1 // SPDX-License-Identifier: GPL-2.0-only
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
54 #include <asm/mmu_context.h>
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags) (0)
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min
= CONFIG_ARCH_MMAP_RND_BITS_MIN
;
67 const int mmap_rnd_bits_max
= CONFIG_ARCH_MMAP_RND_BITS_MAX
;
68 int mmap_rnd_bits __read_mostly
= CONFIG_ARCH_MMAP_RND_BITS
;
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN
;
72 const int mmap_rnd_compat_bits_max
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX
;
73 int mmap_rnd_compat_bits __read_mostly
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS
;
76 static bool ignore_rlimit_data
;
77 core_param(ignore_rlimit_data
, ignore_rlimit_data
, bool, 0644);
79 static void unmap_region(struct mm_struct
*mm
,
80 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
81 unsigned long start
, unsigned long end
);
83 /* description of effects of mapping type and prot in current implementation.
84 * this is due to the limited x86 page protection hardware. The expected
85 * behavior is in parens:
88 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
89 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
90 * w: (no) no w: (no) no w: (yes) yes w: (no) no
91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
93 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
94 * w: (no) no w: (no) no w: (copy) copy w: (no) no
95 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
97 pgprot_t protection_map
[16] __ro_after_init
= {
98 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
99 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
102 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
103 static inline pgprot_t
arch_filter_pgprot(pgprot_t prot
)
109 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
111 pgprot_t ret
= __pgprot(pgprot_val(protection_map
[vm_flags
&
112 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
113 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
115 return arch_filter_pgprot(ret
);
117 EXPORT_SYMBOL(vm_get_page_prot
);
119 static pgprot_t
vm_pgprot_modify(pgprot_t oldprot
, unsigned long vm_flags
)
121 return pgprot_modify(oldprot
, vm_get_page_prot(vm_flags
));
124 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
125 void vma_set_page_prot(struct vm_area_struct
*vma
)
127 unsigned long vm_flags
= vma
->vm_flags
;
128 pgprot_t vm_page_prot
;
130 vm_page_prot
= vm_pgprot_modify(vma
->vm_page_prot
, vm_flags
);
131 if (vma_wants_writenotify(vma
, vm_page_prot
)) {
132 vm_flags
&= ~VM_SHARED
;
133 vm_page_prot
= vm_pgprot_modify(vm_page_prot
, vm_flags
);
135 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
136 WRITE_ONCE(vma
->vm_page_prot
, vm_page_prot
);
140 * Requires inode->i_mapping->i_mmap_rwsem
142 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
143 struct file
*file
, struct address_space
*mapping
)
145 if (vma
->vm_flags
& VM_DENYWRITE
)
146 atomic_inc(&file_inode(file
)->i_writecount
);
147 if (vma
->vm_flags
& VM_SHARED
)
148 mapping_unmap_writable(mapping
);
150 flush_dcache_mmap_lock(mapping
);
151 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
152 flush_dcache_mmap_unlock(mapping
);
156 * Unlink a file-based vm structure from its interval tree, to hide
157 * vma from rmap and vmtruncate before freeing its page tables.
159 void unlink_file_vma(struct vm_area_struct
*vma
)
161 struct file
*file
= vma
->vm_file
;
164 struct address_space
*mapping
= file
->f_mapping
;
165 i_mmap_lock_write(mapping
);
166 __remove_shared_vm_struct(vma
, file
, mapping
);
167 i_mmap_unlock_write(mapping
);
172 * Close a vm structure and free it, returning the next.
174 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
176 struct vm_area_struct
*next
= vma
->vm_next
;
179 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
180 vma
->vm_ops
->close(vma
);
183 mpol_put(vma_policy(vma
));
188 static int do_brk_flags(unsigned long addr
, unsigned long request
, unsigned long flags
,
189 struct list_head
*uf
);
190 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
192 unsigned long retval
;
193 unsigned long newbrk
, oldbrk
, origbrk
;
194 struct mm_struct
*mm
= current
->mm
;
195 struct vm_area_struct
*next
;
196 unsigned long min_brk
;
198 bool downgraded
= false;
201 if (down_write_killable(&mm
->mmap_sem
))
206 #ifdef CONFIG_COMPAT_BRK
208 * CONFIG_COMPAT_BRK can still be overridden by setting
209 * randomize_va_space to 2, which will still cause mm->start_brk
210 * to be arbitrarily shifted
212 if (current
->brk_randomized
)
213 min_brk
= mm
->start_brk
;
215 min_brk
= mm
->end_data
;
217 min_brk
= mm
->start_brk
;
223 * Check against rlimit here. If this check is done later after the test
224 * of oldbrk with newbrk then it can escape the test and let the data
225 * segment grow beyond its set limit the in case where the limit is
226 * not page aligned -Ram Gupta
228 if (check_data_rlimit(rlimit(RLIMIT_DATA
), brk
, mm
->start_brk
,
229 mm
->end_data
, mm
->start_data
))
232 newbrk
= PAGE_ALIGN(brk
);
233 oldbrk
= PAGE_ALIGN(mm
->brk
);
234 if (oldbrk
== newbrk
) {
240 * Always allow shrinking brk.
241 * __do_munmap() may downgrade mmap_sem to read.
243 if (brk
<= mm
->brk
) {
247 * mm->brk must to be protected by write mmap_sem so update it
248 * before downgrading mmap_sem. When __do_munmap() fails,
249 * mm->brk will be restored from origbrk.
252 ret
= __do_munmap(mm
, newbrk
, oldbrk
-newbrk
, &uf
, true);
256 } else if (ret
== 1) {
262 /* Check against existing mmap mappings. */
263 next
= find_vma(mm
, oldbrk
);
264 if (next
&& newbrk
+ PAGE_SIZE
> vm_start_gap(next
))
267 /* Ok, looks good - let it rip. */
268 if (do_brk_flags(oldbrk
, newbrk
-oldbrk
, 0, &uf
) < 0)
273 populate
= newbrk
> oldbrk
&& (mm
->def_flags
& VM_LOCKED
) != 0;
275 up_read(&mm
->mmap_sem
);
277 up_write(&mm
->mmap_sem
);
278 userfaultfd_unmap_complete(mm
, &uf
);
280 mm_populate(oldbrk
, newbrk
- oldbrk
);
285 up_write(&mm
->mmap_sem
);
289 static inline unsigned long vma_compute_gap(struct vm_area_struct
*vma
)
291 unsigned long gap
, prev_end
;
294 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
295 * allow two stack_guard_gaps between them here, and when choosing
296 * an unmapped area; whereas when expanding we only require one.
297 * That's a little inconsistent, but keeps the code here simpler.
299 gap
= vm_start_gap(vma
);
301 prev_end
= vm_end_gap(vma
->vm_prev
);
310 #ifdef CONFIG_DEBUG_VM_RB
311 static unsigned long vma_compute_subtree_gap(struct vm_area_struct
*vma
)
313 unsigned long max
= vma_compute_gap(vma
), subtree_gap
;
314 if (vma
->vm_rb
.rb_left
) {
315 subtree_gap
= rb_entry(vma
->vm_rb
.rb_left
,
316 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
317 if (subtree_gap
> max
)
320 if (vma
->vm_rb
.rb_right
) {
321 subtree_gap
= rb_entry(vma
->vm_rb
.rb_right
,
322 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
323 if (subtree_gap
> max
)
329 static int browse_rb(struct mm_struct
*mm
)
331 struct rb_root
*root
= &mm
->mm_rb
;
332 int i
= 0, j
, bug
= 0;
333 struct rb_node
*nd
, *pn
= NULL
;
334 unsigned long prev
= 0, pend
= 0;
336 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
337 struct vm_area_struct
*vma
;
338 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
339 if (vma
->vm_start
< prev
) {
340 pr_emerg("vm_start %lx < prev %lx\n",
341 vma
->vm_start
, prev
);
344 if (vma
->vm_start
< pend
) {
345 pr_emerg("vm_start %lx < pend %lx\n",
346 vma
->vm_start
, pend
);
349 if (vma
->vm_start
> vma
->vm_end
) {
350 pr_emerg("vm_start %lx > vm_end %lx\n",
351 vma
->vm_start
, vma
->vm_end
);
354 spin_lock(&mm
->page_table_lock
);
355 if (vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
)) {
356 pr_emerg("free gap %lx, correct %lx\n",
358 vma_compute_subtree_gap(vma
));
361 spin_unlock(&mm
->page_table_lock
);
364 prev
= vma
->vm_start
;
368 for (nd
= pn
; nd
; nd
= rb_prev(nd
))
371 pr_emerg("backwards %d, forwards %d\n", j
, i
);
377 static void validate_mm_rb(struct rb_root
*root
, struct vm_area_struct
*ignore
)
381 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
382 struct vm_area_struct
*vma
;
383 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
384 VM_BUG_ON_VMA(vma
!= ignore
&&
385 vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
),
390 static void validate_mm(struct mm_struct
*mm
)
394 unsigned long highest_address
= 0;
395 struct vm_area_struct
*vma
= mm
->mmap
;
398 struct anon_vma
*anon_vma
= vma
->anon_vma
;
399 struct anon_vma_chain
*avc
;
402 anon_vma_lock_read(anon_vma
);
403 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
404 anon_vma_interval_tree_verify(avc
);
405 anon_vma_unlock_read(anon_vma
);
408 highest_address
= vm_end_gap(vma
);
412 if (i
!= mm
->map_count
) {
413 pr_emerg("map_count %d vm_next %d\n", mm
->map_count
, i
);
416 if (highest_address
!= mm
->highest_vm_end
) {
417 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
418 mm
->highest_vm_end
, highest_address
);
422 if (i
!= mm
->map_count
) {
424 pr_emerg("map_count %d rb %d\n", mm
->map_count
, i
);
427 VM_BUG_ON_MM(bug
, mm
);
430 #define validate_mm_rb(root, ignore) do { } while (0)
431 #define validate_mm(mm) do { } while (0)
434 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks
,
435 struct vm_area_struct
, vm_rb
,
436 unsigned long, rb_subtree_gap
, vma_compute_gap
)
439 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
440 * vma->vm_prev->vm_end values changed, without modifying the vma's position
443 static void vma_gap_update(struct vm_area_struct
*vma
)
446 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
447 * a callback function that does exactly what we want.
449 vma_gap_callbacks_propagate(&vma
->vm_rb
, NULL
);
452 static inline void vma_rb_insert(struct vm_area_struct
*vma
,
453 struct rb_root
*root
)
455 /* All rb_subtree_gap values must be consistent prior to insertion */
456 validate_mm_rb(root
, NULL
);
458 rb_insert_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
461 static void __vma_rb_erase(struct vm_area_struct
*vma
, struct rb_root
*root
)
464 * Note rb_erase_augmented is a fairly large inline function,
465 * so make sure we instantiate it only once with our desired
466 * augmented rbtree callbacks.
468 rb_erase_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
471 static __always_inline
void vma_rb_erase_ignore(struct vm_area_struct
*vma
,
472 struct rb_root
*root
,
473 struct vm_area_struct
*ignore
)
476 * All rb_subtree_gap values must be consistent prior to erase,
477 * with the possible exception of the "next" vma being erased if
478 * next->vm_start was reduced.
480 validate_mm_rb(root
, ignore
);
482 __vma_rb_erase(vma
, root
);
485 static __always_inline
void vma_rb_erase(struct vm_area_struct
*vma
,
486 struct rb_root
*root
)
489 * All rb_subtree_gap values must be consistent prior to erase,
490 * with the possible exception of the vma being erased.
492 validate_mm_rb(root
, vma
);
494 __vma_rb_erase(vma
, root
);
498 * vma has some anon_vma assigned, and is already inserted on that
499 * anon_vma's interval trees.
501 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
502 * vma must be removed from the anon_vma's interval trees using
503 * anon_vma_interval_tree_pre_update_vma().
505 * After the update, the vma will be reinserted using
506 * anon_vma_interval_tree_post_update_vma().
508 * The entire update must be protected by exclusive mmap_sem and by
509 * the root anon_vma's mutex.
