Linux 5.7.7
[linux/fpc-iii.git] / mm / gup.c
blob43cce23aea89527a03f7bb8f726cc07ec42036ee
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
21 #include <asm/mmu_context.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
25 #include "internal.h"
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
32 static void hpage_pincount_add(struct page *page, int refs)
34 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 VM_BUG_ON_PAGE(page != compound_head(page), page);
37 atomic_add(refs, compound_pincount_ptr(page));
40 static void hpage_pincount_sub(struct page *page, int refs)
42 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 VM_BUG_ON_PAGE(page != compound_head(page), page);
45 atomic_sub(refs, compound_pincount_ptr(page));
49 * Return the compound head page with ref appropriately incremented,
50 * or NULL if that failed.
52 static inline struct page *try_get_compound_head(struct page *page, int refs)
54 struct page *head = compound_head(page);
56 if (WARN_ON_ONCE(page_ref_count(head) < 0))
57 return NULL;
58 if (unlikely(!page_cache_add_speculative(head, refs)))
59 return NULL;
60 return head;
64 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
65 * flags-dependent amount.
67 * "grab" names in this file mean, "look at flags to decide whether to use
68 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
70 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
71 * same time. (That's true throughout the get_user_pages*() and
72 * pin_user_pages*() APIs.) Cases:
74 * FOLL_GET: page's refcount will be incremented by 1.
75 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
77 * Return: head page (with refcount appropriately incremented) for success, or
78 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
79 * considered failure, and furthermore, a likely bug in the caller, so a warning
80 * is also emitted.
82 static __maybe_unused struct page *try_grab_compound_head(struct page *page,
83 int refs,
84 unsigned int flags)
86 if (flags & FOLL_GET)
87 return try_get_compound_head(page, refs);
88 else if (flags & FOLL_PIN) {
89 int orig_refs = refs;
92 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
93 * path, so fail and let the caller fall back to the slow path.
95 if (unlikely(flags & FOLL_LONGTERM) &&
96 is_migrate_cma_page(page))
97 return NULL;
100 * When pinning a compound page of order > 1 (which is what
101 * hpage_pincount_available() checks for), use an exact count to
102 * track it, via hpage_pincount_add/_sub().
104 * However, be sure to *also* increment the normal page refcount
105 * field at least once, so that the page really is pinned.
107 if (!hpage_pincount_available(page))
108 refs *= GUP_PIN_COUNTING_BIAS;
110 page = try_get_compound_head(page, refs);
111 if (!page)
112 return NULL;
114 if (hpage_pincount_available(page))
115 hpage_pincount_add(page, refs);
117 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
118 orig_refs);
120 return page;
123 WARN_ON_ONCE(1);
124 return NULL;
128 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
130 * This might not do anything at all, depending on the flags argument.
132 * "grab" names in this file mean, "look at flags to decide whether to use
133 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
135 * @page: pointer to page to be grabbed
136 * @flags: gup flags: these are the FOLL_* flag values.
138 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
139 * time. Cases:
141 * FOLL_GET: page's refcount will be incremented by 1.
142 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
144 * Return: true for success, or if no action was required (if neither FOLL_PIN
145 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
146 * FOLL_PIN was set, but the page could not be grabbed.
148 bool __must_check try_grab_page(struct page *page, unsigned int flags)
150 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
152 if (flags & FOLL_GET)
153 return try_get_page(page);
154 else if (flags & FOLL_PIN) {
155 int refs = 1;
157 page = compound_head(page);
159 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
160 return false;
162 if (hpage_pincount_available(page))
163 hpage_pincount_add(page, 1);
164 else
165 refs = GUP_PIN_COUNTING_BIAS;
168 * Similar to try_grab_compound_head(): even if using the
169 * hpage_pincount_add/_sub() routines, be sure to
170 * *also* increment the normal page refcount field at least
171 * once, so that the page really is pinned.
173 page_ref_add(page, refs);
175 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
178 return true;
181 #ifdef CONFIG_DEV_PAGEMAP_OPS
182 static bool __unpin_devmap_managed_user_page(struct page *page)
184 int count, refs = 1;
186 if (!page_is_devmap_managed(page))
187 return false;
189 if (hpage_pincount_available(page))
190 hpage_pincount_sub(page, 1);
191 else
192 refs = GUP_PIN_COUNTING_BIAS;
194 count = page_ref_sub_return(page, refs);
196 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
198 * devmap page refcounts are 1-based, rather than 0-based: if
199 * refcount is 1, then the page is free and the refcount is
200 * stable because nobody holds a reference on the page.
202 if (count == 1)
203 free_devmap_managed_page(page);
204 else if (!count)
205 __put_page(page);
207 return true;
209 #else
210 static bool __unpin_devmap_managed_user_page(struct page *page)
212 return false;
214 #endif /* CONFIG_DEV_PAGEMAP_OPS */
217 * unpin_user_page() - release a dma-pinned page
218 * @page: pointer to page to be released
220 * Pages that were pinned via pin_user_pages*() must be released via either
221 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
222 * that such pages can be separately tracked and uniquely handled. In
223 * particular, interactions with RDMA and filesystems need special handling.
225 void unpin_user_page(struct page *page)
227 int refs = 1;
229 page = compound_head(page);
232 * For devmap managed pages we need to catch refcount transition from
233 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
234 * page is free and we need to inform the device driver through
235 * callback. See include/linux/memremap.h and HMM for details.
237 if (__unpin_devmap_managed_user_page(page))
238 return;
240 if (hpage_pincount_available(page))
241 hpage_pincount_sub(page, 1);
242 else
243 refs = GUP_PIN_COUNTING_BIAS;
245 if (page_ref_sub_and_test(page, refs))
246 __put_page(page);
248 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
250 EXPORT_SYMBOL(unpin_user_page);
253 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
254 * @pages: array of pages to be maybe marked dirty, and definitely released.
255 * @npages: number of pages in the @pages array.
256 * @make_dirty: whether to mark the pages dirty
258 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
259 * variants called on that page.
261 * For each page in the @pages array, make that page (or its head page, if a
262 * compound page) dirty, if @make_dirty is true, and if the page was previously
263 * listed as clean. In any case, releases all pages using unpin_user_page(),
264 * possibly via unpin_user_pages(), for the non-dirty case.
266 * Please see the unpin_user_page() documentation for details.
268 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
269 * required, then the caller should a) verify that this is really correct,
270 * because _lock() is usually required, and b) hand code it:
271 * set_page_dirty_lock(), unpin_user_page().
274 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
275 bool make_dirty)
277 unsigned long index;
280 * TODO: this can be optimized for huge pages: if a series of pages is
281 * physically contiguous and part of the same compound page, then a
282 * single operation to the head page should suffice.
285 if (!make_dirty) {
286 unpin_user_pages(pages, npages);
287 return;
290 for (index = 0; index < npages; index++) {
291 struct page *page = compound_head(pages[index]);
293 * Checking PageDirty at this point may race with
294 * clear_page_dirty_for_io(), but that's OK. Two key
295 * cases:
297 * 1) This code sees the page as already dirty, so it
298 * skips the call to set_page_dirty(). That could happen
299 * because clear_page_dirty_for_io() called
300 * page_mkclean(), followed by set_page_dirty().
301 * However, now the page is going to get written back,
302 * which meets the original intention of setting it
303 * dirty, so all is well: clear_page_dirty_for_io() goes
304 * on to call TestClearPageDirty(), and write the page
305 * back.
307 * 2) This code sees the page as clean, so it calls
308 * set_page_dirty(). The page stays dirty, despite being
309 * written back, so it gets written back again in the
310 * next writeback cycle. This is harmless.
312 if (!PageDirty(page))
313 set_page_dirty_lock(page);
314 unpin_user_page(page);
317 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
320 * unpin_user_pages() - release an array of gup-pinned pages.
321 * @pages: array of pages to be marked dirty and released.
322 * @npages: number of pages in the @pages array.
324 * For each page in the @pages array, release the page using unpin_user_page().
326 * Please see the unpin_user_page() documentation for details.
328 void unpin_user_pages(struct page **pages, unsigned long npages)
330 unsigned long index;
333 * TODO: this can be optimized for huge pages: if a series of pages is
334 * physically contiguous and part of the same compound page, then a
335 * single operation to the head page should suffice.
337 for (index = 0; index < npages; index++)
338 unpin_user_page(pages[index]);
340 EXPORT_SYMBOL(unpin_user_pages);
342 #ifdef CONFIG_MMU
343 static struct page *no_page_table(struct vm_area_struct *vma,
344 unsigned int flags)
347 * When core dumping an enormous anonymous area that nobody
348 * has touched so far, we don't want to allocate unnecessary pages or
349 * page tables. Return error instead of NULL to skip handle_mm_fault,
350 * then get_dump_page() will return NULL to leave a hole in the dump.
351 * But we can only make this optimization where a hole would surely
352 * be zero-filled if handle_mm_fault() actually did handle it.
354 if ((flags & FOLL_DUMP) &&
355 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
356 return ERR_PTR(-EFAULT);
357 return NULL;
360 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
361 pte_t *pte, unsigned int flags)
363 /* No page to get reference */
364 if (flags & FOLL_GET)
365 return -EFAULT;
367 if (flags & FOLL_TOUCH) {
368 pte_t entry = *pte;
370 if (flags & FOLL_WRITE)
371 entry = pte_mkdirty(entry);
372 entry = pte_mkyoung(entry);
374 if (!pte_same(*pte, entry)) {
375 set_pte_at(vma->vm_mm, address, pte, entry);
376 update_mmu_cache(vma, address, pte);
380 /* Proper page table entry exists, but no corresponding struct page */
381 return -EEXIST;
385 * FOLL_FORCE or a forced COW break can write even to unwritable pte's,
386 * but only after we've gone through a COW cycle and they are dirty.
388 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
390 return pte_write(pte) || ((flags & FOLL_COW) && pte_dirty(pte));
394 * A (separate) COW fault might break the page the other way and
395 * get_user_pages() would return the page from what is now the wrong
396 * VM. So we need to force a COW break at GUP time even for reads.
