1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
75 #include <trace/events/kmem.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
82 #include <asm/tlbflush.h>
83 #include <asm/pgtable.h>
87 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
88 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #ifndef CONFIG_NEED_MULTIPLE_NODES
92 /* use the per-pgdat data instead for discontigmem - mbligh */
93 unsigned long max_mapnr
;
94 EXPORT_SYMBOL(max_mapnr
);
97 EXPORT_SYMBOL(mem_map
);
101 * A number of key systems in x86 including ioremap() rely on the assumption
102 * that high_memory defines the upper bound on direct map memory, then end
103 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
104 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
108 EXPORT_SYMBOL(high_memory
);
111 * Randomize the address space (stacks, mmaps, brk, etc.).
113 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114 * as ancient (libc5 based) binaries can segfault. )
116 int randomize_va_space __read_mostly
=
117 #ifdef CONFIG_COMPAT_BRK
123 #ifndef arch_faults_on_old_pte
124 static inline bool arch_faults_on_old_pte(void)
127 * Those arches which don't have hw access flag feature need to
128 * implement their own helper. By default, "true" means pagefault
129 * will be hit on old pte.
135 static int __init
disable_randmaps(char *s
)
137 randomize_va_space
= 0;
140 __setup("norandmaps", disable_randmaps
);
142 unsigned long zero_pfn __read_mostly
;
143 EXPORT_SYMBOL(zero_pfn
);
145 unsigned long highest_memmap_pfn __read_mostly
;
148 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
150 static int __init
init_zero_pfn(void)
152 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
155 core_initcall(init_zero_pfn
);
157 void mm_trace_rss_stat(struct mm_struct
*mm
, int member
, long count
)
159 trace_rss_stat(mm
, member
, count
);
162 #if defined(SPLIT_RSS_COUNTING)
164 void sync_mm_rss(struct mm_struct
*mm
)
168 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
169 if (current
->rss_stat
.count
[i
]) {
170 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
171 current
->rss_stat
.count
[i
] = 0;
174 current
->rss_stat
.events
= 0;
177 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
179 struct task_struct
*task
= current
;
181 if (likely(task
->mm
== mm
))
182 task
->rss_stat
.count
[member
] += val
;
184 add_mm_counter(mm
, member
, val
);
186 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
187 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
189 /* sync counter once per 64 page faults */
190 #define TASK_RSS_EVENTS_THRESH (64)
191 static void check_sync_rss_stat(struct task_struct
*task
)
193 if (unlikely(task
!= current
))
195 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
196 sync_mm_rss(task
->mm
);
198 #else /* SPLIT_RSS_COUNTING */
200 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
201 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
203 static void check_sync_rss_stat(struct task_struct
*task
)
207 #endif /* SPLIT_RSS_COUNTING */
210 * Note: this doesn't free the actual pages themselves. That
211 * has been handled earlier when unmapping all the memory regions.
213 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
216 pgtable_t token
= pmd_pgtable(*pmd
);
218 pte_free_tlb(tlb
, token
, addr
);
219 mm_dec_nr_ptes(tlb
->mm
);
222 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
223 unsigned long addr
, unsigned long end
,
224 unsigned long floor
, unsigned long ceiling
)
231 pmd
= pmd_offset(pud
, addr
);
233 next
= pmd_addr_end(addr
, end
);
234 if (pmd_none_or_clear_bad(pmd
))
236 free_pte_range(tlb
, pmd
, addr
);
237 } while (pmd
++, addr
= next
, addr
!= end
);
247 if (end
- 1 > ceiling
- 1)
250 pmd
= pmd_offset(pud
, start
);
252 pmd_free_tlb(tlb
, pmd
, start
);
253 mm_dec_nr_pmds(tlb
->mm
);
256 static inline void free_pud_range(struct mmu_gather
*tlb
, p4d_t
*p4d
,
257 unsigned long addr
, unsigned long end
,
258 unsigned long floor
, unsigned long ceiling
)
265 pud
= pud_offset(p4d
, addr
);
267 next
= pud_addr_end(addr
, end
);
268 if (pud_none_or_clear_bad(pud
))
270 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
271 } while (pud
++, addr
= next
, addr
!= end
);
281 if (end
- 1 > ceiling
- 1)
284 pud
= pud_offset(p4d
, start
);
286 pud_free_tlb(tlb
, pud
, start
);
287 mm_dec_nr_puds(tlb
->mm
);
290 static inline void free_p4d_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
291 unsigned long addr
, unsigned long end
,
292 unsigned long floor
, unsigned long ceiling
)
299 p4d
= p4d_offset(pgd
, addr
);
301 next
= p4d_addr_end(addr
, end
);
302 if (p4d_none_or_clear_bad(p4d
))
304 free_pud_range(tlb
, p4d
, addr
, next
, floor
, ceiling
);
305 } while (p4d
++, addr
= next
, addr
!= end
);
311 ceiling
&= PGDIR_MASK
;
315 if (end
- 1 > ceiling
- 1)
318 p4d
= p4d_offset(pgd
, start
);
320 p4d_free_tlb(tlb
, p4d
, start
);
324 * This function frees user-level page tables of a process.
326 void free_pgd_range(struct mmu_gather
*tlb
,
327 unsigned long addr
, unsigned long end
,
328 unsigned long floor
, unsigned long ceiling
)
334 * The next few lines have given us lots of grief...
336 * Why are we testing PMD* at this top level? Because often
337 * there will be no work to do at all, and we'd prefer not to
338 * go all the way down to the bottom just to discover that.
340 * Why all these "- 1"s? Because 0 represents both the bottom
341 * of the address space and the top of it (using -1 for the
342 * top wouldn't help much: the masks would do the wrong thing).
343 * The rule is that addr 0 and floor 0 refer to the bottom of
344 * the address space, but end 0 and ceiling 0 refer to the top
345 * Comparisons need to use "end - 1" and "ceiling - 1" (though
346 * that end 0 case should be mythical).
348 * Wherever addr is brought up or ceiling brought down, we must
349 * be careful to reject "the opposite 0" before it confuses the
350 * subsequent tests. But what about where end is brought down
351 * by PMD_SIZE below? no, end can't go down to 0 there.
353 * Whereas we round start (addr) and ceiling down, by different
354 * masks at different levels, in order to test whether a table
355 * now has no other vmas using it, so can be freed, we don't
356 * bother to round floor or end up - the tests don't need that.
370 if (end
- 1 > ceiling
- 1)
375 * We add page table cache pages with PAGE_SIZE,
376 * (see pte_free_tlb()), flush the tlb if we need
378 tlb_change_page_size(tlb
, PAGE_SIZE
);
379 pgd
= pgd_offset(tlb
->mm
, addr
);
381 next
= pgd_addr_end(addr
, end
);
382 if (pgd_none_or_clear_bad(pgd
))
384 free_p4d_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
385 } while (pgd
++, addr
= next
, addr
!= end
);
388 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
389 unsigned long floor
, unsigned long ceiling
)
392 struct vm_area_struct
*next
= vma
->vm_next
;
393 unsigned long addr
= vma
->vm_start
;
396 * Hide vma from rmap and truncate_pagecache before freeing
399 unlink_anon_vmas(vma
);
400 unlink_file_vma(vma
);
402 if (is_vm_hugetlb_page(vma
)) {
403 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
404 floor
, next
? next
->vm_start
: ceiling
);
407 * Optimization: gather nearby vmas into one call down
409 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
410 && !is_vm_hugetlb_page(next
)) {
413 unlink_anon_vmas(vma
);
414 unlink_file_vma(vma
);
416 free_pgd_range(tlb
, addr
, vma
->vm_end
,
417 floor
, next
? next
->vm_start
: ceiling
);
423 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
)
426 pgtable_t
new = pte_alloc_one(mm
);
431 * Ensure all pte setup (eg. pte page lock and page clearing) are
432 * visible before the pte is made visible to other CPUs by being
433 * put into page tables.
435 * The other side of the story is the pointer chasing in the page
436 * table walking code (when walking the page table without locking;
437 * ie. most of the time). Fortunately, these data accesses consist
438 * of a chain of data-dependent loads, meaning most CPUs (alpha
439 * being the notable exception) will already guarantee loads are
440 * seen in-order. See the alpha page table accessors for the
441 * smp_read_barrier_depends() barriers in page table walking code.
443 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
445 ptl
= pmd_lock(mm
, pmd
);
446 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
448 pmd_populate(mm
, pmd
, new);
457 int __pte_alloc_kernel(pmd_t
*pmd
)
459 pte_t
*new = pte_alloc_one_kernel(&init_mm
);
463 smp_wmb(); /* See comment in __pte_alloc */
465 spin_lock(&init_mm
.page_table_lock
);
466 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
467 pmd_populate_kernel(&init_mm
, pmd
, new);
470 spin_unlock(&init_mm
.page_table_lock
);
472 pte_free_kernel(&init_mm
, new);
476 static inline void init_rss_vec(int *rss
)
478 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
481 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
485 if (current
->mm
== mm
)
487 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
489 add_mm_counter(mm
, i
, rss
[i
]);
493 * This function is called to print an error when a bad pte
494 * is found. For example, we might have a PFN-mapped pte in
495 * a region that doesn't allow it.
497 * The calling function must still handle the error.
499 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
500 pte_t pte
, struct page
*page
)
502 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
503 p4d_t
*p4d
= p4d_offset(pgd
, addr
);
504 pud_t
*pud
= pud_offset(p4d
, addr
);
505 pmd_t
*pmd
= pmd_offset(pud
, addr
);
506 struct address_space
*mapping
;
508 static unsigned long resume
;
509 static unsigned long nr_shown
;
510 static unsigned long nr_unshown
;
513 * Allow a burst of 60 reports, then keep quiet for that minute;
514 * or allow a steady drip of one report per second.
516 if (nr_shown
== 60) {
517 if (time_before(jiffies
, resume
)) {
522 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
529 resume
= jiffies
+ 60 * HZ
;
531 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
532 index
= linear_page_index(vma
, addr
);
534 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
536 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
538 dump_page(page
, "bad pte");
539 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
540 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
541 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
543 vma
->vm_ops
? vma
->vm_ops
->fault
: NULL
,
544 vma
->vm_file
? vma
->vm_file
->f_op
->mmap
: NULL
,
545 mapping
? mapping
->a_ops
->readpage
: NULL
);
547 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
551 * vm_normal_page -- This function gets the "struct page" associated with a pte.
553 * "Special" mappings do not wish to be associated with a "struct page" (either
554 * it doesn't exist, or it exists but they don't want to touch it). In this
555 * case, NULL is returned here. "Normal" mappings do have a struct page.
557 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558 * pte bit, in which case this function is trivial. Secondly, an architecture
559 * may not have a spare pte bit, which requires a more complicated scheme,
562 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563 * special mapping (even if there are underlying and valid "struct pages").
564 * COWed pages of a VM_PFNMAP are always normal.
566 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569 * mapping will always honor the rule
571 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
573 * And for normal mappings this is false.
575 * This restricts such mappings to be a linear translation from virtual address
576 * to pfn. To get around this restriction, we allow arbitrary mappings so long
577 * as the vma is not a COW mapping; in that case, we know that all ptes are
578 * special (because none can have been COWed).
581 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
583 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584 * page" backing, however the difference is that _all_ pages with a struct
585 * page (that is, those where pfn_valid is true) are refcounted and considered
586 * normal pages by the VM. The disadvantage is that pages are refcounted
587 * (which can be slower and simply not an option for some PFNMAP users). The
588 * advantage is that we don't have to follow the strict linearity rule of
589 * PFNMAP mappings in order to support COWable mappings.
592 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
595 unsigned long pfn
= pte_pfn(pte
);
597 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL
)) {
598 if (likely(!pte_special(pte
)))
600 if (vma
->vm_ops
&& vma
->vm_ops
->find_special_page
)
601 return vma
->vm_ops
->find_special_page(vma
, addr
);
602 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
604 if (is_zero_pfn(pfn
))
609 print_bad_pte(vma
, addr
, pte
, NULL
);
613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
615 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
616 if (vma
->vm_flags
& VM_MIXEDMAP
) {
622 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
623 if (pfn
== vma
->vm_pgoff
+ off
)
625 if (!is_cow_mapping(vma
->vm_flags
))
630 if (is_zero_pfn(pfn
))
634 if (unlikely(pfn
> highest_memmap_pfn
)) {
635 print_bad_pte(vma
, addr
, pte
, NULL
);
640 * NOTE! We still have PageReserved() pages in the page tables.
641 * eg. VDSO mappings can cause them to exist.
644 return pfn_to_page(pfn
);
647 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
648 struct page
*vm_normal_page_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
651 unsigned long pfn
= pmd_pfn(pmd
);
654 * There is no pmd_special() but there may be special pmds, e.g.
655 * in a direct-access (dax) mapping, so let's just replicate the
656 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
658 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
659 if (vma
->vm_flags
& VM_MIXEDMAP
) {
665 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
666 if (pfn
== vma
->vm_pgoff
+ off
)
668 if (!is_cow_mapping(vma
->vm_flags
))
675 if (is_huge_zero_pmd(pmd
))
677 if (unlikely(pfn
> highest_memmap_pfn
))
681 * NOTE! We still have PageReserved() pages in the page tables.
682 * eg. VDSO mappings can cause them to exist.
685 return pfn_to_page(pfn
);
690 * copy one vm_area from one task to the other. Assumes the page tables
691 * already present in the new task to be cleared in the whole range
692 * covered by this vma.
695 static inline unsigned long
696 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
697 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
698 unsigned long addr
, int *rss
)
700 unsigned long vm_flags
= vma
->vm_flags
;
701 pte_t pte
= *src_pte
;
704 /* pte contains position in swap or file, so copy. */
705 if (unlikely(!pte_present(pte
))) {
706 swp_entry_t entry
= pte_to_swp_entry(pte
);
708 if (likely(!non_swap_entry(entry
))) {
709 if (swap_duplicate(entry
) < 0)
712 /* make sure dst_mm is on swapoff's mmlist. */
713 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
714 spin_lock(&mmlist_lock
);
715 if (list_empty(&dst_mm
->mmlist
))
716 list_add(&dst_mm
->mmlist
,
718 spin_unlock(&mmlist_lock
);
721 } else if (is_migration_entry(entry
)) {
722 page
= migration_entry_to_page(entry
);
724 rss
[mm_counter(page
)]++;
726 if (is_write_migration_entry(entry
) &&
727 is_cow_mapping(vm_flags
)) {
729 * COW mappings require pages in both
730 * parent and child to be set to read.
732 make_migration_entry_read(&entry
);
733 pte
= swp_entry_to_pte(entry
);
734 if (pte_swp_soft_dirty(*src_pte
))
735 pte
= pte_swp_mksoft_dirty(pte
);
736 if (pte_swp_uffd_wp(*src_pte
))
737 pte
= pte_swp_mkuffd_wp(pte
);
738 set_pte_at(src_mm
, addr
, src_pte
, pte
);
740 } else if (is_device_private_entry(entry
)) {
741 page
= device_private_entry_to_page(entry
);
744 * Update rss count even for unaddressable pages, as
745 * they should treated just like normal pages in this
748 * We will likely want to have some new rss counters
749 * for unaddressable pages, at some point. But for now
750 * keep things as they are.
753 rss
[mm_counter(page
)]++;
754 page_dup_rmap(page
, false);
757 * We do not preserve soft-dirty information, because so
758 * far, checkpoint/restore is the only feature that
759 * requires that. And checkpoint/restore does not work
760 * when a device driver is involved (you cannot easily
761 * save and restore device driver state).
763 if (is_write_device_private_entry(entry
) &&
764 is_cow_mapping(vm_flags
)) {
765 make_device_private_entry_read(&entry
);
766 pte
= swp_entry_to_pte(entry
);
767 if (pte_swp_uffd_wp(*src_pte
))
768 pte
= pte_swp_mkuffd_wp(pte
);
769 set_pte_at(src_mm
, addr
, src_pte
, pte
);
776 * If it's a COW mapping, write protect it both
777 * in the parent and the child
779 if (is_cow_mapping(vm_flags
) && pte_write(pte
)) {
780 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
781 pte
= pte_wrprotect(pte
);
785 * If it's a shared mapping, mark it clean in
788 if (vm_flags
& VM_SHARED
)
789 pte
= pte_mkclean(pte
);
790 pte
= pte_mkold(pte
);
793 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
794 * does not have the VM_UFFD_WP, which means that the uffd
795 * fork event is not enabled.
