1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2009 Red Hat, Inc.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
38 #include <asm/pgalloc.h>
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
49 unsigned long transparent_hugepage_flags __read_mostly
=
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG
)|
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
)|
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
60 static struct shrinker deferred_split_shrinker
;
62 static atomic_t huge_zero_refcount
;
63 struct page
*huge_zero_page __read_mostly
;
65 bool transparent_hugepage_enabled(struct vm_area_struct
*vma
)
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr
= (vma
->vm_end
& HPAGE_PMD_MASK
) - HPAGE_PMD_SIZE
;
70 if (!transhuge_vma_suitable(vma
, addr
))
72 if (vma_is_anonymous(vma
))
73 return __transparent_hugepage_enabled(vma
);
74 if (vma_is_shmem(vma
))
75 return shmem_huge_enabled(vma
);
80 static struct page
*get_huge_zero_page(void)
82 struct page
*zero_page
;
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount
)))
85 return READ_ONCE(huge_zero_page
);
87 zero_page
= alloc_pages((GFP_TRANSHUGE
| __GFP_ZERO
) & ~__GFP_MOVABLE
,
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED
);
93 count_vm_event(THP_ZERO_PAGE_ALLOC
);
95 if (cmpxchg(&huge_zero_page
, NULL
, zero_page
)) {
97 __free_pages(zero_page
, compound_order(zero_page
));
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount
, 2);
104 return READ_ONCE(huge_zero_page
);
107 static void put_huge_zero_page(void)
110 * Counter should never go to zero here. Only shrinker can put
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount
));
116 struct page
*mm_get_huge_zero_page(struct mm_struct
*mm
)
118 if (test_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
119 return READ_ONCE(huge_zero_page
);
121 if (!get_huge_zero_page())
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
125 put_huge_zero_page();
127 return READ_ONCE(huge_zero_page
);
130 void mm_put_huge_zero_page(struct mm_struct
*mm
)
132 if (test_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
133 put_huge_zero_page();
136 static unsigned long shrink_huge_zero_page_count(struct shrinker
*shrink
,
137 struct shrink_control
*sc
)
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount
) == 1 ? HPAGE_PMD_NR
: 0;
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker
*shrink
,
144 struct shrink_control
*sc
)
146 if (atomic_cmpxchg(&huge_zero_refcount
, 1, 0) == 1) {
147 struct page
*zero_page
= xchg(&huge_zero_page
, NULL
);
148 BUG_ON(zero_page
== NULL
);
149 __free_pages(zero_page
, compound_order(zero_page
));
156 static struct shrinker huge_zero_page_shrinker
= {
157 .count_objects
= shrink_huge_zero_page_count
,
158 .scan_objects
= shrink_huge_zero_page_scan
,
159 .seeks
= DEFAULT_SEEKS
,
163 static ssize_t
enabled_show(struct kobject
*kobj
,
164 struct kobj_attribute
*attr
, char *buf
)
166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
))
167 return sprintf(buf
, "[always] madvise never\n");
168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
169 return sprintf(buf
, "always [madvise] never\n");
171 return sprintf(buf
, "always madvise [never]\n");
174 static ssize_t
enabled_store(struct kobject
*kobj
,
175 struct kobj_attribute
*attr
,
176 const char *buf
, size_t count
)
180 if (sysfs_streq(buf
, "always")) {
181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
182 set_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
183 } else if (sysfs_streq(buf
, "madvise")) {
184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
185 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
186 } else if (sysfs_streq(buf
, "never")) {
187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
188 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
193 int err
= start_stop_khugepaged();
199 static struct kobj_attribute enabled_attr
=
200 __ATTR(enabled
, 0644, enabled_show
, enabled_store
);
202 ssize_t
single_hugepage_flag_show(struct kobject
*kobj
,
203 struct kobj_attribute
*attr
, char *buf
,
204 enum transparent_hugepage_flag flag
)
206 return sprintf(buf
, "%d\n",
207 !!test_bit(flag
, &transparent_hugepage_flags
));
210 ssize_t
single_hugepage_flag_store(struct kobject
*kobj
,
211 struct kobj_attribute
*attr
,
212 const char *buf
, size_t count
,
213 enum transparent_hugepage_flag flag
)
218 ret
= kstrtoul(buf
, 10, &value
);
225 set_bit(flag
, &transparent_hugepage_flags
);
227 clear_bit(flag
, &transparent_hugepage_flags
);
232 static ssize_t
defrag_show(struct kobject
*kobj
,
233 struct kobj_attribute
*attr
, char *buf
)
235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
))
236 return sprintf(buf
, "[always] defer defer+madvise madvise never\n");
237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
))
238 return sprintf(buf
, "always [defer] defer+madvise madvise never\n");
239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
))
240 return sprintf(buf
, "always defer [defer+madvise] madvise never\n");
241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
242 return sprintf(buf
, "always defer defer+madvise [madvise] never\n");
243 return sprintf(buf
, "always defer defer+madvise madvise [never]\n");
246 static ssize_t
defrag_store(struct kobject
*kobj
,
247 struct kobj_attribute
*attr
,
248 const char *buf
, size_t count
)
250 if (sysfs_streq(buf
, "always")) {
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
255 } else if (sysfs_streq(buf
, "defer+madvise")) {
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
260 } else if (sysfs_streq(buf
, "defer")) {
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
265 } else if (sysfs_streq(buf
, "madvise")) {
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
270 } else if (sysfs_streq(buf
, "never")) {
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
280 static struct kobj_attribute defrag_attr
=
281 __ATTR(defrag
, 0644, defrag_show
, defrag_store
);
283 static ssize_t
use_zero_page_show(struct kobject
*kobj
,
284 struct kobj_attribute
*attr
, char *buf
)
286 return single_hugepage_flag_show(kobj
, attr
, buf
,
287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
289 static ssize_t
use_zero_page_store(struct kobject
*kobj
,
290 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
292 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
293 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
295 static struct kobj_attribute use_zero_page_attr
=
296 __ATTR(use_zero_page
, 0644, use_zero_page_show
, use_zero_page_store
);
298 static ssize_t
hpage_pmd_size_show(struct kobject
*kobj
,
299 struct kobj_attribute
*attr
, char *buf
)
301 return sprintf(buf
, "%lu\n", HPAGE_PMD_SIZE
);
303 static struct kobj_attribute hpage_pmd_size_attr
=
304 __ATTR_RO(hpage_pmd_size
);
306 #ifdef CONFIG_DEBUG_VM
307 static ssize_t
debug_cow_show(struct kobject
*kobj
,
308 struct kobj_attribute
*attr
, char *buf
)
310 return single_hugepage_flag_show(kobj
, attr
, buf
,
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
313 static ssize_t
debug_cow_store(struct kobject
*kobj
,
314 struct kobj_attribute
*attr
,
315 const char *buf
, size_t count
)
317 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
318 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
320 static struct kobj_attribute debug_cow_attr
=
321 __ATTR(debug_cow
, 0644, debug_cow_show
, debug_cow_store
);
322 #endif /* CONFIG_DEBUG_VM */
324 static struct attribute
*hugepage_attr
[] = {
327 &use_zero_page_attr
.attr
,
328 &hpage_pmd_size_attr
.attr
,
330 &shmem_enabled_attr
.attr
,
332 #ifdef CONFIG_DEBUG_VM
333 &debug_cow_attr
.attr
,
338 static const struct attribute_group hugepage_attr_group
= {
339 .attrs
= hugepage_attr
,
342 static int __init
hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
346 *hugepage_kobj
= kobject_create_and_add("transparent_hugepage", mm_kobj
);
347 if (unlikely(!*hugepage_kobj
)) {
348 pr_err("failed to create transparent hugepage kobject\n");
352 err
= sysfs_create_group(*hugepage_kobj
, &hugepage_attr_group
);
354 pr_err("failed to register transparent hugepage group\n");
358 err
= sysfs_create_group(*hugepage_kobj
, &khugepaged_attr_group
);
360 pr_err("failed to register transparent hugepage group\n");
361 goto remove_hp_group
;
367 sysfs_remove_group(*hugepage_kobj
, &hugepage_attr_group
);
369 kobject_put(*hugepage_kobj
);
373 static void __init
hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
375 sysfs_remove_group(hugepage_kobj
, &khugepaged_attr_group
);
376 sysfs_remove_group(hugepage_kobj
, &hugepage_attr_group
);
377 kobject_put(hugepage_kobj
);
380 static inline int hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
385 static inline void hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
388 #endif /* CONFIG_SYSFS */
390 static int __init
hugepage_init(void)
393 struct kobject
*hugepage_kobj
;
395 if (!has_transparent_hugepage()) {
396 transparent_hugepage_flags
= 0;
401 * hugepages can't be allocated by the buddy allocator
403 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER
>= MAX_ORDER
);
405 * we use page->mapping and page->index in second tail page
406 * as list_head: assuming THP order >= 2
408 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER
< 2);
410 err
= hugepage_init_sysfs(&hugepage_kobj
);
414 err
= khugepaged_init();
418 err
= register_shrinker(&huge_zero_page_shrinker
);
420 goto err_hzp_shrinker
;
421 err
= register_shrinker(&deferred_split_shrinker
);
423 goto err_split_shrinker
;
426 * By default disable transparent hugepages on smaller systems,
427 * where the extra memory used could hurt more than TLB overhead
428 * is likely to save. The admin can still enable it through /sys.
430 if (totalram_pages() < (512 << (20 - PAGE_SHIFT
))) {
431 transparent_hugepage_flags
= 0;
435 err
= start_stop_khugepaged();
441 unregister_shrinker(&deferred_split_shrinker
);
443 unregister_shrinker(&huge_zero_page_shrinker
);
445 khugepaged_destroy();
447 hugepage_exit_sysfs(hugepage_kobj
);
451 subsys_initcall(hugepage_init
);
453 static int __init
setup_transparent_hugepage(char *str
)
458 if (!strcmp(str
, "always")) {
459 set_bit(TRANSPARENT_HUGEPAGE_FLAG
,
460 &transparent_hugepage_flags
);
461 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
462 &transparent_hugepage_flags
);
464 } else if (!strcmp(str
, "madvise")) {
465 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
466 &transparent_hugepage_flags
);
467 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
468 &transparent_hugepage_flags
);
470 } else if (!strcmp(str
, "never")) {
471 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
472 &transparent_hugepage_flags
);
473 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
474 &transparent_hugepage_flags
);
479 pr_warn("transparent_hugepage= cannot parse, ignored\n");
482 __setup("transparent_hugepage=", setup_transparent_hugepage
);
484 pmd_t
maybe_pmd_mkwrite(pmd_t pmd
, struct vm_area_struct
*vma
)
486 if (likely(vma
->vm_flags
& VM_WRITE
))
487 pmd
= pmd_mkwrite(pmd
);
492 static inline struct deferred_split
*get_deferred_split_queue(struct page
*page
)
494 struct mem_cgroup
*memcg
= compound_head(page
)->mem_cgroup
;
495 struct pglist_data
*pgdat
= NODE_DATA(page_to_nid(page
));
498 return &memcg
->deferred_split_queue
;
500 return &pgdat
->deferred_split_queue
;
503 static inline struct deferred_split
*get_deferred_split_queue(struct page
*page
)
505 struct pglist_data
*pgdat
= NODE_DATA(page_to_nid(page
));
507 return &pgdat
->deferred_split_queue
;
511 void prep_transhuge_page(struct page
*page
)
514 * we use page->mapping and page->indexlru in second tail page
515 * as list_head: assuming THP order >= 2
518 INIT_LIST_HEAD(page_deferred_list(page
));
519 set_compound_page_dtor(page
, TRANSHUGE_PAGE_DTOR
);
522 bool is_transparent_hugepage(struct page
*page
)
524 if (!PageCompound(page
))
527 page
= compound_head(page
);
528 return is_huge_zero_page(page
) ||
529 page
[1].compound_dtor
== TRANSHUGE_PAGE_DTOR
;
531 EXPORT_SYMBOL_GPL(is_transparent_hugepage
);
533 static unsigned long __thp_get_unmapped_area(struct file
*filp
,
534 unsigned long addr
, unsigned long len
,
535 loff_t off
, unsigned long flags
, unsigned long size
)
537 loff_t off_end
= off
+ len
;
538 loff_t off_align
= round_up(off
, size
);
539 unsigned long len_pad
, ret
;
541 if (off_end
<= off_align
|| (off_end
- off_align
) < size
)
544 len_pad
= len
+ size
;
545 if (len_pad
< len
|| (off
+ len_pad
) < off
)
548 ret
= current
->mm
->get_unmapped_area(filp
, addr
, len_pad
,
549 off
>> PAGE_SHIFT
, flags
);
552 * The failure might be due to length padding. The caller will retry
553 * without the padding.