398 static inline bool should_force_cow_break(struct vm_area_struct *vma, unsigned int flags)
400 return is_cow_mapping(vma->vm_flags) && (flags & (FOLL_GET | FOLL_PIN));
403 static struct page *follow_page_pte(struct vm_area_struct *vma,
404 unsigned long address, pmd_t *pmd, unsigned int flags,
405 struct dev_pagemap **pgmap)
407 struct mm_struct *mm = vma->vm_mm;
408 struct page *page;
409 spinlock_t *ptl;
410 pte_t *ptep, pte;
411 int ret;
413 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
414 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
415 (FOLL_PIN | FOLL_GET)))
416 return ERR_PTR(-EINVAL);
417 retry:
418 if (unlikely(pmd_bad(*pmd)))
419 return no_page_table(vma, flags);
421 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
422 pte = *ptep;
423 if (!pte_present(pte)) {
424 swp_entry_t entry;
426 * KSM's break_ksm() relies upon recognizing a ksm page
427 * even while it is being migrated, so for that case we
428 * need migration_entry_wait().
430 if (likely(!(flags & FOLL_MIGRATION)))
431 goto no_page;
432 if (pte_none(pte))
433 goto no_page;
434 entry = pte_to_swp_entry(pte);
435 if (!is_migration_entry(entry))
436 goto no_page;
437 pte_unmap_unlock(ptep, ptl);
438 migration_entry_wait(mm, pmd, address);
439 goto retry;
441 if ((flags & FOLL_NUMA) && pte_protnone(pte))
442 goto no_page;
443 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
444 pte_unmap_unlock(ptep, ptl);
445 return NULL;
448 page = vm_normal_page(vma, address, pte);
449 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
451 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
452 * case since they are only valid while holding the pgmap
453 * reference.
455 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
456 if (*pgmap)
457 page = pte_page(pte);
458 else
459 goto no_page;
460 } else if (unlikely(!page)) {
461 if (flags & FOLL_DUMP) {
462 /* Avoid special (like zero) pages in core dumps */
463 page = ERR_PTR(-EFAULT);
464 goto out;
467 if (is_zero_pfn(pte_pfn(pte))) {
468 page = pte_page(pte);
469 } else {
470 ret = follow_pfn_pte(vma, address, ptep, flags);
471 page = ERR_PTR(ret);
472 goto out;
476 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
477 get_page(page);
478 pte_unmap_unlock(ptep, ptl);
479 lock_page(page);
480 ret = split_huge_page(page);
481 unlock_page(page);
482 put_page(page);
483 if (ret)
484 return ERR_PTR(ret);
485 goto retry;
488 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
489 if (unlikely(!try_grab_page(page, flags))) {
490 page = ERR_PTR(-ENOMEM);
491 goto out;
494 * We need to make the page accessible if and only if we are going
495 * to access its content (the FOLL_PIN case). Please see
496 * Documentation/core-api/pin_user_pages.rst for details.
498 if (flags & FOLL_PIN) {
499 ret = arch_make_page_accessible(page);
500 if (ret) {
501 unpin_user_page(page);
502 page = ERR_PTR(ret);
503 goto out;
506 if (flags & FOLL_TOUCH) {
507 if ((flags & FOLL_WRITE) &&
508 !pte_dirty(pte) && !PageDirty(page))
509 set_page_dirty(page);
511 * pte_mkyoung() would be more correct here, but atomic care
512 * is needed to avoid losing the dirty bit: it is easier to use
513 * mark_page_accessed().
515 mark_page_accessed(page);
517 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
518 /* Do not mlock pte-mapped THP */
519 if (PageTransCompound(page))
520 goto out;
523 * The preliminary mapping check is mainly to avoid the
524 * pointless overhead of lock_page on the ZERO_PAGE
525 * which might bounce very badly if there is contention.
527 * If the page is already locked, we don't need to
528 * handle it now - vmscan will handle it later if and
529 * when it attempts to reclaim the page.
531 if (page->mapping && trylock_page(page)) {
532 lru_add_drain(); /* push cached pages to LRU */
534 * Because we lock page here, and migration is
535 * blocked by the pte's page reference, and we
536 * know the page is still mapped, we don't even
537 * need to check for file-cache page truncation.
539 mlock_vma_page(page);
540 unlock_page(page);
543 out:
544 pte_unmap_unlock(ptep, ptl);
545 return page;
546 no_page:
547 pte_unmap_unlock(ptep, ptl);
548 if (!pte_none(pte))
549 return NULL;
550 return no_page_table(vma, flags);
553 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
554 unsigned long address, pud_t *pudp,
555 unsigned int flags,
556 struct follow_page_context *ctx)
558 pmd_t *pmd, pmdval;
559 spinlock_t *ptl;
560 struct page *page;
561 struct mm_struct *mm = vma->vm_mm;
563 pmd = pmd_offset(pudp, address);
565 * The READ_ONCE() will stabilize the pmdval in a register or
566 * on the stack so that it will stop changing under the code.
568 pmdval = READ_ONCE(*pmd);
569 if (pmd_none(pmdval))
570 return no_page_table(vma, flags);
571 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
572 page = follow_huge_pmd(mm, address, pmd, flags);
573 if (page)
574 return page;
575 return no_page_table(vma, flags);
577 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
578 page = follow_huge_pd(vma, address,
579 __hugepd(pmd_val(pmdval)), flags,
580 PMD_SHIFT);
581 if (page)
582 return page;
583 return no_page_table(vma, flags);
585 retry:
586 if (!pmd_present(pmdval)) {
587 if (likely(!(flags & FOLL_MIGRATION)))
588 return no_page_table(vma, flags);
589 VM_BUG_ON(thp_migration_supported() &&
590 !is_pmd_migration_entry(pmdval));
591 if (is_pmd_migration_entry(pmdval))
592 pmd_migration_entry_wait(mm, pmd);
593 pmdval = READ_ONCE(*pmd);
595 * MADV_DONTNEED may convert the pmd to null because
596 * mmap_sem is held in read mode
598 if (pmd_none(pmdval))
599 return no_page_table(vma, flags);
600 goto retry;
602 if (pmd_devmap(pmdval)) {
603 ptl = pmd_lock(mm, pmd);
604 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
605 spin_unlock(ptl);
606 if (page)
607 return page;
609 if (likely(!pmd_trans_huge(pmdval)))
610 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
612 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
613 return no_page_table(vma, flags);
615 retry_locked:
616 ptl = pmd_lock(mm, pmd);
617 if (unlikely(pmd_none(*pmd))) {
618 spin_unlock(ptl);
619 return no_page_table(vma, flags);
621 if (unlikely(!pmd_present(*pmd))) {
622 spin_unlock(ptl);
623 if (likely(!(flags & FOLL_MIGRATION)))
624 return no_page_table(vma, flags);
625 pmd_migration_entry_wait(mm, pmd);
626 goto retry_locked;
628 if (unlikely(!pmd_trans_huge(*pmd))) {
629 spin_unlock(ptl);
630 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
632 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
633 int ret;
634 page = pmd_page(*pmd);
635 if (is_huge_zero_page(page)) {
636 spin_unlock(ptl);
637 ret = 0;
638 split_huge_pmd(vma, pmd, address);
639 if (pmd_trans_unstable(pmd))
640 ret = -EBUSY;
641 } else if (flags & FOLL_SPLIT) {
642 if (unlikely(!try_get_page(page))) {
643 spin_unlock(ptl);
644 return ERR_PTR(-ENOMEM);
646 spin_unlock(ptl);
647 lock_page(page);
648 ret = split_huge_page(page);
649 unlock_page(page);
650 put_page(page);
651 if (pmd_none(*pmd))
652 return no_page_table(vma, flags);
653 } else { /* flags & FOLL_SPLIT_PMD */
654 spin_unlock(ptl);
655 split_huge_pmd(vma, pmd, address);
656 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
659 return ret ? ERR_PTR(ret) :
660 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
662 page = follow_trans_huge_pmd(vma, address, pmd, flags);
663 spin_unlock(ptl);
664 ctx->page_mask = HPAGE_PMD_NR - 1;
665 return page;
668 static struct page *follow_pud_mask(struct vm_area_struct *vma,
669 unsigned long address, p4d_t *p4dp,
670 unsigned int flags,
671 struct follow_page_context *ctx)
673 pud_t *pud;
674 spinlock_t *ptl;
675 struct page *page;
676 struct mm_struct *mm = vma->vm_mm;
678 pud = pud_offset(p4dp, address);
679 if (pud_none(*pud))
680 return no_page_table(vma, flags);
681 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
682 page = follow_huge_pud(mm, address, pud, flags);
683 if (page)
684 return page;
685 return no_page_table(vma, flags);
687 if (is_hugepd(__hugepd(pud_val(*pud)))) {
688 page = follow_huge_pd(vma, address,
689 __hugepd(pud_val(*pud)), flags,
690 PUD_SHIFT);
691 if (page)
692 return page;
693 return no_page_table(vma, flags);
695 if (pud_devmap(*pud)) {
696 ptl = pud_lock(mm, pud);
697 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
698 spin_unlock(ptl);
699 if (page)
700 return page;
702 if (unlikely(pud_bad(*pud)))
703 return no_page_table(vma, flags);
705 return follow_pmd_mask(vma, address, pud, flags, ctx);
708 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
709 unsigned long address, pgd_t *pgdp,
710 unsigned int flags,
711 struct follow_page_context *ctx)
713 p4d_t *p4d;
714 struct page *page;
716 p4d = p4d_offset(pgdp, address);
717 if (p4d_none(*p4d))
718 return no_page_table(vma, flags);
719 BUILD_BUG_ON(p4d_huge(*p4d));
720 if (unlikely(p4d_bad(*p4d)))
721 return no_page_table(vma, flags);
723 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
724 page = follow_huge_pd(vma, address,
725 __hugepd(p4d_val(*p4d)), flags,
726 P4D_SHIFT);
727 if (page)
728 return page;
729 return no_page_table(vma, flags);
731 return follow_pud_mask(vma, address, p4d, flags, ctx);
735 * follow_page_mask - look up a page descriptor from a user-virtual address
736 * @vma: vm_area_struct mapping @address
737 * @address: virtual address to look up
738 * @flags: flags modifying lookup behaviour
739 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
740 * pointer to output page_mask
742 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
744 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
745 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
747 * On output, the @ctx->page_mask is set according to the size of the page.
749 * Return: the mapped (struct page *), %NULL if no mapping exists, or
750 * an error pointer if there is a mapping to something not represented
751 * by a page descriptor (see also vm_normal_page()).
