1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/arch/arm/mm/mmu.c
5 * Copyright (C) 1995-2005 Russell King
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
11 #include <linux/mman.h>
12 #include <linux/nodemask.h>
13 #include <linux/memblock.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sizes.h>
19 #include <asm/cputype.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/fixmap.h>
23 #include <asm/sections.h>
24 #include <asm/setup.h>
25 #include <asm/smp_plat.h>
27 #include <asm/highmem.h>
28 #include <asm/system_info.h>
29 #include <asm/traps.h>
30 #include <asm/procinfo.h>
31 #include <asm/memory.h>
33 #include <asm/mach/arch.h>
34 #include <asm/mach/map.h>
35 #include <asm/mach/pci.h>
36 #include <asm/fixmap.h>
43 * empty_zero_page is a special page that is used for
44 * zero-initialized data and COW.
46 struct page
*empty_zero_page
;
47 EXPORT_SYMBOL(empty_zero_page
);
50 * The pmd table for the upper-most set of pages.
54 pmdval_t user_pmd_table
= _PAGE_USER_TABLE
;
56 #define CPOLICY_UNCACHED 0
57 #define CPOLICY_BUFFERED 1
58 #define CPOLICY_WRITETHROUGH 2
59 #define CPOLICY_WRITEBACK 3
60 #define CPOLICY_WRITEALLOC 4
62 static unsigned int cachepolicy __initdata
= CPOLICY_WRITEBACK
;
63 static unsigned int ecc_mask __initdata
= 0;
65 pgprot_t pgprot_kernel
;
67 EXPORT_SYMBOL(pgprot_user
);
68 EXPORT_SYMBOL(pgprot_kernel
);
71 const char policy
[16];
77 unsigned long kimage_voffset __ro_after_init
;
79 static struct cachepolicy cache_policies
[] __initdata
= {
83 .pmd
= PMD_SECT_UNCACHED
,
84 .pte
= L_PTE_MT_UNCACHED
,
88 .pmd
= PMD_SECT_BUFFERED
,
89 .pte
= L_PTE_MT_BUFFERABLE
,
91 .policy
= "writethrough",
94 .pte
= L_PTE_MT_WRITETHROUGH
,
96 .policy
= "writeback",
99 .pte
= L_PTE_MT_WRITEBACK
,
101 .policy
= "writealloc",
103 .pmd
= PMD_SECT_WBWA
,
104 .pte
= L_PTE_MT_WRITEALLOC
,
108 #ifdef CONFIG_CPU_CP15
109 static unsigned long initial_pmd_value __initdata
= 0;
112 * Initialise the cache_policy variable with the initial state specified
113 * via the "pmd" value. This is used to ensure that on ARMv6 and later,
114 * the C code sets the page tables up with the same policy as the head
115 * assembly code, which avoids an illegal state where the TLBs can get
116 * confused. See comments in early_cachepolicy() for more information.
118 void __init
init_default_cache_policy(unsigned long pmd
)
122 initial_pmd_value
= pmd
;
124 pmd
&= PMD_SECT_CACHE_MASK
;
126 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++)
127 if (cache_policies
[i
].pmd
== pmd
) {
132 if (i
== ARRAY_SIZE(cache_policies
))
133 pr_err("ERROR: could not find cache policy\n");
137 * These are useful for identifying cache coherency problems by allowing
138 * the cache or the cache and writebuffer to be turned off. (Note: the
139 * write buffer should not be on and the cache off).
141 static int __init
early_cachepolicy(char *p
)
143 int i
, selected
= -1;
145 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++) {
146 int len
= strlen(cache_policies
[i
].policy
);
148 if (memcmp(p
, cache_policies
[i
].policy
, len
) == 0) {
155 pr_err("ERROR: unknown or unsupported cache policy\n");
158 * This restriction is partly to do with the way we boot; it is
159 * unpredictable to have memory mapped using two different sets of
160 * memory attributes (shared, type, and cache attribs). We can not
161 * change these attributes once the initial assembly has setup the
164 if (cpu_architecture() >= CPU_ARCH_ARMv6
&& selected
!= cachepolicy
) {
165 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
166 cache_policies
[cachepolicy
].policy
);
170 if (selected
!= cachepolicy
) {
171 unsigned long cr
= __clear_cr(cache_policies
[selected
].cr_mask
);
172 cachepolicy
= selected
;
178 early_param("cachepolicy", early_cachepolicy
);
180 static int __init
early_nocache(char *__unused
)
182 char *p
= "buffered";
183 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p
);
184 early_cachepolicy(p
);
187 early_param("nocache", early_nocache
);
189 static int __init
early_nowrite(char *__unused
)
191 char *p
= "uncached";
192 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p
);
193 early_cachepolicy(p
);
196 early_param("nowb", early_nowrite
);
198 #ifndef CONFIG_ARM_LPAE
199 static int __init
early_ecc(char *p
)
201 if (memcmp(p
, "on", 2) == 0)
202 ecc_mask
= PMD_PROTECTION
;
203 else if (memcmp(p
, "off", 3) == 0)
207 early_param("ecc", early_ecc
);
210 #else /* ifdef CONFIG_CPU_CP15 */
212 static int __init
early_cachepolicy(char *p
)
214 pr_warn("cachepolicy kernel parameter not supported without cp15\n");
216 early_param("cachepolicy", early_cachepolicy
);
218 static int __init
noalign_setup(char *__unused
)
220 pr_warn("noalign kernel parameter not supported without cp15\n");
222 __setup("noalign", noalign_setup
);
224 #endif /* ifdef CONFIG_CPU_CP15 / else */
226 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
227 #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
228 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
230 static struct mem_type mem_types
[] __ro_after_init
= {
231 [MT_DEVICE
] = { /* Strongly ordered / ARMv6 shared device */
232 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_SHARED
|
234 .prot_l1
= PMD_TYPE_TABLE
,
235 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_S
,
238 [MT_DEVICE_NONSHARED
] = { /* ARMv6 non-shared device */
239 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_NONSHARED
,
240 .prot_l1
= PMD_TYPE_TABLE
,
241 .prot_sect
= PROT_SECT_DEVICE
,
244 [MT_DEVICE_CACHED
] = { /* ioremap_cache */