555 if (IS_ERR_VALUE(ret
))
559 * Do not try to align to THP boundary if allocation at the address
565 ret
+= (off
- ret
) & (size
- 1);
569 unsigned long thp_get_unmapped_area(struct file
*filp
, unsigned long addr
,
570 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
573 loff_t off
= (loff_t
)pgoff
<< PAGE_SHIFT
;
575 if (!IS_DAX(filp
->f_mapping
->host
) || !IS_ENABLED(CONFIG_FS_DAX_PMD
))
578 ret
= __thp_get_unmapped_area(filp
, addr
, len
, off
, flags
, PMD_SIZE
);
582 return current
->mm
->get_unmapped_area(filp
, addr
, len
, pgoff
, flags
);
584 EXPORT_SYMBOL_GPL(thp_get_unmapped_area
);
586 static vm_fault_t
__do_huge_pmd_anonymous_page(struct vm_fault
*vmf
,
587 struct page
*page
, gfp_t gfp
)
589 struct vm_area_struct
*vma
= vmf
->vma
;
590 struct mem_cgroup
*memcg
;
592 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
595 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
597 if (mem_cgroup_try_charge_delay(page
, vma
->vm_mm
, gfp
, &memcg
, true)) {
599 count_vm_event(THP_FAULT_FALLBACK
);
600 count_vm_event(THP_FAULT_FALLBACK_CHARGE
);
601 return VM_FAULT_FALLBACK
;
604 pgtable
= pte_alloc_one(vma
->vm_mm
);
605 if (unlikely(!pgtable
)) {
610 clear_huge_page(page
, vmf
->address
, HPAGE_PMD_NR
);
612 * The memory barrier inside __SetPageUptodate makes sure that
613 * clear_huge_page writes become visible before the set_pmd_at()
616 __SetPageUptodate(page
);
618 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
619 if (unlikely(!pmd_none(*vmf
->pmd
))) {
624 ret
= check_stable_address_space(vma
->vm_mm
);
628 /* Deliver the page fault to userland */
629 if (userfaultfd_missing(vma
)) {
632 spin_unlock(vmf
->ptl
);
633 mem_cgroup_cancel_charge(page
, memcg
, true);
635 pte_free(vma
->vm_mm
, pgtable
);
636 ret2
= handle_userfault(vmf
, VM_UFFD_MISSING
);
637 VM_BUG_ON(ret2
& VM_FAULT_FALLBACK
);
641 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
642 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
643 page_add_new_anon_rmap(page
, vma
, haddr
, true);
644 mem_cgroup_commit_charge(page
, memcg
, false, true);
645 lru_cache_add_active_or_unevictable(page
, vma
);
646 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, pgtable
);
647 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
648 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
649 mm_inc_nr_ptes(vma
->vm_mm
);
650 spin_unlock(vmf
->ptl
);
651 count_vm_event(THP_FAULT_ALLOC
);
652 count_memcg_events(memcg
, THP_FAULT_ALLOC
, 1);
657 spin_unlock(vmf
->ptl
);
660 pte_free(vma
->vm_mm
, pgtable
);
661 mem_cgroup_cancel_charge(page
, memcg
, true);
668 * always: directly stall for all thp allocations
669 * defer: wake kswapd and fail if not immediately available
670 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
671 * fail if not immediately available
672 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
674 * never: never stall for any thp allocation
676 static inline gfp_t
alloc_hugepage_direct_gfpmask(struct vm_area_struct
*vma
)
678 const bool vma_madvised
= !!(vma
->vm_flags
& VM_HUGEPAGE
);
680 /* Always do synchronous compaction */
681 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
))
682 return GFP_TRANSHUGE
| (vma_madvised
? 0 : __GFP_NORETRY
);
684 /* Kick kcompactd and fail quickly */
685 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
))
686 return GFP_TRANSHUGE_LIGHT
| __GFP_KSWAPD_RECLAIM
;
688 /* Synchronous compaction if madvised, otherwise kick kcompactd */
689 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
))
690 return GFP_TRANSHUGE_LIGHT
|
691 (vma_madvised
? __GFP_DIRECT_RECLAIM
:
692 __GFP_KSWAPD_RECLAIM
);
694 /* Only do synchronous compaction if madvised */
695 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
696 return GFP_TRANSHUGE_LIGHT
|
697 (vma_madvised
? __GFP_DIRECT_RECLAIM
: 0);
699 return GFP_TRANSHUGE_LIGHT
;
702 /* Caller must hold page table lock. */
703 static bool set_huge_zero_page(pgtable_t pgtable
, struct mm_struct
*mm
,
704 struct vm_area_struct
*vma
, unsigned long haddr
, pmd_t
*pmd
,
705 struct page
*zero_page
)
710 entry
= mk_pmd(zero_page
, vma
->vm_page_prot
);
711 entry
= pmd_mkhuge(entry
);
713 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
714 set_pmd_at(mm
, haddr
, pmd
, entry
);
719 vm_fault_t
do_huge_pmd_anonymous_page(struct vm_fault
*vmf
)
721 struct vm_area_struct
*vma
= vmf
->vma
;
724 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
726 if (!transhuge_vma_suitable(vma
, haddr
))
727 return VM_FAULT_FALLBACK
;
728 if (unlikely(anon_vma_prepare(vma
)))
730 if (unlikely(khugepaged_enter(vma
, vma
->vm_flags
)))
732 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
733 !mm_forbids_zeropage(vma
->vm_mm
) &&
734 transparent_hugepage_use_zero_page()) {
736 struct page
*zero_page
;
739 pgtable
= pte_alloc_one(vma
->vm_mm
);
740 if (unlikely(!pgtable
))
742 zero_page
= mm_get_huge_zero_page(vma
->vm_mm
);
743 if (unlikely(!zero_page
)) {
744 pte_free(vma
->vm_mm
, pgtable
);
745 count_vm_event(THP_FAULT_FALLBACK
);
746 return VM_FAULT_FALLBACK
;
748 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
751 if (pmd_none(*vmf
->pmd
)) {
752 ret
= check_stable_address_space(vma
->vm_mm
);
754 spin_unlock(vmf
->ptl
);
755 } else if (userfaultfd_missing(vma
)) {
756 spin_unlock(vmf
->ptl
);
757 ret
= handle_userfault(vmf
, VM_UFFD_MISSING
);
758 VM_BUG_ON(ret
& VM_FAULT_FALLBACK
);
760 set_huge_zero_page(pgtable
, vma
->vm_mm
, vma
,
761 haddr
, vmf
->pmd
, zero_page
);
762 spin_unlock(vmf
->ptl
);
766 spin_unlock(vmf
->ptl
);
768 pte_free(vma
->vm_mm
, pgtable
);
771 gfp
= alloc_hugepage_direct_gfpmask(vma
);
772 page
= alloc_hugepage_vma(gfp
, vma
, haddr
, HPAGE_PMD_ORDER
);
773 if (unlikely(!page
)) {
774 count_vm_event(THP_FAULT_FALLBACK
);
775 return VM_FAULT_FALLBACK
;
777 prep_transhuge_page(page
);
778 return __do_huge_pmd_anonymous_page(vmf
, page
, gfp
);
781 static void insert_pfn_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
782 pmd_t
*pmd
, pfn_t pfn
, pgprot_t prot
, bool write
,
785 struct mm_struct
*mm
= vma
->vm_mm
;
789 ptl
= pmd_lock(mm
, pmd
);
790 if (!pmd_none(*pmd
)) {
792 if (pmd_pfn(*pmd
) != pfn_t_to_pfn(pfn
)) {
793 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd
));
796 entry
= pmd_mkyoung(*pmd
);
797 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
798 if (pmdp_set_access_flags(vma
, addr
, pmd
, entry
, 1))
799 update_mmu_cache_pmd(vma
, addr
, pmd
);
805 entry
= pmd_mkhuge(pfn_t_pmd(pfn
, prot
));
806 if (pfn_t_devmap(pfn
))
807 entry
= pmd_mkdevmap(entry
);
809 entry
= pmd_mkyoung(pmd_mkdirty(entry
));
810 entry
= maybe_pmd_mkwrite(entry
, vma
);
814 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
819 set_pmd_at(mm
, addr
, pmd
, entry
);
820 update_mmu_cache_pmd(vma
, addr
, pmd
);
825 pte_free(mm
, pgtable
);
829 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
830 * @vmf: Structure describing the fault
831 * @pfn: pfn to insert
832 * @pgprot: page protection to use
833 * @write: whether it's a write fault
835 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
836 * also consult the vmf_insert_mixed_prot() documentation when
837 * @pgprot != @vmf->vma->vm_page_prot.
839 * Return: vm_fault_t value.
841 vm_fault_t
vmf_insert_pfn_pmd_prot(struct vm_fault
*vmf
, pfn_t pfn
,
842 pgprot_t pgprot
, bool write
)
844 unsigned long addr
= vmf
->address
& PMD_MASK
;
845 struct vm_area_struct
*vma
= vmf
->vma
;
846 pgtable_t pgtable
= NULL
;
849 * If we had pmd_special, we could avoid all these restrictions,
850 * but we need to be consistent with PTEs and architectures that
851 * can't support a 'special' bit.
853 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) &&
855 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
856 (VM_PFNMAP
|VM_MIXEDMAP
));
857 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
859 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
860 return VM_FAULT_SIGBUS
;
862 if (arch_needs_pgtable_deposit()) {
863 pgtable
= pte_alloc_one(vma
->vm_mm
);
868 track_pfn_insert(vma
, &pgprot
, pfn
);
870 insert_pfn_pmd(vma
, addr
, vmf
->pmd
, pfn
, pgprot
, write
, pgtable
);
871 return VM_FAULT_NOPAGE
;
873 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot
);
875 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
876 static pud_t
maybe_pud_mkwrite(pud_t pud
, struct vm_area_struct
*vma
)
878 if (likely(vma
->vm_flags
& VM_WRITE
))
879 pud
= pud_mkwrite(pud
);
883 static void insert_pfn_pud(struct vm_area_struct
*vma
, unsigned long addr
,
884 pud_t
*pud
, pfn_t pfn
, pgprot_t prot
, bool write
)
886 struct mm_struct
*mm
= vma
->vm_mm
;
890 ptl
= pud_lock(mm
, pud
);
891 if (!pud_none(*pud
)) {
893 if (pud_pfn(*pud
) != pfn_t_to_pfn(pfn
)) {
894 WARN_ON_ONCE(!is_huge_zero_pud(*pud
));
897 entry
= pud_mkyoung(*pud
);
898 entry
= maybe_pud_mkwrite(pud_mkdirty(entry
), vma
);
899 if (pudp_set_access_flags(vma
, addr
, pud
, entry
, 1))
900 update_mmu_cache_pud(vma
, addr
, pud
);
905 entry
= pud_mkhuge(pfn_t_pud(pfn
, prot
));
906 if (pfn_t_devmap(pfn
))
907 entry
= pud_mkdevmap(entry
);
909 entry
= pud_mkyoung(pud_mkdirty(entry
));
910 entry
= maybe_pud_mkwrite(entry
, vma
);
912 set_pud_at(mm
, addr
, pud
, entry
);
913 update_mmu_cache_pud(vma
, addr
, pud
);
920 * vmf_insert_pfn_pud_prot - insert a pud size pfn
921 * @vmf: Structure describing the fault
922 * @pfn: pfn to insert
923 * @pgprot: page protection to use
924 * @write: whether it's a write fault
926 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
927 * also consult the vmf_insert_mixed_prot() documentation when
928 * @pgprot != @vmf->vma->vm_page_prot.
