Linux 5.7.7
[linux/fpc-iii.git] / arch / arm / mm / mmu.c
blobec8d0008bfa1c818ea30c8b761d256fee5998209
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/mm/mmu.c
5 * Copyright (C) 1995-2005 Russell King
6 */
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
11 #include <linux/mman.h>
12 #include <linux/nodemask.h>
13 #include <linux/memblock.h>
14 #include <linux/fs.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sizes.h>
18 #include <asm/cp15.h>
19 #include <asm/cputype.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/fixmap.h>
23 #include <asm/sections.h>
24 #include <asm/setup.h>
25 #include <asm/smp_plat.h>
26 #include <asm/tlb.h>
27 #include <asm/highmem.h>
28 #include <asm/system_info.h>
29 #include <asm/traps.h>
30 #include <asm/procinfo.h>
31 #include <asm/memory.h>
33 #include <asm/mach/arch.h>
34 #include <asm/mach/map.h>
35 #include <asm/mach/pci.h>
36 #include <asm/fixmap.h>
38 #include "fault.h"
39 #include "mm.h"
40 #include "tcm.h"
43 * empty_zero_page is a special page that is used for
44 * zero-initialized data and COW.
46 struct page *empty_zero_page;
47 EXPORT_SYMBOL(empty_zero_page);
50 * The pmd table for the upper-most set of pages.
52 pmd_t *top_pmd;
54 pmdval_t user_pmd_table = _PAGE_USER_TABLE;
56 #define CPOLICY_UNCACHED 0
57 #define CPOLICY_BUFFERED 1
58 #define CPOLICY_WRITETHROUGH 2
59 #define CPOLICY_WRITEBACK 3
60 #define CPOLICY_WRITEALLOC 4
62 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
63 static unsigned int ecc_mask __initdata = 0;
64 pgprot_t pgprot_user;
65 pgprot_t pgprot_kernel;
67 EXPORT_SYMBOL(pgprot_user);
68 EXPORT_SYMBOL(pgprot_kernel);
70 struct cachepolicy {
71 const char policy[16];
72 unsigned int cr_mask;
73 pmdval_t pmd;
74 pteval_t pte;
77 unsigned long kimage_voffset __ro_after_init;
79 static struct cachepolicy cache_policies[] __initdata = {
81 .policy = "uncached",
82 .cr_mask = CR_W|CR_C,
83 .pmd = PMD_SECT_UNCACHED,
84 .pte = L_PTE_MT_UNCACHED,
85 }, {
86 .policy = "buffered",
87 .cr_mask = CR_C,
88 .pmd = PMD_SECT_BUFFERED,
89 .pte = L_PTE_MT_BUFFERABLE,
90 }, {
91 .policy = "writethrough",
92 .cr_mask = 0,
93 .pmd = PMD_SECT_WT,
94 .pte = L_PTE_MT_WRITETHROUGH,
95 }, {
96 .policy = "writeback",
97 .cr_mask = 0,
98 .pmd = PMD_SECT_WB,
99 .pte = L_PTE_MT_WRITEBACK,
100 }, {
101 .policy = "writealloc",
102 .cr_mask = 0,
103 .pmd = PMD_SECT_WBWA,
104 .pte = L_PTE_MT_WRITEALLOC,
108 #ifdef CONFIG_CPU_CP15
109 static unsigned long initial_pmd_value __initdata = 0;
112 * Initialise the cache_policy variable with the initial state specified
113 * via the "pmd" value. This is used to ensure that on ARMv6 and later,
114 * the C code sets the page tables up with the same policy as the head
115 * assembly code, which avoids an illegal state where the TLBs can get
116 * confused. See comments in early_cachepolicy() for more information.
118 void __init init_default_cache_policy(unsigned long pmd)
120 int i;
122 initial_pmd_value = pmd;
124 pmd &= PMD_SECT_CACHE_MASK;
126 for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
127 if (cache_policies[i].pmd == pmd) {
128 cachepolicy = i;
129 break;
132 if (i == ARRAY_SIZE(cache_policies))
133 pr_err("ERROR: could not find cache policy\n");
137 * These are useful for identifying cache coherency problems by allowing
138 * the cache or the cache and writebuffer to be turned off. (Note: the
139 * write buffer should not be on and the cache off).
141 static int __init early_cachepolicy(char *p)
143 int i, selected = -1;
145 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
146 int len = strlen(cache_policies[i].policy);
148 if (memcmp(p, cache_policies[i].policy, len) == 0) {
149 selected = i;
150 break;
154 if (selected == -1)
155 pr_err("ERROR: unknown or unsupported cache policy\n");
158 * This restriction is partly to do with the way we boot; it is
159 * unpredictable to have memory mapped using two different sets of
160 * memory attributes (shared, type, and cache attribs). We can not
161 * change these attributes once the initial assembly has setup the
162 * page tables.