245 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_CACHED
,
246 .prot_l1
= PMD_TYPE_TABLE
,
247 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_WB
,
250 [MT_DEVICE_WC
] = { /* ioremap_wc */
251 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_WC
,
252 .prot_l1
= PMD_TYPE_TABLE
,
253 .prot_sect
= PROT_SECT_DEVICE
,
257 .prot_pte
= PROT_PTE_DEVICE
,
258 .prot_l1
= PMD_TYPE_TABLE
,
259 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
263 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
264 .domain
= DOMAIN_KERNEL
,
266 #ifndef CONFIG_ARM_LPAE
268 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
| PMD_SECT_MINICACHE
,
269 .domain
= DOMAIN_KERNEL
,
273 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
275 .prot_l1
= PMD_TYPE_TABLE
,
276 .domain
= DOMAIN_VECTORS
,
278 [MT_HIGH_VECTORS
] = {
279 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
280 L_PTE_USER
| L_PTE_RDONLY
,
281 .prot_l1
= PMD_TYPE_TABLE
,
282 .domain
= DOMAIN_VECTORS
,
285 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
286 .prot_l1
= PMD_TYPE_TABLE
,
287 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
288 .domain
= DOMAIN_KERNEL
,
291 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
293 .prot_l1
= PMD_TYPE_TABLE
,
294 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
295 .domain
= DOMAIN_KERNEL
,
298 .prot_sect
= PMD_TYPE_SECT
,
299 .domain
= DOMAIN_KERNEL
,
301 [MT_MEMORY_RWX_NONCACHED
] = {
302 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
304 .prot_l1
= PMD_TYPE_TABLE
,
305 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
306 .domain
= DOMAIN_KERNEL
,
308 [MT_MEMORY_RW_DTCM
] = {
309 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
311 .prot_l1
= PMD_TYPE_TABLE
,
312 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
313 .domain
= DOMAIN_KERNEL
,
315 [MT_MEMORY_RWX_ITCM
] = {
316 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
317 .prot_l1
= PMD_TYPE_TABLE
,
318 .domain
= DOMAIN_KERNEL
,
320 [MT_MEMORY_RW_SO
] = {
321 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
322 L_PTE_MT_UNCACHED
| L_PTE_XN
,
323 .prot_l1
= PMD_TYPE_TABLE
,
324 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
| PMD_SECT_S
|
325 PMD_SECT_UNCACHED
| PMD_SECT_XN
,
326 .domain
= DOMAIN_KERNEL
,
328 [MT_MEMORY_DMA_READY
] = {
329 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
331 .prot_l1
= PMD_TYPE_TABLE
,
332 .domain
= DOMAIN_KERNEL
,
336 const struct mem_type
*get_mem_type(unsigned int type
)
338 return type
< ARRAY_SIZE(mem_types
) ? &mem_types
[type
] : NULL
;
340 EXPORT_SYMBOL(get_mem_type
);
342 static pte_t
*(*pte_offset_fixmap
)(pmd_t
*dir
, unsigned long addr
);
344 static pte_t bm_pte
[PTRS_PER_PTE
+ PTE_HWTABLE_PTRS
]
345 __aligned(PTE_HWTABLE_OFF
+ PTE_HWTABLE_SIZE
) __initdata
;
347 static pte_t
* __init
pte_offset_early_fixmap(pmd_t
*dir
, unsigned long addr
)
349 return &bm_pte
[pte_index(addr
)];
352 static pte_t
*pte_offset_late_fixmap(pmd_t
*dir
, unsigned long addr
)
354 return pte_offset_kernel(dir
, addr
);
357 static inline pmd_t
* __init
fixmap_pmd(unsigned long addr
)
359 pgd_t
*pgd
= pgd_offset_k(addr
);
360 pud_t
*pud
= pud_offset(pgd
, addr
);
361 pmd_t
*pmd
= pmd_offset(pud
, addr
);
366 void __init
early_fixmap_init(void)
371 * The early fixmap range spans multiple pmds, for which
372 * we are not prepared:
374 BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region
) >> PMD_SHIFT
)
375 != FIXADDR_TOP
>> PMD_SHIFT
);
377 pmd
= fixmap_pmd(FIXADDR_TOP
);
378 pmd_populate_kernel(&init_mm
, pmd
, bm_pte
);
380 pte_offset_fixmap
= pte_offset_early_fixmap
;
384 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
385 * As a result, this can only be called with preemption disabled, as under
388 void __set_fixmap(enum fixed_addresses idx
, phys_addr_t phys
, pgprot_t prot
)
390 unsigned long vaddr
= __fix_to_virt(idx
);
391 pte_t
*pte
= pte_offset_fixmap(pmd_off_k(vaddr
), vaddr
);
393 /* Make sure fixmap region does not exceed available allocation. */
394 BUILD_BUG_ON(FIXADDR_START
+ (__end_of_fixed_addresses
* PAGE_SIZE
) >
396 BUG_ON(idx
>= __end_of_fixed_addresses
);
398 /* we only support device mappings until pgprot_kernel has been set */
399 if (WARN_ON(pgprot_val(prot
) != pgprot_val(FIXMAP_PAGE_IO
) &&
400 pgprot_val(pgprot_kernel
) == 0))
403 if (pgprot_val(prot
))
404 set_pte_at(NULL
, vaddr
, pte
,
405 pfn_pte(phys
>> PAGE_SHIFT
, prot
));
407 pte_clear(NULL
, vaddr
, pte
);
408 local_flush_tlb_kernel_range(vaddr
, vaddr
+ PAGE_SIZE
);
412 * Adjust the PMD section entries according to the CPU in use.
414 static void __init
build_mem_type_table(void)
416 struct cachepolicy
*cp
;
417 unsigned int cr
= get_cr();
418 pteval_t user_pgprot
, kern_pgprot
, vecs_pgprot
;
419 int cpu_arch
= cpu_architecture();
422 if (cpu_arch
< CPU_ARCH_ARMv6
) {
423 #if defined(CONFIG_CPU_DCACHE_DISABLE)
424 if (cachepolicy
> CPOLICY_BUFFERED
)
425 cachepolicy
= CPOLICY_BUFFERED
;
426 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
427 if (cachepolicy
> CPOLICY_WRITETHROUGH
)
428 cachepolicy
= CPOLICY_WRITETHROUGH
;
431 if (cpu_arch
< CPU_ARCH_ARMv5
) {
432 if (cachepolicy
>= CPOLICY_WRITEALLOC
)
433 cachepolicy
= CPOLICY_WRITEBACK
;
438 if (cachepolicy
!= CPOLICY_WRITEALLOC
) {
439 pr_warn("Forcing write-allocate cache policy for SMP\n");
440 cachepolicy
= CPOLICY_WRITEALLOC
;
442 if (!(initial_pmd_value
& PMD_SECT_S
)) {
443 pr_warn("Forcing shared mappings for SMP\n");
444 initial_pmd_value
|= PMD_SECT_S
;
449 * Strip out features not present on earlier architectures.