930 * Return: vm_fault_t value.
932 vm_fault_t
vmf_insert_pfn_pud_prot(struct vm_fault
*vmf
, pfn_t pfn
,
933 pgprot_t pgprot
, bool write
)
935 unsigned long addr
= vmf
->address
& PUD_MASK
;
936 struct vm_area_struct
*vma
= vmf
->vma
;
939 * If we had pud_special, we could avoid all these restrictions,
940 * but we need to be consistent with PTEs and architectures that
941 * can't support a 'special' bit.
943 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) &&
945 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
946 (VM_PFNMAP
|VM_MIXEDMAP
));
947 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
949 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
950 return VM_FAULT_SIGBUS
;
952 track_pfn_insert(vma
, &pgprot
, pfn
);
954 insert_pfn_pud(vma
, addr
, vmf
->pud
, pfn
, pgprot
, write
);
955 return VM_FAULT_NOPAGE
;
957 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot
);
958 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
960 static void touch_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
961 pmd_t
*pmd
, int flags
)
965 _pmd
= pmd_mkyoung(*pmd
);
966 if (flags
& FOLL_WRITE
)
967 _pmd
= pmd_mkdirty(_pmd
);
968 if (pmdp_set_access_flags(vma
, addr
& HPAGE_PMD_MASK
,
969 pmd
, _pmd
, flags
& FOLL_WRITE
))
970 update_mmu_cache_pmd(vma
, addr
, pmd
);
973 struct page
*follow_devmap_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
974 pmd_t
*pmd
, int flags
, struct dev_pagemap
**pgmap
)
976 unsigned long pfn
= pmd_pfn(*pmd
);
977 struct mm_struct
*mm
= vma
->vm_mm
;
980 assert_spin_locked(pmd_lockptr(mm
, pmd
));
983 * When we COW a devmap PMD entry, we split it into PTEs, so we should
984 * not be in this function with `flags & FOLL_COW` set.
986 WARN_ONCE(flags
& FOLL_COW
, "mm: In follow_devmap_pmd with FOLL_COW set");
988 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
989 if (WARN_ON_ONCE((flags
& (FOLL_PIN
| FOLL_GET
)) ==
990 (FOLL_PIN
| FOLL_GET
)))
993 if (flags
& FOLL_WRITE
&& !pmd_write(*pmd
))
996 if (pmd_present(*pmd
) && pmd_devmap(*pmd
))
1001 if (flags
& FOLL_TOUCH
)
1002 touch_pmd(vma
, addr
, pmd
, flags
);
1005 * device mapped pages can only be returned if the
1006 * caller will manage the page reference count.
1008 if (!(flags
& (FOLL_GET
| FOLL_PIN
)))
1009 return ERR_PTR(-EEXIST
);
1011 pfn
+= (addr
& ~PMD_MASK
) >> PAGE_SHIFT
;
1012 *pgmap
= get_dev_pagemap(pfn
, *pgmap
);
1014 return ERR_PTR(-EFAULT
);
1015 page
= pfn_to_page(pfn
);
1016 if (!try_grab_page(page
, flags
))
1017 page
= ERR_PTR(-ENOMEM
);
1022 int copy_huge_pmd(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1023 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, unsigned long addr
,
1024 struct vm_area_struct
*vma
)
1026 spinlock_t
*dst_ptl
, *src_ptl
;
1027 struct page
*src_page
;
1029 pgtable_t pgtable
= NULL
;
1032 /* Skip if can be re-fill on fault */
1033 if (!vma_is_anonymous(vma
))
1036 pgtable
= pte_alloc_one(dst_mm
);
1037 if (unlikely(!pgtable
))
1040 dst_ptl
= pmd_lock(dst_mm
, dst_pmd
);
1041 src_ptl
= pmd_lockptr(src_mm
, src_pmd
);
1042 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
1048 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1049 * does not have the VM_UFFD_WP, which means that the uffd
1050 * fork event is not enabled.
1052 if (!(vma
->vm_flags
& VM_UFFD_WP
))
1053 pmd
= pmd_clear_uffd_wp(pmd
);
1055 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1056 if (unlikely(is_swap_pmd(pmd
))) {
1057 swp_entry_t entry
= pmd_to_swp_entry(pmd
);
1059 VM_BUG_ON(!is_pmd_migration_entry(pmd
));
1060 if (is_write_migration_entry(entry
)) {
1061 make_migration_entry_read(&entry
);
1062 pmd
= swp_entry_to_pmd(entry
);
1063 if (pmd_swp_soft_dirty(*src_pmd
))
1064 pmd
= pmd_swp_mksoft_dirty(pmd
);
1065 set_pmd_at(src_mm
, addr
, src_pmd
, pmd
);
1067 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1068 mm_inc_nr_ptes(dst_mm
);
1069 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
1070 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
1076 if (unlikely(!pmd_trans_huge(pmd
))) {
1077 pte_free(dst_mm
, pgtable
);
1081 * When page table lock is held, the huge zero pmd should not be
1082 * under splitting since we don't split the page itself, only pmd to
1085 if (is_huge_zero_pmd(pmd
)) {
1086 struct page
*zero_page
;
1088 * get_huge_zero_page() will never allocate a new page here,
1089 * since we already have a zero page to copy. It just takes a
1092 zero_page
= mm_get_huge_zero_page(dst_mm
);
1093 set_huge_zero_page(pgtable
, dst_mm
, vma
, addr
, dst_pmd
,
1099 src_page
= pmd_page(pmd
);
1100 VM_BUG_ON_PAGE(!PageHead(src_page
), src_page
);
1102 page_dup_rmap(src_page
, true);
1103 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1104 mm_inc_nr_ptes(dst_mm
);
1105 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
1107 pmdp_set_wrprotect(src_mm
, addr
, src_pmd
);
1108 pmd
= pmd_mkold(pmd_wrprotect(pmd
));
1109 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
1113 spin_unlock(src_ptl
);
1114 spin_unlock(dst_ptl
);
1119 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1120 static void touch_pud(struct vm_area_struct
*vma
, unsigned long addr
,
1121 pud_t
*pud
, int flags
)
1125 _pud
= pud_mkyoung(*pud
);
1126 if (flags
& FOLL_WRITE
)
1127 _pud
= pud_mkdirty(_pud
);
1128 if (pudp_set_access_flags(vma
, addr
& HPAGE_PUD_MASK
,
1129 pud
, _pud
, flags
& FOLL_WRITE
))
1130 update_mmu_cache_pud(vma
, addr
, pud
);
1133 struct page
*follow_devmap_pud(struct vm_area_struct
*vma
, unsigned long addr
,
1134 pud_t
*pud
, int flags
, struct dev_pagemap
**pgmap
)
1136 unsigned long pfn
= pud_pfn(*pud
);
1137 struct mm_struct
*mm
= vma
->vm_mm
;
1140 assert_spin_locked(pud_lockptr(mm
, pud
));
1142 if (flags
& FOLL_WRITE
&& !pud_write(*pud
))
1145 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1146 if (WARN_ON_ONCE((flags
& (FOLL_PIN
| FOLL_GET
)) ==
1147 (FOLL_PIN
| FOLL_GET
)))
1150 if (pud_present(*pud
) && pud_devmap(*pud
))
1155 if (flags
& FOLL_TOUCH
)
1156 touch_pud(vma
, addr
, pud
, flags
);
1159 * device mapped pages can only be returned if the
1160 * caller will manage the page reference count.
1162 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1164 if (!(flags
& (FOLL_GET
| FOLL_PIN
)))
1165 return ERR_PTR(-EEXIST
);
1167 pfn
+= (addr
& ~PUD_MASK
) >> PAGE_SHIFT
;
1168 *pgmap
= get_dev_pagemap(pfn
, *pgmap
);
1170 return ERR_PTR(-EFAULT
);
1171 page
= pfn_to_page(pfn
);
1172 if (!try_grab_page(page
, flags
))
1173 page
= ERR_PTR(-ENOMEM
);
1178 int copy_huge_pud(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1179 pud_t
*dst_pud
, pud_t
*src_pud
, unsigned long addr
,
1180 struct vm_area_struct
*vma
)
1182 spinlock_t
*dst_ptl
, *src_ptl
;
1186 dst_ptl
= pud_lock(dst_mm
, dst_pud
);
1187 src_ptl
= pud_lockptr(src_mm
, src_pud
);
1188 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
1192 if (unlikely(!pud_trans_huge(pud
) && !pud_devmap(pud
)))
1196 * When page table lock is held, the huge zero pud should not be
1197 * under splitting since we don't split the page itself, only pud to
1200 if (is_huge_zero_pud(pud
)) {
1201 /* No huge zero pud yet */
1204 pudp_set_wrprotect(src_mm
, addr
, src_pud
);
1205 pud
= pud_mkold(pud_wrprotect(pud
));
1206 set_pud_at(dst_mm
, addr
, dst_pud
, pud
);
1210 spin_unlock(src_ptl
);
1211 spin_unlock(dst_ptl
);
1215 void huge_pud_set_accessed(struct vm_fault
*vmf
, pud_t orig_pud
)
1218 unsigned long haddr
;
1219 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1221 vmf
->ptl
= pud_lock(vmf
->vma
->vm_mm
, vmf
->pud
);
1222 if (unlikely(!pud_same(*vmf
->pud
, orig_pud
)))
1225 entry
= pud_mkyoung(orig_pud
);
1227 entry
= pud_mkdirty(entry
);
1228 haddr
= vmf
->address
& HPAGE_PUD_MASK
;
1229 if (pudp_set_access_flags(vmf
->vma
, haddr
, vmf
->pud
, entry
, write
))
1230 update_mmu_cache_pud(vmf
->vma
, vmf
->address
, vmf
->pud
);
1233 spin_unlock(vmf
->ptl
);
1235 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1237 void huge_pmd_set_accessed(struct vm_fault
*vmf
, pmd_t orig_pmd
)
1240 unsigned long haddr
;
1241 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1243 vmf
->ptl
= pmd_lock(vmf
->vma
->vm_mm
, vmf
->pmd
);
1244 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
)))
1247 entry
= pmd_mkyoung(orig_pmd
);
1249 entry
= pmd_mkdirty(entry
);
1250 haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1251 if (pmdp_set_access_flags(vmf
->vma
, haddr
, vmf
->pmd
, entry
, write
))
1252 update_mmu_cache_pmd(vmf
->vma
, vmf
->address
, vmf
->pmd
);
1255 spin_unlock(vmf
->ptl
);
1258 static vm_fault_t
do_huge_pmd_wp_page_fallback(struct vm_fault
*vmf
,
1259 pmd_t orig_pmd
, struct page
*page
)
1261 struct vm_area_struct
*vma
= vmf
->vma
;
1262 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1263 struct mem_cgroup
*memcg
;
1268 struct page
**pages
;
1269 struct mmu_notifier_range range
;
1271 pages
= kmalloc_array(HPAGE_PMD_NR
, sizeof(struct page
*),
1273 if (unlikely(!pages
)) {
1274 ret
|= VM_FAULT_OOM
;
1278 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1279 pages
[i
] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE
, vma
,
1280 vmf
->address
, page_to_nid(page
));
1281 if (unlikely(!pages
[i
] ||
1282 mem_cgroup_try_charge_delay(pages
[i
], vma
->vm_mm
,
1283 GFP_KERNEL
, &memcg
, false))) {
1287 memcg
= (void *)page_private(pages
[i
]);
1288 set_page_private(pages
[i
], 0);
1289 mem_cgroup_cancel_charge(pages
[i
], memcg
,
1294 ret
|= VM_FAULT_OOM
;
1297 set_page_private(pages
[i
], (unsigned long)memcg
);
1300 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1301 copy_user_highpage(pages
[i
], page
+ i
,
1302 haddr
+ PAGE_SIZE
* i
, vma
);
1303 __SetPageUptodate(pages
[i
]);
1307 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
1308 haddr
, haddr
+ HPAGE_PMD_SIZE
);
1309 mmu_notifier_invalidate_range_start(&range
);
1311 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
1312 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
)))
1313 goto out_free_pages
;
1314 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1317 * Leave pmd empty until pte is filled note we must notify here as
1318 * concurrent CPU thread might write to new page before the call to
1319 * mmu_notifier_invalidate_range_end() happens which can lead to a
1320 * device seeing memory write in different order than CPU.
