Linux 5.7.7
[linux/fpc-iii.git] / mm / memcontrol.c
blobef0e291a8cf46595d1a2f5d2dedaf1c7e9f6326a
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
67 #include <linux/uaccess.h>
69 #include <trace/events/vmscan.h>
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
76 #define MEM_CGROUP_RECLAIM_RETRIES 5
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 int do_swap_account __read_mostly;
87 #else
88 #define do_swap_account 0
89 #endif
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
109 struct mem_cgroup_tree_per_node {
110 struct rb_root rb_root;
111 struct rb_node *rb_rightmost;
112 spinlock_t lock;
115 struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
121 /* for OOM */
122 struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
128 * cgroup_event represents events which userspace want to receive.
130 struct mem_cgroup_event {
132 * memcg which the event belongs to.
134 struct mem_cgroup *memcg;
136 * eventfd to signal userspace about the event.
138 struct eventfd_ctx *eventfd;
140 * Each of these stored in a list by the cgroup.
142 struct list_head list;
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
148 int (*register_event)(struct mem_cgroup *memcg,
149 struct eventfd_ctx *eventfd, const char *args);
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
155 void (*unregister_event)(struct mem_cgroup *memcg,
156 struct eventfd_ctx *eventfd);
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
161 poll_table pt;
162 wait_queue_head_t *wqh;
163 wait_queue_entry_t wait;
164 struct work_struct remove;
167 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
170 /* Stuffs for move charges at task migration. */
172 * Types of charges to be moved.
174 #define MOVE_ANON 0x1U
175 #define MOVE_FILE 0x2U
176 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct {
180 spinlock_t lock; /* for from, to */
181 struct mm_struct *mm;
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
184 unsigned long flags;
185 unsigned long precharge;
186 unsigned long moved_charge;
187 unsigned long moved_swap;
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190 } mc = {
191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
202 enum charge_type {
203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204 MEM_CGROUP_CHARGE_TYPE_ANON,
205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
207 NR_CHARGE_TYPE,
210 /* for encoding cft->private value on file */
211 enum res_type {
212 _MEM,
213 _MEMSWAP,
214 _OOM_TYPE,
215 _KMEM,
216 _TCP,
219 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
220 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
221 #define MEMFILE_ATTR(val) ((val) & 0xffff)
222 /* Used for OOM nofiier */
223 #define OOM_CONTROL (0)
226 * Iteration constructs for visiting all cgroups (under a tree). If
227 * loops are exited prematurely (break), mem_cgroup_iter_break() must
228 * be used for reference counting.
230 #define for_each_mem_cgroup_tree(iter, root) \
231 for (iter = mem_cgroup_iter(root, NULL, NULL); \
232 iter != NULL; \
233 iter = mem_cgroup_iter(root, iter, NULL))
235 #define for_each_mem_cgroup(iter) \
236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
237 iter != NULL; \
238 iter = mem_cgroup_iter(NULL, iter, NULL))
240 static inline bool should_force_charge(void)
242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 (current->flags & PF_EXITING);
246 /* Some nice accessors for the vmpressure. */
247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
249 if (!memcg)
250 memcg = root_mem_cgroup;
251 return &memcg->vmpressure;
254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
259 #ifdef CONFIG_MEMCG_KMEM
261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
262 * The main reason for not using cgroup id for this:
263 * this works better in sparse environments, where we have a lot of memcgs,
264 * but only a few kmem-limited. Or also, if we have, for instance, 200
265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
266 * 200 entry array for that.
268 * The current size of the caches array is stored in memcg_nr_cache_ids. It
269 * will double each time we have to increase it.
271 static DEFINE_IDA(memcg_cache_ida);
272 int memcg_nr_cache_ids;
274 /* Protects memcg_nr_cache_ids */
275 static DECLARE_RWSEM(memcg_cache_ids_sem);
277 void memcg_get_cache_ids(void)
279 down_read(&memcg_cache_ids_sem);
282 void memcg_put_cache_ids(void)
284 up_read(&memcg_cache_ids_sem);
288 * MIN_SIZE is different than 1, because we would like to avoid going through
289 * the alloc/free process all the time. In a small machine, 4 kmem-limited
290 * cgroups is a reasonable guess. In the future, it could be a parameter or
291 * tunable, but that is strictly not necessary.
293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294 * this constant directly from cgroup, but it is understandable that this is
295 * better kept as an internal representation in cgroup.c. In any case, the
296 * cgrp_id space is not getting any smaller, and we don't have to necessarily
297 * increase ours as well if it increases.
299 #define MEMCG_CACHES_MIN_SIZE 4
300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
303 * A lot of the calls to the cache allocation functions are expected to be
304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305 * conditional to this static branch, we'll have to allow modules that does
306 * kmem_cache_alloc and the such to see this symbol as well
308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309 EXPORT_SYMBOL(memcg_kmem_enabled_key);
311 struct workqueue_struct *memcg_kmem_cache_wq;
312 #endif
314 static int memcg_shrinker_map_size;
315 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
319 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 int size, int old_size)
325 struct memcg_shrinker_map *new, *old;
326 int nid;
328 lockdep_assert_held(&memcg_shrinker_map_mutex);
330 for_each_node(nid) {
331 old = rcu_dereference_protected(
332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 /* Not yet online memcg */
334 if (!old)
335 return 0;
337 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
338 if (!new)
339 return -ENOMEM;
341 /* Set all old bits, clear all new bits */
342 memset(new->map, (int)0xff, old_size);
343 memset((void *)new->map + old_size, 0, size - old_size);
345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
349 return 0;
352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
354 struct mem_cgroup_per_node *pn;
355 struct memcg_shrinker_map *map;
356 int nid;
358 if (mem_cgroup_is_root(memcg))
359 return;
361 for_each_node(nid) {
362 pn = mem_cgroup_nodeinfo(memcg, nid);
363 map = rcu_dereference_protected(pn->shrinker_map, true);
364 if (map)
365 kvfree(map);
366 rcu_assign_pointer(pn->shrinker_map, NULL);
370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
372 struct memcg_shrinker_map *map;
373 int nid, size, ret = 0;
375 if (mem_cgroup_is_root(memcg))
376 return 0;
378 mutex_lock(&memcg_shrinker_map_mutex);
379 size = memcg_shrinker_map_size;
380 for_each_node(nid) {
381 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
382 if (!map) {
383 memcg_free_shrinker_maps(memcg);
384 ret = -ENOMEM;
385 break;
387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
389 mutex_unlock(&memcg_shrinker_map_mutex);
391 return ret;
394 int memcg_expand_shrinker_maps(int new_id)
396 int size, old_size, ret = 0;
397 struct mem_cgroup *memcg;
399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 old_size = memcg_shrinker_map_size;
401 if (size <= old_size)
402 return 0;
404 mutex_lock(&memcg_shrinker_map_mutex);
405 if (!root_mem_cgroup)
406 goto unlock;
408 for_each_mem_cgroup(memcg) {
409 if (mem_cgroup_is_root(memcg))
410 continue;
411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
412 if (ret) {
413 mem_cgroup_iter_break(NULL, memcg);
414 goto unlock;
417 unlock:
418 if (!ret)
419 memcg_shrinker_map_size = size;
420 mutex_unlock(&memcg_shrinker_map_mutex);
421 return ret;
424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 struct memcg_shrinker_map *map;
429 rcu_read_lock();
430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 /* Pairs with smp mb in shrink_slab() */
432 smp_mb__before_atomic();
433 set_bit(shrinker_id, map->map);
434 rcu_read_unlock();
439 * mem_cgroup_css_from_page - css of the memcg associated with a page
440 * @page: page of interest
442 * If memcg is bound to the default hierarchy, css of the memcg associated
443 * with @page is returned. The returned css remains associated with @page
444 * until it is released.
446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
447 * is returned.
449 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
451 struct mem_cgroup *memcg;
453 memcg = page->mem_cgroup;
455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 memcg = root_mem_cgroup;
458 return &memcg->css;
462 * page_cgroup_ino - return inode number of the memcg a page is charged to
463 * @page: the page
465 * Look up the closest online ancestor of the memory cgroup @page is charged to
466 * and return its inode number or 0 if @page is not charged to any cgroup. It
467 * is safe to call this function without holding a reference to @page.
469 * Note, this function is inherently racy, because there is nothing to prevent
470 * the cgroup inode from getting torn down and potentially reallocated a moment
471 * after page_cgroup_ino() returns, so it only should be used by callers that
472 * do not care (such as procfs interfaces).
474 ino_t page_cgroup_ino(struct page *page)
476 struct mem_cgroup *memcg;
477 unsigned long ino = 0;
479 rcu_read_lock();
480 if (PageSlab(page) && !PageTail(page))
481 memcg = memcg_from_slab_page(page);
482 else
483 memcg = READ_ONCE(page->mem_cgroup);
484 while (memcg && !(memcg->css.flags & CSS_ONLINE))
485 memcg = parent_mem_cgroup(memcg);
486 if (memcg)
487 ino = cgroup_ino(memcg->css.cgroup);
488 rcu_read_unlock();
489 return ino;
492 static struct mem_cgroup_per_node *
493 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
495 int nid = page_to_nid(page);
497 return memcg->nodeinfo[nid];
500 static struct mem_cgroup_tree_per_node *
501 soft_limit_tree_node(int nid)
503 return soft_limit_tree.rb_tree_per_node[nid];
506 static struct mem_cgroup_tree_per_node *
507 soft_limit_tree_from_page(struct page *page)
509 int nid = page_to_nid(page);
511 return soft_limit_tree.rb_tree_per_node[nid];
514 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
515 struct mem_cgroup_tree_per_node *mctz,
516 unsigned long new_usage_in_excess)
518 struct rb_node **p = &mctz->rb_root.rb_node;
519 struct rb_node *parent = NULL;
520 struct mem_cgroup_per_node *mz_node;
521 bool rightmost = true;
523 if (mz->on_tree)
524 return;
526 mz->usage_in_excess = new_usage_in_excess;
527 if (!mz->usage_in_excess)
528 return;
529 while (*p) {
530 parent = *p;
531 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
532 tree_node);
533 if (mz->usage_in_excess < mz_node->usage_in_excess) {
534 p = &(*p)->rb_left;
535 rightmost = false;
539 * We can't avoid mem cgroups that are over their soft
540 * limit by the same amount
542 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
543 p = &(*p)->rb_right;
546 if (rightmost)
547 mctz->rb_rightmost = &mz->tree_node;
549 rb_link_node(&mz->tree_node, parent, p);
550 rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 mz->on_tree = true;
554 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
555 struct mem_cgroup_tree_per_node *mctz)
557 if (!mz->on_tree)
558 return;
560 if (&mz->tree_node == mctz->rb_rightmost)
561 mctz->rb_rightmost = rb_prev(&mz->tree_node);
563 rb_erase(&mz->tree_node, &mctz->rb_root);
564 mz->on_tree = false;
567 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 struct mem_cgroup_tree_per_node *mctz)
570 unsigned long flags;
572 spin_lock_irqsave(&mctz->lock, flags);
573 __mem_cgroup_remove_exceeded(mz, mctz);
574 spin_unlock_irqrestore(&mctz->lock, flags);
577 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
579 unsigned long nr_pages = page_counter_read(&memcg->memory);
580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
581 unsigned long excess = 0;
583 if (nr_pages > soft_limit)
584 excess = nr_pages - soft_limit;
586 return excess;
589 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
591 unsigned long excess;
592 struct mem_cgroup_per_node *mz;
593 struct mem_cgroup_tree_per_node *mctz;
595 mctz = soft_limit_tree_from_page(page);
596 if (!mctz)
597 return;
599 * Necessary to update all ancestors when hierarchy is used.
600 * because their event counter is not touched.
602 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
603 mz = mem_cgroup_page_nodeinfo(memcg, page);
604 excess = soft_limit_excess(memcg);
606 * We have to update the tree if mz is on RB-tree or
607 * mem is over its softlimit.
609 if (excess || mz->on_tree) {
610 unsigned long flags;
612 spin_lock_irqsave(&mctz->lock, flags);
613 /* if on-tree, remove it */
614 if (mz->on_tree)
615 __mem_cgroup_remove_exceeded(mz, mctz);
617 * Insert again. mz->usage_in_excess will be updated.
618 * If excess is 0, no tree ops.
620 __mem_cgroup_insert_exceeded(mz, mctz, excess);
621 spin_unlock_irqrestore(&mctz->lock, flags);
626 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
628 struct mem_cgroup_tree_per_node *mctz;
629 struct mem_cgroup_per_node *mz;
630 int nid;
632 for_each_node(nid) {
633 mz = mem_cgroup_nodeinfo(memcg, nid);
634 mctz = soft_limit_tree_node(nid);
635 if (mctz)
636 mem_cgroup_remove_exceeded(mz, mctz);
640 static struct mem_cgroup_per_node *
641 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
643 struct mem_cgroup_per_node *mz;
645 retry:
646 mz = NULL;
647 if (!mctz->rb_rightmost)
648 goto done; /* Nothing to reclaim from */
650 mz = rb_entry(mctz->rb_rightmost,
651 struct mem_cgroup_per_node, tree_node);
653 * Remove the node now but someone else can add it back,
654 * we will to add it back at the end of reclaim to its correct
655 * position in the tree.
657 __mem_cgroup_remove_exceeded(mz, mctz);
658 if (!soft_limit_excess(mz->memcg) ||
659 !css_tryget(&mz->memcg->css))
660 goto retry;
661 done:
662 return mz;
665 static struct mem_cgroup_per_node *
666 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
668 struct mem_cgroup_per_node *mz;
670 spin_lock_irq(&mctz->lock);
671 mz = __mem_cgroup_largest_soft_limit_node(mctz);
672 spin_unlock_irq(&mctz->lock);
673 return mz;
677 * __mod_memcg_state - update cgroup memory statistics
678 * @memcg: the memory cgroup
679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
680 * @val: delta to add to the counter, can be negative
682 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
684 long x;
686 if (mem_cgroup_disabled())
687 return;
689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
691 struct mem_cgroup *mi;
694 * Batch local counters to keep them in sync with
695 * the hierarchical ones.
697 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
699 atomic_long_add(x, &mi->vmstats[idx]);
700 x = 0;
702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
705 static struct mem_cgroup_per_node *
706 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
708 struct mem_cgroup *parent;
710 parent = parent_mem_cgroup(pn->memcg);
711 if (!parent)
712 return NULL;
713 return mem_cgroup_nodeinfo(parent, nid);
717 * __mod_lruvec_state - update lruvec memory statistics
718 * @lruvec: the lruvec
719 * @idx: the stat item
720 * @val: delta to add to the counter, can be negative
722 * The lruvec is the intersection of the NUMA node and a cgroup. This
723 * function updates the all three counters that are affected by a
724 * change of state at this level: per-node, per-cgroup, per-lruvec.
726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 int val)
729 pg_data_t *pgdat = lruvec_pgdat(lruvec);
730 struct mem_cgroup_per_node *pn;
731 struct mem_cgroup *memcg;
732 long x;
734 /* Update node */
735 __mod_node_page_state(pgdat, idx, val);
737 if (mem_cgroup_disabled())
738 return;
740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
741 memcg = pn->memcg;
743 /* Update memcg */
744 __mod_memcg_state(memcg, idx, val);
746 /* Update lruvec */
747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
751 struct mem_cgroup_per_node *pi;
753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 atomic_long_add(x, &pi->lruvec_stat[idx]);
755 x = 0;
757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
760 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
762 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
763 struct mem_cgroup *memcg;
764 struct lruvec *lruvec;
766 rcu_read_lock();
767 memcg = mem_cgroup_from_obj(p);
769 /* Untracked pages have no memcg, no lruvec. Update only the node */
770 if (!memcg || memcg == root_mem_cgroup) {
771 __mod_node_page_state(pgdat, idx, val);
772 } else {
773 lruvec = mem_cgroup_lruvec(memcg, pgdat);
774 __mod_lruvec_state(lruvec, idx, val);
776 rcu_read_unlock();
779 void mod_memcg_obj_state(void *p, int idx, int val)
781 struct mem_cgroup *memcg;
783 rcu_read_lock();
784 memcg = mem_cgroup_from_obj(p);
785 if (memcg)
786 mod_memcg_state(memcg, idx, val);
787 rcu_read_unlock();
791 * __count_memcg_events - account VM events in a cgroup
792 * @memcg: the memory cgroup
793 * @idx: the event item
794 * @count: the number of events that occured
796 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
797 unsigned long count)
799 unsigned long x;
801 if (mem_cgroup_disabled())
802 return;
804 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
805 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
806 struct mem_cgroup *mi;
809 * Batch local counters to keep them in sync with
810 * the hierarchical ones.
812 __this_cpu_add(memcg->vmstats_local->events[idx], x);
813 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
814 atomic_long_add(x, &mi->vmevents[idx]);
815 x = 0;
817 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
820 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
822 return atomic_long_read(&memcg->vmevents[event]);
825 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
827 long x = 0;
828 int cpu;
830 for_each_possible_cpu(cpu)
831 x += per_cpu(memcg->vmstats_local->events[event], cpu);
832 return x;
835 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
836 struct page *page,
837 bool compound, int nr_pages)
840 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
841 * counted as CACHE even if it's on ANON LRU.
843 if (PageAnon(page))
844 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
845 else {
846 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
847 if (PageSwapBacked(page))
848 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
851 if (compound) {
852 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
853 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
856 /* pagein of a big page is an event. So, ignore page size */
857 if (nr_pages > 0)
858 __count_memcg_events(memcg, PGPGIN, 1);
859 else {
860 __count_memcg_events(memcg, PGPGOUT, 1);
861 nr_pages = -nr_pages; /* for event */
864 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
867 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
868 enum mem_cgroup_events_target target)
870 unsigned long val, next;
872 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
873 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
874 /* from time_after() in jiffies.h */
875 if ((long)(next - val) < 0) {
876 switch (target) {
877 case MEM_CGROUP_TARGET_THRESH:
878 next = val + THRESHOLDS_EVENTS_TARGET;
879 break;
880 case MEM_CGROUP_TARGET_SOFTLIMIT:
881 next = val + SOFTLIMIT_EVENTS_TARGET;
882 break;
883 default:
884 break;
886 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
887 return true;
889 return false;
893 * Check events in order.
896 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
898 /* threshold event is triggered in finer grain than soft limit */
899 if (unlikely(mem_cgroup_event_ratelimit(memcg,
900 MEM_CGROUP_TARGET_THRESH))) {
901 bool do_softlimit;
903 do_softlimit = mem_cgroup_event_ratelimit(memcg,
904 MEM_CGROUP_TARGET_SOFTLIMIT);
905 mem_cgroup_threshold(memcg);
906 if (unlikely(do_softlimit))
907 mem_cgroup_update_tree(memcg, page);
911 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
914 * mm_update_next_owner() may clear mm->owner to NULL
915 * if it races with swapoff, page migration, etc.
916 * So this can be called with p == NULL.
918 if (unlikely(!p))
919 return NULL;
921 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
923 EXPORT_SYMBOL(mem_cgroup_from_task);
926 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
927 * @mm: mm from which memcg should be extracted. It can be NULL.
929 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
930 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
931 * returned.
933 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
935 struct mem_cgroup *memcg;
937 if (mem_cgroup_disabled())
938 return NULL;
940 rcu_read_lock();
941 do {
943 * Page cache insertions can happen withou an
944 * actual mm context, e.g. during disk probing
945 * on boot, loopback IO, acct() writes etc.
947 if (unlikely(!mm))
948 memcg = root_mem_cgroup;
949 else {
950 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
951 if (unlikely(!memcg))
952 memcg = root_mem_cgroup;
954 } while (!css_tryget(&memcg->css));
955 rcu_read_unlock();
956 return memcg;
958 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
961 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
962 * @page: page from which memcg should be extracted.
964 * Obtain a reference on page->memcg and returns it if successful. Otherwise
965 * root_mem_cgroup is returned.
967 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
969 struct mem_cgroup *memcg = page->mem_cgroup;
971 if (mem_cgroup_disabled())
972 return NULL;
974 rcu_read_lock();
975 /* Page should not get uncharged and freed memcg under us. */
976 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
977 memcg = root_mem_cgroup;
978 rcu_read_unlock();
979 return memcg;
981 EXPORT_SYMBOL(get_mem_cgroup_from_page);
984 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
986 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
988 if (unlikely(current->active_memcg)) {
989 struct mem_cgroup *memcg;
991 rcu_read_lock();
992 /* current->active_memcg must hold a ref. */
993 if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
994 memcg = root_mem_cgroup;
995 else
996 memcg = current->active_memcg;
997 rcu_read_unlock();
998 return memcg;
1000 return get_mem_cgroup_from_mm(current->mm);
1004 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1005 * @root: hierarchy root
1006 * @prev: previously returned memcg, NULL on first invocation
1007 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1009 * Returns references to children of the hierarchy below @root, or
1010 * @root itself, or %NULL after a full round-trip.
1012 * Caller must pass the return value in @prev on subsequent
1013 * invocations for reference counting, or use mem_cgroup_iter_break()
1014 * to cancel a hierarchy walk before the round-trip is complete.
1016 * Reclaimers can specify a node and a priority level in @reclaim to
1017 * divide up the memcgs in the hierarchy among all concurrent
1018 * reclaimers operating on the same node and priority.
1020 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1021 struct mem_cgroup *prev,
1022 struct mem_cgroup_reclaim_cookie *reclaim)
1024 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1025 struct cgroup_subsys_state *css = NULL;
1026 struct mem_cgroup *memcg = NULL;
1027 struct mem_cgroup *pos = NULL;
1029 if (mem_cgroup_disabled())
1030 return NULL;
1032 if (!root)
1033 root = root_mem_cgroup;
1035 if (prev && !reclaim)
1036 pos = prev;
1038 if (!root->use_hierarchy && root != root_mem_cgroup) {
1039 if (prev)
1040 goto out;
1041 return root;
1044 rcu_read_lock();
1046 if (reclaim) {
1047 struct mem_cgroup_per_node *mz;
1049 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1050 iter = &mz->iter;
1052 if (prev && reclaim->generation != iter->generation)
1053 goto out_unlock;
1055 while (1) {
1056 pos = READ_ONCE(iter->position);
1057 if (!pos || css_tryget(&pos->css))
1058 break;
1060 * css reference reached zero, so iter->position will
1061 * be cleared by ->css_released. However, we should not
1062 * rely on this happening soon, because ->css_released
1063 * is called from a work queue, and by busy-waiting we
1064 * might block it. So we clear iter->position right
1065 * away.
1067 (void)cmpxchg(&iter->position, pos, NULL);
1071 if (pos)
1072 css = &pos->css;
1074 for (;;) {
1075 css = css_next_descendant_pre(css, &root->css);
1076 if (!css) {
1078 * Reclaimers share the hierarchy walk, and a
1079 * new one might jump in right at the end of
1080 * the hierarchy - make sure they see at least
1081 * one group and restart from the beginning.
1083 if (!prev)
1084 continue;
1085 break;
1089 * Verify the css and acquire a reference. The root
1090 * is provided by the caller, so we know it's alive
1091 * and kicking, and don't take an extra reference.