450 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
451 * without extended page tables don't have the 'Shared' bit.
453 if (cpu_arch
< CPU_ARCH_ARMv5
)
454 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
455 mem_types
[i
].prot_sect
&= ~PMD_SECT_TEX(7);
456 if ((cpu_arch
< CPU_ARCH_ARMv6
|| !(cr
& CR_XP
)) && !cpu_is_xsc3())
457 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
458 mem_types
[i
].prot_sect
&= ~PMD_SECT_S
;
461 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
462 * "update-able on write" bit on ARM610). However, Xscale and
463 * Xscale3 require this bit to be cleared.
465 if (cpu_is_xscale_family()) {
466 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
467 mem_types
[i
].prot_sect
&= ~PMD_BIT4
;
468 mem_types
[i
].prot_l1
&= ~PMD_BIT4
;
470 } else if (cpu_arch
< CPU_ARCH_ARMv6
) {
471 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
472 if (mem_types
[i
].prot_l1
)
473 mem_types
[i
].prot_l1
|= PMD_BIT4
;
474 if (mem_types
[i
].prot_sect
)
475 mem_types
[i
].prot_sect
|= PMD_BIT4
;
480 * Mark the device areas according to the CPU/architecture.
482 if (cpu_is_xsc3() || (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
))) {
483 if (!cpu_is_xsc3()) {
485 * Mark device regions on ARMv6+ as execute-never
486 * to prevent speculative instruction fetches.
488 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_XN
;
489 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_XN
;
490 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_XN
;
491 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_XN
;
493 /* Also setup NX memory mapping */
494 mem_types
[MT_MEMORY_RW
].prot_sect
|= PMD_SECT_XN
;
496 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
498 * For ARMv7 with TEX remapping,
499 * - shared device is SXCB=1100
500 * - nonshared device is SXCB=0100
501 * - write combine device mem is SXCB=0001
502 * (Uncached Normal memory)
504 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1);
505 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(1);
506 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
507 } else if (cpu_is_xsc3()) {
510 * - shared device is TEXCB=00101
511 * - nonshared device is TEXCB=01000
512 * - write combine device mem is TEXCB=00100
513 * (Inner/Outer Uncacheable in xsc3 parlance)
515 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED
;
516 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
517 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
520 * For ARMv6 and ARMv7 without TEX remapping,
521 * - shared device is TEXCB=00001
522 * - nonshared device is TEXCB=01000
523 * - write combine device mem is TEXCB=00100
524 * (Uncached Normal in ARMv6 parlance).
526 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_BUFFERED
;
527 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
528 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
532 * On others, write combining is "Uncached/Buffered"
534 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
538 * Now deal with the memory-type mappings
540 cp
= &cache_policies
[cachepolicy
];
541 vecs_pgprot
= kern_pgprot
= user_pgprot
= cp
->pte
;
543 #ifndef CONFIG_ARM_LPAE
545 * We don't use domains on ARMv6 (since this causes problems with
546 * v6/v7 kernels), so we must use a separate memory type for user
547 * r/o, kernel r/w to map the vectors page.
549 if (cpu_arch
== CPU_ARCH_ARMv6
)
550 vecs_pgprot
|= L_PTE_MT_VECTORS
;
553 * Check is it with support for the PXN bit
554 * in the Short-descriptor translation table format descriptors.
556 if (cpu_arch
== CPU_ARCH_ARMv7
&&
557 (read_cpuid_ext(CPUID_EXT_MMFR0
) & 0xF) >= 4) {
558 user_pmd_table
|= PMD_PXNTABLE
;
563 * ARMv6 and above have extended page tables.
565 if (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
)) {
566 #ifndef CONFIG_ARM_LPAE
568 * Mark cache clean areas and XIP ROM read only
569 * from SVC mode and no access from userspace.
571 mem_types
[MT_ROM
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
572 mem_types
[MT_MINICLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
573 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
577 * If the initial page tables were created with the S bit
578 * set, then we need to do the same here for the same
579 * reasons given in early_cachepolicy().
581 if (initial_pmd_value
& PMD_SECT_S
) {
582 user_pgprot
|= L_PTE_SHARED
;
583 kern_pgprot
|= L_PTE_SHARED
;
584 vecs_pgprot
|= L_PTE_SHARED
;
585 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_S
;
586 mem_types
[MT_DEVICE_WC
].prot_pte
|= L_PTE_SHARED
;
587 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_S
;
588 mem_types
[MT_DEVICE_CACHED
].prot_pte
|= L_PTE_SHARED
;
589 mem_types
[MT_MEMORY_RWX
].prot_sect
|= PMD_SECT_S
;
590 mem_types
[MT_MEMORY_RWX
].prot_pte
|= L_PTE_SHARED
;
591 mem_types
[MT_MEMORY_RW
].prot_sect
|= PMD_SECT_S
;
592 mem_types
[MT_MEMORY_RW
].prot_pte
|= L_PTE_SHARED
;
593 mem_types
[MT_MEMORY_DMA_READY
].prot_pte
|= L_PTE_SHARED
;
594 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|= PMD_SECT_S
;
595 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_pte
|= L_PTE_SHARED
;
600 * Non-cacheable Normal - intended for memory areas that must
601 * not cause dirty cache line writebacks when used
603 if (cpu_arch
>= CPU_ARCH_ARMv6
) {
604 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
605 /* Non-cacheable Normal is XCB = 001 */
606 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|=
609 /* For both ARMv6 and non-TEX-remapping ARMv7 */
610 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|=
614 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|= PMD_SECT_BUFFERABLE
;
617 #ifdef CONFIG_ARM_LPAE
619 * Do not generate access flag faults for the kernel mappings.