797 if (!(vm_flags
& VM_UFFD_WP
))
798 pte
= pte_clear_uffd_wp(pte
);
800 page
= vm_normal_page(vma
, addr
, pte
);
803 page_dup_rmap(page
, false);
804 rss
[mm_counter(page
)]++;
805 } else if (pte_devmap(pte
)) {
806 page
= pte_page(pte
);
810 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
814 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
815 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
816 unsigned long addr
, unsigned long end
)
818 pte_t
*orig_src_pte
, *orig_dst_pte
;
819 pte_t
*src_pte
, *dst_pte
;
820 spinlock_t
*src_ptl
, *dst_ptl
;
822 int rss
[NR_MM_COUNTERS
];
823 swp_entry_t entry
= (swp_entry_t
){0};
828 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
831 src_pte
= pte_offset_map(src_pmd
, addr
);
832 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
833 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
834 orig_src_pte
= src_pte
;
835 orig_dst_pte
= dst_pte
;
836 arch_enter_lazy_mmu_mode();
840 * We are holding two locks at this point - either of them
841 * could generate latencies in another task on another CPU.
843 if (progress
>= 32) {
845 if (need_resched() ||
846 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
849 if (pte_none(*src_pte
)) {
853 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
858 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
860 arch_leave_lazy_mmu_mode();
861 spin_unlock(src_ptl
);
862 pte_unmap(orig_src_pte
);
863 add_mm_rss_vec(dst_mm
, rss
);
864 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
868 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
877 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
878 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
879 unsigned long addr
, unsigned long end
)
881 pmd_t
*src_pmd
, *dst_pmd
;
884 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
887 src_pmd
= pmd_offset(src_pud
, addr
);
889 next
= pmd_addr_end(addr
, end
);
890 if (is_swap_pmd(*src_pmd
) || pmd_trans_huge(*src_pmd
)
891 || pmd_devmap(*src_pmd
)) {
893 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PMD_SIZE
, vma
);
894 err
= copy_huge_pmd(dst_mm
, src_mm
,
895 dst_pmd
, src_pmd
, addr
, vma
);
902 if (pmd_none_or_clear_bad(src_pmd
))
904 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
907 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
911 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
912 p4d_t
*dst_p4d
, p4d_t
*src_p4d
, struct vm_area_struct
*vma
,
913 unsigned long addr
, unsigned long end
)
915 pud_t
*src_pud
, *dst_pud
;
918 dst_pud
= pud_alloc(dst_mm
, dst_p4d
, addr
);
921 src_pud
= pud_offset(src_p4d
, addr
);
923 next
= pud_addr_end(addr
, end
);
924 if (pud_trans_huge(*src_pud
) || pud_devmap(*src_pud
)) {
927 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PUD_SIZE
, vma
);
928 err
= copy_huge_pud(dst_mm
, src_mm
,
929 dst_pud
, src_pud
, addr
, vma
);
936 if (pud_none_or_clear_bad(src_pud
))
938 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
941 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
945 static inline int copy_p4d_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
946 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
947 unsigned long addr
, unsigned long end
)
949 p4d_t
*src_p4d
, *dst_p4d
;
952 dst_p4d
= p4d_alloc(dst_mm
, dst_pgd
, addr
);
955 src_p4d
= p4d_offset(src_pgd
, addr
);
957 next
= p4d_addr_end(addr
, end
);
958 if (p4d_none_or_clear_bad(src_p4d
))
960 if (copy_pud_range(dst_mm
, src_mm
, dst_p4d
, src_p4d
,
963 } while (dst_p4d
++, src_p4d
++, addr
= next
, addr
!= end
);
967 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
968 struct vm_area_struct
*vma
)
970 pgd_t
*src_pgd
, *dst_pgd
;
972 unsigned long addr
= vma
->vm_start
;
973 unsigned long end
= vma
->vm_end
;
974 struct mmu_notifier_range range
;
979 * Don't copy ptes where a page fault will fill them correctly.
980 * Fork becomes much lighter when there are big shared or private
981 * readonly mappings. The tradeoff is that copy_page_range is more
982 * efficient than faulting.
984 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_PFNMAP
| VM_MIXEDMAP
)) &&
988 if (is_vm_hugetlb_page(vma
))
989 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
991 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
993 * We do not free on error cases below as remove_vma
994 * gets called on error from higher level routine
996 ret
= track_pfn_copy(vma
);
1002 * We need to invalidate the secondary MMU mappings only when
1003 * there could be a permission downgrade on the ptes of the
1004 * parent mm. And a permission downgrade will only happen if
1005 * is_cow_mapping() returns true.
1007 is_cow
= is_cow_mapping(vma
->vm_flags
);
1010 mmu_notifier_range_init(&range
, MMU_NOTIFY_PROTECTION_PAGE
,
1011 0, vma
, src_mm
, addr
, end
);
1012 mmu_notifier_invalidate_range_start(&range
);
1016 dst_pgd
= pgd_offset(dst_mm
, addr
);
1017 src_pgd
= pgd_offset(src_mm
, addr
);
1019 next
= pgd_addr_end(addr
, end
);
1020 if (pgd_none_or_clear_bad(src_pgd
))
1022 if (unlikely(copy_p4d_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1023 vma
, addr
, next
))) {
1027 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1030 mmu_notifier_invalidate_range_end(&range
);
1034 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1035 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1036 unsigned long addr
, unsigned long end
,
1037 struct zap_details
*details
)
1039 struct mm_struct
*mm
= tlb
->mm
;
1040 int force_flush
= 0;
1041 int rss
[NR_MM_COUNTERS
];
1047 tlb_change_page_size(tlb
, PAGE_SIZE
);
1050 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1052 flush_tlb_batched_pending(mm
);
1053 arch_enter_lazy_mmu_mode();
1056 if (pte_none(ptent
))
1062 if (pte_present(ptent
)) {
1065 page
= vm_normal_page(vma
, addr
, ptent
);
1066 if (unlikely(details
) && page
) {
1068 * unmap_shared_mapping_pages() wants to
1069 * invalidate cache without truncating:
1070 * unmap shared but keep private pages.
1072 if (details
->check_mapping
&&
1073 details
->check_mapping
!= page_rmapping(page
))
1076 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1078 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1079 if (unlikely(!page
))
1082 if (!PageAnon(page
)) {
1083 if (pte_dirty(ptent
)) {
1085 set_page_dirty(page
);
1087 if (pte_young(ptent
) &&
1088 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1089 mark_page_accessed(page
);
1091 rss
[mm_counter(page
)]--;
1092 page_remove_rmap(page
, false);
1093 if (unlikely(page_mapcount(page
) < 0))
1094 print_bad_pte(vma
, addr
, ptent
, page
);
1095 if (unlikely(__tlb_remove_page(tlb
, page
))) {
1103 entry
= pte_to_swp_entry(ptent
);
1104 if (non_swap_entry(entry
) && is_device_private_entry(entry
)) {
1105 struct page
*page
= device_private_entry_to_page(entry
);
1107 if (unlikely(details
&& details
->check_mapping
)) {
1109 * unmap_shared_mapping_pages() wants to
1110 * invalidate cache without truncating:
1111 * unmap shared but keep private pages.
1113 if (details
->check_mapping
!=
1114 page_rmapping(page
))
1118 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1119 rss
[mm_counter(page
)]--;
1120 page_remove_rmap(page
, false);
1125 /* If details->check_mapping, we leave swap entries. */
1126 if (unlikely(details
))
1129 if (!non_swap_entry(entry
))
1131 else if (is_migration_entry(entry
)) {
1134 page
= migration_entry_to_page(entry
);
1135 rss
[mm_counter(page
)]--;
1137 if (unlikely(!free_swap_and_cache(entry
)))
1138 print_bad_pte(vma
, addr
, ptent
, NULL
);
1139 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1140 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1142 add_mm_rss_vec(mm
, rss
);
1143 arch_leave_lazy_mmu_mode();
1145 /* Do the actual TLB flush before dropping ptl */
1147 tlb_flush_mmu_tlbonly(tlb
);
1148 pte_unmap_unlock(start_pte
, ptl
);
1151 * If we forced a TLB flush (either due to running out of
1152 * batch buffers or because we needed to flush dirty TLB
1153 * entries before releasing the ptl), free the batched
1154 * memory too. Restart if we didn't do everything.
1169 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1170 struct vm_area_struct
*vma
, pud_t
*pud
,
1171 unsigned long addr
, unsigned long end
,
1172 struct zap_details
*details
)
1177 pmd
= pmd_offset(pud
, addr
);
1179 next
= pmd_addr_end(addr
, end
);
1180 if (is_swap_pmd(*pmd
) || pmd_trans_huge(*pmd
) || pmd_devmap(*pmd
)) {
1181 if (next
- addr
!= HPAGE_PMD_SIZE
)
1182 __split_huge_pmd(vma
, pmd
, addr
, false, NULL
);
1183 else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1188 * Here there can be other concurrent MADV_DONTNEED or
1189 * trans huge page faults running, and if the pmd is
1190 * none or trans huge it can change under us. This is
1191 * because MADV_DONTNEED holds the mmap_sem in read
1194 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1196 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1199 } while (pmd
++, addr
= next
, addr
!= end
);
1204 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1205 struct vm_area_struct
*vma
, p4d_t
*p4d
,
1206 unsigned long addr
, unsigned long end
,
1207 struct zap_details
*details
)
1212 pud
= pud_offset(p4d
, addr
);
1214 next
= pud_addr_end(addr
, end
);
1215 if (pud_trans_huge(*pud
) || pud_devmap(*pud
)) {
1216 if (next
- addr
!= HPAGE_PUD_SIZE
) {
1217 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb
->mm
->mmap_sem
), vma
);
1218 split_huge_pud(vma
, pud
, addr
);
1219 } else if (zap_huge_pud(tlb
, vma
, pud
, addr
))
1223 if (pud_none_or_clear_bad(pud
))
1225 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1228 } while (pud
++, addr
= next
, addr
!= end
);
1233 static inline unsigned long zap_p4d_range(struct mmu_gather
*tlb
,
1234 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1235 unsigned long addr
, unsigned long end
,
1236 struct zap_details
*details
)
1241 p4d
= p4d_offset(pgd
, addr
);
1243 next
= p4d_addr_end(addr
, end
);
1244 if (p4d_none_or_clear_bad(p4d
))
1246 next
= zap_pud_range(tlb
, vma
, p4d
, addr
, next
, details
);
1247 } while (p4d
++, addr
= next
, addr
!= end
);
1252 void unmap_page_range(struct mmu_gather
*tlb
,
1253 struct vm_area_struct
*vma
,
1254 unsigned long addr
, unsigned long end
,
1255 struct zap_details
*details
)
1260 BUG_ON(addr
>= end
);
1261 tlb_start_vma(tlb
, vma
);
1262 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1264 next
= pgd_addr_end(addr
, end
);
1265 if (pgd_none_or_clear_bad(pgd
))
1267 next
= zap_p4d_range(tlb
, vma
, pgd
, addr
, next
, details
);
1268 } while (pgd
++, addr
= next
, addr
!= end
);
1269 tlb_end_vma(tlb
, vma
);
1273 static void unmap_single_vma(struct mmu_gather
*tlb
,
1274 struct vm_area_struct
*vma
, unsigned long start_addr
,
1275 unsigned long end_addr
,
1276 struct zap_details
*details
)
1278 unsigned long start
= max(vma
->vm_start
, start_addr
);
1281 if (start
>= vma
->vm_end
)
1283 end
= min(vma
->vm_end
, end_addr
);
1284 if (end
<= vma
->vm_start
)
1288 uprobe_munmap(vma
, start
, end
);
1290 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1291 untrack_pfn(vma
, 0, 0);
1294 if (unlikely(is_vm_hugetlb_page(vma
))) {
1296 * It is undesirable to test vma->vm_file as it
1297 * should be non-null for valid hugetlb area.
1298 * However, vm_file will be NULL in the error
1299 * cleanup path of mmap_region. When
1300 * hugetlbfs ->mmap method fails,
1301 * mmap_region() nullifies vma->vm_file
1302 * before calling this function to clean up.
1303 * Since no pte has actually been setup, it is
1304 * safe to do nothing in this case.
1307 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
1308 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1309 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
1312 unmap_page_range(tlb
, vma
, start
, end
, details
);
1317 * unmap_vmas - unmap a range of memory covered by a list of vma's
1318 * @tlb: address of the caller's struct mmu_gather
1319 * @vma: the starting vma
1320 * @start_addr: virtual address at which to start unmapping
1321 * @end_addr: virtual address at which to end unmapping
1323 * Unmap all pages in the vma list.
1325 * Only addresses between `start' and `end' will be unmapped.
1327 * The VMA list must be sorted in ascending virtual address order.
1329 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1330 * range after unmap_vmas() returns. So the only responsibility here is to
1331 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1332 * drops the lock and schedules.
1334 void unmap_vmas(struct mmu_gather
*tlb
,
1335 struct vm_area_struct
*vma
, unsigned long start_addr
,
1336 unsigned long end_addr
)
1338 struct mmu_notifier_range range
;
1340 mmu_notifier_range_init(&range
, MMU_NOTIFY_UNMAP
, 0, vma
, vma
->vm_mm
,
1341 start_addr
, end_addr
);
1342 mmu_notifier_invalidate_range_start(&range
);
1343 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1344 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1345 mmu_notifier_invalidate_range_end(&range
);
1349 * zap_page_range - remove user pages in a given range
1350 * @vma: vm_area_struct holding the applicable pages
1351 * @start: starting address of pages to zap
1352 * @size: number of bytes to zap
1354 * Caller must protect the VMA list
1356 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1359 struct mmu_notifier_range range
;
1360 struct mmu_gather tlb
;
1363 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
1364 start
, start
+ size
);
1365 tlb_gather_mmu(&tlb
, vma
->vm_mm
, start
, range
.end
);
1366 update_hiwater_rss(vma
->vm_mm
);
1367 mmu_notifier_invalidate_range_start(&range
);
1368 for ( ; vma
&& vma
->vm_start
< range
.end
; vma
= vma
->vm_next
)
1369 unmap_single_vma(&tlb
, vma
, start
, range
.end
, NULL
);
1370 mmu_notifier_invalidate_range_end(&range
);
1371 tlb_finish_mmu(&tlb
, start
, range
.end
);
1375 * zap_page_range_single - remove user pages in a given range
1376 * @vma: vm_area_struct holding the applicable pages
1377 * @address: starting address of pages to zap
1378 * @size: number of bytes to zap
1379 * @details: details of shared cache invalidation
1381 * The range must fit into one VMA.
1383 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1384 unsigned long size
, struct zap_details
*details
)
1386 struct mmu_notifier_range range
;
1387 struct mmu_gather tlb
;
1390 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
1391 address
, address
+ size
);
1392 tlb_gather_mmu(&tlb
, vma
->vm_mm
, address
, range
.end
);
1393 update_hiwater_rss(vma
->vm_mm
);
1394 mmu_notifier_invalidate_range_start(&range
);
1395 unmap_single_vma(&tlb
, vma
, address
, range
.end
, details
);
1396 mmu_notifier_invalidate_range_end(&range
);
1397 tlb_finish_mmu(&tlb
, address
, range
.end
);
1401 * zap_vma_ptes - remove ptes mapping the vma
1402 * @vma: vm_area_struct holding ptes to be zapped
1403 * @address: starting address of pages to zap
1404 * @size: number of bytes to zap
1406 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1408 * The entire address range must be fully contained within the vma.