164 if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
165 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
166 cache_policies[cachepolicy].policy);
167 return 0;
170 if (selected != cachepolicy) {
171 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
172 cachepolicy = selected;
173 flush_cache_all();
174 set_cr(cr);
176 return 0;
178 early_param("cachepolicy", early_cachepolicy);
180 static int __init early_nocache(char *__unused)
182 char *p = "buffered";
183 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
184 early_cachepolicy(p);
185 return 0;
187 early_param("nocache", early_nocache);
189 static int __init early_nowrite(char *__unused)
191 char *p = "uncached";
192 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
193 early_cachepolicy(p);
194 return 0;
196 early_param("nowb", early_nowrite);
198 #ifndef CONFIG_ARM_LPAE
199 static int __init early_ecc(char *p)
201 if (memcmp(p, "on", 2) == 0)
202 ecc_mask = PMD_PROTECTION;
203 else if (memcmp(p, "off", 3) == 0)
204 ecc_mask = 0;
205 return 0;
207 early_param("ecc", early_ecc);
208 #endif
210 #else /* ifdef CONFIG_CPU_CP15 */
212 static int __init early_cachepolicy(char *p)
214 pr_warn("cachepolicy kernel parameter not supported without cp15\n");
216 early_param("cachepolicy", early_cachepolicy);
218 static int __init noalign_setup(char *__unused)
220 pr_warn("noalign kernel parameter not supported without cp15\n");
222 __setup("noalign", noalign_setup);
224 #endif /* ifdef CONFIG_CPU_CP15 / else */
226 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
227 #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
228 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
230 static struct mem_type mem_types[] __ro_after_init = {
231 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
232 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
233 L_PTE_SHARED,
234 .prot_l1 = PMD_TYPE_TABLE,
235 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
236 .domain = DOMAIN_IO,
238 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
239 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
240 .prot_l1 = PMD_TYPE_TABLE,
241 .prot_sect = PROT_SECT_DEVICE,
242 .domain = DOMAIN_IO,
244 [MT_DEVICE_CACHED] = { /* ioremap_cache */
245 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
246 .prot_l1 = PMD_TYPE_TABLE,
247 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
248 .domain = DOMAIN_IO,
250 [MT_DEVICE_WC] = { /* ioremap_wc */
251 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
252 .prot_l1 = PMD_TYPE_TABLE,
253 .prot_sect = PROT_SECT_DEVICE,
254 .domain = DOMAIN_IO,
256 [MT_UNCACHED] = {
257 .prot_pte = PROT_PTE_DEVICE,
258 .prot_l1 = PMD_TYPE_TABLE,
259 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
260 .domain = DOMAIN_IO,
262 [MT_CACHECLEAN] = {
263 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
264 .domain = DOMAIN_KERNEL,
266 #ifndef CONFIG_ARM_LPAE
267 [MT_MINICLEAN] = {
268 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
269 .domain = DOMAIN_KERNEL,
271 #endif
272 [MT_LOW_VECTORS] = {
273 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
274 L_PTE_RDONLY,
275 .prot_l1 = PMD_TYPE_TABLE,
276 .domain = DOMAIN_VECTORS,
278 [MT_HIGH_VECTORS] = {
279 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
280 L_PTE_USER | L_PTE_RDONLY,
281 .prot_l1 = PMD_TYPE_TABLE,
282 .domain = DOMAIN_VECTORS,
284 [MT_MEMORY_RWX] = {
285 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
286 .prot_l1 = PMD_TYPE_TABLE,
287 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
288 .domain = DOMAIN_KERNEL,
290 [MT_MEMORY_RW] = {
291 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
292 L_PTE_XN,
293 .prot_l1 = PMD_TYPE_TABLE,
294 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
295 .domain = DOMAIN_KERNEL,
297 [MT_ROM] = {
298 .prot_sect = PMD_TYPE_SECT,
299 .domain = DOMAIN_KERNEL,
301 [MT_MEMORY_RWX_NONCACHED] = {
302 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
303 L_PTE_MT_BUFFERABLE,
304 .prot_l1 = PMD_TYPE_TABLE,
305 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
306 .domain = DOMAIN_KERNEL,
308 [MT_MEMORY_RW_DTCM] = {
309 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
310 L_PTE_XN,
311 .prot_l1 = PMD_TYPE_TABLE,
312 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
313 .domain = DOMAIN_KERNEL,
315 [MT_MEMORY_RWX_ITCM] = {
316 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
317 .prot_l1 = PMD_TYPE_TABLE,
318 .domain = DOMAIN_KERNEL,
320 [MT_MEMORY_RW_SO] = {
321 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
322 L_PTE_MT_UNCACHED | L_PTE_XN,
323 .prot_l1 = PMD_TYPE_TABLE,
324 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
325 PMD_SECT_UNCACHED | PMD_SECT_XN,
326 .domain = DOMAIN_KERNEL,
328 [MT_MEMORY_DMA_READY] = {
329 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
330 L_PTE_XN,
331 .prot_l1 = PMD_TYPE_TABLE,
332 .domain = DOMAIN_KERNEL,
336 const struct mem_type *get_mem_type(unsigned int type)
338 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
340 EXPORT_SYMBOL(get_mem_type);
342 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
344 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
345 __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
347 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
349 return &bm_pte[pte_index(addr)];
352 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
354 return pte_offset_kernel(dir, addr);
357 static inline pmd_t * __init fixmap_pmd(unsigned long addr)
359 pgd_t *pgd = pgd_offset_k(addr);
360 pud_t *pud = pud_offset(pgd, addr);
361 pmd_t *pmd = pmd_offset(pud, addr);
363 return pmd;
366 void __init early_fixmap_init(void)
368 pmd_t *pmd;
371 * The early fixmap range spans multiple pmds, for which
372 * we are not prepared:
374 BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
375 != FIXADDR_TOP >> PMD_SHIFT);
377 pmd = fixmap_pmd(FIXADDR_TOP);
378 pmd_populate_kernel(&init_mm, pmd, bm_pte);
380 pte_offset_fixmap = pte_offset_early_fixmap;
384 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
385 * As a result, this can only be called with preemption disabled, as under
386 * stop_machine().
388 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
390 unsigned long vaddr = __fix_to_virt(idx);
391 pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
393 /* Make sure fixmap region does not exceed available allocation. */
394 BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
395 FIXADDR_END);
396 BUG_ON(idx >= __end_of_fixed_addresses);
398 /* we only support device mappings until pgprot_kernel has been set */
399 if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
400 pgprot_val(pgprot_kernel) == 0))
401 return;
403 if (pgprot_val(prot))
404 set_pte_at(NULL, vaddr, pte,
405 pfn_pte(phys >> PAGE_SHIFT, prot));
406 else
407 pte_clear(NULL, vaddr, pte);
408 local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
412 * Adjust the PMD section entries according to the CPU in use.