621 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
622 mem_types
[i
].prot_pte
|= PTE_EXT_AF
;
623 if (mem_types
[i
].prot_sect
)
624 mem_types
[i
].prot_sect
|= PMD_SECT_AF
;
626 kern_pgprot
|= PTE_EXT_AF
;
627 vecs_pgprot
|= PTE_EXT_AF
;
630 * Set PXN for user mappings
632 user_pgprot
|= PTE_EXT_PXN
;
635 for (i
= 0; i
< 16; i
++) {
636 pteval_t v
= pgprot_val(protection_map
[i
]);
637 protection_map
[i
] = __pgprot(v
| user_pgprot
);
640 mem_types
[MT_LOW_VECTORS
].prot_pte
|= vecs_pgprot
;
641 mem_types
[MT_HIGH_VECTORS
].prot_pte
|= vecs_pgprot
;
643 pgprot_user
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
| user_pgprot
);
644 pgprot_kernel
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
|
645 L_PTE_DIRTY
| kern_pgprot
);
647 mem_types
[MT_LOW_VECTORS
].prot_l1
|= ecc_mask
;
648 mem_types
[MT_HIGH_VECTORS
].prot_l1
|= ecc_mask
;
649 mem_types
[MT_MEMORY_RWX
].prot_sect
|= ecc_mask
| cp
->pmd
;
650 mem_types
[MT_MEMORY_RWX
].prot_pte
|= kern_pgprot
;
651 mem_types
[MT_MEMORY_RW
].prot_sect
|= ecc_mask
| cp
->pmd
;
652 mem_types
[MT_MEMORY_RW
].prot_pte
|= kern_pgprot
;
653 mem_types
[MT_MEMORY_DMA_READY
].prot_pte
|= kern_pgprot
;
654 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|= ecc_mask
;
655 mem_types
[MT_ROM
].prot_sect
|= cp
->pmd
;
659 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WT
;
663 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WB
;
666 pr_info("Memory policy: %sData cache %s\n",
667 ecc_mask
? "ECC enabled, " : "", cp
->policy
);
669 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
670 struct mem_type
*t
= &mem_types
[i
];
672 t
->prot_l1
|= PMD_DOMAIN(t
->domain
);
674 t
->prot_sect
|= PMD_DOMAIN(t
->domain
);
678 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
679 pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long pfn
,
680 unsigned long size
, pgprot_t vma_prot
)
683 return pgprot_noncached(vma_prot
);
684 else if (file
->f_flags
& O_SYNC
)
685 return pgprot_writecombine(vma_prot
);
688 EXPORT_SYMBOL(phys_mem_access_prot
);
691 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
693 static void __init
*early_alloc(unsigned long sz
)
695 void *ptr
= memblock_alloc(sz
, sz
);
698 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
704 static void *__init
late_alloc(unsigned long sz
)
706 void *ptr
= (void *)__get_free_pages(GFP_PGTABLE_KERNEL
, get_order(sz
));
708 if (!ptr
|| !pgtable_pte_page_ctor(virt_to_page(ptr
)))
713 static pte_t
* __init
arm_pte_alloc(pmd_t
*pmd
, unsigned long addr
,
715 void *(*alloc
)(unsigned long sz
))
717 if (pmd_none(*pmd
)) {
718 pte_t
*pte
= alloc(PTE_HWTABLE_OFF
+ PTE_HWTABLE_SIZE
);
719 __pmd_populate(pmd
, __pa(pte
), prot
);
721 BUG_ON(pmd_bad(*pmd
));
722 return pte_offset_kernel(pmd
, addr
);
725 static pte_t
* __init
early_pte_alloc(pmd_t
*pmd
, unsigned long addr
,
728 return arm_pte_alloc(pmd
, addr
, prot
, early_alloc
);
731 static void __init
alloc_init_pte(pmd_t
*pmd
, unsigned long addr
,
732 unsigned long end
, unsigned long pfn
,
733 const struct mem_type
*type
,
734 void *(*alloc
)(unsigned long sz
),
737 pte_t
*pte
= arm_pte_alloc(pmd
, addr
, type
->prot_l1
, alloc
);
739 set_pte_ext(pte
, pfn_pte(pfn
, __pgprot(type
->prot_pte
)),
740 ng
? PTE_EXT_NG
: 0);
742 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
745 static void __init
__map_init_section(pmd_t
*pmd
, unsigned long addr
,
746 unsigned long end
, phys_addr_t phys
,
747 const struct mem_type
*type
, bool ng
)
751 #ifndef CONFIG_ARM_LPAE
753 * In classic MMU format, puds and pmds are folded in to
754 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
755 * group of L1 entries making up one logical pointer to
756 * an L2 table (2MB), where as PMDs refer to the individual
757 * L1 entries (1MB). Hence increment to get the correct
758 * offset for odd 1MB sections.
759 * (See arch/arm/include/asm/pgtable-2level.h)
761 if (addr
& SECTION_SIZE
)
765 *pmd
= __pmd(phys
| type
->prot_sect
| (ng
? PMD_SECT_nG
: 0));
766 phys
+= SECTION_SIZE
;
767 } while (pmd
++, addr
+= SECTION_SIZE
, addr
!= end
);
772 static void __init
alloc_init_pmd(pud_t
*pud
, unsigned long addr
,
773 unsigned long end
, phys_addr_t phys
,
774 const struct mem_type
*type
,
775 void *(*alloc
)(unsigned long sz
), bool ng
)
777 pmd_t
*pmd
= pmd_offset(pud
, addr
);
782 * With LPAE, we must loop over to map
783 * all the pmds for the given range.
785 next
= pmd_addr_end(addr
, end
);
788 * Try a section mapping - addr, next and phys must all be
789 * aligned to a section boundary.
791 if (type
->prot_sect
&&
792 ((addr
| next
| phys
) & ~SECTION_MASK
) == 0) {
793 __map_init_section(pmd
, addr
, next
, phys
, type
, ng
);
795 alloc_init_pte(pmd
, addr
, next
,
796 __phys_to_pfn(phys
), type
, alloc
, ng
);
801 } while (pmd
++, addr
= next
, addr
!= end
);
804 static void __init
alloc_init_pud(pgd_t
*pgd
, unsigned long addr
,
805 unsigned long end
, phys_addr_t phys
,
806 const struct mem_type
*type
,
807 void *(*alloc
)(unsigned long sz
), bool ng
)
809 pud_t
*pud
= pud_offset(pgd
, addr
);
813 next
= pud_addr_end(addr
, end
);
814 alloc_init_pmd(pud
, addr
, next
, phys
, type
, alloc
, ng
);
816 } while (pud
++, addr
= next
, addr
!= end
);
819 #ifndef CONFIG_ARM_LPAE
820 static void __init
create_36bit_mapping(struct mm_struct
*mm
,
822 const struct mem_type
*type
,
825 unsigned long addr
, length
, end
;
830 phys
= __pfn_to_phys(md
->pfn
);
831 length
= PAGE_ALIGN(md
->length
);
833 if (!(cpu_architecture() >= CPU_ARCH_ARMv6
|| cpu_is_xsc3())) {
834 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
835 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
839 /* N.B. ARMv6 supersections are only defined to work with domain 0.