1411 void zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1414 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1415 !(vma
->vm_flags
& VM_PFNMAP
))
1418 zap_page_range_single(vma
, address
, size
, NULL
);
1420 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1422 static pmd_t
*walk_to_pmd(struct mm_struct
*mm
, unsigned long addr
)
1429 pgd
= pgd_offset(mm
, addr
);
1430 p4d
= p4d_alloc(mm
, pgd
, addr
);
1433 pud
= pud_alloc(mm
, p4d
, addr
);
1436 pmd
= pmd_alloc(mm
, pud
, addr
);
1440 VM_BUG_ON(pmd_trans_huge(*pmd
));
1444 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1447 pmd_t
*pmd
= walk_to_pmd(mm
, addr
);
1451 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1454 static int validate_page_before_insert(struct page
*page
)
1456 if (PageAnon(page
) || PageSlab(page
) || page_has_type(page
))
1458 flush_dcache_page(page
);
1462 static int insert_page_into_pte_locked(struct mm_struct
*mm
, pte_t
*pte
,
1463 unsigned long addr
, struct page
*page
, pgprot_t prot
)
1465 if (!pte_none(*pte
))
1467 /* Ok, finally just insert the thing.. */
1469 inc_mm_counter_fast(mm
, mm_counter_file(page
));
1470 page_add_file_rmap(page
, false);
1471 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1476 * This is the old fallback for page remapping.
1478 * For historical reasons, it only allows reserved pages. Only
1479 * old drivers should use this, and they needed to mark their
1480 * pages reserved for the old functions anyway.
1482 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1483 struct page
*page
, pgprot_t prot
)
1485 struct mm_struct
*mm
= vma
->vm_mm
;
1490 retval
= validate_page_before_insert(page
);
1494 pte
= get_locked_pte(mm
, addr
, &ptl
);
1497 retval
= insert_page_into_pte_locked(mm
, pte
, addr
, page
, prot
);
1498 pte_unmap_unlock(pte
, ptl
);
1504 static int insert_page_in_batch_locked(struct mm_struct
*mm
, pmd_t
*pmd
,
1505 unsigned long addr
, struct page
*page
, pgprot_t prot
)
1509 if (!page_count(page
))
1511 err
= validate_page_before_insert(page
);
1512 return err
? err
: insert_page_into_pte_locked(
1513 mm
, pte_offset_map(pmd
, addr
), addr
, page
, prot
);
1516 /* insert_pages() amortizes the cost of spinlock operations
1517 * when inserting pages in a loop. Arch *must* define pte_index.
1519 static int insert_pages(struct vm_area_struct
*vma
, unsigned long addr
,
1520 struct page
**pages
, unsigned long *num
, pgprot_t prot
)
1523 spinlock_t
*pte_lock
= NULL
;
1524 struct mm_struct
*const mm
= vma
->vm_mm
;
1525 unsigned long curr_page_idx
= 0;
1526 unsigned long remaining_pages_total
= *num
;
1527 unsigned long pages_to_write_in_pmd
;
1531 pmd
= walk_to_pmd(mm
, addr
);
1535 pages_to_write_in_pmd
= min_t(unsigned long,
1536 remaining_pages_total
, PTRS_PER_PTE
- pte_index(addr
));
1538 /* Allocate the PTE if necessary; takes PMD lock once only. */
1540 if (pte_alloc(mm
, pmd
))
1542 pte_lock
= pte_lockptr(mm
, pmd
);
1544 while (pages_to_write_in_pmd
) {
1546 const int batch_size
= min_t(int, pages_to_write_in_pmd
, 8);
1548 spin_lock(pte_lock
);
1549 for (; pte_idx
< batch_size
; ++pte_idx
) {
1550 int err
= insert_page_in_batch_locked(mm
, pmd
,
1551 addr
, pages
[curr_page_idx
], prot
);
1552 if (unlikely(err
)) {
1553 spin_unlock(pte_lock
);
1555 remaining_pages_total
-= pte_idx
;
1561 spin_unlock(pte_lock
);
1562 pages_to_write_in_pmd
-= batch_size
;
1563 remaining_pages_total
-= batch_size
;
1565 if (remaining_pages_total
)
1569 *num
= remaining_pages_total
;
1572 #endif /* ifdef pte_index */
1575 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1576 * @vma: user vma to map to
1577 * @addr: target start user address of these pages
1578 * @pages: source kernel pages
1579 * @num: in: number of pages to map. out: number of pages that were *not*
1580 * mapped. (0 means all pages were successfully mapped).
1582 * Preferred over vm_insert_page() when inserting multiple pages.
1584 * In case of error, we may have mapped a subset of the provided
1585 * pages. It is the caller's responsibility to account for this case.
1587 * The same restrictions apply as in vm_insert_page().
1589 int vm_insert_pages(struct vm_area_struct
*vma
, unsigned long addr
,
1590 struct page
**pages
, unsigned long *num
)
1593 const unsigned long end_addr
= addr
+ (*num
* PAGE_SIZE
) - 1;
1595 if (addr
< vma
->vm_start
|| end_addr
>= vma
->vm_end
)
1597 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1598 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
1599 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1600 vma
->vm_flags
|= VM_MIXEDMAP
;
1602 /* Defer page refcount checking till we're about to map that page. */
1603 return insert_pages(vma
, addr
, pages
, num
, vma
->vm_page_prot
);
1605 unsigned long idx
= 0, pgcount
= *num
;
1608 for (; idx
< pgcount
; ++idx
) {
1609 err
= vm_insert_page(vma
, addr
+ (PAGE_SIZE
* idx
), pages
[idx
]);
1613 *num
= pgcount
- idx
;
1615 #endif /* ifdef pte_index */
1617 EXPORT_SYMBOL(vm_insert_pages
);
1620 * vm_insert_page - insert single page into user vma
1621 * @vma: user vma to map to
1622 * @addr: target user address of this page
1623 * @page: source kernel page
1625 * This allows drivers to insert individual pages they've allocated
1628 * The page has to be a nice clean _individual_ kernel allocation.
1629 * If you allocate a compound page, you need to have marked it as
1630 * such (__GFP_COMP), or manually just split the page up yourself
1631 * (see split_page()).
1633 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1634 * took an arbitrary page protection parameter. This doesn't allow
1635 * that. Your vma protection will have to be set up correctly, which
1636 * means that if you want a shared writable mapping, you'd better
1637 * ask for a shared writable mapping!
1639 * The page does not need to be reserved.
1641 * Usually this function is called from f_op->mmap() handler
1642 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1643 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1644 * function from other places, for example from page-fault handler.
1646 * Return: %0 on success, negative error code otherwise.
1648 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1651 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1653 if (!page_count(page
))
1655 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1656 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
1657 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1658 vma
->vm_flags
|= VM_MIXEDMAP
;
1660 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1662 EXPORT_SYMBOL(vm_insert_page
);
1665 * __vm_map_pages - maps range of kernel pages into user vma
1666 * @vma: user vma to map to
1667 * @pages: pointer to array of source kernel pages
1668 * @num: number of pages in page array
1669 * @offset: user's requested vm_pgoff
1671 * This allows drivers to map range of kernel pages into a user vma.
1673 * Return: 0 on success and error code otherwise.
1675 static int __vm_map_pages(struct vm_area_struct
*vma
, struct page
**pages
,
1676 unsigned long num
, unsigned long offset
)
1678 unsigned long count
= vma_pages(vma
);
1679 unsigned long uaddr
= vma
->vm_start
;
1682 /* Fail if the user requested offset is beyond the end of the object */
1686 /* Fail if the user requested size exceeds available object size */
1687 if (count
> num
- offset
)
1690 for (i
= 0; i
< count
; i
++) {
1691 ret
= vm_insert_page(vma
, uaddr
, pages
[offset
+ i
]);
1701 * vm_map_pages - maps range of kernel pages starts with non zero offset
1702 * @vma: user vma to map to
1703 * @pages: pointer to array of source kernel pages
1704 * @num: number of pages in page array
1706 * Maps an object consisting of @num pages, catering for the user's
1707 * requested vm_pgoff
1709 * If we fail to insert any page into the vma, the function will return
1710 * immediately leaving any previously inserted pages present. Callers
1711 * from the mmap handler may immediately return the error as their caller
1712 * will destroy the vma, removing any successfully inserted pages. Other
1713 * callers should make their own arrangements for calling unmap_region().
1715 * Context: Process context. Called by mmap handlers.
1716 * Return: 0 on success and error code otherwise.
1718 int vm_map_pages(struct vm_area_struct
*vma
, struct page
**pages
,
1721 return __vm_map_pages(vma
, pages
, num
, vma
->vm_pgoff
);
1723 EXPORT_SYMBOL(vm_map_pages
);
1726 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1727 * @vma: user vma to map to
1728 * @pages: pointer to array of source kernel pages
1729 * @num: number of pages in page array
1731 * Similar to vm_map_pages(), except that it explicitly sets the offset
1732 * to 0. This function is intended for the drivers that did not consider
1735 * Context: Process context. Called by mmap handlers.
1736 * Return: 0 on success and error code otherwise.
1738 int vm_map_pages_zero(struct vm_area_struct
*vma
, struct page
**pages
,
1741 return __vm_map_pages(vma
, pages
, num
, 0);
1743 EXPORT_SYMBOL(vm_map_pages_zero
);
1745 static vm_fault_t
insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1746 pfn_t pfn
, pgprot_t prot
, bool mkwrite
)
1748 struct mm_struct
*mm
= vma
->vm_mm
;
1752 pte
= get_locked_pte(mm
, addr
, &ptl
);
1754 return VM_FAULT_OOM
;
1755 if (!pte_none(*pte
)) {
1758 * For read faults on private mappings the PFN passed
1759 * in may not match the PFN we have mapped if the
1760 * mapped PFN is a writeable COW page. In the mkwrite
1761 * case we are creating a writable PTE for a shared
1762 * mapping and we expect the PFNs to match. If they
1763 * don't match, we are likely racing with block
1764 * allocation and mapping invalidation so just skip the
1767 if (pte_pfn(*pte
) != pfn_t_to_pfn(pfn
)) {
1768 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte
)));
1771 entry
= pte_mkyoung(*pte
);
1772 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1773 if (ptep_set_access_flags(vma
, addr
, pte
, entry
, 1))
1774 update_mmu_cache(vma
, addr
, pte
);
1779 /* Ok, finally just insert the thing.. */
1780 if (pfn_t_devmap(pfn
))
1781 entry
= pte_mkdevmap(pfn_t_pte(pfn
, prot
));
1783 entry
= pte_mkspecial(pfn_t_pte(pfn
, prot
));
1786 entry
= pte_mkyoung(entry
);
1787 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1790 set_pte_at(mm
, addr
, pte
, entry
);
1791 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1794 pte_unmap_unlock(pte
, ptl
);
1795 return VM_FAULT_NOPAGE
;
1799 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1800 * @vma: user vma to map to
1801 * @addr: target user address of this page
1802 * @pfn: source kernel pfn
1803 * @pgprot: pgprot flags for the inserted page
1805 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1806 * to override pgprot on a per-page basis.
1808 * This only makes sense for IO mappings, and it makes no sense for
1809 * COW mappings. In general, using multiple vmas is preferable;
1810 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1813 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1814 * a value of @pgprot different from that of @vma->vm_page_prot.
1816 * Context: Process context. May allocate using %GFP_KERNEL.
1817 * Return: vm_fault_t value.
1819 vm_fault_t
vmf_insert_pfn_prot(struct vm_area_struct
*vma
, unsigned long addr
,
1820 unsigned long pfn
, pgprot_t pgprot
)
1823 * Technically, architectures with pte_special can avoid all these
1824 * restrictions (same for remap_pfn_range). However we would like
1825 * consistency in testing and feature parity among all, so we should
1826 * try to keep these invariants in place for everybody.
1828 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1829 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1830 (VM_PFNMAP
|VM_MIXEDMAP
));
1831 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1832 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1834 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1835 return VM_FAULT_SIGBUS
;
1837 if (!pfn_modify_allowed(pfn
, pgprot
))
1838 return VM_FAULT_SIGBUS
;
1840 track_pfn_insert(vma
, &pgprot
, __pfn_to_pfn_t(pfn
, PFN_DEV
));
1842 return insert_pfn(vma
, addr
, __pfn_to_pfn_t(pfn
, PFN_DEV
), pgprot
,
1845 EXPORT_SYMBOL(vmf_insert_pfn_prot
);
1848 * vmf_insert_pfn - insert single pfn into user vma
1849 * @vma: user vma to map to
1850 * @addr: target user address of this page
1851 * @pfn: source kernel pfn
1853 * Similar to vm_insert_page, this allows drivers to insert individual pages
1854 * they've allocated into a user vma. Same comments apply.
1856 * This function should only be called from a vm_ops->fault handler, and
1857 * in that case the handler should return the result of this function.
1859 * vma cannot be a COW mapping.
1861 * As this is called only for pages that do not currently exist, we
1862 * do not need to flush old virtual caches or the TLB.
1864 * Context: Process context. May allocate using %GFP_KERNEL.
1865 * Return: vm_fault_t value.
1867 vm_fault_t
vmf_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1870 return vmf_insert_pfn_prot(vma
, addr
, pfn
, vma
->vm_page_prot
);
1872 EXPORT_SYMBOL(vmf_insert_pfn
);
1874 static bool vm_mixed_ok(struct vm_area_struct
*vma
, pfn_t pfn
)
1876 /* these checks mirror the abort conditions in vm_normal_page */
1877 if (vma
->vm_flags
& VM_MIXEDMAP
)
1879 if (pfn_t_devmap(pfn
))
1881 if (pfn_t_special(pfn
))
1883 if (is_zero_pfn(pfn_t_to_pfn(pfn
)))
1888 static vm_fault_t
__vm_insert_mixed(struct vm_area_struct
*vma
,
1889 unsigned long addr
, pfn_t pfn
, pgprot_t pgprot
,
1894 BUG_ON(!vm_mixed_ok(vma
, pfn
));
1896 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1897 return VM_FAULT_SIGBUS
;
1899 track_pfn_insert(vma
, &pgprot
, pfn
);
1901 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn
), pgprot
))
1902 return VM_FAULT_SIGBUS
;
1905 * If we don't have pte special, then we have to use the pfn_valid()
1906 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1907 * refcount the page if pfn_valid is true (hence insert_page rather
1908 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1909 * without pte special, it would there be refcounted as a normal page.
1911 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL
) &&
1912 !pfn_t_devmap(pfn
) && pfn_t_valid(pfn
)) {
1916 * At this point we are committed to insert_page()
1917 * regardless of whether the caller specified flags that
1918 * result in pfn_t_has_page() == false.
1920 page
= pfn_to_page(pfn_t_to_pfn(pfn
));
1921 err
= insert_page(vma
, addr
, page
, pgprot
);
1923 return insert_pfn(vma
, addr
, pfn
, pgprot
, mkwrite
);
1927 return VM_FAULT_OOM
;
1928 if (err
< 0 && err
!= -EBUSY
)
1929 return VM_FAULT_SIGBUS
;
1931 return VM_FAULT_NOPAGE
;
1935 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1936 * @vma: user vma to map to
1937 * @addr: target user address of this page
1938 * @pfn: source kernel pfn
1939 * @pgprot: pgprot flags for the inserted page
1941 * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1942 * to override pgprot on a per-page basis.
1944 * Typically this function should be used by drivers to set caching- and
1945 * encryption bits different than those of @vma->vm_page_prot, because
1946 * the caching- or encryption mode may not be known at mmap() time.
1947 * This is ok as long as @vma->vm_page_prot is not used by the core vm
1948 * to set caching and encryption bits for those vmas (except for COW pages).
1949 * This is ensured by core vm only modifying these page table entries using
1950 * functions that don't touch caching- or encryption bits, using pte_modify()
1951 * if needed. (See for example mprotect()).
1952 * Also when new page-table entries are created, this is only done using the
1953 * fault() callback, and never using the value of vma->vm_page_prot,
1954 * except for page-table entries that point to anonymous pages as the result
1957 * Context: Process context. May allocate using %GFP_KERNEL.
1958 * Return: vm_fault_t value.
1960 vm_fault_t
vmf_insert_mixed_prot(struct vm_area_struct
*vma
, unsigned long addr
,
1961 pfn_t pfn
, pgprot_t pgprot
)
1963 return __vm_insert_mixed(vma
, addr
, pfn
, pgprot
, false);
1965 EXPORT_SYMBOL(vmf_insert_mixed_prot
);
1967 vm_fault_t
vmf_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1970 return __vm_insert_mixed(vma
, addr
, pfn
, vma
->vm_page_prot
, false);
1972 EXPORT_SYMBOL(vmf_insert_mixed
);
1975 * If the insertion of PTE failed because someone else already added a
1976 * different entry in the mean time, we treat that as success as we assume
1977 * the same entry was actually inserted.