1093 memcg = mem_cgroup_from_css(css);
1095 if (css == &root->css)
1096 break;
1098 if (css_tryget(css))
1099 break;
1101 memcg = NULL;
1104 if (reclaim) {
1106 * The position could have already been updated by a competing
1107 * thread, so check that the value hasn't changed since we read
1108 * it to avoid reclaiming from the same cgroup twice.
1110 (void)cmpxchg(&iter->position, pos, memcg);
1112 if (pos)
1113 css_put(&pos->css);
1115 if (!memcg)
1116 iter->generation++;
1117 else if (!prev)
1118 reclaim->generation = iter->generation;
1121 out_unlock:
1122 rcu_read_unlock();
1123 out:
1124 if (prev && prev != root)
1125 css_put(&prev->css);
1127 return memcg;
1131 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1132 * @root: hierarchy root
1133 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1135 void mem_cgroup_iter_break(struct mem_cgroup *root,
1136 struct mem_cgroup *prev)
1138 if (!root)
1139 root = root_mem_cgroup;
1140 if (prev && prev != root)
1141 css_put(&prev->css);
1144 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1145 struct mem_cgroup *dead_memcg)
1147 struct mem_cgroup_reclaim_iter *iter;
1148 struct mem_cgroup_per_node *mz;
1149 int nid;
1151 for_each_node(nid) {
1152 mz = mem_cgroup_nodeinfo(from, nid);
1153 iter = &mz->iter;
1154 cmpxchg(&iter->position, dead_memcg, NULL);
1158 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1160 struct mem_cgroup *memcg = dead_memcg;
1161 struct mem_cgroup *last;
1163 do {
1164 __invalidate_reclaim_iterators(memcg, dead_memcg);
1165 last = memcg;
1166 } while ((memcg = parent_mem_cgroup(memcg)));
1169 * When cgruop1 non-hierarchy mode is used,
1170 * parent_mem_cgroup() does not walk all the way up to the
1171 * cgroup root (root_mem_cgroup). So we have to handle
1172 * dead_memcg from cgroup root separately.
1174 if (last != root_mem_cgroup)
1175 __invalidate_reclaim_iterators(root_mem_cgroup,
1176 dead_memcg);
1180 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1181 * @memcg: hierarchy root
1182 * @fn: function to call for each task
1183 * @arg: argument passed to @fn
1185 * This function iterates over tasks attached to @memcg or to any of its
1186 * descendants and calls @fn for each task. If @fn returns a non-zero
1187 * value, the function breaks the iteration loop and returns the value.
1188 * Otherwise, it will iterate over all tasks and return 0.
1190 * This function must not be called for the root memory cgroup.
1192 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1193 int (*fn)(struct task_struct *, void *), void *arg)
1195 struct mem_cgroup *iter;
1196 int ret = 0;
1198 BUG_ON(memcg == root_mem_cgroup);
1200 for_each_mem_cgroup_tree(iter, memcg) {
1201 struct css_task_iter it;
1202 struct task_struct *task;
1204 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1205 while (!ret && (task = css_task_iter_next(&it)))
1206 ret = fn(task, arg);
1207 css_task_iter_end(&it);
1208 if (ret) {
1209 mem_cgroup_iter_break(memcg, iter);
1210 break;
1213 return ret;
1217 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1218 * @page: the page
1219 * @pgdat: pgdat of the page
1221 * This function is only safe when following the LRU page isolation
1222 * and putback protocol: the LRU lock must be held, and the page must
1223 * either be PageLRU() or the caller must have isolated/allocated it.
1225 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1227 struct mem_cgroup_per_node *mz;
1228 struct mem_cgroup *memcg;
1229 struct lruvec *lruvec;
1231 if (mem_cgroup_disabled()) {
1232 lruvec = &pgdat->__lruvec;
1233 goto out;
1236 memcg = page->mem_cgroup;
1238 * Swapcache readahead pages are added to the LRU - and
1239 * possibly migrated - before they are charged.
1241 if (!memcg)
1242 memcg = root_mem_cgroup;
1244 mz = mem_cgroup_page_nodeinfo(memcg, page);
1245 lruvec = &mz->lruvec;
1246 out:
1248 * Since a node can be onlined after the mem_cgroup was created,
1249 * we have to be prepared to initialize lruvec->zone here;
1250 * and if offlined then reonlined, we need to reinitialize it.
1252 if (unlikely(lruvec->pgdat != pgdat))
1253 lruvec->pgdat = pgdat;
1254 return lruvec;
1258 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1259 * @lruvec: mem_cgroup per zone lru vector
1260 * @lru: index of lru list the page is sitting on
1261 * @zid: zone id of the accounted pages
1262 * @nr_pages: positive when adding or negative when removing
1264 * This function must be called under lru_lock, just before a page is added
1265 * to or just after a page is removed from an lru list (that ordering being
1266 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1268 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1269 int zid, int nr_pages)
1271 struct mem_cgroup_per_node *mz;
1272 unsigned long *lru_size;
1273 long size;
1275 if (mem_cgroup_disabled())
1276 return;
1278 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1279 lru_size = &mz->lru_zone_size[zid][lru];
1281 if (nr_pages < 0)
1282 *lru_size += nr_pages;
1284 size = *lru_size;
1285 if (WARN_ONCE(size < 0,
1286 "%s(%p, %d, %d): lru_size %ld\n",
1287 __func__, lruvec, lru, nr_pages, size)) {
1288 VM_BUG_ON(1);
1289 *lru_size = 0;
1292 if (nr_pages > 0)
1293 *lru_size += nr_pages;
1297 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1298 * @memcg: the memory cgroup
1300 * Returns the maximum amount of memory @mem can be charged with, in
1301 * pages.
1303 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1305 unsigned long margin = 0;
1306 unsigned long count;
1307 unsigned long limit;
1309 count = page_counter_read(&memcg->memory);
1310 limit = READ_ONCE(memcg->memory.max);
1311 if (count < limit)
1312 margin = limit - count;
1314 if (do_memsw_account()) {
1315 count = page_counter_read(&memcg->memsw);
1316 limit = READ_ONCE(memcg->memsw.max);
1317 if (count <= limit)
1318 margin = min(margin, limit - count);
1319 else
1320 margin = 0;
1323 return margin;
1327 * A routine for checking "mem" is under move_account() or not.
1329 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1330 * moving cgroups. This is for waiting at high-memory pressure
1331 * caused by "move".
1333 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1335 struct mem_cgroup *from;
1336 struct mem_cgroup *to;
1337 bool ret = false;
1339 * Unlike task_move routines, we access mc.to, mc.from not under
1340 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1342 spin_lock(&mc.lock);
1343 from = mc.from;
1344 to = mc.to;
1345 if (!from)
1346 goto unlock;
1348 ret = mem_cgroup_is_descendant(from, memcg) ||
1349 mem_cgroup_is_descendant(to, memcg);
1350 unlock:
1351 spin_unlock(&mc.lock);
1352 return ret;
1355 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1357 if (mc.moving_task && current != mc.moving_task) {
1358 if (mem_cgroup_under_move(memcg)) {
1359 DEFINE_WAIT(wait);
1360 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1361 /* moving charge context might have finished. */
1362 if (mc.moving_task)
1363 schedule();
1364 finish_wait(&mc.waitq, &wait);
1365 return true;
1368 return false;
1371 static char *memory_stat_format(struct mem_cgroup *memcg)
1373 struct seq_buf s;
1374 int i;
1376 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1377 if (!s.buffer)
1378 return NULL;
1381 * Provide statistics on the state of the memory subsystem as
1382 * well as cumulative event counters that show past behavior.
1384 * This list is ordered following a combination of these gradients:
1385 * 1) generic big picture -> specifics and details
1386 * 2) reflecting userspace activity -> reflecting kernel heuristics
1388 * Current memory state:
1391 seq_buf_printf(&s, "anon %llu\n",
1392 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1393 PAGE_SIZE);
1394 seq_buf_printf(&s, "file %llu\n",
1395 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1396 PAGE_SIZE);
1397 seq_buf_printf(&s, "kernel_stack %llu\n",
1398 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1399 1024);
1400 seq_buf_printf(&s, "slab %llu\n",
1401 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1402 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1403 PAGE_SIZE);
1404 seq_buf_printf(&s, "sock %llu\n",
1405 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1406 PAGE_SIZE);
1408 seq_buf_printf(&s, "shmem %llu\n",
1409 (u64)memcg_page_state(memcg, NR_SHMEM) *
1410 PAGE_SIZE);
1411 seq_buf_printf(&s, "file_mapped %llu\n",
1412 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1413 PAGE_SIZE);
1414 seq_buf_printf(&s, "file_dirty %llu\n",
1415 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1416 PAGE_SIZE);
1417 seq_buf_printf(&s, "file_writeback %llu\n",
1418 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1419 PAGE_SIZE);
1422 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1423 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1424 * arse because it requires migrating the work out of rmap to a place
1425 * where the page->mem_cgroup is set up and stable.
1427 seq_buf_printf(&s, "anon_thp %llu\n",
1428 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1429 PAGE_SIZE);
1431 for (i = 0; i < NR_LRU_LISTS; i++)
1432 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1433 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1434 PAGE_SIZE);
1436 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1437 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1438 PAGE_SIZE);
1439 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1440 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1441 PAGE_SIZE);
1443 /* Accumulated memory events */
1445 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1446 memcg_events(memcg, PGFAULT));
1447 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1448 memcg_events(memcg, PGMAJFAULT));
1450 seq_buf_printf(&s, "workingset_refault %lu\n",
1451 memcg_page_state(memcg, WORKINGSET_REFAULT));
1452 seq_buf_printf(&s, "workingset_activate %lu\n",
1453 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1454 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1455 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1457 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1458 memcg_events(memcg, PGREFILL));
1459 seq_buf_printf(&s, "pgscan %lu\n",
1460 memcg_events(memcg, PGSCAN_KSWAPD) +
1461 memcg_events(memcg, PGSCAN_DIRECT));
1462 seq_buf_printf(&s, "pgsteal %lu\n",
1463 memcg_events(memcg, PGSTEAL_KSWAPD) +
1464 memcg_events(memcg, PGSTEAL_DIRECT));
1465 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1466 memcg_events(memcg, PGACTIVATE));
1467 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1468 memcg_events(memcg, PGDEACTIVATE));
1469 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1470 memcg_events(memcg, PGLAZYFREE));
1471 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1472 memcg_events(memcg, PGLAZYFREED));
1474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1475 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1476 memcg_events(memcg, THP_FAULT_ALLOC));
1477 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1478 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1479 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1481 /* The above should easily fit into one page */
1482 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1484 return s.buffer;
1487 #define K(x) ((x) << (PAGE_SHIFT-10))
1489 * mem_cgroup_print_oom_context: Print OOM information relevant to
1490 * memory controller.
1491 * @memcg: The memory cgroup that went over limit
1492 * @p: Task that is going to be killed
1494 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1495 * enabled
1497 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1499 rcu_read_lock();
1501 if (memcg) {
1502 pr_cont(",oom_memcg=");
1503 pr_cont_cgroup_path(memcg->css.cgroup);
1504 } else
1505 pr_cont(",global_oom");
1506 if (p) {
1507 pr_cont(",task_memcg=");
1508 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1510 rcu_read_unlock();
1514 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1515 * memory controller.
1516 * @memcg: The memory cgroup that went over limit
1518 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1520 char *buf;
1522 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1523 K((u64)page_counter_read(&memcg->memory)),
1524 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1525 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1526 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1527 K((u64)page_counter_read(&memcg->swap)),
1528 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1529 else {
1530 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1531 K((u64)page_counter_read(&memcg->memsw)),
1532 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1533 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1534 K((u64)page_counter_read(&memcg->kmem)),
1535 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1538 pr_info("Memory cgroup stats for ");
1539 pr_cont_cgroup_path(memcg->css.cgroup);
1540 pr_cont(":");
1541 buf = memory_stat_format(memcg);
1542 if (!buf)
1543 return;
1544 pr_info("%s", buf);
1545 kfree(buf);
1549 * Return the memory (and swap, if configured) limit for a memcg.
1551 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1553 unsigned long max;
1555 max = READ_ONCE(memcg->memory.max);
1556 if (mem_cgroup_swappiness(memcg)) {
1557 unsigned long memsw_max;
1558 unsigned long swap_max;
1560 memsw_max = memcg->memsw.max;
1561 swap_max = READ_ONCE(memcg->swap.max);
1562 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1563 max = min(max + swap_max, memsw_max);
1565 return max;
1568 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1570 return page_counter_read(&memcg->memory);
1573 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1574 int order)
1576 struct oom_control oc = {
1577 .zonelist = NULL,
1578 .nodemask = NULL,
1579 .memcg = memcg,
1580 .gfp_mask = gfp_mask,
1581 .order = order,
1583 bool ret;
1585 if (mutex_lock_killable(&oom_lock))
1586 return true;
1588 * A few threads which were not waiting at mutex_lock_killable() can
1589 * fail to bail out. Therefore, check again after holding oom_lock.
1591 ret = should_force_charge() || out_of_memory(&oc);
1592 mutex_unlock(&oom_lock);
1593 return ret;
1596 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1597 pg_data_t *pgdat,
1598 gfp_t gfp_mask,
1599 unsigned long *total_scanned)
1601 struct mem_cgroup *victim = NULL;
1602 int total = 0;
1603 int loop = 0;
1604 unsigned long excess;
1605 unsigned long nr_scanned;
1606 struct mem_cgroup_reclaim_cookie reclaim = {
1607 .pgdat = pgdat,
1610 excess = soft_limit_excess(root_memcg);
1612 while (1) {
1613 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1614 if (!victim) {
1615 loop++;
1616 if (loop >= 2) {
1618 * If we have not been able to reclaim
1619 * anything, it might because there are
1620 * no reclaimable pages under this hierarchy
1622 if (!total)
1623 break;
1625 * We want to do more targeted reclaim.
1626 * excess >> 2 is not to excessive so as to
1627 * reclaim too much, nor too less that we keep
1628 * coming back to reclaim from this cgroup
1630 if (total >= (excess >> 2) ||
1631 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1632 break;
1634 continue;
1636 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1637 pgdat, &nr_scanned);
1638 *total_scanned += nr_scanned;
1639 if (!soft_limit_excess(root_memcg))
1640 break;
1642 mem_cgroup_iter_break(root_memcg, victim);
1643 return total;
1646 #ifdef CONFIG_LOCKDEP
1647 static struct lockdep_map memcg_oom_lock_dep_map = {
1648 .name = "memcg_oom_lock",
1650 #endif
1652 static DEFINE_SPINLOCK(memcg_oom_lock);
1655 * Check OOM-Killer is already running under our hierarchy.
1656 * If someone is running, return false.
1658 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1660 struct mem_cgroup *iter, *failed = NULL;
1662 spin_lock(&memcg_oom_lock);
1664 for_each_mem_cgroup_tree(iter, memcg) {
1665 if (iter->oom_lock) {
1667 * this subtree of our hierarchy is already locked
1668 * so we cannot give a lock.
1670 failed = iter;
1671 mem_cgroup_iter_break(memcg, iter);
1672 break;
1673 } else
1674 iter->oom_lock = true;
1677 if (failed) {
1679 * OK, we failed to lock the whole subtree so we have
1680 * to clean up what we set up to the failing subtree
1682 for_each_mem_cgroup_tree(iter, memcg) {
1683 if (iter == failed) {
1684 mem_cgroup_iter_break(memcg, iter);
1685 break;
1687 iter->oom_lock = false;
1689 } else
1690 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1692 spin_unlock(&memcg_oom_lock);
1694 return !failed;
1697 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1699 struct mem_cgroup *iter;
1701 spin_lock(&memcg_oom_lock);
1702 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1703 for_each_mem_cgroup_tree(iter, memcg)
1704 iter->oom_lock = false;
1705 spin_unlock(&memcg_oom_lock);
1708 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1710 struct mem_cgroup *iter;
1712 spin_lock(&memcg_oom_lock);
1713 for_each_mem_cgroup_tree(iter, memcg)
1714 iter->under_oom++;
1715 spin_unlock(&memcg_oom_lock);
1718 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1720 struct mem_cgroup *iter;
1723 * When a new child is created while the hierarchy is under oom,
1724 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1726 spin_lock(&memcg_oom_lock);
1727 for_each_mem_cgroup_tree(iter, memcg)
1728 if (iter->under_oom > 0)
1729 iter->under_oom--;
1730 spin_unlock(&memcg_oom_lock);
1733 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1735 struct oom_wait_info {
1736 struct mem_cgroup *memcg;
1737 wait_queue_entry_t wait;
1740 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1741 unsigned mode, int sync, void *arg)
1743 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1744 struct mem_cgroup *oom_wait_memcg;
1745 struct oom_wait_info *oom_wait_info;
1747 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1748 oom_wait_memcg = oom_wait_info->memcg;
1750 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1751 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1752 return 0;
1753 return autoremove_wake_function(wait, mode, sync, arg);
1756 static void memcg_oom_recover(struct mem_cgroup *memcg)
1759 * For the following lockless ->under_oom test, the only required
1760 * guarantee is that it must see the state asserted by an OOM when
1761 * this function is called as a result of userland actions
1762 * triggered by the notification of the OOM. This is trivially
1763 * achieved by invoking mem_cgroup_mark_under_oom() before
1764 * triggering notification.
1766 if (memcg && memcg->under_oom)
1767 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1770 enum oom_status {
1771 OOM_SUCCESS,
1772 OOM_FAILED,
1773 OOM_ASYNC,
1774 OOM_SKIPPED
1777 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1779 enum oom_status ret;
1780 bool locked;
1782 if (order > PAGE_ALLOC_COSTLY_ORDER)
1783 return OOM_SKIPPED;
1785 memcg_memory_event(memcg, MEMCG_OOM);
1788 * We are in the middle of the charge context here, so we
1789 * don't want to block when potentially sitting on a callstack
1790 * that holds all kinds of filesystem and mm locks.
1792 * cgroup1 allows disabling the OOM killer and waiting for outside
1793 * handling until the charge can succeed; remember the context and put
1794 * the task to sleep at the end of the page fault when all locks are
1795 * released.
1797 * On the other hand, in-kernel OOM killer allows for an async victim
1798 * memory reclaim (oom_reaper) and that means that we are not solely
1799 * relying on the oom victim to make a forward progress and we can
1800 * invoke the oom killer here.
1802 * Please note that mem_cgroup_out_of_memory might fail to find a
1803 * victim and then we have to bail out from the charge path.
1805 if (memcg->oom_kill_disable) {
1806 if (!current->in_user_fault)
1807 return OOM_SKIPPED;
1808 css_get(&memcg->css);
1809 current->memcg_in_oom = memcg;
1810 current->memcg_oom_gfp_mask = mask;
1811 current->memcg_oom_order = order;
1813 return OOM_ASYNC;
1816 mem_cgroup_mark_under_oom(memcg);
1818 locked = mem_cgroup_oom_trylock(memcg);
1820 if (locked)
1821 mem_cgroup_oom_notify(memcg);
1823 mem_cgroup_unmark_under_oom(memcg);
1824 if (mem_cgroup_out_of_memory(memcg, mask, order))
1825 ret = OOM_SUCCESS;
1826 else
1827 ret = OOM_FAILED;
1829 if (locked)
1830 mem_cgroup_oom_unlock(memcg);
1832 return ret;
1836 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1837 * @handle: actually kill/wait or just clean up the OOM state
1839 * This has to be called at the end of a page fault if the memcg OOM
1840 * handler was enabled.
1842 * Memcg supports userspace OOM handling where failed allocations must
1843 * sleep on a waitqueue until the userspace task resolves the
1844 * situation. Sleeping directly in the charge context with all kinds
1845 * of locks held is not a good idea, instead we remember an OOM state
1846 * in the task and mem_cgroup_oom_synchronize() has to be called at
1847 * the end of the page fault to complete the OOM handling.
1849 * Returns %true if an ongoing memcg OOM situation was detected and
1850 * completed, %false otherwise.
1852 bool mem_cgroup_oom_synchronize(bool handle)
1854 struct mem_cgroup *memcg = current->memcg_in_oom;
1855 struct oom_wait_info owait;
1856 bool locked;
1858 /* OOM is global, do not handle */
1859 if (!memcg)
1860 return false;
1862 if (!handle)
1863 goto cleanup;
1865 owait.memcg = memcg;
1866 owait.wait.flags = 0;
1867 owait.wait.func = memcg_oom_wake_function;
1868 owait.wait.private = current;
1869 INIT_LIST_HEAD(&owait.wait.entry);
1871 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1872 mem_cgroup_mark_under_oom(memcg);
1874 locked = mem_cgroup_oom_trylock(memcg);
1876 if (locked)
1877 mem_cgroup_oom_notify(memcg);
1879 if (locked && !memcg->oom_kill_disable) {
1880 mem_cgroup_unmark_under_oom(memcg);
1881 finish_wait(&memcg_oom_waitq, &owait.wait);
1882 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1883 current->memcg_oom_order);
1884 } else {
1885 schedule();
1886 mem_cgroup_unmark_under_oom(memcg);
1887 finish_wait(&memcg_oom_waitq, &owait.wait);
1890 if (locked) {
1891 mem_cgroup_oom_unlock(memcg);
1893 * There is no guarantee that an OOM-lock contender
1894 * sees the wakeups triggered by the OOM kill
1895 * uncharges. Wake any sleepers explicitely.
1897 memcg_oom_recover(memcg);
1899 cleanup:
1900 current->memcg_in_oom = NULL;
1901 css_put(&memcg->css);
1902 return true;
1906 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1907 * @victim: task to be killed by the OOM killer
1908 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1910 * Returns a pointer to a memory cgroup, which has to be cleaned up
1911 * by killing all belonging OOM-killable tasks.
1913 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1915 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1916 struct mem_cgroup *oom_domain)
1918 struct mem_cgroup *oom_group = NULL;
1919 struct mem_cgroup *memcg;
1921 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1922 return NULL;
1924 if (!oom_domain)
1925 oom_domain = root_mem_cgroup;
1927 rcu_read_lock();
1929 memcg = mem_cgroup_from_task(victim);
1930 if (memcg == root_mem_cgroup)
1931 goto out;
1934 * If the victim task has been asynchronously moved to a different
1935 * memory cgroup, we might end up killing tasks outside oom_domain.
1936 * In this case it's better to ignore memory.group.oom.
1938 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1939 goto out;
1942 * Traverse the memory cgroup hierarchy from the victim task's
1943 * cgroup up to the OOMing cgroup (or root) to find the
1944 * highest-level memory cgroup with oom.group set.
1946 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1947 if (memcg->oom_group)
1948 oom_group = memcg;
1950 if (memcg == oom_domain)
1951 break;
1954 if (oom_group)
1955 css_get(&oom_group->css);
1956 out:
1957 rcu_read_unlock();
1959 return oom_group;
1962 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1964 pr_info("Tasks in ");
1965 pr_cont_cgroup_path(memcg->css.cgroup);
1966 pr_cont(" are going to be killed due to memory.oom.group set\n");
1970 * lock_page_memcg - lock a page->mem_cgroup binding
1971 * @page: the page
1973 * This function protects unlocked LRU pages from being moved to
1974 * another cgroup.