414 static void __init build_mem_type_table(void)
416 struct cachepolicy *cp;
417 unsigned int cr = get_cr();
418 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
419 int cpu_arch = cpu_architecture();
420 int i;
422 if (cpu_arch < CPU_ARCH_ARMv6) {
423 #if defined(CONFIG_CPU_DCACHE_DISABLE)
424 if (cachepolicy > CPOLICY_BUFFERED)
425 cachepolicy = CPOLICY_BUFFERED;
426 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
427 if (cachepolicy > CPOLICY_WRITETHROUGH)
428 cachepolicy = CPOLICY_WRITETHROUGH;
429 #endif
431 if (cpu_arch < CPU_ARCH_ARMv5) {
432 if (cachepolicy >= CPOLICY_WRITEALLOC)
433 cachepolicy = CPOLICY_WRITEBACK;
434 ecc_mask = 0;
437 if (is_smp()) {
438 if (cachepolicy != CPOLICY_WRITEALLOC) {
439 pr_warn("Forcing write-allocate cache policy for SMP\n");
440 cachepolicy = CPOLICY_WRITEALLOC;
442 if (!(initial_pmd_value & PMD_SECT_S)) {
443 pr_warn("Forcing shared mappings for SMP\n");
444 initial_pmd_value |= PMD_SECT_S;
449 * Strip out features not present on earlier architectures.
450 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
451 * without extended page tables don't have the 'Shared' bit.
453 if (cpu_arch < CPU_ARCH_ARMv5)
454 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
455 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
456 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
457 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
458 mem_types[i].prot_sect &= ~PMD_SECT_S;
461 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
462 * "update-able on write" bit on ARM610). However, Xscale and
463 * Xscale3 require this bit to be cleared.
465 if (cpu_is_xscale_family()) {
466 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
467 mem_types[i].prot_sect &= ~PMD_BIT4;
468 mem_types[i].prot_l1 &= ~PMD_BIT4;
470 } else if (cpu_arch < CPU_ARCH_ARMv6) {
471 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
472 if (mem_types[i].prot_l1)
473 mem_types[i].prot_l1 |= PMD_BIT4;
474 if (mem_types[i].prot_sect)
475 mem_types[i].prot_sect |= PMD_BIT4;
480 * Mark the device areas according to the CPU/architecture.
482 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
483 if (!cpu_is_xsc3()) {
485 * Mark device regions on ARMv6+ as execute-never
486 * to prevent speculative instruction fetches.
488 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
489 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
490 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
491 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
493 /* Also setup NX memory mapping */
494 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
496 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
498 * For ARMv7 with TEX remapping,
499 * - shared device is SXCB=1100
500 * - nonshared device is SXCB=0100
501 * - write combine device mem is SXCB=0001
502 * (Uncached Normal memory)
504 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
505 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
506 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
507 } else if (cpu_is_xsc3()) {
509 * For Xscale3,
510 * - shared device is TEXCB=00101
511 * - nonshared device is TEXCB=01000
512 * - write combine device mem is TEXCB=00100
513 * (Inner/Outer Uncacheable in xsc3 parlance)
515 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
516 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
517 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
518 } else {
520 * For ARMv6 and ARMv7 without TEX remapping,
521 * - shared device is TEXCB=00001
522 * - nonshared device is TEXCB=01000
523 * - write combine device mem is TEXCB=00100
524 * (Uncached Normal in ARMv6 parlance).
526 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
527 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
528 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
530 } else {
532 * On others, write combining is "Uncached/Buffered"
534 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
538 * Now deal with the memory-type mappings
540 cp = &cache_policies[cachepolicy];
541 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
543 #ifndef CONFIG_ARM_LPAE
545 * We don't use domains on ARMv6 (since this causes problems with
546 * v6/v7 kernels), so we must use a separate memory type for user
547 * r/o, kernel r/w to map the vectors page.
549 if (cpu_arch == CPU_ARCH_ARMv6)
550 vecs_pgprot |= L_PTE_MT_VECTORS;
553 * Check is it with support for the PXN bit
554 * in the Short-descriptor translation table format descriptors.
556 if (cpu_arch == CPU_ARCH_ARMv7 &&
557 (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
558 user_pmd_table |= PMD_PXNTABLE;
560 #endif
563 * ARMv6 and above have extended page tables.
565 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
566 #ifndef CONFIG_ARM_LPAE
568 * Mark cache clean areas and XIP ROM read only
569 * from SVC mode and no access from userspace.
571 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
572 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
573 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
574 #endif
577 * If the initial page tables were created with the S bit
578 * set, then we need to do the same here for the same
579 * reasons given in early_cachepolicy().
581 if (initial_pmd_value & PMD_SECT_S) {
582 user_pgprot |= L_PTE_SHARED;
583 kern_pgprot |= L_PTE_SHARED;
584 vecs_pgprot |= L_PTE_SHARED;
585 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
586 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
587 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
588 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
589 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
590 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
591 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
592 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
593 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
594 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
595 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
600 * Non-cacheable Normal - intended for memory areas that must
601 * not cause dirty cache line writebacks when used
603 if (cpu_arch >= CPU_ARCH_ARMv6) {
604 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
605 /* Non-cacheable Normal is XCB = 001 */
606 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
607 PMD_SECT_BUFFERED;
608 } else {
609 /* For both ARMv6 and non-TEX-remapping ARMv7 */
610 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
611 PMD_SECT_TEX(1);
613 } else {
614 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
617 #ifdef CONFIG_ARM_LPAE
619 * Do not generate access flag faults for the kernel mappings.