1979 vm_fault_t
vmf_insert_mixed_mkwrite(struct vm_area_struct
*vma
,
1980 unsigned long addr
, pfn_t pfn
)
1982 return __vm_insert_mixed(vma
, addr
, pfn
, vma
->vm_page_prot
, true);
1984 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite
);
1987 * maps a range of physical memory into the requested pages. the old
1988 * mappings are removed. any references to nonexistent pages results
1989 * in null mappings (currently treated as "copy-on-access")
1991 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1992 unsigned long addr
, unsigned long end
,
1993 unsigned long pfn
, pgprot_t prot
)
1999 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2002 arch_enter_lazy_mmu_mode();
2004 BUG_ON(!pte_none(*pte
));
2005 if (!pfn_modify_allowed(pfn
, prot
)) {
2009 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
2011 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
2012 arch_leave_lazy_mmu_mode();
2013 pte_unmap_unlock(pte
- 1, ptl
);
2017 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2018 unsigned long addr
, unsigned long end
,
2019 unsigned long pfn
, pgprot_t prot
)
2025 pfn
-= addr
>> PAGE_SHIFT
;
2026 pmd
= pmd_alloc(mm
, pud
, addr
);
2029 VM_BUG_ON(pmd_trans_huge(*pmd
));
2031 next
= pmd_addr_end(addr
, end
);
2032 err
= remap_pte_range(mm
, pmd
, addr
, next
,
2033 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2036 } while (pmd
++, addr
= next
, addr
!= end
);
2040 static inline int remap_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
2041 unsigned long addr
, unsigned long end
,
2042 unsigned long pfn
, pgprot_t prot
)
2048 pfn
-= addr
>> PAGE_SHIFT
;
2049 pud
= pud_alloc(mm
, p4d
, addr
);
2053 next
= pud_addr_end(addr
, end
);
2054 err
= remap_pmd_range(mm
, pud
, addr
, next
,
2055 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2058 } while (pud
++, addr
= next
, addr
!= end
);
2062 static inline int remap_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2063 unsigned long addr
, unsigned long end
,
2064 unsigned long pfn
, pgprot_t prot
)
2070 pfn
-= addr
>> PAGE_SHIFT
;
2071 p4d
= p4d_alloc(mm
, pgd
, addr
);
2075 next
= p4d_addr_end(addr
, end
);
2076 err
= remap_pud_range(mm
, p4d
, addr
, next
,
2077 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2080 } while (p4d
++, addr
= next
, addr
!= end
);
2085 * remap_pfn_range - remap kernel memory to userspace
2086 * @vma: user vma to map to
2087 * @addr: target user address to start at
2088 * @pfn: page frame number of kernel physical memory address
2089 * @size: size of mapping area
2090 * @prot: page protection flags for this mapping
2092 * Note: this is only safe if the mm semaphore is held when called.
2094 * Return: %0 on success, negative error code otherwise.
2096 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
2097 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
2101 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2102 struct mm_struct
*mm
= vma
->vm_mm
;
2103 unsigned long remap_pfn
= pfn
;
2107 * Physically remapped pages are special. Tell the
2108 * rest of the world about it:
2109 * VM_IO tells people not to look at these pages
2110 * (accesses can have side effects).
2111 * VM_PFNMAP tells the core MM that the base pages are just
2112 * raw PFN mappings, and do not have a "struct page" associated
2115 * Disable vma merging and expanding with mremap().
2117 * Omit vma from core dump, even when VM_IO turned off.
2119 * There's a horrible special case to handle copy-on-write
2120 * behaviour that some programs depend on. We mark the "original"
2121 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2122 * See vm_normal_page() for details.
2124 if (is_cow_mapping(vma
->vm_flags
)) {
2125 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
2127 vma
->vm_pgoff
= pfn
;
2130 err
= track_pfn_remap(vma
, &prot
, remap_pfn
, addr
, PAGE_ALIGN(size
));
2134 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
2136 BUG_ON(addr
>= end
);
2137 pfn
-= addr
>> PAGE_SHIFT
;
2138 pgd
= pgd_offset(mm
, addr
);
2139 flush_cache_range(vma
, addr
, end
);
2141 next
= pgd_addr_end(addr
, end
);
2142 err
= remap_p4d_range(mm
, pgd
, addr
, next
,
2143 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2146 } while (pgd
++, addr
= next
, addr
!= end
);
2149 untrack_pfn(vma
, remap_pfn
, PAGE_ALIGN(size
));
2153 EXPORT_SYMBOL(remap_pfn_range
);
2156 * vm_iomap_memory - remap memory to userspace
2157 * @vma: user vma to map to
2158 * @start: start of the physical memory to be mapped
2159 * @len: size of area
2161 * This is a simplified io_remap_pfn_range() for common driver use. The
2162 * driver just needs to give us the physical memory range to be mapped,
2163 * we'll figure out the rest from the vma information.
2165 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2166 * whatever write-combining details or similar.
2168 * Return: %0 on success, negative error code otherwise.
2170 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
2172 unsigned long vm_len
, pfn
, pages
;
2174 /* Check that the physical memory area passed in looks valid */
2175 if (start
+ len
< start
)
2178 * You *really* shouldn't map things that aren't page-aligned,
2179 * but we've historically allowed it because IO memory might
2180 * just have smaller alignment.
2182 len
+= start
& ~PAGE_MASK
;
2183 pfn
= start
>> PAGE_SHIFT
;
2184 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
2185 if (pfn
+ pages
< pfn
)
2188 /* We start the mapping 'vm_pgoff' pages into the area */
2189 if (vma
->vm_pgoff
> pages
)
2191 pfn
+= vma
->vm_pgoff
;
2192 pages
-= vma
->vm_pgoff
;
2194 /* Can we fit all of the mapping? */
2195 vm_len
= vma
->vm_end
- vma
->vm_start
;
2196 if (vm_len
>> PAGE_SHIFT
> pages
)
2199 /* Ok, let it rip */
2200 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
2202 EXPORT_SYMBOL(vm_iomap_memory
);
2204 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2205 unsigned long addr
, unsigned long end
,
2206 pte_fn_t fn
, void *data
, bool create
)
2210 spinlock_t
*uninitialized_var(ptl
);
2213 pte
= (mm
== &init_mm
) ?
2214 pte_alloc_kernel(pmd
, addr
) :
2215 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2219 pte
= (mm
== &init_mm
) ?
2220 pte_offset_kernel(pmd
, addr
) :
2221 pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
2224 BUG_ON(pmd_huge(*pmd
));
2226 arch_enter_lazy_mmu_mode();
2229 if (create
|| !pte_none(*pte
)) {
2230 err
= fn(pte
++, addr
, data
);
2234 } while (addr
+= PAGE_SIZE
, addr
!= end
);
2236 arch_leave_lazy_mmu_mode();
2239 pte_unmap_unlock(pte
-1, ptl
);
2243 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2244 unsigned long addr
, unsigned long end
,
2245 pte_fn_t fn
, void *data
, bool create
)
2251 BUG_ON(pud_huge(*pud
));
2254 pmd
= pmd_alloc(mm
, pud
, addr
);
2258 pmd
= pmd_offset(pud
, addr
);
2261 next
= pmd_addr_end(addr
, end
);
2262 if (create
|| !pmd_none_or_clear_bad(pmd
)) {
2263 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
,
2268 } while (pmd
++, addr
= next
, addr
!= end
);
2272 static int apply_to_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
2273 unsigned long addr
, unsigned long end
,
2274 pte_fn_t fn
, void *data
, bool create
)
2281 pud
= pud_alloc(mm
, p4d
, addr
);
2285 pud
= pud_offset(p4d
, addr
);
2288 next
= pud_addr_end(addr
, end
);
2289 if (create
|| !pud_none_or_clear_bad(pud
)) {
2290 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
,
2295 } while (pud
++, addr
= next
, addr
!= end
);
2299 static int apply_to_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2300 unsigned long addr
, unsigned long end
,
2301 pte_fn_t fn
, void *data
, bool create
)
2308 p4d
= p4d_alloc(mm
, pgd
, addr
);
2312 p4d
= p4d_offset(pgd
, addr
);
2315 next
= p4d_addr_end(addr
, end
);
2316 if (create
|| !p4d_none_or_clear_bad(p4d
)) {
2317 err
= apply_to_pud_range(mm
, p4d
, addr
, next
, fn
, data
,
2322 } while (p4d
++, addr
= next
, addr
!= end
);
2326 static int __apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2327 unsigned long size
, pte_fn_t fn
,
2328 void *data
, bool create
)
2332 unsigned long end
= addr
+ size
;
2335 if (WARN_ON(addr
>= end
))
2338 pgd
= pgd_offset(mm
, addr
);
2340 next
= pgd_addr_end(addr
, end
);
2341 if (!create
&& pgd_none_or_clear_bad(pgd
))
2343 err
= apply_to_p4d_range(mm
, pgd
, addr
, next
, fn
, data
, create
);
2346 } while (pgd
++, addr
= next
, addr
!= end
);
2352 * Scan a region of virtual memory, filling in page tables as necessary
2353 * and calling a provided function on each leaf page table.
2355 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2356 unsigned long size
, pte_fn_t fn
, void *data
)
2358 return __apply_to_page_range(mm
, addr
, size
, fn
, data
, true);
2360 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2363 * Scan a region of virtual memory, calling a provided function on
2364 * each leaf page table where it exists.
2366 * Unlike apply_to_page_range, this does _not_ fill in page tables
2367 * where they are absent.
2369 int apply_to_existing_page_range(struct mm_struct
*mm
, unsigned long addr
,
2370 unsigned long size
, pte_fn_t fn
, void *data
)
2372 return __apply_to_page_range(mm
, addr
, size
, fn
, data
, false);
2374 EXPORT_SYMBOL_GPL(apply_to_existing_page_range
);
2377 * handle_pte_fault chooses page fault handler according to an entry which was
2378 * read non-atomically. Before making any commitment, on those architectures
2379 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2380 * parts, do_swap_page must check under lock before unmapping the pte and
2381 * proceeding (but do_wp_page is only called after already making such a check;
2382 * and do_anonymous_page can safely check later on).
2384 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2385 pte_t
*page_table
, pte_t orig_pte
)
2388 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2389 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2390 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2392 same
= pte_same(*page_table
, orig_pte
);
2396 pte_unmap(page_table
);
2400 static inline bool cow_user_page(struct page
*dst
, struct page
*src
,
2401 struct vm_fault
*vmf
)
2406 bool locked
= false;
2407 struct vm_area_struct
*vma
= vmf
->vma
;
2408 struct mm_struct
*mm
= vma
->vm_mm
;
2409 unsigned long addr
= vmf
->address
;
2411 debug_dma_assert_idle(src
);
2414 copy_user_highpage(dst
, src
, addr
, vma
);
2419 * If the source page was a PFN mapping, we don't have
2420 * a "struct page" for it. We do a best-effort copy by
2421 * just copying from the original user address. If that
2422 * fails, we just zero-fill it. Live with it.
2424 kaddr
= kmap_atomic(dst
);
2425 uaddr
= (void __user
*)(addr
& PAGE_MASK
);
2428 * On architectures with software "accessed" bits, we would
2429 * take a double page fault, so mark it accessed here.
2431 if (arch_faults_on_old_pte() && !pte_young(vmf
->orig_pte
)) {
2434 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, addr
, &vmf
->ptl
);
2436 if (!likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2438 * Other thread has already handled the fault
2439 * and we don't need to do anything. If it's
2440 * not the case, the fault will be triggered
2441 * again on the same address.
2447 entry
= pte_mkyoung(vmf
->orig_pte
);
2448 if (ptep_set_access_flags(vma
, addr
, vmf
->pte
, entry
, 0))
2449 update_mmu_cache(vma
, addr
, vmf
->pte
);
2453 * This really shouldn't fail, because the page is there
2454 * in the page tables. But it might just be unreadable,
2455 * in which case we just give up and fill the result with
2458 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
)) {
2462 /* Re-validate under PTL if the page is still mapped */
2463 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, addr
, &vmf
->ptl
);
2465 if (!likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2466 /* The PTE changed under us. Retry page fault. */
2472 * The same page can be mapped back since last copy attampt.
2473 * Try to copy again under PTL.
2475 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
)) {
2477 * Give a warn in case there can be some obscure
2490 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2491 kunmap_atomic(kaddr
);
2492 flush_dcache_page(dst
);
2497 static gfp_t
__get_fault_gfp_mask(struct vm_area_struct
*vma
)
2499 struct file
*vm_file
= vma
->vm_file
;
2502 return mapping_gfp_mask(vm_file
->f_mapping
) | __GFP_FS
| __GFP_IO
;
2505 * Special mappings (e.g. VDSO) do not have any file so fake
2506 * a default GFP_KERNEL for them.
2512 * Notify the address space that the page is about to become writable so that
2513 * it can prohibit this or wait for the page to get into an appropriate state.
2515 * We do this without the lock held, so that it can sleep if it needs to.
2517 static vm_fault_t
do_page_mkwrite(struct vm_fault
*vmf
)
2520 struct page
*page
= vmf
->page
;
2521 unsigned int old_flags
= vmf
->flags
;
2523 vmf
->flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2525 if (vmf
->vma
->vm_file
&&
2526 IS_SWAPFILE(vmf
->vma
->vm_file
->f_mapping
->host
))
2527 return VM_FAULT_SIGBUS
;
2529 ret
= vmf
->vma
->vm_ops
->page_mkwrite(vmf
);
2530 /* Restore original flags so that caller is not surprised */
2531 vmf
->flags
= old_flags
;
2532 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2534 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
2536 if (!page
->mapping
) {
2538 return 0; /* retry */
2540 ret
|= VM_FAULT_LOCKED
;
2542 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2547 * Handle dirtying of a page in shared file mapping on a write fault.
2549 * The function expects the page to be locked and unlocks it.
2551 static vm_fault_t
fault_dirty_shared_page(struct vm_fault
*vmf
)
2553 struct vm_area_struct
*vma
= vmf
->vma
;
2554 struct address_space
*mapping
;
2555 struct page
*page
= vmf
->page
;
2557 bool page_mkwrite
= vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
;
2559 dirtied
= set_page_dirty(page
);
2560 VM_BUG_ON_PAGE(PageAnon(page
), page
);
2562 * Take a local copy of the address_space - page.mapping may be zeroed
2563 * by truncate after unlock_page(). The address_space itself remains
2564 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2565 * release semantics to prevent the compiler from undoing this copying.
2567 mapping
= page_rmapping(page
);
2571 file_update_time(vma
->vm_file
);
2574 * Throttle page dirtying rate down to writeback speed.
2576 * mapping may be NULL here because some device drivers do not
2577 * set page.mapping but still dirty their pages
2579 * Drop the mmap_sem before waiting on IO, if we can. The file
2580 * is pinning the mapping, as per above.
2582 if ((dirtied
|| page_mkwrite
) && mapping
) {
2585 fpin
= maybe_unlock_mmap_for_io(vmf
, NULL
);
2586 balance_dirty_pages_ratelimited(mapping
);
2589 return VM_FAULT_RETRY
;
2597 * Handle write page faults for pages that can be reused in the current vma
2599 * This can happen either due to the mapping being with the VM_SHARED flag,
2600 * or due to us being the last reference standing to the page. In either
2601 * case, all we need to do here is to mark the page as writable and update
2602 * any related book-keeping.
2604 static inline void wp_page_reuse(struct vm_fault
*vmf
)
2605 __releases(vmf
->ptl
)
2607 struct vm_area_struct
*vma
= vmf
->vma
;
2608 struct page
*page
= vmf
->page
;
2611 * Clear the pages cpupid information as the existing
2612 * information potentially belongs to a now completely
2613 * unrelated process.
2616 page_cpupid_xchg_last(page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2618 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2619 entry
= pte_mkyoung(vmf
->orig_pte
);
2620 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2621 if (ptep_set_access_flags(vma
, vmf
->address
, vmf
->pte
, entry
, 1))
2622 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2623 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2627 * Handle the case of a page which we actually need to copy to a new page.
2629 * Called with mmap_sem locked and the old page referenced, but
2630 * without the ptl held.
2632 * High level logic flow:
2634 * - Allocate a page, copy the content of the old page to the new one.
2635 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2636 * - Take the PTL. If the pte changed, bail out and release the allocated page
2637 * - If the pte is still the way we remember it, update the page table and all
2638 * relevant references. This includes dropping the reference the page-table
2639 * held to the old page, as well as updating the rmap.