1976 * It ensures lifetime of the returned memcg. Caller is responsible
1977 * for the lifetime of the page; __unlock_page_memcg() is available
1978 * when @page might get freed inside the locked section.
1980 struct mem_cgroup *lock_page_memcg(struct page *page)
1982 struct mem_cgroup *memcg;
1983 unsigned long flags;
1986 * The RCU lock is held throughout the transaction. The fast
1987 * path can get away without acquiring the memcg->move_lock
1988 * because page moving starts with an RCU grace period.
1990 * The RCU lock also protects the memcg from being freed when
1991 * the page state that is going to change is the only thing
1992 * preventing the page itself from being freed. E.g. writeback
1993 * doesn't hold a page reference and relies on PG_writeback to
1994 * keep off truncation, migration and so forth.
1996 rcu_read_lock();
1998 if (mem_cgroup_disabled())
1999 return NULL;
2000 again:
2001 memcg = page->mem_cgroup;
2002 if (unlikely(!memcg))
2003 return NULL;
2005 if (atomic_read(&memcg->moving_account) <= 0)
2006 return memcg;
2008 spin_lock_irqsave(&memcg->move_lock, flags);
2009 if (memcg != page->mem_cgroup) {
2010 spin_unlock_irqrestore(&memcg->move_lock, flags);
2011 goto again;
2015 * When charge migration first begins, we can have locked and
2016 * unlocked page stat updates happening concurrently. Track
2017 * the task who has the lock for unlock_page_memcg().
2019 memcg->move_lock_task = current;
2020 memcg->move_lock_flags = flags;
2022 return memcg;
2024 EXPORT_SYMBOL(lock_page_memcg);
2027 * __unlock_page_memcg - unlock and unpin a memcg
2028 * @memcg: the memcg
2030 * Unlock and unpin a memcg returned by lock_page_memcg().
2032 void __unlock_page_memcg(struct mem_cgroup *memcg)
2034 if (memcg && memcg->move_lock_task == current) {
2035 unsigned long flags = memcg->move_lock_flags;
2037 memcg->move_lock_task = NULL;
2038 memcg->move_lock_flags = 0;
2040 spin_unlock_irqrestore(&memcg->move_lock, flags);
2043 rcu_read_unlock();
2047 * unlock_page_memcg - unlock a page->mem_cgroup binding
2048 * @page: the page
2050 void unlock_page_memcg(struct page *page)
2052 __unlock_page_memcg(page->mem_cgroup);
2054 EXPORT_SYMBOL(unlock_page_memcg);
2056 struct memcg_stock_pcp {
2057 struct mem_cgroup *cached; /* this never be root cgroup */
2058 unsigned int nr_pages;
2059 struct work_struct work;
2060 unsigned long flags;
2061 #define FLUSHING_CACHED_CHARGE 0
2063 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2064 static DEFINE_MUTEX(percpu_charge_mutex);
2067 * consume_stock: Try to consume stocked charge on this cpu.
2068 * @memcg: memcg to consume from.
2069 * @nr_pages: how many pages to charge.
2071 * The charges will only happen if @memcg matches the current cpu's memcg
2072 * stock, and at least @nr_pages are available in that stock. Failure to
2073 * service an allocation will refill the stock.
2075 * returns true if successful, false otherwise.
2077 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2079 struct memcg_stock_pcp *stock;
2080 unsigned long flags;
2081 bool ret = false;
2083 if (nr_pages > MEMCG_CHARGE_BATCH)
2084 return ret;
2086 local_irq_save(flags);
2088 stock = this_cpu_ptr(&memcg_stock);
2089 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2090 stock->nr_pages -= nr_pages;
2091 ret = true;
2094 local_irq_restore(flags);
2096 return ret;
2100 * Returns stocks cached in percpu and reset cached information.
2102 static void drain_stock(struct memcg_stock_pcp *stock)
2104 struct mem_cgroup *old = stock->cached;
2106 if (stock->nr_pages) {
2107 page_counter_uncharge(&old->memory, stock->nr_pages);
2108 if (do_memsw_account())
2109 page_counter_uncharge(&old->memsw, stock->nr_pages);
2110 css_put_many(&old->css, stock->nr_pages);
2111 stock->nr_pages = 0;
2113 stock->cached = NULL;
2116 static void drain_local_stock(struct work_struct *dummy)
2118 struct memcg_stock_pcp *stock;
2119 unsigned long flags;
2122 * The only protection from memory hotplug vs. drain_stock races is
2123 * that we always operate on local CPU stock here with IRQ disabled
2125 local_irq_save(flags);
2127 stock = this_cpu_ptr(&memcg_stock);
2128 drain_stock(stock);
2129 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2131 local_irq_restore(flags);
2135 * Cache charges(val) to local per_cpu area.
2136 * This will be consumed by consume_stock() function, later.
2138 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2140 struct memcg_stock_pcp *stock;
2141 unsigned long flags;
2143 local_irq_save(flags);
2145 stock = this_cpu_ptr(&memcg_stock);
2146 if (stock->cached != memcg) { /* reset if necessary */
2147 drain_stock(stock);
2148 stock->cached = memcg;
2150 stock->nr_pages += nr_pages;
2152 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2153 drain_stock(stock);
2155 local_irq_restore(flags);
2159 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2160 * of the hierarchy under it.
2162 static void drain_all_stock(struct mem_cgroup *root_memcg)
2164 int cpu, curcpu;
2166 /* If someone's already draining, avoid adding running more workers. */
2167 if (!mutex_trylock(&percpu_charge_mutex))
2168 return;
2170 * Notify other cpus that system-wide "drain" is running
2171 * We do not care about races with the cpu hotplug because cpu down
2172 * as well as workers from this path always operate on the local
2173 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2175 curcpu = get_cpu();
2176 for_each_online_cpu(cpu) {
2177 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2178 struct mem_cgroup *memcg;
2179 bool flush = false;
2181 rcu_read_lock();
2182 memcg = stock->cached;
2183 if (memcg && stock->nr_pages &&
2184 mem_cgroup_is_descendant(memcg, root_memcg))
2185 flush = true;
2186 rcu_read_unlock();
2188 if (flush &&
2189 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2190 if (cpu == curcpu)
2191 drain_local_stock(&stock->work);
2192 else
2193 schedule_work_on(cpu, &stock->work);
2196 put_cpu();
2197 mutex_unlock(&percpu_charge_mutex);
2200 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2202 struct memcg_stock_pcp *stock;
2203 struct mem_cgroup *memcg, *mi;
2205 stock = &per_cpu(memcg_stock, cpu);
2206 drain_stock(stock);
2208 for_each_mem_cgroup(memcg) {
2209 int i;
2211 for (i = 0; i < MEMCG_NR_STAT; i++) {
2212 int nid;
2213 long x;
2215 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2216 if (x)
2217 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2218 atomic_long_add(x, &memcg->vmstats[i]);
2220 if (i >= NR_VM_NODE_STAT_ITEMS)
2221 continue;
2223 for_each_node(nid) {
2224 struct mem_cgroup_per_node *pn;
2226 pn = mem_cgroup_nodeinfo(memcg, nid);
2227 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2228 if (x)
2229 do {
2230 atomic_long_add(x, &pn->lruvec_stat[i]);
2231 } while ((pn = parent_nodeinfo(pn, nid)));
2235 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2236 long x;
2238 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2239 if (x)
2240 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2241 atomic_long_add(x, &memcg->vmevents[i]);
2245 return 0;
2248 static void reclaim_high(struct mem_cgroup *memcg,
2249 unsigned int nr_pages,
2250 gfp_t gfp_mask)
2252 do {
2253 if (page_counter_read(&memcg->memory) <= READ_ONCE(memcg->high))
2254 continue;
2255 memcg_memory_event(memcg, MEMCG_HIGH);
2256 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2257 } while ((memcg = parent_mem_cgroup(memcg)) &&
2258 !mem_cgroup_is_root(memcg));
2261 static void high_work_func(struct work_struct *work)
2263 struct mem_cgroup *memcg;
2265 memcg = container_of(work, struct mem_cgroup, high_work);
2266 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2270 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2271 * enough to still cause a significant slowdown in most cases, while still
2272 * allowing diagnostics and tracing to proceed without becoming stuck.
2274 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2277 * When calculating the delay, we use these either side of the exponentiation to
2278 * maintain precision and scale to a reasonable number of jiffies (see the table
2279 * below.
2281 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2282 * overage ratio to a delay.
2283 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2284 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2285 * to produce a reasonable delay curve.
2287 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2288 * reasonable delay curve compared to precision-adjusted overage, not
2289 * penalising heavily at first, but still making sure that growth beyond the
2290 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2291 * example, with a high of 100 megabytes:
2293 * +-------+------------------------+
2294 * | usage | time to allocate in ms |
2295 * +-------+------------------------+
2296 * | 100M | 0 |
2297 * | 101M | 6 |
2298 * | 102M | 25 |
2299 * | 103M | 57 |
2300 * | 104M | 102 |
2301 * | 105M | 159 |
2302 * | 106M | 230 |
2303 * | 107M | 313 |
2304 * | 108M | 409 |
2305 * | 109M | 518 |
2306 * | 110M | 639 |
2307 * | 111M | 774 |
2308 * | 112M | 921 |
2309 * | 113M | 1081 |
2310 * | 114M | 1254 |
2311 * | 115M | 1439 |
2312 * | 116M | 1638 |
2313 * | 117M | 1849 |
2314 * | 118M | 2000 |
2315 * | 119M | 2000 |
2316 * | 120M | 2000 |
2317 * +-------+------------------------+
2319 #define MEMCG_DELAY_PRECISION_SHIFT 20
2320 #define MEMCG_DELAY_SCALING_SHIFT 14
2323 * Get the number of jiffies that we should penalise a mischievous cgroup which
2324 * is exceeding its memory.high by checking both it and its ancestors.
2326 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2327 unsigned int nr_pages)
2329 unsigned long penalty_jiffies;
2330 u64 max_overage = 0;
2332 do {
2333 unsigned long usage, high;
2334 u64 overage;
2336 usage = page_counter_read(&memcg->memory);
2337 high = READ_ONCE(memcg->high);
2339 if (usage <= high)
2340 continue;
2343 * Prevent division by 0 in overage calculation by acting as if
2344 * it was a threshold of 1 page
2346 high = max(high, 1UL);
2348 overage = usage - high;
2349 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2350 overage = div64_u64(overage, high);
2352 if (overage > max_overage)
2353 max_overage = overage;
2354 } while ((memcg = parent_mem_cgroup(memcg)) &&
2355 !mem_cgroup_is_root(memcg));
2357 if (!max_overage)
2358 return 0;
2361 * We use overage compared to memory.high to calculate the number of
2362 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2363 * fairly lenient on small overages, and increasingly harsh when the
2364 * memcg in question makes it clear that it has no intention of stopping
2365 * its crazy behaviour, so we exponentially increase the delay based on
2366 * overage amount.
2368 penalty_jiffies = max_overage * max_overage * HZ;
2369 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2370 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2373 * Factor in the task's own contribution to the overage, such that four
2374 * N-sized allocations are throttled approximately the same as one
2375 * 4N-sized allocation.
2377 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2378 * larger the current charge patch is than that.
2380 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2383 * Clamp the max delay per usermode return so as to still keep the
2384 * application moving forwards and also permit diagnostics, albeit
2385 * extremely slowly.
2387 return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2391 * Scheduled by try_charge() to be executed from the userland return path
2392 * and reclaims memory over the high limit.
2394 void mem_cgroup_handle_over_high(void)
2396 unsigned long penalty_jiffies;
2397 unsigned long pflags;
2398 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2399 struct mem_cgroup *memcg;
2401 if (likely(!nr_pages))
2402 return;
2404 memcg = get_mem_cgroup_from_mm(current->mm);
2405 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2406 current->memcg_nr_pages_over_high = 0;
2409 * memory.high is breached and reclaim is unable to keep up. Throttle
2410 * allocators proactively to slow down excessive growth.
2412 penalty_jiffies = calculate_high_delay(memcg, nr_pages);
2415 * Don't sleep if the amount of jiffies this memcg owes us is so low
2416 * that it's not even worth doing, in an attempt to be nice to those who
2417 * go only a small amount over their memory.high value and maybe haven't
2418 * been aggressively reclaimed enough yet.
2420 if (penalty_jiffies <= HZ / 100)
2421 goto out;
2424 * If we exit early, we're guaranteed to die (since
2425 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2426 * need to account for any ill-begotten jiffies to pay them off later.
2428 psi_memstall_enter(&pflags);
2429 schedule_timeout_killable(penalty_jiffies);
2430 psi_memstall_leave(&pflags);
2432 out:
2433 css_put(&memcg->css);
2436 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2437 unsigned int nr_pages)
2439 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2440 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2441 struct mem_cgroup *mem_over_limit;
2442 struct page_counter *counter;
2443 unsigned long nr_reclaimed;
2444 bool may_swap = true;
2445 bool drained = false;
2446 enum oom_status oom_status;
2448 if (mem_cgroup_is_root(memcg))
2449 return 0;
2450 retry:
2451 if (consume_stock(memcg, nr_pages))
2452 return 0;
2454 if (!do_memsw_account() ||
2455 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2456 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2457 goto done_restock;
2458 if (do_memsw_account())
2459 page_counter_uncharge(&memcg->memsw, batch);
2460 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2461 } else {
2462 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2463 may_swap = false;
2466 if (batch > nr_pages) {
2467 batch = nr_pages;
2468 goto retry;
2472 * Memcg doesn't have a dedicated reserve for atomic
2473 * allocations. But like the global atomic pool, we need to
2474 * put the burden of reclaim on regular allocation requests
2475 * and let these go through as privileged allocations.
2477 if (gfp_mask & __GFP_ATOMIC)
2478 goto force;
2481 * Unlike in global OOM situations, memcg is not in a physical
2482 * memory shortage. Allow dying and OOM-killed tasks to
2483 * bypass the last charges so that they can exit quickly and
2484 * free their memory.
2486 if (unlikely(should_force_charge()))
2487 goto force;
2490 * Prevent unbounded recursion when reclaim operations need to
2491 * allocate memory. This might exceed the limits temporarily,
2492 * but we prefer facilitating memory reclaim and getting back
2493 * under the limit over triggering OOM kills in these cases.
2495 if (unlikely(current->flags & PF_MEMALLOC))
2496 goto force;
2498 if (unlikely(task_in_memcg_oom(current)))
2499 goto nomem;
2501 if (!gfpflags_allow_blocking(gfp_mask))
2502 goto nomem;
2504 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2506 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2507 gfp_mask, may_swap);
2509 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2510 goto retry;
2512 if (!drained) {
2513 drain_all_stock(mem_over_limit);
2514 drained = true;
2515 goto retry;
2518 if (gfp_mask & __GFP_NORETRY)
2519 goto nomem;
2521 * Even though the limit is exceeded at this point, reclaim
2522 * may have been able to free some pages. Retry the charge
2523 * before killing the task.
2525 * Only for regular pages, though: huge pages are rather
2526 * unlikely to succeed so close to the limit, and we fall back
2527 * to regular pages anyway in case of failure.
2529 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2530 goto retry;
2532 * At task move, charge accounts can be doubly counted. So, it's
2533 * better to wait until the end of task_move if something is going on.
2535 if (mem_cgroup_wait_acct_move(mem_over_limit))
2536 goto retry;
2538 if (nr_retries--)
2539 goto retry;
2541 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2542 goto nomem;
2544 if (gfp_mask & __GFP_NOFAIL)
2545 goto force;
2547 if (fatal_signal_pending(current))
2548 goto force;
2551 * keep retrying as long as the memcg oom killer is able to make
2552 * a forward progress or bypass the charge if the oom killer
2553 * couldn't make any progress.
2555 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2556 get_order(nr_pages * PAGE_SIZE));
2557 switch (oom_status) {
2558 case OOM_SUCCESS:
2559 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2560 goto retry;
2561 case OOM_FAILED:
2562 goto force;
2563 default:
2564 goto nomem;
2566 nomem:
2567 if (!(gfp_mask & __GFP_NOFAIL))
2568 return -ENOMEM;
2569 force:
2571 * The allocation either can't fail or will lead to more memory
2572 * being freed very soon. Allow memory usage go over the limit
2573 * temporarily by force charging it.
2575 page_counter_charge(&memcg->memory, nr_pages);
2576 if (do_memsw_account())
2577 page_counter_charge(&memcg->memsw, nr_pages);
2578 css_get_many(&memcg->css, nr_pages);
2580 return 0;
2582 done_restock:
2583 css_get_many(&memcg->css, batch);
2584 if (batch > nr_pages)
2585 refill_stock(memcg, batch - nr_pages);
2588 * If the hierarchy is above the normal consumption range, schedule
2589 * reclaim on returning to userland. We can perform reclaim here
2590 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2591 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2592 * not recorded as it most likely matches current's and won't
2593 * change in the meantime. As high limit is checked again before
2594 * reclaim, the cost of mismatch is negligible.
2596 do {
2597 if (page_counter_read(&memcg->memory) > READ_ONCE(memcg->high)) {
2598 /* Don't bother a random interrupted task */
2599 if (in_interrupt()) {
2600 schedule_work(&memcg->high_work);
2601 break;
2603 current->memcg_nr_pages_over_high += batch;
2604 set_notify_resume(current);
2605 break;
2607 } while ((memcg = parent_mem_cgroup(memcg)));
2609 return 0;
2612 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2614 if (mem_cgroup_is_root(memcg))
2615 return;
2617 page_counter_uncharge(&memcg->memory, nr_pages);
2618 if (do_memsw_account())
2619 page_counter_uncharge(&memcg->memsw, nr_pages);
2621 css_put_many(&memcg->css, nr_pages);
2624 static void lock_page_lru(struct page *page, int *isolated)
2626 pg_data_t *pgdat = page_pgdat(page);
2628 spin_lock_irq(&pgdat->lru_lock);
2629 if (PageLRU(page)) {
2630 struct lruvec *lruvec;
2632 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2633 ClearPageLRU(page);
2634 del_page_from_lru_list(page, lruvec, page_lru(page));
2635 *isolated = 1;
2636 } else
2637 *isolated = 0;
2640 static void unlock_page_lru(struct page *page, int isolated)
2642 pg_data_t *pgdat = page_pgdat(page);
2644 if (isolated) {
2645 struct lruvec *lruvec;
2647 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2648 VM_BUG_ON_PAGE(PageLRU(page), page);
2649 SetPageLRU(page);
2650 add_page_to_lru_list(page, lruvec, page_lru(page));
2652 spin_unlock_irq(&pgdat->lru_lock);
2655 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2656 bool lrucare)
2658 int isolated;
2660 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2663 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2664 * may already be on some other mem_cgroup's LRU. Take care of it.
2666 if (lrucare)
2667 lock_page_lru(page, &isolated);
2670 * Nobody should be changing or seriously looking at
2671 * page->mem_cgroup at this point:
2673 * - the page is uncharged
2675 * - the page is off-LRU
2677 * - an anonymous fault has exclusive page access, except for
2678 * a locked page table
2680 * - a page cache insertion, a swapin fault, or a migration
2681 * have the page locked
2683 page->mem_cgroup = memcg;
2685 if (lrucare)
2686 unlock_page_lru(page, isolated);
2689 #ifdef CONFIG_MEMCG_KMEM
2691 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2693 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2694 * cgroup_mutex, etc.
2696 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2698 struct page *page;
2700 if (mem_cgroup_disabled())
2701 return NULL;
2703 page = virt_to_head_page(p);
2706 * Slab pages don't have page->mem_cgroup set because corresponding
2707 * kmem caches can be reparented during the lifetime. That's why
2708 * memcg_from_slab_page() should be used instead.
2710 if (PageSlab(page))
2711 return memcg_from_slab_page(page);
2713 /* All other pages use page->mem_cgroup */
2714 return page->mem_cgroup;
2717 static int memcg_alloc_cache_id(void)
2719 int id, size;
2720 int err;
2722 id = ida_simple_get(&memcg_cache_ida,
2723 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2724 if (id < 0)
2725 return id;
2727 if (id < memcg_nr_cache_ids)
2728 return id;
2731 * There's no space for the new id in memcg_caches arrays,
2732 * so we have to grow them.
2734 down_write(&memcg_cache_ids_sem);
2736 size = 2 * (id + 1);
2737 if (size < MEMCG_CACHES_MIN_SIZE)
2738 size = MEMCG_CACHES_MIN_SIZE;
2739 else if (size > MEMCG_CACHES_MAX_SIZE)
2740 size = MEMCG_CACHES_MAX_SIZE;
2742 err = memcg_update_all_caches(size);
2743 if (!err)
2744 err = memcg_update_all_list_lrus(size);
2745 if (!err)
2746 memcg_nr_cache_ids = size;
2748 up_write(&memcg_cache_ids_sem);
2750 if (err) {
2751 ida_simple_remove(&memcg_cache_ida, id);
2752 return err;
2754 return id;
2757 static void memcg_free_cache_id(int id)
2759 ida_simple_remove(&memcg_cache_ida, id);
2762 struct memcg_kmem_cache_create_work {
2763 struct mem_cgroup *memcg;
2764 struct kmem_cache *cachep;
2765 struct work_struct work;
2768 static void memcg_kmem_cache_create_func(struct work_struct *w)
2770 struct memcg_kmem_cache_create_work *cw =
2771 container_of(w, struct memcg_kmem_cache_create_work, work);
2772 struct mem_cgroup *memcg = cw->memcg;
2773 struct kmem_cache *cachep = cw->cachep;
2775 memcg_create_kmem_cache(memcg, cachep);
2777 css_put(&memcg->css);
2778 kfree(cw);
2782 * Enqueue the creation of a per-memcg kmem_cache.
2784 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2785 struct kmem_cache *cachep)
2787 struct memcg_kmem_cache_create_work *cw;
2789 if (!css_tryget_online(&memcg->css))
2790 return;
2792 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2793 if (!cw) {
2794 css_put(&memcg->css);
2795 return;
2798 cw->memcg = memcg;
2799 cw->cachep = cachep;
2800 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2802 queue_work(memcg_kmem_cache_wq, &cw->work);
2805 static inline bool memcg_kmem_bypass(void)
2807 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2808 return true;
2809 return false;
2813 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2814 * @cachep: the original global kmem cache
2816 * Return the kmem_cache we're supposed to use for a slab allocation.
2817 * We try to use the current memcg's version of the cache.
2819 * If the cache does not exist yet, if we are the first user of it, we
2820 * create it asynchronously in a workqueue and let the current allocation
2821 * go through with the original cache.
2823 * This function takes a reference to the cache it returns to assure it
2824 * won't get destroyed while we are working with it. Once the caller is
2825 * done with it, memcg_kmem_put_cache() must be called to release the
2826 * reference.