753 static struct page *follow_page_mask(struct vm_area_struct *vma,
754 unsigned long address, unsigned int flags,
755 struct follow_page_context *ctx)
757 pgd_t *pgd;
758 struct page *page;
759 struct mm_struct *mm = vma->vm_mm;
761 ctx->page_mask = 0;
763 /* make this handle hugepd */
764 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
765 if (!IS_ERR(page)) {
766 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
767 return page;
770 pgd = pgd_offset(mm, address);
772 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
773 return no_page_table(vma, flags);
775 if (pgd_huge(*pgd)) {
776 page = follow_huge_pgd(mm, address, pgd, flags);
777 if (page)
778 return page;
779 return no_page_table(vma, flags);
781 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
782 page = follow_huge_pd(vma, address,
783 __hugepd(pgd_val(*pgd)), flags,
784 PGDIR_SHIFT);
785 if (page)
786 return page;
787 return no_page_table(vma, flags);
790 return follow_p4d_mask(vma, address, pgd, flags, ctx);
793 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
794 unsigned int foll_flags)
796 struct follow_page_context ctx = { NULL };
797 struct page *page;
799 page = follow_page_mask(vma, address, foll_flags, &ctx);
800 if (ctx.pgmap)
801 put_dev_pagemap(ctx.pgmap);
802 return page;
805 static int get_gate_page(struct mm_struct *mm, unsigned long address,
806 unsigned int gup_flags, struct vm_area_struct **vma,
807 struct page **page)
809 pgd_t *pgd;
810 p4d_t *p4d;
811 pud_t *pud;
812 pmd_t *pmd;
813 pte_t *pte;
814 int ret = -EFAULT;
816 /* user gate pages are read-only */
817 if (gup_flags & FOLL_WRITE)
818 return -EFAULT;
819 if (address > TASK_SIZE)
820 pgd = pgd_offset_k(address);
821 else
822 pgd = pgd_offset_gate(mm, address);
823 if (pgd_none(*pgd))
824 return -EFAULT;
825 p4d = p4d_offset(pgd, address);
826 if (p4d_none(*p4d))
827 return -EFAULT;
828 pud = pud_offset(p4d, address);
829 if (pud_none(*pud))
830 return -EFAULT;
831 pmd = pmd_offset(pud, address);
832 if (!pmd_present(*pmd))
833 return -EFAULT;
834 VM_BUG_ON(pmd_trans_huge(*pmd));
835 pte = pte_offset_map(pmd, address);
836 if (pte_none(*pte))
837 goto unmap;
838 *vma = get_gate_vma(mm);
839 if (!page)
840 goto out;
841 *page = vm_normal_page(*vma, address, *pte);
842 if (!*page) {
843 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
844 goto unmap;
845 *page = pte_page(*pte);
847 if (unlikely(!try_get_page(*page))) {
848 ret = -ENOMEM;
849 goto unmap;
851 out:
852 ret = 0;
853 unmap:
854 pte_unmap(pte);
855 return ret;
859 * mmap_sem must be held on entry. If @locked != NULL and *@flags
860 * does not include FOLL_NOWAIT, the mmap_sem may be released. If it
861 * is, *@locked will be set to 0 and -EBUSY returned.
863 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
864 unsigned long address, unsigned int *flags, int *locked)
866 unsigned int fault_flags = 0;
867 vm_fault_t ret;
869 /* mlock all present pages, but do not fault in new pages */
870 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
871 return -ENOENT;
872 if (*flags & FOLL_WRITE)
873 fault_flags |= FAULT_FLAG_WRITE;
874 if (*flags & FOLL_REMOTE)
875 fault_flags |= FAULT_FLAG_REMOTE;
876 if (locked)
877 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
878 if (*flags & FOLL_NOWAIT)
879 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
880 if (*flags & FOLL_TRIED) {
882 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
883 * can co-exist
885 fault_flags |= FAULT_FLAG_TRIED;
888 ret = handle_mm_fault(vma, address, fault_flags);
889 if (ret & VM_FAULT_ERROR) {
890 int err = vm_fault_to_errno(ret, *flags);
892 if (err)
893 return err;
894 BUG();
897 if (tsk) {
898 if (ret & VM_FAULT_MAJOR)
899 tsk->maj_flt++;
900 else
901 tsk->min_flt++;
904 if (ret & VM_FAULT_RETRY) {
905 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
906 *locked = 0;
907 return -EBUSY;
911 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
912 * necessary, even if maybe_mkwrite decided not to set pte_write. We
913 * can thus safely do subsequent page lookups as if they were reads.
914 * But only do so when looping for pte_write is futile: in some cases
915 * userspace may also be wanting to write to the gotten user page,
916 * which a read fault here might prevent (a readonly page might get
917 * reCOWed by userspace write).
919 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
920 *flags |= FOLL_COW;
921 return 0;
924 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
926 vm_flags_t vm_flags = vma->vm_flags;
927 int write = (gup_flags & FOLL_WRITE);
928 int foreign = (gup_flags & FOLL_REMOTE);
930 if (vm_flags & (VM_IO | VM_PFNMAP))
931 return -EFAULT;
933 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
934 return -EFAULT;
936 if (write) {
937 if (!(vm_flags & VM_WRITE)) {
938 if (!(gup_flags & FOLL_FORCE))
939 return -EFAULT;
941 * We used to let the write,force case do COW in a
942 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
943 * set a breakpoint in a read-only mapping of an
944 * executable, without corrupting the file (yet only
945 * when that file had been opened for writing!).
946 * Anon pages in shared mappings are surprising: now
947 * just reject it.
949 if (!is_cow_mapping(vm_flags))
950 return -EFAULT;
952 } else if (!(vm_flags & VM_READ)) {
953 if (!(gup_flags & FOLL_FORCE))
954 return -EFAULT;
956 * Is there actually any vma we can reach here which does not
957 * have VM_MAYREAD set?
959 if (!(vm_flags & VM_MAYREAD))
960 return -EFAULT;
963 * gups are always data accesses, not instruction
964 * fetches, so execute=false here
966 if (!arch_vma_access_permitted(vma, write, false, foreign))
967 return -EFAULT;
968 return 0;
972 * __get_user_pages() - pin user pages in memory
973 * @tsk: task_struct of target task
974 * @mm: mm_struct of target mm
975 * @start: starting user address
976 * @nr_pages: number of pages from start to pin
977 * @gup_flags: flags modifying pin behaviour
978 * @pages: array that receives pointers to the pages pinned.
979 * Should be at least nr_pages long. Or NULL, if caller
980 * only intends to ensure the pages are faulted in.
981 * @vmas: array of pointers to vmas corresponding to each page.
982 * Or NULL if the caller does not require them.
983 * @locked: whether we're still with the mmap_sem held
985 * Returns either number of pages pinned (which may be less than the
986 * number requested), or an error. Details about the return value:
988 * -- If nr_pages is 0, returns 0.
989 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
990 * -- If nr_pages is >0, and some pages were pinned, returns the number of
991 * pages pinned. Again, this may be less than nr_pages.
993 * The caller is responsible for releasing returned @pages, via put_page().
995 * @vmas are valid only as long as mmap_sem is held.
997 * Must be called with mmap_sem held. It may be released. See below.
999 * __get_user_pages walks a process's page tables and takes a reference to
1000 * each struct page that each user address corresponds to at a given
1001 * instant. That is, it takes the page that would be accessed if a user
1002 * thread accesses the given user virtual address at that instant.
1004 * This does not guarantee that the page exists in the user mappings when
1005 * __get_user_pages returns, and there may even be a completely different
1006 * page there in some cases (eg. if mmapped pagecache has been invalidated
1007 * and subsequently re faulted). However it does guarantee that the page
1008 * won't be freed completely. And mostly callers simply care that the page
1009 * contains data that was valid *at some point in time*. Typically, an IO
1010 * or similar operation cannot guarantee anything stronger anyway because
1011 * locks can't be held over the syscall boundary.
1013 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1014 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1015 * appropriate) must be called after the page is finished with, and
1016 * before put_page is called.
1018 * If @locked != NULL, *@locked will be set to 0 when mmap_sem is
1019 * released by an up_read(). That can happen if @gup_flags does not
1020 * have FOLL_NOWAIT.
1022 * A caller using such a combination of @locked and @gup_flags
1023 * must therefore hold the mmap_sem for reading only, and recognize
1024 * when it's been released. Otherwise, it must be held for either
1025 * reading or writing and will not be released.
1027 * In most cases, get_user_pages or get_user_pages_fast should be used
1028 * instead of __get_user_pages. __get_user_pages should be used only if
1029 * you need some special @gup_flags.
1031 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1032 unsigned long start, unsigned long nr_pages,
1033 unsigned int gup_flags, struct page **pages,
1034 struct vm_area_struct **vmas, int *locked)
1036 long ret = 0, i = 0;
1037 struct vm_area_struct *vma = NULL;
1038 struct follow_page_context ctx = { NULL };
1040 if (!nr_pages)
1041 return 0;
1043 start = untagged_addr(start);
1045 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1048 * If FOLL_FORCE is set then do not force a full fault as the hinting
1049 * fault information is unrelated to the reference behaviour of a task
1050 * using the address space
1052 if (!(gup_flags & FOLL_FORCE))
1053 gup_flags |= FOLL_NUMA;
1055 do {
1056 struct page *page;
1057 unsigned int foll_flags = gup_flags;
1058 unsigned int page_increm;
1060 /* first iteration or cross vma bound */
1061 if (!vma || start >= vma->vm_end) {
1062 vma = find_extend_vma(mm, start);
1063 if (!vma && in_gate_area(mm, start)) {
1064 ret = get_gate_page(mm, start & PAGE_MASK,
1065 gup_flags, &vma,
1066 pages ? &pages[i] : NULL);
1067 if (ret)
1068 goto out;
1069 ctx.page_mask = 0;
1070 goto next_page;
1073 if (!vma || check_vma_flags(vma, gup_flags)) {
1074 ret = -EFAULT;
1075 goto out;
1077 if (is_vm_hugetlb_page(vma)) {
1078 if (should_force_cow_break(vma, foll_flags))
1079 foll_flags |= FOLL_WRITE;
1080 i = follow_hugetlb_page(mm, vma, pages, vmas,
1081 &start, &nr_pages, i,
1082 foll_flags, locked);
1083 if (locked && *locked == 0) {
1085 * We've got a VM_FAULT_RETRY
1086 * and we've lost mmap_sem.