621 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
622 mem_types[i].prot_pte |= PTE_EXT_AF;
623 if (mem_types[i].prot_sect)
624 mem_types[i].prot_sect |= PMD_SECT_AF;
626 kern_pgprot |= PTE_EXT_AF;
627 vecs_pgprot |= PTE_EXT_AF;
630 * Set PXN for user mappings
632 user_pgprot |= PTE_EXT_PXN;
633 #endif
635 for (i = 0; i < 16; i++) {
636 pteval_t v = pgprot_val(protection_map[i]);
637 protection_map[i] = __pgprot(v | user_pgprot);
640 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
641 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
643 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
644 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
645 L_PTE_DIRTY | kern_pgprot);
647 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
648 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
649 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
650 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
651 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
652 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
653 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
654 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
655 mem_types[MT_ROM].prot_sect |= cp->pmd;
657 switch (cp->pmd) {
658 case PMD_SECT_WT:
659 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
660 break;
661 case PMD_SECT_WB:
662 case PMD_SECT_WBWA:
663 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
664 break;
666 pr_info("Memory policy: %sData cache %s\n",
667 ecc_mask ? "ECC enabled, " : "", cp->policy);
669 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
670 struct mem_type *t = &mem_types[i];
671 if (t->prot_l1)
672 t->prot_l1 |= PMD_DOMAIN(t->domain);
673 if (t->prot_sect)
674 t->prot_sect |= PMD_DOMAIN(t->domain);
678 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
679 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
680 unsigned long size, pgprot_t vma_prot)
682 if (!pfn_valid(pfn))
683 return pgprot_noncached(vma_prot);
684 else if (file->f_flags & O_SYNC)
685 return pgprot_writecombine(vma_prot);
686 return vma_prot;
688 EXPORT_SYMBOL(phys_mem_access_prot);
689 #endif
691 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
693 static void __init *early_alloc(unsigned long sz)
695 void *ptr = memblock_alloc(sz, sz);
697 if (!ptr)
698 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
699 __func__, sz, sz);
701 return ptr;
704 static void *__init late_alloc(unsigned long sz)
706 void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
708 if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
709 BUG();
710 return ptr;
713 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
714 unsigned long prot,
715 void *(*alloc)(unsigned long sz))
717 if (pmd_none(*pmd)) {
718 pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
719 __pmd_populate(pmd, __pa(pte), prot);
721 BUG_ON(pmd_bad(*pmd));
722 return pte_offset_kernel(pmd, addr);
725 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
726 unsigned long prot)
728 return arm_pte_alloc(pmd, addr, prot, early_alloc);
731 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
732 unsigned long end, unsigned long pfn,
733 const struct mem_type *type,
734 void *(*alloc)(unsigned long sz),
735 bool ng)
737 pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
738 do {
739 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
740 ng ? PTE_EXT_NG : 0);
741 pfn++;
742 } while (pte++, addr += PAGE_SIZE, addr != end);
745 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
746 unsigned long end, phys_addr_t phys,
747 const struct mem_type *type, bool ng)
749 pmd_t *p = pmd;
751 #ifndef CONFIG_ARM_LPAE
753 * In classic MMU format, puds and pmds are folded in to
754 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
755 * group of L1 entries making up one logical pointer to
756 * an L2 table (2MB), where as PMDs refer to the individual
757 * L1 entries (1MB). Hence increment to get the correct
758 * offset for odd 1MB sections.
759 * (See arch/arm/include/asm/pgtable-2level.h)
761 if (addr & SECTION_SIZE)
762 pmd++;
763 #endif
764 do {
765 *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
766 phys += SECTION_SIZE;
767 } while (pmd++, addr += SECTION_SIZE, addr != end);
769 flush_pmd_entry(p);
772 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
773 unsigned long end, phys_addr_t phys,
774 const struct mem_type *type,
775 void *(*alloc)(unsigned long sz), bool ng)
777 pmd_t *pmd = pmd_offset(pud, addr);
778 unsigned long next;
780 do {
782 * With LPAE, we must loop over to map
783 * all the pmds for the given range.
785 next = pmd_addr_end(addr, end);
788 * Try a section mapping - addr, next and phys must all be
789 * aligned to a section boundary.
791 if (type->prot_sect &&
792 ((addr | next | phys) & ~SECTION_MASK) == 0) {
793 __map_init_section(pmd, addr, next, phys, type, ng);
794 } else {
795 alloc_init_pte(pmd, addr, next,
796 __phys_to_pfn(phys), type, alloc, ng);
799 phys += next - addr;
801 } while (pmd++, addr = next, addr != end);
804 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
805 unsigned long end, phys_addr_t phys,
806 const struct mem_type *type,
807 void *(*alloc)(unsigned long sz), bool ng)
809 pud_t *pud = pud_offset(pgd, addr);
810 unsigned long next;
812 do {
813 next = pud_addr_end(addr, end);
814 alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
815 phys += next - addr;
816 } while (pud++, addr = next, addr != end);
819 #ifndef CONFIG_ARM_LPAE
820 static void __init create_36bit_mapping(struct mm_struct *mm,
821 struct map_desc *md,
822 const struct mem_type *type,
823 bool ng)
825 unsigned long addr, length, end;
826 phys_addr_t phys;
827 pgd_t *pgd;
829 addr = md->virtual;
830 phys = __pfn_to_phys(md->pfn);
831 length = PAGE_ALIGN(md->length);
833 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
834 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
835 (long long)__pfn_to_phys((u64)md->pfn), addr);
836 return;
839 /* N.B. ARMv6 supersections are only defined to work with domain 0.
