (returned from dma_map_sg)
1758 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1760 static void arm_iommu_sync_sg_for_cpu(struct device
*dev
,
1761 struct scatterlist
*sg
,
1762 int nents
, enum dma_data_direction dir
)
1764 struct scatterlist
*s
;
1767 for_each_sg(sg
, s
, nents
, i
)
1768 __dma_page_dev_to_cpu(sg_page(s
), s
->offset
, s
->length
, dir
);
1773 * arm_iommu_sync_sg_for_device
1774 * @dev: valid struct device pointer
1775 * @sg: list of buffers
1776 * @nents: number of buffers to map (returned from dma_map_sg)
1777 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1779 static void arm_iommu_sync_sg_for_device(struct device
*dev
,
1780 struct scatterlist
*sg
,
1781 int nents
, enum dma_data_direction dir
)
1783 struct scatterlist
*s
;
1786 for_each_sg(sg
, s
, nents
, i
)
1787 __dma_page_cpu_to_dev(sg_page(s
), s
->offset
, s
->length
, dir
);
1792 * arm_coherent_iommu_map_page
1793 * @dev: valid struct device pointer
1794 * @page: page that buffer resides in
1795 * @offset: offset into page for start of buffer
1796 * @size: size of buffer to map
1797 * @dir: DMA transfer direction
1799 * Coherent IOMMU aware version of arm_dma_map_page()
1801 static dma_addr_t
arm_coherent_iommu_map_page(struct device
*dev
, struct page
*page
,
1802 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
1803 unsigned long attrs
)
1805 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1806 dma_addr_t dma_addr
;
1807 int ret
, prot
, len
= PAGE_ALIGN(size
+ offset
);
1809 dma_addr
= __alloc_iova(mapping
, len
);
1810 if (dma_addr
== DMA_MAPPING_ERROR
)
1813 prot
= __dma_info_to_prot(dir
, attrs
);
1815 ret
= iommu_map(mapping
->domain
, dma_addr
, page_to_phys(page
), len
, prot
);
1819 return dma_addr
+ offset
;
1821 __free_iova(mapping
, dma_addr
, len
);
1822 return DMA_MAPPING_ERROR
;
1826 * arm_iommu_map_page
1827 * @dev: valid struct device pointer
1828 * @page: page that buffer resides in
1829 * @offset: offset into page for start of buffer
1830 * @size: size of buffer to map
1831 * @dir: DMA transfer direction
1833 * IOMMU aware version of arm_dma_map_page()
1835 static dma_addr_t
arm_iommu_map_page(struct device
*dev
, struct page
*page
,
1836 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
1837 unsigned long attrs
)
1839 if ((attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
1840 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
1842 return arm_coherent_iommu_map_page(dev
, page
, offset
, size
, dir
, attrs
);
1846 * arm_coherent_iommu_unmap_page
1847 * @dev: valid struct device pointer
1848 * @handle: DMA address of buffer
1849 * @size: size of buffer (same as passed to dma_map_page)
1850 * @dir: DMA transfer direction (same as passed to dma_map_page)
1852 * Coherent IOMMU aware version of arm_dma_unmap_page()
1854 static void arm_coherent_iommu_unmap_page(struct device
*dev
, dma_addr_t handle
,
1855 size_t size
, enum dma_data_direction dir
, unsigned long attrs
)
1857 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1858 dma_addr_t iova
= handle
& PAGE_MASK
;
1859 int offset
= handle
& ~PAGE_MASK
;
1860 int len
= PAGE_ALIGN(size
+ offset
);
1865 iommu_unmap(mapping
->domain
, iova
, len
);
1866 __free_iova(mapping
, iova
, len
);
1870 * arm_iommu_unmap_page
1871 * @dev: valid struct device pointer
1872 * @handle: DMA address of buffer
1873 * @size: size of buffer (same as passed to dma_map_page)
1874 * @dir: DMA transfer direction (same as passed to dma_map_page)
1876 * IOMMU aware version of arm_dma_unmap_page()
1878 static void arm_iommu_unmap_page(struct device
*dev
, dma_addr_t handle
,
1879 size_t size
, enum dma_data_direction dir
, unsigned long attrs
)
1881 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1882 dma_addr_t iova
= handle
& PAGE_MASK
;
1883 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
1884 int offset
= handle
& ~PAGE_MASK
;
1885 int len
= PAGE_ALIGN(size
+ offset
);
1890 if ((attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
1891 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
1893 iommu_unmap(mapping
->domain
, iova
, len
);
1894 __free_iova(mapping
, iova
, len