840 * Since domain assignments can in fact be arbitrary, the
841 * 'domain == 0' check below is required to insure that ARMv6
842 * supersections are only allocated for domain 0 regardless
843 * of the actual domain assignments in use.
846 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
847 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
851 if ((addr
| length
| __pfn_to_phys(md
->pfn
)) & ~SUPERSECTION_MASK
) {
852 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
853 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
858 * Shift bits [35:32] of address into bits [23:20] of PMD
861 phys
|= (((md
->pfn
>> (32 - PAGE_SHIFT
)) & 0xF) << 20);
863 pgd
= pgd_offset(mm
, addr
);
866 pud_t
*pud
= pud_offset(pgd
, addr
);
867 pmd_t
*pmd
= pmd_offset(pud
, addr
);
870 for (i
= 0; i
< 16; i
++)
871 *pmd
++ = __pmd(phys
| type
->prot_sect
| PMD_SECT_SUPER
|
872 (ng
? PMD_SECT_nG
: 0));
874 addr
+= SUPERSECTION_SIZE
;
875 phys
+= SUPERSECTION_SIZE
;
876 pgd
+= SUPERSECTION_SIZE
>> PGDIR_SHIFT
;
877 } while (addr
!= end
);
879 #endif /* !CONFIG_ARM_LPAE */
881 static void __init
__create_mapping(struct mm_struct
*mm
, struct map_desc
*md
,
882 void *(*alloc
)(unsigned long sz
),
885 unsigned long addr
, length
, end
;
887 const struct mem_type
*type
;
890 type
= &mem_types
[md
->type
];
892 #ifndef CONFIG_ARM_LPAE
894 * Catch 36-bit addresses
896 if (md
->pfn
>= 0x100000) {
897 create_36bit_mapping(mm
, md
, type
, ng
);
902 addr
= md
->virtual & PAGE_MASK
;
903 phys
= __pfn_to_phys(md
->pfn
);
904 length
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
906 if (type
->prot_l1
== 0 && ((addr
| phys
| length
) & ~SECTION_MASK
)) {
907 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
908 (long long)__pfn_to_phys(md
->pfn
), addr
);
912 pgd
= pgd_offset(mm
, addr
);
915 unsigned long next
= pgd_addr_end(addr
, end
);
917 alloc_init_pud(pgd
, addr
, next
, phys
, type
, alloc
, ng
);
921 } while (pgd
++, addr
!= end
);
925 * Create the page directory entries and any necessary
926 * page tables for the mapping specified by `md'. We
927 * are able to cope here with varying sizes and address
928 * offsets, and we take full advantage of sections and
931 static void __init
create_mapping(struct map_desc
*md
)
933 if (md
->virtual != vectors_base() && md
->virtual < TASK_SIZE
) {
934 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
935 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
939 if ((md
->type
== MT_DEVICE
|| md
->type
== MT_ROM
) &&
940 md
->virtual >= PAGE_OFFSET
&& md
->virtual < FIXADDR_START
&&
941 (md
->virtual < VMALLOC_START
|| md
->virtual >= VMALLOC_END
)) {
942 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
943 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
946 __create_mapping(&init_mm
, md
, early_alloc
, false);
949 void __init
create_mapping_late(struct mm_struct
*mm
, struct map_desc
*md
,
952 #ifdef CONFIG_ARM_LPAE
953 pud_t
*pud
= pud_alloc(mm
, pgd_offset(mm
, md
->virtual), md
->virtual);
956 pmd_alloc(mm
, pud
, 0);
958 __create_mapping(mm
, md
, late_alloc
, ng
);
962 * Create the architecture specific mappings
964 void __init
iotable_init(struct map_desc
*io_desc
, int nr
)
967 struct vm_struct
*vm
;
968 struct static_vm
*svm
;
973 svm
= memblock_alloc(sizeof(*svm
) * nr
, __alignof__(*svm
));
975 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
976 __func__
, sizeof(*svm
) * nr
, __alignof__(*svm
));
978 for (md
= io_desc
; nr
; md
++, nr
--) {
982 vm
->addr
= (void *)(md
->virtual & PAGE_MASK
);
983 vm
->size
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
984 vm
->phys_addr
= __pfn_to_phys(md
->pfn
);
985 vm
->flags
= VM_IOREMAP
| VM_ARM_STATIC_MAPPING
;
986 vm
->flags
|= VM_ARM_MTYPE(md
->type
);
987 vm
->caller
= iotable_init
;
988 add_static_vm_early(svm
++);
992 void __init
vm_reserve_area_early(unsigned long addr
, unsigned long size
,
995 struct vm_struct
*vm
;
996 struct static_vm
*svm
;
998 svm
= memblock_alloc(sizeof(*svm
), __alignof__(*svm
));
1000 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1001 __func__
, sizeof(*svm
), __alignof__(*svm
));
1004 vm
->addr
= (void *)addr
;
1006 vm
->flags
= VM_IOREMAP
| VM_ARM_EMPTY_MAPPING
;
1007 vm
->caller
= caller
;
1008 add_static_vm_early(svm
);
1011 #ifndef CONFIG_ARM_LPAE
1014 * The Linux PMD is made of two consecutive section entries covering 2MB
1015 * (see definition in include/asm/pgtable-2level.h). However a call to
1016 * create_mapping() may optimize static mappings by using individual
1017 * 1MB section mappings. This leaves the actual PMD potentially half
1018 * initialized if the top or bottom section entry isn't used, leaving it
1019 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1020 * the virtual space left free by that unused section entry.
1022 * Let's avoid the issue by inserting dummy vm entries covering the unused
1023 * PMD halves once the static mappings are in place.
1026 static void __init
pmd_empty_section_gap(unsigned long addr
)
1028 vm_reserve_area_early(addr
, SECTION_SIZE
, pmd_empty_section_gap
);
1031 static void __init
fill_pmd_gaps(void)
1033 struct static_vm
*svm
;
1034 struct vm_struct
*vm
;
1035 unsigned long addr
, next
= 0;
1038 list_for_each_entry(svm
, &static_vmlist
, list
) {
1040 addr
= (unsigned long)vm
->addr
;
1045 * Check if this vm starts on an odd section boundary.
1046 * If so and the first section entry for this PMD is free
1047 * then we block the corresponding virtual address.
1049 if ((addr
& ~PMD_MASK
) == SECTION_SIZE
) {
1050 pmd
= pmd_off_k(addr
);
1052 pmd_empty_section_gap(addr
& PMD_MASK
);
1056 * Then check if this vm ends on an odd section boundary.
1057 * If so and the second section entry for this PMD is empty
1058 * then we block the corresponding virtual address.