512 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct
*vma
)
514 struct anon_vma_chain
*avc
;
516 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
517 anon_vma_interval_tree_remove(avc
, &avc
->anon_vma
->rb_root
);
521 anon_vma_interval_tree_post_update_vma(struct vm_area_struct
*vma
)
523 struct anon_vma_chain
*avc
;
525 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
526 anon_vma_interval_tree_insert(avc
, &avc
->anon_vma
->rb_root
);
529 static int find_vma_links(struct mm_struct
*mm
, unsigned long addr
,
530 unsigned long end
, struct vm_area_struct
**pprev
,
531 struct rb_node
***rb_link
, struct rb_node
**rb_parent
)
533 struct rb_node
**__rb_link
, *__rb_parent
, *rb_prev
;
535 __rb_link
= &mm
->mm_rb
.rb_node
;
536 rb_prev
= __rb_parent
= NULL
;
539 struct vm_area_struct
*vma_tmp
;
541 __rb_parent
= *__rb_link
;
542 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
544 if (vma_tmp
->vm_end
> addr
) {
545 /* Fail if an existing vma overlaps the area */
546 if (vma_tmp
->vm_start
< end
)
548 __rb_link
= &__rb_parent
->rb_left
;
550 rb_prev
= __rb_parent
;
551 __rb_link
= &__rb_parent
->rb_right
;
557 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
558 *rb_link
= __rb_link
;
559 *rb_parent
= __rb_parent
;
563 static unsigned long count_vma_pages_range(struct mm_struct
*mm
,
564 unsigned long addr
, unsigned long end
)
566 unsigned long nr_pages
= 0;
567 struct vm_area_struct
*vma
;
569 /* Find first overlaping mapping */
570 vma
= find_vma_intersection(mm
, addr
, end
);
574 nr_pages
= (min(end
, vma
->vm_end
) -
575 max(addr
, vma
->vm_start
)) >> PAGE_SHIFT
;
577 /* Iterate over the rest of the overlaps */
578 for (vma
= vma
->vm_next
; vma
; vma
= vma
->vm_next
) {
579 unsigned long overlap_len
;
581 if (vma
->vm_start
> end
)
584 overlap_len
= min(end
, vma
->vm_end
) - vma
->vm_start
;
585 nr_pages
+= overlap_len
>> PAGE_SHIFT
;
591 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
592 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
594 /* Update tracking information for the gap following the new vma. */
596 vma_gap_update(vma
->vm_next
);
598 mm
->highest_vm_end
= vm_end_gap(vma
);
601 * vma->vm_prev wasn't known when we followed the rbtree to find the
602 * correct insertion point for that vma. As a result, we could not
603 * update the vma vm_rb parents rb_subtree_gap values on the way down.
604 * So, we first insert the vma with a zero rb_subtree_gap value
605 * (to be consistent with what we did on the way down), and then
606 * immediately update the gap to the correct value. Finally we
607 * rebalance the rbtree after all augmented values have been set.
609 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
610 vma
->rb_subtree_gap
= 0;
612 vma_rb_insert(vma
, &mm
->mm_rb
);
615 static void __vma_link_file(struct vm_area_struct
*vma
)
621 struct address_space
*mapping
= file
->f_mapping
;
623 if (vma
->vm_flags
& VM_DENYWRITE
)
624 atomic_dec(&file_inode(file
)->i_writecount
);
625 if (vma
->vm_flags
& VM_SHARED
)
626 atomic_inc(&mapping
->i_mmap_writable
);
628 flush_dcache_mmap_lock(mapping
);
629 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
630 flush_dcache_mmap_unlock(mapping
);
635 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
636 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
637 struct rb_node
*rb_parent
)
639 __vma_link_list(mm
, vma
, prev
);
640 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
643 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
644 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
645 struct rb_node
*rb_parent
)
647 struct address_space
*mapping
= NULL
;
650 mapping
= vma
->vm_file
->f_mapping
;
651 i_mmap_lock_write(mapping
);
654 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
655 __vma_link_file(vma
);
658 i_mmap_unlock_write(mapping
);
665 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
666 * mm's list and rbtree. It has already been inserted into the interval tree.
668 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
670 struct vm_area_struct
*prev
;
671 struct rb_node
**rb_link
, *rb_parent
;
673 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
674 &prev
, &rb_link
, &rb_parent
))
676 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
680 static __always_inline
void __vma_unlink_common(struct mm_struct
*mm
,
681 struct vm_area_struct
*vma
,
682 struct vm_area_struct
*ignore
)
684 vma_rb_erase_ignore(vma
, &mm
->mm_rb
, ignore
);
685 __vma_unlink_list(mm
, vma
);
687 vmacache_invalidate(mm
);
691 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
692 * is already present in an i_mmap tree without adjusting the tree.
693 * The following helper function should be used when such adjustments
694 * are necessary. The "insert" vma (if any) is to be inserted
695 * before we drop the necessary locks.
697 int __vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
698 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
,
699 struct vm_area_struct
*expand
)
701 struct mm_struct
*mm
= vma
->vm_mm
;
702 struct vm_area_struct
*next
= vma
->vm_next
, *orig_vma
= vma
;
703 struct address_space
*mapping
= NULL
;
704 struct rb_root_cached
*root
= NULL
;
705 struct anon_vma
*anon_vma
= NULL
;
706 struct file
*file
= vma
->vm_file
;
707 bool start_changed
= false, end_changed
= false;
708 long adjust_next
= 0;
711 if (next
&& !insert
) {
712 struct vm_area_struct
*exporter
= NULL
, *importer
= NULL
;
714 if (end
>= next
->vm_end
) {
716 * vma expands, overlapping all the next, and
717 * perhaps the one after too (mprotect case 6).
718 * The only other cases that gets here are
719 * case 1, case 7 and case 8.
721 if (next
== expand
) {
723 * The only case where we don't expand "vma"
724 * and we expand "next" instead is case 8.
726 VM_WARN_ON(end
!= next
->vm_end
);
728 * remove_next == 3 means we're
729 * removing "vma" and that to do so we
730 * swapped "vma" and "next".
733 VM_WARN_ON(file
!= next
->vm_file
);
736 VM_WARN_ON(expand
!= vma
);
738 * case 1, 6, 7, remove_next == 2 is case 6,
739 * remove_next == 1 is case 1 or 7.
741 remove_next
= 1 + (end
> next
->vm_end
);
742 VM_WARN_ON(remove_next
== 2 &&
743 end
!= next
->vm_next
->vm_end
);
744 /* trim end to next, for case 6 first pass */
752 * If next doesn't have anon_vma, import from vma after
753 * next, if the vma overlaps with it.
755 if (remove_next
== 2 && !next
->anon_vma
)
756 exporter
= next
->vm_next
;
758 } else if (end
> next
->vm_start
) {
760 * vma expands, overlapping part of the next:
761 * mprotect case 5 shifting the boundary up.
763 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
766 VM_WARN_ON(expand
!= importer
);
767 } else if (end
< vma
->vm_end
) {
769 * vma shrinks, and !insert tells it's not
770 * split_vma inserting another: so it must be
771 * mprotect case 4 shifting the boundary down.
773 adjust_next
= -((vma
->vm_end
- end
) >> PAGE_SHIFT
);
776 VM_WARN_ON(expand
!= importer
);
780 * Easily overlooked: when mprotect shifts the boundary,
781 * make sure the expanding vma has anon_vma set if the
782 * shrinking vma had, to cover any anon pages imported.
784 if (exporter
&& exporter
->anon_vma
&& !importer
->anon_vma
) {
787 importer
->anon_vma
= exporter
->anon_vma
;
788 error
= anon_vma_clone(importer
, exporter
);
794 vma_adjust_trans_huge(orig_vma
, start
, end
, adjust_next
);
797 mapping
= file
->f_mapping
;
798 root
= &mapping
->i_mmap
;
799 uprobe_munmap(vma
, vma
->vm_start
, vma
->vm_end
);
802 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
804 i_mmap_lock_write(mapping
);
807 * Put into interval tree now, so instantiated pages
808 * are visible to arm/parisc __flush_dcache_page
809 * throughout; but we cannot insert into address
810 * space until vma start or end is updated.
812 __vma_link_file(insert
);
816 anon_vma
= vma
->anon_vma
;
817 if (!anon_vma
&& adjust_next
)
818 anon_vma
= next
->anon_vma
;
820 VM_WARN_ON(adjust_next
&& next
->anon_vma
&&
821 anon_vma
!= next
->anon_vma
);
822 anon_vma_lock_write(anon_vma
);
823 anon_vma_interval_tree_pre_update_vma(vma
);
825 anon_vma_interval_tree_pre_update_vma(next
);
829 flush_dcache_mmap_lock(mapping
);
830 vma_interval_tree_remove(vma
, root
);
832 vma_interval_tree_remove(next
, root
);
835 if (start
!= vma
->vm_start
) {
836 vma
->vm_start
= start
;
837 start_changed
= true;
839 if (end
!= vma
->vm_end
) {
843 vma
->vm_pgoff
= pgoff
;
845 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
846 next
->vm_pgoff
+= adjust_next
;
851 vma_interval_tree_insert(next
, root
);
852 vma_interval_tree_insert(vma
, root
);
853 flush_dcache_mmap_unlock(mapping
);
858 * vma_merge has merged next into vma, and needs
859 * us to remove next before dropping the locks.
861 if (remove_next
!= 3)
862 __vma_unlink_common(mm
, next
, next
);
865 * vma is not before next if they've been
868 * pre-swap() next->vm_start was reduced so
869 * tell validate_mm_rb to ignore pre-swap()
870 * "next" (which is stored in post-swap()
873 __vma_unlink_common(mm
, next
, vma
);
875 __remove_shared_vm_struct(next
, file
, mapping
);
878 * split_vma has split insert from vma, and needs
879 * us to insert it before dropping the locks
880 * (it may either follow vma or precede it).
882 __insert_vm_struct(mm
, insert
);
888 mm
->highest_vm_end
= vm_end_gap(vma
);
889 else if (!adjust_next
)
890 vma_gap_update(next
);
895 anon_vma_interval_tree_post_update_vma(vma
);
897 anon_vma_interval_tree_post_update_vma(next
);
898 anon_vma_unlock_write(anon_vma
);
901 i_mmap_unlock_write(mapping
);
912 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
916 anon_vma_merge(vma
, next
);
918 mpol_put(vma_policy(next
));
921 * In mprotect's case 6 (see comments on vma_merge),
922 * we must remove another next too. It would clutter
923 * up the code too much to do both in one go.
925 if (remove_next
!= 3) {
927 * If "next" was removed and vma->vm_end was
928 * expanded (up) over it, in turn
929 * "next->vm_prev->vm_end" changed and the
930 * "vma->vm_next" gap must be updated.
935 * For the scope of the comment "next" and
936 * "vma" considered pre-swap(): if "vma" was
937 * removed, next->vm_start was expanded (down)
938 * over it and the "next" gap must be updated.
939 * Because of the swap() the post-swap() "vma"
940 * actually points to pre-swap() "next"
941 * (post-swap() "next" as opposed is now a
946 if (remove_next
== 2) {
952 vma_gap_update(next
);
955 * If remove_next == 2 we obviously can't
958 * If remove_next == 3 we can't reach this
959 * path because pre-swap() next is always not
960 * NULL. pre-swap() "next" is not being
961 * removed and its next->vm_end is not altered
962 * (and furthermore "end" already matches
963 * next->vm_end in remove_next == 3).
965 * We reach this only in the remove_next == 1
966 * case if the "next" vma that was removed was
967 * the highest vma of the mm. However in such
968 * case next->vm_end == "end" and the extended
969 * "vma" has vma->vm_end == next->vm_end so
970 * mm->highest_vm_end doesn't need any update
971 * in remove_next == 1 case.
973 VM_WARN_ON(mm
->highest_vm_end
!= vm_end_gap(vma
));
985 * If the vma has a ->close operation then the driver probably needs to release
986 * per-vma resources, so we don't attempt to merge those.
988 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
989 struct file
*file
, unsigned long vm_flags
,
990 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
993 * VM_SOFTDIRTY should not prevent from VMA merging, if we
994 * match the flags but dirty bit -- the caller should mark
995 * merged VMA as dirty. If dirty bit won't be excluded from
996 * comparison, we increase pressure on the memory system forcing
997 * the kernel to generate new VMAs when old one could be
1000 if ((vma
->vm_flags
^ vm_flags
) & ~VM_SOFTDIRTY
)
1002 if (vma
->vm_file
!= file
)
1004 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
1006 if (!is_mergeable_vm_userfaultfd_ctx(vma
, vm_userfaultfd_ctx
))
1011 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
1012 struct anon_vma
*anon_vma2
,
1013 struct vm_area_struct
*vma
)
1016 * The list_is_singular() test is to avoid merging VMA cloned from
1017 * parents. This can improve scalability caused by anon_vma lock.
1019 if ((!anon_vma1
|| !anon_vma2
) && (!vma
||
1020 list_is_singular(&vma
->anon_vma_chain
)))
1022 return anon_vma1
== anon_vma2
;
1026 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1027 * in front of (at a lower virtual address and file offset than) the vma.
1029 * We cannot merge two vmas if they have differently assigned (non-NULL)
1030 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1032 * We don't check here for the merged mmap wrapping around the end of pagecache
1033 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1034 * wrap, nor mmaps which cover the final page at index -1UL.
1037 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
1038 struct anon_vma
*anon_vma
, struct file
*file
,
1040 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1042 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
1043 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
1044 if (vma
->vm_pgoff
== vm_pgoff
)
1051 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1052 * beyond (at a higher virtual address and file offset than) the vma.