);
1898 * arm_iommu_map_resource - map a device resource for DMA
1899 * @dev: valid struct device pointer
1900 * @phys_addr: physical address of resource
1901 * @size: size of resource to map
1902 * @dir: DMA transfer direction
1904 static dma_addr_t
arm_iommu_map_resource(struct device
*dev
,
1905 phys_addr_t phys_addr
, size_t size
,
1906 enum dma_data_direction dir
, unsigned long attrs
)
1908 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1909 dma_addr_t dma_addr
;
1911 phys_addr_t addr
= phys_addr
& PAGE_MASK
;
1912 unsigned int offset
= phys_addr
& ~PAGE_MASK
;
1913 size_t len
= PAGE_ALIGN(size
+ offset
);
1915 dma_addr
= __alloc_iova(mapping
, len
);
1916 if (dma_addr
== DMA_MAPPING_ERROR
)
1919 prot
= __dma_info_to_prot(dir
, attrs
) | IOMMU_MMIO
;
1921 ret
= iommu_map(mapping
->domain
, dma_addr
, addr
, len
, prot
);
1925 return dma_addr
+ offset
;
1927 __free_iova(mapping
, dma_addr
, len
);
1928 return DMA_MAPPING_ERROR
;
1932 * arm_iommu_unmap_resource - unmap a device DMA resource
1933 * @dev: valid struct device pointer
1934 * @dma_handle: DMA address to resource
1935 * @size: size of resource to map
1936 * @dir: DMA transfer direction
1938 static void arm_iommu_unmap_resource(struct device
*dev
, dma_addr_t dma_handle
,
1939 size_t size
, enum dma_data_direction dir
,
1940 unsigned long attrs
)
1942 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1943 dma_addr_t iova
= dma_handle
& PAGE_MASK
;
1944 unsigned int offset
= dma_handle
& ~PAGE_MASK
;
1945 size_t len
= PAGE_ALIGN(size
+ offset
);
1950 iommu_unmap(mapping
->domain
, iova
, len
);
1951 __free_iova(mapping
, iova
, len
);
1954 static void arm_iommu_sync_single_for_cpu(struct device
*dev
,
1955 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
1957 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1958 dma_addr_t iova
= handle
& PAGE_MASK
;
1959 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
1960 unsigned int offset
= handle
& ~PAGE_MASK
;
1965 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
1968 static void arm_iommu_sync_single_for_device(struct device
*dev
,
1969 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
1971 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1972 dma_addr_t iova
= handle
& PAGE_MASK
;
1973 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
1974 unsigned int offset
= handle
& ~PAGE_MASK
;
1979 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
1982 static const struct dma_map_ops iommu_ops
= {
1983 .alloc
= arm_iommu_alloc_attrs
,
1984 .free
= arm_iommu_free_attrs
,
1985 .mmap
= arm_iommu_mmap_attrs
,
1986 .get_sgtable
= arm_iommu_get_sgtable
,
1988 .map_page
= arm_iommu_map_page
,
1989 .unmap_page
= arm_iommu_unmap_page
,
1990 .sync_single_for_cpu
= arm_iommu_sync_single_for_cpu
,
1991 .sync_single_for_device
= arm_iommu_sync_single_for_device
,
1993 .map_sg
= arm_iommu_map_sg
,
1994 .unmap_sg
= arm_iommu_unmap_sg
,
1995 .sync_sg_for_cpu
= arm_iommu_sync_sg_for_cpu
,
1996 .sync_sg_for_device
= arm_iommu_sync_sg_for_device
,
1998 .map_resource
= arm_iommu_map_resource
,
1999 .unmap_resource
= arm_iommu_unmap_resource
,
2001 .dma_supported
= arm_dma_supported
,
2004 static const struct dma_map_ops iommu_coherent_ops
= {
2005 .alloc
= arm_coherent_iommu_alloc_attrs
,
2006 .free
= arm_coherent_iommu_free_attrs
,
2007 .mmap
= arm_coherent_iommu_mmap_attrs
,
2008 .get_sgtable
= arm_iommu_get_sgtable
,
2010 .map_page
= arm_coherent_iommu_map_page
,
2011 .unmap_page
= arm_coherent_iommu_unmap_page
,
2013 .map_sg
= arm_coherent_iommu_map_sg
,
2014 .unmap_sg
= arm_coherent_iommu_unmap_sg
,
2016 .map_resource
= arm_iommu_map_resource
,
2017 .unmap_resource
= arm_iommu_unmap_resource
,
2019 .dma_supported
= arm_dma_supported
,
2023 * arm_iommu_create_mapping
2024 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2025 * @base: start address of the valid IO address space
2026 * @size: maximum size of the valid IO address space
2028 * Creates a mapping structure which holds information about used/unused
2029 * IO address ranges, which is required to perform memory allocation and
2030 * mapping with IOMMU aware functions.