1061 if ((addr
& ~PMD_MASK
) == SECTION_SIZE
) {
1062 pmd
= pmd_off_k(addr
) + 1;
1064 pmd_empty_section_gap(addr
);
1067 /* no need to look at any vm entry until we hit the next PMD */
1068 next
= (addr
+ PMD_SIZE
- 1) & PMD_MASK
;
1073 #define fill_pmd_gaps() do { } while (0)
1076 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1077 static void __init
pci_reserve_io(void)
1079 struct static_vm
*svm
;
1081 svm
= find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE
);
1085 vm_reserve_area_early(PCI_IO_VIRT_BASE
, SZ_2M
, pci_reserve_io
);
1088 #define pci_reserve_io() do { } while (0)
1091 #ifdef CONFIG_DEBUG_LL
1092 void __init
debug_ll_io_init(void)
1094 struct map_desc map
;
1096 debug_ll_addr(&map
.pfn
, &map
.virtual);
1097 if (!map
.pfn
|| !map
.virtual)
1099 map
.pfn
= __phys_to_pfn(map
.pfn
);
1100 map
.virtual &= PAGE_MASK
;
1101 map
.length
= PAGE_SIZE
;
1102 map
.type
= MT_DEVICE
;
1103 iotable_init(&map
, 1);
1107 static void * __initdata vmalloc_min
=
1108 (void *)(VMALLOC_END
- (240 << 20) - VMALLOC_OFFSET
);
1111 * vmalloc=size forces the vmalloc area to be exactly 'size'
1112 * bytes. This can be used to increase (or decrease) the vmalloc
1113 * area - the default is 240m.
1115 static int __init
early_vmalloc(char *arg
)
1117 unsigned long vmalloc_reserve
= memparse(arg
, NULL
);
1119 if (vmalloc_reserve
< SZ_16M
) {
1120 vmalloc_reserve
= SZ_16M
;
1121 pr_warn("vmalloc area too small, limiting to %luMB\n",
1122 vmalloc_reserve
>> 20);
1125 if (vmalloc_reserve
> VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
)) {
1126 vmalloc_reserve
= VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
);
1127 pr_warn("vmalloc area is too big, limiting to %luMB\n",
1128 vmalloc_reserve
>> 20);
1131 vmalloc_min
= (void *)(VMALLOC_END
- vmalloc_reserve
);
1134 early_param("vmalloc", early_vmalloc
);
1136 phys_addr_t arm_lowmem_limit __initdata
= 0;
1138 void __init
adjust_lowmem_bounds(void)
1140 phys_addr_t memblock_limit
= 0;
1142 struct memblock_region
*reg
;
1143 phys_addr_t lowmem_limit
= 0;
1146 * Let's use our own (unoptimized) equivalent of __pa() that is
1147 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1148 * The result is used as the upper bound on physical memory address
1149 * and may itself be outside the valid range for which phys_addr_t
1150 * and therefore __pa() is defined.
1152 vmalloc_limit
= (u64
)(uintptr_t)vmalloc_min
- PAGE_OFFSET
+ PHYS_OFFSET
;
1155 * The first usable region must be PMD aligned. Mark its start
1156 * as MEMBLOCK_NOMAP if it isn't
1158 for_each_memblock(memory
, reg
) {
1159 if (!memblock_is_nomap(reg
)) {
1160 if (!IS_ALIGNED(reg
->base
, PMD_SIZE
)) {
1163 len
= round_up(reg
->base
, PMD_SIZE
) - reg
->base
;
1164 memblock_mark_nomap(reg
->base
, len
);
1170 for_each_memblock(memory
, reg
) {
1171 phys_addr_t block_start
= reg
->base
;
1172 phys_addr_t block_end
= reg
->base
+ reg
->size
;
1174 if (memblock_is_nomap(reg
))
1177 if (reg
->base
< vmalloc_limit
) {
1178 if (block_end
> lowmem_limit
)
1180 * Compare as u64 to ensure vmalloc_limit does
1181 * not get truncated. block_end should always
1182 * fit in phys_addr_t so there should be no
1183 * issue with assignment.
1185 lowmem_limit
= min_t(u64
,
1190 * Find the first non-pmd-aligned page, and point
1191 * memblock_limit at it. This relies on rounding the
1192 * limit down to be pmd-aligned, which happens at the
1193 * end of this function.
1195 * With this algorithm, the start or end of almost any
1196 * bank can be non-pmd-aligned. The only exception is
1197 * that the start of the bank 0 must be section-
1198 * aligned, since otherwise memory would need to be
1199 * allocated when mapping the start of bank 0, which
1200 * occurs before any free memory is mapped.
1202 if (!memblock_limit
) {
1203 if (!IS_ALIGNED(block_start
, PMD_SIZE
))
1204 memblock_limit
= block_start
;
1205 else if (!IS_ALIGNED(block_end
, PMD_SIZE
))
1206 memblock_limit
= lowmem_limit
;
1212 arm_lowmem_limit
= lowmem_limit
;
1214 high_memory
= __va(arm_lowmem_limit
- 1) + 1;
1216 if (!memblock_limit
)
1217 memblock_limit
= arm_lowmem_limit
;
1220 * Round the memblock limit down to a pmd size. This
1221 * helps to ensure that we will allocate memory from the
1222 * last full pmd, which should be mapped.
1224 memblock_limit
= round_down(memblock_limit
, PMD_SIZE
);
1226 if (!IS_ENABLED(CONFIG_HIGHMEM
) || cache_is_vipt_aliasing()) {
1227 if (memblock_end_of_DRAM() > arm_lowmem_limit
) {
1228 phys_addr_t end
= memblock_end_of_DRAM();
1230 pr_notice("Ignoring RAM at %pa-%pa\n",
1231 &memblock_limit
, &end
);
1232 pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1234 memblock_remove(memblock_limit
, end
- memblock_limit
);
1238 memblock_set_current_limit(memblock_limit
);
1241 static inline void prepare_page_table(void)
1247 * Clear out all the mappings below the kernel image.
1249 for (addr
= 0; addr
< MODULES_VADDR
; addr
+= PMD_SIZE
)
1250 pmd_clear(pmd_off_k(addr
));
1252 #ifdef CONFIG_XIP_KERNEL
1253 /* The XIP kernel is mapped in the module area -- skip over it */
1254 addr
= ((unsigned long)_exiprom
+ PMD_SIZE
- 1) & PMD_MASK
;
1256 for ( ; addr
< PAGE_OFFSET
; addr
+= PMD_SIZE
)
1257 pmd_clear(pmd_off_k(addr
));
1260 * Find the end of the first block of lowmem.