1087 * We must stop here.
1089 BUG_ON(gup_flags & FOLL_NOWAIT);
1090 BUG_ON(ret != 0);
1091 goto out;
1093 continue;
1097 if (should_force_cow_break(vma, foll_flags))
1098 foll_flags |= FOLL_WRITE;
1100 retry:
1102 * If we have a pending SIGKILL, don't keep faulting pages and
1103 * potentially allocating memory.
1105 if (fatal_signal_pending(current)) {
1106 ret = -EINTR;
1107 goto out;
1109 cond_resched();
1111 page = follow_page_mask(vma, start, foll_flags, &ctx);
1112 if (!page) {
1113 ret = faultin_page(tsk, vma, start, &foll_flags,
1114 locked);
1115 switch (ret) {
1116 case 0:
1117 goto retry;
1118 case -EBUSY:
1119 ret = 0;
1120 fallthrough;
1121 case -EFAULT:
1122 case -ENOMEM:
1123 case -EHWPOISON:
1124 goto out;
1125 case -ENOENT:
1126 goto next_page;
1128 BUG();
1129 } else if (PTR_ERR(page) == -EEXIST) {
1131 * Proper page table entry exists, but no corresponding
1132 * struct page.
1134 goto next_page;
1135 } else if (IS_ERR(page)) {
1136 ret = PTR_ERR(page);
1137 goto out;
1139 if (pages) {
1140 pages[i] = page;
1141 flush_anon_page(vma, page, start);
1142 flush_dcache_page(page);
1143 ctx.page_mask = 0;
1145 next_page:
1146 if (vmas) {
1147 vmas[i] = vma;
1148 ctx.page_mask = 0;
1150 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1151 if (page_increm > nr_pages)
1152 page_increm = nr_pages;
1153 i += page_increm;
1154 start += page_increm * PAGE_SIZE;
1155 nr_pages -= page_increm;
1156 } while (nr_pages);
1157 out:
1158 if (ctx.pgmap)
1159 put_dev_pagemap(ctx.pgmap);
1160 return i ? i : ret;
1163 static bool vma_permits_fault(struct vm_area_struct *vma,
1164 unsigned int fault_flags)
1166 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1167 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1168 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1170 if (!(vm_flags & vma->vm_flags))
1171 return false;
1174 * The architecture might have a hardware protection
1175 * mechanism other than read/write that can deny access.
1177 * gup always represents data access, not instruction
1178 * fetches, so execute=false here:
1180 if (!arch_vma_access_permitted(vma, write, false, foreign))
1181 return false;
1183 return true;
1187 * fixup_user_fault() - manually resolve a user page fault
1188 * @tsk: the task_struct to use for page fault accounting, or
1189 * NULL if faults are not to be recorded.
1190 * @mm: mm_struct of target mm
1191 * @address: user address
1192 * @fault_flags:flags to pass down to handle_mm_fault()
1193 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
1194 * does not allow retry
1196 * This is meant to be called in the specific scenario where for locking reasons
1197 * we try to access user memory in atomic context (within a pagefault_disable()
1198 * section), this returns -EFAULT, and we want to resolve the user fault before
1199 * trying again.
1201 * Typically this is meant to be used by the futex code.
1203 * The main difference with get_user_pages() is that this function will
1204 * unconditionally call handle_mm_fault() which will in turn perform all the
1205 * necessary SW fixup of the dirty and young bits in the PTE, while
1206 * get_user_pages() only guarantees to update these in the struct page.
1208 * This is important for some architectures where those bits also gate the
1209 * access permission to the page because they are maintained in software. On
1210 * such architectures, gup() will not be enough to make a subsequent access
1211 * succeed.
1213 * This function will not return with an unlocked mmap_sem. So it has not the
1214 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
1216 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1217 unsigned long address, unsigned int fault_flags,
1218 bool *unlocked)
1220 struct vm_area_struct *vma;
1221 vm_fault_t ret, major = 0;
1223 address = untagged_addr(address);
1225 if (unlocked)
1226 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1228 retry:
1229 vma = find_extend_vma(mm, address);
1230 if (!vma || address < vma->vm_start)
1231 return -EFAULT;
1233 if (!vma_permits_fault(vma, fault_flags))
1234 return -EFAULT;
1236 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1237 fatal_signal_pending(current))
1238 return -EINTR;
1240 ret = handle_mm_fault(vma, address, fault_flags);
1241 major |= ret & VM_FAULT_MAJOR;
1242 if (ret & VM_FAULT_ERROR) {
1243 int err = vm_fault_to_errno(ret, 0);
1245 if (err)
1246 return err;
1247 BUG();
1250 if (ret & VM_FAULT_RETRY) {
1251 down_read(&mm->mmap_sem);
1252 *unlocked = true;
1253 fault_flags |= FAULT_FLAG_TRIED;
1254 goto retry;
1257 if (tsk) {
1258 if (major)
1259 tsk->maj_flt++;
1260 else
1261 tsk->min_flt++;
1263 return 0;
1265 EXPORT_SYMBOL_GPL(fixup_user_fault);
1267 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1268 struct mm_struct *mm,
1269 unsigned long start,
1270 unsigned long nr_pages,
1271 struct page **pages,
1272 struct vm_area_struct **vmas,
1273 int *locked,
1274 unsigned int flags)
1276 long ret, pages_done;
1277 bool lock_dropped;
1279 if (locked) {
1280 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1281 BUG_ON(vmas);
1282 /* check caller initialized locked */
1283 BUG_ON(*locked != 1);
1287 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1288 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1289 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1290 * for FOLL_GET, not for the newer FOLL_PIN.
1292 * FOLL_PIN always expects pages to be non-null, but no need to assert
1293 * that here, as any failures will be obvious enough.
1295 if (pages && !(flags & FOLL_PIN))
1296 flags |= FOLL_GET;
1298 pages_done = 0;
1299 lock_dropped = false;
1300 for (;;) {
1301 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1302 vmas, locked);
1303 if (!locked)
1304 /* VM_FAULT_RETRY couldn't trigger, bypass */
1305 return ret;
1307 /* VM_FAULT_RETRY cannot return errors */
1308 if (!*locked) {
1309 BUG_ON(ret < 0);
1310 BUG_ON(ret >= nr_pages);
1313 if (ret > 0) {
1314 nr_pages -= ret;
1315 pages_done += ret;
1316 if (!nr_pages)
1317 break;
1319 if (*locked) {
1321 * VM_FAULT_RETRY didn't trigger or it was a
1322 * FOLL_NOWAIT.
1324 if (!pages_done)
1325 pages_done = ret;
1326 break;
1329 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1330 * For the prefault case (!pages) we only update counts.
1332 if (likely(pages))
1333 pages += ret;
1334 start += ret << PAGE_SHIFT;
1335 lock_dropped = true;
1337 retry:
1339 * Repeat on the address that fired VM_FAULT_RETRY
1340 * with both FAULT_FLAG_ALLOW_RETRY and
1341 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1342 * by fatal signals, so we need to check it before we
1343 * start trying again otherwise it can loop forever.
1346 if (fatal_signal_pending(current)) {
1347 if (!pages_done)
1348 pages_done = -EINTR;
1349 break;
1352 ret = down_read_killable(&mm->mmap_sem);
1353 if (ret) {
1354 BUG_ON(ret > 0);
1355 if (!pages_done)
1356 pages_done = ret;
1357 break;
1360 *locked = 1;
1361 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1362 pages, NULL, locked);
1363 if (!*locked) {
1364 /* Continue to retry until we succeeded */
1365 BUG_ON(ret != 0);
1366 goto retry;
1368 if (ret != 1) {
1369 BUG_ON(ret > 1);
1370 if (!pages_done)
1371 pages_done = ret;
1372 break;
1374 nr_pages--;
1375 pages_done++;
1376 if (!nr_pages)
1377 break;
1378 if (likely(pages))
1379 pages++;
1380 start += PAGE_SIZE;
1382 if (lock_dropped && *locked) {
1384 * We must let the caller know we temporarily dropped the lock
1385 * and so the critical section protected by it was lost.
1387 up_read(&mm->mmap_sem);
1388 *locked = 0;
1390 return pages_done;
1394 * populate_vma_page_range() - populate a range of pages in the vma.
1395 * @vma: target vma
1396 * @start: start address
1397 * @end: end address
1398 * @locked: whether the mmap_sem is still held
1400 * This takes care of mlocking the pages too if VM_LOCKED is set.
1402 * return 0 on success, negative error code on error.
1404 * vma->vm_mm->mmap_sem must be held.
1406 * If @locked is NULL, it may be held for read or write and will
1407 * be unperturbed.
1409 * If @locked is non-NULL, it must held for read only and may be
1410 * released. If it's released, *@locked will be set to 0.
1412 long populate_vma_page_range(struct vm_area_struct *vma,
1413 unsigned long start, unsigned long end, int *locked)
1415 struct mm_struct *mm = vma->vm_mm;
1416 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1417 int gup_flags;
1419 VM_BUG_ON(start & ~PAGE_MASK);
1420 VM_BUG_ON(end & ~PAGE_MASK);
1421 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1422 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1423 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1425 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1426 if (vma->vm_flags & VM_LOCKONFAULT)
1427 gup_flags &= ~FOLL_POPULATE;
1429 * We want to touch writable mappings with a write fault in order
1430 * to break COW, except for shared mappings because these don't COW
1431 * and we would not want to dirty them for nothing.
1433 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1434 gup_flags |= FOLL_WRITE;
1437 * We want mlock to succeed for regions that have any permissions
1438 * other than PROT_NONE.
1440 if (vma_is_accessible(vma))
1441 gup_flags |= FOLL_FORCE;
1444 * We made sure addr is within a VMA, so the following will
1445 * not result in a stack expansion that recurses back here.
1447 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1448 NULL, NULL, locked);
1452 * __mm_populate - populate and/or mlock pages within a range of address space.
1454 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1455 * flags. VMAs must be already marked with the desired vm_flags, and
1456 * mmap_sem must not be held.