2032 * The client device need to be attached to the mapping with
2033 * arm_iommu_attach_device function.
2035 struct dma_iommu_mapping
*
2036 arm_iommu_create_mapping(struct bus_type
*bus
, dma_addr_t base
, u64 size
)
2038 unsigned int bits
= size
>> PAGE_SHIFT
;
2039 unsigned int bitmap_size
= BITS_TO_LONGS(bits
) * sizeof(long);
2040 struct dma_iommu_mapping
*mapping
;
2044 /* currently only 32-bit DMA address space is supported */
2045 if (size
> DMA_BIT_MASK(32) + 1)
2046 return ERR_PTR(-ERANGE
);
2049 return ERR_PTR(-EINVAL
);
2051 if (bitmap_size
> PAGE_SIZE
) {
2052 extensions
= bitmap_size
/ PAGE_SIZE
;
2053 bitmap_size
= PAGE_SIZE
;
2056 mapping
= kzalloc(sizeof(struct dma_iommu_mapping
), GFP_KERNEL
);
2060 mapping
->bitmap_size
= bitmap_size
;
2061 mapping
->bitmaps
= kcalloc(extensions
, sizeof(unsigned long *),
2063 if (!mapping
->bitmaps
)
2066 mapping
->bitmaps
[0] = kzalloc(bitmap_size
, GFP_KERNEL
);
2067 if (!mapping
->bitmaps
[0])
2070 mapping
->nr_bitmaps
= 1;
2071 mapping
->extensions
= extensions
;
2072 mapping
->base
= base
;
2073 mapping
->bits
= BITS_PER_BYTE
* bitmap_size
;
2075 spin_lock_init(&mapping
->lock
);
2077 mapping
->domain
= iommu_domain_alloc(bus
);
2078 if (!mapping
->domain
)
2081 kref_init(&mapping
->kref
);
2084 kfree(mapping
->bitmaps
[0]);
2086 kfree(mapping
->bitmaps
);
2090 return ERR_PTR(err
);
2092 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping
);
2094 static void release_iommu_mapping(struct kref
*kref
)
2097 struct dma_iommu_mapping
*mapping
=
2098 container_of(kref
, struct dma_iommu_mapping
, kref
);
2100 iommu_domain_free(mapping
->domain
);
2101 for (i
= 0; i
< mapping
->nr_bitmaps
; i
++)
2102 kfree(mapping
->bitmaps
[i
]);
2103 kfree(mapping
->bitmaps
);
2107 static int extend_iommu_mapping(struct dma_iommu_mapping
*mapping
)
2111 if (mapping
->nr_bitmaps
>= mapping
->extensions
)
2114 next_bitmap
= mapping
->nr_bitmaps
;
2115 mapping
->bitmaps
[next_bitmap
] = kzalloc(mapping
->bitmap_size
,
2117 if (!mapping
->bitmaps
[next_bitmap
])
2120 mapping
->nr_bitmaps
++;
2125 void arm_iommu_release_mapping(struct dma_iommu_mapping
*mapping
)
2128 kref_put(&mapping
->kref
, release_iommu_mapping
);
2130 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping
);
2132 static int __arm_iommu_attach_device(struct device
*dev
,
2133 struct dma_iommu_mapping
*mapping
)
2137 err
= iommu_attach_device(mapping
->domain
, dev
);
2141 kref_get(&mapping
->kref
);
2142 to_dma_iommu_mapping(dev
) = mapping
;
2144 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev
));
2149 * arm_iommu_attach_device
2150 * @dev: valid struct device pointer
2151 * @mapping: io address space mapping structure (returned from
2152 * arm_iommu_create_mapping)
2154 * Attaches specified io address space mapping to the provided device.
2155 * This replaces the dma operations (dma_map_ops pointer) with the
2156 * IOMMU aware version.
2158 * More than one client might be attached to the same io address space
2161 int arm_iommu_attach_device(struct device
*dev
,
2162 struct dma_iommu_mapping
*mapping
)
2166 err
= __arm_iommu_attach_device(dev
, mapping
);
2170 set_dma_ops(dev
, &iommu_ops
);
2173 EXPORT_SYMBOL_GPL(arm_iommu_attach_device
);
2176 * arm_iommu_detach_device
2177 * @dev: valid struct device pointer
2179 * Detaches the provided device from a previously attached map.