2828 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2830 struct mem_cgroup *memcg;
2831 struct kmem_cache *memcg_cachep;
2832 struct memcg_cache_array *arr;
2833 int kmemcg_id;
2835 VM_BUG_ON(!is_root_cache(cachep));
2837 if (memcg_kmem_bypass())
2838 return cachep;
2840 rcu_read_lock();
2842 if (unlikely(current->active_memcg))
2843 memcg = current->active_memcg;
2844 else
2845 memcg = mem_cgroup_from_task(current);
2847 if (!memcg || memcg == root_mem_cgroup)
2848 goto out_unlock;
2850 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2851 if (kmemcg_id < 0)
2852 goto out_unlock;
2854 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2857 * Make sure we will access the up-to-date value. The code updating
2858 * memcg_caches issues a write barrier to match the data dependency
2859 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2861 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2864 * If we are in a safe context (can wait, and not in interrupt
2865 * context), we could be be predictable and return right away.
2866 * This would guarantee that the allocation being performed
2867 * already belongs in the new cache.
2869 * However, there are some clashes that can arrive from locking.
2870 * For instance, because we acquire the slab_mutex while doing
2871 * memcg_create_kmem_cache, this means no further allocation
2872 * could happen with the slab_mutex held. So it's better to
2873 * defer everything.
2875 * If the memcg is dying or memcg_cache is about to be released,
2876 * don't bother creating new kmem_caches. Because memcg_cachep
2877 * is ZEROed as the fist step of kmem offlining, we don't need
2878 * percpu_ref_tryget_live() here. css_tryget_online() check in
2879 * memcg_schedule_kmem_cache_create() will prevent us from
2880 * creation of a new kmem_cache.
2882 if (unlikely(!memcg_cachep))
2883 memcg_schedule_kmem_cache_create(memcg, cachep);
2884 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2885 cachep = memcg_cachep;
2886 out_unlock:
2887 rcu_read_unlock();
2888 return cachep;
2892 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2893 * @cachep: the cache returned by memcg_kmem_get_cache
2895 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2897 if (!is_root_cache(cachep))
2898 percpu_ref_put(&cachep->memcg_params.refcnt);
2902 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2903 * @memcg: memory cgroup to charge
2904 * @gfp: reclaim mode
2905 * @nr_pages: number of pages to charge
2907 * Returns 0 on success, an error code on failure.
2909 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2910 unsigned int nr_pages)
2912 struct page_counter *counter;
2913 int ret;
2915 ret = try_charge(memcg, gfp, nr_pages);
2916 if (ret)
2917 return ret;
2919 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2920 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2923 * Enforce __GFP_NOFAIL allocation because callers are not
2924 * prepared to see failures and likely do not have any failure
2925 * handling code.
2927 if (gfp & __GFP_NOFAIL) {
2928 page_counter_charge(&memcg->kmem, nr_pages);
2929 return 0;
2931 cancel_charge(memcg, nr_pages);
2932 return -ENOMEM;
2934 return 0;
2938 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
2939 * @memcg: memcg to uncharge
2940 * @nr_pages: number of pages to uncharge
2942 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
2944 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2945 page_counter_uncharge(&memcg->kmem, nr_pages);
2947 page_counter_uncharge(&memcg->memory, nr_pages);
2948 if (do_memsw_account())
2949 page_counter_uncharge(&memcg->memsw, nr_pages);
2953 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2954 * @page: page to charge
2955 * @gfp: reclaim mode
2956 * @order: allocation order
2958 * Returns 0 on success, an error code on failure.
2960 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2962 struct mem_cgroup *memcg;
2963 int ret = 0;
2965 if (memcg_kmem_bypass())
2966 return 0;
2968 memcg = get_mem_cgroup_from_current();
2969 if (!mem_cgroup_is_root(memcg)) {
2970 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
2971 if (!ret) {
2972 page->mem_cgroup = memcg;
2973 __SetPageKmemcg(page);
2976 css_put(&memcg->css);
2977 return ret;
2981 * __memcg_kmem_uncharge_page: uncharge a kmem page
2982 * @page: page to uncharge
2983 * @order: allocation order
2985 void __memcg_kmem_uncharge_page(struct page *page, int order)
2987 struct mem_cgroup *memcg = page->mem_cgroup;
2988 unsigned int nr_pages = 1 << order;
2990 if (!memcg)
2991 return;
2993 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2994 __memcg_kmem_uncharge(memcg, nr_pages);
2995 page->mem_cgroup = NULL;
2997 /* slab pages do not have PageKmemcg flag set */
2998 if (PageKmemcg(page))
2999 __ClearPageKmemcg(page);
3001 css_put_many(&memcg->css, nr_pages);
3003 #endif /* CONFIG_MEMCG_KMEM */
3005 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3008 * Because tail pages are not marked as "used", set it. We're under
3009 * pgdat->lru_lock and migration entries setup in all page mappings.
3011 void mem_cgroup_split_huge_fixup(struct page *head)
3013 int i;
3015 if (mem_cgroup_disabled())
3016 return;
3018 for (i = 1; i < HPAGE_PMD_NR; i++)
3019 head[i].mem_cgroup = head->mem_cgroup;
3021 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
3023 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3025 #ifdef CONFIG_MEMCG_SWAP
3027 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3028 * @entry: swap entry to be moved
3029 * @from: mem_cgroup which the entry is moved from
3030 * @to: mem_cgroup which the entry is moved to
3032 * It succeeds only when the swap_cgroup's record for this entry is the same
3033 * as the mem_cgroup's id of @from.
3035 * Returns 0 on success, -EINVAL on failure.
3037 * The caller must have charged to @to, IOW, called page_counter_charge() about
3038 * both res and memsw, and called css_get().
3040 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3041 struct mem_cgroup *from, struct mem_cgroup *to)
3043 unsigned short old_id, new_id;
3045 old_id = mem_cgroup_id(from);
3046 new_id = mem_cgroup_id(to);
3048 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3049 mod_memcg_state(from, MEMCG_SWAP, -1);
3050 mod_memcg_state(to, MEMCG_SWAP, 1);
3051 return 0;
3053 return -EINVAL;
3055 #else
3056 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3057 struct mem_cgroup *from, struct mem_cgroup *to)
3059 return -EINVAL;
3061 #endif
3063 static DEFINE_MUTEX(memcg_max_mutex);
3065 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3066 unsigned long max, bool memsw)
3068 bool enlarge = false;
3069 bool drained = false;
3070 int ret;
3071 bool limits_invariant;
3072 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3074 do {
3075 if (signal_pending(current)) {
3076 ret = -EINTR;
3077 break;
3080 mutex_lock(&memcg_max_mutex);
3082 * Make sure that the new limit (memsw or memory limit) doesn't
3083 * break our basic invariant rule memory.max <= memsw.max.
3085 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3086 max <= memcg->memsw.max;
3087 if (!limits_invariant) {
3088 mutex_unlock(&memcg_max_mutex);
3089 ret = -EINVAL;
3090 break;
3092 if (max > counter->max)
3093 enlarge = true;
3094 ret = page_counter_set_max(counter, max);
3095 mutex_unlock(&memcg_max_mutex);
3097 if (!ret)
3098 break;
3100 if (!drained) {
3101 drain_all_stock(memcg);
3102 drained = true;
3103 continue;
3106 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3107 GFP_KERNEL, !memsw)) {
3108 ret = -EBUSY;
3109 break;
3111 } while (true);
3113 if (!ret && enlarge)
3114 memcg_oom_recover(memcg);
3116 return ret;
3119 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3120 gfp_t gfp_mask,
3121 unsigned long *total_scanned)
3123 unsigned long nr_reclaimed = 0;
3124 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3125 unsigned long reclaimed;
3126 int loop = 0;
3127 struct mem_cgroup_tree_per_node *mctz;
3128 unsigned long excess;
3129 unsigned long nr_scanned;
3131 if (order > 0)
3132 return 0;
3134 mctz = soft_limit_tree_node(pgdat->node_id);
3137 * Do not even bother to check the largest node if the root
3138 * is empty. Do it lockless to prevent lock bouncing. Races
3139 * are acceptable as soft limit is best effort anyway.
3141 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3142 return 0;
3145 * This loop can run a while, specially if mem_cgroup's continuously
3146 * keep exceeding their soft limit and putting the system under
3147 * pressure
3149 do {
3150 if (next_mz)
3151 mz = next_mz;
3152 else
3153 mz = mem_cgroup_largest_soft_limit_node(mctz);
3154 if (!mz)
3155 break;
3157 nr_scanned = 0;
3158 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3159 gfp_mask, &nr_scanned);
3160 nr_reclaimed += reclaimed;
3161 *total_scanned += nr_scanned;
3162 spin_lock_irq(&mctz->lock);
3163 __mem_cgroup_remove_exceeded(mz, mctz);
3166 * If we failed to reclaim anything from this memory cgroup
3167 * it is time to move on to the next cgroup
3169 next_mz = NULL;
3170 if (!reclaimed)
3171 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3173 excess = soft_limit_excess(mz->memcg);
3175 * One school of thought says that we should not add
3176 * back the node to the tree if reclaim returns 0.
3177 * But our reclaim could return 0, simply because due
3178 * to priority we are exposing a smaller subset of
3179 * memory to reclaim from. Consider this as a longer
3180 * term TODO.
3182 /* If excess == 0, no tree ops */
3183 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3184 spin_unlock_irq(&mctz->lock);
3185 css_put(&mz->memcg->css);
3186 loop++;
3188 * Could not reclaim anything and there are no more
3189 * mem cgroups to try or we seem to be looping without
3190 * reclaiming anything.
3192 if (!nr_reclaimed &&
3193 (next_mz == NULL ||
3194 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3195 break;
3196 } while (!nr_reclaimed);
3197 if (next_mz)
3198 css_put(&next_mz->memcg->css);
3199 return nr_reclaimed;
3203 * Test whether @memcg has children, dead or alive. Note that this
3204 * function doesn't care whether @memcg has use_hierarchy enabled and
3205 * returns %true if there are child csses according to the cgroup
3206 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3208 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3210 bool ret;
3212 rcu_read_lock();
3213 ret = css_next_child(NULL, &memcg->css);
3214 rcu_read_unlock();
3215 return ret;
3219 * Reclaims as many pages from the given memcg as possible.
3221 * Caller is responsible for holding css reference for memcg.
3223 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3225 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3227 /* we call try-to-free pages for make this cgroup empty */
3228 lru_add_drain_all();
3230 drain_all_stock(memcg);
3232 /* try to free all pages in this cgroup */
3233 while (nr_retries && page_counter_read(&memcg->memory)) {
3234 int progress;
3236 if (signal_pending(current))
3237 return -EINTR;
3239 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3240 GFP_KERNEL, true);
3241 if (!progress) {
3242 nr_retries--;
3243 /* maybe some writeback is necessary */
3244 congestion_wait(BLK_RW_ASYNC, HZ/10);
3249 return 0;
3252 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3253 char *buf, size_t nbytes,
3254 loff_t off)
3256 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3258 if (mem_cgroup_is_root(memcg))
3259 return -EINVAL;
3260 return mem_cgroup_force_empty(memcg) ?: nbytes;
3263 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3264 struct cftype *cft)
3266 return mem_cgroup_from_css(css)->use_hierarchy;
3269 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3270 struct cftype *cft, u64 val)
3272 int retval = 0;
3273 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3274 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3276 if (memcg->use_hierarchy == val)
3277 return 0;
3280 * If parent's use_hierarchy is set, we can't make any modifications
3281 * in the child subtrees. If it is unset, then the change can
3282 * occur, provided the current cgroup has no children.
3284 * For the root cgroup, parent_mem is NULL, we allow value to be
3285 * set if there are no children.
3287 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3288 (val == 1 || val == 0)) {
3289 if (!memcg_has_children(memcg))
3290 memcg->use_hierarchy = val;
3291 else
3292 retval = -EBUSY;
3293 } else
3294 retval = -EINVAL;
3296 return retval;
3299 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3301 unsigned long val;
3303 if (mem_cgroup_is_root(memcg)) {
3304 val = memcg_page_state(memcg, MEMCG_CACHE) +
3305 memcg_page_state(memcg, MEMCG_RSS);
3306 if (swap)
3307 val += memcg_page_state(memcg, MEMCG_SWAP);
3308 } else {
3309 if (!swap)
3310 val = page_counter_read(&memcg->memory);
3311 else
3312 val = page_counter_read(&memcg->memsw);
3314 return val;
3317 enum {
3318 RES_USAGE,
3319 RES_LIMIT,
3320 RES_MAX_USAGE,
3321 RES_FAILCNT,
3322 RES_SOFT_LIMIT,
3325 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3326 struct cftype *cft)
3328 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3329 struct page_counter *counter;
3331 switch (MEMFILE_TYPE(cft->private)) {
3332 case _MEM:
3333 counter = &memcg->memory;
3334 break;
3335 case _MEMSWAP:
3336 counter = &memcg->memsw;
3337 break;
3338 case _KMEM:
3339 counter = &memcg->kmem;
3340 break;
3341 case _TCP:
3342 counter = &memcg->tcpmem;
3343 break;
3344 default:
3345 BUG();
3348 switch (MEMFILE_ATTR(cft->private)) {
3349 case RES_USAGE:
3350 if (counter == &memcg->memory)
3351 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3352 if (counter == &memcg->memsw)
3353 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3354 return (u64)page_counter_read(counter) * PAGE_SIZE;
3355 case RES_LIMIT:
3356 return (u64)counter->max * PAGE_SIZE;
3357 case RES_MAX_USAGE:
3358 return (u64)counter->watermark * PAGE_SIZE;
3359 case RES_FAILCNT:
3360 return counter->failcnt;
3361 case RES_SOFT_LIMIT:
3362 return (u64)memcg->soft_limit * PAGE_SIZE;
3363 default:
3364 BUG();
3368 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3370 unsigned long stat[MEMCG_NR_STAT] = {0};
3371 struct mem_cgroup *mi;
3372 int node, cpu, i;
3374 for_each_online_cpu(cpu)
3375 for (i = 0; i < MEMCG_NR_STAT; i++)
3376 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3378 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3379 for (i = 0; i < MEMCG_NR_STAT; i++)
3380 atomic_long_add(stat[i], &mi->vmstats[i]);
3382 for_each_node(node) {
3383 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3384 struct mem_cgroup_per_node *pi;
3386 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3387 stat[i] = 0;
3389 for_each_online_cpu(cpu)
3390 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3391 stat[i] += per_cpu(
3392 pn->lruvec_stat_cpu->count[i], cpu);
3394 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3395 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3396 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3400 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3402 unsigned long events[NR_VM_EVENT_ITEMS];
3403 struct mem_cgroup *mi;
3404 int cpu, i;
3406 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3407 events[i] = 0;
3409 for_each_online_cpu(cpu)
3410 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3411 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3412 cpu);
3414 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3415 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3416 atomic_long_add(events[i], &mi->vmevents[i]);
3419 #ifdef CONFIG_MEMCG_KMEM
3420 static int memcg_online_kmem(struct mem_cgroup *memcg)
3422 int memcg_id;
3424 if (cgroup_memory_nokmem)
3425 return 0;
3427 BUG_ON(memcg->kmemcg_id >= 0);
3428 BUG_ON(memcg->kmem_state);
3430 memcg_id = memcg_alloc_cache_id();
3431 if (memcg_id < 0)
3432 return memcg_id;
3434 static_branch_inc(&memcg_kmem_enabled_key);
3436 * A memory cgroup is considered kmem-online as soon as it gets
3437 * kmemcg_id. Setting the id after enabling static branching will
3438 * guarantee no one starts accounting before all call sites are
3439 * patched.
3441 memcg->kmemcg_id = memcg_id;
3442 memcg->kmem_state = KMEM_ONLINE;
3443 INIT_LIST_HEAD(&memcg->kmem_caches);
3445 return 0;
3448 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3450 struct cgroup_subsys_state *css;
3451 struct mem_cgroup *parent, *child;
3452 int kmemcg_id;
3454 if (memcg->kmem_state != KMEM_ONLINE)
3455 return;
3457 * Clear the online state before clearing memcg_caches array
3458 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3459 * guarantees that no cache will be created for this cgroup
3460 * after we are done (see memcg_create_kmem_cache()).
3462 memcg->kmem_state = KMEM_ALLOCATED;
3464 parent = parent_mem_cgroup(memcg);
3465 if (!parent)
3466 parent = root_mem_cgroup;
3469 * Deactivate and reparent kmem_caches.
3471 memcg_deactivate_kmem_caches(memcg, parent);
3473 kmemcg_id = memcg->kmemcg_id;
3474 BUG_ON(kmemcg_id < 0);
3477 * Change kmemcg_id of this cgroup and all its descendants to the
3478 * parent's id, and then move all entries from this cgroup's list_lrus
3479 * to ones of the parent. After we have finished, all list_lrus
3480 * corresponding to this cgroup are guaranteed to remain empty. The
3481 * ordering is imposed by list_lru_node->lock taken by
3482 * memcg_drain_all_list_lrus().
3484 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3485 css_for_each_descendant_pre(css, &memcg->css) {
3486 child = mem_cgroup_from_css(css);
3487 BUG_ON(child->kmemcg_id != kmemcg_id);
3488 child->kmemcg_id = parent->kmemcg_id;
3489 if (!memcg->use_hierarchy)
3490 break;
3492 rcu_read_unlock();
3494 memcg_drain_all_list_lrus(kmemcg_id, parent);
3496 memcg_free_cache_id(kmemcg_id);
3499 static void memcg_free_kmem(struct mem_cgroup *memcg)
3501 /* css_alloc() failed, offlining didn't happen */
3502 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3503 memcg_offline_kmem(memcg);
3505 if (memcg->kmem_state == KMEM_ALLOCATED) {
3506 WARN_ON(!list_empty(&memcg->kmem_caches));
3507 static_branch_dec(&memcg_kmem_enabled_key);
3510 #else
3511 static int memcg_online_kmem(struct mem_cgroup *memcg)
3513 return 0;
3515 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3518 static void memcg_free_kmem(struct mem_cgroup *memcg)
3521 #endif /* CONFIG_MEMCG_KMEM */
3523 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3524 unsigned long max)
3526 int ret;
3528 mutex_lock(&memcg_max_mutex);
3529 ret = page_counter_set_max(&memcg->kmem, max);
3530 mutex_unlock(&memcg_max_mutex);
3531 return ret;
3534 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3536 int ret;
3538 mutex_lock(&memcg_max_mutex);
3540 ret = page_counter_set_max(&memcg->tcpmem, max);
3541 if (ret)
3542 goto out;
3544 if (!memcg->tcpmem_active) {
3546 * The active flag needs to be written after the static_key
3547 * update. This is what guarantees that the socket activation
3548 * function is the last one to run. See mem_cgroup_sk_alloc()
3549 * for details, and note that we don't mark any socket as
3550 * belonging to this memcg until that flag is up.
3552 * We need to do this, because static_keys will span multiple
3553 * sites, but we can't control their order. If we mark a socket
3554 * as accounted, but the accounting functions are not patched in
3555 * yet, we'll lose accounting.
3557 * We never race with the readers in mem_cgroup_sk_alloc(),
3558 * because when this value change, the code to process it is not
3559 * patched in yet.
3561 static_branch_inc(&memcg_sockets_enabled_key);
3562 memcg->tcpmem_active = true;
3564 out:
3565 mutex_unlock(&memcg_max_mutex);
3566 return ret;
3570 * The user of this function is...
3571 * RES_LIMIT.
3573 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3574 char *buf, size_t nbytes, loff_t off)
3576 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3577 unsigned long nr_pages;
3578 int ret;
3580 buf = strstrip(buf);
3581 ret = page_counter_memparse(buf, "-1", &nr_pages);
3582 if (ret)
3583 return ret;
3585 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3586 case RES_LIMIT:
3587 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3588 ret = -EINVAL;
3589 break;
3591 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3592 case _MEM:
3593 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3594 break;
3595 case _MEMSWAP:
3596 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3597 break;
3598 case _KMEM:
3599 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3600 "Please report your usecase to linux-mm@kvack.org if you "
3601 "depend on this functionality.\n");
3602 ret = memcg_update_kmem_max(memcg, nr_pages);
3603 break;
3604 case _TCP:
3605 ret = memcg_update_tcp_max(memcg, nr_pages);
3606 break;
3608 break;
3609 case RES_SOFT_LIMIT:
3610 memcg->soft_limit = nr_pages;
3611 ret = 0;
3612 break;
3614 return ret ?: nbytes;
3617 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3618 size_t nbytes, loff_t off)
3620 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3621 struct page_counter *counter;
3623 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3624 case _MEM:
3625 counter = &memcg->memory;
3626 break;
3627 case _MEMSWAP:
3628 counter = &memcg->memsw;
3629 break;
3630 case _KMEM:
3631 counter = &memcg->kmem;
3632 break;
3633 case _TCP:
3634 counter = &memcg->tcpmem;
3635 break;
3636 default:
3637 BUG();
3640 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3641 case RES_MAX_USAGE:
3642 page_counter_reset_watermark(counter);
3643 break;
3644 case RES_FAILCNT:
3645 counter->failcnt = 0;
3646 break;
3647 default:
3648 BUG();
3651 return nbytes;
3654 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3655 struct cftype *cft)
3657 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3660 #ifdef CONFIG_MMU
3661 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3662 struct cftype *cft, u64 val)
3664 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3666 if (val & ~MOVE_MASK)
3667 return -EINVAL;
3670 * No kind of locking is needed in here, because ->can_attach() will
3671 * check this value once in the beginning of the process, and then carry
3672 * on with stale data. This means that changes to this value will only
3673 * affect task migrations starting after the change.