1458 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1460 struct mm_struct *mm = current->mm;
1461 unsigned long end, nstart, nend;
1462 struct vm_area_struct *vma = NULL;
1463 int locked = 0;
1464 long ret = 0;
1466 end = start + len;
1468 for (nstart = start; nstart < end; nstart = nend) {
1470 * We want to fault in pages for [nstart; end) address range.
1471 * Find first corresponding VMA.
1473 if (!locked) {
1474 locked = 1;
1475 down_read(&mm->mmap_sem);
1476 vma = find_vma(mm, nstart);
1477 } else if (nstart >= vma->vm_end)
1478 vma = vma->vm_next;
1479 if (!vma || vma->vm_start >= end)
1480 break;
1482 * Set [nstart; nend) to intersection of desired address
1483 * range with the first VMA. Also, skip undesirable VMA types.
1485 nend = min(end, vma->vm_end);
1486 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1487 continue;
1488 if (nstart < vma->vm_start)
1489 nstart = vma->vm_start;
1491 * Now fault in a range of pages. populate_vma_page_range()
1492 * double checks the vma flags, so that it won't mlock pages
1493 * if the vma was already munlocked.
1495 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1496 if (ret < 0) {
1497 if (ignore_errors) {
1498 ret = 0;
1499 continue; /* continue at next VMA */
1501 break;
1503 nend = nstart + ret * PAGE_SIZE;
1504 ret = 0;
1506 if (locked)
1507 up_read(&mm->mmap_sem);
1508 return ret; /* 0 or negative error code */
1512 * get_dump_page() - pin user page in memory while writing it to core dump
1513 * @addr: user address
1515 * Returns struct page pointer of user page pinned for dump,
1516 * to be freed afterwards by put_page().
1518 * Returns NULL on any kind of failure - a hole must then be inserted into
1519 * the corefile, to preserve alignment with its headers; and also returns
1520 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1521 * allowing a hole to be left in the corefile to save diskspace.
1523 * Called without mmap_sem, but after all other threads have been killed.
1525 #ifdef CONFIG_ELF_CORE
1526 struct page *get_dump_page(unsigned long addr)
1528 struct vm_area_struct *vma;
1529 struct page *page;
1531 if (__get_user_pages(current, current->mm, addr, 1,
1532 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1533 NULL) < 1)
1534 return NULL;
1535 flush_cache_page(vma, addr, page_to_pfn(page));
1536 return page;
1538 #endif /* CONFIG_ELF_CORE */
1539 #else /* CONFIG_MMU */
1540 static long __get_user_pages_locked(struct task_struct *tsk,
1541 struct mm_struct *mm, unsigned long start,
1542 unsigned long nr_pages, struct page **pages,
1543 struct vm_area_struct **vmas, int *locked,
1544 unsigned int foll_flags)
1546 struct vm_area_struct *vma;
1547 unsigned long vm_flags;
1548 int i;
1550 /* calculate required read or write permissions.
1551 * If FOLL_FORCE is set, we only require the "MAY" flags.
1553 vm_flags = (foll_flags & FOLL_WRITE) ?
1554 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1555 vm_flags &= (foll_flags & FOLL_FORCE) ?
1556 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1558 for (i = 0; i < nr_pages; i++) {
1559 vma = find_vma(mm, start);
1560 if (!vma)
1561 goto finish_or_fault;
1563 /* protect what we can, including chardevs */
1564 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1565 !(vm_flags & vma->vm_flags))
1566 goto finish_or_fault;
1568 if (pages) {
1569 pages[i] = virt_to_page(start);
1570 if (pages[i])
1571 get_page(pages[i]);
1573 if (vmas)
1574 vmas[i] = vma;
1575 start = (start + PAGE_SIZE) & PAGE_MASK;
1578 return i;
1580 finish_or_fault:
1581 return i ? : -EFAULT;
1583 #endif /* !CONFIG_MMU */
1585 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1586 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1588 long i;
1589 struct vm_area_struct *vma_prev = NULL;
1591 for (i = 0; i < nr_pages; i++) {
1592 struct vm_area_struct *vma = vmas[i];
1594 if (vma == vma_prev)
1595 continue;
1597 vma_prev = vma;
1599 if (vma_is_fsdax(vma))
1600 return true;
1602 return false;
1605 #ifdef CONFIG_CMA
1606 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1609 * We want to make sure we allocate the new page from the same node
1610 * as the source page.
1612 int nid = page_to_nid(page);
1614 * Trying to allocate a page for migration. Ignore allocation
1615 * failure warnings. We don't force __GFP_THISNODE here because
1616 * this node here is the node where we have CMA reservation and
1617 * in some case these nodes will have really less non movable
1618 * allocation memory.
1620 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1622 if (PageHighMem(page))
1623 gfp_mask |= __GFP_HIGHMEM;
1625 #ifdef CONFIG_HUGETLB_PAGE
1626 if (PageHuge(page)) {
1627 struct hstate *h = page_hstate(page);
1629 * We don't want to dequeue from the pool because pool pages will
1630 * mostly be from the CMA region.
1632 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1634 #endif
1635 if (PageTransHuge(page)) {
1636 struct page *thp;
1638 * ignore allocation failure warnings
1640 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1643 * Remove the movable mask so that we don't allocate from
1644 * CMA area again.
1646 thp_gfpmask &= ~__GFP_MOVABLE;
1647 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1648 if (!thp)
1649 return NULL;
1650 prep_transhuge_page(thp);
1651 return thp;
1654 return __alloc_pages_node(nid, gfp_mask, 0);
1657 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1658 struct mm_struct *mm,
1659 unsigned long start,
1660 unsigned long nr_pages,
1661 struct page **pages,
1662 struct vm_area_struct **vmas,
1663 unsigned int gup_flags)
1665 unsigned long i;
1666 unsigned long step;
1667 bool drain_allow = true;
1668 bool migrate_allow = true;
1669 LIST_HEAD(cma_page_list);
1670 long ret = nr_pages;
1672 check_again:
1673 for (i = 0; i < nr_pages;) {
1675 struct page *head = compound_head(pages[i]);
1678 * gup may start from a tail page. Advance step by the left
1679 * part.
1681 step = compound_nr(head) - (pages[i] - head);
1683 * If we get a page from the CMA zone, since we are going to
1684 * be pinning these entries, we might as well move them out
1685 * of the CMA zone if possible.
1687 if (is_migrate_cma_page(head)) {
1688 if (PageHuge(head))
1689 isolate_huge_page(head, &cma_page_list);
1690 else {
1691 if (!PageLRU(head) && drain_allow) {
1692 lru_add_drain_all();
1693 drain_allow = false;
1696 if (!isolate_lru_page(head)) {
1697 list_add_tail(&head->lru, &cma_page_list);
1698 mod_node_page_state(page_pgdat(head),
1699 NR_ISOLATED_ANON +
1700 page_is_file_lru(head),
1701 hpage_nr_pages(head));
1706 i += step;
1709 if (!list_empty(&cma_page_list)) {
1711 * drop the above get_user_pages reference.
1713 for (i = 0; i < nr_pages; i++)
1714 put_page(pages[i]);
1716 if (migrate_pages(&cma_page_list, new_non_cma_page,
1717 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1719 * some of the pages failed migration. Do get_user_pages
1720 * without migration.
1722 migrate_allow = false;
1724 if (!list_empty(&cma_page_list))
1725 putback_movable_pages(&cma_page_list);
1728 * We did migrate all the pages, Try to get the page references
1729 * again migrating any new CMA pages which we failed to isolate
1730 * earlier.
1732 ret = __get_user_pages_locked(tsk, mm, start, nr_pages,
1733 pages, vmas, NULL,
1734 gup_flags);
1736 if ((ret > 0) && migrate_allow) {
1737 nr_pages = ret;
1738 drain_allow = true;
1739 goto check_again;
1743 return ret;
1745 #else
1746 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1747 struct mm_struct *mm,
1748 unsigned long start,
1749 unsigned long nr_pages,
1750 struct page **pages,
1751 struct vm_area_struct **vmas,
1752 unsigned int gup_flags)
1754 return nr_pages;
1756 #endif /* CONFIG_CMA */
1759 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1760 * allows us to process the FOLL_LONGTERM flag.
1762 static long __gup_longterm_locked(struct task_struct *tsk,
1763 struct mm_struct *mm,
1764 unsigned long start,
1765 unsigned long nr_pages,
1766 struct page **pages,
1767 struct vm_area_struct **vmas,
1768 unsigned int gup_flags)
1770 struct vm_area_struct **vmas_tmp = vmas;
1771 unsigned long flags = 0;
1772 long rc, i;
1774 if (gup_flags & FOLL_LONGTERM) {
1775 if (!pages)
1776 return -EINVAL;
1778 if (!vmas_tmp) {
1779 vmas_tmp = kcalloc(nr_pages,
1780 sizeof(struct vm_area_struct *),
1781 GFP_KERNEL);
1782 if (!vmas_tmp)
1783 return -ENOMEM;
1785 flags = memalloc_nocma_save();
1788 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1789 vmas_tmp, NULL, gup_flags);
1791 if (gup_flags & FOLL_LONGTERM) {
1792 memalloc_nocma_restore(flags);
1793 if (rc < 0)
1794 goto out;
1796 if (check_dax_vmas(vmas_tmp, rc)) {
1797 for (i = 0; i < rc; i++)
1798 put_page(pages[i]);
1799 rc = -EOPNOTSUPP;
1800 goto out;
1803 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1804 vmas_tmp, gup_flags);
1807 out:
1808 if (vmas_tmp != vmas)
1809 kfree(vmas_tmp);
1810 return rc;
1812 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1813 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1814 struct mm_struct *mm,
1815 unsigned long start,
1816 unsigned long nr_pages,
1817 struct page **pages,
1818 struct vm_area_struct **vmas,
1819 unsigned int flags)
1821 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1822 NULL, flags);
1824 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1826 #ifdef CONFIG_MMU
1827 static long __get_user_pages_remote(struct task_struct *tsk,
1828 struct mm_struct *mm,
1829 unsigned long start, unsigned long nr_pages,
1830 unsigned int gup_flags, struct page **pages,
1831 struct vm_area_struct **vmas, int *locked)
1834 * Parts of FOLL_LONGTERM behavior are incompatible with
1835 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1836 * vmas. However, this only comes up if locked is set, and there are
1837 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1838 * allow what we can.