1054 * We cannot merge two vmas if they have differently assigned (non-NULL)
1055 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1058 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
1059 struct anon_vma
*anon_vma
, struct file
*file
,
1061 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1063 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
1064 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
1066 vm_pglen
= vma_pages(vma
);
1067 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
1074 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1075 * whether that can be merged with its predecessor or its successor.
1076 * Or both (it neatly fills a hole).
1078 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1079 * certain not to be mapped by the time vma_merge is called; but when
1080 * called for mprotect, it is certain to be already mapped (either at
1081 * an offset within prev, or at the start of next), and the flags of
1082 * this area are about to be changed to vm_flags - and the no-change
1083 * case has already been eliminated.
1085 * The following mprotect cases have to be considered, where AAAA is
1086 * the area passed down from mprotect_fixup, never extending beyond one
1087 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1090 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
1091 * cannot merge might become might become
1092 * PPNNNNNNNNNN PPPPPPPPPPNN
1093 * mmap, brk or case 4 below case 5 below
1096 * PPPP NNNN PPPPNNNNXXXX
1097 * might become might become
1098 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
1099 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
1100 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
1102 * It is important for case 8 that the vma NNNN overlapping the
1103 * region AAAA is never going to extended over XXXX. Instead XXXX must
1104 * be extended in region AAAA and NNNN must be removed. This way in
1105 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1106 * rmap_locks, the properties of the merged vma will be already
1107 * correct for the whole merged range. Some of those properties like
1108 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1109 * be correct for the whole merged range immediately after the
1110 * rmap_locks are released. Otherwise if XXXX would be removed and
1111 * NNNN would be extended over the XXXX range, remove_migration_ptes
1112 * or other rmap walkers (if working on addresses beyond the "end"
1113 * parameter) may establish ptes with the wrong permissions of NNNN
1114 * instead of the right permissions of XXXX.
1116 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
1117 struct vm_area_struct
*prev
, unsigned long addr
,
1118 unsigned long end
, unsigned long vm_flags
,
1119 struct anon_vma
*anon_vma
, struct file
*file
,
1120 pgoff_t pgoff
, struct mempolicy
*policy
,
1121 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1123 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
1124 struct vm_area_struct
*area
, *next
;
1128 * We later require that vma->vm_flags == vm_flags,
1129 * so this tests vma->vm_flags & VM_SPECIAL, too.
1131 if (vm_flags
& VM_SPECIAL
)
1135 next
= prev
->vm_next
;
1139 if (area
&& area
->vm_end
== end
) /* cases 6, 7, 8 */
1140 next
= next
->vm_next
;
1142 /* verify some invariant that must be enforced by the caller */
1143 VM_WARN_ON(prev
&& addr
<= prev
->vm_start
);
1144 VM_WARN_ON(area
&& end
> area
->vm_end
);
1145 VM_WARN_ON(addr
>= end
);
1148 * Can it merge with the predecessor?
1150 if (prev
&& prev
->vm_end
== addr
&&
1151 mpol_equal(vma_policy(prev
), policy
) &&
1152 can_vma_merge_after(prev
, vm_flags
,
1153 anon_vma
, file
, pgoff
,
1154 vm_userfaultfd_ctx
)) {
1156 * OK, it can. Can we now merge in the successor as well?
1158 if (next
&& end
== next
->vm_start
&&
1159 mpol_equal(policy
, vma_policy(next
)) &&
1160 can_vma_merge_before(next
, vm_flags
,
1163 vm_userfaultfd_ctx
) &&
1164 is_mergeable_anon_vma(prev
->anon_vma
,
1165 next
->anon_vma
, NULL
)) {
1167 err
= __vma_adjust(prev
, prev
->vm_start
,
1168 next
->vm_end
, prev
->vm_pgoff
, NULL
,
1170 } else /* cases 2, 5, 7 */
1171 err
= __vma_adjust(prev
, prev
->vm_start
,
1172 end
, prev
->vm_pgoff
, NULL
, prev
);
1175 khugepaged_enter_vma_merge(prev
, vm_flags
);
1180 * Can this new request be merged in front of next?
1182 if (next
&& end
== next
->vm_start
&&
1183 mpol_equal(policy
, vma_policy(next
)) &&
1184 can_vma_merge_before(next
, vm_flags
,
1185 anon_vma
, file
, pgoff
+pglen
,
1186 vm_userfaultfd_ctx
)) {
1187 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
1188 err
= __vma_adjust(prev
, prev
->vm_start
,
1189 addr
, prev
->vm_pgoff
, NULL
, next
);
1190 else { /* cases 3, 8 */
1191 err
= __vma_adjust(area
, addr
, next
->vm_end
,
1192 next
->vm_pgoff
- pglen
, NULL
, next
);
1194 * In case 3 area is already equal to next and
1195 * this is a noop, but in case 8 "area" has
1196 * been removed and next was expanded over it.
1202 khugepaged_enter_vma_merge(area
, vm_flags
);
1210 * Rough compatbility check to quickly see if it's even worth looking
1211 * at sharing an anon_vma.
1213 * They need to have the same vm_file, and the flags can only differ
1214 * in things that mprotect may change.
1216 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1217 * we can merge the two vma's. For example, we refuse to merge a vma if
1218 * there is a vm_ops->close() function, because that indicates that the
1219 * driver is doing some kind of reference counting. But that doesn't
1220 * really matter for the anon_vma sharing case.
1222 static int anon_vma_compatible(struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1224 return a
->vm_end
== b
->vm_start
&&
1225 mpol_equal(vma_policy(a
), vma_policy(b
)) &&
1226 a
->vm_file
== b
->vm_file
&&
1227 !((a
->vm_flags
^ b
->vm_flags
) & ~(VM_ACCESS_FLAGS
| VM_SOFTDIRTY
)) &&
1228 b
->vm_pgoff
== a
->vm_pgoff
+ ((b
->vm_start
- a
->vm_start
) >> PAGE_SHIFT
);
1232 * Do some basic sanity checking to see if we can re-use the anon_vma
1233 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1234 * the same as 'old', the other will be the new one that is trying
1235 * to share the anon_vma.
1237 * NOTE! This runs with mm_sem held for reading, so it is possible that
1238 * the anon_vma of 'old' is concurrently in the process of being set up
1239 * by another page fault trying to merge _that_. But that's ok: if it
1240 * is being set up, that automatically means that it will be a singleton
1241 * acceptable for merging, so we can do all of this optimistically. But
1242 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1244 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1245 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1246 * is to return an anon_vma that is "complex" due to having gone through
1249 * We also make sure that the two vma's are compatible (adjacent,
1250 * and with the same memory policies). That's all stable, even with just
1251 * a read lock on the mm_sem.
1253 static struct anon_vma
*reusable_anon_vma(struct vm_area_struct
*old
, struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1255 if (anon_vma_compatible(a
, b
)) {
1256 struct anon_vma
*anon_vma
= READ_ONCE(old
->anon_vma
);
1258 if (anon_vma
&& list_is_singular(&old
->anon_vma_chain
))
1265 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1266 * neighbouring vmas for a suitable anon_vma, before it goes off
1267 * to allocate a new anon_vma. It checks because a repetitive
1268 * sequence of mprotects and faults may otherwise lead to distinct
1269 * anon_vmas being allocated, preventing vma merge in subsequent
1272 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
1274 struct anon_vma
*anon_vma
= NULL
;
1276 /* Try next first. */
1278 anon_vma
= reusable_anon_vma(vma
->vm_next
, vma
, vma
->vm_next
);
1283 /* Try prev next. */
1285 anon_vma
= reusable_anon_vma(vma
->vm_prev
, vma
->vm_prev
, vma
);
1288 * We might reach here with anon_vma == NULL if we can't find
1289 * any reusable anon_vma.
1290 * There's no absolute need to look only at touching neighbours:
1291 * we could search further afield for "compatible" anon_vmas.
1292 * But it would probably just be a waste of time searching,
1293 * or lead to too many vmas hanging off the same anon_vma.
1294 * We're trying to allow mprotect remerging later on,
1295 * not trying to minimize memory used for anon_vmas.
1301 * If a hint addr is less than mmap_min_addr change hint to be as
1302 * low as possible but still greater than mmap_min_addr
1304 static inline unsigned long round_hint_to_min(unsigned long hint
)
1307 if (((void *)hint
!= NULL
) &&
1308 (hint
< mmap_min_addr
))
1309 return PAGE_ALIGN(mmap_min_addr
);
1313 static inline int mlock_future_check(struct mm_struct
*mm
,
1314 unsigned long flags
,
1317 unsigned long locked
, lock_limit
;
1319 /* mlock MCL_FUTURE? */
1320 if (flags
& VM_LOCKED
) {
1321 locked
= len
>> PAGE_SHIFT
;
1322 locked
+= mm
->locked_vm
;
1323 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
1324 lock_limit
>>= PAGE_SHIFT
;
1325 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1331 static inline u64
file_mmap_size_max(struct file
*file
, struct inode
*inode
)
1333 if (S_ISREG(inode
->i_mode
))
1334 return MAX_LFS_FILESIZE
;
1336 if (S_ISBLK(inode
->i_mode
))
1337 return MAX_LFS_FILESIZE
;
1339 if (S_ISSOCK(inode
->i_mode
))
1340 return MAX_LFS_FILESIZE
;
1342 /* Special "we do even unsigned file positions" case */
1343 if (file
->f_mode
& FMODE_UNSIGNED_OFFSET
)
1346 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1350 static inline bool file_mmap_ok(struct file
*file
, struct inode
*inode
,
1351 unsigned long pgoff
, unsigned long len
)
1353 u64 maxsize
= file_mmap_size_max(file
, inode
);
1355 if (maxsize
&& len
> maxsize
)
1358 if (pgoff
> maxsize
>> PAGE_SHIFT
)
1364 * The caller must hold down_write(¤t->mm->mmap_sem).
1366 unsigned long do_mmap(struct file
*file
, unsigned long addr
,
1367 unsigned long len
, unsigned long prot
,
1368 unsigned long flags
, vm_flags_t vm_flags
,
1369 unsigned long pgoff
, unsigned long *populate
,
1370 struct list_head
*uf
)
1372 struct mm_struct
*mm
= current
->mm
;
1381 * Does the application expect PROT_READ to imply PROT_EXEC?
1383 * (the exception is when the underlying filesystem is noexec
1384 * mounted, in which case we dont add PROT_EXEC.)
1386 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
1387 if (!(file
&& path_noexec(&file
->f_path
)))
1390 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1391 if (flags
& MAP_FIXED_NOREPLACE
)
1394 if (!(flags
& MAP_FIXED
))
1395 addr
= round_hint_to_min(addr
);
1397 /* Careful about overflows.. */
1398 len
= PAGE_ALIGN(len
);
1402 /* offset overflow? */
1403 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
1406 /* Too many mappings? */
1407 if (mm
->map_count
> sysctl_max_map_count
)
1410 /* Obtain the address to map to. we verify (or select) it and ensure
1411 * that it represents a valid section of the address space.
1413 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
1414 if (IS_ERR_VALUE(addr
))
1417 if (flags
& MAP_FIXED_NOREPLACE
) {
1418 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
1420 if (vma
&& vma
->vm_start
< addr
+ len
)
1424 if (prot
== PROT_EXEC
) {
1425 pkey
= execute_only_pkey(mm
);
1430 /* Do simple checking here so the lower-level routines won't have
1431 * to. we assume access permissions have been handled by the open
1432 * of the memory object, so we don't do any here.
1434 vm_flags
|= calc_vm_prot_bits(prot
, pkey
) | calc_vm_flag_bits(flags
) |
1435 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1437 if (flags
& MAP_LOCKED
)
1438 if (!can_do_mlock())
1441 if (mlock_future_check(mm
, vm_flags
, len
))
1445 struct inode
*inode
= file_inode(file
);
1446 unsigned long flags_mask
;
1448 if (!file_mmap_ok(file
, inode
, pgoff
, len
))
1451 flags_mask
= LEGACY_MAP_MASK
| file
->f_op
->mmap_supported_flags
;
1453 switch (flags
& MAP_TYPE
) {
1456 * Force use of MAP_SHARED_VALIDATE with non-legacy
1457 * flags. E.g. MAP_SYNC is dangerous to use with
1458 * MAP_SHARED as you don't know which consistency model
1459 * you will get. We silently ignore unsupported flags
1460 * with MAP_SHARED to preserve backward compatibility.
1462 flags
&= LEGACY_MAP_MASK
;
1464 case MAP_SHARED_VALIDATE
:
1465 if (flags
& ~flags_mask
)
1467 if (prot
& PROT_WRITE
) {
1468 if (!(file
->f_mode
& FMODE_WRITE
))
1470 if (IS_SWAPFILE(file
->f_mapping
->host
))
1475 * Make sure we don't allow writing to an append-only
1478 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1482 * Make sure there are no mandatory locks on the file.