3675 memcg->move_charge_at_immigrate = val;
3676 return 0;
3678 #else
3679 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3680 struct cftype *cft, u64 val)
3682 return -ENOSYS;
3684 #endif
3686 #ifdef CONFIG_NUMA
3688 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3689 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3690 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3692 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3693 int nid, unsigned int lru_mask)
3695 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3696 unsigned long nr = 0;
3697 enum lru_list lru;
3699 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3701 for_each_lru(lru) {
3702 if (!(BIT(lru) & lru_mask))
3703 continue;
3704 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3706 return nr;
3709 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3710 unsigned int lru_mask)
3712 unsigned long nr = 0;
3713 enum lru_list lru;
3715 for_each_lru(lru) {
3716 if (!(BIT(lru) & lru_mask))
3717 continue;
3718 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3720 return nr;
3723 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3725 struct numa_stat {
3726 const char *name;
3727 unsigned int lru_mask;
3730 static const struct numa_stat stats[] = {
3731 { "total", LRU_ALL },
3732 { "file", LRU_ALL_FILE },
3733 { "anon", LRU_ALL_ANON },
3734 { "unevictable", BIT(LRU_UNEVICTABLE) },
3736 const struct numa_stat *stat;
3737 int nid;
3738 unsigned long nr;
3739 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3741 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3742 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3743 seq_printf(m, "%s=%lu", stat->name, nr);
3744 for_each_node_state(nid, N_MEMORY) {
3745 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3746 stat->lru_mask);
3747 seq_printf(m, " N%d=%lu", nid, nr);
3749 seq_putc(m, '\n');
3752 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3753 struct mem_cgroup *iter;
3755 nr = 0;
3756 for_each_mem_cgroup_tree(iter, memcg)
3757 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3758 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3759 for_each_node_state(nid, N_MEMORY) {
3760 nr = 0;
3761 for_each_mem_cgroup_tree(iter, memcg)
3762 nr += mem_cgroup_node_nr_lru_pages(
3763 iter, nid, stat->lru_mask);
3764 seq_printf(m, " N%d=%lu", nid, nr);
3766 seq_putc(m, '\n');
3769 return 0;
3771 #endif /* CONFIG_NUMA */
3773 static const unsigned int memcg1_stats[] = {
3774 MEMCG_CACHE,
3775 MEMCG_RSS,
3776 MEMCG_RSS_HUGE,
3777 NR_SHMEM,
3778 NR_FILE_MAPPED,
3779 NR_FILE_DIRTY,
3780 NR_WRITEBACK,
3781 MEMCG_SWAP,
3784 static const char *const memcg1_stat_names[] = {
3785 "cache",
3786 "rss",
3787 "rss_huge",
3788 "shmem",
3789 "mapped_file",
3790 "dirty",
3791 "writeback",
3792 "swap",
3795 /* Universal VM events cgroup1 shows, original sort order */
3796 static const unsigned int memcg1_events[] = {
3797 PGPGIN,
3798 PGPGOUT,
3799 PGFAULT,
3800 PGMAJFAULT,
3803 static int memcg_stat_show(struct seq_file *m, void *v)
3805 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3806 unsigned long memory, memsw;
3807 struct mem_cgroup *mi;
3808 unsigned int i;
3810 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3812 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3813 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3814 continue;
3815 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3816 memcg_page_state_local(memcg, memcg1_stats[i]) *
3817 PAGE_SIZE);
3820 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3821 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3822 memcg_events_local(memcg, memcg1_events[i]));
3824 for (i = 0; i < NR_LRU_LISTS; i++)
3825 seq_printf(m, "%s %lu\n", lru_list_name(i),
3826 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3827 PAGE_SIZE);
3829 /* Hierarchical information */
3830 memory = memsw = PAGE_COUNTER_MAX;
3831 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3832 memory = min(memory, READ_ONCE(mi->memory.max));
3833 memsw = min(memsw, READ_ONCE(mi->memsw.max));
3835 seq_printf(m, "hierarchical_memory_limit %llu\n",
3836 (u64)memory * PAGE_SIZE);
3837 if (do_memsw_account())
3838 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3839 (u64)memsw * PAGE_SIZE);
3841 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3842 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3843 continue;
3844 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3845 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3846 PAGE_SIZE);
3849 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3850 seq_printf(m, "total_%s %llu\n",
3851 vm_event_name(memcg1_events[i]),
3852 (u64)memcg_events(memcg, memcg1_events[i]));
3854 for (i = 0; i < NR_LRU_LISTS; i++)
3855 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3856 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3857 PAGE_SIZE);
3859 #ifdef CONFIG_DEBUG_VM
3861 pg_data_t *pgdat;
3862 struct mem_cgroup_per_node *mz;
3863 struct zone_reclaim_stat *rstat;
3864 unsigned long recent_rotated[2] = {0, 0};
3865 unsigned long recent_scanned[2] = {0, 0};
3867 for_each_online_pgdat(pgdat) {
3868 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3869 rstat = &mz->lruvec.reclaim_stat;
3871 recent_rotated[0] += rstat->recent_rotated[0];
3872 recent_rotated[1] += rstat->recent_rotated[1];
3873 recent_scanned[0] += rstat->recent_scanned[0];
3874 recent_scanned[1] += rstat->recent_scanned[1];
3876 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3877 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3878 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3879 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3881 #endif
3883 return 0;
3886 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3887 struct cftype *cft)
3889 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3891 return mem_cgroup_swappiness(memcg);
3894 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3895 struct cftype *cft, u64 val)
3897 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3899 if (val > 100)
3900 return -EINVAL;
3902 if (css->parent)
3903 memcg->swappiness = val;
3904 else
3905 vm_swappiness = val;
3907 return 0;
3910 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3912 struct mem_cgroup_threshold_ary *t;
3913 unsigned long usage;
3914 int i;
3916 rcu_read_lock();
3917 if (!swap)
3918 t = rcu_dereference(memcg->thresholds.primary);
3919 else
3920 t = rcu_dereference(memcg->memsw_thresholds.primary);
3922 if (!t)
3923 goto unlock;
3925 usage = mem_cgroup_usage(memcg, swap);
3928 * current_threshold points to threshold just below or equal to usage.
3929 * If it's not true, a threshold was crossed after last
3930 * call of __mem_cgroup_threshold().
3932 i = t->current_threshold;
3935 * Iterate backward over array of thresholds starting from
3936 * current_threshold and check if a threshold is crossed.
3937 * If none of thresholds below usage is crossed, we read
3938 * only one element of the array here.
3940 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3941 eventfd_signal(t->entries[i].eventfd, 1);
3943 /* i = current_threshold + 1 */
3944 i++;
3947 * Iterate forward over array of thresholds starting from
3948 * current_threshold+1 and check if a threshold is crossed.
3949 * If none of thresholds above usage is crossed, we read
3950 * only one element of the array here.
3952 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3953 eventfd_signal(t->entries[i].eventfd, 1);
3955 /* Update current_threshold */
3956 t->current_threshold = i - 1;
3957 unlock:
3958 rcu_read_unlock();
3961 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3963 while (memcg) {
3964 __mem_cgroup_threshold(memcg, false);
3965 if (do_memsw_account())
3966 __mem_cgroup_threshold(memcg, true);
3968 memcg = parent_mem_cgroup(memcg);
3972 static int compare_thresholds(const void *a, const void *b)
3974 const struct mem_cgroup_threshold *_a = a;
3975 const struct mem_cgroup_threshold *_b = b;
3977 if (_a->threshold > _b->threshold)
3978 return 1;
3980 if (_a->threshold < _b->threshold)
3981 return -1;
3983 return 0;
3986 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3988 struct mem_cgroup_eventfd_list *ev;
3990 spin_lock(&memcg_oom_lock);
3992 list_for_each_entry(ev, &memcg->oom_notify, list)
3993 eventfd_signal(ev->eventfd, 1);
3995 spin_unlock(&memcg_oom_lock);
3996 return 0;
3999 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4001 struct mem_cgroup *iter;
4003 for_each_mem_cgroup_tree(iter, memcg)
4004 mem_cgroup_oom_notify_cb(iter);
4007 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4008 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4010 struct mem_cgroup_thresholds *thresholds;
4011 struct mem_cgroup_threshold_ary *new;
4012 unsigned long threshold;
4013 unsigned long usage;
4014 int i, size, ret;
4016 ret = page_counter_memparse(args, "-1", &threshold);
4017 if (ret)
4018 return ret;
4020 mutex_lock(&memcg->thresholds_lock);
4022 if (type == _MEM) {
4023 thresholds = &memcg->thresholds;
4024 usage = mem_cgroup_usage(memcg, false);
4025 } else if (type == _MEMSWAP) {
4026 thresholds = &memcg->memsw_thresholds;
4027 usage = mem_cgroup_usage(memcg, true);
4028 } else
4029 BUG();
4031 /* Check if a threshold crossed before adding a new one */
4032 if (thresholds->primary)
4033 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4035 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4037 /* Allocate memory for new array of thresholds */
4038 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4039 if (!new) {
4040 ret = -ENOMEM;
4041 goto unlock;
4043 new->size = size;
4045 /* Copy thresholds (if any) to new array */
4046 if (thresholds->primary) {
4047 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4048 sizeof(struct mem_cgroup_threshold));
4051 /* Add new threshold */
4052 new->entries[size - 1].eventfd = eventfd;
4053 new->entries[size - 1].threshold = threshold;
4055 /* Sort thresholds. Registering of new threshold isn't time-critical */
4056 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4057 compare_thresholds, NULL);
4059 /* Find current threshold */
4060 new->current_threshold = -1;
4061 for (i = 0; i < size; i++) {
4062 if (new->entries[i].threshold <= usage) {
4064 * new->current_threshold will not be used until
4065 * rcu_assign_pointer(), so it's safe to increment
4066 * it here.
4068 ++new->current_threshold;
4069 } else
4070 break;
4073 /* Free old spare buffer and save old primary buffer as spare */
4074 kfree(thresholds->spare);
4075 thresholds->spare = thresholds->primary;
4077 rcu_assign_pointer(thresholds->primary, new);
4079 /* To be sure that nobody uses thresholds */
4080 synchronize_rcu();
4082 unlock:
4083 mutex_unlock(&memcg->thresholds_lock);
4085 return ret;
4088 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4089 struct eventfd_ctx *eventfd, const char *args)
4091 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4094 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4095 struct eventfd_ctx *eventfd, const char *args)
4097 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4100 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4101 struct eventfd_ctx *eventfd, enum res_type type)
4103 struct mem_cgroup_thresholds *thresholds;
4104 struct mem_cgroup_threshold_ary *new;
4105 unsigned long usage;
4106 int i, j, size, entries;
4108 mutex_lock(&memcg->thresholds_lock);
4110 if (type == _MEM) {
4111 thresholds = &memcg->thresholds;
4112 usage = mem_cgroup_usage(memcg, false);
4113 } else if (type == _MEMSWAP) {
4114 thresholds = &memcg->memsw_thresholds;
4115 usage = mem_cgroup_usage(memcg, true);
4116 } else
4117 BUG();
4119 if (!thresholds->primary)
4120 goto unlock;
4122 /* Check if a threshold crossed before removing */
4123 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4125 /* Calculate new number of threshold */
4126 size = entries = 0;
4127 for (i = 0; i < thresholds->primary->size; i++) {
4128 if (thresholds->primary->entries[i].eventfd != eventfd)
4129 size++;
4130 else
4131 entries++;
4134 new = thresholds->spare;
4136 /* If no items related to eventfd have been cleared, nothing to do */
4137 if (!entries)
4138 goto unlock;
4140 /* Set thresholds array to NULL if we don't have thresholds */
4141 if (!size) {
4142 kfree(new);
4143 new = NULL;
4144 goto swap_buffers;
4147 new->size = size;
4149 /* Copy thresholds and find current threshold */
4150 new->current_threshold = -1;
4151 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4152 if (thresholds->primary->entries[i].eventfd == eventfd)
4153 continue;
4155 new->entries[j] = thresholds->primary->entries[i];
4156 if (new->entries[j].threshold <= usage) {
4158 * new->current_threshold will not be used
4159 * until rcu_assign_pointer(), so it's safe to increment
4160 * it here.
4162 ++new->current_threshold;
4164 j++;
4167 swap_buffers:
4168 /* Swap primary and spare array */
4169 thresholds->spare = thresholds->primary;
4171 rcu_assign_pointer(thresholds->primary, new);
4173 /* To be sure that nobody uses thresholds */
4174 synchronize_rcu();
4176 /* If all events are unregistered, free the spare array */
4177 if (!new) {
4178 kfree(thresholds->spare);
4179 thresholds->spare = NULL;
4181 unlock:
4182 mutex_unlock(&memcg->thresholds_lock);
4185 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4186 struct eventfd_ctx *eventfd)
4188 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4191 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4192 struct eventfd_ctx *eventfd)
4194 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4197 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4198 struct eventfd_ctx *eventfd, const char *args)
4200 struct mem_cgroup_eventfd_list *event;
4202 event = kmalloc(sizeof(*event), GFP_KERNEL);
4203 if (!event)
4204 return -ENOMEM;
4206 spin_lock(&memcg_oom_lock);
4208 event->eventfd = eventfd;
4209 list_add(&event->list, &memcg->oom_notify);
4211 /* already in OOM ? */
4212 if (memcg->under_oom)
4213 eventfd_signal(eventfd, 1);
4214 spin_unlock(&memcg_oom_lock);
4216 return 0;
4219 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4220 struct eventfd_ctx *eventfd)
4222 struct mem_cgroup_eventfd_list *ev, *tmp;
4224 spin_lock(&memcg_oom_lock);
4226 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4227 if (ev->eventfd == eventfd) {
4228 list_del(&ev->list);
4229 kfree(ev);
4233 spin_unlock(&memcg_oom_lock);
4236 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4238 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4240 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4241 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4242 seq_printf(sf, "oom_kill %lu\n",
4243 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4244 return 0;
4247 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4248 struct cftype *cft, u64 val)
4250 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4252 /* cannot set to root cgroup and only 0 and 1 are allowed */
4253 if (!css->parent || !((val == 0) || (val == 1)))
4254 return -EINVAL;
4256 memcg->oom_kill_disable = val;
4257 if (!val)
4258 memcg_oom_recover(memcg);
4260 return 0;
4263 #ifdef CONFIG_CGROUP_WRITEBACK
4265 #include <trace/events/writeback.h>
4267 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4269 return wb_domain_init(&memcg->cgwb_domain, gfp);
4272 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4274 wb_domain_exit(&memcg->cgwb_domain);
4277 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4279 wb_domain_size_changed(&memcg->cgwb_domain);
4282 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4284 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4286 if (!memcg->css.parent)
4287 return NULL;
4289 return &memcg->cgwb_domain;
4293 * idx can be of type enum memcg_stat_item or node_stat_item.
4294 * Keep in sync with memcg_exact_page().
4296 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4298 long x = atomic_long_read(&memcg->vmstats[idx]);
4299 int cpu;
4301 for_each_online_cpu(cpu)
4302 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4303 if (x < 0)
4304 x = 0;
4305 return x;
4309 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4310 * @wb: bdi_writeback in question
4311 * @pfilepages: out parameter for number of file pages
4312 * @pheadroom: out parameter for number of allocatable pages according to memcg
4313 * @pdirty: out parameter for number of dirty pages
4314 * @pwriteback: out parameter for number of pages under writeback
4316 * Determine the numbers of file, headroom, dirty, and writeback pages in
4317 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4318 * is a bit more involved.
4320 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4321 * headroom is calculated as the lowest headroom of itself and the
4322 * ancestors. Note that this doesn't consider the actual amount of
4323 * available memory in the system. The caller should further cap
4324 * *@pheadroom accordingly.
4326 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4327 unsigned long *pheadroom, unsigned long *pdirty,
4328 unsigned long *pwriteback)
4330 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4331 struct mem_cgroup *parent;
4333 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4335 /* this should eventually include NR_UNSTABLE_NFS */
4336 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4337 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4338 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4339 *pheadroom = PAGE_COUNTER_MAX;
4341 while ((parent = parent_mem_cgroup(memcg))) {
4342 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4343 READ_ONCE(memcg->high));
4344 unsigned long used = page_counter_read(&memcg->memory);
4346 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4347 memcg = parent;
4352 * Foreign dirty flushing
4354 * There's an inherent mismatch between memcg and writeback. The former
4355 * trackes ownership per-page while the latter per-inode. This was a
4356 * deliberate design decision because honoring per-page ownership in the
4357 * writeback path is complicated, may lead to higher CPU and IO overheads
4358 * and deemed unnecessary given that write-sharing an inode across
4359 * different cgroups isn't a common use-case.
4361 * Combined with inode majority-writer ownership switching, this works well
4362 * enough in most cases but there are some pathological cases. For
4363 * example, let's say there are two cgroups A and B which keep writing to
4364 * different but confined parts of the same inode. B owns the inode and
4365 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4366 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4367 * triggering background writeback. A will be slowed down without a way to
4368 * make writeback of the dirty pages happen.
4370 * Conditions like the above can lead to a cgroup getting repatedly and
4371 * severely throttled after making some progress after each
4372 * dirty_expire_interval while the underyling IO device is almost
4373 * completely idle.
4375 * Solving this problem completely requires matching the ownership tracking
4376 * granularities between memcg and writeback in either direction. However,
4377 * the more egregious behaviors can be avoided by simply remembering the
4378 * most recent foreign dirtying events and initiating remote flushes on
4379 * them when local writeback isn't enough to keep the memory clean enough.
4381 * The following two functions implement such mechanism. When a foreign
4382 * page - a page whose memcg and writeback ownerships don't match - is
4383 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4384 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4385 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4386 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4387 * foreign bdi_writebacks which haven't expired. Both the numbers of
4388 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4389 * limited to MEMCG_CGWB_FRN_CNT.
4391 * The mechanism only remembers IDs and doesn't hold any object references.
4392 * As being wrong occasionally doesn't matter, updates and accesses to the
4393 * records are lockless and racy.
4395 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4396 struct bdi_writeback *wb)
4398 struct mem_cgroup *memcg = page->mem_cgroup;
4399 struct memcg_cgwb_frn *frn;
4400 u64 now = get_jiffies_64();
4401 u64 oldest_at = now;
4402 int oldest = -1;
4403 int i;
4405 trace_track_foreign_dirty(page, wb);
4408 * Pick the slot to use. If there is already a slot for @wb, keep
4409 * using it. If not replace the oldest one which isn't being
4410 * written out.
4412 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4413 frn = &memcg->cgwb_frn[i];
4414 if (frn->bdi_id == wb->bdi->id &&
4415 frn->memcg_id == wb->memcg_css->id)
4416 break;
4417 if (time_before64(frn->at, oldest_at) &&
4418 atomic_read(&frn->done.cnt) == 1) {
4419 oldest = i;
4420 oldest_at = frn->at;
4424 if (i < MEMCG_CGWB_FRN_CNT) {
4426 * Re-using an existing one. Update timestamp lazily to
4427 * avoid making the cacheline hot. We want them to be
4428 * reasonably up-to-date and significantly shorter than
4429 * dirty_expire_interval as that's what expires the record.
4430 * Use the shorter of 1s and dirty_expire_interval / 8.
4432 unsigned long update_intv =
4433 min_t(unsigned long, HZ,
4434 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4436 if (time_before64(frn->at, now - update_intv))
4437 frn->at = now;
4438 } else if (oldest >= 0) {
4439 /* replace the oldest free one */
4440 frn = &memcg->cgwb_frn[oldest];
4441 frn->bdi_id = wb->bdi->id;
4442 frn->memcg_id = wb->memcg_css->id;
4443 frn->at = now;
4447 /* issue foreign writeback flushes for recorded foreign dirtying events */
4448 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4450 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4451 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4452 u64 now = jiffies_64;
4453 int i;
4455 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4456 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4459 * If the record is older than dirty_expire_interval,
4460 * writeback on it has already started. No need to kick it
4461 * off again. Also, don't start a new one if there's
4462 * already one in flight.
4464 if (time_after64(frn->at, now - intv) &&
4465 atomic_read(&frn->done.cnt) == 1) {
4466 frn->at = 0;
4467 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4468 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4469 WB_REASON_FOREIGN_FLUSH,
4470 &frn->done);
4475 #else /* CONFIG_CGROUP_WRITEBACK */
4477 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4479 return 0;
4482 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4486 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4490 #endif /* CONFIG_CGROUP_WRITEBACK */
4493 * DO NOT USE IN NEW FILES.
4495 * "cgroup.event_control" implementation.
4497 * This is way over-engineered. It tries to support fully configurable
4498 * events for each user. Such level of flexibility is completely
4499 * unnecessary especially in the light of the planned unified hierarchy.
4501 * Please deprecate this and replace with something simpler if at all
4502 * possible.
4506 * Unregister event and free resources.
4508 * Gets called from workqueue.
4510 static void memcg_event_remove(struct work_struct *work)
4512 struct mem_cgroup_event *event =
4513 container_of(work, struct mem_cgroup_event, remove);
4514 struct mem_cgroup *memcg = event->memcg;
4516 remove_wait_queue(event->wqh, &event->wait);
4518 event->unregister_event(memcg, event->eventfd);
4520 /* Notify userspace the event is going away. */
4521 eventfd_signal(event->eventfd, 1);
4523 eventfd_ctx_put(event->eventfd);
4524 kfree(event);
4525 css_put(&memcg->css);
4529 * Gets called on EPOLLHUP on eventfd when user closes it.
4531 * Called with wqh->lock held and interrupts disabled.
4533 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4534 int sync, void *key)
4536 struct mem_cgroup_event *event =
4537 container_of(wait, struct mem_cgroup_event, wait);
4538 struct mem_cgroup *memcg = event->memcg;
4539 __poll_t flags = key_to_poll(key);
4541 if (flags & EPOLLHUP) {
4543 * If the event has been detached at cgroup removal, we
4544 * can simply return knowing the other side will cleanup
4545 * for us.
4547 * We can't race against event freeing since the other
4548 * side will require wqh->lock via remove_wait_queue(),
4549 * which we hold.
4551 spin_lock(&memcg->event_list_lock);
4552 if (!list_empty(&event->list)) {
4553 list_del_init(&event->list);
4555 * We are in atomic context, but cgroup_event_remove()
4556 * may sleep, so we have to call it in workqueue.
4558 schedule_work(&event->remove);
4560 spin_unlock(&memcg->event_list_lock);
4563 return 0;
4566 static void memcg_event_ptable_queue_proc(struct file *file,
4567 wait_queue_head_t *wqh, poll_table *pt)
4569 struct mem_cgroup_event *event =
4570 container_of(pt, struct mem_cgroup_event, pt);
4572 event->wqh = wqh;
4573 add_wait_queue(wqh, &event->wait);
4577 * DO NOT USE IN NEW FILES.
4579 * Parse input and register new cgroup event handler.
4581 * Input must be in format '<event_fd> <control_fd> <args>'.
4582 * Interpretation of args is defined by control file implementation.
4584 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4585 char *buf, size_t nbytes, loff_t off)
4587 struct cgroup_subsys_state *css = of_css(of);
4588 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4589 struct mem_cgroup_event *event;
4590 struct cgroup_subsys_state *cfile_css;
4591 unsigned int efd, cfd;
4592 struct fd efile;
4593 struct fd cfile;
4594 const char *name;
4595 char *endp;
4596 int ret;
4598 buf = strstrip(buf);
4600 efd = simple_strtoul(buf, &endp, 10);
4601 if (*endp != ' ')
4602 return -EINVAL;
4603 buf = endp + 1;
4605 cfd = simple_strtoul(buf, &endp, 10);
4606 if ((*endp != ' ') && (*endp != '\0'))
4607 return -EINVAL;
4608 buf = endp + 1;
4610 event = kzalloc(sizeof(*event), GFP_KERNEL);
4611 if (!event)
4612 return -ENOMEM;
4614 event->memcg = memcg;
4615 INIT_LIST_HEAD(&event->list);
4616 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4617 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4618 INIT_WORK(&event->remove, memcg_event_remove);
4620 efile = fdget(efd);
4621 if (!efile.file) {
4622 ret = -EBADF;
4623 goto out_kfree;
4626 event->eventfd = eventfd_ctx_fileget(efile.file);
4627 if (IS_ERR(event->eventfd)) {
4628 ret = PTR_ERR(event->eventfd);
4629 goto out_put_efile;
4632 cfile = fdget(cfd);
4633 if (!cfile.file) {
4634 ret = -EBADF;
4635 goto out_put_eventfd;
4638 /* the process need read permission on control file */
4639 /* AV: shouldn't we check that it's been opened for read instead? */
4640 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4641 if (ret < 0)
4642 goto out_put_cfile;
4645 * Determine the event callbacks and set them in @event. This used
4646 * to be done via struct cftype but cgroup core no longer knows
4647 * about these events. The following is crude but the whole thing
4648 * is for compatibility anyway.
