Linux 5.7.7
[linux/fpc-iii.git] / block / blk-rq-qos.c
blob656460636ad34a176297bfb991aba977b3c0e9ca
1 // SPDX-License-Identifier: GPL-2.0
3 #include "blk-rq-qos.h"
5 /*
6 * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded,
7 * false if 'v' + 1 would be bigger than 'below'.
8 */
9 static bool atomic_inc_below(atomic_t *v, unsigned int below)
11 unsigned int cur = atomic_read(v);
13 for (;;) {
14 unsigned int old;
16 if (cur >= below)
17 return false;
18 old = atomic_cmpxchg(v, cur, cur + 1);
19 if (old == cur)
20 break;
21 cur = old;
24 return true;
27 bool rq_wait_inc_below(struct rq_wait *rq_wait, unsigned int limit)
29 return atomic_inc_below(&rq_wait->inflight, limit);
32 void __rq_qos_cleanup(struct rq_qos *rqos, struct bio *bio)
34 do {
35 if (rqos->ops->cleanup)
36 rqos->ops->cleanup(rqos, bio);
37 rqos = rqos->next;
38 } while (rqos);
41 void __rq_qos_done(struct rq_qos *rqos, struct request *rq)
43 do {
44 if (rqos->ops->done)
45 rqos->ops->done(rqos, rq);
46 rqos = rqos->next;
47 } while (rqos);
50 void __rq_qos_issue(struct rq_qos *rqos, struct request *rq)
52 do {
53 if (rqos->ops->issue)
54 rqos->ops->issue(rqos, rq);
55 rqos = rqos->next;
56 } while (rqos);
59 void __rq_qos_requeue(struct rq_qos *rqos, struct request *rq)
61 do {
62 if (rqos->ops->requeue)
63 rqos->ops->requeue(rqos, rq);
64 rqos = rqos->next;
65 } while (rqos);
68 void __rq_qos_throttle(struct rq_qos *rqos, struct bio *bio)
70 do {
71 if (rqos->ops->throttle)
72 rqos->ops->throttle(rqos, bio);
73 rqos = rqos->next;
74 } while (rqos);
77 void __rq_qos_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
79 do {
80 if (rqos->ops->track)
81 rqos->ops->track(rqos, rq, bio);
82 rqos = rqos->next;
83 } while (rqos);
86 void __rq_qos_merge(struct rq_qos *rqos, struct request *rq, struct bio *bio)
88 do {
89 if (rqos->ops->merge)
90 rqos->ops->merge(rqos, rq, bio);
91 rqos = rqos->next;
92 } while (rqos);
95 void __rq_qos_done_bio(struct rq_qos *rqos, struct bio *bio)
97 do {
98 if (rqos->ops->done_bio)
99 rqos->ops->done_bio(rqos, bio);
100 rqos = rqos->next;
101 } while (rqos);
104 void __rq_qos_queue_depth_changed(struct rq_qos *rqos)
106 do {
107 if (rqos->ops->queue_depth_changed)
108 rqos->ops->queue_depth_changed(rqos);
109 rqos = rqos->next;
110 } while (rqos);
114 * Return true, if we can't increase the depth further by scaling
116 bool rq_depth_calc_max_depth(struct rq_depth *rqd)
118 unsigned int depth;
119 bool ret = false;
122 * For QD=1 devices, this is a special case. It's important for those
123 * to have one request ready when one completes, so force a depth of
124 * 2 for those devices. On the backend, it'll be a depth of 1 anyway,
125 * since the device can't have more than that in flight. If we're
126 * scaling down, then keep a setting of 1/1/1.
128 if (rqd->queue_depth == 1) {
129 if (rqd->scale_step > 0)
130 rqd->max_depth = 1;
131 else {
132 rqd->max_depth = 2;
133 ret = true;
135 } else {
137 * scale_step == 0 is our default state. If we have suffered
138 * latency spikes, step will be > 0, and we shrink the
139 * allowed write depths. If step is < 0, we're only doing
140 * writes, and we allow a temporarily higher depth to
141 * increase performance.