2640 * - In any case, unlock the PTL and drop the reference we took to the old page.
2642 static vm_fault_t
wp_page_copy(struct vm_fault
*vmf
)
2644 struct vm_area_struct
*vma
= vmf
->vma
;
2645 struct mm_struct
*mm
= vma
->vm_mm
;
2646 struct page
*old_page
= vmf
->page
;
2647 struct page
*new_page
= NULL
;
2649 int page_copied
= 0;
2650 struct mem_cgroup
*memcg
;
2651 struct mmu_notifier_range range
;
2653 if (unlikely(anon_vma_prepare(vma
)))
2656 if (is_zero_pfn(pte_pfn(vmf
->orig_pte
))) {
2657 new_page
= alloc_zeroed_user_highpage_movable(vma
,
2662 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
2667 if (!cow_user_page(new_page
, old_page
, vmf
)) {
2669 * COW failed, if the fault was solved by other,
2670 * it's fine. If not, userspace would re-fault on
2671 * the same address and we will handle the fault
2672 * from the second attempt.
2681 if (mem_cgroup_try_charge_delay(new_page
, mm
, GFP_KERNEL
, &memcg
, false))
2684 __SetPageUptodate(new_page
);
2686 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, mm
,
2687 vmf
->address
& PAGE_MASK
,
2688 (vmf
->address
& PAGE_MASK
) + PAGE_SIZE
);
2689 mmu_notifier_invalidate_range_start(&range
);
2692 * Re-check the pte - we dropped the lock
2694 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, vmf
->address
, &vmf
->ptl
);
2695 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2697 if (!PageAnon(old_page
)) {
2698 dec_mm_counter_fast(mm
,
2699 mm_counter_file(old_page
));
2700 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2703 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2705 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2706 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2707 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2709 * Clear the pte entry and flush it first, before updating the
2710 * pte with the new entry. This will avoid a race condition
2711 * seen in the presence of one thread doing SMC and another
2714 ptep_clear_flush_notify(vma
, vmf
->address
, vmf
->pte
);
2715 page_add_new_anon_rmap(new_page
, vma
, vmf
->address
, false);
2716 mem_cgroup_commit_charge(new_page
, memcg
, false, false);
2717 lru_cache_add_active_or_unevictable(new_page
, vma
);
2719 * We call the notify macro here because, when using secondary
2720 * mmu page tables (such as kvm shadow page tables), we want the
2721 * new page to be mapped directly into the secondary page table.
2723 set_pte_at_notify(mm
, vmf
->address
, vmf
->pte
, entry
);
2724 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2727 * Only after switching the pte to the new page may
2728 * we remove the mapcount here. Otherwise another
2729 * process may come and find the rmap count decremented
2730 * before the pte is switched to the new page, and
2731 * "reuse" the old page writing into it while our pte
2732 * here still points into it and can be read by other
2735 * The critical issue is to order this
2736 * page_remove_rmap with the ptp_clear_flush above.
2737 * Those stores are ordered by (if nothing else,)
2738 * the barrier present in the atomic_add_negative
2739 * in page_remove_rmap.
2741 * Then the TLB flush in ptep_clear_flush ensures that
2742 * no process can access the old page before the
2743 * decremented mapcount is visible. And the old page
2744 * cannot be reused until after the decremented
2745 * mapcount is visible. So transitively, TLBs to
2746 * old page will be flushed before it can be reused.
2748 page_remove_rmap(old_page
, false);
2751 /* Free the old page.. */
2752 new_page
= old_page
;
2755 mem_cgroup_cancel_charge(new_page
, memcg
, false);
2761 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2763 * No need to double call mmu_notifier->invalidate_range() callback as
2764 * the above ptep_clear_flush_notify() did already call it.
2766 mmu_notifier_invalidate_range_only_end(&range
);
2769 * Don't let another task, with possibly unlocked vma,
2770 * keep the mlocked page.
2772 if (page_copied
&& (vma
->vm_flags
& VM_LOCKED
)) {
2773 lock_page(old_page
); /* LRU manipulation */
2774 if (PageMlocked(old_page
))
2775 munlock_vma_page(old_page
);
2776 unlock_page(old_page
);
2780 return page_copied
? VM_FAULT_WRITE
: 0;
2786 return VM_FAULT_OOM
;
2790 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2791 * writeable once the page is prepared
2793 * @vmf: structure describing the fault
2795 * This function handles all that is needed to finish a write page fault in a
2796 * shared mapping due to PTE being read-only once the mapped page is prepared.
2797 * It handles locking of PTE and modifying it.
2799 * The function expects the page to be locked or other protection against
2800 * concurrent faults / writeback (such as DAX radix tree locks).
2802 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2803 * we acquired PTE lock.
2805 vm_fault_t
finish_mkwrite_fault(struct vm_fault
*vmf
)
2807 WARN_ON_ONCE(!(vmf
->vma
->vm_flags
& VM_SHARED
));
2808 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2811 * We might have raced with another page fault while we released the
2812 * pte_offset_map_lock.
2814 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2815 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2816 return VM_FAULT_NOPAGE
;
2823 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2826 static vm_fault_t
wp_pfn_shared(struct vm_fault
*vmf
)
2828 struct vm_area_struct
*vma
= vmf
->vma
;
2830 if (vma
->vm_ops
&& vma
->vm_ops
->pfn_mkwrite
) {
2833 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2834 vmf
->flags
|= FAULT_FLAG_MKWRITE
;
2835 ret
= vma
->vm_ops
->pfn_mkwrite(vmf
);
2836 if (ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))
2838 return finish_mkwrite_fault(vmf
);
2841 return VM_FAULT_WRITE
;
2844 static vm_fault_t
wp_page_shared(struct vm_fault
*vmf
)
2845 __releases(vmf
->ptl
)
2847 struct vm_area_struct
*vma
= vmf
->vma
;
2848 vm_fault_t ret
= VM_FAULT_WRITE
;
2850 get_page(vmf
->page
);
2852 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2855 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2856 tmp
= do_page_mkwrite(vmf
);
2857 if (unlikely(!tmp
|| (tmp
&
2858 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2859 put_page(vmf
->page
);
2862 tmp
= finish_mkwrite_fault(vmf
);
2863 if (unlikely(tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2864 unlock_page(vmf
->page
);
2865 put_page(vmf
->page
);
2870 lock_page(vmf
->page
);
2872 ret
|= fault_dirty_shared_page(vmf
);
2873 put_page(vmf
->page
);
2879 * This routine handles present pages, when users try to write
2880 * to a shared page. It is done by copying the page to a new address
2881 * and decrementing the shared-page counter for the old page.
2883 * Note that this routine assumes that the protection checks have been
2884 * done by the caller (the low-level page fault routine in most cases).
2885 * Thus we can safely just mark it writable once we've done any necessary
2888 * We also mark the page dirty at this point even though the page will
2889 * change only once the write actually happens. This avoids a few races,
2890 * and potentially makes it more efficient.
2892 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2893 * but allow concurrent faults), with pte both mapped and locked.
2894 * We return with mmap_sem still held, but pte unmapped and unlocked.
2896 static vm_fault_t
do_wp_page(struct vm_fault
*vmf
)
2897 __releases(vmf
->ptl
)
2899 struct vm_area_struct
*vma
= vmf
->vma
;
2901 if (userfaultfd_pte_wp(vma
, *vmf
->pte
)) {
2902 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2903 return handle_userfault(vmf
, VM_UFFD_WP
);
2906 vmf
->page
= vm_normal_page(vma
, vmf
->address
, vmf
->orig_pte
);
2909 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2912 * We should not cow pages in a shared writeable mapping.
2913 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2915 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2916 (VM_WRITE
|VM_SHARED
))
2917 return wp_pfn_shared(vmf
);
2919 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2920 return wp_page_copy(vmf
);
2924 * Take out anonymous pages first, anonymous shared vmas are
2925 * not dirty accountable.
2927 if (PageAnon(vmf
->page
)) {
2928 int total_map_swapcount
;
2929 if (PageKsm(vmf
->page
) && (PageSwapCache(vmf
->page
) ||
2930 page_count(vmf
->page
) != 1))
2932 if (!trylock_page(vmf
->page
)) {
2933 get_page(vmf
->page
);
2934 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2935 lock_page(vmf
->page
);
2936 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2937 vmf
->address
, &vmf
->ptl
);
2938 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2939 unlock_page(vmf
->page
);
2940 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2941 put_page(vmf
->page
);
2944 put_page(vmf
->page
);
2946 if (PageKsm(vmf
->page
)) {
2947 bool reused
= reuse_ksm_page(vmf
->page
, vmf
->vma
,
2949 unlock_page(vmf
->page
);
2953 return VM_FAULT_WRITE
;
2955 if (reuse_swap_page(vmf
->page
, &total_map_swapcount
)) {
2956 if (total_map_swapcount
== 1) {
2958 * The page is all ours. Move it to
2959 * our anon_vma so the rmap code will
2960 * not search our parent or siblings.
2961 * Protected against the rmap code by
2964 page_move_anon_rmap(vmf
->page
, vma
);
2966 unlock_page(vmf
->page
);
2968 return VM_FAULT_WRITE
;
2970 unlock_page(vmf
->page
);
2971 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2972 (VM_WRITE
|VM_SHARED
))) {
2973 return wp_page_shared(vmf
);
2977 * Ok, we need to copy. Oh, well..
2979 get_page(vmf
->page
);
2981 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2982 return wp_page_copy(vmf
);
2985 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2986 unsigned long start_addr
, unsigned long end_addr
,
2987 struct zap_details
*details
)
2989 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2992 static inline void unmap_mapping_range_tree(struct rb_root_cached
*root
,
2993 struct zap_details
*details
)
2995 struct vm_area_struct
*vma
;
2996 pgoff_t vba
, vea
, zba
, zea
;
2998 vma_interval_tree_foreach(vma
, root
,
2999 details
->first_index
, details
->last_index
) {
3001 vba
= vma
->vm_pgoff
;
3002 vea
= vba
+ vma_pages(vma
) - 1;
3003 zba
= details
->first_index
;
3006 zea
= details
->last_index
;
3010 unmap_mapping_range_vma(vma
,
3011 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
3012 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
3018 * unmap_mapping_pages() - Unmap pages from processes.
3019 * @mapping: The address space containing pages to be unmapped.
3020 * @start: Index of first page to be unmapped.
3021 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3022 * @even_cows: Whether to unmap even private COWed pages.
3024 * Unmap the pages in this address space from any userspace process which
3025 * has them mmaped. Generally, you want to remove COWed pages as well when
3026 * a file is being truncated, but not when invalidating pages from the page
3029 void unmap_mapping_pages(struct address_space
*mapping
, pgoff_t start
,
3030 pgoff_t nr
, bool even_cows
)
3032 struct zap_details details
= { };
3034 details
.check_mapping
= even_cows
? NULL
: mapping
;
3035 details
.first_index
= start
;
3036 details
.last_index
= start
+ nr
- 1;
3037 if (details
.last_index
< details
.first_index
)
3038 details
.last_index
= ULONG_MAX
;
3040 i_mmap_lock_write(mapping
);
3041 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
)))
3042 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
3043 i_mmap_unlock_write(mapping
);
3047 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3048 * address_space corresponding to the specified byte range in the underlying
3051 * @mapping: the address space containing mmaps to be unmapped.
3052 * @holebegin: byte in first page to unmap, relative to the start of
3053 * the underlying file. This will be rounded down to a PAGE_SIZE
3054 * boundary. Note that this is different from truncate_pagecache(), which
3055 * must keep the partial page. In contrast, we must get rid of
3057 * @holelen: size of prospective hole in bytes. This will be rounded
3058 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3060 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3061 * but 0 when invalidating pagecache, don't throw away private data.
3063 void unmap_mapping_range(struct address_space
*mapping
,
3064 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
3066 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
3067 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
3069 /* Check for overflow. */
3070 if (sizeof(holelen
) > sizeof(hlen
)) {
3072 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
3073 if (holeend
& ~(long long)ULONG_MAX
)
3074 hlen
= ULONG_MAX
- hba
+ 1;
3077 unmap_mapping_pages(mapping
, hba
, hlen
, even_cows
);
3079 EXPORT_SYMBOL(unmap_mapping_range
);
3082 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3083 * but allow concurrent faults), and pte mapped but not yet locked.
3084 * We return with pte unmapped and unlocked.
3086 * We return with the mmap_sem locked or unlocked in the same cases
3087 * as does filemap_fault().
3089 vm_fault_t
do_swap_page(struct vm_fault
*vmf
)
3091 struct vm_area_struct
*vma
= vmf
->vma
;
3092 struct page
*page
= NULL
, *swapcache
;
3093 struct mem_cgroup
*memcg
;
3100 if (!pte_unmap_same(vma
->vm_mm
, vmf
->pmd
, vmf
->pte
, vmf
->orig_pte
))
3103 entry
= pte_to_swp_entry(vmf
->orig_pte
);
3104 if (unlikely(non_swap_entry(entry
))) {
3105 if (is_migration_entry(entry
)) {
3106 migration_entry_wait(vma
->vm_mm
, vmf
->pmd
,
3108 } else if (is_device_private_entry(entry
)) {
3109 vmf
->page
= device_private_entry_to_page(entry
);
3110 ret
= vmf
->page
->pgmap
->ops
->migrate_to_ram(vmf
);
3111 } else if (is_hwpoison_entry(entry
)) {
3112 ret
= VM_FAULT_HWPOISON
;
3114 print_bad_pte(vma
, vmf
->address
, vmf
->orig_pte
, NULL
);
3115 ret
= VM_FAULT_SIGBUS
;
3121 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
3122 page
= lookup_swap_cache(entry
, vma
, vmf
->address
);
3126 struct swap_info_struct
*si
= swp_swap_info(entry
);
3128 if (si
->flags
& SWP_SYNCHRONOUS_IO
&&
3129 __swap_count(entry
) == 1) {
3130 /* skip swapcache */
3131 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
3134 __SetPageLocked(page
);
3135 __SetPageSwapBacked(page
);
3136 set_page_private(page
, entry
.val
);
3137 lru_cache_add_anon(page
);
3138 swap_readpage(page
, true);
3141 page
= swapin_readahead(entry
, GFP_HIGHUSER_MOVABLE
,
3148 * Back out if somebody else faulted in this pte
3149 * while we released the pte lock.
3151 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
3152 vmf
->address
, &vmf
->ptl
);
3153 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
)))
3155 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3159 /* Had to read the page from swap area: Major fault */
3160 ret
= VM_FAULT_MAJOR
;
3161 count_vm_event(PGMAJFAULT
);
3162 count_memcg_event_mm(vma
->vm_mm
, PGMAJFAULT
);
3163 } else if (PageHWPoison(page
)) {
3165 * hwpoisoned dirty swapcache pages are kept for killing
3166 * owner processes (which may be unknown at hwpoison time)
3168 ret
= VM_FAULT_HWPOISON
;
3169 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3173 locked
= lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
);
3175 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3177 ret
|= VM_FAULT_RETRY
;
3182 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3183 * release the swapcache from under us. The page pin, and pte_same
3184 * test below, are not enough to exclude that. Even if it is still
3185 * swapcache, we need to check that the page's swap has not changed.
3187 if (unlikely((!PageSwapCache(page
) ||
3188 page_private(page
) != entry
.val
)) && swapcache
)
3191 page
= ksm_might_need_to_copy(page
, vma
, vmf
->address
);
3192 if (unlikely(!page
)) {
3198 if (mem_cgroup_try_charge_delay(page
, vma
->vm_mm
, GFP_KERNEL
,
3205 * Back out if somebody else already faulted in this pte.
3207 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3209 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
)))
3212 if (unlikely(!PageUptodate(page
))) {
3213 ret
= VM_FAULT_SIGBUS
;
3218 * The page isn't present yet, go ahead with the fault.
3220 * Be careful about the sequence of operations here.
3221 * To get its accounting right, reuse_swap_page() must be called
3222 * while the page is counted on swap but not yet in mapcount i.e.
3223 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3224 * must be called after the swap_free(), or it will never succeed.