4650 * DO NOT ADD NEW FILES.
4652 name = cfile.file->f_path.dentry->d_name.name;
4654 if (!strcmp(name, "memory.usage_in_bytes")) {
4655 event->register_event = mem_cgroup_usage_register_event;
4656 event->unregister_event = mem_cgroup_usage_unregister_event;
4657 } else if (!strcmp(name, "memory.oom_control")) {
4658 event->register_event = mem_cgroup_oom_register_event;
4659 event->unregister_event = mem_cgroup_oom_unregister_event;
4660 } else if (!strcmp(name, "memory.pressure_level")) {
4661 event->register_event = vmpressure_register_event;
4662 event->unregister_event = vmpressure_unregister_event;
4663 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4664 event->register_event = memsw_cgroup_usage_register_event;
4665 event->unregister_event = memsw_cgroup_usage_unregister_event;
4666 } else {
4667 ret = -EINVAL;
4668 goto out_put_cfile;
4672 * Verify @cfile should belong to @css. Also, remaining events are
4673 * automatically removed on cgroup destruction but the removal is
4674 * asynchronous, so take an extra ref on @css.
4676 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4677 &memory_cgrp_subsys);
4678 ret = -EINVAL;
4679 if (IS_ERR(cfile_css))
4680 goto out_put_cfile;
4681 if (cfile_css != css) {
4682 css_put(cfile_css);
4683 goto out_put_cfile;
4686 ret = event->register_event(memcg, event->eventfd, buf);
4687 if (ret)
4688 goto out_put_css;
4690 vfs_poll(efile.file, &event->pt);
4692 spin_lock(&memcg->event_list_lock);
4693 list_add(&event->list, &memcg->event_list);
4694 spin_unlock(&memcg->event_list_lock);
4696 fdput(cfile);
4697 fdput(efile);
4699 return nbytes;
4701 out_put_css:
4702 css_put(css);
4703 out_put_cfile:
4704 fdput(cfile);
4705 out_put_eventfd:
4706 eventfd_ctx_put(event->eventfd);
4707 out_put_efile:
4708 fdput(efile);
4709 out_kfree:
4710 kfree(event);
4712 return ret;
4715 static struct cftype mem_cgroup_legacy_files[] = {
4717 .name = "usage_in_bytes",
4718 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4719 .read_u64 = mem_cgroup_read_u64,
4722 .name = "max_usage_in_bytes",
4723 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4724 .write = mem_cgroup_reset,
4725 .read_u64 = mem_cgroup_read_u64,
4728 .name = "limit_in_bytes",
4729 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4730 .write = mem_cgroup_write,
4731 .read_u64 = mem_cgroup_read_u64,
4734 .name = "soft_limit_in_bytes",
4735 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4736 .write = mem_cgroup_write,
4737 .read_u64 = mem_cgroup_read_u64,
4740 .name = "failcnt",
4741 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4742 .write = mem_cgroup_reset,
4743 .read_u64 = mem_cgroup_read_u64,
4746 .name = "stat",
4747 .seq_show = memcg_stat_show,
4750 .name = "force_empty",
4751 .write = mem_cgroup_force_empty_write,
4754 .name = "use_hierarchy",
4755 .write_u64 = mem_cgroup_hierarchy_write,
4756 .read_u64 = mem_cgroup_hierarchy_read,
4759 .name = "cgroup.event_control", /* XXX: for compat */
4760 .write = memcg_write_event_control,
4761 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4764 .name = "swappiness",
4765 .read_u64 = mem_cgroup_swappiness_read,
4766 .write_u64 = mem_cgroup_swappiness_write,
4769 .name = "move_charge_at_immigrate",
4770 .read_u64 = mem_cgroup_move_charge_read,
4771 .write_u64 = mem_cgroup_move_charge_write,
4774 .name = "oom_control",
4775 .seq_show = mem_cgroup_oom_control_read,
4776 .write_u64 = mem_cgroup_oom_control_write,
4777 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4780 .name = "pressure_level",
4782 #ifdef CONFIG_NUMA
4784 .name = "numa_stat",
4785 .seq_show = memcg_numa_stat_show,
4787 #endif
4789 .name = "kmem.limit_in_bytes",
4790 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4791 .write = mem_cgroup_write,
4792 .read_u64 = mem_cgroup_read_u64,
4795 .name = "kmem.usage_in_bytes",
4796 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4797 .read_u64 = mem_cgroup_read_u64,
4800 .name = "kmem.failcnt",
4801 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4802 .write = mem_cgroup_reset,
4803 .read_u64 = mem_cgroup_read_u64,
4806 .name = "kmem.max_usage_in_bytes",
4807 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4808 .write = mem_cgroup_reset,
4809 .read_u64 = mem_cgroup_read_u64,
4811 #if defined(CONFIG_MEMCG_KMEM) && \
4812 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4814 .name = "kmem.slabinfo",
4815 .seq_start = memcg_slab_start,
4816 .seq_next = memcg_slab_next,
4817 .seq_stop = memcg_slab_stop,
4818 .seq_show = memcg_slab_show,
4820 #endif
4822 .name = "kmem.tcp.limit_in_bytes",
4823 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4824 .write = mem_cgroup_write,
4825 .read_u64 = mem_cgroup_read_u64,
4828 .name = "kmem.tcp.usage_in_bytes",
4829 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4830 .read_u64 = mem_cgroup_read_u64,
4833 .name = "kmem.tcp.failcnt",
4834 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4835 .write = mem_cgroup_reset,
4836 .read_u64 = mem_cgroup_read_u64,
4839 .name = "kmem.tcp.max_usage_in_bytes",
4840 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4841 .write = mem_cgroup_reset,
4842 .read_u64 = mem_cgroup_read_u64,
4844 { }, /* terminate */
4848 * Private memory cgroup IDR
4850 * Swap-out records and page cache shadow entries need to store memcg
4851 * references in constrained space, so we maintain an ID space that is
4852 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4853 * memory-controlled cgroups to 64k.
4855 * However, there usually are many references to the oflline CSS after
4856 * the cgroup has been destroyed, such as page cache or reclaimable
4857 * slab objects, that don't need to hang on to the ID. We want to keep
4858 * those dead CSS from occupying IDs, or we might quickly exhaust the
4859 * relatively small ID space and prevent the creation of new cgroups
4860 * even when there are much fewer than 64k cgroups - possibly none.
4862 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4863 * be freed and recycled when it's no longer needed, which is usually
4864 * when the CSS is offlined.
4866 * The only exception to that are records of swapped out tmpfs/shmem
4867 * pages that need to be attributed to live ancestors on swapin. But
4868 * those references are manageable from userspace.
4871 static DEFINE_IDR(mem_cgroup_idr);
4873 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4875 if (memcg->id.id > 0) {
4876 idr_remove(&mem_cgroup_idr, memcg->id.id);
4877 memcg->id.id = 0;
4881 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
4882 unsigned int n)
4884 refcount_add(n, &memcg->id.ref);
4887 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4889 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4890 mem_cgroup_id_remove(memcg);
4892 /* Memcg ID pins CSS */
4893 css_put(&memcg->css);
4897 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4899 mem_cgroup_id_put_many(memcg, 1);
4903 * mem_cgroup_from_id - look up a memcg from a memcg id
4904 * @id: the memcg id to look up
4906 * Caller must hold rcu_read_lock().
4908 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4910 WARN_ON_ONCE(!rcu_read_lock_held());
4911 return idr_find(&mem_cgroup_idr, id);
4914 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4916 struct mem_cgroup_per_node *pn;
4917 int tmp = node;
4919 * This routine is called against possible nodes.
4920 * But it's BUG to call kmalloc() against offline node.
4922 * TODO: this routine can waste much memory for nodes which will
4923 * never be onlined. It's better to use memory hotplug callback
4924 * function.
4926 if (!node_state(node, N_NORMAL_MEMORY))
4927 tmp = -1;
4928 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4929 if (!pn)
4930 return 1;
4932 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4933 if (!pn->lruvec_stat_local) {
4934 kfree(pn);
4935 return 1;
4938 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4939 if (!pn->lruvec_stat_cpu) {
4940 free_percpu(pn->lruvec_stat_local);
4941 kfree(pn);
4942 return 1;
4945 lruvec_init(&pn->lruvec);
4946 pn->usage_in_excess = 0;
4947 pn->on_tree = false;
4948 pn->memcg = memcg;
4950 memcg->nodeinfo[node] = pn;
4951 return 0;
4954 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4956 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4958 if (!pn)
4959 return;
4961 free_percpu(pn->lruvec_stat_cpu);
4962 free_percpu(pn->lruvec_stat_local);
4963 kfree(pn);
4966 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4968 int node;
4970 for_each_node(node)
4971 free_mem_cgroup_per_node_info(memcg, node);
4972 free_percpu(memcg->vmstats_percpu);
4973 free_percpu(memcg->vmstats_local);
4974 kfree(memcg);
4977 static void mem_cgroup_free(struct mem_cgroup *memcg)
4979 memcg_wb_domain_exit(memcg);
4981 * Flush percpu vmstats and vmevents to guarantee the value correctness
4982 * on parent's and all ancestor levels.
4984 memcg_flush_percpu_vmstats(memcg);
4985 memcg_flush_percpu_vmevents(memcg);
4986 __mem_cgroup_free(memcg);
4989 static struct mem_cgroup *mem_cgroup_alloc(void)
4991 struct mem_cgroup *memcg;
4992 unsigned int size;
4993 int node;
4994 int __maybe_unused i;
4995 long error = -ENOMEM;
4997 size = sizeof(struct mem_cgroup);
4998 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5000 memcg = kzalloc(size, GFP_KERNEL);
5001 if (!memcg)
5002 return ERR_PTR(error);
5004 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5005 1, MEM_CGROUP_ID_MAX,
5006 GFP_KERNEL);
5007 if (memcg->id.id < 0) {
5008 error = memcg->id.id;
5009 goto fail;
5012 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5013 if (!memcg->vmstats_local)
5014 goto fail;
5016 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5017 if (!memcg->vmstats_percpu)
5018 goto fail;
5020 for_each_node(node)
5021 if (alloc_mem_cgroup_per_node_info(memcg, node))
5022 goto fail;
5024 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5025 goto fail;
5027 INIT_WORK(&memcg->high_work, high_work_func);
5028 INIT_LIST_HEAD(&memcg->oom_notify);
5029 mutex_init(&memcg->thresholds_lock);
5030 spin_lock_init(&memcg->move_lock);
5031 vmpressure_init(&memcg->vmpressure);
5032 INIT_LIST_HEAD(&memcg->event_list);
5033 spin_lock_init(&memcg->event_list_lock);
5034 memcg->socket_pressure = jiffies;
5035 #ifdef CONFIG_MEMCG_KMEM
5036 memcg->kmemcg_id = -1;
5037 #endif
5038 #ifdef CONFIG_CGROUP_WRITEBACK
5039 INIT_LIST_HEAD(&memcg->cgwb_list);
5040 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5041 memcg->cgwb_frn[i].done =
5042 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5043 #endif
5044 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5045 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5046 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5047 memcg->deferred_split_queue.split_queue_len = 0;
5048 #endif
5049 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5050 return memcg;
5051 fail:
5052 mem_cgroup_id_remove(memcg);
5053 __mem_cgroup_free(memcg);
5054 return ERR_PTR(error);
5057 static struct cgroup_subsys_state * __ref
5058 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5060 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5061 struct mem_cgroup *memcg;
5062 long error = -ENOMEM;
5064 memcg = mem_cgroup_alloc();
5065 if (IS_ERR(memcg))
5066 return ERR_CAST(memcg);
5068 WRITE_ONCE(memcg->high, PAGE_COUNTER_MAX);
5069 memcg->soft_limit = PAGE_COUNTER_MAX;
5070 if (parent) {
5071 memcg->swappiness = mem_cgroup_swappiness(parent);
5072 memcg->oom_kill_disable = parent->oom_kill_disable;
5074 if (parent && parent->use_hierarchy) {
5075 memcg->use_hierarchy = true;
5076 page_counter_init(&memcg->memory, &parent->memory);
5077 page_counter_init(&memcg->swap, &parent->swap);
5078 page_counter_init(&memcg->memsw, &parent->memsw);
5079 page_counter_init(&memcg->kmem, &parent->kmem);
5080 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5081 } else {
5082 page_counter_init(&memcg->memory, NULL);
5083 page_counter_init(&memcg->swap, NULL);
5084 page_counter_init(&memcg->memsw, NULL);
5085 page_counter_init(&memcg->kmem, NULL);
5086 page_counter_init(&memcg->tcpmem, NULL);
5088 * Deeper hierachy with use_hierarchy == false doesn't make
5089 * much sense so let cgroup subsystem know about this
5090 * unfortunate state in our controller.
5092 if (parent != root_mem_cgroup)
5093 memory_cgrp_subsys.broken_hierarchy = true;
5096 /* The following stuff does not apply to the root */
5097 if (!parent) {
5098 #ifdef CONFIG_MEMCG_KMEM
5099 INIT_LIST_HEAD(&memcg->kmem_caches);
5100 #endif
5101 root_mem_cgroup = memcg;
5102 return &memcg->css;
5105 error = memcg_online_kmem(memcg);
5106 if (error)
5107 goto fail;
5109 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5110 static_branch_inc(&memcg_sockets_enabled_key);
5112 return &memcg->css;
5113 fail:
5114 mem_cgroup_id_remove(memcg);
5115 mem_cgroup_free(memcg);
5116 return ERR_PTR(error);
5119 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5121 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5124 * A memcg must be visible for memcg_expand_shrinker_maps()
5125 * by the time the maps are allocated. So, we allocate maps
5126 * here, when for_each_mem_cgroup() can't skip it.
5128 if (memcg_alloc_shrinker_maps(memcg)) {
5129 mem_cgroup_id_remove(memcg);
5130 return -ENOMEM;
5133 /* Online state pins memcg ID, memcg ID pins CSS */
5134 refcount_set(&memcg->id.ref, 1);
5135 css_get(css);
5136 return 0;
5139 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5141 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5142 struct mem_cgroup_event *event, *tmp;
5145 * Unregister events and notify userspace.
5146 * Notify userspace about cgroup removing only after rmdir of cgroup
5147 * directory to avoid race between userspace and kernelspace.
5149 spin_lock(&memcg->event_list_lock);
5150 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5151 list_del_init(&event->list);
5152 schedule_work(&event->remove);
5154 spin_unlock(&memcg->event_list_lock);
5156 page_counter_set_min(&memcg->memory, 0);
5157 page_counter_set_low(&memcg->memory, 0);
5159 memcg_offline_kmem(memcg);
5160 wb_memcg_offline(memcg);
5162 drain_all_stock(memcg);
5164 mem_cgroup_id_put(memcg);
5167 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5169 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5171 invalidate_reclaim_iterators(memcg);
5174 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5176 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5177 int __maybe_unused i;
5179 #ifdef CONFIG_CGROUP_WRITEBACK
5180 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5181 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5182 #endif
5183 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5184 static_branch_dec(&memcg_sockets_enabled_key);
5186 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5187 static_branch_dec(&memcg_sockets_enabled_key);
5189 vmpressure_cleanup(&memcg->vmpressure);
5190 cancel_work_sync(&memcg->high_work);
5191 mem_cgroup_remove_from_trees(memcg);
5192 memcg_free_shrinker_maps(memcg);
5193 memcg_free_kmem(memcg);
5194 mem_cgroup_free(memcg);
5198 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5199 * @css: the target css
5201 * Reset the states of the mem_cgroup associated with @css. This is
5202 * invoked when the userland requests disabling on the default hierarchy
5203 * but the memcg is pinned through dependency. The memcg should stop
5204 * applying policies and should revert to the vanilla state as it may be
5205 * made visible again.
5207 * The current implementation only resets the essential configurations.
5208 * This needs to be expanded to cover all the visible parts.
5210 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5212 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5214 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5215 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5216 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5217 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5218 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5219 page_counter_set_min(&memcg->memory, 0);
5220 page_counter_set_low(&memcg->memory, 0);
5221 WRITE_ONCE(memcg->high, PAGE_COUNTER_MAX);
5222 memcg->soft_limit = PAGE_COUNTER_MAX;
5223 memcg_wb_domain_size_changed(memcg);
5226 #ifdef CONFIG_MMU
5227 /* Handlers for move charge at task migration. */
5228 static int mem_cgroup_do_precharge(unsigned long count)
5230 int ret;
5232 /* Try a single bulk charge without reclaim first, kswapd may wake */
5233 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5234 if (!ret) {
5235 mc.precharge += count;
5236 return ret;
5239 /* Try charges one by one with reclaim, but do not retry */
5240 while (count--) {
5241 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5242 if (ret)
5243 return ret;
5244 mc.precharge++;
5245 cond_resched();
5247 return 0;
5250 union mc_target {
5251 struct page *page;
5252 swp_entry_t ent;
5255 enum mc_target_type {
5256 MC_TARGET_NONE = 0,
5257 MC_TARGET_PAGE,
5258 MC_TARGET_SWAP,
5259 MC_TARGET_DEVICE,
5262 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5263 unsigned long addr, pte_t ptent)
5265 struct page *page = vm_normal_page(vma, addr, ptent);
5267 if (!page || !page_mapped(page))
5268 return NULL;
5269 if (PageAnon(page)) {
5270 if (!(mc.flags & MOVE_ANON))
5271 return NULL;
5272 } else {
5273 if (!(mc.flags & MOVE_FILE))
5274 return NULL;
5276 if (!get_page_unless_zero(page))
5277 return NULL;
5279 return page;
5282 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5283 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5284 pte_t ptent, swp_entry_t *entry)
5286 struct page *page = NULL;
5287 swp_entry_t ent = pte_to_swp_entry(ptent);
5289 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5290 return NULL;
5293 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5294 * a device and because they are not accessible by CPU they are store
5295 * as special swap entry in the CPU page table.
5297 if (is_device_private_entry(ent)) {
5298 page = device_private_entry_to_page(ent);
5300 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5301 * a refcount of 1 when free (unlike normal page)
5303 if (!page_ref_add_unless(page, 1, 1))
5304 return NULL;
5305 return page;
5309 * Because lookup_swap_cache() updates some statistics counter,
5310 * we call find_get_page() with swapper_space directly.
5312 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5313 if (do_memsw_account())
5314 entry->val = ent.val;
5316 return page;
5318 #else
5319 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5320 pte_t ptent, swp_entry_t *entry)
5322 return NULL;
5324 #endif
5326 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5327 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5329 struct page *page = NULL;
5330 struct address_space *mapping;
5331 pgoff_t pgoff;
5333 if (!vma->vm_file) /* anonymous vma */
5334 return NULL;
5335 if (!(mc.flags & MOVE_FILE))
5336 return NULL;
5338 mapping = vma->vm_file->f_mapping;
5339 pgoff = linear_page_index(vma, addr);
5341 /* page is moved even if it's not RSS of this task(page-faulted). */
5342 #ifdef CONFIG_SWAP
5343 /* shmem/tmpfs may report page out on swap: account for that too. */
5344 if (shmem_mapping(mapping)) {
5345 page = find_get_entry(mapping, pgoff);
5346 if (xa_is_value(page)) {
5347 swp_entry_t swp = radix_to_swp_entry(page);
5348 if (do_memsw_account())
5349 *entry = swp;
5350 page = find_get_page(swap_address_space(swp),
5351 swp_offset(swp));
5353 } else
5354 page = find_get_page(mapping, pgoff);
5355 #else
5356 page = find_get_page(mapping, pgoff);
5357 #endif
5358 return page;
5362 * mem_cgroup_move_account - move account of the page
5363 * @page: the page
5364 * @compound: charge the page as compound or small page
5365 * @from: mem_cgroup which the page is moved from.
5366 * @to: mem_cgroup which the page is moved to. @from != @to.
5368 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5370 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5371 * from old cgroup.
5373 static int mem_cgroup_move_account(struct page *page,
5374 bool compound,
5375 struct mem_cgroup *from,
5376 struct mem_cgroup *to)
5378 struct lruvec *from_vec, *to_vec;
5379 struct pglist_data *pgdat;
5380 unsigned long flags;
5381 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5382 int ret;
5383 bool anon;
5385 VM_BUG_ON(from == to);
5386 VM_BUG_ON_PAGE(PageLRU(page), page);
5387 VM_BUG_ON(compound && !PageTransHuge(page));
5390 * Prevent mem_cgroup_migrate() from looking at
5391 * page->mem_cgroup of its source page while we change it.
5393 ret = -EBUSY;
5394 if (!trylock_page(page))
5395 goto out;
5397 ret = -EINVAL;
5398 if (page->mem_cgroup != from)
5399 goto out_unlock;
5401 anon = PageAnon(page);
5403 pgdat = page_pgdat(page);
5404 from_vec = mem_cgroup_lruvec(from, pgdat);
5405 to_vec = mem_cgroup_lruvec(to, pgdat);
5407 spin_lock_irqsave(&from->move_lock, flags);
5409 if (!anon && page_mapped(page)) {
5410 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5411 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5415 * move_lock grabbed above and caller set from->moving_account, so
5416 * mod_memcg_page_state will serialize updates to PageDirty.
5417 * So mapping should be stable for dirty pages.
5419 if (!anon && PageDirty(page)) {
5420 struct address_space *mapping = page_mapping(page);
5422 if (mapping_cap_account_dirty(mapping)) {
5423 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5424 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5428 if (PageWriteback(page)) {
5429 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5430 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5434 * It is safe to change page->mem_cgroup here because the page
5435 * is referenced, charged, and isolated - we can't race with
5436 * uncharging, charging, migration, or LRU putback.
5439 /* caller should have done css_get */
5440 page->mem_cgroup = to;
5442 spin_unlock_irqrestore(&from->move_lock, flags);
5444 ret = 0;
5446 local_irq_disable();
5447 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5448 memcg_check_events(to, page);
5449 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5450 memcg_check_events(from, page);
5451 local_irq_enable();
5452 out_unlock:
5453 unlock_page(page);
5454 out:
5455 return ret;
5459 * get_mctgt_type - get target type of moving charge
5460 * @vma: the vma the pte to be checked belongs
5461 * @addr: the address corresponding to the pte to be checked
5462 * @ptent: the pte to be checked
5463 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5465 * Returns
5466 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5467 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5468 * move charge. if @target is not NULL, the page is stored in target->page
5469 * with extra refcnt got(Callers should handle it).
5470 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5471 * target for charge migration. if @target is not NULL, the entry is stored
5472 * in target->ent.
5473 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5474 * (so ZONE_DEVICE page and thus not on the lru).
5475 * For now we such page is charge like a regular page would be as for all
5476 * intent and purposes it is just special memory taking the place of a
5477 * regular page.
5479 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5481 * Called with pte lock held.