1322 * See Documentation/vm/mmu_notifier.rst
1324 pmdp_huge_clear_flush_notify(vma
, haddr
, vmf
->pmd
);
1326 pgtable
= pgtable_trans_huge_withdraw(vma
->vm_mm
, vmf
->pmd
);
1327 pmd_populate(vma
->vm_mm
, &_pmd
, pgtable
);
1329 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
1331 entry
= mk_pte(pages
[i
], vma
->vm_page_prot
);
1332 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1333 memcg
= (void *)page_private(pages
[i
]);
1334 set_page_private(pages
[i
], 0);
1335 page_add_new_anon_rmap(pages
[i
], vmf
->vma
, haddr
, false);
1336 mem_cgroup_commit_charge(pages
[i
], memcg
, false, false);
1337 lru_cache_add_active_or_unevictable(pages
[i
], vma
);
1338 vmf
->pte
= pte_offset_map(&_pmd
, haddr
);
1339 VM_BUG_ON(!pte_none(*vmf
->pte
));
1340 set_pte_at(vma
->vm_mm
, haddr
, vmf
->pte
, entry
);
1341 pte_unmap(vmf
->pte
);
1345 smp_wmb(); /* make pte visible before pmd */
1346 pmd_populate(vma
->vm_mm
, vmf
->pmd
, pgtable
);
1347 page_remove_rmap(page
, true);
1348 spin_unlock(vmf
->ptl
);
1351 * No need to double call mmu_notifier->invalidate_range() callback as
1352 * the above pmdp_huge_clear_flush_notify() did already call it.
1354 mmu_notifier_invalidate_range_only_end(&range
);
1356 ret
|= VM_FAULT_WRITE
;
1363 spin_unlock(vmf
->ptl
);
1364 mmu_notifier_invalidate_range_end(&range
);
1365 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1366 memcg
= (void *)page_private(pages
[i
]);
1367 set_page_private(pages
[i
], 0);
1368 mem_cgroup_cancel_charge(pages
[i
], memcg
, false);
1375 vm_fault_t
do_huge_pmd_wp_page(struct vm_fault
*vmf
, pmd_t orig_pmd
)
1377 struct vm_area_struct
*vma
= vmf
->vma
;
1378 struct page
*page
= NULL
, *new_page
;
1379 struct mem_cgroup
*memcg
;
1380 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1381 struct mmu_notifier_range range
;
1382 gfp_t huge_gfp
; /* for allocation and charge */
1385 vmf
->ptl
= pmd_lockptr(vma
->vm_mm
, vmf
->pmd
);
1386 VM_BUG_ON_VMA(!vma
->anon_vma
, vma
);
1387 if (is_huge_zero_pmd(orig_pmd
))
1389 spin_lock(vmf
->ptl
);
1390 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
)))
1393 page
= pmd_page(orig_pmd
);
1394 VM_BUG_ON_PAGE(!PageCompound(page
) || !PageHead(page
), page
);
1396 * We can only reuse the page if nobody else maps the huge page or it's
1399 if (!trylock_page(page
)) {
1401 spin_unlock(vmf
->ptl
);
1403 spin_lock(vmf
->ptl
);
1404 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
))) {
1411 if (reuse_swap_page(page
, NULL
)) {
1413 entry
= pmd_mkyoung(orig_pmd
);
1414 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1415 if (pmdp_set_access_flags(vma
, haddr
, vmf
->pmd
, entry
, 1))
1416 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1417 ret
|= VM_FAULT_WRITE
;
1423 spin_unlock(vmf
->ptl
);
1425 if (__transparent_hugepage_enabled(vma
) &&
1426 !transparent_hugepage_debug_cow()) {
1427 huge_gfp
= alloc_hugepage_direct_gfpmask(vma
);
1428 new_page
= alloc_hugepage_vma(huge_gfp
, vma
, haddr
, HPAGE_PMD_ORDER
);
1432 if (likely(new_page
)) {
1433 prep_transhuge_page(new_page
);
1436 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1437 ret
|= VM_FAULT_FALLBACK
;
1439 ret
= do_huge_pmd_wp_page_fallback(vmf
, orig_pmd
, page
);
1440 if (ret
& VM_FAULT_OOM
) {
1441 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1442 ret
|= VM_FAULT_FALLBACK
;
1446 count_vm_event(THP_FAULT_FALLBACK
);
1450 if (unlikely(mem_cgroup_try_charge_delay(new_page
, vma
->vm_mm
,
1451 huge_gfp
, &memcg
, true))) {
1453 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1456 ret
|= VM_FAULT_FALLBACK
;
1457 count_vm_event(THP_FAULT_FALLBACK
);
1458 count_vm_event(THP_FAULT_FALLBACK_CHARGE
);
1462 count_vm_event(THP_FAULT_ALLOC
);
1463 count_memcg_events(memcg
, THP_FAULT_ALLOC
, 1);
1466 clear_huge_page(new_page
, vmf
->address
, HPAGE_PMD_NR
);
1468 copy_user_huge_page(new_page
, page
, vmf
->address
,
1470 __SetPageUptodate(new_page
);
1472 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
1473 haddr
, haddr
+ HPAGE_PMD_SIZE
);
1474 mmu_notifier_invalidate_range_start(&range
);
1476 spin_lock(vmf
->ptl
);
1479 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
))) {
1480 spin_unlock(vmf
->ptl
);
1481 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1486 entry
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
1487 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1488 pmdp_huge_clear_flush_notify(vma
, haddr
, vmf
->pmd
);
1489 page_add_new_anon_rmap(new_page
, vma
, haddr
, true);
1490 mem_cgroup_commit_charge(new_page
, memcg
, false, true);
1491 lru_cache_add_active_or_unevictable(new_page
, vma
);
1492 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
1493 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1495 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1497 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1498 page_remove_rmap(page
, true);
1501 ret
|= VM_FAULT_WRITE
;
1503 spin_unlock(vmf
->ptl
);
1506 * No need to double call mmu_notifier->invalidate_range() callback as
1507 * the above pmdp_huge_clear_flush_notify() did already call it.
1509 mmu_notifier_invalidate_range_only_end(&range
);
1513 spin_unlock(vmf
->ptl
);
1518 * FOLL_FORCE or a forced COW break can write even to unwritable pmd's,
1519 * but only after we've gone through a COW cycle and they are dirty.
1521 static inline bool can_follow_write_pmd(pmd_t pmd
, unsigned int flags
)
1523 return pmd_write(pmd
) || ((flags
& FOLL_COW
) && pmd_dirty(pmd
));
1526 struct page
*follow_trans_huge_pmd(struct vm_area_struct
*vma
,
1531 struct mm_struct
*mm
= vma
->vm_mm
;
1532 struct page
*page
= NULL
;
1534 assert_spin_locked(pmd_lockptr(mm
, pmd
));
1536 if (flags
& FOLL_WRITE
&& !can_follow_write_pmd(*pmd
, flags
))
1539 /* Avoid dumping huge zero page */
1540 if ((flags
& FOLL_DUMP
) && is_huge_zero_pmd(*pmd
))
1541 return ERR_PTR(-EFAULT
);
1543 /* Full NUMA hinting faults to serialise migration in fault paths */
1544 if ((flags
& FOLL_NUMA
) && pmd_protnone(*pmd
))
1547 page
= pmd_page(*pmd
);
1548 VM_BUG_ON_PAGE(!PageHead(page
) && !is_zone_device_page(page
), page
);
1550 if (!try_grab_page(page
, flags
))
1551 return ERR_PTR(-ENOMEM
);
1553 if (flags
& FOLL_TOUCH
)
1554 touch_pmd(vma
, addr
, pmd
, flags
);
1556 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1558 * We don't mlock() pte-mapped THPs. This way we can avoid
1559 * leaking mlocked pages into non-VM_LOCKED VMAs.
1563 * In most cases the pmd is the only mapping of the page as we
1564 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1565 * writable private mappings in populate_vma_page_range().
1567 * The only scenario when we have the page shared here is if we
1568 * mlocking read-only mapping shared over fork(). We skip
1569 * mlocking such pages.
1573 * We can expect PageDoubleMap() to be stable under page lock:
1574 * for file pages we set it in page_add_file_rmap(), which
1575 * requires page to be locked.
1578 if (PageAnon(page
) && compound_mapcount(page
) != 1)
1580 if (PageDoubleMap(page
) || !page
->mapping
)
1582 if (!trylock_page(page
))
1585 if (page
->mapping
&& !PageDoubleMap(page
))
1586 mlock_vma_page(page
);
1590 page
+= (addr
& ~HPAGE_PMD_MASK
) >> PAGE_SHIFT
;
1591 VM_BUG_ON_PAGE(!PageCompound(page
) && !is_zone_device_page(page
), page
);
1597 /* NUMA hinting page fault entry point for trans huge pmds */
1598 vm_fault_t
do_huge_pmd_numa_page(struct vm_fault
*vmf
, pmd_t pmd
)
1600 struct vm_area_struct
*vma
= vmf
->vma
;
1601 struct anon_vma
*anon_vma
= NULL
;
1603 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1604 int page_nid
= NUMA_NO_NODE
, this_nid
= numa_node_id();
1605 int target_nid
, last_cpupid
= -1;
1607 bool migrated
= false;
1611 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
1612 if (unlikely(!pmd_same(pmd
, *vmf
->pmd
)))
1616 * If there are potential migrations, wait for completion and retry
1617 * without disrupting NUMA hinting information. Do not relock and
1618 * check_same as the page may no longer be mapped.
1620 if (unlikely(pmd_trans_migrating(*vmf
->pmd
))) {
1621 page
= pmd_page(*vmf
->pmd
);
1622 if (!get_page_unless_zero(page
))
1624 spin_unlock(vmf
->ptl
);
1625 put_and_wait_on_page_locked(page
);
1629 page
= pmd_page(pmd
);
1630 BUG_ON(is_huge_zero_page(page
));
1631 page_nid
= page_to_nid(page
);
1632 last_cpupid
= page_cpupid_last(page
);
1633 count_vm_numa_event(NUMA_HINT_FAULTS
);
1634 if (page_nid
== this_nid
) {
1635 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
1636 flags
|= TNF_FAULT_LOCAL
;
1639 /* See similar comment in do_numa_page for explanation */
1640 if (!pmd_savedwrite(pmd
))
1641 flags
|= TNF_NO_GROUP
;
1644 * Acquire the page lock to serialise THP migrations but avoid dropping
1645 * page_table_lock if at all possible
1647 page_locked
= trylock_page(page
);
1648 target_nid
= mpol_misplaced(page
, vma
, haddr
);
1649 if (target_nid
== NUMA_NO_NODE
) {
1650 /* If the page was locked, there are no parallel migrations */
1655 /* Migration could have started since the pmd_trans_migrating check */
1657 page_nid
= NUMA_NO_NODE
;
1658 if (!get_page_unless_zero(page
))
1660 spin_unlock(vmf
->ptl
);
1661 put_and_wait_on_page_locked(page
);
1666 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1667 * to serialises splits
1670 spin_unlock(vmf
->ptl
);
1671 anon_vma
= page_lock_anon_vma_read(page
);
1673 /* Confirm the PMD did not change while page_table_lock was released */
1674 spin_lock(vmf
->ptl
);
1675 if (unlikely(!pmd_same(pmd
, *vmf
->pmd
))) {
1678 page_nid
= NUMA_NO_NODE
;
1682 /* Bail if we fail to protect against THP splits for any reason */
1683 if (unlikely(!anon_vma
)) {
1685 page_nid
= NUMA_NO_NODE
;
1690 * Since we took the NUMA fault, we must have observed the !accessible
1691 * bit. Make sure all other CPUs agree with that, to avoid them
1692 * modifying the page we're about to migrate.