3227 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3228 dec_mm_counter_fast(vma
->vm_mm
, MM_SWAPENTS
);
3229 pte
= mk_pte(page
, vma
->vm_page_prot
);
3230 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
, NULL
)) {
3231 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
3232 vmf
->flags
&= ~FAULT_FLAG_WRITE
;
3233 ret
|= VM_FAULT_WRITE
;
3234 exclusive
= RMAP_EXCLUSIVE
;
3236 flush_icache_page(vma
, page
);
3237 if (pte_swp_soft_dirty(vmf
->orig_pte
))
3238 pte
= pte_mksoft_dirty(pte
);
3239 if (pte_swp_uffd_wp(vmf
->orig_pte
)) {
3240 pte
= pte_mkuffd_wp(pte
);
3241 pte
= pte_wrprotect(pte
);
3243 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
3244 arch_do_swap_page(vma
->vm_mm
, vma
, vmf
->address
, pte
, vmf
->orig_pte
);
3245 vmf
->orig_pte
= pte
;
3247 /* ksm created a completely new copy */
3248 if (unlikely(page
!= swapcache
&& swapcache
)) {
3249 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3250 mem_cgroup_commit_charge(page
, memcg
, false, false);
3251 lru_cache_add_active_or_unevictable(page
, vma
);
3253 do_page_add_anon_rmap(page
, vma
, vmf
->address
, exclusive
);
3254 mem_cgroup_commit_charge(page
, memcg
, true, false);
3255 activate_page(page
);
3259 if (mem_cgroup_swap_full(page
) ||
3260 (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
3261 try_to_free_swap(page
);
3263 if (page
!= swapcache
&& swapcache
) {
3265 * Hold the lock to avoid the swap entry to be reused
3266 * until we take the PT lock for the pte_same() check
3267 * (to avoid false positives from pte_same). For
3268 * further safety release the lock after the swap_free
3269 * so that the swap count won't change under a
3270 * parallel locked swapcache.
3272 unlock_page(swapcache
);
3273 put_page(swapcache
);
3276 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
3277 ret
|= do_wp_page(vmf
);
3278 if (ret
& VM_FAULT_ERROR
)
3279 ret
&= VM_FAULT_ERROR
;
3283 /* No need to invalidate - it was non-present before */
3284 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3286 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3290 mem_cgroup_cancel_charge(page
, memcg
, false);
3291 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3296 if (page
!= swapcache
&& swapcache
) {
3297 unlock_page(swapcache
);
3298 put_page(swapcache
);
3304 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3305 * but allow concurrent faults), and pte mapped but not yet locked.
3306 * We return with mmap_sem still held, but pte unmapped and unlocked.
3308 static vm_fault_t
do_anonymous_page(struct vm_fault
*vmf
)
3310 struct vm_area_struct
*vma
= vmf
->vma
;
3311 struct mem_cgroup
*memcg
;
3316 /* File mapping without ->vm_ops ? */
3317 if (vma
->vm_flags
& VM_SHARED
)
3318 return VM_FAULT_SIGBUS
;
3321 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3322 * pte_offset_map() on pmds where a huge pmd might be created
3323 * from a different thread.
3325 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3326 * parallel threads are excluded by other means.
3328 * Here we only have down_read(mmap_sem).
3330 if (pte_alloc(vma
->vm_mm
, vmf
->pmd
))
3331 return VM_FAULT_OOM
;
3333 /* See the comment in pte_alloc_one_map() */
3334 if (unlikely(pmd_trans_unstable(vmf
->pmd
)))
3337 /* Use the zero-page for reads */
3338 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
3339 !mm_forbids_zeropage(vma
->vm_mm
)) {
3340 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(vmf
->address
),
3341 vma
->vm_page_prot
));
3342 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
3343 vmf
->address
, &vmf
->ptl
);
3344 if (!pte_none(*vmf
->pte
))
3346 ret
= check_stable_address_space(vma
->vm_mm
);
3349 /* Deliver the page fault to userland, check inside PT lock */
3350 if (userfaultfd_missing(vma
)) {
3351 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3352 return handle_userfault(vmf
, VM_UFFD_MISSING
);
3357 /* Allocate our own private page. */
3358 if (unlikely(anon_vma_prepare(vma
)))
3360 page
= alloc_zeroed_user_highpage_movable(vma
, vmf
->address
);
3364 if (mem_cgroup_try_charge_delay(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
,
3369 * The memory barrier inside __SetPageUptodate makes sure that
3370 * preceding stores to the page contents become visible before
3371 * the set_pte_at() write.
3373 __SetPageUptodate(page
);
3375 entry
= mk_pte(page
, vma
->vm_page_prot
);
3376 if (vma
->vm_flags
& VM_WRITE
)
3377 entry
= pte_mkwrite(pte_mkdirty(entry
));
3379 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3381 if (!pte_none(*vmf
->pte
))
3384 ret
= check_stable_address_space(vma
->vm_mm
);
3388 /* Deliver the page fault to userland, check inside PT lock */
3389 if (userfaultfd_missing(vma
)) {
3390 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3391 mem_cgroup_cancel_charge(page
, memcg
, false);
3393 return handle_userfault(vmf
, VM_UFFD_MISSING
);
3396 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3397 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3398 mem_cgroup_commit_charge(page
, memcg
, false, false);
3399 lru_cache_add_active_or_unevictable(page
, vma
);
3401 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3403 /* No need to invalidate - it was non-present before */
3404 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3406 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3409 mem_cgroup_cancel_charge(page
, memcg
, false);
3415 return VM_FAULT_OOM
;
3419 * The mmap_sem must have been held on entry, and may have been
3420 * released depending on flags and vma->vm_ops->fault() return value.
3421 * See filemap_fault() and __lock_page_retry().
3423 static vm_fault_t
__do_fault(struct vm_fault
*vmf
)
3425 struct vm_area_struct
*vma
= vmf
->vma
;
3429 * Preallocate pte before we take page_lock because this might lead to
3430 * deadlocks for memcg reclaim which waits for pages under writeback:
3432 * SetPageWriteback(A)
3438 * wait_on_page_writeback(A)
3439 * SetPageWriteback(B)
3441 * # flush A, B to clear the writeback
3443 if (pmd_none(*vmf
->pmd
) && !vmf
->prealloc_pte
) {
3444 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
);
3445 if (!vmf
->prealloc_pte
)
3446 return VM_FAULT_OOM
;
3447 smp_wmb(); /* See comment in __pte_alloc() */
3450 ret
= vma
->vm_ops
->fault(vmf
);
3451 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
|
3452 VM_FAULT_DONE_COW
)))
3455 if (unlikely(PageHWPoison(vmf
->page
))) {
3456 if (ret
& VM_FAULT_LOCKED
)
3457 unlock_page(vmf
->page
);
3458 put_page(vmf
->page
);
3460 return VM_FAULT_HWPOISON
;
3463 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
3464 lock_page(vmf
->page
);
3466 VM_BUG_ON_PAGE(!PageLocked(vmf
->page
), vmf
->page
);
3472 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3473 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3474 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3475 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3477 static int pmd_devmap_trans_unstable(pmd_t
*pmd
)
3479 return pmd_devmap(*pmd
) || pmd_trans_unstable(pmd
);
3482 static vm_fault_t
pte_alloc_one_map(struct vm_fault
*vmf
)
3484 struct vm_area_struct
*vma
= vmf
->vma
;
3486 if (!pmd_none(*vmf
->pmd
))
3488 if (vmf
->prealloc_pte
) {
3489 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3490 if (unlikely(!pmd_none(*vmf
->pmd
))) {
3491 spin_unlock(vmf
->ptl
);
3495 mm_inc_nr_ptes(vma
->vm_mm
);
3496 pmd_populate(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3497 spin_unlock(vmf
->ptl
);
3498 vmf
->prealloc_pte
= NULL
;
3499 } else if (unlikely(pte_alloc(vma
->vm_mm
, vmf
->pmd
))) {
3500 return VM_FAULT_OOM
;
3504 * If a huge pmd materialized under us just retry later. Use
3505 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3506 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3507 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3508 * running immediately after a huge pmd fault in a different thread of
3509 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3510 * All we have to ensure is that it is a regular pmd that we can walk
3511 * with pte_offset_map() and we can do that through an atomic read in
3512 * C, which is what pmd_trans_unstable() provides.
3514 if (pmd_devmap_trans_unstable(vmf
->pmd
))
3515 return VM_FAULT_NOPAGE
;
3518 * At this point we know that our vmf->pmd points to a page of ptes
3519 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3520 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3521 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3522 * be valid and we will re-check to make sure the vmf->pte isn't
3523 * pte_none() under vmf->ptl protection when we return to
3526 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3532 static void deposit_prealloc_pte(struct vm_fault
*vmf
)
3534 struct vm_area_struct
*vma
= vmf
->vma
;
3536 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3538 * We are going to consume the prealloc table,
3539 * count that as nr_ptes.
3541 mm_inc_nr_ptes(vma
->vm_mm
);
3542 vmf
->prealloc_pte
= NULL
;
3545 static vm_fault_t
do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3547 struct vm_area_struct
*vma
= vmf
->vma
;
3548 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3549 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
3554 if (!transhuge_vma_suitable(vma
, haddr
))
3555 return VM_FAULT_FALLBACK
;
3557 ret
= VM_FAULT_FALLBACK
;
3558 page
= compound_head(page
);
3561 * Archs like ppc64 need additonal space to store information
3562 * related to pte entry. Use the preallocated table for that.
3564 if (arch_needs_pgtable_deposit() && !vmf
->prealloc_pte
) {
3565 vmf
->prealloc_pte
= pte_alloc_one(vma
->vm_mm
);
3566 if (!vmf
->prealloc_pte
)
3567 return VM_FAULT_OOM
;
3568 smp_wmb(); /* See comment in __pte_alloc() */
3571 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3572 if (unlikely(!pmd_none(*vmf
->pmd
)))
3575 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
3576 flush_icache_page(vma
, page
+ i
);
3578 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
3580 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
3582 add_mm_counter(vma
->vm_mm
, mm_counter_file(page
), HPAGE_PMD_NR
);
3583 page_add_file_rmap(page
, true);
3585 * deposit and withdraw with pmd lock held
3587 if (arch_needs_pgtable_deposit())
3588 deposit_prealloc_pte(vmf
);
3590 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
3592 update_mmu_cache_pmd(vma
, haddr
, vmf
->pmd
);
3594 /* fault is handled */
3596 count_vm_event(THP_FILE_MAPPED
);
3598 spin_unlock(vmf
->ptl
);
3602 static vm_fault_t
do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3610 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3611 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3613 * @vmf: fault environment
3614 * @memcg: memcg to charge page (only for private mappings)
3615 * @page: page to map
3617 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3620 * Target users are page handler itself and implementations of
3621 * vm_ops->map_pages.
3623 * Return: %0 on success, %VM_FAULT_ code in case of error.
3625 vm_fault_t
alloc_set_pte(struct vm_fault
*vmf
, struct mem_cgroup
*memcg
,
3628 struct vm_area_struct
*vma
= vmf
->vma
;
3629 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3633 if (pmd_none(*vmf
->pmd
) && PageTransCompound(page
)) {
3635 VM_BUG_ON_PAGE(memcg
, page
);
3637 ret
= do_set_pmd(vmf
, page
);
3638 if (ret
!= VM_FAULT_FALLBACK
)
3643 ret
= pte_alloc_one_map(vmf
);
3648 /* Re-check under ptl */
3649 if (unlikely(!pte_none(*vmf
->pte
)))
3650 return VM_FAULT_NOPAGE
;
3652 flush_icache_page(vma
, page
);
3653 entry
= mk_pte(page
, vma
->vm_page_prot
);
3655 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3656 /* copy-on-write page */
3657 if (write
&& !(vma
->vm_flags
& VM_SHARED
)) {
3658 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3659 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3660 mem_cgroup_commit_charge(page
, memcg
, false, false);
3661 lru_cache_add_active_or_unevictable(page
, vma
);
3663 inc_mm_counter_fast(vma
->vm_mm
, mm_counter_file(page
));
3664 page_add_file_rmap(page
, false);
3666 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3668 /* no need to invalidate: a not-present page won't be cached */
3669 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3676 * finish_fault - finish page fault once we have prepared the page to fault
3678 * @vmf: structure describing the fault
3680 * This function handles all that is needed to finish a page fault once the
3681 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3682 * given page, adds reverse page mapping, handles memcg charges and LRU
3685 * The function expects the page to be locked and on success it consumes a
3686 * reference of a page being mapped (for the PTE which maps it).
3688 * Return: %0 on success, %VM_FAULT_ code in case of error.
3690 vm_fault_t
finish_fault(struct vm_fault
*vmf
)
3695 /* Did we COW the page? */
3696 if ((vmf
->flags
& FAULT_FLAG_WRITE
) &&
3697 !(vmf
->vma
->vm_flags
& VM_SHARED
))
3698 page
= vmf
->cow_page
;
3703 * check even for read faults because we might have lost our CoWed
3706 if (!(vmf
->vma
->vm_flags
& VM_SHARED
))
3707 ret
= check_stable_address_space(vmf
->vma
->vm_mm
);
3709 ret
= alloc_set_pte(vmf
, vmf
->memcg
, page
);
3711 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3715 static unsigned long fault_around_bytes __read_mostly
=
3716 rounddown_pow_of_two(65536);
3718 #ifdef CONFIG_DEBUG_FS
3719 static int fault_around_bytes_get(void *data
, u64
*val
)
3721 *val
= fault_around_bytes
;
3726 * fault_around_bytes must be rounded down to the nearest page order as it's
3727 * what do_fault_around() expects to see.
3729 static int fault_around_bytes_set(void *data
, u64 val
)
3731 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
3733 if (val
> PAGE_SIZE
)
3734 fault_around_bytes
= rounddown_pow_of_two(val
);
3736 fault_around_bytes
= PAGE_SIZE
; /* rounddown_pow_of_two(0) is undefined */
3739 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops
,
3740 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
3742 static int __init
fault_around_debugfs(void)
3744 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL
, NULL
,
3745 &fault_around_bytes_fops
);
3748 late_initcall(fault_around_debugfs
);
3752 * do_fault_around() tries to map few pages around the fault address. The hope
3753 * is that the pages will be needed soon and this will lower the number of
3756 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3757 * not ready to be mapped: not up-to-date, locked, etc.
3759 * This function is called with the page table lock taken. In the split ptlock
3760 * case the page table lock only protects only those entries which belong to
3761 * the page table corresponding to the fault address.
3763 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3766 * fault_around_bytes defines how many bytes we'll try to map.
3767 * do_fault_around() expects it to be set to a power of two less than or equal
3770 * The virtual address of the area that we map is naturally aligned to
3771 * fault_around_bytes rounded down to the machine page size
3772 * (and therefore to page order). This way it's easier to guarantee
3773 * that we don't cross page table boundaries.
3775 static vm_fault_t
do_fault_around(struct vm_fault
*vmf
)
3777 unsigned long address
= vmf
->address
, nr_pages
, mask
;
3778 pgoff_t start_pgoff
= vmf
->pgoff
;
3783 nr_pages
= READ_ONCE(fault_around_bytes
) >> PAGE_SHIFT
;
3784 mask
= ~(nr_pages
* PAGE_SIZE
- 1) & PAGE_MASK
;
3786 vmf
->address
= max(address
& mask
, vmf
->vma
->vm_start
);
3787 off
= ((address
- vmf
->address
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
3791 * end_pgoff is either the end of the page table, the end of
3792 * the vma or nr_pages from start_pgoff, depending what is nearest.