1262 end
= memblock
.memory
.regions
[0].base
+ memblock
.memory
.regions
[0].size
;
1263 if (end
>= arm_lowmem_limit
)
1264 end
= arm_lowmem_limit
;
1267 * Clear out all the kernel space mappings, except for the first
1268 * memory bank, up to the vmalloc region.
1270 for (addr
= __phys_to_virt(end
);
1271 addr
< VMALLOC_START
; addr
+= PMD_SIZE
)
1272 pmd_clear(pmd_off_k(addr
));
1275 #ifdef CONFIG_ARM_LPAE
1276 /* the first page is reserved for pgd */
1277 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1278 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1280 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1284 * Reserve the special regions of memory
1286 void __init
arm_mm_memblock_reserve(void)
1289 * Reserve the page tables. These are already in use,
1290 * and can only be in node 0.
1292 memblock_reserve(__pa(swapper_pg_dir
), SWAPPER_PG_DIR_SIZE
);
1294 #ifdef CONFIG_SA1111
1296 * Because of the SA1111 DMA bug, we want to preserve our
1297 * precious DMA-able memory...
1299 memblock_reserve(PHYS_OFFSET
, __pa(swapper_pg_dir
) - PHYS_OFFSET
);
1304 * Set up the device mappings. Since we clear out the page tables for all
1305 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1306 * device mappings. This means earlycon can be used to debug this function
1307 * Any other function or debugging method which may touch any device _will_
1310 static void __init
devicemaps_init(const struct machine_desc
*mdesc
)
1312 struct map_desc map
;
1317 * Allocate the vector page early.
1319 vectors
= early_alloc(PAGE_SIZE
* 2);
1321 early_trap_init(vectors
);
1324 * Clear page table except top pmd used by early fixmaps
1326 for (addr
= VMALLOC_START
; addr
< (FIXADDR_TOP
& PMD_MASK
); addr
+= PMD_SIZE
)
1327 pmd_clear(pmd_off_k(addr
));
1330 * Map the kernel if it is XIP.
1331 * It is always first in the modulearea.
1333 #ifdef CONFIG_XIP_KERNEL
1334 map
.pfn
= __phys_to_pfn(CONFIG_XIP_PHYS_ADDR
& SECTION_MASK
);
1335 map
.virtual = MODULES_VADDR
;
1336 map
.length
= ((unsigned long)_exiprom
- map
.virtual + ~SECTION_MASK
) & SECTION_MASK
;
1338 create_mapping(&map
);
1342 * Map the cache flushing regions.
1345 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
);
1346 map
.virtual = FLUSH_BASE
;
1348 map
.type
= MT_CACHECLEAN
;
1349 create_mapping(&map
);
1351 #ifdef FLUSH_BASE_MINICACHE
1352 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
+ SZ_1M
);
1353 map
.virtual = FLUSH_BASE_MINICACHE
;
1355 map
.type
= MT_MINICLEAN
;
1356 create_mapping(&map
);
1360 * Create a mapping for the machine vectors at the high-vectors
1361 * location (0xffff0000). If we aren't using high-vectors, also
1362 * create a mapping at the low-vectors virtual address.
1364 map
.pfn
= __phys_to_pfn(virt_to_phys(vectors
));
1365 map
.virtual = 0xffff0000;
1366 map
.length
= PAGE_SIZE
;
1367 #ifdef CONFIG_KUSER_HELPERS
1368 map
.type
= MT_HIGH_VECTORS
;
1370 map
.type
= MT_LOW_VECTORS
;
1372 create_mapping(&map
);
1374 if (!vectors_high()) {
1376 map
.length
= PAGE_SIZE
* 2;
1377 map
.type
= MT_LOW_VECTORS
;
1378 create_mapping(&map
);
1381 /* Now create a kernel read-only mapping */
1383 map
.virtual = 0xffff0000 + PAGE_SIZE
;
1384 map
.length
= PAGE_SIZE
;
1385 map
.type
= MT_LOW_VECTORS
;
1386 create_mapping(&map
);
1389 * Ask the machine support to map in the statically mapped devices.
1397 /* Reserve fixed i/o space in VMALLOC region */
1401 * Finally flush the caches and tlb to ensure that we're in a
1402 * consistent state wrt the writebuffer. This also ensures that
1403 * any write-allocated cache lines in the vector page are written
1404 * back. After this point, we can start to touch devices again.
1406 local_flush_tlb_all();
1409 /* Enable asynchronous aborts */
1413 static void __init
kmap_init(void)
1415 #ifdef CONFIG_HIGHMEM
1416 pkmap_page_table
= early_pte_alloc(pmd_off_k(PKMAP_BASE
),
1417 PKMAP_BASE
, _PAGE_KERNEL_TABLE
);
1420 early_pte_alloc(pmd_off_k(FIXADDR_START
), FIXADDR_START
,
1421 _PAGE_KERNEL_TABLE
);
1424 static void __init
map_lowmem(void)
1426 struct memblock_region
*reg
;
1427 phys_addr_t kernel_x_start
= round_down(__pa(KERNEL_START
), SECTION_SIZE
);
1428 phys_addr_t kernel_x_end
= round_up(__pa(__init_end
), SECTION_SIZE
);
1430 /* Map all the lowmem memory banks. */
1431 for_each_memblock(memory
, reg
) {
1432 phys_addr_t start
= reg
->base
;
1433 phys_addr_t end
= start
+ reg
->size
;
1434 struct map_desc map
;
1436 if (memblock_is_nomap(reg
))
1439 if (end
> arm_lowmem_limit
)
1440 end
= arm_lowmem_limit
;
1444 if (end
< kernel_x_start
) {
1445 map
.pfn
= __phys_to_pfn(start
);
1446 map
.virtual = __phys_to_virt(start
);
1447 map
.length
= end
- start
;
1448 map
.type
= MT_MEMORY_RWX
;
1450 create_mapping(&map
);
1451 } else if (start
>= kernel_x_end
) {
1452 map
.pfn
= __phys_to_pfn(start
);
1453 map
.virtual = __phys_to_virt(start
);
1454 map
.length
= end
- start
;
1455 map
.type
= MT_MEMORY_RW
;
1457 create_mapping(&map
);
1459 /* This better cover the entire kernel */
1460 if (start
< kernel_x_start
) {
1461 map
.pfn
= __phys_to_pfn(start
);
1462 map
.virtual = __phys_to_virt(start
);
1463 map
.length
= kernel_x_start
- start
;
1464 map
.type
= MT_MEMORY_RW
;
1466 create_mapping(&map
);
1469 map
.pfn
= __phys_to_pfn(kernel_x_start
);
1470 map
.virtual = __phys_to_virt(kernel_x_start
);
1471 map
.length
= kernel_x_end
- kernel_x_start
;
1472 map
.type
= MT_MEMORY_RWX
;
1474 create_mapping(&map
);
1476 if (kernel_x_end
< end
) {
1477 map
.pfn
= __phys_to_pfn(kernel_x_end
);
1478 map
.virtual = __phys_to_virt(kernel_x_end
);
1479 map
.length
= end
- kernel_x_end
;
1480 map
.type
= MT_MEMORY_RW
;
1482 create_mapping(&map
);
1488 #ifdef CONFIG_ARM_PV_FIXUP
1489 extern unsigned long __atags_pointer
;
1490 typedef void pgtables_remap(long long offset
, unsigned long pgd
, void *bdata
);
1491 pgtables_remap lpae_pgtables_remap_asm
;
1494 * early_paging_init() recreates boot time page table setup, allowing machines
1495 * to switch over to a high (>4G) address space on LPAE systems
1497 static void __init
early_paging_init(const struct machine_desc
*mdesc
)
1499 pgtables_remap
*lpae_pgtables_remap
;
1500 unsigned long pa_pgd
;
1501 unsigned int cr
, ttbcr
;
1505 if (!mdesc
->pv_fixup
)
1508 offset
= mdesc
->pv_fixup();
1513 * Get the address of the remap function in the 1:1 identity
1514 * mapping setup by the early page table assembly code. We
1515 * must get this prior to the pv update. The following barrier
1516 * ensures that this is complete before we fixup any P:V offsets.