1484 if (locks_verify_locked(file
))
1487 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1488 if (!(file
->f_mode
& FMODE_WRITE
))
1489 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1492 if (!(file
->f_mode
& FMODE_READ
))
1494 if (path_noexec(&file
->f_path
)) {
1495 if (vm_flags
& VM_EXEC
)
1497 vm_flags
&= ~VM_MAYEXEC
;
1500 if (!file
->f_op
->mmap
)
1502 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1510 switch (flags
& MAP_TYPE
) {
1512 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1518 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1522 * Set pgoff according to addr for anon_vma.
1524 pgoff
= addr
>> PAGE_SHIFT
;
1532 * Set 'VM_NORESERVE' if we should not account for the
1533 * memory use of this mapping.
1535 if (flags
& MAP_NORESERVE
) {
1536 /* We honor MAP_NORESERVE if allowed to overcommit */
1537 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1538 vm_flags
|= VM_NORESERVE
;
1540 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1541 if (file
&& is_file_hugepages(file
))
1542 vm_flags
|= VM_NORESERVE
;
1545 addr
= mmap_region(file
, addr
, len
, vm_flags
, pgoff
, uf
);
1546 if (!IS_ERR_VALUE(addr
) &&
1547 ((vm_flags
& VM_LOCKED
) ||
1548 (flags
& (MAP_POPULATE
| MAP_NONBLOCK
)) == MAP_POPULATE
))
1553 unsigned long ksys_mmap_pgoff(unsigned long addr
, unsigned long len
,
1554 unsigned long prot
, unsigned long flags
,
1555 unsigned long fd
, unsigned long pgoff
)
1557 struct file
*file
= NULL
;
1558 unsigned long retval
;
1560 if (!(flags
& MAP_ANONYMOUS
)) {
1561 audit_mmap_fd(fd
, flags
);
1565 if (is_file_hugepages(file
))
1566 len
= ALIGN(len
, huge_page_size(hstate_file(file
)));
1568 if (unlikely(flags
& MAP_HUGETLB
&& !is_file_hugepages(file
)))
1570 } else if (flags
& MAP_HUGETLB
) {
1571 struct user_struct
*user
= NULL
;
1574 hs
= hstate_sizelog((flags
>> MAP_HUGE_SHIFT
) & MAP_HUGE_MASK
);
1578 len
= ALIGN(len
, huge_page_size(hs
));
1580 * VM_NORESERVE is used because the reservations will be
1581 * taken when vm_ops->mmap() is called
1582 * A dummy user value is used because we are not locking
1583 * memory so no accounting is necessary
1585 file
= hugetlb_file_setup(HUGETLB_ANON_FILE
, len
,
1587 &user
, HUGETLB_ANONHUGE_INODE
,
1588 (flags
>> MAP_HUGE_SHIFT
) & MAP_HUGE_MASK
);
1590 return PTR_ERR(file
);
1593 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1595 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1602 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1603 unsigned long, prot
, unsigned long, flags
,
1604 unsigned long, fd
, unsigned long, pgoff
)
1606 return ksys_mmap_pgoff(addr
, len
, prot
, flags
, fd
, pgoff
);
1609 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1610 struct mmap_arg_struct
{
1614 unsigned long flags
;
1616 unsigned long offset
;
1619 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1621 struct mmap_arg_struct a
;
1623 if (copy_from_user(&a
, arg
, sizeof(a
)))
1625 if (offset_in_page(a
.offset
))
1628 return ksys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1629 a
.offset
>> PAGE_SHIFT
);
1631 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1634 * Some shared mappings will want the pages marked read-only
1635 * to track write events. If so, we'll downgrade vm_page_prot
1636 * to the private version (using protection_map[] without the
1639 int vma_wants_writenotify(struct vm_area_struct
*vma
, pgprot_t vm_page_prot
)
1641 vm_flags_t vm_flags
= vma
->vm_flags
;
1642 const struct vm_operations_struct
*vm_ops
= vma
->vm_ops
;
1644 /* If it was private or non-writable, the write bit is already clear */
1645 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1648 /* The backer wishes to know when pages are first written to? */
1649 if (vm_ops
&& (vm_ops
->page_mkwrite
|| vm_ops
->pfn_mkwrite
))
1652 /* The open routine did something to the protections that pgprot_modify
1653 * won't preserve? */
1654 if (pgprot_val(vm_page_prot
) !=
1655 pgprot_val(vm_pgprot_modify(vm_page_prot
, vm_flags
)))
1658 /* Do we need to track softdirty? */
1659 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY
) && !(vm_flags
& VM_SOFTDIRTY
))
1662 /* Specialty mapping? */
1663 if (vm_flags
& VM_PFNMAP
)
1666 /* Can the mapping track the dirty pages? */
1667 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1668 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1672 * We account for memory if it's a private writeable mapping,
1673 * not hugepages and VM_NORESERVE wasn't set.
1675 static inline int accountable_mapping(struct file
*file
, vm_flags_t vm_flags
)
1678 * hugetlb has its own accounting separate from the core VM
1679 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1681 if (file
&& is_file_hugepages(file
))
1684 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1687 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1688 unsigned long len
, vm_flags_t vm_flags
, unsigned long pgoff
,
1689 struct list_head
*uf
)
1691 struct mm_struct
*mm
= current
->mm
;
1692 struct vm_area_struct
*vma
, *prev
;
1694 struct rb_node
**rb_link
, *rb_parent
;
1695 unsigned long charged
= 0;
1697 /* Check against address space limit. */
1698 if (!may_expand_vm(mm
, vm_flags
, len
>> PAGE_SHIFT
)) {
1699 unsigned long nr_pages
;
1702 * MAP_FIXED may remove pages of mappings that intersects with
1703 * requested mapping. Account for the pages it would unmap.
1705 nr_pages
= count_vma_pages_range(mm
, addr
, addr
+ len
);
1707 if (!may_expand_vm(mm
, vm_flags
,
1708 (len
>> PAGE_SHIFT
) - nr_pages
))
1712 /* Clear old maps */
1713 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
1715 if (do_munmap(mm
, addr
, len
, uf
))
1720 * Private writable mapping: check memory availability
1722 if (accountable_mapping(file
, vm_flags
)) {
1723 charged
= len
>> PAGE_SHIFT
;
1724 if (security_vm_enough_memory_mm(mm
, charged
))
1726 vm_flags
|= VM_ACCOUNT
;
1730 * Can we just expand an old mapping?
1732 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
,
1733 NULL
, file
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
1738 * Determine the object being mapped and call the appropriate
1739 * specific mapper. the address has already been validated, but
1740 * not unmapped, but the maps are removed from the list.
1742 vma
= vm_area_alloc(mm
);
1748 vma
->vm_start
= addr
;
1749 vma
->vm_end
= addr
+ len
;
1750 vma
->vm_flags
= vm_flags
;
1751 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1752 vma
->vm_pgoff
= pgoff
;
1755 if (vm_flags
& VM_DENYWRITE
) {
1756 error
= deny_write_access(file
);
1760 if (vm_flags
& VM_SHARED
) {
1761 error
= mapping_map_writable(file
->f_mapping
);
1763 goto allow_write_and_free_vma
;
1766 /* ->mmap() can change vma->vm_file, but must guarantee that
1767 * vma_link() below can deny write-access if VM_DENYWRITE is set
1768 * and map writably if VM_SHARED is set. This usually means the
1769 * new file must not have been exposed to user-space, yet.
1771 vma
->vm_file
= get_file(file
);
1772 error
= call_mmap(file
, vma
);
1774 goto unmap_and_free_vma
;
1776 /* Can addr have changed??
1778 * Answer: Yes, several device drivers can do it in their
1779 * f_op->mmap method. -DaveM
1780 * Bug: If addr is changed, prev, rb_link, rb_parent should
1781 * be updated for vma_link()
1783 WARN_ON_ONCE(addr
!= vma
->vm_start
);
1785 addr
= vma
->vm_start
;
1786 vm_flags
= vma
->vm_flags
;
1787 } else if (vm_flags
& VM_SHARED
) {
1788 error
= shmem_zero_setup(vma
);
1792 vma_set_anonymous(vma
);
1795 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1796 /* Once vma denies write, undo our temporary denial count */
1798 if (vm_flags
& VM_SHARED
)
1799 mapping_unmap_writable(file
->f_mapping
);
1800 if (vm_flags
& VM_DENYWRITE
)
1801 allow_write_access(file
);
1803 file
= vma
->vm_file
;
1805 perf_event_mmap(vma
);
1807 vm_stat_account(mm
, vm_flags
, len
>> PAGE_SHIFT
);
1808 if (vm_flags
& VM_LOCKED
) {
1809 if ((vm_flags
& VM_SPECIAL
) || vma_is_dax(vma
) ||
1810 is_vm_hugetlb_page(vma
) ||
1811 vma
== get_gate_vma(current
->mm
))
1812 vma
->vm_flags
&= VM_LOCKED_CLEAR_MASK
;
1814 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
1821 * New (or expanded) vma always get soft dirty status.
1822 * Otherwise user-space soft-dirty page tracker won't
1823 * be able to distinguish situation when vma area unmapped,
1824 * then new mapped in-place (which must be aimed as
1825 * a completely new data area).
1827 vma
->vm_flags
|= VM_SOFTDIRTY
;
1829 vma_set_page_prot(vma
);
1834 vma
->vm_file
= NULL
;
1837 /* Undo any partial mapping done by a device driver. */
1838 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1840 if (vm_flags
& VM_SHARED
)
1841 mapping_unmap_writable(file
->f_mapping
);
1842 allow_write_and_free_vma
:
1843 if (vm_flags
& VM_DENYWRITE
)
1844 allow_write_access(file
);
1849 vm_unacct_memory(charged
);
1853 static unsigned long unmapped_area(struct vm_unmapped_area_info
*info
)
1856 * We implement the search by looking for an rbtree node that
1857 * immediately follows a suitable gap. That is,
1858 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1859 * - gap_end = vma->vm_start >= info->low_limit + length;
1860 * - gap_end - gap_start >= length
1863 struct mm_struct
*mm
= current
->mm
;
1864 struct vm_area_struct
*vma
;
1865 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1867 /* Adjust search length to account for worst case alignment overhead */
1868 length
= info
->length
+ info
->align_mask
;
1869 if (length
< info
->length
)
1872 /* Adjust search limits by the desired length */
1873 if (info
->high_limit
< length
)
1875 high_limit
= info
->high_limit
- length
;
1877 if (info
->low_limit
> high_limit
)
1879 low_limit
= info
->low_limit
+ length
;
1881 /* Check if rbtree root looks promising */
1882 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1884 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1885 if (vma
->rb_subtree_gap
< length
)
1889 /* Visit left subtree if it looks promising */
1890 gap_end
= vm_start_gap(vma
);
1891 if (gap_end
>= low_limit
&& vma
->vm_rb
.rb_left
) {
1892 struct vm_area_struct
*left
=
1893 rb_entry(vma
->vm_rb
.rb_left
,
1894 struct vm_area_struct
, vm_rb
);
1895 if (left
->rb_subtree_gap
>= length
) {
1901 gap_start
= vma
->vm_prev
? vm_end_gap(vma
->vm_prev
) : 0;
1903 /* Check if current node has a suitable gap */
1904 if (gap_start
> high_limit
)
1906 if (gap_end
>= low_limit
&&
1907 gap_end
> gap_start
&& gap_end
- gap_start
>= length
)
1910 /* Visit right subtree if it looks promising */
1911 if (vma
->vm_rb
.rb_right
) {
1912 struct vm_area_struct
*right
=
1913 rb_entry(vma
->vm_rb
.rb_right
,
1914 struct vm_area_struct
, vm_rb
);
1915 if (right
->rb_subtree_gap
>= length
) {
1921 /* Go back up the rbtree to find next candidate node */
1923 struct rb_node
*prev
= &vma
->vm_rb
;
1924 if (!rb_parent(prev
))
1926 vma
= rb_entry(rb_parent(prev
),
1927 struct vm_area_struct
, vm_rb
);
1928 if (prev
== vma
->vm_rb
.rb_left
) {
1929 gap_start
= vm_end_gap(vma
->vm_prev
);
1930 gap_end
= vm_start_gap(vma
);
1937 /* Check highest gap, which does not precede any rbtree node */
1938 gap_start
= mm
->highest_vm_end
;
1939 gap_end
= ULONG_MAX
; /* Only for VM_BUG_ON below */
1940 if (gap_start
> high_limit
)
1944 /* We found a suitable gap. Clip it with the original low_limit. */
1945 if (gap_start
< info
->low_limit
)
1946 gap_start
= info
->low_limit
;
1948 /* Adjust gap address to the desired alignment */
1949 gap_start
+= (info
->align_offset
- gap_start
) & info
->align_mask
;
1951 VM_BUG_ON(gap_start
+ info
->length
> info
->high_limit
);
1952 VM_BUG_ON(gap_start
+ info
->length
> gap_end
);
1956 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info
*info
)
1958 struct mm_struct
*mm
= current
->mm
;
1959 struct vm_area_struct
*vma
;
1960 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1962 /* Adjust search length to account for worst case alignment overhead */
1963 length
= info
->length
+ info
->align_mask
;
1964 if (length
< info
->length
)
1968 * Adjust search limits by the desired length.