840 * Since domain assignments can in fact be arbitrary, the
841 * 'domain == 0' check below is required to insure that ARMv6
842 * supersections are only allocated for domain 0 regardless
843 * of the actual domain assignments in use.
845 if (type->domain) {
846 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
847 (long long)__pfn_to_phys((u64)md->pfn), addr);
848 return;
851 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
852 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
853 (long long)__pfn_to_phys((u64)md->pfn), addr);
854 return;
858 * Shift bits [35:32] of address into bits [23:20] of PMD
859 * (See ARMv6 spec).
861 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
863 pgd = pgd_offset(mm, addr);
864 end = addr + length;
865 do {
866 pud_t *pud = pud_offset(pgd, addr);
867 pmd_t *pmd = pmd_offset(pud, addr);
868 int i;
870 for (i = 0; i < 16; i++)
871 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
872 (ng ? PMD_SECT_nG : 0));
874 addr += SUPERSECTION_SIZE;
875 phys += SUPERSECTION_SIZE;
876 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
877 } while (addr != end);
879 #endif /* !CONFIG_ARM_LPAE */
881 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
882 void *(*alloc)(unsigned long sz),
883 bool ng)
885 unsigned long addr, length, end;
886 phys_addr_t phys;
887 const struct mem_type *type;
888 pgd_t *pgd;
890 type = &mem_types[md->type];
892 #ifndef CONFIG_ARM_LPAE
894 * Catch 36-bit addresses
896 if (md->pfn >= 0x100000) {
897 create_36bit_mapping(mm, md, type, ng);
898 return;
900 #endif
902 addr = md->virtual & PAGE_MASK;
903 phys = __pfn_to_phys(md->pfn);
904 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
906 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
907 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
908 (long long)__pfn_to_phys(md->pfn), addr);
909 return;
912 pgd = pgd_offset(mm, addr);
913 end = addr + length;
914 do {
915 unsigned long next = pgd_addr_end(addr, end);
917 alloc_init_pud(pgd, addr, next, phys, type, alloc, ng);
919 phys += next - addr;
920 addr = next;
921 } while (pgd++, addr != end);
925 * Create the page directory entries and any necessary
926 * page tables for the mapping specified by `md'. We
927 * are able to cope here with varying sizes and address
928 * offsets, and we take full advantage of sections and
929 * supersections.
931 static void __init create_mapping(struct map_desc *md)
933 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
934 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
935 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
936 return;
939 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
940 md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
941 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
942 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
943 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
946 __create_mapping(&init_mm, md, early_alloc, false);
949 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
950 bool ng)
952 #ifdef CONFIG_ARM_LPAE
953 pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
954 if (WARN_ON(!pud))
955 return;
956 pmd_alloc(mm, pud, 0);
957 #endif
958 __create_mapping(mm, md, late_alloc, ng);
962 * Create the architecture specific mappings
964 void __init iotable_init(struct map_desc *io_desc, int nr)
966 struct map_desc *md;
967 struct vm_struct *vm;
968 struct static_vm *svm;
970 if (!nr)
971 return;
973 svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
974 if (!svm)
975 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
976 __func__, sizeof(*svm) * nr, __alignof__(*svm));
978 for (md = io_desc; nr; md++, nr--) {
979 create_mapping(md);
981 vm = &svm->vm;
982 vm->addr = (void *)(md->virtual & PAGE_MASK);
983 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
984 vm->phys_addr = __pfn_to_phys(md->pfn);
985 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
986 vm->flags |= VM_ARM_MTYPE(md->type);
987 vm->caller = iotable_init;
988 add_static_vm_early(svm++);
992 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
993 void *caller)
995 struct vm_struct *vm;
996 struct static_vm *svm;
998 svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
999 if (!svm)
1000 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1001 __func__, sizeof(*svm), __alignof__(*svm));
1003 vm = &svm->vm;
1004 vm->addr = (void *)addr;
1005 vm->size = size;
1006 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1007 vm->caller = caller;
1008 add_static_vm_early(svm);
1011 #ifndef CONFIG_ARM_LPAE
1014 * The Linux PMD is made of two consecutive section entries covering 2MB
1015 * (see definition in include/asm/pgtable-2level.h). However a call to
1016 * create_mapping() may optimize static mappings by using individual
1017 * 1MB section mappings. This leaves the actual PMD potentially half
1018 * initialized if the top or bottom section entry isn't used, leaving it
1019 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1020 * the virtual space left free by that unused section entry.
1022 * Let's avoid the issue by inserting dummy vm entries covering the unused
1023 * PMD halves once the static mappings are in place.
1026 static void __init pmd_empty_section_gap(unsigned long addr)
1028 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1031 static void __init fill_pmd_gaps(void)
1033 struct static_vm *svm;
1034 struct vm_struct *vm;
1035 unsigned long addr, next = 0;
1036 pmd_t *pmd;
1038 list_for_each_entry(svm, &static_vmlist, list) {
1039 vm = &svm->vm;
1040 addr = (unsigned long)vm->addr;
1041 if (addr < next)
1042 continue;
1045 * Check if this vm starts on an odd section boundary.
1046 * If so and the first section entry for this PMD is free
1047 * then we block the corresponding virtual address.
1049 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1050 pmd = pmd_off_k(addr);
1051 if (pmd_none(*pmd))
1052 pmd_empty_section_gap(addr & PMD_MASK);
1056 * Then check if this vm ends on an odd section boundary.
1057 * If so and the second section entry for this PMD is empty
1058 * then we block the corresponding virtual address.