1840 if (gup_flags & FOLL_LONGTERM) {
1841 if (WARN_ON_ONCE(locked))
1842 return -EINVAL;
1844 * This will check the vmas (even if our vmas arg is NULL)
1845 * and return -ENOTSUPP if DAX isn't allowed in this case:
1847 return __gup_longterm_locked(tsk, mm, start, nr_pages, pages,
1848 vmas, gup_flags | FOLL_TOUCH |
1849 FOLL_REMOTE);
1852 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1853 locked,
1854 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1858 * get_user_pages_remote() - pin user pages in memory
1859 * @tsk: the task_struct to use for page fault accounting, or
1860 * NULL if faults are not to be recorded.
1861 * @mm: mm_struct of target mm
1862 * @start: starting user address
1863 * @nr_pages: number of pages from start to pin
1864 * @gup_flags: flags modifying lookup behaviour
1865 * @pages: array that receives pointers to the pages pinned.
1866 * Should be at least nr_pages long. Or NULL, if caller
1867 * only intends to ensure the pages are faulted in.
1868 * @vmas: array of pointers to vmas corresponding to each page.
1869 * Or NULL if the caller does not require them.
1870 * @locked: pointer to lock flag indicating whether lock is held and
1871 * subsequently whether VM_FAULT_RETRY functionality can be
1872 * utilised. Lock must initially be held.
1874 * Returns either number of pages pinned (which may be less than the
1875 * number requested), or an error. Details about the return value:
1877 * -- If nr_pages is 0, returns 0.
1878 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1879 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1880 * pages pinned. Again, this may be less than nr_pages.
1882 * The caller is responsible for releasing returned @pages, via put_page().
1884 * @vmas are valid only as long as mmap_sem is held.
1886 * Must be called with mmap_sem held for read or write.
1888 * get_user_pages walks a process's page tables and takes a reference to
1889 * each struct page that each user address corresponds to at a given
1890 * instant. That is, it takes the page that would be accessed if a user
1891 * thread accesses the given user virtual address at that instant.
1893 * This does not guarantee that the page exists in the user mappings when
1894 * get_user_pages returns, and there may even be a completely different
1895 * page there in some cases (eg. if mmapped pagecache has been invalidated
1896 * and subsequently re faulted). However it does guarantee that the page
1897 * won't be freed completely. And mostly callers simply care that the page
1898 * contains data that was valid *at some point in time*. Typically, an IO
1899 * or similar operation cannot guarantee anything stronger anyway because
1900 * locks can't be held over the syscall boundary.
1902 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1903 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1904 * be called after the page is finished with, and before put_page is called.
1906 * get_user_pages is typically used for fewer-copy IO operations, to get a
1907 * handle on the memory by some means other than accesses via the user virtual
1908 * addresses. The pages may be submitted for DMA to devices or accessed via
1909 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1910 * use the correct cache flushing APIs.
1912 * See also get_user_pages_fast, for performance critical applications.
1914 * get_user_pages should be phased out in favor of
1915 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1916 * should use get_user_pages because it cannot pass
1917 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1919 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1920 unsigned long start, unsigned long nr_pages,
1921 unsigned int gup_flags, struct page **pages,
1922 struct vm_area_struct **vmas, int *locked)
1925 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1926 * never directly by the caller, so enforce that with an assertion:
1928 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1929 return -EINVAL;
1931 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
1932 pages, vmas, locked);
1934 EXPORT_SYMBOL(get_user_pages_remote);
1936 #else /* CONFIG_MMU */
1937 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1938 unsigned long start, unsigned long nr_pages,
1939 unsigned int gup_flags, struct page **pages,
1940 struct vm_area_struct **vmas, int *locked)
1942 return 0;
1945 static long __get_user_pages_remote(struct task_struct *tsk,
1946 struct mm_struct *mm,
1947 unsigned long start, unsigned long nr_pages,
1948 unsigned int gup_flags, struct page **pages,
1949 struct vm_area_struct **vmas, int *locked)
1951 return 0;
1953 #endif /* !CONFIG_MMU */
1956 * This is the same as get_user_pages_remote(), just with a
1957 * less-flexible calling convention where we assume that the task
1958 * and mm being operated on are the current task's and don't allow
1959 * passing of a locked parameter. We also obviously don't pass
1960 * FOLL_REMOTE in here.
1962 long get_user_pages(unsigned long start, unsigned long nr_pages,
1963 unsigned int gup_flags, struct page **pages,
1964 struct vm_area_struct **vmas)
1967 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1968 * never directly by the caller, so enforce that with an assertion:
1970 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1971 return -EINVAL;
1973 return __gup_longterm_locked(current, current->mm, start, nr_pages,
1974 pages, vmas, gup_flags | FOLL_TOUCH);
1976 EXPORT_SYMBOL(get_user_pages);
1979 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1980 * paths better by using either get_user_pages_locked() or
1981 * get_user_pages_unlocked().
1983 * get_user_pages_locked() is suitable to replace the form:
1985 * down_read(&mm->mmap_sem);
1986 * do_something()
1987 * get_user_pages(tsk, mm, ..., pages, NULL);
1988 * up_read(&mm->mmap_sem);
1990 * to:
1992 * int locked = 1;
1993 * down_read(&mm->mmap_sem);
1994 * do_something()
1995 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
1996 * if (locked)
1997 * up_read(&mm->mmap_sem);
1999 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2000 unsigned int gup_flags, struct page **pages,
2001 int *locked)
2004 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2005 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2006 * vmas. As there are no users of this flag in this call we simply
2007 * disallow this option for now.
2009 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2010 return -EINVAL;
2012 return __get_user_pages_locked(current, current->mm, start, nr_pages,
2013 pages, NULL, locked,
2014 gup_flags | FOLL_TOUCH);
2016 EXPORT_SYMBOL(get_user_pages_locked);
2019 * get_user_pages_unlocked() is suitable to replace the form:
2021 * down_read(&mm->mmap_sem);
2022 * get_user_pages(tsk, mm, ..., pages, NULL);
2023 * up_read(&mm->mmap_sem);
2025 * with:
2027 * get_user_pages_unlocked(tsk, mm, ..., pages);
2029 * It is functionally equivalent to get_user_pages_fast so
2030 * get_user_pages_fast should be used instead if specific gup_flags
2031 * (e.g. FOLL_FORCE) are not required.
2033 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2034 struct page **pages, unsigned int gup_flags)
2036 struct mm_struct *mm = current->mm;
2037 int locked = 1;
2038 long ret;
2041 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2042 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2043 * vmas. As there are no users of this flag in this call we simply
2044 * disallow this option for now.
2046 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2047 return -EINVAL;
2049 down_read(&mm->mmap_sem);
2050 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
2051 &locked, gup_flags | FOLL_TOUCH);
2052 if (locked)
2053 up_read(&mm->mmap_sem);
2054 return ret;
2056 EXPORT_SYMBOL(get_user_pages_unlocked);
2059 * Fast GUP
2061 * get_user_pages_fast attempts to pin user pages by walking the page
2062 * tables directly and avoids taking locks. Thus the walker needs to be
2063 * protected from page table pages being freed from under it, and should
2064 * block any THP splits.
2066 * One way to achieve this is to have the walker disable interrupts, and
2067 * rely on IPIs from the TLB flushing code blocking before the page table
2068 * pages are freed. This is unsuitable for architectures that do not need
2069 * to broadcast an IPI when invalidating TLBs.
2071 * Another way to achieve this is to batch up page table containing pages
2072 * belonging to more than one mm_user, then rcu_sched a callback to free those
2073 * pages. Disabling interrupts will allow the fast_gup walker to both block
2074 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2075 * (which is a relatively rare event). The code below adopts this strategy.
2077 * Before activating this code, please be aware that the following assumptions
2078 * are currently made:
2080 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2081 * free pages containing page tables or TLB flushing requires IPI broadcast.
2083 * *) ptes can be read atomically by the architecture.
2085 * *) access_ok is sufficient to validate userspace address ranges.
2087 * The last two assumptions can be relaxed by the addition of helper functions.
2089 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2091 #ifdef CONFIG_HAVE_FAST_GUP
2093 static void put_compound_head(struct page *page, int refs, unsigned int flags)
2095 if (flags & FOLL_PIN) {
2096 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2097 refs);
2099 if (hpage_pincount_available(page))
2100 hpage_pincount_sub(page, refs);
2101 else
2102 refs *= GUP_PIN_COUNTING_BIAS;
2105 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2107 * Calling put_page() for each ref is unnecessarily slow. Only the last
2108 * ref needs a put_page().
2110 if (refs > 1)
2111 page_ref_sub(page, refs - 1);
2112 put_page(page);
2115 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
2118 * WARNING: only to be used in the get_user_pages_fast() implementation.
2120 * With get_user_pages_fast(), we walk down the pagetables without taking any
2121 * locks. For this we would like to load the pointers atomically, but sometimes
2122 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
2123 * we do have is the guarantee that a PTE will only either go from not present
2124 * to present, or present to not present or both -- it will not switch to a
2125 * completely different present page without a TLB flush in between; something
2126 * that we are blocking by holding interrupts off.
2128 * Setting ptes from not present to present goes:
2130 * ptep->pte_high = h;
2131 * smp_wmb();
2132 * ptep->pte_low = l;
2134 * And present to not present goes:
2136 * ptep->pte_low = 0;
2137 * smp_wmb();
2138 * ptep->pte_high = 0;
2140 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2141 * We load pte_high *after* loading pte_low, which ensures we don't see an older
2142 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
2143 * picked up a changed pte high. We might have gotten rubbish values from
2144 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2145 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2146 * operates on present ptes we're safe.
2148 static inline pte_t gup_get_pte(pte_t *ptep)
2150 pte_t pte;
2152 do {
2153 pte.pte_low = ptep->pte_low;
2154 smp_rmb();
2155 pte.pte_high = ptep->pte_high;
2156 smp_rmb();
2157 } while (unlikely(pte.pte_low != ptep->pte_low));
2159 return pte;
2161 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2163 * We require that the PTE can be read atomically.