1969 * See implementation comment at top of unmapped_area().
1971 gap_end
= info
->high_limit
;
1972 if (gap_end
< length
)
1974 high_limit
= gap_end
- length
;
1976 if (info
->low_limit
> high_limit
)
1978 low_limit
= info
->low_limit
+ length
;
1980 /* Check highest gap, which does not precede any rbtree node */
1981 gap_start
= mm
->highest_vm_end
;
1982 if (gap_start
<= high_limit
)
1985 /* Check if rbtree root looks promising */
1986 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1988 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1989 if (vma
->rb_subtree_gap
< length
)
1993 /* Visit right subtree if it looks promising */
1994 gap_start
= vma
->vm_prev
? vm_end_gap(vma
->vm_prev
) : 0;
1995 if (gap_start
<= high_limit
&& vma
->vm_rb
.rb_right
) {
1996 struct vm_area_struct
*right
=
1997 rb_entry(vma
->vm_rb
.rb_right
,
1998 struct vm_area_struct
, vm_rb
);
1999 if (right
->rb_subtree_gap
>= length
) {
2006 /* Check if current node has a suitable gap */
2007 gap_end
= vm_start_gap(vma
);
2008 if (gap_end
< low_limit
)
2010 if (gap_start
<= high_limit
&&
2011 gap_end
> gap_start
&& gap_end
- gap_start
>= length
)
2014 /* Visit left subtree if it looks promising */
2015 if (vma
->vm_rb
.rb_left
) {
2016 struct vm_area_struct
*left
=
2017 rb_entry(vma
->vm_rb
.rb_left
,
2018 struct vm_area_struct
, vm_rb
);
2019 if (left
->rb_subtree_gap
>= length
) {
2025 /* Go back up the rbtree to find next candidate node */
2027 struct rb_node
*prev
= &vma
->vm_rb
;
2028 if (!rb_parent(prev
))
2030 vma
= rb_entry(rb_parent(prev
),
2031 struct vm_area_struct
, vm_rb
);
2032 if (prev
== vma
->vm_rb
.rb_right
) {
2033 gap_start
= vma
->vm_prev
?
2034 vm_end_gap(vma
->vm_prev
) : 0;
2041 /* We found a suitable gap. Clip it with the original high_limit. */
2042 if (gap_end
> info
->high_limit
)
2043 gap_end
= info
->high_limit
;
2046 /* Compute highest gap address at the desired alignment */
2047 gap_end
-= info
->length
;
2048 gap_end
-= (gap_end
- info
->align_offset
) & info
->align_mask
;
2050 VM_BUG_ON(gap_end
< info
->low_limit
);
2051 VM_BUG_ON(gap_end
< gap_start
);
2056 * Search for an unmapped address range.
2058 * We are looking for a range that:
2059 * - does not intersect with any VMA;
2060 * - is contained within the [low_limit, high_limit) interval;
2061 * - is at least the desired size.
2062 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2064 unsigned long vm_unmapped_area(struct vm_unmapped_area_info
*info
)
2068 if (info
->flags
& VM_UNMAPPED_AREA_TOPDOWN
)
2069 addr
= unmapped_area_topdown(info
);
2071 addr
= unmapped_area(info
);
2073 trace_vm_unmapped_area(addr
, info
);
2077 #ifndef arch_get_mmap_end
2078 #define arch_get_mmap_end(addr) (TASK_SIZE)
2081 #ifndef arch_get_mmap_base
2082 #define arch_get_mmap_base(addr, base) (base)
2085 /* Get an address range which is currently unmapped.
2086 * For shmat() with addr=0.
2088 * Ugly calling convention alert:
2089 * Return value with the low bits set means error value,
2091 * if (ret & ~PAGE_MASK)
2094 * This function "knows" that -ENOMEM has the bits set.
2096 #ifndef HAVE_ARCH_UNMAPPED_AREA
2098 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
2099 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
2101 struct mm_struct
*mm
= current
->mm
;
2102 struct vm_area_struct
*vma
, *prev
;
2103 struct vm_unmapped_area_info info
;
2104 const unsigned long mmap_end
= arch_get_mmap_end(addr
);
2106 if (len
> mmap_end
- mmap_min_addr
)
2109 if (flags
& MAP_FIXED
)
2113 addr
= PAGE_ALIGN(addr
);
2114 vma
= find_vma_prev(mm
, addr
, &prev
);
2115 if (mmap_end
- len
>= addr
&& addr
>= mmap_min_addr
&&
2116 (!vma
|| addr
+ len
<= vm_start_gap(vma
)) &&
2117 (!prev
|| addr
>= vm_end_gap(prev
)))
2123 info
.low_limit
= mm
->mmap_base
;
2124 info
.high_limit
= mmap_end
;
2125 info
.align_mask
= 0;
2126 info
.align_offset
= 0;
2127 return vm_unmapped_area(&info
);
2132 * This mmap-allocator allocates new areas top-down from below the
2133 * stack's low limit (the base):
2135 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2137 arch_get_unmapped_area_topdown(struct file
*filp
, unsigned long addr
,
2138 unsigned long len
, unsigned long pgoff
,
2139 unsigned long flags
)
2141 struct vm_area_struct
*vma
, *prev
;
2142 struct mm_struct
*mm
= current
->mm
;
2143 struct vm_unmapped_area_info info
;
2144 const unsigned long mmap_end
= arch_get_mmap_end(addr
);
2146 /* requested length too big for entire address space */
2147 if (len
> mmap_end
- mmap_min_addr
)
2150 if (flags
& MAP_FIXED
)
2153 /* requesting a specific address */
2155 addr
= PAGE_ALIGN(addr
);
2156 vma
= find_vma_prev(mm
, addr
, &prev
);
2157 if (mmap_end
- len
>= addr
&& addr
>= mmap_min_addr
&&
2158 (!vma
|| addr
+ len
<= vm_start_gap(vma
)) &&
2159 (!prev
|| addr
>= vm_end_gap(prev
)))
2163 info
.flags
= VM_UNMAPPED_AREA_TOPDOWN
;
2165 info
.low_limit
= max(PAGE_SIZE
, mmap_min_addr
);
2166 info
.high_limit
= arch_get_mmap_base(addr
, mm
->mmap_base
);
2167 info
.align_mask
= 0;
2168 info
.align_offset
= 0;
2169 addr
= vm_unmapped_area(&info
);
2172 * A failed mmap() very likely causes application failure,
2173 * so fall back to the bottom-up function here. This scenario
2174 * can happen with large stack limits and large mmap()
2177 if (offset_in_page(addr
)) {
2178 VM_BUG_ON(addr
!= -ENOMEM
);
2180 info
.low_limit
= TASK_UNMAPPED_BASE
;
2181 info
.high_limit
= mmap_end
;
2182 addr
= vm_unmapped_area(&info
);
2190 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
2191 unsigned long pgoff
, unsigned long flags
)
2193 unsigned long (*get_area
)(struct file
*, unsigned long,
2194 unsigned long, unsigned long, unsigned long);
2196 unsigned long error
= arch_mmap_check(addr
, len
, flags
);
2200 /* Careful about overflows.. */
2201 if (len
> TASK_SIZE
)
2204 get_area
= current
->mm
->get_unmapped_area
;
2206 if (file
->f_op
->get_unmapped_area
)
2207 get_area
= file
->f_op
->get_unmapped_area
;
2208 } else if (flags
& MAP_SHARED
) {
2210 * mmap_region() will call shmem_zero_setup() to create a file,
2211 * so use shmem's get_unmapped_area in case it can be huge.
2212 * do_mmap_pgoff() will clear pgoff, so match alignment.
2215 get_area
= shmem_get_unmapped_area
;
2218 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
2219 if (IS_ERR_VALUE(addr
))
2222 if (addr
> TASK_SIZE
- len
)
2224 if (offset_in_page(addr
))
2227 error
= security_mmap_addr(addr
);
2228 return error
? error
: addr
;
2231 EXPORT_SYMBOL(get_unmapped_area
);
2233 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2234 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
2236 struct rb_node
*rb_node
;
2237 struct vm_area_struct
*vma
;
2239 /* Check the cache first. */
2240 vma
= vmacache_find(mm
, addr
);
2244 rb_node
= mm
->mm_rb
.rb_node
;
2247 struct vm_area_struct
*tmp
;
2249 tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
2251 if (tmp
->vm_end
> addr
) {
2253 if (tmp
->vm_start
<= addr
)
2255 rb_node
= rb_node
->rb_left
;
2257 rb_node
= rb_node
->rb_right
;
2261 vmacache_update(addr
, vma
);
2265 EXPORT_SYMBOL(find_vma
);
2268 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2270 struct vm_area_struct
*
2271 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
2272 struct vm_area_struct
**pprev
)
2274 struct vm_area_struct
*vma
;
2276 vma
= find_vma(mm
, addr
);
2278 *pprev
= vma
->vm_prev
;
2280 struct rb_node
*rb_node
= rb_last(&mm
->mm_rb
);
2282 *pprev
= rb_node
? rb_entry(rb_node
, struct vm_area_struct
, vm_rb
) : NULL
;
2288 * Verify that the stack growth is acceptable and
2289 * update accounting. This is shared with both the
2290 * grow-up and grow-down cases.
2292 static int acct_stack_growth(struct vm_area_struct
*vma
,
2293 unsigned long size
, unsigned long grow
)
2295 struct mm_struct
*mm
= vma
->vm_mm
;
2296 unsigned long new_start
;
2298 /* address space limit tests */
2299 if (!may_expand_vm(mm
, vma
->vm_flags
, grow
))
2302 /* Stack limit test */
2303 if (size
> rlimit(RLIMIT_STACK
))
2306 /* mlock limit tests */
2307 if (vma
->vm_flags
& VM_LOCKED
) {
2308 unsigned long locked
;
2309 unsigned long limit
;
2310 locked
= mm
->locked_vm
+ grow
;
2311 limit
= rlimit(RLIMIT_MEMLOCK
);
2312 limit
>>= PAGE_SHIFT
;
2313 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
2317 /* Check to ensure the stack will not grow into a hugetlb-only region */
2318 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
2320 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
2324 * Overcommit.. This must be the final test, as it will
2325 * update security statistics.
2327 if (security_vm_enough_memory_mm(mm
, grow
))
2333 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2335 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2336 * vma is the last one with address > vma->vm_end. Have to extend vma.
2338 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
2340 struct mm_struct
*mm
= vma
->vm_mm
;
2341 struct vm_area_struct
*next
;
2342 unsigned long gap_addr
;
2345 if (!(vma
->vm_flags
& VM_GROWSUP
))
2348 /* Guard against exceeding limits of the address space. */
2349 address
&= PAGE_MASK
;
2350 if (address
>= (TASK_SIZE
& PAGE_MASK
))
2352 address
+= PAGE_SIZE
;
2354 /* Enforce stack_guard_gap */
2355 gap_addr
= address
+ stack_guard_gap
;
2357 /* Guard against overflow */
2358 if (gap_addr
< address
|| gap_addr
> TASK_SIZE
)
2359 gap_addr
= TASK_SIZE
;
2361 next
= vma
->vm_next
;
2362 if (next
&& next
->vm_start
< gap_addr
&& vma_is_accessible(next
)) {
2363 if (!(next
->vm_flags
& VM_GROWSUP
))
2365 /* Check that both stack segments have the same anon_vma? */
2368 /* We must make sure the anon_vma is allocated. */
2369 if (unlikely(anon_vma_prepare(vma
)))
2373 * vma->vm_start/vm_end cannot change under us because the caller
2374 * is required to hold the mmap_sem in read mode. We need the
2375 * anon_vma lock to serialize against concurrent expand_stacks.
2377 anon_vma_lock_write(vma
->anon_vma
);
2379 /* Somebody else might have raced and expanded it already */
2380 if (address
> vma
->vm_end
) {
2381 unsigned long size
, grow
;
2383 size
= address
- vma
->vm_start
;
2384 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
2387 if (vma
->vm_pgoff
+ (size
>> PAGE_SHIFT
) >= vma
->vm_pgoff
) {
2388 error
= acct_stack_growth(vma
, size
, grow
);
2391 * vma_gap_update() doesn't support concurrent
2392 * updates, but we only hold a shared mmap_sem
2393 * lock here, so we need to protect against
2394 * concurrent vma expansions.