1060 addr += vm->size;
1061 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1062 pmd = pmd_off_k(addr) + 1;
1063 if (pmd_none(*pmd))
1064 pmd_empty_section_gap(addr);
1067 /* no need to look at any vm entry until we hit the next PMD */
1068 next = (addr + PMD_SIZE - 1) & PMD_MASK;
1072 #else
1073 #define fill_pmd_gaps() do { } while (0)
1074 #endif
1076 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1077 static void __init pci_reserve_io(void)
1079 struct static_vm *svm;
1081 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1082 if (svm)
1083 return;
1085 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1087 #else
1088 #define pci_reserve_io() do { } while (0)
1089 #endif
1091 #ifdef CONFIG_DEBUG_LL
1092 void __init debug_ll_io_init(void)
1094 struct map_desc map;
1096 debug_ll_addr(&map.pfn, &map.virtual);
1097 if (!map.pfn || !map.virtual)
1098 return;
1099 map.pfn = __phys_to_pfn(map.pfn);
1100 map.virtual &= PAGE_MASK;
1101 map.length = PAGE_SIZE;
1102 map.type = MT_DEVICE;
1103 iotable_init(&map, 1);
1105 #endif
1107 static void * __initdata vmalloc_min =
1108 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1111 * vmalloc=size forces the vmalloc area to be exactly 'size'
1112 * bytes. This can be used to increase (or decrease) the vmalloc
1113 * area - the default is 240m.
1115 static int __init early_vmalloc(char *arg)
1117 unsigned long vmalloc_reserve = memparse(arg, NULL);
1119 if (vmalloc_reserve < SZ_16M) {
1120 vmalloc_reserve = SZ_16M;
1121 pr_warn("vmalloc area too small, limiting to %luMB\n",
1122 vmalloc_reserve >> 20);
1125 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1126 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1127 pr_warn("vmalloc area is too big, limiting to %luMB\n",
1128 vmalloc_reserve >> 20);
1131 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1132 return 0;
1134 early_param("vmalloc", early_vmalloc);
1136 phys_addr_t arm_lowmem_limit __initdata = 0;
1138 void __init adjust_lowmem_bounds(void)
1140 phys_addr_t memblock_limit = 0;
1141 u64 vmalloc_limit;
1142 struct memblock_region *reg;
1143 phys_addr_t lowmem_limit = 0;
1146 * Let's use our own (unoptimized) equivalent of __pa() that is
1147 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1148 * The result is used as the upper bound on physical memory address
1149 * and may itself be outside the valid range for which phys_addr_t
1150 * and therefore __pa() is defined.
1152 vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;
1155 * The first usable region must be PMD aligned. Mark its start
1156 * as MEMBLOCK_NOMAP if it isn't
1158 for_each_memblock(memory, reg) {
1159 if (!memblock_is_nomap(reg)) {
1160 if (!IS_ALIGNED(reg->base, PMD_SIZE)) {
1161 phys_addr_t len;
1163 len = round_up(reg->base, PMD_SIZE) - reg->base;
1164 memblock_mark_nomap(reg->base, len);
1166 break;
1170 for_each_memblock(memory, reg) {
1171 phys_addr_t block_start = reg->base;
1172 phys_addr_t block_end = reg->base + reg->size;
1174 if (memblock_is_nomap(reg))
1175 continue;
1177 if (reg->base < vmalloc_limit) {
1178 if (block_end > lowmem_limit)
1180 * Compare as u64 to ensure vmalloc_limit does
1181 * not get truncated. block_end should always
1182 * fit in phys_addr_t so there should be no
1183 * issue with assignment.
1185 lowmem_limit = min_t(u64,
1186 vmalloc_limit,
1187 block_end);
1190 * Find the first non-pmd-aligned page, and point
1191 * memblock_limit at it. This relies on rounding the
1192 * limit down to be pmd-aligned, which happens at the
1193 * end of this function.
1195 * With this algorithm, the start or end of almost any
1196 * bank can be non-pmd-aligned. The only exception is
1197 * that the start of the bank 0 must be section-
1198 * aligned, since otherwise memory would need to be
1199 * allocated when mapping the start of bank 0, which
1200 * occurs before any free memory is mapped.
1202 if (!memblock_limit) {
1203 if (!IS_ALIGNED(block_start, PMD_SIZE))
1204 memblock_limit = block_start;
1205 else if (!IS_ALIGNED(block_end, PMD_SIZE))
1206 memblock_limit = lowmem_limit;
1212 arm_lowmem_limit = lowmem_limit;
1214 high_memory = __va(arm_lowmem_limit - 1) + 1;
1216 if (!memblock_limit)
1217 memblock_limit = arm_lowmem_limit;
1220 * Round the memblock limit down to a pmd size. This
1221 * helps to ensure that we will allocate memory from the
1222 * last full pmd, which should be mapped.
1224 memblock_limit = round_down(memblock_limit, PMD_SIZE);
1226 if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1227 if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1228 phys_addr_t end = memblock_end_of_DRAM();
1230 pr_notice("Ignoring RAM at %pa-%pa\n",
1231 &memblock_limit, &end);
1232 pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1234 memblock_remove(memblock_limit, end - memblock_limit);
1238 memblock_set_current_limit(memblock_limit);
1241 static inline void prepare_page_table(void)
1243 unsigned long addr;
1244 phys_addr_t end;
1247 * Clear out all the mappings below the kernel image.
1249 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1250 pmd_clear(pmd_off_k(addr));
1252 #ifdef CONFIG_XIP_KERNEL
1253 /* The XIP kernel is mapped in the module area -- skip over it */
1254 addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1255 #endif
1256 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1257 pmd_clear(pmd_off_k(addr));
1260 * Find the end of the first block of lowmem.
1262 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1263 if (end >= arm_lowmem_limit)
1264 end = arm_lowmem_limit;
1267 * Clear out all the kernel space mappings, except for the first
1268 * memory bank, up to the vmalloc region.