1694 * Must be done under PTL such that we'll observe the relevant
1695 * inc_tlb_flush_pending().
1697 * We are not sure a pending tlb flush here is for a huge page
1698 * mapping or not. Hence use the tlb range variant
1700 if (mm_tlb_flush_pending(vma
->vm_mm
)) {
1701 flush_tlb_range(vma
, haddr
, haddr
+ HPAGE_PMD_SIZE
);
1703 * change_huge_pmd() released the pmd lock before
1704 * invalidating the secondary MMUs sharing the primary
1705 * MMU pagetables (with ->invalidate_range()). The
1706 * mmu_notifier_invalidate_range_end() (which
1707 * internally calls ->invalidate_range()) in
1708 * change_pmd_range() will run after us, so we can't
1709 * rely on it here and we need an explicit invalidate.
1711 mmu_notifier_invalidate_range(vma
->vm_mm
, haddr
,
1712 haddr
+ HPAGE_PMD_SIZE
);
1716 * Migrate the THP to the requested node, returns with page unlocked
1717 * and access rights restored.
1719 spin_unlock(vmf
->ptl
);
1721 migrated
= migrate_misplaced_transhuge_page(vma
->vm_mm
, vma
,
1722 vmf
->pmd
, pmd
, vmf
->address
, page
, target_nid
);
1724 flags
|= TNF_MIGRATED
;
1725 page_nid
= target_nid
;
1727 flags
|= TNF_MIGRATE_FAIL
;
1731 BUG_ON(!PageLocked(page
));
1732 was_writable
= pmd_savedwrite(pmd
);
1733 pmd
= pmd_modify(pmd
, vma
->vm_page_prot
);
1734 pmd
= pmd_mkyoung(pmd
);
1736 pmd
= pmd_mkwrite(pmd
);
1737 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, pmd
);
1738 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1741 spin_unlock(vmf
->ptl
);
1745 page_unlock_anon_vma_read(anon_vma
);
1747 if (page_nid
!= NUMA_NO_NODE
)
1748 task_numa_fault(last_cpupid
, page_nid
, HPAGE_PMD_NR
,
1755 * Return true if we do MADV_FREE successfully on entire pmd page.
1756 * Otherwise, return false.
1758 bool madvise_free_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1759 pmd_t
*pmd
, unsigned long addr
, unsigned long next
)
1764 struct mm_struct
*mm
= tlb
->mm
;
1767 tlb_change_page_size(tlb
, HPAGE_PMD_SIZE
);
1769 ptl
= pmd_trans_huge_lock(pmd
, vma
);
1774 if (is_huge_zero_pmd(orig_pmd
))
1777 if (unlikely(!pmd_present(orig_pmd
))) {
1778 VM_BUG_ON(thp_migration_supported() &&
1779 !is_pmd_migration_entry(orig_pmd
));
1783 page
= pmd_page(orig_pmd
);
1785 * If other processes are mapping this page, we couldn't discard
1786 * the page unless they all do MADV_FREE so let's skip the page.
1788 if (page_mapcount(page
) != 1)
1791 if (!trylock_page(page
))
1795 * If user want to discard part-pages of THP, split it so MADV_FREE
1796 * will deactivate only them.
1798 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1801 split_huge_page(page
);
1807 if (PageDirty(page
))
1808 ClearPageDirty(page
);
1811 if (pmd_young(orig_pmd
) || pmd_dirty(orig_pmd
)) {
1812 pmdp_invalidate(vma
, addr
, pmd
);
1813 orig_pmd
= pmd_mkold(orig_pmd
);
1814 orig_pmd
= pmd_mkclean(orig_pmd
);
1816 set_pmd_at(mm
, addr
, pmd
, orig_pmd
);
1817 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1820 mark_page_lazyfree(page
);
1828 static inline void zap_deposited_table(struct mm_struct
*mm
, pmd_t
*pmd
)
1832 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1833 pte_free(mm
, pgtable
);
1837 int zap_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1838 pmd_t
*pmd
, unsigned long addr
)
1843 tlb_change_page_size(tlb
, HPAGE_PMD_SIZE
);
1845 ptl
= __pmd_trans_huge_lock(pmd
, vma
);
1849 * For architectures like ppc64 we look at deposited pgtable
1850 * when calling pmdp_huge_get_and_clear. So do the
1851 * pgtable_trans_huge_withdraw after finishing pmdp related
1854 orig_pmd
= pmdp_huge_get_and_clear_full(tlb
->mm
, addr
, pmd
,
1856 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1857 if (vma_is_special_huge(vma
)) {
1858 if (arch_needs_pgtable_deposit())
1859 zap_deposited_table(tlb
->mm
, pmd
);
1861 if (is_huge_zero_pmd(orig_pmd
))
1862 tlb_remove_page_size(tlb
, pmd_page(orig_pmd
), HPAGE_PMD_SIZE
);
1863 } else if (is_huge_zero_pmd(orig_pmd
)) {
1864 zap_deposited_table(tlb
->mm
, pmd
);
1866 tlb_remove_page_size(tlb
, pmd_page(orig_pmd
), HPAGE_PMD_SIZE
);
1868 struct page
*page
= NULL
;
1869 int flush_needed
= 1;
1871 if (pmd_present(orig_pmd
)) {
1872 page
= pmd_page(orig_pmd
);
1873 page_remove_rmap(page
, true);
1874 VM_BUG_ON_PAGE(page_mapcount(page
) < 0, page
);
1875 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1876 } else if (thp_migration_supported()) {
1879 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd
));
1880 entry
= pmd_to_swp_entry(orig_pmd
);
1881 page
= pfn_to_page(swp_offset(entry
));
1884 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1886 if (PageAnon(page
)) {
1887 zap_deposited_table(tlb
->mm
, pmd
);
1888 add_mm_counter(tlb
->mm
, MM_ANONPAGES
, -HPAGE_PMD_NR
);
1890 if (arch_needs_pgtable_deposit())
1891 zap_deposited_table(tlb
->mm
, pmd
);
1892 add_mm_counter(tlb
->mm
, mm_counter_file(page
), -HPAGE_PMD_NR
);
1897 tlb_remove_page_size(tlb
, page
, HPAGE_PMD_SIZE
);
1902 #ifndef pmd_move_must_withdraw
1903 static inline int pmd_move_must_withdraw(spinlock_t
*new_pmd_ptl
,
1904 spinlock_t
*old_pmd_ptl
,
1905 struct vm_area_struct
*vma
)
1908 * With split pmd lock we also need to move preallocated
1909 * PTE page table if new_pmd is on different PMD page table.
1911 * We also don't deposit and withdraw tables for file pages.
1913 return (new_pmd_ptl
!= old_pmd_ptl
) && vma_is_anonymous(vma
);
1917 static pmd_t
move_soft_dirty_pmd(pmd_t pmd
)
1919 #ifdef CONFIG_MEM_SOFT_DIRTY
1920 if (unlikely(is_pmd_migration_entry(pmd
)))
1921 pmd
= pmd_swp_mksoft_dirty(pmd
);
1922 else if (pmd_present(pmd
))
1923 pmd
= pmd_mksoft_dirty(pmd
);
1928 bool move_huge_pmd(struct vm_area_struct
*vma
, unsigned long old_addr
,
1929 unsigned long new_addr
, unsigned long old_end
,
1930 pmd_t
*old_pmd
, pmd_t
*new_pmd
)
1932 spinlock_t
*old_ptl
, *new_ptl
;
1934 struct mm_struct
*mm
= vma
->vm_mm
;
1935 bool force_flush
= false;
1937 if ((old_addr
& ~HPAGE_PMD_MASK
) ||
1938 (new_addr
& ~HPAGE_PMD_MASK
) ||
1939 old_end
- old_addr
< HPAGE_PMD_SIZE
)
1943 * The destination pmd shouldn't be established, free_pgtables()
1944 * should have release it.
1946 if (WARN_ON(!pmd_none(*new_pmd
))) {
1947 VM_BUG_ON(pmd_trans_huge(*new_pmd
));
1952 * We don't have to worry about the ordering of src and dst
1953 * ptlocks because exclusive mmap_sem prevents deadlock.
1955 old_ptl
= __pmd_trans_huge_lock(old_pmd
, vma
);
1957 new_ptl
= pmd_lockptr(mm
, new_pmd
);
1958 if (new_ptl
!= old_ptl
)
1959 spin_lock_nested(new_ptl
, SINGLE_DEPTH_NESTING
);
1960 pmd
= pmdp_huge_get_and_clear(mm
, old_addr
, old_pmd
);
1961 if (pmd_present(pmd
))
1963 VM_BUG_ON(!pmd_none(*new_pmd
));
1965 if (pmd_move_must_withdraw(new_ptl
, old_ptl
, vma
)) {
1967 pgtable
= pgtable_trans_huge_withdraw(mm
, old_pmd
);
1968 pgtable_trans_huge_deposit(mm
, new_pmd
, pgtable
);
1970 pmd
= move_soft_dirty_pmd(pmd
);
1971 set_pmd_at(mm
, new_addr
, new_pmd
, pmd
);
1973 flush_tlb_range(vma
, old_addr
, old_addr
+ PMD_SIZE
);
1974 if (new_ptl
!= old_ptl
)
1975 spin_unlock(new_ptl
);
1976 spin_unlock(old_ptl
);
1984 * - 0 if PMD could not be locked
1985 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1986 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1988 int change_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1989 unsigned long addr
, pgprot_t newprot
, unsigned long cp_flags
)
1991 struct mm_struct
*mm
= vma
->vm_mm
;
1994 bool preserve_write
;
1996 bool prot_numa
= cp_flags
& MM_CP_PROT_NUMA
;
1997 bool uffd_wp
= cp_flags
& MM_CP_UFFD_WP
;
1998 bool uffd_wp_resolve
= cp_flags
& MM_CP_UFFD_WP_RESOLVE
;
2000 ptl
= __pmd_trans_huge_lock(pmd
, vma
);
2004 preserve_write
= prot_numa
&& pmd_write(*pmd
);
2007 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2008 if (is_swap_pmd(*pmd
)) {
2009 swp_entry_t entry
= pmd_to_swp_entry(*pmd
);
2011 VM_BUG_ON(!is_pmd_migration_entry(*pmd
));
2012 if (is_write_migration_entry(entry
)) {
2015 * A protection check is difficult so
2016 * just be safe and disable write
2018 make_migration_entry_read(&entry
);
2019 newpmd
= swp_entry_to_pmd(entry
);
2020 if (pmd_swp_soft_dirty(*pmd
))
2021 newpmd
= pmd_swp_mksoft_dirty(newpmd
);
2022 set_pmd_at(mm
, addr
, pmd
, newpmd
);
2029 * Avoid trapping faults against the zero page. The read-only
2030 * data is likely to be read-cached on the local CPU and
2031 * local/remote hits to the zero page are not interesting.
2033 if (prot_numa
&& is_huge_zero_pmd(*pmd
))
2036 if (prot_numa
&& pmd_protnone(*pmd
))
2040 * In case prot_numa, we are under down_read(mmap_sem). It's critical
2041 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2042 * which is also under down_read(mmap_sem):
2045 * change_huge_pmd(prot_numa=1)
2046 * pmdp_huge_get_and_clear_notify()
2047 * madvise_dontneed()
2049 * pmd_trans_huge(*pmd) == 0 (without ptl)
2052 * // pmd is re-established
2054 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2055 * which may break userspace.
2057 * pmdp_invalidate() is required to make sure we don't miss
2058 * dirty/young flags set by hardware.
2060 entry
= pmdp_invalidate(vma
, addr
, pmd
);
2062 entry
= pmd_modify(entry
, newprot
);
2064 entry
= pmd_mk_savedwrite(entry
);
2066 entry
= pmd_wrprotect(entry
);
2067 entry
= pmd_mkuffd_wp(entry
);
2068 } else if (uffd_wp_resolve
) {
2070 * Leave the write bit to be handled by PF interrupt
2071 * handler, then things like COW could be properly
2074 entry
= pmd_clear_uffd_wp(entry
);
2077 set_pmd_at(mm
, addr
, pmd
, entry
);
2078 BUG_ON(vma_is_anonymous(vma
) && !preserve_write
&& pmd_write(entry
));
2085 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2087 * Note that if it returns page table lock pointer, this routine returns without
2088 * unlocking page table lock. So callers must unlock it.