2395 * anon_vma_lock_write() doesn't help here, as
2396 * we don't guarantee that all growable vmas
2397 * in a mm share the same root anon vma.
2398 * So, we reuse mm->page_table_lock to guard
2399 * against concurrent vma expansions.
2401 spin_lock(&mm
->page_table_lock
);
2402 if (vma
->vm_flags
& VM_LOCKED
)
2403 mm
->locked_vm
+= grow
;
2404 vm_stat_account(mm
, vma
->vm_flags
, grow
);
2405 anon_vma_interval_tree_pre_update_vma(vma
);
2406 vma
->vm_end
= address
;
2407 anon_vma_interval_tree_post_update_vma(vma
);
2409 vma_gap_update(vma
->vm_next
);
2411 mm
->highest_vm_end
= vm_end_gap(vma
);
2412 spin_unlock(&mm
->page_table_lock
);
2414 perf_event_mmap(vma
);
2418 anon_vma_unlock_write(vma
->anon_vma
);
2419 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2423 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2426 * vma is the first one with address < vma->vm_start. Have to extend vma.
2428 int expand_downwards(struct vm_area_struct
*vma
,
2429 unsigned long address
)
2431 struct mm_struct
*mm
= vma
->vm_mm
;
2432 struct vm_area_struct
*prev
;
2435 address
&= PAGE_MASK
;
2436 if (address
< mmap_min_addr
)
2439 /* Enforce stack_guard_gap */
2440 prev
= vma
->vm_prev
;
2441 /* Check that both stack segments have the same anon_vma? */
2442 if (prev
&& !(prev
->vm_flags
& VM_GROWSDOWN
) &&
2443 vma_is_accessible(prev
)) {
2444 if (address
- prev
->vm_end
< stack_guard_gap
)
2448 /* We must make sure the anon_vma is allocated. */
2449 if (unlikely(anon_vma_prepare(vma
)))
2453 * vma->vm_start/vm_end cannot change under us because the caller
2454 * is required to hold the mmap_sem in read mode. We need the
2455 * anon_vma lock to serialize against concurrent expand_stacks.
2457 anon_vma_lock_write(vma
->anon_vma
);
2459 /* Somebody else might have raced and expanded it already */
2460 if (address
< vma
->vm_start
) {
2461 unsigned long size
, grow
;
2463 size
= vma
->vm_end
- address
;
2464 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
2467 if (grow
<= vma
->vm_pgoff
) {
2468 error
= acct_stack_growth(vma
, size
, grow
);
2471 * vma_gap_update() doesn't support concurrent
2472 * updates, but we only hold a shared mmap_sem
2473 * lock here, so we need to protect against
2474 * concurrent vma expansions.
2475 * anon_vma_lock_write() doesn't help here, as
2476 * we don't guarantee that all growable vmas
2477 * in a mm share the same root anon vma.
2478 * So, we reuse mm->page_table_lock to guard
2479 * against concurrent vma expansions.
2481 spin_lock(&mm
->page_table_lock
);
2482 if (vma
->vm_flags
& VM_LOCKED
)
2483 mm
->locked_vm
+= grow
;
2484 vm_stat_account(mm
, vma
->vm_flags
, grow
);
2485 anon_vma_interval_tree_pre_update_vma(vma
);
2486 vma
->vm_start
= address
;
2487 vma
->vm_pgoff
-= grow
;
2488 anon_vma_interval_tree_post_update_vma(vma
);
2489 vma_gap_update(vma
);
2490 spin_unlock(&mm
->page_table_lock
);
2492 perf_event_mmap(vma
);
2496 anon_vma_unlock_write(vma
->anon_vma
);
2497 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2502 /* enforced gap between the expanding stack and other mappings. */
2503 unsigned long stack_guard_gap
= 256UL<<PAGE_SHIFT
;
2505 static int __init
cmdline_parse_stack_guard_gap(char *p
)
2510 val
= simple_strtoul(p
, &endptr
, 10);
2512 stack_guard_gap
= val
<< PAGE_SHIFT
;
2516 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap
);
2518 #ifdef CONFIG_STACK_GROWSUP
2519 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2521 return expand_upwards(vma
, address
);
2524 struct vm_area_struct
*
2525 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2527 struct vm_area_struct
*vma
, *prev
;
2530 vma
= find_vma_prev(mm
, addr
, &prev
);
2531 if (vma
&& (vma
->vm_start
<= addr
))
2533 /* don't alter vm_end if the coredump is running */
2534 if (!prev
|| !mmget_still_valid(mm
) || expand_stack(prev
, addr
))
2536 if (prev
->vm_flags
& VM_LOCKED
)
2537 populate_vma_page_range(prev
, addr
, prev
->vm_end
, NULL
);
2541 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2543 return expand_downwards(vma
, address
);
2546 struct vm_area_struct
*
2547 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2549 struct vm_area_struct
*vma
;
2550 unsigned long start
;
2553 vma
= find_vma(mm
, addr
);
2556 if (vma
->vm_start
<= addr
)
2558 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
2560 /* don't alter vm_start if the coredump is running */
2561 if (!mmget_still_valid(mm
))
2563 start
= vma
->vm_start
;
2564 if (expand_stack(vma
, addr
))
2566 if (vma
->vm_flags
& VM_LOCKED
)
2567 populate_vma_page_range(vma
, addr
, start
, NULL
);
2572 EXPORT_SYMBOL_GPL(find_extend_vma
);
2575 * Ok - we have the memory areas we should free on the vma list,
2576 * so release them, and do the vma updates.
2578 * Called with the mm semaphore held.
2580 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2582 unsigned long nr_accounted
= 0;
2584 /* Update high watermark before we lower total_vm */
2585 update_hiwater_vm(mm
);
2587 long nrpages
= vma_pages(vma
);
2589 if (vma
->vm_flags
& VM_ACCOUNT
)
2590 nr_accounted
+= nrpages
;
2591 vm_stat_account(mm
, vma
->vm_flags
, -nrpages
);
2592 vma
= remove_vma(vma
);
2594 vm_unacct_memory(nr_accounted
);
2599 * Get rid of page table information in the indicated region.
2601 * Called with the mm semaphore held.
2603 static void unmap_region(struct mm_struct
*mm
,
2604 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
2605 unsigned long start
, unsigned long end
)
2607 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
2608 struct mmu_gather tlb
;
2611 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2612 update_hiwater_rss(mm
);
2613 unmap_vmas(&tlb
, vma
, start
, end
);
2614 free_pgtables(&tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
2615 next
? next
->vm_start
: USER_PGTABLES_CEILING
);
2616 tlb_finish_mmu(&tlb
, start
, end
);
2620 * Create a list of vma's touched by the unmap, removing them from the mm's
2621 * vma list as we go..
2624 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2625 struct vm_area_struct
*prev
, unsigned long end
)
2627 struct vm_area_struct
**insertion_point
;
2628 struct vm_area_struct
*tail_vma
= NULL
;
2630 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
2631 vma
->vm_prev
= NULL
;
2633 vma_rb_erase(vma
, &mm
->mm_rb
);
2637 } while (vma
&& vma
->vm_start
< end
);
2638 *insertion_point
= vma
;
2640 vma
->vm_prev
= prev
;
2641 vma_gap_update(vma
);
2643 mm
->highest_vm_end
= prev
? vm_end_gap(prev
) : 0;
2644 tail_vma
->vm_next
= NULL
;
2646 /* Kill the cache */
2647 vmacache_invalidate(mm
);
2651 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2652 * has already been checked or doesn't make sense to fail.
2654 int __split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2655 unsigned long addr
, int new_below
)
2657 struct vm_area_struct
*new;
2660 if (vma
->vm_ops
&& vma
->vm_ops
->split
) {
2661 err
= vma
->vm_ops
->split(vma
, addr
);
2666 new = vm_area_dup(vma
);
2673 new->vm_start
= addr
;
2674 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
2677 err
= vma_dup_policy(vma
, new);
2681 err
= anon_vma_clone(new, vma
);
2686 get_file(new->vm_file
);
2688 if (new->vm_ops
&& new->vm_ops
->open
)
2689 new->vm_ops
->open(new);
2692 err
= vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
2693 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
2695 err
= vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
2701 /* Clean everything up if vma_adjust failed. */
2702 if (new->vm_ops
&& new->vm_ops
->close
)
2703 new->vm_ops
->close(new);
2706 unlink_anon_vmas(new);
2708 mpol_put(vma_policy(new));
2715 * Split a vma into two pieces at address 'addr', a new vma is allocated
2716 * either for the first part or the tail.
2718 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2719 unsigned long addr
, int new_below
)
2721 if (mm
->map_count
>= sysctl_max_map_count
)
2724 return __split_vma(mm
, vma
, addr
, new_below
);
2727 /* Munmap is split into 2 main parts -- this part which finds
2728 * what needs doing, and the areas themselves, which do the
2729 * work. This now handles partial unmappings.
2730 * Jeremy Fitzhardinge <jeremy@goop.org>
2732 int __do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
,
2733 struct list_head
*uf
, bool downgrade
)
2736 struct vm_area_struct
*vma
, *prev
, *last
;
2738 if ((offset_in_page(start
)) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
2741 len
= PAGE_ALIGN(len
);
2747 * arch_unmap() might do unmaps itself. It must be called
2748 * and finish any rbtree manipulation before this code
2749 * runs and also starts to manipulate the rbtree.
2751 arch_unmap(mm
, start
, end
);
2753 /* Find the first overlapping VMA */
2754 vma
= find_vma(mm
, start
);
2757 prev
= vma
->vm_prev
;
2758 /* we have start < vma->vm_end */
2760 /* if it doesn't overlap, we have nothing.. */
2761 if (vma
->vm_start
>= end
)
2765 * If we need to split any vma, do it now to save pain later.
2767 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2768 * unmapped vm_area_struct will remain in use: so lower split_vma
2769 * places tmp vma above, and higher split_vma places tmp vma below.
2771 if (start
> vma
->vm_start
) {
2775 * Make sure that map_count on return from munmap() will
2776 * not exceed its limit; but let map_count go just above
2777 * its limit temporarily, to help free resources as expected.
2779 if (end
< vma
->vm_end
&& mm
->map_count
>= sysctl_max_map_count
)
2782 error
= __split_vma(mm
, vma
, start
, 0);
2788 /* Does it split the last one? */
2789 last
= find_vma(mm
, end
);
2790 if (last
&& end
> last
->vm_start
) {
2791 int error
= __split_vma(mm
, last
, end
, 1);
2795 vma
= prev
? prev
->vm_next
: mm
->mmap
;
2799 * If userfaultfd_unmap_prep returns an error the vmas
2800 * will remain splitted, but userland will get a
2801 * highly unexpected error anyway. This is no
2802 * different than the case where the first of the two
2803 * __split_vma fails, but we don't undo the first
2804 * split, despite we could. This is unlikely enough
2805 * failure that it's not worth optimizing it for.
2807 int error
= userfaultfd_unmap_prep(vma
, start
, end
, uf
);
2813 * unlock any mlock()ed ranges before detaching vmas
2815 if (mm
->locked_vm
) {
2816 struct vm_area_struct
*tmp
= vma
;
2817 while (tmp
&& tmp
->vm_start
< end
) {
2818 if (tmp
->vm_flags
& VM_LOCKED
) {
2819 mm
->locked_vm
-= vma_pages(tmp
);
2820 munlock_vma_pages_all(tmp
);
2827 /* Detach vmas from rbtree */
2828 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
2831 downgrade_write(&mm
->mmap_sem
);
2833 unmap_region(mm
, vma
, prev
, start
, end
);
2835 /* Fix up all other VM information */
2836 remove_vma_list(mm
, vma
);
2838 return downgrade
? 1 : 0;
2841 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
,
2842 struct list_head
*uf
)
2844 return __do_munmap(mm
, start
, len
, uf
, false);
2847 static int __vm_munmap(unsigned long start
, size_t len
, bool downgrade
)
2850 struct mm_struct
*mm
= current
->mm
;
2853 if (down_write_killable(&mm
->mmap_sem
))
2856 ret
= __do_munmap(mm
, start
, len
, &uf
, downgrade
);
2858 * Returning 1 indicates mmap_sem is downgraded.
2859 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2860 * it to 0 before return.
2863 up_read(&mm
->mmap_sem
);
2866 up_write(&mm
->mmap_sem
);
2868 userfaultfd_unmap_complete(mm
, &uf
);
2872 int vm_munmap(unsigned long start
, size_t len
)
2874 return __vm_munmap(start
, len
, false);
2876 EXPORT_SYMBOL(vm_munmap
);
2878 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
2880 addr
= untagged_addr(addr
);
2881 profile_munmap(addr
);
2882 return __vm_munmap(addr
, len
, true);
2887 * Emulation of deprecated remap_file_pages() syscall.