1518 lpae_pgtables_remap
= (pgtables_remap
*)(unsigned long)__pa(lpae_pgtables_remap_asm
);
1519 pa_pgd
= __pa(swapper_pg_dir
);
1520 boot_data
= __va(__atags_pointer
);
1523 pr_info("Switching physical address space to 0x%08llx\n",
1524 (u64
)PHYS_OFFSET
+ offset
);
1526 /* Re-set the phys pfn offset, and the pv offset */
1527 __pv_offset
+= offset
;
1528 __pv_phys_pfn_offset
+= PFN_DOWN(offset
);
1530 /* Run the patch stub to update the constants */
1531 fixup_pv_table(&__pv_table_begin
,
1532 (&__pv_table_end
- &__pv_table_begin
) << 2);
1535 * We changing not only the virtual to physical mapping, but also
1536 * the physical addresses used to access memory. We need to flush
1537 * all levels of cache in the system with caching disabled to
1538 * ensure that all data is written back, and nothing is prefetched
1539 * into the caches. We also need to prevent the TLB walkers
1540 * allocating into the caches too. Note that this is ARMv7 LPAE
1544 set_cr(cr
& ~(CR_I
| CR_C
));
1545 asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr
));
1546 asm volatile("mcr p15, 0, %0, c2, c0, 2"
1547 : : "r" (ttbcr
& ~(3 << 8 | 3 << 10)));
1551 * Fixup the page tables - this must be in the idmap region as
1552 * we need to disable the MMU to do this safely, and hence it
1553 * needs to be assembly. It's fairly simple, as we're using the
1554 * temporary tables setup by the initial assembly code.
1556 lpae_pgtables_remap(offset
, pa_pgd
, boot_data
);
1558 /* Re-enable the caches and cacheable TLB walks */
1559 asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr
));
1565 static void __init
early_paging_init(const struct machine_desc
*mdesc
)
1569 if (!mdesc
->pv_fixup
)
1572 offset
= mdesc
->pv_fixup();
1576 pr_crit("Physical address space modification is only to support Keystone2.\n");
1577 pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1578 pr_crit("feature. Your kernel may crash now, have a good day.\n");
1579 add_taint(TAINT_CPU_OUT_OF_SPEC
, LOCKDEP_STILL_OK
);
1584 static void __init
early_fixmap_shutdown(void)
1587 unsigned long va
= fix_to_virt(__end_of_permanent_fixed_addresses
- 1);
1589 pte_offset_fixmap
= pte_offset_late_fixmap
;
1590 pmd_clear(fixmap_pmd(va
));
1591 local_flush_tlb_kernel_page(va
);
1593 for (i
= 0; i
< __end_of_permanent_fixed_addresses
; i
++) {
1595 struct map_desc map
;
1597 map
.virtual = fix_to_virt(i
);
1598 pte
= pte_offset_early_fixmap(pmd_off_k(map
.virtual), map
.virtual);
1600 /* Only i/o device mappings are supported ATM */
1601 if (pte_none(*pte
) ||
1602 (pte_val(*pte
) & L_PTE_MT_MASK
) != L_PTE_MT_DEV_SHARED
)
1605 map
.pfn
= pte_pfn(*pte
);
1606 map
.type
= MT_DEVICE
;
1607 map
.length
= PAGE_SIZE
;
1609 create_mapping(&map
);
1614 * paging_init() sets up the page tables, initialises the zone memory
1615 * maps, and sets up the zero page, bad page and bad page tables.
1617 void __init
paging_init(const struct machine_desc
*mdesc
)
1621 prepare_page_table();
1623 memblock_set_current_limit(arm_lowmem_limit
);
1624 dma_contiguous_remap();
1625 early_fixmap_shutdown();
1626 devicemaps_init(mdesc
);
1630 top_pmd
= pmd_off_k(0xffff0000);
1632 /* allocate the zero page. */
1633 zero_page
= early_alloc(PAGE_SIZE
);
1637 empty_zero_page
= virt_to_page(zero_page
);
1638 __flush_dcache_page(NULL
, empty_zero_page
);
1640 /* Compute the virt/idmap offset, mostly for the sake of KVM */
1641 kimage_voffset
= (unsigned long)&kimage_voffset
- virt_to_idmap(&kimage_voffset
);
1644 void __init
early_mm_init(const struct machine_desc
*mdesc
)
1646 build_mem_type_table();
1647 early_paging_init(mdesc
);
1650 void set_pte_at(struct mm_struct
*mm
, unsigned long addr
,
1651 pte_t
*ptep
, pte_t pteval
)
1653 unsigned long ext
= 0;
1655 if (addr
< TASK_SIZE
&& pte_valid_user(pteval
)) {
1656 if (!pte_special(pteval
))
1657 __sync_icache_dcache(pteval
);
1661 set_pte_ext(ptep
, pteval
, ext
);