143 depth = min_t(unsigned int, rqd->default_depth,
144 rqd->queue_depth);
145 if (rqd->scale_step > 0)
146 depth = 1 + ((depth - 1) >> min(31, rqd->scale_step));
147 else if (rqd->scale_step < 0) {
148 unsigned int maxd = 3 * rqd->queue_depth / 4;
150 depth = 1 + ((depth - 1) << -rqd->scale_step);
151 if (depth > maxd) {
152 depth = maxd;
153 ret = true;
157 rqd->max_depth = depth;
160 return ret;
163 /* Returns true on success and false if scaling up wasn't possible */
164 bool rq_depth_scale_up(struct rq_depth *rqd)
167 * Hit max in previous round, stop here
169 if (rqd->scaled_max)
170 return false;
172 rqd->scale_step--;
174 rqd->scaled_max = rq_depth_calc_max_depth(rqd);
175 return true;
179 * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we
180 * had a latency violation. Returns true on success and returns false if
181 * scaling down wasn't possible.
183 bool rq_depth_scale_down(struct rq_depth *rqd, bool hard_throttle)
186 * Stop scaling down when we've hit the limit. This also prevents
187 * ->scale_step from going to crazy values, if the device can't
188 * keep up.
190 if (rqd->max_depth == 1)
191 return false;
193 if (rqd->scale_step < 0 && hard_throttle)
194 rqd->scale_step = 0;
195 else
196 rqd->scale_step++;
198 rqd->scaled_max = false;
199 rq_depth_calc_max_depth(rqd);
200 return true;
203 struct rq_qos_wait_data {
204 struct wait_queue_entry wq;
205 struct task_struct *task;
206 struct rq_wait *rqw;
207 acquire_inflight_cb_t *cb;
208 void *private_data;
209 bool got_token;
212 static int rq_qos_wake_function(struct wait_queue_entry *curr,
213 unsigned int mode, int wake_flags, void *key)
215 struct rq_qos_wait_data *data = container_of(curr,
216 struct rq_qos_wait_data,
217 wq);
220 * If we fail to get a budget, return -1 to interrupt the wake up loop
221 * in __wake_up_common.
223 if (!data->cb(data->rqw, data->private_data))
224 return -1;
226 data->got_token = true;
227 smp_wmb();
228 list_del_init(&curr->entry);
229 wake_up_process(data->task);
230 return 1;
234 * rq_qos_wait - throttle on a rqw if we need to
235 * @rqw: rqw to throttle on
236 * @private_data: caller provided specific data
237 * @acquire_inflight_cb: inc the rqw->inflight counter if we can
238 * @cleanup_cb: the callback to cleanup in case we race with a waker
240 * This provides a uniform place for the rq_qos users to do their throttling.
241 * Since you can end up with a lot of things sleeping at once, this manages the
242 * waking up based on the resources available. The acquire_inflight_cb should
243 * inc the rqw->inflight if we have the ability to do so, or return false if not
244 * and then we will sleep until the room becomes available.
246 * cleanup_cb is in case that we race with a waker and need to cleanup the
247 * inflight count accordingly.
249 void rq_qos_wait(struct rq_wait *rqw, void *private_data,
250 acquire_inflight_cb_t *acquire_inflight_cb,
251 cleanup_cb_t *cleanup_cb)
253 struct rq_qos_wait_data data = {
254 .wq = {
255 .func = rq_qos_wake_function,
256 .entry = LIST_HEAD_INIT(data.wq.entry),
258 .task = current,
259 .rqw = rqw,
260 .cb = acquire_inflight_cb,
261 .private_data = private_data,
263 bool has_sleeper;
265 has_sleeper = wq_has_sleeper(&rqw->wait);
266 if (!has_sleeper && acquire_inflight_cb(rqw, private_data))
267 return;
269 prepare_to_wait_exclusive(&rqw->wait, &data.wq, TASK_UNINTERRUPTIBLE);
270 has_sleeper = !wq_has_single_sleeper(&rqw->wait);
271 do {
272 /* The memory barrier in set_task_state saves us here. */
273 if (data.got_token)
274 break;
275 if (!has_sleeper && acquire_inflight_cb(rqw, private_data)) {
276 finish_wait(&rqw->wait, &data.wq);
279 * We raced with wbt_wake_function() getting a token,
280 * which means we now have two. Put our local token
281 * and wake anyone else potentially waiting for one.
283 smp_rmb();
284 if (data.got_token)
285 cleanup_cb(rqw, private_data);
286 break;
288 io_schedule();
289 has_sleeper = true;
290 set_current_state(TASK_UNINTERRUPTIBLE);
291 } while (1);
292 finish_wait(&rqw->wait, &data.wq);
295 void rq_qos_exit(struct request_queue *q)
297 blk_mq_debugfs_unregister_queue_rqos(q);
299 while (q->rq_qos) {
300 struct rq_qos *rqos = q->rq_qos;
301 q->rq_qos = rqos->next;
302 rqos->ops->exit(rqos);