2165 static inline pte_t gup_get_pte(pte_t *ptep)
2167 return READ_ONCE(*ptep);
2169 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2171 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2172 unsigned int flags,
2173 struct page **pages)
2175 while ((*nr) - nr_start) {
2176 struct page *page = pages[--(*nr)];
2178 ClearPageReferenced(page);
2179 if (flags & FOLL_PIN)
2180 unpin_user_page(page);
2181 else
2182 put_page(page);
2186 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2187 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2188 unsigned int flags, struct page **pages, int *nr)
2190 struct dev_pagemap *pgmap = NULL;
2191 int nr_start = *nr, ret = 0;
2192 pte_t *ptep, *ptem;
2194 ptem = ptep = pte_offset_map(&pmd, addr);
2195 do {
2196 pte_t pte = gup_get_pte(ptep);
2197 struct page *head, *page;
2200 * Similar to the PMD case below, NUMA hinting must take slow
2201 * path using the pte_protnone check.
2203 if (pte_protnone(pte))
2204 goto pte_unmap;
2206 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2207 goto pte_unmap;
2209 if (pte_devmap(pte)) {
2210 if (unlikely(flags & FOLL_LONGTERM))
2211 goto pte_unmap;
2213 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2214 if (unlikely(!pgmap)) {
2215 undo_dev_pagemap(nr, nr_start, flags, pages);
2216 goto pte_unmap;
2218 } else if (pte_special(pte))
2219 goto pte_unmap;
2221 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2222 page = pte_page(pte);
2224 head = try_grab_compound_head(page, 1, flags);
2225 if (!head)
2226 goto pte_unmap;
2228 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2229 put_compound_head(head, 1, flags);
2230 goto pte_unmap;
2233 VM_BUG_ON_PAGE(compound_head(page) != head, page);
2236 * We need to make the page accessible if and only if we are
2237 * going to access its content (the FOLL_PIN case). Please
2238 * see Documentation/core-api/pin_user_pages.rst for
2239 * details.
2241 if (flags & FOLL_PIN) {
2242 ret = arch_make_page_accessible(page);
2243 if (ret) {
2244 unpin_user_page(page);
2245 goto pte_unmap;
2248 SetPageReferenced(page);
2249 pages[*nr] = page;
2250 (*nr)++;
2252 } while (ptep++, addr += PAGE_SIZE, addr != end);
2254 ret = 1;
2256 pte_unmap:
2257 if (pgmap)
2258 put_dev_pagemap(pgmap);
2259 pte_unmap(ptem);
2260 return ret;
2262 #else
2265 * If we can't determine whether or not a pte is special, then fail immediately
2266 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2267 * to be special.
2269 * For a futex to be placed on a THP tail page, get_futex_key requires a
2270 * __get_user_pages_fast implementation that can pin pages. Thus it's still
2271 * useful to have gup_huge_pmd even if we can't operate on ptes.
2273 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2274 unsigned int flags, struct page **pages, int *nr)
2276 return 0;
2278 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2280 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2281 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2282 unsigned long end, unsigned int flags,
2283 struct page **pages, int *nr)
2285 int nr_start = *nr;
2286 struct dev_pagemap *pgmap = NULL;
2288 do {
2289 struct page *page = pfn_to_page(pfn);
2291 pgmap = get_dev_pagemap(pfn, pgmap);
2292 if (unlikely(!pgmap)) {
2293 undo_dev_pagemap(nr, nr_start, flags, pages);
2294 return 0;
2296 SetPageReferenced(page);
2297 pages[*nr] = page;
2298 if (unlikely(!try_grab_page(page, flags))) {
2299 undo_dev_pagemap(nr, nr_start, flags, pages);
2300 return 0;
2302 (*nr)++;
2303 pfn++;
2304 } while (addr += PAGE_SIZE, addr != end);
2306 if (pgmap)
2307 put_dev_pagemap(pgmap);
2308 return 1;
2311 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2312 unsigned long end, unsigned int flags,
2313 struct page **pages, int *nr)
2315 unsigned long fault_pfn;
2316 int nr_start = *nr;
2318 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2319 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2320 return 0;
2322 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2323 undo_dev_pagemap(nr, nr_start, flags, pages);
2324 return 0;
2326 return 1;
2329 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2330 unsigned long end, unsigned int flags,
2331 struct page **pages, int *nr)
2333 unsigned long fault_pfn;
2334 int nr_start = *nr;
2336 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2337 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2338 return 0;
2340 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2341 undo_dev_pagemap(nr, nr_start, flags, pages);
2342 return 0;
2344 return 1;
2346 #else
2347 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2348 unsigned long end, unsigned int flags,
2349 struct page **pages, int *nr)
2351 BUILD_BUG();
2352 return 0;
2355 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2356 unsigned long end, unsigned int flags,
2357 struct page **pages, int *nr)
2359 BUILD_BUG();
2360 return 0;
2362 #endif
2364 static int record_subpages(struct page *page, unsigned long addr,
2365 unsigned long end, struct page **pages)
2367 int nr;
2369 for (nr = 0; addr != end; addr += PAGE_SIZE)
2370 pages[nr++] = page++;
2372 return nr;
2375 #ifdef CONFIG_ARCH_HAS_HUGEPD
2376 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2377 unsigned long sz)
2379 unsigned long __boundary = (addr + sz) & ~(sz-1);
2380 return (__boundary - 1 < end - 1) ? __boundary : end;
2383 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2384 unsigned long end, unsigned int flags,
2385 struct page **pages, int *nr)
2387 unsigned long pte_end;
2388 struct page *head, *page;
2389 pte_t pte;
2390 int refs;
2392 pte_end = (addr + sz) & ~(sz-1);
2393 if (pte_end < end)
2394 end = pte_end;
2396 pte = READ_ONCE(*ptep);
2398 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2399 return 0;
2401 /* hugepages are never "special" */
2402 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2404 head = pte_page(pte);
2405 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2406 refs = record_subpages(page, addr, end, pages + *nr);
2408 head = try_grab_compound_head(head, refs, flags);
2409 if (!head)
2410 return 0;
2412 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2413 put_compound_head(head, refs, flags);
2414 return 0;
2417 *nr += refs;
2418 SetPageReferenced(head);
2419 return 1;
2422 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2423 unsigned int pdshift, unsigned long end, unsigned int flags,
2424 struct page **pages, int *nr)
2426 pte_t *ptep;
2427 unsigned long sz = 1UL << hugepd_shift(hugepd);
2428 unsigned long next;
2430 ptep = hugepte_offset(hugepd, addr, pdshift);
2431 do {
2432 next = hugepte_addr_end(addr, end, sz);
2433 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2434 return 0;
2435 } while (ptep++, addr = next, addr != end);
2437 return 1;
2439 #else
2440 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2441 unsigned int pdshift, unsigned long end, unsigned int flags,
2442 struct page **pages, int *nr)
2444 return 0;
2446 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2448 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2449 unsigned long end, unsigned int flags,
2450 struct page **pages, int *nr)
2452 struct page *head, *page;
2453 int refs;
2455 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2456 return 0;
2458 if (pmd_devmap(orig)) {
2459 if (unlikely(flags & FOLL_LONGTERM))
2460 return 0;
2461 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2462 pages, nr);
2465 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2466 refs = record_subpages(page, addr, end, pages + *nr);
2468 head = try_grab_compound_head(pmd_page(orig), refs, flags);
2469 if (!head)
2470 return 0;
2472 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2473 put_compound_head(head, refs, flags);
2474 return 0;
2477 *nr += refs;
2478 SetPageReferenced(head);
2479 return 1;
2482 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2483 unsigned long end, unsigned int flags,
2484 struct page **pages, int *nr)
2486 struct page *head, *page;
2487 int refs;
2489 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2490 return 0;
2492 if (pud_devmap(orig)) {
2493 if (unlikely(flags & FOLL_LONGTERM))
2494 return 0;
2495 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2496 pages, nr);
2499 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2500 refs = record_subpages(page, addr, end, pages + *nr);
2502 head = try_grab_compound_head(pud_page(orig), refs, flags);
2503 if (!head)
2504 return 0;
2506 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2507 put_compound_head(head, refs, flags);
2508 return 0;
2511 *nr += refs;
2512 SetPageReferenced(head);
2513 return 1;
2516 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2517 unsigned long end, unsigned int flags,
2518 struct page **pages, int *nr)
2520 int refs;
2521 struct page *head, *page;
2523 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2524 return 0;
2526 BUILD_BUG_ON(pgd_devmap(orig));
2528 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2529 refs = record_subpages(page, addr, end, pages + *nr);
2531 head = try_grab_compound_head(pgd_page(orig), refs, flags);
2532 if (!head)
2533 return 0;
2535 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2536 put_compound_head(head, refs, flags);
2537 return 0;
2540 *nr += refs;
2541 SetPageReferenced(head);
2542 return 1;
2545 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2546 unsigned int flags, struct page **pages, int *nr)
2548 unsigned long next;
2549 pmd_t *pmdp;
2551 pmdp = pmd_offset(&pud, addr);
2552 do {
2553 pmd_t pmd = READ_ONCE(*pmdp);
2555 next = pmd_addr_end(addr, end);
2556 if (!pmd_present(pmd))
2557 return 0;
2559 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2560 pmd_devmap(pmd))) {
2562 * NUMA hinting faults need to be handled in the GUP
2563 * slowpath for accounting purposes and so that they
2564 * can be serialised against THP migration.