1270 for (addr = __phys_to_virt(end);
1271 addr < VMALLOC_START; addr += PMD_SIZE)
1272 pmd_clear(pmd_off_k(addr));
1275 #ifdef CONFIG_ARM_LPAE
1276 /* the first page is reserved for pgd */
1277 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1278 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1279 #else
1280 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1281 #endif
1284 * Reserve the special regions of memory
1286 void __init arm_mm_memblock_reserve(void)
1289 * Reserve the page tables. These are already in use,
1290 * and can only be in node 0.
1292 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1294 #ifdef CONFIG_SA1111
1296 * Because of the SA1111 DMA bug, we want to preserve our
1297 * precious DMA-able memory...
1299 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1300 #endif
1304 * Set up the device mappings. Since we clear out the page tables for all
1305 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1306 * device mappings. This means earlycon can be used to debug this function
1307 * Any other function or debugging method which may touch any device _will_
1308 * crash the kernel.
1310 static void __init devicemaps_init(const struct machine_desc *mdesc)
1312 struct map_desc map;
1313 unsigned long addr;
1314 void *vectors;
1317 * Allocate the vector page early.
1319 vectors = early_alloc(PAGE_SIZE * 2);
1321 early_trap_init(vectors);
1324 * Clear page table except top pmd used by early fixmaps
1326 for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1327 pmd_clear(pmd_off_k(addr));
1330 * Map the kernel if it is XIP.
1331 * It is always first in the modulearea.
1333 #ifdef CONFIG_XIP_KERNEL
1334 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1335 map.virtual = MODULES_VADDR;
1336 map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1337 map.type = MT_ROM;
1338 create_mapping(&map);
1339 #endif
1342 * Map the cache flushing regions.
1344 #ifdef FLUSH_BASE
1345 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1346 map.virtual = FLUSH_BASE;
1347 map.length = SZ_1M;
1348 map.type = MT_CACHECLEAN;
1349 create_mapping(&map);
1350 #endif
1351 #ifdef FLUSH_BASE_MINICACHE
1352 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1353 map.virtual = FLUSH_BASE_MINICACHE;
1354 map.length = SZ_1M;
1355 map.type = MT_MINICLEAN;
1356 create_mapping(&map);
1357 #endif
1360 * Create a mapping for the machine vectors at the high-vectors
1361 * location (0xffff0000). If we aren't using high-vectors, also
1362 * create a mapping at the low-vectors virtual address.
1364 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1365 map.virtual = 0xffff0000;
1366 map.length = PAGE_SIZE;
1367 #ifdef CONFIG_KUSER_HELPERS
1368 map.type = MT_HIGH_VECTORS;
1369 #else
1370 map.type = MT_LOW_VECTORS;
1371 #endif
1372 create_mapping(&map);
1374 if (!vectors_high()) {
1375 map.virtual = 0;
1376 map.length = PAGE_SIZE * 2;
1377 map.type = MT_LOW_VECTORS;
1378 create_mapping(&map);
1381 /* Now create a kernel read-only mapping */
1382 map.pfn += 1;
1383 map.virtual = 0xffff0000 + PAGE_SIZE;
1384 map.length = PAGE_SIZE;
1385 map.type = MT_LOW_VECTORS;
1386 create_mapping(&map);
1389 * Ask the machine support to map in the statically mapped devices.
1391 if (mdesc->map_io)
1392 mdesc->map_io();
1393 else
1394 debug_ll_io_init();
1395 fill_pmd_gaps();
1397 /* Reserve fixed i/o space in VMALLOC region */
1398 pci_reserve_io();
1401 * Finally flush the caches and tlb to ensure that we're in a
1402 * consistent state wrt the writebuffer. This also ensures that
1403 * any write-allocated cache lines in the vector page are written
1404 * back. After this point, we can start to touch devices again.
1406 local_flush_tlb_all();
1407 flush_cache_all();
1409 /* Enable asynchronous aborts */
1410 early_abt_enable();
1413 static void __init kmap_init(void)
1415 #ifdef CONFIG_HIGHMEM
1416 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1417 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1418 #endif
1420 early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1421 _PAGE_KERNEL_TABLE);
1424 static void __init map_lowmem(void)
1426 struct memblock_region *reg;
1427 phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE);
1428 phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1430 /* Map all the lowmem memory banks. */
1431 for_each_memblock(memory, reg) {
1432 phys_addr_t start = reg->base;
1433 phys_addr_t end = start + reg->size;
1434 struct map_desc map;
1436 if (memblock_is_nomap(reg))
1437 continue;
1439 if (end > arm_lowmem_limit)
1440 end = arm_lowmem_limit;
1441 if (start >= end)
1442 break;
1444 if (end < kernel_x_start) {
1445 map.pfn = __phys_to_pfn(start);
1446 map.virtual = __phys_to_virt(start);
1447 map.length = end - start;
1448 map.type = MT_MEMORY_RWX;
1450 create_mapping(&map);
1451 } else if (start >= kernel_x_end) {
1452 map.pfn = __phys_to_pfn(start);
1453 map.virtual = __phys_to_virt(start);
1454 map.length = end - start;
1455 map.type = MT_MEMORY_RW;
1457 create_mapping(&map);
1458 } else {
1459 /* This better cover the entire kernel */
1460 if (start < kernel_x_start) {
1461 map.pfn = __phys_to_pfn(start);
1462 map.virtual = __phys_to_virt(start);
1463 map.length = kernel_x_start - start;
1464 map.type = MT_MEMORY_RW;
1466 create_mapping(&map);
1469 map.pfn = __phys_to_pfn(kernel_x_start);
1470 map.virtual = __phys_to_virt(kernel_x_start);
1471 map.length = kernel_x_end - kernel_x_start;
1472 map.type = MT_MEMORY_RWX;
1474 create_mapping(&map);
1476 if (kernel_x_end < end) {
1477 map.pfn = __phys_to_pfn(kernel_x_end);
1478 map.virtual = __phys_to_virt(kernel_x_end);
1479 map.length = end - kernel_x_end;
1480 map.type = MT_MEMORY_RW;
1482 create_mapping(&map);
1488 #ifdef CONFIG_ARM_PV_FIXUP
1489 extern unsigned long __atags_pointer;
1490 typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
1491 pgtables_remap lpae_pgtables_remap_asm;
1494 * early_paging_init() recreates boot time page table setup, allowing machines
1495 * to switch over to a high (>4G) address space on LPAE systems
1497 static void __init early_paging_init(const struct machine_desc *mdesc)
1499 pgtables_remap *lpae_pgtables_remap;
1500 unsigned long pa_pgd;
1501 unsigned int cr, ttbcr;
1502 long long offset;
1503 void *boot_data;
1505 if (!mdesc->pv_fixup)
1506 return;
1508 offset = mdesc->pv_fixup();
1509 if (offset == 0)
1510 return;
1513 * Get the address of the remap function in the 1:1 identity
1514 * mapping setup by the early page table assembly code. We
1515 * must get this prior to the pv update. The following barrier
1516 * ensures that this is complete before we fixup any P:V offsets.