5484 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5485 unsigned long addr, pte_t ptent, union mc_target *target)
5487 struct page *page = NULL;
5488 enum mc_target_type ret = MC_TARGET_NONE;
5489 swp_entry_t ent = { .val = 0 };
5491 if (pte_present(ptent))
5492 page = mc_handle_present_pte(vma, addr, ptent);
5493 else if (is_swap_pte(ptent))
5494 page = mc_handle_swap_pte(vma, ptent, &ent);
5495 else if (pte_none(ptent))
5496 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5498 if (!page && !ent.val)
5499 return ret;
5500 if (page) {
5502 * Do only loose check w/o serialization.
5503 * mem_cgroup_move_account() checks the page is valid or
5504 * not under LRU exclusion.
5506 if (page->mem_cgroup == mc.from) {
5507 ret = MC_TARGET_PAGE;
5508 if (is_device_private_page(page))
5509 ret = MC_TARGET_DEVICE;
5510 if (target)
5511 target->page = page;
5513 if (!ret || !target)
5514 put_page(page);
5517 * There is a swap entry and a page doesn't exist or isn't charged.
5518 * But we cannot move a tail-page in a THP.
5520 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5521 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5522 ret = MC_TARGET_SWAP;
5523 if (target)
5524 target->ent = ent;
5526 return ret;
5529 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5531 * We don't consider PMD mapped swapping or file mapped pages because THP does
5532 * not support them for now.
5533 * Caller should make sure that pmd_trans_huge(pmd) is true.
5535 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5536 unsigned long addr, pmd_t pmd, union mc_target *target)
5538 struct page *page = NULL;
5539 enum mc_target_type ret = MC_TARGET_NONE;
5541 if (unlikely(is_swap_pmd(pmd))) {
5542 VM_BUG_ON(thp_migration_supported() &&
5543 !is_pmd_migration_entry(pmd));
5544 return ret;
5546 page = pmd_page(pmd);
5547 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5548 if (!(mc.flags & MOVE_ANON))
5549 return ret;
5550 if (page->mem_cgroup == mc.from) {
5551 ret = MC_TARGET_PAGE;
5552 if (target) {
5553 get_page(page);
5554 target->page = page;
5557 return ret;
5559 #else
5560 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5561 unsigned long addr, pmd_t pmd, union mc_target *target)
5563 return MC_TARGET_NONE;
5565 #endif
5567 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5568 unsigned long addr, unsigned long end,
5569 struct mm_walk *walk)
5571 struct vm_area_struct *vma = walk->vma;
5572 pte_t *pte;
5573 spinlock_t *ptl;
5575 ptl = pmd_trans_huge_lock(pmd, vma);
5576 if (ptl) {
5578 * Note their can not be MC_TARGET_DEVICE for now as we do not
5579 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5580 * this might change.
5582 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5583 mc.precharge += HPAGE_PMD_NR;
5584 spin_unlock(ptl);
5585 return 0;
5588 if (pmd_trans_unstable(pmd))
5589 return 0;
5590 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5591 for (; addr != end; pte++, addr += PAGE_SIZE)
5592 if (get_mctgt_type(vma, addr, *pte, NULL))
5593 mc.precharge++; /* increment precharge temporarily */
5594 pte_unmap_unlock(pte - 1, ptl);
5595 cond_resched();
5597 return 0;
5600 static const struct mm_walk_ops precharge_walk_ops = {
5601 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5604 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5606 unsigned long precharge;
5608 down_read(&mm->mmap_sem);
5609 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5610 up_read(&mm->mmap_sem);
5612 precharge = mc.precharge;
5613 mc.precharge = 0;
5615 return precharge;
5618 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5620 unsigned long precharge = mem_cgroup_count_precharge(mm);
5622 VM_BUG_ON(mc.moving_task);
5623 mc.moving_task = current;
5624 return mem_cgroup_do_precharge(precharge);
5627 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5628 static void __mem_cgroup_clear_mc(void)
5630 struct mem_cgroup *from = mc.from;
5631 struct mem_cgroup *to = mc.to;
5633 /* we must uncharge all the leftover precharges from mc.to */
5634 if (mc.precharge) {
5635 cancel_charge(mc.to, mc.precharge);
5636 mc.precharge = 0;
5639 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5640 * we must uncharge here.
5642 if (mc.moved_charge) {
5643 cancel_charge(mc.from, mc.moved_charge);
5644 mc.moved_charge = 0;
5646 /* we must fixup refcnts and charges */
5647 if (mc.moved_swap) {
5648 /* uncharge swap account from the old cgroup */
5649 if (!mem_cgroup_is_root(mc.from))
5650 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5652 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5655 * we charged both to->memory and to->memsw, so we
5656 * should uncharge to->memory.
5658 if (!mem_cgroup_is_root(mc.to))
5659 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5661 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5662 css_put_many(&mc.to->css, mc.moved_swap);
5664 mc.moved_swap = 0;
5666 memcg_oom_recover(from);
5667 memcg_oom_recover(to);
5668 wake_up_all(&mc.waitq);
5671 static void mem_cgroup_clear_mc(void)
5673 struct mm_struct *mm = mc.mm;
5676 * we must clear moving_task before waking up waiters at the end of
5677 * task migration.
5679 mc.moving_task = NULL;
5680 __mem_cgroup_clear_mc();
5681 spin_lock(&mc.lock);
5682 mc.from = NULL;
5683 mc.to = NULL;
5684 mc.mm = NULL;
5685 spin_unlock(&mc.lock);
5687 mmput(mm);
5690 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5692 struct cgroup_subsys_state *css;
5693 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5694 struct mem_cgroup *from;
5695 struct task_struct *leader, *p;
5696 struct mm_struct *mm;
5697 unsigned long move_flags;
5698 int ret = 0;
5700 /* charge immigration isn't supported on the default hierarchy */
5701 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5702 return 0;
5705 * Multi-process migrations only happen on the default hierarchy
5706 * where charge immigration is not used. Perform charge
5707 * immigration if @tset contains a leader and whine if there are
5708 * multiple.
5710 p = NULL;
5711 cgroup_taskset_for_each_leader(leader, css, tset) {
5712 WARN_ON_ONCE(p);
5713 p = leader;
5714 memcg = mem_cgroup_from_css(css);
5716 if (!p)
5717 return 0;
5720 * We are now commited to this value whatever it is. Changes in this
5721 * tunable will only affect upcoming migrations, not the current one.
5722 * So we need to save it, and keep it going.
5724 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5725 if (!move_flags)
5726 return 0;
5728 from = mem_cgroup_from_task(p);
5730 VM_BUG_ON(from == memcg);
5732 mm = get_task_mm(p);
5733 if (!mm)
5734 return 0;
5735 /* We move charges only when we move a owner of the mm */
5736 if (mm->owner == p) {
5737 VM_BUG_ON(mc.from);
5738 VM_BUG_ON(mc.to);
5739 VM_BUG_ON(mc.precharge);
5740 VM_BUG_ON(mc.moved_charge);
5741 VM_BUG_ON(mc.moved_swap);
5743 spin_lock(&mc.lock);
5744 mc.mm = mm;
5745 mc.from = from;
5746 mc.to = memcg;
5747 mc.flags = move_flags;
5748 spin_unlock(&mc.lock);
5749 /* We set mc.moving_task later */
5751 ret = mem_cgroup_precharge_mc(mm);
5752 if (ret)
5753 mem_cgroup_clear_mc();
5754 } else {
5755 mmput(mm);
5757 return ret;
5760 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5762 if (mc.to)
5763 mem_cgroup_clear_mc();
5766 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5767 unsigned long addr, unsigned long end,
5768 struct mm_walk *walk)
5770 int ret = 0;
5771 struct vm_area_struct *vma = walk->vma;
5772 pte_t *pte;
5773 spinlock_t *ptl;
5774 enum mc_target_type target_type;
5775 union mc_target target;
5776 struct page *page;
5778 ptl = pmd_trans_huge_lock(pmd, vma);
5779 if (ptl) {
5780 if (mc.precharge < HPAGE_PMD_NR) {
5781 spin_unlock(ptl);
5782 return 0;
5784 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5785 if (target_type == MC_TARGET_PAGE) {
5786 page = target.page;
5787 if (!isolate_lru_page(page)) {
5788 if (!mem_cgroup_move_account(page, true,
5789 mc.from, mc.to)) {
5790 mc.precharge -= HPAGE_PMD_NR;
5791 mc.moved_charge += HPAGE_PMD_NR;
5793 putback_lru_page(page);
5795 put_page(page);
5796 } else if (target_type == MC_TARGET_DEVICE) {
5797 page = target.page;
5798 if (!mem_cgroup_move_account(page, true,
5799 mc.from, mc.to)) {
5800 mc.precharge -= HPAGE_PMD_NR;
5801 mc.moved_charge += HPAGE_PMD_NR;
5803 put_page(page);
5805 spin_unlock(ptl);
5806 return 0;
5809 if (pmd_trans_unstable(pmd))
5810 return 0;
5811 retry:
5812 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5813 for (; addr != end; addr += PAGE_SIZE) {
5814 pte_t ptent = *(pte++);
5815 bool device = false;
5816 swp_entry_t ent;
5818 if (!mc.precharge)
5819 break;
5821 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5822 case MC_TARGET_DEVICE:
5823 device = true;
5824 fallthrough;
5825 case MC_TARGET_PAGE:
5826 page = target.page;
5828 * We can have a part of the split pmd here. Moving it
5829 * can be done but it would be too convoluted so simply
5830 * ignore such a partial THP and keep it in original
5831 * memcg. There should be somebody mapping the head.
5833 if (PageTransCompound(page))
5834 goto put;
5835 if (!device && isolate_lru_page(page))
5836 goto put;
5837 if (!mem_cgroup_move_account(page, false,
5838 mc.from, mc.to)) {
5839 mc.precharge--;
5840 /* we uncharge from mc.from later. */
5841 mc.moved_charge++;
5843 if (!device)
5844 putback_lru_page(page);
5845 put: /* get_mctgt_type() gets the page */
5846 put_page(page);
5847 break;
5848 case MC_TARGET_SWAP:
5849 ent = target.ent;
5850 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5851 mc.precharge--;
5852 /* we fixup refcnts and charges later. */
5853 mc.moved_swap++;
5855 break;
5856 default:
5857 break;
5860 pte_unmap_unlock(pte - 1, ptl);
5861 cond_resched();
5863 if (addr != end) {
5865 * We have consumed all precharges we got in can_attach().
5866 * We try charge one by one, but don't do any additional
5867 * charges to mc.to if we have failed in charge once in attach()
5868 * phase.
5870 ret = mem_cgroup_do_precharge(1);
5871 if (!ret)
5872 goto retry;
5875 return ret;
5878 static const struct mm_walk_ops charge_walk_ops = {
5879 .pmd_entry = mem_cgroup_move_charge_pte_range,
5882 static void mem_cgroup_move_charge(void)
5884 lru_add_drain_all();
5886 * Signal lock_page_memcg() to take the memcg's move_lock
5887 * while we're moving its pages to another memcg. Then wait
5888 * for already started RCU-only updates to finish.
5890 atomic_inc(&mc.from->moving_account);
5891 synchronize_rcu();
5892 retry:
5893 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5895 * Someone who are holding the mmap_sem might be waiting in
5896 * waitq. So we cancel all extra charges, wake up all waiters,
5897 * and retry. Because we cancel precharges, we might not be able
5898 * to move enough charges, but moving charge is a best-effort
5899 * feature anyway, so it wouldn't be a big problem.
5901 __mem_cgroup_clear_mc();
5902 cond_resched();
5903 goto retry;
5906 * When we have consumed all precharges and failed in doing
5907 * additional charge, the page walk just aborts.
5909 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5910 NULL);
5912 up_read(&mc.mm->mmap_sem);
5913 atomic_dec(&mc.from->moving_account);
5916 static void mem_cgroup_move_task(void)
5918 if (mc.to) {
5919 mem_cgroup_move_charge();
5920 mem_cgroup_clear_mc();
5923 #else /* !CONFIG_MMU */
5924 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5926 return 0;
5928 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5931 static void mem_cgroup_move_task(void)
5934 #endif
5937 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5938 * to verify whether we're attached to the default hierarchy on each mount
5939 * attempt.
5941 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5944 * use_hierarchy is forced on the default hierarchy. cgroup core
5945 * guarantees that @root doesn't have any children, so turning it
5946 * on for the root memcg is enough.
5948 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5949 root_mem_cgroup->use_hierarchy = true;
5950 else
5951 root_mem_cgroup->use_hierarchy = false;
5954 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5956 if (value == PAGE_COUNTER_MAX)
5957 seq_puts(m, "max\n");
5958 else
5959 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5961 return 0;
5964 static u64 memory_current_read(struct cgroup_subsys_state *css,
5965 struct cftype *cft)
5967 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5969 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5972 static int memory_min_show(struct seq_file *m, void *v)
5974 return seq_puts_memcg_tunable(m,
5975 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5978 static ssize_t memory_min_write(struct kernfs_open_file *of,
5979 char *buf, size_t nbytes, loff_t off)
5981 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5982 unsigned long min;
5983 int err;
5985 buf = strstrip(buf);
5986 err = page_counter_memparse(buf, "max", &min);
5987 if (err)
5988 return err;
5990 page_counter_set_min(&memcg->memory, min);
5992 return nbytes;
5995 static int memory_low_show(struct seq_file *m, void *v)
5997 return seq_puts_memcg_tunable(m,
5998 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6001 static ssize_t memory_low_write(struct kernfs_open_file *of,
6002 char *buf, size_t nbytes, loff_t off)
6004 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6005 unsigned long low;
6006 int err;
6008 buf = strstrip(buf);
6009 err = page_counter_memparse(buf, "max", &low);
6010 if (err)
6011 return err;
6013 page_counter_set_low(&memcg->memory, low);
6015 return nbytes;
6018 static int memory_high_show(struct seq_file *m, void *v)
6020 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
6023 static ssize_t memory_high_write(struct kernfs_open_file *of,
6024 char *buf, size_t nbytes, loff_t off)
6026 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6027 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6028 bool drained = false;
6029 unsigned long high;
6030 int err;
6032 buf = strstrip(buf);
6033 err = page_counter_memparse(buf, "max", &high);
6034 if (err)
6035 return err;
6037 WRITE_ONCE(memcg->high, high);
6039 for (;;) {
6040 unsigned long nr_pages = page_counter_read(&memcg->memory);
6041 unsigned long reclaimed;
6043 if (nr_pages <= high)
6044 break;
6046 if (signal_pending(current))
6047 break;
6049 if (!drained) {
6050 drain_all_stock(memcg);
6051 drained = true;
6052 continue;
6055 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6056 GFP_KERNEL, true);
6058 if (!reclaimed && !nr_retries--)
6059 break;
6062 return nbytes;
6065 static int memory_max_show(struct seq_file *m, void *v)
6067 return seq_puts_memcg_tunable(m,
6068 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6071 static ssize_t memory_max_write(struct kernfs_open_file *of,
6072 char *buf, size_t nbytes, loff_t off)
6074 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6075 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6076 bool drained = false;
6077 unsigned long max;
6078 int err;
6080 buf = strstrip(buf);
6081 err = page_counter_memparse(buf, "max", &max);
6082 if (err)
6083 return err;
6085 xchg(&memcg->memory.max, max);
6087 for (;;) {
6088 unsigned long nr_pages = page_counter_read(&memcg->memory);
6090 if (nr_pages <= max)
6091 break;
6093 if (signal_pending(current))
6094 break;
6096 if (!drained) {
6097 drain_all_stock(memcg);
6098 drained = true;
6099 continue;
6102 if (nr_reclaims) {
6103 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6104 GFP_KERNEL, true))
6105 nr_reclaims--;
6106 continue;
6109 memcg_memory_event(memcg, MEMCG_OOM);
6110 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6111 break;
6114 memcg_wb_domain_size_changed(memcg);
6115 return nbytes;
6118 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6120 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6121 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6122 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6123 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6124 seq_printf(m, "oom_kill %lu\n",
6125 atomic_long_read(&events[MEMCG_OOM_KILL]));
6128 static int memory_events_show(struct seq_file *m, void *v)
6130 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6132 __memory_events_show(m, memcg->memory_events);
6133 return 0;
6136 static int memory_events_local_show(struct seq_file *m, void *v)
6138 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6140 __memory_events_show(m, memcg->memory_events_local);
6141 return 0;
6144 static int memory_stat_show(struct seq_file *m, void *v)
6146 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6147 char *buf;
6149 buf = memory_stat_format(memcg);
6150 if (!buf)
6151 return -ENOMEM;
6152 seq_puts(m, buf);
6153 kfree(buf);
6154 return 0;
6157 static int memory_oom_group_show(struct seq_file *m, void *v)
6159 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6161 seq_printf(m, "%d\n", memcg->oom_group);
6163 return 0;
6166 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6167 char *buf, size_t nbytes, loff_t off)
6169 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6170 int ret, oom_group;
6172 buf = strstrip(buf);
6173 if (!buf)
6174 return -EINVAL;
6176 ret = kstrtoint(buf, 0, &oom_group);
6177 if (ret)
6178 return ret;
6180 if (oom_group != 0 && oom_group != 1)
6181 return -EINVAL;
6183 memcg->oom_group = oom_group;
6185 return nbytes;
6188 static struct cftype memory_files[] = {
6190 .name = "current",
6191 .flags = CFTYPE_NOT_ON_ROOT,
6192 .read_u64 = memory_current_read,
6195 .name = "min",
6196 .flags = CFTYPE_NOT_ON_ROOT,
6197 .seq_show = memory_min_show,
6198 .write = memory_min_write,
6201 .name = "low",
6202 .flags = CFTYPE_NOT_ON_ROOT,
6203 .seq_show = memory_low_show,
6204 .write = memory_low_write,
6207 .name = "high",
6208 .flags = CFTYPE_NOT_ON_ROOT,
6209 .seq_show = memory_high_show,
6210 .write = memory_high_write,
6213 .name = "max",
6214 .flags = CFTYPE_NOT_ON_ROOT,
6215 .seq_show = memory_max_show,
6216 .write = memory_max_write,
6219 .name = "events",
6220 .flags = CFTYPE_NOT_ON_ROOT,
6221 .file_offset = offsetof(struct mem_cgroup, events_file),
6222 .seq_show = memory_events_show,
6225 .name = "events.local",
6226 .flags = CFTYPE_NOT_ON_ROOT,
6227 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6228 .seq_show = memory_events_local_show,
6231 .name = "stat",
6232 .flags = CFTYPE_NOT_ON_ROOT,
6233 .seq_show = memory_stat_show,
6236 .name = "oom.group",
6237 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6238 .seq_show = memory_oom_group_show,
6239 .write = memory_oom_group_write,
6241 { } /* terminate */
6244 struct cgroup_subsys memory_cgrp_subsys = {
6245 .css_alloc = mem_cgroup_css_alloc,
6246 .css_online = mem_cgroup_css_online,
6247 .css_offline = mem_cgroup_css_offline,
6248 .css_released = mem_cgroup_css_released,
6249 .css_free = mem_cgroup_css_free,
6250 .css_reset = mem_cgroup_css_reset,
6251 .can_attach = mem_cgroup_can_attach,
6252 .cancel_attach = mem_cgroup_cancel_attach,
6253 .post_attach = mem_cgroup_move_task,
6254 .bind = mem_cgroup_bind,
6255 .dfl_cftypes = memory_files,
6256 .legacy_cftypes = mem_cgroup_legacy_files,
6257 .early_init = 0,
6261 * This function calculates an individual cgroup's effective
6262 * protection which is derived from its own memory.min/low, its
6263 * parent's and siblings' settings, as well as the actual memory
6264 * distribution in the tree.
6266 * The following rules apply to the effective protection values:
6268 * 1. At the first level of reclaim, effective protection is equal to
6269 * the declared protection in memory.min and memory.low.
6271 * 2. To enable safe delegation of the protection configuration, at
6272 * subsequent levels the effective protection is capped to the
6273 * parent's effective protection.
6275 * 3. To make complex and dynamic subtrees easier to configure, the
6276 * user is allowed to overcommit the declared protection at a given
6277 * level. If that is the case, the parent's effective protection is
6278 * distributed to the children in proportion to how much protection
6279 * they have declared and how much of it they are utilizing.
6281 * This makes distribution proportional, but also work-conserving:
6282 * if one cgroup claims much more protection than it uses memory,
6283 * the unused remainder is available to its siblings.
6285 * 4. Conversely, when the declared protection is undercommitted at a
6286 * given level, the distribution of the larger parental protection
6287 * budget is NOT proportional. A cgroup's protection from a sibling
6288 * is capped to its own memory.min/low setting.
6290 * 5. However, to allow protecting recursive subtrees from each other
6291 * without having to declare each individual cgroup's fixed share
6292 * of the ancestor's claim to protection, any unutilized -
6293 * "floating" - protection from up the tree is distributed in
6294 * proportion to each cgroup's *usage*. This makes the protection
6295 * neutral wrt sibling cgroups and lets them compete freely over
6296 * the shared parental protection budget, but it protects the
6297 * subtree as a whole from neighboring subtrees.
6299 * Note that 4. and 5. are not in conflict: 4. is about protecting
6300 * against immediate siblings whereas 5. is about protecting against
6301 * neighboring subtrees.
6303 static unsigned long effective_protection(unsigned long usage,
6304 unsigned long parent_usage,
6305 unsigned long setting,
6306 unsigned long parent_effective,
6307 unsigned long siblings_protected)
6309 unsigned long protected;
6310 unsigned long ep;
6312 protected = min(usage, setting);
6314 * If all cgroups at this level combined claim and use more
6315 * protection then what the parent affords them, distribute
6316 * shares in proportion to utilization.
6318 * We are using actual utilization rather than the statically
6319 * claimed protection in order to be work-conserving: claimed
6320 * but unused protection is available to siblings that would
6321 * otherwise get a smaller chunk than what they claimed.
6323 if (siblings_protected > parent_effective)
6324 return protected * parent_effective / siblings_protected;
6327 * Ok, utilized protection of all children is within what the
6328 * parent affords them, so we know whatever this child claims
6329 * and utilizes is effectively protected.
6331 * If there is unprotected usage beyond this value, reclaim
6332 * will apply pressure in proportion to that amount.
6334 * If there is unutilized protection, the cgroup will be fully
6335 * shielded from reclaim, but we do return a smaller value for
6336 * protection than what the group could enjoy in theory. This
6337 * is okay. With the overcommit distribution above, effective
6338 * protection is always dependent on how memory is actually
6339 * consumed among the siblings anyway.
6341 ep = protected;
6344 * If the children aren't claiming (all of) the protection
6345 * afforded to them by the parent, distribute the remainder in
6346 * proportion to the (unprotected) memory of each cgroup. That
6347 * way, cgroups that aren't explicitly prioritized wrt each
6348 * other compete freely over the allowance, but they are
6349 * collectively protected from neighboring trees.
6351 * We're using unprotected memory for the weight so that if
6352 * some cgroups DO claim explicit protection, we don't protect
6353 * the same bytes twice.
6355 * Check both usage and parent_usage against the respective
6356 * protected values. One should imply the other, but they
6357 * aren't read atomically - make sure the division is sane.