2090 spinlock_t
*__pmd_trans_huge_lock(pmd_t
*pmd
, struct vm_area_struct
*vma
)
2093 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
2094 if (likely(is_swap_pmd(*pmd
) || pmd_trans_huge(*pmd
) ||
2102 * Returns true if a given pud maps a thp, false otherwise.
2104 * Note that if it returns true, this routine returns without unlocking page
2105 * table lock. So callers must unlock it.
2107 spinlock_t
*__pud_trans_huge_lock(pud_t
*pud
, struct vm_area_struct
*vma
)
2111 ptl
= pud_lock(vma
->vm_mm
, pud
);
2112 if (likely(pud_trans_huge(*pud
) || pud_devmap(*pud
)))
2118 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2119 int zap_huge_pud(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
2120 pud_t
*pud
, unsigned long addr
)
2124 ptl
= __pud_trans_huge_lock(pud
, vma
);
2128 * For architectures like ppc64 we look at deposited pgtable
2129 * when calling pudp_huge_get_and_clear. So do the
2130 * pgtable_trans_huge_withdraw after finishing pudp related
2133 pudp_huge_get_and_clear_full(tlb
->mm
, addr
, pud
, tlb
->fullmm
);
2134 tlb_remove_pud_tlb_entry(tlb
, pud
, addr
);
2135 if (vma_is_special_huge(vma
)) {
2137 /* No zero page support yet */
2139 /* No support for anonymous PUD pages yet */
2145 static void __split_huge_pud_locked(struct vm_area_struct
*vma
, pud_t
*pud
,
2146 unsigned long haddr
)
2148 VM_BUG_ON(haddr
& ~HPAGE_PUD_MASK
);
2149 VM_BUG_ON_VMA(vma
->vm_start
> haddr
, vma
);
2150 VM_BUG_ON_VMA(vma
->vm_end
< haddr
+ HPAGE_PUD_SIZE
, vma
);
2151 VM_BUG_ON(!pud_trans_huge(*pud
) && !pud_devmap(*pud
));
2153 count_vm_event(THP_SPLIT_PUD
);
2155 pudp_huge_clear_flush_notify(vma
, haddr
, pud
);
2158 void __split_huge_pud(struct vm_area_struct
*vma
, pud_t
*pud
,
2159 unsigned long address
)
2162 struct mmu_notifier_range range
;
2164 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
2165 address
& HPAGE_PUD_MASK
,
2166 (address
& HPAGE_PUD_MASK
) + HPAGE_PUD_SIZE
);
2167 mmu_notifier_invalidate_range_start(&range
);
2168 ptl
= pud_lock(vma
->vm_mm
, pud
);
2169 if (unlikely(!pud_trans_huge(*pud
) && !pud_devmap(*pud
)))
2171 __split_huge_pud_locked(vma
, pud
, range
.start
);
2176 * No need to double call mmu_notifier->invalidate_range() callback as
2177 * the above pudp_huge_clear_flush_notify() did already call it.
2179 mmu_notifier_invalidate_range_only_end(&range
);
2181 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2183 static void __split_huge_zero_page_pmd(struct vm_area_struct
*vma
,
2184 unsigned long haddr
, pmd_t
*pmd
)
2186 struct mm_struct
*mm
= vma
->vm_mm
;
2192 * Leave pmd empty until pte is filled note that it is fine to delay
2193 * notification until mmu_notifier_invalidate_range_end() as we are
2194 * replacing a zero pmd write protected page with a zero pte write
2197 * See Documentation/vm/mmu_notifier.rst
2199 pmdp_huge_clear_flush(vma
, haddr
, pmd
);
2201 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
2202 pmd_populate(mm
, &_pmd
, pgtable
);
2204 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
2206 entry
= pfn_pte(my_zero_pfn(haddr
), vma
->vm_page_prot
);
2207 entry
= pte_mkspecial(entry
);
2208 pte
= pte_offset_map(&_pmd
, haddr
);
2209 VM_BUG_ON(!pte_none(*pte
));
2210 set_pte_at(mm
, haddr
, pte
, entry
);
2213 smp_wmb(); /* make pte visible before pmd */
2214 pmd_populate(mm
, pmd
, pgtable
);
2217 static void __split_huge_pmd_locked(struct vm_area_struct
*vma
, pmd_t
*pmd
,
2218 unsigned long haddr
, bool freeze
)
2220 struct mm_struct
*mm
= vma
->vm_mm
;
2223 pmd_t old_pmd
, _pmd
;
2224 bool young
, write
, soft_dirty
, pmd_migration
= false, uffd_wp
= false;
2228 VM_BUG_ON(haddr
& ~HPAGE_PMD_MASK
);
2229 VM_BUG_ON_VMA(vma
->vm_start
> haddr
, vma
);
2230 VM_BUG_ON_VMA(vma
->vm_end
< haddr
+ HPAGE_PMD_SIZE
, vma
);
2231 VM_BUG_ON(!is_pmd_migration_entry(*pmd
) && !pmd_trans_huge(*pmd
)
2232 && !pmd_devmap(*pmd
));
2234 count_vm_event(THP_SPLIT_PMD
);
2236 if (!vma_is_anonymous(vma
)) {
2237 _pmd
= pmdp_huge_clear_flush_notify(vma
, haddr
, pmd
);
2239 * We are going to unmap this huge page. So
2240 * just go ahead and zap it
2242 if (arch_needs_pgtable_deposit())
2243 zap_deposited_table(mm
, pmd
);
2244 if (vma_is_special_huge(vma
))
2246 page
= pmd_page(_pmd
);
2247 if (!PageDirty(page
) && pmd_dirty(_pmd
))
2248 set_page_dirty(page
);
2249 if (!PageReferenced(page
) && pmd_young(_pmd
))
2250 SetPageReferenced(page
);
2251 page_remove_rmap(page
, true);
2253 add_mm_counter(mm
, mm_counter_file(page
), -HPAGE_PMD_NR
);
2255 } else if (is_huge_zero_pmd(*pmd
)) {
2257 * FIXME: Do we want to invalidate secondary mmu by calling
2258 * mmu_notifier_invalidate_range() see comments below inside
2259 * __split_huge_pmd() ?
2261 * We are going from a zero huge page write protected to zero
2262 * small page also write protected so it does not seems useful
2263 * to invalidate secondary mmu at this time.
2265 return __split_huge_zero_page_pmd(vma
, haddr
, pmd
);
2269 * Up to this point the pmd is present and huge and userland has the
2270 * whole access to the hugepage during the split (which happens in
2271 * place). If we overwrite the pmd with the not-huge version pointing
2272 * to the pte here (which of course we could if all CPUs were bug
2273 * free), userland could trigger a small page size TLB miss on the
2274 * small sized TLB while the hugepage TLB entry is still established in
2275 * the huge TLB. Some CPU doesn't like that.
2276 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2277 * 383 on page 93. Intel should be safe but is also warns that it's
2278 * only safe if the permission and cache attributes of the two entries
2279 * loaded in the two TLB is identical (which should be the case here).
2280 * But it is generally safer to never allow small and huge TLB entries
2281 * for the same virtual address to be loaded simultaneously. So instead
2282 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2283 * current pmd notpresent (atomically because here the pmd_trans_huge
2284 * must remain set at all times on the pmd until the split is complete
2285 * for this pmd), then we flush the SMP TLB and finally we write the
2286 * non-huge version of the pmd entry with pmd_populate.
2288 old_pmd
= pmdp_invalidate(vma
, haddr
, pmd
);
2290 pmd_migration
= is_pmd_migration_entry(old_pmd
);
2291 if (unlikely(pmd_migration
)) {
2294 entry
= pmd_to_swp_entry(old_pmd
);
2295 page
= pfn_to_page(swp_offset(entry
));
2296 write
= is_write_migration_entry(entry
);
2298 soft_dirty
= pmd_swp_soft_dirty(old_pmd
);
2299 uffd_wp
= pmd_swp_uffd_wp(old_pmd
);
2301 page
= pmd_page(old_pmd
);
2302 if (pmd_dirty(old_pmd
))
2304 write
= pmd_write(old_pmd
);
2305 young
= pmd_young(old_pmd
);
2306 soft_dirty
= pmd_soft_dirty(old_pmd
);
2307 uffd_wp
= pmd_uffd_wp(old_pmd
);
2309 VM_BUG_ON_PAGE(!page_count(page
), page
);
2310 page_ref_add(page
, HPAGE_PMD_NR
- 1);
2313 * Withdraw the table only after we mark the pmd entry invalid.
2314 * This's critical for some architectures (Power).
2316 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
2317 pmd_populate(mm
, &_pmd
, pgtable
);
2319 for (i
= 0, addr
= haddr
; i
< HPAGE_PMD_NR
; i
++, addr
+= PAGE_SIZE
) {
2322 * Note that NUMA hinting access restrictions are not
2323 * transferred to avoid any possibility of altering
2324 * permissions across VMAs.
2326 if (freeze
|| pmd_migration
) {
2327 swp_entry_t swp_entry
;
2328 swp_entry
= make_migration_entry(page
+ i
, write
);
2329 entry
= swp_entry_to_pte(swp_entry
);
2331 entry
= pte_swp_mksoft_dirty(entry
);
2333 entry
= pte_swp_mkuffd_wp(entry
);
2335 entry
= mk_pte(page
+ i
, READ_ONCE(vma
->vm_page_prot
));
2336 entry
= maybe_mkwrite(entry
, vma
);
2338 entry
= pte_wrprotect(entry
);
2340 entry
= pte_mkold(entry
);
2342 entry
= pte_mksoft_dirty(entry
);
2344 entry
= pte_mkuffd_wp(entry
);
2346 pte
= pte_offset_map(&_pmd
, addr
);
2347 BUG_ON(!pte_none(*pte
));
2348 set_pte_at(mm
, addr
, pte
, entry
);
2349 atomic_inc(&page
[i
]._mapcount
);
2354 * Set PG_double_map before dropping compound_mapcount to avoid
2355 * false-negative page_mapped().
2357 if (compound_mapcount(page
) > 1 && !TestSetPageDoubleMap(page
)) {
2358 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2359 atomic_inc(&page
[i
]._mapcount
);
2362 if (atomic_add_negative(-1, compound_mapcount_ptr(page
))) {
2363 /* Last compound_mapcount is gone. */
2364 __dec_node_page_state(page
, NR_ANON_THPS
);
2365 if (TestClearPageDoubleMap(page
)) {
2366 /* No need in mapcount reference anymore */
2367 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2368 atomic_dec(&page
[i
]._mapcount
);
2372 smp_wmb(); /* make pte visible before pmd */
2373 pmd_populate(mm
, pmd
, pgtable
);
2376 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2377 page_remove_rmap(page
+ i
, false);
2383 void __split_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
2384 unsigned long address
, bool freeze
, struct page
*page
)
2387 struct mmu_notifier_range range
;
2388 bool was_locked
= false;
2391 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
2392 address
& HPAGE_PMD_MASK
,
2393 (address
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
);
2394 mmu_notifier_invalidate_range_start(&range
);
2395 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
2398 * If caller asks to setup a migration entries, we need a page to check
2399 * pmd against. Otherwise we can end up replacing wrong page.
2401 VM_BUG_ON(freeze
&& !page
);
2403 VM_WARN_ON_ONCE(!PageLocked(page
));
2405 if (page
!= pmd_page(*pmd
))
2410 if (pmd_trans_huge(*pmd
)) {
2412 page
= pmd_page(*pmd
);
2413 if (unlikely(!trylock_page(page
))) {
2419 if (unlikely(!pmd_same(*pmd
, _pmd
))) {
2428 if (PageMlocked(page
))
2429 clear_page_mlock(page
);
2430 } else if (!(pmd_devmap(*pmd
) || is_pmd_migration_entry(*pmd
)))
2432 __split_huge_pmd_locked(vma
, pmd
, range
.start
, freeze
);
2435 if (!was_locked
&& page
)
2438 * No need to double call mmu_notifier->invalidate_range() callback.