2889 SYSCALL_DEFINE5(remap_file_pages
, unsigned long, start
, unsigned long, size
,
2890 unsigned long, prot
, unsigned long, pgoff
, unsigned long, flags
)
2893 struct mm_struct
*mm
= current
->mm
;
2894 struct vm_area_struct
*vma
;
2895 unsigned long populate
= 0;
2896 unsigned long ret
= -EINVAL
;
2899 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2900 current
->comm
, current
->pid
);
2904 start
= start
& PAGE_MASK
;
2905 size
= size
& PAGE_MASK
;
2907 if (start
+ size
<= start
)
2910 /* Does pgoff wrap? */
2911 if (pgoff
+ (size
>> PAGE_SHIFT
) < pgoff
)
2914 if (down_write_killable(&mm
->mmap_sem
))
2917 vma
= find_vma(mm
, start
);
2919 if (!vma
|| !(vma
->vm_flags
& VM_SHARED
))
2922 if (start
< vma
->vm_start
)
2925 if (start
+ size
> vma
->vm_end
) {
2926 struct vm_area_struct
*next
;
2928 for (next
= vma
->vm_next
; next
; next
= next
->vm_next
) {
2929 /* hole between vmas ? */
2930 if (next
->vm_start
!= next
->vm_prev
->vm_end
)
2933 if (next
->vm_file
!= vma
->vm_file
)
2936 if (next
->vm_flags
!= vma
->vm_flags
)
2939 if (start
+ size
<= next
->vm_end
)
2947 prot
|= vma
->vm_flags
& VM_READ
? PROT_READ
: 0;
2948 prot
|= vma
->vm_flags
& VM_WRITE
? PROT_WRITE
: 0;
2949 prot
|= vma
->vm_flags
& VM_EXEC
? PROT_EXEC
: 0;
2951 flags
&= MAP_NONBLOCK
;
2952 flags
|= MAP_SHARED
| MAP_FIXED
| MAP_POPULATE
;
2953 if (vma
->vm_flags
& VM_LOCKED
) {
2954 struct vm_area_struct
*tmp
;
2955 flags
|= MAP_LOCKED
;
2957 /* drop PG_Mlocked flag for over-mapped range */
2958 for (tmp
= vma
; tmp
->vm_start
>= start
+ size
;
2959 tmp
= tmp
->vm_next
) {
2961 * Split pmd and munlock page on the border
2964 vma_adjust_trans_huge(tmp
, start
, start
+ size
, 0);
2966 munlock_vma_pages_range(tmp
,
2967 max(tmp
->vm_start
, start
),
2968 min(tmp
->vm_end
, start
+ size
));
2972 file
= get_file(vma
->vm_file
);
2973 ret
= do_mmap_pgoff(vma
->vm_file
, start
, size
,
2974 prot
, flags
, pgoff
, &populate
, NULL
);
2977 up_write(&mm
->mmap_sem
);
2979 mm_populate(ret
, populate
);
2980 if (!IS_ERR_VALUE(ret
))
2986 * this is really a simplified "do_mmap". it only handles
2987 * anonymous maps. eventually we may be able to do some
2988 * brk-specific accounting here.
2990 static int do_brk_flags(unsigned long addr
, unsigned long len
, unsigned long flags
, struct list_head
*uf
)
2992 struct mm_struct
*mm
= current
->mm
;
2993 struct vm_area_struct
*vma
, *prev
;
2994 struct rb_node
**rb_link
, *rb_parent
;
2995 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
2997 unsigned long mapped_addr
;
2999 /* Until we need other flags, refuse anything except VM_EXEC. */
3000 if ((flags
& (~VM_EXEC
)) != 0)
3002 flags
|= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
3004 mapped_addr
= get_unmapped_area(NULL
, addr
, len
, 0, MAP_FIXED
);
3005 if (IS_ERR_VALUE(mapped_addr
))
3008 error
= mlock_future_check(mm
, mm
->def_flags
, len
);
3013 * Clear old maps. this also does some error checking for us
3015 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
3017 if (do_munmap(mm
, addr
, len
, uf
))
3021 /* Check against address space limits *after* clearing old maps... */
3022 if (!may_expand_vm(mm
, flags
, len
>> PAGE_SHIFT
))
3025 if (mm
->map_count
> sysctl_max_map_count
)
3028 if (security_vm_enough_memory_mm(mm
, len
>> PAGE_SHIFT
))
3031 /* Can we just expand an old private anonymous mapping? */
3032 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
3033 NULL
, NULL
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
3038 * create a vma struct for an anonymous mapping
3040 vma
= vm_area_alloc(mm
);
3042 vm_unacct_memory(len
>> PAGE_SHIFT
);
3046 vma_set_anonymous(vma
);
3047 vma
->vm_start
= addr
;
3048 vma
->vm_end
= addr
+ len
;
3049 vma
->vm_pgoff
= pgoff
;
3050 vma
->vm_flags
= flags
;
3051 vma
->vm_page_prot
= vm_get_page_prot(flags
);
3052 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
3054 perf_event_mmap(vma
);
3055 mm
->total_vm
+= len
>> PAGE_SHIFT
;
3056 mm
->data_vm
+= len
>> PAGE_SHIFT
;
3057 if (flags
& VM_LOCKED
)
3058 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
3059 vma
->vm_flags
|= VM_SOFTDIRTY
;
3063 int vm_brk_flags(unsigned long addr
, unsigned long request
, unsigned long flags
)
3065 struct mm_struct
*mm
= current
->mm
;
3071 len
= PAGE_ALIGN(request
);
3077 if (down_write_killable(&mm
->mmap_sem
))
3080 ret
= do_brk_flags(addr
, len
, flags
, &uf
);
3081 populate
= ((mm
->def_flags
& VM_LOCKED
) != 0);
3082 up_write(&mm
->mmap_sem
);
3083 userfaultfd_unmap_complete(mm
, &uf
);
3084 if (populate
&& !ret
)
3085 mm_populate(addr
, len
);
3088 EXPORT_SYMBOL(vm_brk_flags
);
3090 int vm_brk(unsigned long addr
, unsigned long len
)
3092 return vm_brk_flags(addr
, len
, 0);
3094 EXPORT_SYMBOL(vm_brk
);
3096 /* Release all mmaps. */
3097 void exit_mmap(struct mm_struct
*mm
)
3099 struct mmu_gather tlb
;
3100 struct vm_area_struct
*vma
;
3101 unsigned long nr_accounted
= 0;
3103 /* mm's last user has gone, and its about to be pulled down */
3104 mmu_notifier_release(mm
);
3106 if (unlikely(mm_is_oom_victim(mm
))) {
3108 * Manually reap the mm to free as much memory as possible.
3109 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3110 * this mm from further consideration. Taking mm->mmap_sem for
3111 * write after setting MMF_OOM_SKIP will guarantee that the oom
3112 * reaper will not run on this mm again after mmap_sem is
3115 * Nothing can be holding mm->mmap_sem here and the above call
3116 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3117 * __oom_reap_task_mm() will not block.
3119 * This needs to be done before calling munlock_vma_pages_all(),
3120 * which clears VM_LOCKED, otherwise the oom reaper cannot
3123 (void)__oom_reap_task_mm(mm
);
3125 set_bit(MMF_OOM_SKIP
, &mm
->flags
);
3126 down_write(&mm
->mmap_sem
);
3127 up_write(&mm
->mmap_sem
);
3130 if (mm
->locked_vm
) {
3133 if (vma
->vm_flags
& VM_LOCKED
)
3134 munlock_vma_pages_all(vma
);
3142 if (!vma
) /* Can happen if dup_mmap() received an OOM */
3147 tlb_gather_mmu(&tlb
, mm
, 0, -1);
3148 /* update_hiwater_rss(mm) here? but nobody should be looking */
3149 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3150 unmap_vmas(&tlb
, vma
, 0, -1);
3151 free_pgtables(&tlb
, vma
, FIRST_USER_ADDRESS
, USER_PGTABLES_CEILING
);
3152 tlb_finish_mmu(&tlb
, 0, -1);
3155 * Walk the list again, actually closing and freeing it,
3156 * with preemption enabled, without holding any MM locks.
3159 if (vma
->vm_flags
& VM_ACCOUNT
)
3160 nr_accounted
+= vma_pages(vma
);
3161 vma
= remove_vma(vma
);
3163 vm_unacct_memory(nr_accounted
);
3166 /* Insert vm structure into process list sorted by address
3167 * and into the inode's i_mmap tree. If vm_file is non-NULL
3168 * then i_mmap_rwsem is taken here.
3170 int insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
3172 struct vm_area_struct
*prev
;
3173 struct rb_node
**rb_link
, *rb_parent
;
3175 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
3176 &prev
, &rb_link
, &rb_parent
))
3178 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
3179 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
3183 * The vm_pgoff of a purely anonymous vma should be irrelevant
3184 * until its first write fault, when page's anon_vma and index
3185 * are set. But now set the vm_pgoff it will almost certainly
3186 * end up with (unless mremap moves it elsewhere before that
3187 * first wfault), so /proc/pid/maps tells a consistent story.
3189 * By setting it to reflect the virtual start address of the
3190 * vma, merges and splits can happen in a seamless way, just
3191 * using the existing file pgoff checks and manipulations.
3192 * Similarly in do_mmap_pgoff and in do_brk.
3194 if (vma_is_anonymous(vma
)) {
3195 BUG_ON(vma
->anon_vma
);
3196 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
3199 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
3204 * Copy the vma structure to a new location in the same mm,
3205 * prior to moving page table entries, to effect an mremap move.
3207 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
3208 unsigned long addr
, unsigned long len
, pgoff_t pgoff
,
3209 bool *need_rmap_locks
)
3211 struct vm_area_struct
*vma
= *vmap
;
3212 unsigned long vma_start
= vma
->vm_start
;
3213 struct mm_struct
*mm
= vma
->vm_mm
;
3214 struct vm_area_struct
*new_vma
, *prev
;
3215 struct rb_node
**rb_link
, *rb_parent
;
3216 bool faulted_in_anon_vma
= true;
3219 * If anonymous vma has not yet been faulted, update new pgoff
3220 * to match new location, to increase its chance of merging.
3222 if (unlikely(vma_is_anonymous(vma
) && !vma
->anon_vma
)) {
3223 pgoff
= addr
>> PAGE_SHIFT
;
3224 faulted_in_anon_vma
= false;
3227 if (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
, &rb_parent
))
3228 return NULL
; /* should never get here */
3229 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
3230 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
),
3231 vma
->vm_userfaultfd_ctx
);
3234 * Source vma may have been merged into new_vma
3236 if (unlikely(vma_start
>= new_vma
->vm_start
&&
3237 vma_start
< new_vma
->vm_end
)) {
3239 * The only way we can get a vma_merge with
3240 * self during an mremap is if the vma hasn't
3241 * been faulted in yet and we were allowed to
3242 * reset the dst vma->vm_pgoff to the
3243 * destination address of the mremap to allow
3244 * the merge to happen. mremap must change the
3245 * vm_pgoff linearity between src and dst vmas
3246 * (in turn preventing a vma_merge) to be
3247 * safe. It is only safe to keep the vm_pgoff
3248 * linear if there are no pages mapped yet.
3250 VM_BUG_ON_VMA(faulted_in_anon_vma
, new_vma
);
3251 *vmap
= vma
= new_vma
;
3253 *need_rmap_locks
= (new_vma
->vm_pgoff
<= vma
->vm_pgoff
);
3255 new_vma
= vm_area_dup(vma
);
3258 new_vma
->vm_start
= addr
;
3259 new_vma
->vm_end
= addr
+ len
;
3260 new_vma
->vm_pgoff
= pgoff
;
3261 if (vma_dup_policy(vma
, new_vma
))
3263 if (anon_vma_clone(new_vma
, vma
))
3264 goto out_free_mempol
;
3265 if (new_vma
->vm_file
)
3266 get_file(new_vma
->vm_file
);
3267 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
3268 new_vma
->vm_ops
->open(new_vma
);
3269 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
3270 *need_rmap_locks
= false;
3275 mpol_put(vma_policy(new_vma
));
3277 vm_area_free(new_vma
);
3283 * Return true if the calling process may expand its vm space by the passed
3286 bool may_expand_vm(struct mm_struct
*mm
, vm_flags_t flags
, unsigned long npages
)
3288 if (mm
->total_vm
+ npages
> rlimit(RLIMIT_AS
) >> PAGE_SHIFT
)
3291 if (is_data_mapping(flags
) &&
3292 mm
->data_vm
+ npages
> rlimit(RLIMIT_DATA
) >> PAGE_SHIFT
) {
3293 /* Workaround for Valgrind */
3294 if (rlimit(RLIMIT_DATA
) == 0 &&
3295 mm
->data_vm
+ npages
<= rlimit_max(RLIMIT_DATA
) >> PAGE_SHIFT
)
3298 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3299 current
->comm
, current
->pid
,
3300 (mm
->data_vm
+ npages
) << PAGE_SHIFT
,
3301 rlimit(RLIMIT_DATA
),
3302 ignore_rlimit_data
? "" : " or use boot option ignore_rlimit_data");
3304 if (!ignore_rlimit_data
)
3311 void vm_stat_account(struct mm_struct
*mm
, vm_flags_t flags
, long npages
)
3313 mm
->total_vm
+= npages
;
3315 if (is_exec_mapping(flags
))
3316 mm
->exec_vm
+= npages
;
3317 else if (is_stack_mapping(flags
))
3318 mm
->stack_vm
+= npages
;
3319 else if (is_data_mapping(flags
))
3320 mm
->data_vm
+= npages
;
3323 static vm_fault_t
special_mapping_fault(struct vm_fault
*vmf
);
3326 * Having a close hook prevents vma merging regardless of flags.