3794 end_pgoff
= start_pgoff
-
3795 ((vmf
->address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
3797 end_pgoff
= min3(end_pgoff
, vma_pages(vmf
->vma
) + vmf
->vma
->vm_pgoff
- 1,
3798 start_pgoff
+ nr_pages
- 1);
3800 if (pmd_none(*vmf
->pmd
)) {
3801 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
);
3802 if (!vmf
->prealloc_pte
)
3804 smp_wmb(); /* See comment in __pte_alloc() */
3807 vmf
->vma
->vm_ops
->map_pages(vmf
, start_pgoff
, end_pgoff
);
3809 /* Huge page is mapped? Page fault is solved */
3810 if (pmd_trans_huge(*vmf
->pmd
)) {
3811 ret
= VM_FAULT_NOPAGE
;
3815 /* ->map_pages() haven't done anything useful. Cold page cache? */
3819 /* check if the page fault is solved */
3820 vmf
->pte
-= (vmf
->address
>> PAGE_SHIFT
) - (address
>> PAGE_SHIFT
);
3821 if (!pte_none(*vmf
->pte
))
3822 ret
= VM_FAULT_NOPAGE
;
3823 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3825 vmf
->address
= address
;
3830 static vm_fault_t
do_read_fault(struct vm_fault
*vmf
)
3832 struct vm_area_struct
*vma
= vmf
->vma
;
3836 * Let's call ->map_pages() first and use ->fault() as fallback
3837 * if page by the offset is not ready to be mapped (cold cache or
3840 if (vma
->vm_ops
->map_pages
&& fault_around_bytes
>> PAGE_SHIFT
> 1) {
3841 ret
= do_fault_around(vmf
);
3846 ret
= __do_fault(vmf
);
3847 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3850 ret
|= finish_fault(vmf
);
3851 unlock_page(vmf
->page
);
3852 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3853 put_page(vmf
->page
);
3857 static vm_fault_t
do_cow_fault(struct vm_fault
*vmf
)
3859 struct vm_area_struct
*vma
= vmf
->vma
;
3862 if (unlikely(anon_vma_prepare(vma
)))
3863 return VM_FAULT_OOM
;
3865 vmf
->cow_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, vmf
->address
);
3867 return VM_FAULT_OOM
;
3869 if (mem_cgroup_try_charge_delay(vmf
->cow_page
, vma
->vm_mm
, GFP_KERNEL
,
3870 &vmf
->memcg
, false)) {
3871 put_page(vmf
->cow_page
);
3872 return VM_FAULT_OOM
;
3875 ret
= __do_fault(vmf
);
3876 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3878 if (ret
& VM_FAULT_DONE_COW
)
3881 copy_user_highpage(vmf
->cow_page
, vmf
->page
, vmf
->address
, vma
);
3882 __SetPageUptodate(vmf
->cow_page
);
3884 ret
|= finish_fault(vmf
);
3885 unlock_page(vmf
->page
);
3886 put_page(vmf
->page
);
3887 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3891 mem_cgroup_cancel_charge(vmf
->cow_page
, vmf
->memcg
, false);
3892 put_page(vmf
->cow_page
);
3896 static vm_fault_t
do_shared_fault(struct vm_fault
*vmf
)
3898 struct vm_area_struct
*vma
= vmf
->vma
;
3899 vm_fault_t ret
, tmp
;
3901 ret
= __do_fault(vmf
);
3902 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3906 * Check if the backing address space wants to know that the page is
3907 * about to become writable
3909 if (vma
->vm_ops
->page_mkwrite
) {
3910 unlock_page(vmf
->page
);
3911 tmp
= do_page_mkwrite(vmf
);
3912 if (unlikely(!tmp
||
3913 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
3914 put_page(vmf
->page
);
3919 ret
|= finish_fault(vmf
);
3920 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
3922 unlock_page(vmf
->page
);
3923 put_page(vmf
->page
);
3927 ret
|= fault_dirty_shared_page(vmf
);
3932 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3933 * but allow concurrent faults).
3934 * The mmap_sem may have been released depending on flags and our
3935 * return value. See filemap_fault() and __lock_page_or_retry().
3936 * If mmap_sem is released, vma may become invalid (for example
3937 * by other thread calling munmap()).
3939 static vm_fault_t
do_fault(struct vm_fault
*vmf
)
3941 struct vm_area_struct
*vma
= vmf
->vma
;
3942 struct mm_struct
*vm_mm
= vma
->vm_mm
;
3946 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3948 if (!vma
->vm_ops
->fault
) {
3950 * If we find a migration pmd entry or a none pmd entry, which
3951 * should never happen, return SIGBUS
3953 if (unlikely(!pmd_present(*vmf
->pmd
)))
3954 ret
= VM_FAULT_SIGBUS
;
3956 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
,
3961 * Make sure this is not a temporary clearing of pte
3962 * by holding ptl and checking again. A R/M/W update
3963 * of pte involves: take ptl, clearing the pte so that
3964 * we don't have concurrent modification by hardware
3965 * followed by an update.
3967 if (unlikely(pte_none(*vmf
->pte
)))
3968 ret
= VM_FAULT_SIGBUS
;
3970 ret
= VM_FAULT_NOPAGE
;
3972 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3974 } else if (!(vmf
->flags
& FAULT_FLAG_WRITE
))
3975 ret
= do_read_fault(vmf
);
3976 else if (!(vma
->vm_flags
& VM_SHARED
))
3977 ret
= do_cow_fault(vmf
);
3979 ret
= do_shared_fault(vmf
);
3981 /* preallocated pagetable is unused: free it */
3982 if (vmf
->prealloc_pte
) {
3983 pte_free(vm_mm
, vmf
->prealloc_pte
);
3984 vmf
->prealloc_pte
= NULL
;
3989 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3990 unsigned long addr
, int page_nid
,
3995 count_vm_numa_event(NUMA_HINT_FAULTS
);
3996 if (page_nid
== numa_node_id()) {
3997 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3998 *flags
|= TNF_FAULT_LOCAL
;
4001 return mpol_misplaced(page
, vma
, addr
);
4004 static vm_fault_t
do_numa_page(struct vm_fault
*vmf
)
4006 struct vm_area_struct
*vma
= vmf
->vma
;
4007 struct page
*page
= NULL
;
4008 int page_nid
= NUMA_NO_NODE
;
4011 bool migrated
= false;
4013 bool was_writable
= pte_savedwrite(vmf
->orig_pte
);
4017 * The "pte" at this point cannot be used safely without
4018 * validation through pte_unmap_same(). It's of NUMA type but
4019 * the pfn may be screwed if the read is non atomic.
4021 vmf
->ptl
= pte_lockptr(vma
->vm_mm
, vmf
->pmd
);
4022 spin_lock(vmf
->ptl
);
4023 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
4024 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4029 * Make it present again, Depending on how arch implementes non
4030 * accessible ptes, some can allow access by kernel mode.
4032 old_pte
= ptep_modify_prot_start(vma
, vmf
->address
, vmf
->pte
);
4033 pte
= pte_modify(old_pte
, vma
->vm_page_prot
);
4034 pte
= pte_mkyoung(pte
);
4036 pte
= pte_mkwrite(pte
);
4037 ptep_modify_prot_commit(vma
, vmf
->address
, vmf
->pte
, old_pte
, pte
);
4038 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
4040 page
= vm_normal_page(vma
, vmf
->address
, pte
);
4042 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4046 /* TODO: handle PTE-mapped THP */
4047 if (PageCompound(page
)) {
4048 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4053 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4054 * much anyway since they can be in shared cache state. This misses
4055 * the case where a mapping is writable but the process never writes
4056 * to it but pte_write gets cleared during protection updates and
4057 * pte_dirty has unpredictable behaviour between PTE scan updates,
4058 * background writeback, dirty balancing and application behaviour.
4060 if (!pte_write(pte
))
4061 flags
|= TNF_NO_GROUP
;
4064 * Flag if the page is shared between multiple address spaces. This
4065 * is later used when determining whether to group tasks together
4067 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
4068 flags
|= TNF_SHARED
;
4070 last_cpupid
= page_cpupid_last(page
);
4071 page_nid
= page_to_nid(page
);
4072 target_nid
= numa_migrate_prep(page
, vma
, vmf
->address
, page_nid
,
4074 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4075 if (target_nid
== NUMA_NO_NODE
) {
4080 /* Migrate to the requested node */
4081 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
4083 page_nid
= target_nid
;
4084 flags
|= TNF_MIGRATED
;
4086 flags
|= TNF_MIGRATE_FAIL
;
4089 if (page_nid
!= NUMA_NO_NODE
)
4090 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
4094 static inline vm_fault_t
create_huge_pmd(struct vm_fault
*vmf
)
4096 if (vma_is_anonymous(vmf
->vma
))
4097 return do_huge_pmd_anonymous_page(vmf
);
4098 if (vmf
->vma
->vm_ops
->huge_fault
)
4099 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
4100 return VM_FAULT_FALLBACK
;
4103 /* `inline' is required to avoid gcc 4.1.2 build error */
4104 static inline vm_fault_t
wp_huge_pmd(struct vm_fault
*vmf
, pmd_t orig_pmd
)
4106 if (vma_is_anonymous(vmf
->vma
)) {
4107 if (userfaultfd_huge_pmd_wp(vmf
->vma
, orig_pmd
))
4108 return handle_userfault(vmf
, VM_UFFD_WP
);
4109 return do_huge_pmd_wp_page(vmf
, orig_pmd
);
4111 if (vmf
->vma
->vm_ops
->huge_fault
) {
4112 vm_fault_t ret
= vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
4114 if (!(ret
& VM_FAULT_FALLBACK
))
4118 /* COW or write-notify handled on pte level: split pmd. */
4119 __split_huge_pmd(vmf
->vma
, vmf
->pmd
, vmf
->address
, false, NULL
);
4121 return VM_FAULT_FALLBACK
;
4124 static vm_fault_t
create_huge_pud(struct vm_fault
*vmf
)
4126 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4127 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4128 /* No support for anonymous transparent PUD pages yet */
4129 if (vma_is_anonymous(vmf
->vma
))
4131 if (vmf
->vma
->vm_ops
->huge_fault
) {
4132 vm_fault_t ret
= vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
4134 if (!(ret
& VM_FAULT_FALLBACK
))
4138 /* COW or write-notify not handled on PUD level: split pud.*/
4139 __split_huge_pud(vmf
->vma
, vmf
->pud
, vmf
->address
);
4140 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4141 return VM_FAULT_FALLBACK
;
4144 static vm_fault_t
wp_huge_pud(struct vm_fault
*vmf
, pud_t orig_pud
)
4146 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4147 /* No support for anonymous transparent PUD pages yet */
4148 if (vma_is_anonymous(vmf
->vma
))
4149 return VM_FAULT_FALLBACK
;
4150 if (vmf
->vma
->vm_ops
->huge_fault
)
4151 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
4152 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4153 return VM_FAULT_FALLBACK
;
4157 * These routines also need to handle stuff like marking pages dirty
4158 * and/or accessed for architectures that don't do it in hardware (most
4159 * RISC architectures). The early dirtying is also good on the i386.
4161 * There is also a hook called "update_mmu_cache()" that architectures
4162 * with external mmu caches can use to update those (ie the Sparc or
4163 * PowerPC hashed page tables that act as extended TLBs).
4165 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
4166 * concurrent faults).
4168 * The mmap_sem may have been released depending on flags and our return value.
4169 * See filemap_fault() and __lock_page_or_retry().
4171 static vm_fault_t
handle_pte_fault(struct vm_fault
*vmf
)
4175 if (unlikely(pmd_none(*vmf
->pmd
))) {
4177 * Leave __pte_alloc() until later: because vm_ops->fault may
4178 * want to allocate huge page, and if we expose page table
4179 * for an instant, it will be difficult to retract from
4180 * concurrent faults and from rmap lookups.
4184 /* See comment in pte_alloc_one_map() */
4185 if (pmd_devmap_trans_unstable(vmf
->pmd
))
4188 * A regular pmd is established and it can't morph into a huge
4189 * pmd from under us anymore at this point because we hold the
4190 * mmap_sem read mode and khugepaged takes it in write mode.
4191 * So now it's safe to run pte_offset_map().
4193 vmf
->pte
= pte_offset_map(vmf
->pmd
, vmf
->address
);
4194 vmf
->orig_pte
= *vmf
->pte
;
4197 * some architectures can have larger ptes than wordsize,
4198 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4199 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4200 * accesses. The code below just needs a consistent view
4201 * for the ifs and we later double check anyway with the
4202 * ptl lock held. So here a barrier will do.
4205 if (pte_none(vmf
->orig_pte
)) {
4206 pte_unmap(vmf
->pte
);
4212 if (vma_is_anonymous(vmf
->vma
))
4213 return do_anonymous_page(vmf
);
4215 return do_fault(vmf
);
4218 if (!pte_present(vmf
->orig_pte
))
4219 return do_swap_page(vmf
);
4221 if (pte_protnone(vmf
->orig_pte
) && vma_is_accessible(vmf
->vma
))
4222 return do_numa_page(vmf
);
4224 vmf
->ptl
= pte_lockptr(vmf
->vma
->vm_mm
, vmf
->pmd
);
4225 spin_lock(vmf
->ptl
);
4226 entry
= vmf
->orig_pte
;
4227 if (unlikely(!pte_same(*vmf
->pte
, entry
)))
4229 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
4230 if (!pte_write(entry
))
4231 return do_wp_page(vmf
);
4232 entry
= pte_mkdirty(entry
);
4234 entry
= pte_mkyoung(entry
);
4235 if (ptep_set_access_flags(vmf
->vma
, vmf
->address
, vmf
->pte
, entry
,
4236 vmf
->flags
& FAULT_FLAG_WRITE
)) {
4237 update_mmu_cache(vmf
->vma
, vmf
->address
, vmf
->pte
);
4240 * This is needed only for protection faults but the arch code
4241 * is not yet telling us if this is a protection fault or not.
4242 * This still avoids useless tlb flushes for .text page faults
4245 if (vmf
->flags
& FAULT_FLAG_WRITE
)
4246 flush_tlb_fix_spurious_fault(vmf
->vma
, vmf
->address
);
4249 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4254 * By the time we get here, we already hold the mm semaphore
4256 * The mmap_sem may have been released depending on flags and our
4257 * return value. See filemap_fault() and __lock_page_or_retry().
4259 static vm_fault_t
__handle_mm_fault(struct vm_area_struct
*vma
,
4260 unsigned long address
, unsigned int flags
)
4262 struct vm_fault vmf
= {
4264 .address
= address
& PAGE_MASK
,
4266 .pgoff
= linear_page_index(vma
, address
),
4267 .gfp_mask
= __get_fault_gfp_mask(vma
),
4269 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
4270 struct mm_struct
*mm
= vma
->vm_mm
;
4275 pgd
= pgd_offset(mm
, address
);
4276 p4d
= p4d_alloc(mm
, pgd
, address
);
4278 return VM_FAULT_OOM
;
4280 vmf
.pud
= pud_alloc(mm
, p4d
, address
);
4282 return VM_FAULT_OOM
;
4284 if (pud_none(*vmf
.pud
) && __transparent_hugepage_enabled(vma
)) {
4285 ret
= create_huge_pud(&vmf
);
4286 if (!(ret
& VM_FAULT_FALLBACK
))
4289 pud_t orig_pud
= *vmf
.pud
;
4292 if (pud_trans_huge(orig_pud
) || pud_devmap(orig_pud
)) {
4294 /* NUMA case for anonymous PUDs would go here */
4296 if (dirty
&& !pud_write(orig_pud
)) {
4297 ret
= wp_huge_pud(&vmf
, orig_pud
);
4298 if (!(ret
& VM_FAULT_FALLBACK
))
4301 huge_pud_set_accessed(&vmf
, orig_pud
);
4307 vmf
.pmd
= pmd_alloc(mm
, vmf
.pud
, address
);
4309 return VM_FAULT_OOM
;
4311 /* Huge pud page fault raced with pmd_alloc? */
4312 if (pud_trans_unstable(vmf
.pud
))
4315 if (pmd_none(*vmf
.pmd
) && __transparent_hugepage_enabled(vma
)) {
4316 ret
= create_huge_pmd(&vmf
);
4317 if (!(ret
& VM_FAULT_FALLBACK
))
4320 pmd_t orig_pmd
= *vmf
.pmd
;
4323 if (unlikely(is_swap_pmd(orig_pmd
))) {
4324 VM_BUG_ON(thp_migration_supported() &&
4325 !is_pmd_migration_entry(orig_pmd
));
4326 if (is_pmd_migration_entry(orig_pmd
))
4327 pmd_migration_entry_wait(mm
, vmf
.pmd
);
4330 if (pmd_trans_huge(orig_pmd
) || pmd_devmap(orig_pmd
)) {
4331 if (pmd_protnone(orig_pmd
) && vma_is_accessible(vma
))
4332 return do_huge_pmd_numa_page(&vmf
, orig_pmd
);
4334 if (dirty
&& !pmd_write(orig_pmd
)) {
4335 ret
= wp_huge_pmd(&vmf
, orig_pmd
);
4336 if (!(ret
& VM_FAULT_FALLBACK
))
4339 huge_pmd_set_accessed(&vmf
, orig_pmd
);
4345 return handle_pte_fault(&vmf
);
4349 * By the time we get here, we already hold the mm semaphore
4351 * The mmap_sem may have been released depending on flags and our
4352 * return value. See filemap_fault() and __lock_page_or_retry().