2180 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2182 void arm_iommu_detach_device(struct device
*dev
)
2184 struct dma_iommu_mapping
*mapping
;
2186 mapping
= to_dma_iommu_mapping(dev
);
2188 dev_warn(dev
, "Not attached\n");
2192 iommu_detach_device(mapping
->domain
, dev
);
2193 kref_put(&mapping
->kref
, release_iommu_mapping
);
2194 to_dma_iommu_mapping(dev
) = NULL
;
2195 set_dma_ops(dev
, arm_get_dma_map_ops(dev
->archdata
.dma_coherent
));
2197 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev
));
2199 EXPORT_SYMBOL_GPL(arm_iommu_detach_device
);
2201 static const struct dma_map_ops
*arm_get_iommu_dma_map_ops(bool coherent
)
2203 return coherent
? &iommu_coherent_ops
: &iommu_ops
;
2206 static bool arm_setup_iommu_dma_ops(struct device
*dev
, u64 dma_base
, u64 size
,
2207 const struct iommu_ops
*iommu
)
2209 struct dma_iommu_mapping
*mapping
;
2214 mapping
= arm_iommu_create_mapping(dev
->bus
, dma_base
, size
);
2215 if (IS_ERR(mapping
)) {
2216 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2217 size
, dev_name(dev
));
2221 if (__arm_iommu_attach_device(dev
, mapping
)) {
2222 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2224 arm_iommu_release_mapping(mapping
);
2231 static void arm_teardown_iommu_dma_ops(struct device
*dev
)
2233 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
2238 arm_iommu_detach_device(dev
);
2239 arm_iommu_release_mapping(mapping
);
2244 static bool arm_setup_iommu_dma_ops(struct device
*dev
, u64 dma_base
, u64 size
,
2245 const struct iommu_ops
*iommu
)
2250 static void arm_teardown_iommu_dma_ops(struct device
*dev
) { }
2252 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2254 #endif /* CONFIG_ARM_DMA_USE_IOMMU */
2256 void arch_setup_dma_ops(struct device
*dev
, u64 dma_base
, u64 size
,
2257 const struct iommu_ops
*iommu
, bool coherent
)
2259 const struct dma_map_ops
*dma_ops
;
2261 dev
->archdata
.dma_coherent
= coherent
;
2262 #ifdef CONFIG_SWIOTLB
2263 dev
->dma_coherent
= coherent
;
2267 * Don't override the dma_ops if they have already been set. Ideally
2268 * this should be the only location where dma_ops are set, remove this
2269 * check when all other callers of set_dma_ops will have disappeared.
2274 if (arm_setup_iommu_dma_ops(dev
, dma_base
, size
, iommu
))
2275 dma_ops
= arm_get_iommu_dma_map_ops(coherent
);
2277 dma_ops
= arm_get_dma_map_ops(coherent
);
2279 set_dma_ops(dev
, dma_ops
);
2282 if (xen_initial_domain())
2283 dev
->dma_ops
= &xen_swiotlb_dma_ops
;
2285 dev
->archdata
.dma_ops_setup
= true;
2288 void arch_teardown_dma_ops(struct device
*dev
)
2290 if (!dev
->archdata
.dma_ops_setup
)
2293 arm_teardown_iommu_dma_ops(dev
);
2294 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2295 set_dma_ops(dev
, NULL
);
2298 #ifdef CONFIG_SWIOTLB
2299 void arch_sync_dma_for_device(phys_addr_t paddr
, size_t size
,
2300 enum dma_data_direction dir
)
2302 __dma_page_cpu_to_dev(phys_to_page(paddr
), paddr
& (PAGE_SIZE
- 1),
2306 void arch_sync_dma_for_cpu(phys_addr_t paddr
, size_t size
,
2307 enum dma_data_direction dir
)
2309 __dma_page_dev_to_cpu(phys_to_page(paddr
), paddr
& (PAGE_SIZE
- 1),
2313 void *arch_dma_alloc(struct device
*dev
, size_t size
, dma_addr_t
*dma_handle
,
2314 gfp_t gfp
, unsigned long attrs
)
2316 return __dma_alloc(dev
, size
, dma_handle
, gfp
,
2317 __get_dma_pgprot(attrs
, PAGE_KERNEL
), false,
2318 attrs
, __builtin_return_address(0));
2321 void arch_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
2322 dma_addr_t dma_handle
, unsigned long attrs
)
2324 __arm_dma_free(dev
, size
, cpu_addr
, dma_handle
, attrs
, false);
2326 #endif /* CONFIG_SWIOTLB */