2566 if (pmd_protnone(pmd))
2567 return 0;
2569 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2570 pages, nr))
2571 return 0;
2573 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2575 * architecture have different format for hugetlbfs
2576 * pmd format and THP pmd format
2578 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2579 PMD_SHIFT, next, flags, pages, nr))
2580 return 0;
2581 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2582 return 0;
2583 } while (pmdp++, addr = next, addr != end);
2585 return 1;
2588 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2589 unsigned int flags, struct page **pages, int *nr)
2591 unsigned long next;
2592 pud_t *pudp;
2594 pudp = pud_offset(&p4d, addr);
2595 do {
2596 pud_t pud = READ_ONCE(*pudp);
2598 next = pud_addr_end(addr, end);
2599 if (unlikely(!pud_present(pud)))
2600 return 0;
2601 if (unlikely(pud_huge(pud))) {
2602 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2603 pages, nr))
2604 return 0;
2605 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2606 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2607 PUD_SHIFT, next, flags, pages, nr))
2608 return 0;
2609 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2610 return 0;
2611 } while (pudp++, addr = next, addr != end);
2613 return 1;
2616 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2617 unsigned int flags, struct page **pages, int *nr)
2619 unsigned long next;
2620 p4d_t *p4dp;
2622 p4dp = p4d_offset(&pgd, addr);
2623 do {
2624 p4d_t p4d = READ_ONCE(*p4dp);
2626 next = p4d_addr_end(addr, end);
2627 if (p4d_none(p4d))
2628 return 0;
2629 BUILD_BUG_ON(p4d_huge(p4d));
2630 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2631 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2632 P4D_SHIFT, next, flags, pages, nr))
2633 return 0;
2634 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2635 return 0;
2636 } while (p4dp++, addr = next, addr != end);
2638 return 1;
2641 static void gup_pgd_range(unsigned long addr, unsigned long end,
2642 unsigned int flags, struct page **pages, int *nr)
2644 unsigned long next;
2645 pgd_t *pgdp;
2647 pgdp = pgd_offset(current->mm, addr);
2648 do {
2649 pgd_t pgd = READ_ONCE(*pgdp);
2651 next = pgd_addr_end(addr, end);
2652 if (pgd_none(pgd))
2653 return;
2654 if (unlikely(pgd_huge(pgd))) {
2655 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2656 pages, nr))
2657 return;
2658 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2659 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2660 PGDIR_SHIFT, next, flags, pages, nr))
2661 return;
2662 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2663 return;
2664 } while (pgdp++, addr = next, addr != end);
2666 #else
2667 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2668 unsigned int flags, struct page **pages, int *nr)
2671 #endif /* CONFIG_HAVE_FAST_GUP */
2673 #ifndef gup_fast_permitted
2675 * Check if it's allowed to use __get_user_pages_fast() for the range, or
2676 * we need to fall back to the slow version:
2678 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2680 return true;
2682 #endif
2685 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2686 * the regular GUP.
2687 * Note a difference with get_user_pages_fast: this always returns the
2688 * number of pages pinned, 0 if no pages were pinned.
2690 * If the architecture does not support this function, simply return with no
2691 * pages pinned.
2693 * Careful, careful! COW breaking can go either way, so a non-write
2694 * access can get ambiguous page results. If you call this function without
2695 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2697 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2698 struct page **pages)
2700 unsigned long len, end;
2701 unsigned long flags;
2702 int nr_pinned = 0;
2704 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2705 * because gup fast is always a "pin with a +1 page refcount" request.
2707 unsigned int gup_flags = FOLL_GET;
2709 if (write)
2710 gup_flags |= FOLL_WRITE;
2712 start = untagged_addr(start) & PAGE_MASK;
2713 len = (unsigned long) nr_pages << PAGE_SHIFT;
2714 end = start + len;
2716 if (end <= start)
2717 return 0;
2718 if (unlikely(!access_ok((void __user *)start, len)))
2719 return 0;
2722 * Disable interrupts. We use the nested form as we can already have
2723 * interrupts disabled by get_futex_key.
2725 * With interrupts disabled, we block page table pages from being
2726 * freed from under us. See struct mmu_table_batch comments in
2727 * include/asm-generic/tlb.h for more details.
2729 * We do not adopt an rcu_read_lock(.) here as we also want to
2730 * block IPIs that come from THPs splitting.
2732 * NOTE! We allow read-only gup_fast() here, but you'd better be
2733 * careful about possible COW pages. You'll get _a_ COW page, but
2734 * not necessarily the one you intended to get depending on what
2735 * COW event happens after this. COW may break the page copy in a
2736 * random direction.
2739 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2740 gup_fast_permitted(start, end)) {
2741 local_irq_save(flags);
2742 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2743 local_irq_restore(flags);
2746 return nr_pinned;
2748 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2750 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2751 unsigned int gup_flags, struct page **pages)
2753 int ret;
2756 * FIXME: FOLL_LONGTERM does not work with
2757 * get_user_pages_unlocked() (see comments in that function)
2759 if (gup_flags & FOLL_LONGTERM) {
2760 down_read(&current->mm->mmap_sem);
2761 ret = __gup_longterm_locked(current, current->mm,
2762 start, nr_pages,
2763 pages, NULL, gup_flags);
2764 up_read(&current->mm->mmap_sem);
2765 } else {
2766 ret = get_user_pages_unlocked(start, nr_pages,
2767 pages, gup_flags);
2770 return ret;
2773 static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2774 unsigned int gup_flags,
2775 struct page **pages)
2777 unsigned long addr, len, end;
2778 int nr_pinned = 0, ret = 0;
2780 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2781 FOLL_FORCE | FOLL_PIN | FOLL_GET)))
2782 return -EINVAL;
2784 start = untagged_addr(start) & PAGE_MASK;
2785 addr = start;
2786 len = (unsigned long) nr_pages << PAGE_SHIFT;
2787 end = start + len;
2789 if (end <= start)
2790 return 0;
2791 if (unlikely(!access_ok((void __user *)start, len)))
2792 return -EFAULT;
2795 * The FAST_GUP case requires FOLL_WRITE even for pure reads,
2796 * because get_user_pages() may need to cause an early COW in
2797 * order to avoid confusing the normal COW routines. So only
2798 * targets that are already writable are safe to do by just
2799 * looking at the page tables.
2801 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2802 gup_fast_permitted(start, end)) {
2803 local_irq_disable();
2804 gup_pgd_range(addr, end, gup_flags | FOLL_WRITE, pages, &nr_pinned);
2805 local_irq_enable();
2806 ret = nr_pinned;
2809 if (nr_pinned < nr_pages) {
2810 /* Try to get the remaining pages with get_user_pages */
2811 start += nr_pinned << PAGE_SHIFT;
2812 pages += nr_pinned;
2814 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2815 gup_flags, pages);
2817 /* Have to be a bit careful with return values */
2818 if (nr_pinned > 0) {
2819 if (ret < 0)
2820 ret = nr_pinned;
2821 else
2822 ret += nr_pinned;
2826 return ret;
2830 * get_user_pages_fast() - pin user pages in memory
2831 * @start: starting user address
2832 * @nr_pages: number of pages from start to pin
2833 * @gup_flags: flags modifying pin behaviour
2834 * @pages: array that receives pointers to the pages pinned.
2835 * Should be at least nr_pages long.
2837 * Attempt to pin user pages in memory without taking mm->mmap_sem.
2838 * If not successful, it will fall back to taking the lock and
2839 * calling get_user_pages().
2841 * Returns number of pages pinned. This may be fewer than the number requested.
2842 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2843 * -errno.
2845 int get_user_pages_fast(unsigned long start, int nr_pages,
2846 unsigned int gup_flags, struct page **pages)
2849 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2850 * never directly by the caller, so enforce that:
2852 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2853 return -EINVAL;
2856 * The caller may or may not have explicitly set FOLL_GET; either way is
2857 * OK. However, internally (within mm/gup.c), gup fast variants must set
2858 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2859 * request.
2861 gup_flags |= FOLL_GET;
2862 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2864 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2867 * pin_user_pages_fast() - pin user pages in memory without taking locks
2869 * @start: starting user address
2870 * @nr_pages: number of pages from start to pin
2871 * @gup_flags: flags modifying pin behaviour
2872 * @pages: array that receives pointers to the pages pinned.
2873 * Should be at least nr_pages long.
2875 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2876 * get_user_pages_fast() for documentation on the function arguments, because
2877 * the arguments here are identical.
2879 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2880 * see Documentation/vm/pin_user_pages.rst for further details.
2882 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2883 * is NOT intended for Case 2 (RDMA: long-term pins).
2885 int pin_user_pages_fast(unsigned long start, int nr_pages,
2886 unsigned int gup_flags, struct page **pages)
2888 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2889 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2890 return -EINVAL;
2892 gup_flags |= FOLL_PIN;
2893 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2895 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2898 * pin_user_pages_remote() - pin pages of a remote process (task != current)
2900 * @tsk: the task_struct to use for page fault accounting, or
2901 * NULL if faults are not to be recorded.
2902 * @mm: mm_struct of target mm
2903 * @start: starting user address
2904 * @nr_pages: number of pages from start to pin
2905 * @gup_flags: flags modifying lookup behaviour
2906 * @pages: array that receives pointers to the pages pinned.
2907 * Should be at least nr_pages long. Or NULL, if caller
2908 * only intends to ensure the pages are faulted in.
2909 * @vmas: array of pointers to vmas corresponding to each page.
2910 * Or NULL if the caller does not require them.
2911 * @locked: pointer to lock flag indicating whether lock is held and
2912 * subsequently whether VM_FAULT_RETRY functionality can be
2913 * utilised. Lock must initially be held.
2915 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2916 * get_user_pages_remote() for documentation on the function arguments, because
2917 * the arguments here are identical.
2919 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2920 * see Documentation/vm/pin_user_pages.rst for details.
2922 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2923 * is NOT intended for Case 2 (RDMA: long-term pins).
2925 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
2926 unsigned long start, unsigned long nr_pages,
2927 unsigned int gup_flags, struct page **pages,
2928 struct vm_area_struct **vmas, int *locked)
2930 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2931 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2932 return -EINVAL;
2934 gup_flags |= FOLL_PIN;
2935 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
2936 pages, vmas, locked);
2938 EXPORT_SYMBOL(pin_user_pages_remote);
2941 * pin_user_pages() - pin user pages in memory for use by other devices
2943 * @start: starting user address
2944 * @nr_pages: number of pages from start to pin
2945 * @gup_flags: flags modifying lookup behaviour
2946 * @pages: array that receives pointers to the pages pinned.
2947 * Should be at least nr_pages long. Or NULL, if caller
2948 * only intends to ensure the pages are faulted in.
2949 * @vmas: array of pointers to vmas corresponding to each page.
2950 * Or NULL if the caller does not require them.
2952 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2953 * FOLL_PIN is set.
2955 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2956 * see Documentation/vm/pin_user_pages.rst for details.
2958 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2959 * is NOT intended for Case 2 (RDMA: long-term pins).
2961 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2962 unsigned int gup_flags, struct page **pages,
2963 struct vm_area_struct **vmas)
2965 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2966 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2967 return -EINVAL;
2969 gup_flags |= FOLL_PIN;
2970 return __gup_longterm_locked(current, current->mm, start, nr_pages,
2971 pages, vmas, gup_flags);
2973 EXPORT_SYMBOL(pin_user_pages);