6359 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6360 return ep;
6361 if (parent_effective > siblings_protected &&
6362 parent_usage > siblings_protected &&
6363 usage > protected) {
6364 unsigned long unclaimed;
6366 unclaimed = parent_effective - siblings_protected;
6367 unclaimed *= usage - protected;
6368 unclaimed /= parent_usage - siblings_protected;
6370 ep += unclaimed;
6373 return ep;
6377 * mem_cgroup_protected - check if memory consumption is in the normal range
6378 * @root: the top ancestor of the sub-tree being checked
6379 * @memcg: the memory cgroup to check
6381 * WARNING: This function is not stateless! It can only be used as part
6382 * of a top-down tree iteration, not for isolated queries.
6384 * Returns one of the following:
6385 * MEMCG_PROT_NONE: cgroup memory is not protected
6386 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6387 * an unprotected supply of reclaimable memory from other cgroups.
6388 * MEMCG_PROT_MIN: cgroup memory is protected
6390 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6391 struct mem_cgroup *memcg)
6393 unsigned long usage, parent_usage;
6394 struct mem_cgroup *parent;
6396 if (mem_cgroup_disabled())
6397 return MEMCG_PROT_NONE;
6399 if (!root)
6400 root = root_mem_cgroup;
6401 if (memcg == root)
6402 return MEMCG_PROT_NONE;
6404 usage = page_counter_read(&memcg->memory);
6405 if (!usage)
6406 return MEMCG_PROT_NONE;
6408 parent = parent_mem_cgroup(memcg);
6409 /* No parent means a non-hierarchical mode on v1 memcg */
6410 if (!parent)
6411 return MEMCG_PROT_NONE;
6413 if (parent == root) {
6414 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6415 memcg->memory.elow = memcg->memory.low;
6416 goto out;
6419 parent_usage = page_counter_read(&parent->memory);
6421 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6422 READ_ONCE(memcg->memory.min),
6423 READ_ONCE(parent->memory.emin),
6424 atomic_long_read(&parent->memory.children_min_usage)));
6426 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6427 memcg->memory.low, READ_ONCE(parent->memory.elow),
6428 atomic_long_read(&parent->memory.children_low_usage)));
6430 out:
6431 if (usage <= memcg->memory.emin)
6432 return MEMCG_PROT_MIN;
6433 else if (usage <= memcg->memory.elow)
6434 return MEMCG_PROT_LOW;
6435 else
6436 return MEMCG_PROT_NONE;
6440 * mem_cgroup_try_charge - try charging a page
6441 * @page: page to charge
6442 * @mm: mm context of the victim
6443 * @gfp_mask: reclaim mode
6444 * @memcgp: charged memcg return
6445 * @compound: charge the page as compound or small page
6447 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6448 * pages according to @gfp_mask if necessary.
6450 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6451 * Otherwise, an error code is returned.
6453 * After page->mapping has been set up, the caller must finalize the
6454 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6455 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6457 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6458 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6459 bool compound)
6461 struct mem_cgroup *memcg = NULL;
6462 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6463 int ret = 0;
6465 if (mem_cgroup_disabled())
6466 goto out;
6468 if (PageSwapCache(page)) {
6470 * Every swap fault against a single page tries to charge the
6471 * page, bail as early as possible. shmem_unuse() encounters
6472 * already charged pages, too. The USED bit is protected by
6473 * the page lock, which serializes swap cache removal, which
6474 * in turn serializes uncharging.
6476 VM_BUG_ON_PAGE(!PageLocked(page), page);
6477 if (compound_head(page)->mem_cgroup)
6478 goto out;
6480 if (do_swap_account) {
6481 swp_entry_t ent = { .val = page_private(page), };
6482 unsigned short id = lookup_swap_cgroup_id(ent);
6484 rcu_read_lock();
6485 memcg = mem_cgroup_from_id(id);
6486 if (memcg && !css_tryget_online(&memcg->css))
6487 memcg = NULL;
6488 rcu_read_unlock();
6492 if (!memcg)
6493 memcg = get_mem_cgroup_from_mm(mm);
6495 ret = try_charge(memcg, gfp_mask, nr_pages);
6497 css_put(&memcg->css);
6498 out:
6499 *memcgp = memcg;
6500 return ret;
6503 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6504 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6505 bool compound)
6507 struct mem_cgroup *memcg;
6508 int ret;
6510 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6511 memcg = *memcgp;
6512 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6513 return ret;
6517 * mem_cgroup_commit_charge - commit a page charge
6518 * @page: page to charge
6519 * @memcg: memcg to charge the page to
6520 * @lrucare: page might be on LRU already
6521 * @compound: charge the page as compound or small page
6523 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6524 * after page->mapping has been set up. This must happen atomically
6525 * as part of the page instantiation, i.e. under the page table lock
6526 * for anonymous pages, under the page lock for page and swap cache.
6528 * In addition, the page must not be on the LRU during the commit, to
6529 * prevent racing with task migration. If it might be, use @lrucare.
6531 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6533 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6534 bool lrucare, bool compound)
6536 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6538 VM_BUG_ON_PAGE(!page->mapping, page);
6539 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6541 if (mem_cgroup_disabled())
6542 return;
6544 * Swap faults will attempt to charge the same page multiple
6545 * times. But reuse_swap_page() might have removed the page
6546 * from swapcache already, so we can't check PageSwapCache().
6548 if (!memcg)
6549 return;
6551 commit_charge(page, memcg, lrucare);
6553 local_irq_disable();
6554 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6555 memcg_check_events(memcg, page);
6556 local_irq_enable();
6558 if (do_memsw_account() && PageSwapCache(page)) {
6559 swp_entry_t entry = { .val = page_private(page) };
6561 * The swap entry might not get freed for a long time,
6562 * let's not wait for it. The page already received a
6563 * memory+swap charge, drop the swap entry duplicate.
6565 mem_cgroup_uncharge_swap(entry, nr_pages);
6570 * mem_cgroup_cancel_charge - cancel a page charge
6571 * @page: page to charge
6572 * @memcg: memcg to charge the page to
6573 * @compound: charge the page as compound or small page
6575 * Cancel a charge transaction started by mem_cgroup_try_charge().
6577 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6578 bool compound)
6580 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6582 if (mem_cgroup_disabled())
6583 return;
6585 * Swap faults will attempt to charge the same page multiple
6586 * times. But reuse_swap_page() might have removed the page
6587 * from swapcache already, so we can't check PageSwapCache().
6589 if (!memcg)
6590 return;
6592 cancel_charge(memcg, nr_pages);
6595 struct uncharge_gather {
6596 struct mem_cgroup *memcg;
6597 unsigned long pgpgout;
6598 unsigned long nr_anon;
6599 unsigned long nr_file;
6600 unsigned long nr_kmem;
6601 unsigned long nr_huge;
6602 unsigned long nr_shmem;
6603 struct page *dummy_page;
6606 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6608 memset(ug, 0, sizeof(*ug));
6611 static void uncharge_batch(const struct uncharge_gather *ug)
6613 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6614 unsigned long flags;
6616 if (!mem_cgroup_is_root(ug->memcg)) {
6617 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6618 if (do_memsw_account())
6619 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6620 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6621 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6622 memcg_oom_recover(ug->memcg);
6625 local_irq_save(flags);
6626 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6627 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6628 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6629 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6630 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6631 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6632 memcg_check_events(ug->memcg, ug->dummy_page);
6633 local_irq_restore(flags);
6635 if (!mem_cgroup_is_root(ug->memcg))
6636 css_put_many(&ug->memcg->css, nr_pages);
6639 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6641 VM_BUG_ON_PAGE(PageLRU(page), page);
6642 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6643 !PageHWPoison(page) , page);
6645 if (!page->mem_cgroup)
6646 return;
6649 * Nobody should be changing or seriously looking at
6650 * page->mem_cgroup at this point, we have fully
6651 * exclusive access to the page.
6654 if (ug->memcg != page->mem_cgroup) {
6655 if (ug->memcg) {
6656 uncharge_batch(ug);
6657 uncharge_gather_clear(ug);
6659 ug->memcg = page->mem_cgroup;
6662 if (!PageKmemcg(page)) {
6663 unsigned int nr_pages = 1;
6665 if (PageTransHuge(page)) {
6666 nr_pages = compound_nr(page);
6667 ug->nr_huge += nr_pages;
6669 if (PageAnon(page))
6670 ug->nr_anon += nr_pages;
6671 else {
6672 ug->nr_file += nr_pages;
6673 if (PageSwapBacked(page))
6674 ug->nr_shmem += nr_pages;
6676 ug->pgpgout++;
6677 } else {
6678 ug->nr_kmem += compound_nr(page);
6679 __ClearPageKmemcg(page);
6682 ug->dummy_page = page;
6683 page->mem_cgroup = NULL;
6686 static void uncharge_list(struct list_head *page_list)
6688 struct uncharge_gather ug;
6689 struct list_head *next;
6691 uncharge_gather_clear(&ug);
6694 * Note that the list can be a single page->lru; hence the
6695 * do-while loop instead of a simple list_for_each_entry().
6697 next = page_list->next;
6698 do {
6699 struct page *page;
6701 page = list_entry(next, struct page, lru);
6702 next = page->lru.next;
6704 uncharge_page(page, &ug);
6705 } while (next != page_list);
6707 if (ug.memcg)
6708 uncharge_batch(&ug);
6712 * mem_cgroup_uncharge - uncharge a page
6713 * @page: page to uncharge
6715 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6716 * mem_cgroup_commit_charge().
6718 void mem_cgroup_uncharge(struct page *page)
6720 struct uncharge_gather ug;
6722 if (mem_cgroup_disabled())
6723 return;
6725 /* Don't touch page->lru of any random page, pre-check: */
6726 if (!page->mem_cgroup)
6727 return;
6729 uncharge_gather_clear(&ug);
6730 uncharge_page(page, &ug);
6731 uncharge_batch(&ug);
6735 * mem_cgroup_uncharge_list - uncharge a list of page
6736 * @page_list: list of pages to uncharge
6738 * Uncharge a list of pages previously charged with
6739 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6741 void mem_cgroup_uncharge_list(struct list_head *page_list)
6743 if (mem_cgroup_disabled())
6744 return;
6746 if (!list_empty(page_list))
6747 uncharge_list(page_list);
6751 * mem_cgroup_migrate - charge a page's replacement
6752 * @oldpage: currently circulating page
6753 * @newpage: replacement page
6755 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6756 * be uncharged upon free.
6758 * Both pages must be locked, @newpage->mapping must be set up.
6760 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6762 struct mem_cgroup *memcg;
6763 unsigned int nr_pages;
6764 unsigned long flags;
6766 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6767 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6768 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6769 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6770 newpage);
6772 if (mem_cgroup_disabled())
6773 return;
6775 /* Page cache replacement: new page already charged? */
6776 if (newpage->mem_cgroup)
6777 return;
6779 /* Swapcache readahead pages can get replaced before being charged */
6780 memcg = oldpage->mem_cgroup;
6781 if (!memcg)
6782 return;
6784 /* Force-charge the new page. The old one will be freed soon */
6785 nr_pages = hpage_nr_pages(newpage);
6787 page_counter_charge(&memcg->memory, nr_pages);
6788 if (do_memsw_account())
6789 page_counter_charge(&memcg->memsw, nr_pages);
6790 css_get_many(&memcg->css, nr_pages);
6792 commit_charge(newpage, memcg, false);
6794 local_irq_save(flags);
6795 mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage),
6796 nr_pages);
6797 memcg_check_events(memcg, newpage);
6798 local_irq_restore(flags);
6801 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6802 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6804 void mem_cgroup_sk_alloc(struct sock *sk)
6806 struct mem_cgroup *memcg;
6808 if (!mem_cgroup_sockets_enabled)
6809 return;
6811 /* Do not associate the sock with unrelated interrupted task's memcg. */
6812 if (in_interrupt())
6813 return;
6815 rcu_read_lock();
6816 memcg = mem_cgroup_from_task(current);
6817 if (memcg == root_mem_cgroup)
6818 goto out;
6819 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6820 goto out;
6821 if (css_tryget(&memcg->css))
6822 sk->sk_memcg = memcg;
6823 out:
6824 rcu_read_unlock();
6827 void mem_cgroup_sk_free(struct sock *sk)
6829 if (sk->sk_memcg)
6830 css_put(&sk->sk_memcg->css);
6834 * mem_cgroup_charge_skmem - charge socket memory
6835 * @memcg: memcg to charge
6836 * @nr_pages: number of pages to charge
6838 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6839 * @memcg's configured limit, %false if the charge had to be forced.
6841 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6843 gfp_t gfp_mask = GFP_KERNEL;
6845 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6846 struct page_counter *fail;
6848 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6849 memcg->tcpmem_pressure = 0;
6850 return true;
6852 page_counter_charge(&memcg->tcpmem, nr_pages);
6853 memcg->tcpmem_pressure = 1;
6854 return false;
6857 /* Don't block in the packet receive path */
6858 if (in_softirq())
6859 gfp_mask = GFP_NOWAIT;
6861 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6863 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6864 return true;
6866 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6867 return false;
6871 * mem_cgroup_uncharge_skmem - uncharge socket memory
6872 * @memcg: memcg to uncharge
6873 * @nr_pages: number of pages to uncharge
6875 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6877 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6878 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6879 return;
6882 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6884 refill_stock(memcg, nr_pages);
6887 static int __init cgroup_memory(char *s)
6889 char *token;
6891 while ((token = strsep(&s, ",")) != NULL) {
6892 if (!*token)
6893 continue;
6894 if (!strcmp(token, "nosocket"))
6895 cgroup_memory_nosocket = true;
6896 if (!strcmp(token, "nokmem"))
6897 cgroup_memory_nokmem = true;
6899 return 0;
6901 __setup("cgroup.memory=", cgroup_memory);
6904 * subsys_initcall() for memory controller.
6906 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6907 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6908 * basically everything that doesn't depend on a specific mem_cgroup structure
6909 * should be initialized from here.
6911 static int __init mem_cgroup_init(void)
6913 int cpu, node;
6915 #ifdef CONFIG_MEMCG_KMEM
6917 * Kmem cache creation is mostly done with the slab_mutex held,
6918 * so use a workqueue with limited concurrency to avoid stalling
6919 * all worker threads in case lots of cgroups are created and
6920 * destroyed simultaneously.
6922 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6923 BUG_ON(!memcg_kmem_cache_wq);
6924 #endif
6926 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6927 memcg_hotplug_cpu_dead);
6929 for_each_possible_cpu(cpu)
6930 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6931 drain_local_stock);
6933 for_each_node(node) {
6934 struct mem_cgroup_tree_per_node *rtpn;
6936 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6937 node_online(node) ? node : NUMA_NO_NODE);
6939 rtpn->rb_root = RB_ROOT;
6940 rtpn->rb_rightmost = NULL;
6941 spin_lock_init(&rtpn->lock);
6942 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6945 return 0;
6947 subsys_initcall(mem_cgroup_init);
6949 #ifdef CONFIG_MEMCG_SWAP
6950 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6952 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6954 * The root cgroup cannot be destroyed, so it's refcount must
6955 * always be >= 1.
6957 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6958 VM_BUG_ON(1);
6959 break;
6961 memcg = parent_mem_cgroup(memcg);
6962 if (!memcg)
6963 memcg = root_mem_cgroup;
6965 return memcg;
6969 * mem_cgroup_swapout - transfer a memsw charge to swap
6970 * @page: page whose memsw charge to transfer
6971 * @entry: swap entry to move the charge to
6973 * Transfer the memsw charge of @page to @entry.
6975 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6977 struct mem_cgroup *memcg, *swap_memcg;
6978 unsigned int nr_entries;
6979 unsigned short oldid;
6981 VM_BUG_ON_PAGE(PageLRU(page), page);
6982 VM_BUG_ON_PAGE(page_count(page), page);
6984 if (!do_memsw_account())
6985 return;
6987 memcg = page->mem_cgroup;
6989 /* Readahead page, never charged */
6990 if (!memcg)
6991 return;
6994 * In case the memcg owning these pages has been offlined and doesn't
6995 * have an ID allocated to it anymore, charge the closest online
6996 * ancestor for the swap instead and transfer the memory+swap charge.
6998 swap_memcg = mem_cgroup_id_get_online(memcg);
6999 nr_entries = hpage_nr_pages(page);
7000 /* Get references for the tail pages, too */
7001 if (nr_entries > 1)
7002 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7003 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7004 nr_entries);
7005 VM_BUG_ON_PAGE(oldid, page);
7006 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7008 page->mem_cgroup = NULL;
7010 if (!mem_cgroup_is_root(memcg))
7011 page_counter_uncharge(&memcg->memory, nr_entries);
7013 if (memcg != swap_memcg) {
7014 if (!mem_cgroup_is_root(swap_memcg))
7015 page_counter_charge(&swap_memcg->memsw, nr_entries);
7016 page_counter_uncharge(&memcg->memsw, nr_entries);
7020 * Interrupts should be disabled here because the caller holds the
7021 * i_pages lock which is taken with interrupts-off. It is
7022 * important here to have the interrupts disabled because it is the
7023 * only synchronisation we have for updating the per-CPU variables.
7025 VM_BUG_ON(!irqs_disabled());
7026 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
7027 -nr_entries);
7028 memcg_check_events(memcg, page);
7030 if (!mem_cgroup_is_root(memcg))
7031 css_put_many(&memcg->css, nr_entries);
7035 * mem_cgroup_try_charge_swap - try charging swap space for a page
7036 * @page: page being added to swap
7037 * @entry: swap entry to charge
7039 * Try to charge @page's memcg for the swap space at @entry.
7041 * Returns 0 on success, -ENOMEM on failure.
7043 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7045 unsigned int nr_pages = hpage_nr_pages(page);
7046 struct page_counter *counter;
7047 struct mem_cgroup *memcg;
7048 unsigned short oldid;
7050 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
7051 return 0;
7053 memcg = page->mem_cgroup;
7055 /* Readahead page, never charged */
7056 if (!memcg)
7057 return 0;
7059 if (!entry.val) {
7060 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7061 return 0;
7064 memcg = mem_cgroup_id_get_online(memcg);
7066 if (!mem_cgroup_is_root(memcg) &&
7067 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7068 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7069 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7070 mem_cgroup_id_put(memcg);
7071 return -ENOMEM;
7074 /* Get references for the tail pages, too */
7075 if (nr_pages > 1)
7076 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7077 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7078 VM_BUG_ON_PAGE(oldid, page);
7079 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7081 return 0;
7085 * mem_cgroup_uncharge_swap - uncharge swap space
7086 * @entry: swap entry to uncharge
7087 * @nr_pages: the amount of swap space to uncharge
7089 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7091 struct mem_cgroup *memcg;
7092 unsigned short id;
7094 if (!do_swap_account)
7095 return;
7097 id = swap_cgroup_record(entry, 0, nr_pages);
7098 rcu_read_lock();
7099 memcg = mem_cgroup_from_id(id);
7100 if (memcg) {
7101 if (!mem_cgroup_is_root(memcg)) {
7102 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7103 page_counter_uncharge(&memcg->swap, nr_pages);
7104 else
7105 page_counter_uncharge(&memcg->memsw, nr_pages);
7107 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7108 mem_cgroup_id_put_many(memcg, nr_pages);
7110 rcu_read_unlock();
7113 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7115 long nr_swap_pages = get_nr_swap_pages();
7117 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7118 return nr_swap_pages;
7119 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7120 nr_swap_pages = min_t(long, nr_swap_pages,
7121 READ_ONCE(memcg->swap.max) -
7122 page_counter_read(&memcg->swap));
7123 return nr_swap_pages;
7126 bool mem_cgroup_swap_full(struct page *page)
7128 struct mem_cgroup *memcg;
7130 VM_BUG_ON_PAGE(!PageLocked(page), page);
7132 if (vm_swap_full())
7133 return true;
7134 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7135 return false;
7137 memcg = page->mem_cgroup;
7138 if (!memcg)
7139 return false;
7141 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7142 if (page_counter_read(&memcg->swap) * 2 >=
7143 READ_ONCE(memcg->swap.max))
7144 return true;
7146 return false;
7149 /* for remember boot option*/
7150 #ifdef CONFIG_MEMCG_SWAP_ENABLED
7151 static int really_do_swap_account __initdata = 1;
7152 #else
7153 static int really_do_swap_account __initdata;
7154 #endif
7156 static int __init enable_swap_account(char *s)
7158 if (!strcmp(s, "1"))
7159 really_do_swap_account = 1;
7160 else if (!strcmp(s, "0"))
7161 really_do_swap_account = 0;
7162 return 1;
7164 __setup("swapaccount=", enable_swap_account);
7166 static u64 swap_current_read(struct cgroup_subsys_state *css,
7167 struct cftype *cft)
7169 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7171 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7174 static int swap_max_show(struct seq_file *m, void *v)
7176 return seq_puts_memcg_tunable(m,
7177 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7180 static ssize_t swap_max_write(struct kernfs_open_file *of,
7181 char *buf, size_t nbytes, loff_t off)
7183 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7184 unsigned long max;
7185 int err;
7187 buf = strstrip(buf);
7188 err = page_counter_memparse(buf, "max", &max);
7189 if (err)
7190 return err;
7192 xchg(&memcg->swap.max, max);
7194 return nbytes;
7197 static int swap_events_show(struct seq_file *m, void *v)
7199 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7201 seq_printf(m, "max %lu\n",
7202 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7203 seq_printf(m, "fail %lu\n",
7204 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7206 return 0;
7209 static struct cftype swap_files[] = {
7211 .name = "swap.current",
7212 .flags = CFTYPE_NOT_ON_ROOT,
7213 .read_u64 = swap_current_read,
7216 .name = "swap.max",
7217 .flags = CFTYPE_NOT_ON_ROOT,
7218 .seq_show = swap_max_show,
7219 .write = swap_max_write,
7222 .name = "swap.events",
7223 .flags = CFTYPE_NOT_ON_ROOT,
7224 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7225 .seq_show = swap_events_show,
7227 { } /* terminate */
7230 static struct cftype memsw_cgroup_files[] = {
7232 .name = "memsw.usage_in_bytes",
7233 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7234 .read_u64 = mem_cgroup_read_u64,
7237 .name = "memsw.max_usage_in_bytes",
7238 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7239 .write = mem_cgroup_reset,
7240 .read_u64 = mem_cgroup_read_u64,
7243 .name = "memsw.limit_in_bytes",
7244 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7245 .write = mem_cgroup_write,
7246 .read_u64 = mem_cgroup_read_u64,
7249 .name = "memsw.failcnt",
7250 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7251 .write = mem_cgroup_reset,
7252 .read_u64 = mem_cgroup_read_u64,
7254 { }, /* terminate */
7257 static int __init mem_cgroup_swap_init(void)
7259 if (!mem_cgroup_disabled() && really_do_swap_account) {
7260 do_swap_account = 1;
7261 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7262 swap_files));
7263 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7264 memsw_cgroup_files));
7266 return 0;
7268 subsys_initcall(mem_cgroup_swap_init);
7270 #endif /* CONFIG_MEMCG_SWAP */