4354 vm_fault_t
handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
4359 __set_current_state(TASK_RUNNING
);
4361 count_vm_event(PGFAULT
);
4362 count_memcg_event_mm(vma
->vm_mm
, PGFAULT
);
4364 /* do counter updates before entering really critical section. */
4365 check_sync_rss_stat(current
);
4367 if (!arch_vma_access_permitted(vma
, flags
& FAULT_FLAG_WRITE
,
4368 flags
& FAULT_FLAG_INSTRUCTION
,
4369 flags
& FAULT_FLAG_REMOTE
))
4370 return VM_FAULT_SIGSEGV
;
4373 * Enable the memcg OOM handling for faults triggered in user
4374 * space. Kernel faults are handled more gracefully.
4376 if (flags
& FAULT_FLAG_USER
)
4377 mem_cgroup_enter_user_fault();
4379 if (unlikely(is_vm_hugetlb_page(vma
)))
4380 ret
= hugetlb_fault(vma
->vm_mm
, vma
, address
, flags
);
4382 ret
= __handle_mm_fault(vma
, address
, flags
);
4384 if (flags
& FAULT_FLAG_USER
) {
4385 mem_cgroup_exit_user_fault();
4387 * The task may have entered a memcg OOM situation but
4388 * if the allocation error was handled gracefully (no
4389 * VM_FAULT_OOM), there is no need to kill anything.
4390 * Just clean up the OOM state peacefully.
4392 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
4393 mem_cgroup_oom_synchronize(false);
4398 EXPORT_SYMBOL_GPL(handle_mm_fault
);
4400 #ifndef __PAGETABLE_P4D_FOLDED
4402 * Allocate p4d page table.
4403 * We've already handled the fast-path in-line.
4405 int __p4d_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
4407 p4d_t
*new = p4d_alloc_one(mm
, address
);
4411 smp_wmb(); /* See comment in __pte_alloc */
4413 spin_lock(&mm
->page_table_lock
);
4414 if (pgd_present(*pgd
)) /* Another has populated it */
4417 pgd_populate(mm
, pgd
, new);
4418 spin_unlock(&mm
->page_table_lock
);
4421 #endif /* __PAGETABLE_P4D_FOLDED */
4423 #ifndef __PAGETABLE_PUD_FOLDED
4425 * Allocate page upper directory.
4426 * We've already handled the fast-path in-line.
4428 int __pud_alloc(struct mm_struct
*mm
, p4d_t
*p4d
, unsigned long address
)
4430 pud_t
*new = pud_alloc_one(mm
, address
);
4434 smp_wmb(); /* See comment in __pte_alloc */
4436 spin_lock(&mm
->page_table_lock
);
4437 #ifndef __ARCH_HAS_5LEVEL_HACK
4438 if (!p4d_present(*p4d
)) {
4440 p4d_populate(mm
, p4d
, new);
4441 } else /* Another has populated it */
4444 if (!pgd_present(*p4d
)) {
4446 pgd_populate(mm
, p4d
, new);
4447 } else /* Another has populated it */
4449 #endif /* __ARCH_HAS_5LEVEL_HACK */
4450 spin_unlock(&mm
->page_table_lock
);
4453 #endif /* __PAGETABLE_PUD_FOLDED */
4455 #ifndef __PAGETABLE_PMD_FOLDED
4457 * Allocate page middle directory.
4458 * We've already handled the fast-path in-line.
4460 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
4463 pmd_t
*new = pmd_alloc_one(mm
, address
);
4467 smp_wmb(); /* See comment in __pte_alloc */
4469 ptl
= pud_lock(mm
, pud
);
4470 if (!pud_present(*pud
)) {
4472 pud_populate(mm
, pud
, new);
4473 } else /* Another has populated it */
4478 #endif /* __PAGETABLE_PMD_FOLDED */
4480 static int __follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4481 struct mmu_notifier_range
*range
,
4482 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4490 pgd
= pgd_offset(mm
, address
);
4491 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
4494 p4d
= p4d_offset(pgd
, address
);
4495 if (p4d_none(*p4d
) || unlikely(p4d_bad(*p4d
)))
4498 pud
= pud_offset(p4d
, address
);
4499 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
4502 pmd
= pmd_offset(pud
, address
);
4503 VM_BUG_ON(pmd_trans_huge(*pmd
));
4505 if (pmd_huge(*pmd
)) {
4510 mmu_notifier_range_init(range
, MMU_NOTIFY_CLEAR
, 0,
4511 NULL
, mm
, address
& PMD_MASK
,
4512 (address
& PMD_MASK
) + PMD_SIZE
);
4513 mmu_notifier_invalidate_range_start(range
);
4515 *ptlp
= pmd_lock(mm
, pmd
);
4516 if (pmd_huge(*pmd
)) {
4522 mmu_notifier_invalidate_range_end(range
);
4525 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
4529 mmu_notifier_range_init(range
, MMU_NOTIFY_CLEAR
, 0, NULL
, mm
,
4530 address
& PAGE_MASK
,
4531 (address
& PAGE_MASK
) + PAGE_SIZE
);
4532 mmu_notifier_invalidate_range_start(range
);
4534 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
4535 if (!pte_present(*ptep
))
4540 pte_unmap_unlock(ptep
, *ptlp
);
4542 mmu_notifier_invalidate_range_end(range
);
4547 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
4548 pte_t
**ptepp
, spinlock_t
**ptlp
)
4552 /* (void) is needed to make gcc happy */
4553 (void) __cond_lock(*ptlp
,
4554 !(res
= __follow_pte_pmd(mm
, address
, NULL
,
4555 ptepp
, NULL
, ptlp
)));
4559 int follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4560 struct mmu_notifier_range
*range
,
4561 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4565 /* (void) is needed to make gcc happy */
4566 (void) __cond_lock(*ptlp
,
4567 !(res
= __follow_pte_pmd(mm
, address
, range
,
4568 ptepp
, pmdpp
, ptlp
)));
4571 EXPORT_SYMBOL(follow_pte_pmd
);
4574 * follow_pfn - look up PFN at a user virtual address
4575 * @vma: memory mapping
4576 * @address: user virtual address
4577 * @pfn: location to store found PFN
4579 * Only IO mappings and raw PFN mappings are allowed.
4581 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4583 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
4590 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4593 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
4596 *pfn
= pte_pfn(*ptep
);
4597 pte_unmap_unlock(ptep
, ptl
);
4600 EXPORT_SYMBOL(follow_pfn
);
4602 #ifdef CONFIG_HAVE_IOREMAP_PROT
4603 int follow_phys(struct vm_area_struct
*vma
,
4604 unsigned long address
, unsigned int flags
,
4605 unsigned long *prot
, resource_size_t
*phys
)
4611 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4614 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
4618 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
4621 *prot
= pgprot_val(pte_pgprot(pte
));
4622 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
4626 pte_unmap_unlock(ptep
, ptl
);
4631 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
4632 void *buf
, int len
, int write
)
4634 resource_size_t phys_addr
;
4635 unsigned long prot
= 0;
4636 void __iomem
*maddr
;
4637 int offset
= addr
& (PAGE_SIZE
-1);
4639 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
4642 maddr
= ioremap_prot(phys_addr
, PAGE_ALIGN(len
+ offset
), prot
);
4647 memcpy_toio(maddr
+ offset
, buf
, len
);
4649 memcpy_fromio(buf
, maddr
+ offset
, len
);
4654 EXPORT_SYMBOL_GPL(generic_access_phys
);
4658 * Access another process' address space as given in mm. If non-NULL, use the
4659 * given task for page fault accounting.
4661 int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
4662 unsigned long addr
, void *buf
, int len
, unsigned int gup_flags
)
4664 struct vm_area_struct
*vma
;
4665 void *old_buf
= buf
;
4666 int write
= gup_flags
& FOLL_WRITE
;
4668 if (down_read_killable(&mm
->mmap_sem
))
4671 /* ignore errors, just check how much was successfully transferred */
4673 int bytes
, ret
, offset
;
4675 struct page
*page
= NULL
;
4677 ret
= get_user_pages_remote(tsk
, mm
, addr
, 1,
4678 gup_flags
, &page
, &vma
, NULL
);
4680 #ifndef CONFIG_HAVE_IOREMAP_PROT
4684 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4685 * we can access using slightly different code.
4687 vma
= find_vma(mm
, addr
);
4688 if (!vma
|| vma
->vm_start
> addr
)
4690 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
4691 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
4699 offset
= addr
& (PAGE_SIZE
-1);
4700 if (bytes
> PAGE_SIZE
-offset
)
4701 bytes
= PAGE_SIZE
-offset
;
4705 copy_to_user_page(vma
, page
, addr
,
4706 maddr
+ offset
, buf
, bytes
);
4707 set_page_dirty_lock(page
);
4709 copy_from_user_page(vma
, page
, addr
,
4710 buf
, maddr
+ offset
, bytes
);
4719 up_read(&mm
->mmap_sem
);
4721 return buf
- old_buf
;
4725 * access_remote_vm - access another process' address space
4726 * @mm: the mm_struct of the target address space
4727 * @addr: start address to access
4728 * @buf: source or destination buffer
4729 * @len: number of bytes to transfer
4730 * @gup_flags: flags modifying lookup behaviour
4732 * The caller must hold a reference on @mm.
4734 * Return: number of bytes copied from source to destination.
4736 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
4737 void *buf
, int len
, unsigned int gup_flags
)
4739 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, gup_flags
);
4743 * Access another process' address space.
4744 * Source/target buffer must be kernel space,
4745 * Do not walk the page table directly, use get_user_pages
4747 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
4748 void *buf
, int len
, unsigned int gup_flags
)
4750 struct mm_struct
*mm
;
4753 mm
= get_task_mm(tsk
);
4757 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, gup_flags
);
4763 EXPORT_SYMBOL_GPL(access_process_vm
);
4766 * Print the name of a VMA.
4768 void print_vma_addr(char *prefix
, unsigned long ip
)
4770 struct mm_struct
*mm
= current
->mm
;
4771 struct vm_area_struct
*vma
;
4774 * we might be running from an atomic context so we cannot sleep
4776 if (!down_read_trylock(&mm
->mmap_sem
))
4779 vma
= find_vma(mm
, ip
);
4780 if (vma
&& vma
->vm_file
) {
4781 struct file
*f
= vma
->vm_file
;
4782 char *buf
= (char *)__get_free_page(GFP_NOWAIT
);
4786 p
= file_path(f
, buf
, PAGE_SIZE
);
4789 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
4791 vma
->vm_end
- vma
->vm_start
);
4792 free_page((unsigned long)buf
);
4795 up_read(&mm
->mmap_sem
);
4798 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4799 void __might_fault(const char *file
, int line
)
4802 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4803 * holding the mmap_sem, this is safe because kernel memory doesn't
4804 * get paged out, therefore we'll never actually fault, and the
4805 * below annotations will generate false positives.
4807 if (uaccess_kernel())
4809 if (pagefault_disabled())
4811 __might_sleep(file
, line
, 0);
4812 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4814 might_lock_read(¤t
->mm
->mmap_sem
);
4817 EXPORT_SYMBOL(__might_fault
);
4820 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4822 * Process all subpages of the specified huge page with the specified
4823 * operation. The target subpage will be processed last to keep its
4826 static inline void process_huge_page(
4827 unsigned long addr_hint
, unsigned int pages_per_huge_page
,
4828 void (*process_subpage
)(unsigned long addr
, int idx
, void *arg
),
4832 unsigned long addr
= addr_hint
&
4833 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4835 /* Process target subpage last to keep its cache lines hot */
4837 n
= (addr_hint
- addr
) / PAGE_SIZE
;
4838 if (2 * n
<= pages_per_huge_page
) {
4839 /* If target subpage in first half of huge page */
4842 /* Process subpages at the end of huge page */
4843 for (i
= pages_per_huge_page
- 1; i
>= 2 * n
; i
--) {
4845 process_subpage(addr
+ i
* PAGE_SIZE
, i
, arg
);
4848 /* If target subpage in second half of huge page */
4849 base
= pages_per_huge_page
- 2 * (pages_per_huge_page
- n
);
4850 l
= pages_per_huge_page
- n
;
4851 /* Process subpages at the begin of huge page */
4852 for (i
= 0; i
< base
; i
++) {
4854 process_subpage(addr
+ i
* PAGE_SIZE
, i
, arg
);
4858 * Process remaining subpages in left-right-left-right pattern
4859 * towards the target subpage
4861 for (i
= 0; i
< l
; i
++) {
4862 int left_idx
= base
+ i
;
4863 int right_idx
= base
+ 2 * l
- 1 - i
;
4866 process_subpage(addr
+ left_idx
* PAGE_SIZE
, left_idx
, arg
);
4868 process_subpage(addr
+ right_idx
* PAGE_SIZE
, right_idx
, arg
);
4872 static void clear_gigantic_page(struct page
*page
,
4874 unsigned int pages_per_huge_page
)
4877 struct page
*p
= page
;
4880 for (i
= 0; i
< pages_per_huge_page
;
4881 i
++, p
= mem_map_next(p
, page
, i
)) {
4883 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
4887 static void clear_subpage(unsigned long addr
, int idx
, void *arg
)
4889 struct page
*page
= arg
;
4891 clear_user_highpage(page
+ idx
, addr
);
4894 void clear_huge_page(struct page
*page
,
4895 unsigned long addr_hint
, unsigned int pages_per_huge_page
)
4897 unsigned long addr
= addr_hint
&
4898 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4900 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4901 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
4905 process_huge_page(addr_hint
, pages_per_huge_page
, clear_subpage
, page
);
4908 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
4910 struct vm_area_struct
*vma
,
4911 unsigned int pages_per_huge_page
)
4914 struct page
*dst_base
= dst
;
4915 struct page
*src_base
= src
;
4917 for (i
= 0; i
< pages_per_huge_page
; ) {
4919 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
4922 dst
= mem_map_next(dst
, dst_base
, i
);
4923 src
= mem_map_next(src
, src_base
, i
);
4927 struct copy_subpage_arg
{
4930 struct vm_area_struct
*vma
;
4933 static void copy_subpage(unsigned long addr
, int idx
, void *arg
)
4935 struct copy_subpage_arg
*copy_arg
= arg
;
4937 copy_user_highpage(copy_arg
->dst
+ idx
, copy_arg
->src
+ idx
,
4938 addr
, copy_arg
->vma
);
4941 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
4942 unsigned long addr_hint
, struct vm_area_struct
*vma
,
4943 unsigned int pages_per_huge_page
)
4945 unsigned long addr
= addr_hint
&
4946 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4947 struct copy_subpage_arg arg
= {
4953 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4954 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4955 pages_per_huge_page
);
4959 process_huge_page(addr_hint
, pages_per_huge_page
, copy_subpage
, &arg
);
4962 long copy_huge_page_from_user(struct page
*dst_page
,
4963 const void __user
*usr_src
,
4964 unsigned int pages_per_huge_page
,
4965 bool allow_pagefault
)
4967 void *src
= (void *)usr_src
;
4969 unsigned long i
, rc
= 0;
4970 unsigned long ret_val
= pages_per_huge_page
* PAGE_SIZE
;
4972 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4973 if (allow_pagefault
)
4974 page_kaddr
= kmap(dst_page
+ i
);
4976 page_kaddr
= kmap_atomic(dst_page
+ i
);
4977 rc
= copy_from_user(page_kaddr
,
4978 (const void __user
*)(src
+ i
* PAGE_SIZE
),
4980 if (allow_pagefault
)
4981 kunmap(dst_page
+ i
);
4983 kunmap_atomic(page_kaddr
);
4985 ret_val
-= (PAGE_SIZE
- rc
);
4993 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4995 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4997 static struct kmem_cache
*page_ptl_cachep
;
4999 void __init
ptlock_cache_init(void)
5001 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
5005 bool ptlock_alloc(struct page
*page
)
5009 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
5016 void ptlock_free(struct page
*page
)
5018 kmem_cache_free(page_ptl_cachep
, page
->ptl
);