2439 * They are 3 cases to consider inside __split_huge_pmd_locked():
2440 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2441 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2442 * fault will trigger a flush_notify before pointing to a new page
2443 * (it is fine if the secondary mmu keeps pointing to the old zero
2444 * page in the meantime)
2445 * 3) Split a huge pmd into pte pointing to the same page. No need
2446 * to invalidate secondary tlb entry they are all still valid.
2447 * any further changes to individual pte will notify. So no need
2448 * to call mmu_notifier->invalidate_range()
2450 mmu_notifier_invalidate_range_only_end(&range
);
2453 void split_huge_pmd_address(struct vm_area_struct
*vma
, unsigned long address
,
2454 bool freeze
, struct page
*page
)
2461 pgd
= pgd_offset(vma
->vm_mm
, address
);
2462 if (!pgd_present(*pgd
))
2465 p4d
= p4d_offset(pgd
, address
);
2466 if (!p4d_present(*p4d
))
2469 pud
= pud_offset(p4d
, address
);
2470 if (!pud_present(*pud
))
2473 pmd
= pmd_offset(pud
, address
);
2475 __split_huge_pmd(vma
, pmd
, address
, freeze
, page
);
2478 void vma_adjust_trans_huge(struct vm_area_struct
*vma
,
2479 unsigned long start
,
2484 * If the new start address isn't hpage aligned and it could
2485 * previously contain an hugepage: check if we need to split
2488 if (start
& ~HPAGE_PMD_MASK
&&
2489 (start
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2490 (start
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2491 split_huge_pmd_address(vma
, start
, false, NULL
);
2494 * If the new end address isn't hpage aligned and it could
2495 * previously contain an hugepage: check if we need to split
2498 if (end
& ~HPAGE_PMD_MASK
&&
2499 (end
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2500 (end
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2501 split_huge_pmd_address(vma
, end
, false, NULL
);
2504 * If we're also updating the vma->vm_next->vm_start, if the new
2505 * vm_next->vm_start isn't page aligned and it could previously
2506 * contain an hugepage: check if we need to split an huge pmd.
2508 if (adjust_next
> 0) {
2509 struct vm_area_struct
*next
= vma
->vm_next
;
2510 unsigned long nstart
= next
->vm_start
;
2511 nstart
+= adjust_next
<< PAGE_SHIFT
;
2512 if (nstart
& ~HPAGE_PMD_MASK
&&
2513 (nstart
& HPAGE_PMD_MASK
) >= next
->vm_start
&&
2514 (nstart
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= next
->vm_end
)
2515 split_huge_pmd_address(next
, nstart
, false, NULL
);
2519 static void unmap_page(struct page
*page
)
2521 enum ttu_flags ttu_flags
= TTU_IGNORE_MLOCK
| TTU_IGNORE_ACCESS
|
2522 TTU_RMAP_LOCKED
| TTU_SPLIT_HUGE_PMD
;
2525 VM_BUG_ON_PAGE(!PageHead(page
), page
);
2528 ttu_flags
|= TTU_SPLIT_FREEZE
;
2530 unmap_success
= try_to_unmap(page
, ttu_flags
);
2531 VM_BUG_ON_PAGE(!unmap_success
, page
);
2534 static void remap_page(struct page
*page
)
2537 if (PageTransHuge(page
)) {
2538 remove_migration_ptes(page
, page
, true);
2540 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2541 remove_migration_ptes(page
+ i
, page
+ i
, true);
2545 static void __split_huge_page_tail(struct page
*head
, int tail
,
2546 struct lruvec
*lruvec
, struct list_head
*list
)
2548 struct page
*page_tail
= head
+ tail
;
2550 VM_BUG_ON_PAGE(atomic_read(&page_tail
->_mapcount
) != -1, page_tail
);
2553 * Clone page flags before unfreezing refcount.
2555 * After successful get_page_unless_zero() might follow flags change,
2556 * for exmaple lock_page() which set PG_waiters.
2558 page_tail
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
2559 page_tail
->flags
|= (head
->flags
&
2560 ((1L << PG_referenced
) |
2561 (1L << PG_swapbacked
) |
2562 (1L << PG_swapcache
) |
2563 (1L << PG_mlocked
) |
2564 (1L << PG_uptodate
) |
2566 (1L << PG_workingset
) |
2568 (1L << PG_unevictable
) |
2571 /* ->mapping in first tail page is compound_mapcount */
2572 VM_BUG_ON_PAGE(tail
> 2 && page_tail
->mapping
!= TAIL_MAPPING
,
2574 page_tail
->mapping
= head
->mapping
;
2575 page_tail
->index
= head
->index
+ tail
;
2577 /* Page flags must be visible before we make the page non-compound. */
2581 * Clear PageTail before unfreezing page refcount.
2583 * After successful get_page_unless_zero() might follow put_page()
2584 * which needs correct compound_head().
2586 clear_compound_head(page_tail
);
2588 /* Finally unfreeze refcount. Additional reference from page cache. */
2589 page_ref_unfreeze(page_tail
, 1 + (!PageAnon(head
) ||
2590 PageSwapCache(head
)));
2592 if (page_is_young(head
))
2593 set_page_young(page_tail
);
2594 if (page_is_idle(head
))
2595 set_page_idle(page_tail
);
2597 page_cpupid_xchg_last(page_tail
, page_cpupid_last(head
));
2600 * always add to the tail because some iterators expect new
2601 * pages to show after the currently processed elements - e.g.
2604 lru_add_page_tail(head
, page_tail
, lruvec
, list
);
2607 static void __split_huge_page(struct page
*page
, struct list_head
*list
,
2608 pgoff_t end
, unsigned long flags
)
2610 struct page
*head
= compound_head(page
);
2611 pg_data_t
*pgdat
= page_pgdat(head
);
2612 struct lruvec
*lruvec
;
2613 struct address_space
*swap_cache
= NULL
;
2614 unsigned long offset
= 0;
2617 lruvec
= mem_cgroup_page_lruvec(head
, pgdat
);
2619 /* complete memcg works before add pages to LRU */
2620 mem_cgroup_split_huge_fixup(head
);
2622 if (PageAnon(head
) && PageSwapCache(head
)) {
2623 swp_entry_t entry
= { .val
= page_private(head
) };
2625 offset
= swp_offset(entry
);
2626 swap_cache
= swap_address_space(entry
);
2627 xa_lock(&swap_cache
->i_pages
);
2630 for (i
= HPAGE_PMD_NR
- 1; i
>= 1; i
--) {
2631 __split_huge_page_tail(head
, i
, lruvec
, list
);
2632 /* Some pages can be beyond i_size: drop them from page cache */
2633 if (head
[i
].index
>= end
) {
2634 ClearPageDirty(head
+ i
);
2635 __delete_from_page_cache(head
+ i
, NULL
);
2636 if (IS_ENABLED(CONFIG_SHMEM
) && PageSwapBacked(head
))
2637 shmem_uncharge(head
->mapping
->host
, 1);
2639 } else if (!PageAnon(page
)) {
2640 __xa_store(&head
->mapping
->i_pages
, head
[i
].index
,
2642 } else if (swap_cache
) {
2643 __xa_store(&swap_cache
->i_pages
, offset
+ i
,
2648 ClearPageCompound(head
);
2650 split_page_owner(head
, HPAGE_PMD_ORDER
);
2652 /* See comment in __split_huge_page_tail() */
2653 if (PageAnon(head
)) {
2654 /* Additional pin to swap cache */
2655 if (PageSwapCache(head
)) {
2656 page_ref_add(head
, 2);
2657 xa_unlock(&swap_cache
->i_pages
);
2662 /* Additional pin to page cache */
2663 page_ref_add(head
, 2);
2664 xa_unlock(&head
->mapping
->i_pages
);
2667 spin_unlock_irqrestore(&pgdat
->lru_lock
, flags
);
2671 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2672 struct page
*subpage
= head
+ i
;
2673 if (subpage
== page
)
2675 unlock_page(subpage
);
2678 * Subpages may be freed if there wasn't any mapping
2679 * like if add_to_swap() is running on a lru page that
2680 * had its mapping zapped. And freeing these pages
2681 * requires taking the lru_lock so we do the put_page
2682 * of the tail pages after the split is complete.
2688 int total_mapcount(struct page
*page
)
2690 int i
, compound
, ret
;
2692 VM_BUG_ON_PAGE(PageTail(page
), page
);
2694 if (likely(!PageCompound(page
)))
2695 return atomic_read(&page
->_mapcount
) + 1;
2697 compound
= compound_mapcount(page
);
2701 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2702 ret
+= atomic_read(&page
[i
]._mapcount
) + 1;
2703 /* File pages has compound_mapcount included in _mapcount */
2704 if (!PageAnon(page
))
2705 return ret
- compound
* HPAGE_PMD_NR
;
2706 if (PageDoubleMap(page
))
2707 ret
-= HPAGE_PMD_NR
;
2712 * This calculates accurately how many mappings a transparent hugepage
2713 * has (unlike page_mapcount() which isn't fully accurate). This full
2714 * accuracy is primarily needed to know if copy-on-write faults can
2715 * reuse the page and change the mapping to read-write instead of
2716 * copying them. At the same time this returns the total_mapcount too.
2718 * The function returns the highest mapcount any one of the subpages
2719 * has. If the return value is one, even if different processes are
2720 * mapping different subpages of the transparent hugepage, they can
2721 * all reuse it, because each process is reusing a different subpage.
2723 * The total_mapcount is instead counting all virtual mappings of the
2724 * subpages. If the total_mapcount is equal to "one", it tells the
2725 * caller all mappings belong to the same "mm" and in turn the
2726 * anon_vma of the transparent hugepage can become the vma->anon_vma
2727 * local one as no other process may be mapping any of the subpages.
2729 * It would be more accurate to replace page_mapcount() with
2730 * page_trans_huge_mapcount(), however we only use
2731 * page_trans_huge_mapcount() in the copy-on-write faults where we
2732 * need full accuracy to avoid breaking page pinning, because
2733 * page_trans_huge_mapcount() is slower than page_mapcount().
2735 int page_trans_huge_mapcount(struct page
*page
, int *total_mapcount
)
2737 int i
, ret
, _total_mapcount
, mapcount
;
2739 /* hugetlbfs shouldn't call it */
2740 VM_BUG_ON_PAGE(PageHuge(page
), page
);
2742 if (likely(!PageTransCompound(page
))) {
2743 mapcount
= atomic_read(&page
->_mapcount
) + 1;
2745 *total_mapcount
= mapcount
;
2749 page
= compound_head(page
);
2751 _total_mapcount
= ret
= 0;
2752 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2753 mapcount
= atomic_read(&page
[i
]._mapcount
) + 1;
2754 ret
= max(ret
, mapcount
);
2755 _total_mapcount
+= mapcount
;
2757 if (PageDoubleMap(page
)) {
2759 _total_mapcount
-= HPAGE_PMD_NR
;
2761 mapcount
= compound_mapcount(page
);
2763 _total_mapcount
+= mapcount
;
2765 *total_mapcount
= _total_mapcount
;
2769 /* Racy check whether the huge page can be split */
2770 bool can_split_huge_page(struct page
*page
, int *pextra_pins
)
2774 /* Additional pins from page cache */
2776 extra_pins
= PageSwapCache(page
) ? HPAGE_PMD_NR
: 0;
2778 extra_pins
= HPAGE_PMD_NR
;
2780 *pextra_pins
= extra_pins
;
2781 return total_mapcount(page
) == page_count(page
) - extra_pins
- 1;
2785 * This function splits huge page into normal pages. @page can point to any
2786 * subpage of huge page to split. Split doesn't change the position of @page.
2788 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2789 * The huge page must be locked.
2791 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2793 * Both head page and tail pages will inherit mapping, flags, and so on from
2796 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2797 * they are not mapped.
2799 * Returns 0 if the hugepage is split successfully.