1518 lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1519 pa_pgd = __pa(swapper_pg_dir);
1520 boot_data = __va(__atags_pointer);
1521 barrier();
1523 pr_info("Switching physical address space to 0x%08llx\n",
1524 (u64)PHYS_OFFSET + offset);
1526 /* Re-set the phys pfn offset, and the pv offset */
1527 __pv_offset += offset;
1528 __pv_phys_pfn_offset += PFN_DOWN(offset);
1530 /* Run the patch stub to update the constants */
1531 fixup_pv_table(&__pv_table_begin,
1532 (&__pv_table_end - &__pv_table_begin) << 2);
1535 * We changing not only the virtual to physical mapping, but also
1536 * the physical addresses used to access memory. We need to flush
1537 * all levels of cache in the system with caching disabled to
1538 * ensure that all data is written back, and nothing is prefetched
1539 * into the caches. We also need to prevent the TLB walkers
1540 * allocating into the caches too. Note that this is ARMv7 LPAE
1541 * specific.
1543 cr = get_cr();
1544 set_cr(cr & ~(CR_I | CR_C));
1545 asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1546 asm volatile("mcr p15, 0, %0, c2, c0, 2"
1547 : : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1548 flush_cache_all();
1551 * Fixup the page tables - this must be in the idmap region as
1552 * we need to disable the MMU to do this safely, and hence it
1553 * needs to be assembly. It's fairly simple, as we're using the
1554 * temporary tables setup by the initial assembly code.
1556 lpae_pgtables_remap(offset, pa_pgd, boot_data);
1558 /* Re-enable the caches and cacheable TLB walks */
1559 asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1560 set_cr(cr);
1563 #else
1565 static void __init early_paging_init(const struct machine_desc *mdesc)
1567 long long offset;
1569 if (!mdesc->pv_fixup)
1570 return;
1572 offset = mdesc->pv_fixup();
1573 if (offset == 0)
1574 return;
1576 pr_crit("Physical address space modification is only to support Keystone2.\n");
1577 pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1578 pr_crit("feature. Your kernel may crash now, have a good day.\n");
1579 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1582 #endif
1584 static void __init early_fixmap_shutdown(void)
1586 int i;
1587 unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1589 pte_offset_fixmap = pte_offset_late_fixmap;
1590 pmd_clear(fixmap_pmd(va));
1591 local_flush_tlb_kernel_page(va);
1593 for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1594 pte_t *pte;
1595 struct map_desc map;
1597 map.virtual = fix_to_virt(i);
1598 pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1600 /* Only i/o device mappings are supported ATM */
1601 if (pte_none(*pte) ||
1602 (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1603 continue;
1605 map.pfn = pte_pfn(*pte);
1606 map.type = MT_DEVICE;
1607 map.length = PAGE_SIZE;
1609 create_mapping(&map);
1614 * paging_init() sets up the page tables, initialises the zone memory
1615 * maps, and sets up the zero page, bad page and bad page tables.
1617 void __init paging_init(const struct machine_desc *mdesc)
1619 void *zero_page;
1621 prepare_page_table();
1622 map_lowmem();
1623 memblock_set_current_limit(arm_lowmem_limit);
1624 dma_contiguous_remap();
1625 early_fixmap_shutdown();
1626 devicemaps_init(mdesc);
1627 kmap_init();
1628 tcm_init();
1630 top_pmd = pmd_off_k(0xffff0000);
1632 /* allocate the zero page. */
1633 zero_page = early_alloc(PAGE_SIZE);
1635 bootmem_init();
1637 empty_zero_page = virt_to_page(zero_page);
1638 __flush_dcache_page(NULL, empty_zero_page);
1640 /* Compute the virt/idmap offset, mostly for the sake of KVM */
1641 kimage_voffset = (unsigned long)&kimage_voffset - virt_to_idmap(&kimage_voffset);
1644 void __init early_mm_init(const struct machine_desc *mdesc)
1646 build_mem_type_table();
1647 early_paging_init(mdesc);
1650 void set_pte_at(struct mm_struct *mm, unsigned long addr,
1651 pte_t *ptep, pte_t pteval)
1653 unsigned long ext = 0;
1655 if (addr < TASK_SIZE && pte_valid_user(pteval)) {
1656 if (!pte_special(pteval))
1657 __sync_icache_dcache(pteval);
1658 ext |= PTE_EXT_NG;
1661 set_pte_ext(ptep, pteval, ext);