3328 static void special_mapping_close(struct vm_area_struct
*vma
)
3332 static const char *special_mapping_name(struct vm_area_struct
*vma
)
3334 return ((struct vm_special_mapping
*)vma
->vm_private_data
)->name
;
3337 static int special_mapping_mremap(struct vm_area_struct
*new_vma
)
3339 struct vm_special_mapping
*sm
= new_vma
->vm_private_data
;
3341 if (WARN_ON_ONCE(current
->mm
!= new_vma
->vm_mm
))
3345 return sm
->mremap(sm
, new_vma
);
3350 static const struct vm_operations_struct special_mapping_vmops
= {
3351 .close
= special_mapping_close
,
3352 .fault
= special_mapping_fault
,
3353 .mremap
= special_mapping_mremap
,
3354 .name
= special_mapping_name
,
3355 /* vDSO code relies that VVAR can't be accessed remotely */
3359 static const struct vm_operations_struct legacy_special_mapping_vmops
= {
3360 .close
= special_mapping_close
,
3361 .fault
= special_mapping_fault
,
3364 static vm_fault_t
special_mapping_fault(struct vm_fault
*vmf
)
3366 struct vm_area_struct
*vma
= vmf
->vma
;
3368 struct page
**pages
;
3370 if (vma
->vm_ops
== &legacy_special_mapping_vmops
) {
3371 pages
= vma
->vm_private_data
;
3373 struct vm_special_mapping
*sm
= vma
->vm_private_data
;
3376 return sm
->fault(sm
, vmf
->vma
, vmf
);
3381 for (pgoff
= vmf
->pgoff
; pgoff
&& *pages
; ++pages
)
3385 struct page
*page
= *pages
;
3391 return VM_FAULT_SIGBUS
;
3394 static struct vm_area_struct
*__install_special_mapping(
3395 struct mm_struct
*mm
,
3396 unsigned long addr
, unsigned long len
,
3397 unsigned long vm_flags
, void *priv
,
3398 const struct vm_operations_struct
*ops
)
3401 struct vm_area_struct
*vma
;
3403 vma
= vm_area_alloc(mm
);
3404 if (unlikely(vma
== NULL
))
3405 return ERR_PTR(-ENOMEM
);
3407 vma
->vm_start
= addr
;
3408 vma
->vm_end
= addr
+ len
;
3410 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
| VM_SOFTDIRTY
;
3411 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
3414 vma
->vm_private_data
= priv
;
3416 ret
= insert_vm_struct(mm
, vma
);
3420 vm_stat_account(mm
, vma
->vm_flags
, len
>> PAGE_SHIFT
);
3422 perf_event_mmap(vma
);
3428 return ERR_PTR(ret
);
3431 bool vma_is_special_mapping(const struct vm_area_struct
*vma
,
3432 const struct vm_special_mapping
*sm
)
3434 return vma
->vm_private_data
== sm
&&
3435 (vma
->vm_ops
== &special_mapping_vmops
||
3436 vma
->vm_ops
== &legacy_special_mapping_vmops
);
3440 * Called with mm->mmap_sem held for writing.
3441 * Insert a new vma covering the given region, with the given flags.
3442 * Its pages are supplied by the given array of struct page *.
3443 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3444 * The region past the last page supplied will always produce SIGBUS.
3445 * The array pointer and the pages it points to are assumed to stay alive
3446 * for as long as this mapping might exist.
3448 struct vm_area_struct
*_install_special_mapping(
3449 struct mm_struct
*mm
,
3450 unsigned long addr
, unsigned long len
,
3451 unsigned long vm_flags
, const struct vm_special_mapping
*spec
)
3453 return __install_special_mapping(mm
, addr
, len
, vm_flags
, (void *)spec
,
3454 &special_mapping_vmops
);
3457 int install_special_mapping(struct mm_struct
*mm
,
3458 unsigned long addr
, unsigned long len
,
3459 unsigned long vm_flags
, struct page
**pages
)
3461 struct vm_area_struct
*vma
= __install_special_mapping(
3462 mm
, addr
, len
, vm_flags
, (void *)pages
,
3463 &legacy_special_mapping_vmops
);
3465 return PTR_ERR_OR_ZERO(vma
);
3468 static DEFINE_MUTEX(mm_all_locks_mutex
);
3470 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
3472 if (!test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_root
.rb_node
)) {
3474 * The LSB of head.next can't change from under us
3475 * because we hold the mm_all_locks_mutex.
3477 down_write_nest_lock(&anon_vma
->root
->rwsem
, &mm
->mmap_sem
);
3479 * We can safely modify head.next after taking the
3480 * anon_vma->root->rwsem. If some other vma in this mm shares
3481 * the same anon_vma we won't take it again.
3483 * No need of atomic instructions here, head.next
3484 * can't change from under us thanks to the
3485 * anon_vma->root->rwsem.
3487 if (__test_and_set_bit(0, (unsigned long *)
3488 &anon_vma
->root
->rb_root
.rb_root
.rb_node
))
3493 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
3495 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3497 * AS_MM_ALL_LOCKS can't change from under us because
3498 * we hold the mm_all_locks_mutex.
3500 * Operations on ->flags have to be atomic because
3501 * even if AS_MM_ALL_LOCKS is stable thanks to the
3502 * mm_all_locks_mutex, there may be other cpus
3503 * changing other bitflags in parallel to us.
3505 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
3507 down_write_nest_lock(&mapping
->i_mmap_rwsem
, &mm
->mmap_sem
);
3512 * This operation locks against the VM for all pte/vma/mm related
3513 * operations that could ever happen on a certain mm. This includes
3514 * vmtruncate, try_to_unmap, and all page faults.
3516 * The caller must take the mmap_sem in write mode before calling
3517 * mm_take_all_locks(). The caller isn't allowed to release the
3518 * mmap_sem until mm_drop_all_locks() returns.
3520 * mmap_sem in write mode is required in order to block all operations
3521 * that could modify pagetables and free pages without need of
3522 * altering the vma layout. It's also needed in write mode to avoid new
3523 * anon_vmas to be associated with existing vmas.
3525 * A single task can't take more than one mm_take_all_locks() in a row
3526 * or it would deadlock.
3528 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3529 * mapping->flags avoid to take the same lock twice, if more than one
3530 * vma in this mm is backed by the same anon_vma or address_space.
3532 * We take locks in following order, accordingly to comment at beginning
3534 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3536 * - all i_mmap_rwsem locks;
3537 * - all anon_vma->rwseml
3539 * We can take all locks within these types randomly because the VM code
3540 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3541 * mm_all_locks_mutex.
3543 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3544 * that may have to take thousand of locks.
3546 * mm_take_all_locks() can fail if it's interrupted by signals.
3548 int mm_take_all_locks(struct mm_struct
*mm
)
3550 struct vm_area_struct
*vma
;
3551 struct anon_vma_chain
*avc
;
3553 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3555 mutex_lock(&mm_all_locks_mutex
);
3557 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3558 if (signal_pending(current
))
3560 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
3561 is_vm_hugetlb_page(vma
))
3562 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3565 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3566 if (signal_pending(current
))
3568 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
3569 !is_vm_hugetlb_page(vma
))
3570 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3573 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3574 if (signal_pending(current
))
3577 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3578 vm_lock_anon_vma(mm
, avc
->anon_vma
);
3584 mm_drop_all_locks(mm
);
3588 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
3590 if (test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_root
.rb_node
)) {
3592 * The LSB of head.next can't change to 0 from under
3593 * us because we hold the mm_all_locks_mutex.
3595 * We must however clear the bitflag before unlocking
3596 * the vma so the users using the anon_vma->rb_root will
3597 * never see our bitflag.
3599 * No need of atomic instructions here, head.next
3600 * can't change from under us until we release the
3601 * anon_vma->root->rwsem.
3603 if (!__test_and_clear_bit(0, (unsigned long *)
3604 &anon_vma
->root
->rb_root
.rb_root
.rb_node
))
3606 anon_vma_unlock_write(anon_vma
);
3610 static void vm_unlock_mapping(struct address_space
*mapping
)
3612 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3614 * AS_MM_ALL_LOCKS can't change to 0 from under us
3615 * because we hold the mm_all_locks_mutex.
3617 i_mmap_unlock_write(mapping
);
3618 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
3625 * The mmap_sem cannot be released by the caller until
3626 * mm_drop_all_locks() returns.
3628 void mm_drop_all_locks(struct mm_struct
*mm
)
3630 struct vm_area_struct
*vma
;
3631 struct anon_vma_chain
*avc
;
3633 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3634 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
3636 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3638 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3639 vm_unlock_anon_vma(avc
->anon_vma
);
3640 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
3641 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
3644 mutex_unlock(&mm_all_locks_mutex
);
3648 * initialise the percpu counter for VM
3650 void __init
mmap_init(void)
3654 ret
= percpu_counter_init(&vm_committed_as
, 0, GFP_KERNEL
);
3659 * Initialise sysctl_user_reserve_kbytes.
3661 * This is intended to prevent a user from starting a single memory hogging
3662 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3665 * The default value is min(3% of free memory, 128MB)
3666 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3668 static int init_user_reserve(void)
3670 unsigned long free_kbytes
;
3672 free_kbytes
= global_zone_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3674 sysctl_user_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 17);
3677 subsys_initcall(init_user_reserve
);
3680 * Initialise sysctl_admin_reserve_kbytes.
3682 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3683 * to log in and kill a memory hogging process.
3685 * Systems with more than 256MB will reserve 8MB, enough to recover
3686 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3687 * only reserve 3% of free pages by default.
3689 static int init_admin_reserve(void)
3691 unsigned long free_kbytes
;
3693 free_kbytes
= global_zone_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3695 sysctl_admin_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 13);
3698 subsys_initcall(init_admin_reserve
);
3701 * Reinititalise user and admin reserves if memory is added or removed.
3703 * The default user reserve max is 128MB, and the default max for the
3704 * admin reserve is 8MB. These are usually, but not always, enough to
3705 * enable recovery from a memory hogging process using login/sshd, a shell,
3706 * and tools like top. It may make sense to increase or even disable the
3707 * reserve depending on the existence of swap or variations in the recovery
3708 * tools. So, the admin may have changed them.
3710 * If memory is added and the reserves have been eliminated or increased above
3711 * the default max, then we'll trust the admin.
3713 * If memory is removed and there isn't enough free memory, then we
3714 * need to reset the reserves.
3716 * Otherwise keep the reserve set by the admin.
3718 static int reserve_mem_notifier(struct notifier_block
*nb
,
3719 unsigned long action
, void *data
)
3721 unsigned long tmp
, free_kbytes
;
3725 /* Default max is 128MB. Leave alone if modified by operator. */
3726 tmp
= sysctl_user_reserve_kbytes
;
3727 if (0 < tmp
&& tmp
< (1UL << 17))
3728 init_user_reserve();
3730 /* Default max is 8MB. Leave alone if modified by operator. */
3731 tmp
= sysctl_admin_reserve_kbytes
;
3732 if (0 < tmp
&& tmp
< (1UL << 13))
3733 init_admin_reserve();
3737 free_kbytes
= global_zone_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3739 if (sysctl_user_reserve_kbytes
> free_kbytes
) {
3740 init_user_reserve();
3741 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3742 sysctl_user_reserve_kbytes
);
3745 if (sysctl_admin_reserve_kbytes
> free_kbytes
) {
3746 init_admin_reserve();
3747 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3748 sysctl_admin_reserve_kbytes
);
3757 static struct notifier_block reserve_mem_nb
= {
3758 .notifier_call
= reserve_mem_notifier
,
3761 static int __meminit
init_reserve_notifier(void)
3763 if (register_hotmemory_notifier(&reserve_mem_nb
))
3764 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3768 subsys_initcall(init_reserve_notifier
);