2800 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2803 int split_huge_page_to_list(struct page
*page
, struct list_head
*list
)
2805 struct page
*head
= compound_head(page
);
2806 struct pglist_data
*pgdata
= NODE_DATA(page_to_nid(head
));
2807 struct deferred_split
*ds_queue
= get_deferred_split_queue(head
);
2808 struct anon_vma
*anon_vma
= NULL
;
2809 struct address_space
*mapping
= NULL
;
2810 int count
, mapcount
, extra_pins
, ret
;
2812 unsigned long flags
;
2815 VM_BUG_ON_PAGE(is_huge_zero_page(head
), head
);
2816 VM_BUG_ON_PAGE(!PageLocked(head
), head
);
2817 VM_BUG_ON_PAGE(!PageCompound(head
), head
);
2819 if (PageWriteback(head
))
2822 if (PageAnon(head
)) {
2824 * The caller does not necessarily hold an mmap_sem that would
2825 * prevent the anon_vma disappearing so we first we take a
2826 * reference to it and then lock the anon_vma for write. This
2827 * is similar to page_lock_anon_vma_read except the write lock
2828 * is taken to serialise against parallel split or collapse
2831 anon_vma
= page_get_anon_vma(head
);
2838 anon_vma_lock_write(anon_vma
);
2840 mapping
= head
->mapping
;
2849 i_mmap_lock_read(mapping
);
2852 *__split_huge_page() may need to trim off pages beyond EOF:
2853 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2854 * which cannot be nested inside the page tree lock. So note
2855 * end now: i_size itself may be changed at any moment, but
2856 * head page lock is good enough to serialize the trimming.
2858 end
= DIV_ROUND_UP(i_size_read(mapping
->host
), PAGE_SIZE
);
2862 * Racy check if we can split the page, before unmap_page() will
2865 if (!can_split_huge_page(head
, &extra_pins
)) {
2870 mlocked
= PageMlocked(head
);
2872 VM_BUG_ON_PAGE(compound_mapcount(head
), head
);
2874 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2878 /* prevent PageLRU to go away from under us, and freeze lru stats */
2879 spin_lock_irqsave(&pgdata
->lru_lock
, flags
);
2882 XA_STATE(xas
, &mapping
->i_pages
, page_index(head
));
2885 * Check if the head page is present in page cache.
2886 * We assume all tail are present too, if head is there.
2888 xa_lock(&mapping
->i_pages
);
2889 if (xas_load(&xas
) != head
)
2893 /* Prevent deferred_split_scan() touching ->_refcount */
2894 spin_lock(&ds_queue
->split_queue_lock
);
2895 count
= page_count(head
);
2896 mapcount
= total_mapcount(head
);
2897 if (!mapcount
&& page_ref_freeze(head
, 1 + extra_pins
)) {
2898 if (!list_empty(page_deferred_list(head
))) {
2899 ds_queue
->split_queue_len
--;
2900 list_del(page_deferred_list(head
));
2902 spin_unlock(&ds_queue
->split_queue_lock
);
2904 if (PageSwapBacked(head
))
2905 __dec_node_page_state(head
, NR_SHMEM_THPS
);
2907 __dec_node_page_state(head
, NR_FILE_THPS
);
2910 __split_huge_page(page
, list
, end
, flags
);
2911 if (PageSwapCache(head
)) {
2912 swp_entry_t entry
= { .val
= page_private(head
) };
2914 ret
= split_swap_cluster(entry
);
2918 if (IS_ENABLED(CONFIG_DEBUG_VM
) && mapcount
) {
2919 pr_alert("total_mapcount: %u, page_count(): %u\n",
2922 dump_page(head
, NULL
);
2923 dump_page(page
, "total_mapcount(head) > 0");
2926 spin_unlock(&ds_queue
->split_queue_lock
);
2928 xa_unlock(&mapping
->i_pages
);
2929 spin_unlock_irqrestore(&pgdata
->lru_lock
, flags
);
2936 anon_vma_unlock_write(anon_vma
);
2937 put_anon_vma(anon_vma
);
2940 i_mmap_unlock_read(mapping
);
2942 count_vm_event(!ret
? THP_SPLIT_PAGE
: THP_SPLIT_PAGE_FAILED
);
2946 void free_transhuge_page(struct page
*page
)
2948 struct deferred_split
*ds_queue
= get_deferred_split_queue(page
);
2949 unsigned long flags
;
2951 spin_lock_irqsave(&ds_queue
->split_queue_lock
, flags
);
2952 if (!list_empty(page_deferred_list(page
))) {
2953 ds_queue
->split_queue_len
--;
2954 list_del(page_deferred_list(page
));
2956 spin_unlock_irqrestore(&ds_queue
->split_queue_lock
, flags
);
2957 free_compound_page(page
);
2960 void deferred_split_huge_page(struct page
*page
)
2962 struct deferred_split
*ds_queue
= get_deferred_split_queue(page
);
2964 struct mem_cgroup
*memcg
= compound_head(page
)->mem_cgroup
;
2966 unsigned long flags
;
2968 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
2971 * The try_to_unmap() in page reclaim path might reach here too,
2972 * this may cause a race condition to corrupt deferred split queue.
2973 * And, if page reclaim is already handling the same page, it is
2974 * unnecessary to handle it again in shrinker.
2976 * Check PageSwapCache to determine if the page is being
2977 * handled by page reclaim since THP swap would add the page into
2978 * swap cache before calling try_to_unmap().
2980 if (PageSwapCache(page
))
2983 spin_lock_irqsave(&ds_queue
->split_queue_lock
, flags
);
2984 if (list_empty(page_deferred_list(page
))) {
2985 count_vm_event(THP_DEFERRED_SPLIT_PAGE
);
2986 list_add_tail(page_deferred_list(page
), &ds_queue
->split_queue
);
2987 ds_queue
->split_queue_len
++;
2990 memcg_set_shrinker_bit(memcg
, page_to_nid(page
),
2991 deferred_split_shrinker
.id
);
2994 spin_unlock_irqrestore(&ds_queue
->split_queue_lock
, flags
);
2997 static unsigned long deferred_split_count(struct shrinker
*shrink
,
2998 struct shrink_control
*sc
)
3000 struct pglist_data
*pgdata
= NODE_DATA(sc
->nid
);
3001 struct deferred_split
*ds_queue
= &pgdata
->deferred_split_queue
;
3005 ds_queue
= &sc
->memcg
->deferred_split_queue
;
3007 return READ_ONCE(ds_queue
->split_queue_len
);
3010 static unsigned long deferred_split_scan(struct shrinker
*shrink
,
3011 struct shrink_control
*sc
)
3013 struct pglist_data
*pgdata
= NODE_DATA(sc
->nid
);
3014 struct deferred_split
*ds_queue
= &pgdata
->deferred_split_queue
;
3015 unsigned long flags
;
3016 LIST_HEAD(list
), *pos
, *next
;
3022 ds_queue
= &sc
->memcg
->deferred_split_queue
;
3025 spin_lock_irqsave(&ds_queue
->split_queue_lock
, flags
);
3026 /* Take pin on all head pages to avoid freeing them under us */
3027 list_for_each_safe(pos
, next
, &ds_queue
->split_queue
) {
3028 page
= list_entry((void *)pos
, struct page
, mapping
);
3029 page
= compound_head(page
);
3030 if (get_page_unless_zero(page
)) {
3031 list_move(page_deferred_list(page
), &list
);
3033 /* We lost race with put_compound_page() */
3034 list_del_init(page_deferred_list(page
));
3035 ds_queue
->split_queue_len
--;
3037 if (!--sc
->nr_to_scan
)
3040 spin_unlock_irqrestore(&ds_queue
->split_queue_lock
, flags
);
3042 list_for_each_safe(pos
, next
, &list
) {
3043 page
= list_entry((void *)pos
, struct page
, mapping
);
3044 if (!trylock_page(page
))
3046 /* split_huge_page() removes page from list on success */
3047 if (!split_huge_page(page
))
3054 spin_lock_irqsave(&ds_queue
->split_queue_lock
, flags
);
3055 list_splice_tail(&list
, &ds_queue
->split_queue
);
3056 spin_unlock_irqrestore(&ds_queue
->split_queue_lock
, flags
);
3059 * Stop shrinker if we didn't split any page, but the queue is empty.
3060 * This can happen if pages were freed under us.
3062 if (!split
&& list_empty(&ds_queue
->split_queue
))
3067 static struct shrinker deferred_split_shrinker
= {
3068 .count_objects
= deferred_split_count
,
3069 .scan_objects
= deferred_split_scan
,
3070 .seeks
= DEFAULT_SEEKS
,
3071 .flags
= SHRINKER_NUMA_AWARE
| SHRINKER_MEMCG_AWARE
|
3075 #ifdef CONFIG_DEBUG_FS
3076 static int split_huge_pages_set(void *data
, u64 val
)
3080 unsigned long pfn
, max_zone_pfn
;
3081 unsigned long total
= 0, split
= 0;
3086 for_each_populated_zone(zone
) {
3087 max_zone_pfn
= zone_end_pfn(zone
);
3088 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++) {
3089 if (!pfn_valid(pfn
))
3092 page
= pfn_to_page(pfn
);
3093 if (!get_page_unless_zero(page
))
3096 if (zone
!= page_zone(page
))
3099 if (!PageHead(page
) || PageHuge(page
) || !PageLRU(page
))
3104 if (!split_huge_page(page
))
3112 pr_info("%lu of %lu THP split\n", split
, total
);
3116 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops
, NULL
, split_huge_pages_set
,
3119 static int __init
split_huge_pages_debugfs(void)
3121 debugfs_create_file("split_huge_pages", 0200, NULL
, NULL
,
3122 &split_huge_pages_fops
);
3125 late_initcall(split_huge_pages_debugfs
);
3128 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3129 void set_pmd_migration_entry(struct page_vma_mapped_walk
*pvmw
,
3132 struct vm_area_struct
*vma
= pvmw
->vma
;
3133 struct mm_struct
*mm
= vma
->vm_mm
;
3134 unsigned long address
= pvmw
->address
;
3139 if (!(pvmw
->pmd
&& !pvmw
->pte
))
3142 flush_cache_range(vma
, address
, address
+ HPAGE_PMD_SIZE
);
3143 pmdval
= pmdp_invalidate(vma
, address
, pvmw
->pmd
);
3144 if (pmd_dirty(pmdval
))
3145 set_page_dirty(page
);
3146 entry
= make_migration_entry(page
, pmd_write(pmdval
));
3147 pmdswp
= swp_entry_to_pmd(entry
);
3148 if (pmd_soft_dirty(pmdval
))
3149 pmdswp
= pmd_swp_mksoft_dirty(pmdswp
);
3150 set_pmd_at(mm
, address
, pvmw
->pmd
, pmdswp
);
3151 page_remove_rmap(page
, true);
3155 void remove_migration_pmd(struct page_vma_mapped_walk
*pvmw
, struct page
*new)
3157 struct vm_area_struct
*vma
= pvmw
->vma
;
3158 struct mm_struct
*mm
= vma
->vm_mm
;
3159 unsigned long address
= pvmw
->address
;
3160 unsigned long mmun_start
= address
& HPAGE_PMD_MASK
;
3164 if (!(pvmw
->pmd
&& !pvmw
->pte
))
3167 entry
= pmd_to_swp_entry(*pvmw
->pmd
);
3169 pmde
= pmd_mkold(mk_huge_pmd(new, vma
->vm_page_prot
));
3170 if (pmd_swp_soft_dirty(*pvmw
->pmd
))
3171 pmde
= pmd_mksoft_dirty(pmde
);
3172 if (is_write_migration_entry(entry
))
3173 pmde
= maybe_pmd_mkwrite(pmde
, vma
);
3175 flush_cache_range(vma
, mmun_start
, mmun_start
+ HPAGE_PMD_SIZE
);
3177 page_add_anon_rmap(new, vma
, mmun_start
, true);
3179 page_add_file_rmap(new, true);
3180 set_pmd_at(mm
, mmun_start
, pvmw
->pmd
, pmde
);
3181 if ((vma
->vm_flags
& VM_LOCKED
) && !PageDoubleMap(new))
3182 mlock_vma_page(new);
3183 update_mmu_cache_pmd(vma
, address
, pvmw
->pmd
);