1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1998,2000 Rik van Riel
6 * Thanks go out to Claus Fischer for some serious inspiration and
7 * for goading me into coding this file...
8 * Copyright (C) 2010 Google, Inc.
9 * Rewritten by David Rientjes
11 * The routines in this file are used to kill a process when
12 * we're seriously out of memory. This gets called from __alloc_pages()
13 * in mm/page_alloc.c when we really run out of memory.
15 * Since we won't call these routines often (on a well-configured
16 * machine) this file will double as a 'coding guide' and a signpost
17 * for newbie kernel hackers. It features several pointers to major
18 * kernel subsystems and hints as to where to find out what things do.
21 #include <linux/oom.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/coredump.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/debug.h>
30 #include <linux/swap.h>
31 #include <linux/timex.h>
32 #include <linux/jiffies.h>
33 #include <linux/cpuset.h>
34 #include <linux/export.h>
35 #include <linux/notifier.h>
36 #include <linux/memcontrol.h>
37 #include <linux/mempolicy.h>
38 #include <linux/security.h>
39 #include <linux/ptrace.h>
40 #include <linux/freezer.h>
41 #include <linux/ftrace.h>
42 #include <linux/ratelimit.h>
43 #include <linux/kthread.h>
44 #include <linux/init.h>
45 #include <linux/mmu_notifier.h>
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/oom.h>
54 int sysctl_panic_on_oom
;
55 int sysctl_oom_kill_allocating_task
;
56 int sysctl_oom_dump_tasks
= 1;
59 * Serializes oom killer invocations (out_of_memory()) from all contexts to
60 * prevent from over eager oom killing (e.g. when the oom killer is invoked
61 * from different domains).
63 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
66 DEFINE_MUTEX(oom_lock
);
68 static inline bool is_memcg_oom(struct oom_control
*oc
)
70 return oc
->memcg
!= NULL
;
75 * oom_cpuset_eligible() - check task eligiblity for kill
76 * @start: task struct of which task to consider
77 * @oc: pointer to struct oom_control
79 * Task eligibility is determined by whether or not a candidate task, @tsk,
80 * shares the same mempolicy nodes as current if it is bound by such a policy
81 * and whether or not it has the same set of allowed cpuset nodes.
83 * This function is assuming oom-killer context and 'current' has triggered
86 static bool oom_cpuset_eligible(struct task_struct
*start
,
87 struct oom_control
*oc
)
89 struct task_struct
*tsk
;
91 const nodemask_t
*mask
= oc
->nodemask
;
97 for_each_thread(start
, tsk
) {
100 * If this is a mempolicy constrained oom, tsk's
101 * cpuset is irrelevant. Only return true if its
102 * mempolicy intersects current, otherwise it may be
105 ret
= mempolicy_nodemask_intersects(tsk
, mask
);
108 * This is not a mempolicy constrained oom, so only
109 * check the mems of tsk's cpuset.
111 ret
= cpuset_mems_allowed_intersects(current
, tsk
);
121 static bool oom_cpuset_eligible(struct task_struct
*tsk
, struct oom_control
*oc
)
125 #endif /* CONFIG_NUMA */
128 * The process p may have detached its own ->mm while exiting or through
129 * use_mm(), but one or more of its subthreads may still have a valid
130 * pointer. Return p, or any of its subthreads with a valid ->mm, with
133 struct task_struct
*find_lock_task_mm(struct task_struct
*p
)
135 struct task_struct
*t
;
139 for_each_thread(p
, t
) {
153 * order == -1 means the oom kill is required by sysrq, otherwise only
154 * for display purposes.
156 static inline bool is_sysrq_oom(struct oom_control
*oc
)
158 return oc
->order
== -1;
161 /* return true if the task is not adequate as candidate victim task. */
162 static bool oom_unkillable_task(struct task_struct
*p
)
164 if (is_global_init(p
))
166 if (p
->flags
& PF_KTHREAD
)
172 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
173 * than all user memory (LRU pages)
175 static bool is_dump_unreclaim_slabs(void)
177 unsigned long nr_lru
;
179 nr_lru
= global_node_page_state(NR_ACTIVE_ANON
) +
180 global_node_page_state(NR_INACTIVE_ANON
) +
181 global_node_page_state(NR_ACTIVE_FILE
) +
182 global_node_page_state(NR_INACTIVE_FILE
) +
183 global_node_page_state(NR_ISOLATED_ANON
) +
184 global_node_page_state(NR_ISOLATED_FILE
) +
185 global_node_page_state(NR_UNEVICTABLE
);
187 return (global_node_page_state(NR_SLAB_UNRECLAIMABLE
) > nr_lru
);
191 * oom_badness - heuristic function to determine which candidate task to kill
192 * @p: task struct of which task we should calculate
193 * @totalpages: total present RAM allowed for page allocation
195 * The heuristic for determining which task to kill is made to be as simple and
196 * predictable as possible. The goal is to return the highest value for the
197 * task consuming the most memory to avoid subsequent oom failures.
199 unsigned long oom_badness(struct task_struct
*p
, unsigned long totalpages
)
204 if (oom_unkillable_task(p
))
207 p
= find_lock_task_mm(p
);
212 * Do not even consider tasks which are explicitly marked oom
213 * unkillable or have been already oom reaped or the are in
214 * the middle of vfork
216 adj
= (long)p
->signal
->oom_score_adj
;
217 if (adj
== OOM_SCORE_ADJ_MIN
||
218 test_bit(MMF_OOM_SKIP
, &p
->mm
->flags
) ||
225 * The baseline for the badness score is the proportion of RAM that each
226 * task's rss, pagetable and swap space use.
228 points
= get_mm_rss(p
->mm
) + get_mm_counter(p
->mm
, MM_SWAPENTS
) +
229 mm_pgtables_bytes(p
->mm
) / PAGE_SIZE
;
232 /* Normalize to oom_score_adj units */
233 adj
*= totalpages
/ 1000;
237 * Never return 0 for an eligible task regardless of the root bonus and
238 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
240 return points
> 0 ? points
: 1;
243 static const char * const oom_constraint_text
[] = {
244 [CONSTRAINT_NONE
] = "CONSTRAINT_NONE",
245 [CONSTRAINT_CPUSET
] = "CONSTRAINT_CPUSET",
246 [CONSTRAINT_MEMORY_POLICY
] = "CONSTRAINT_MEMORY_POLICY",
247 [CONSTRAINT_MEMCG
] = "CONSTRAINT_MEMCG",
251 * Determine the type of allocation constraint.
253 static enum oom_constraint
constrained_alloc(struct oom_control
*oc
)
257 enum zone_type high_zoneidx
= gfp_zone(oc
->gfp_mask
);
258 bool cpuset_limited
= false;
261 if (is_memcg_oom(oc
)) {
262 oc
->totalpages
= mem_cgroup_get_max(oc
->memcg
) ?: 1;
263 return CONSTRAINT_MEMCG
;
266 /* Default to all available memory */
267 oc
->totalpages
= totalram_pages() + total_swap_pages
;
269 if (!IS_ENABLED(CONFIG_NUMA
))
270 return CONSTRAINT_NONE
;
273 return CONSTRAINT_NONE
;
275 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
276 * to kill current.We have to random task kill in this case.
277 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
279 if (oc
->gfp_mask
& __GFP_THISNODE
)
280 return CONSTRAINT_NONE
;
283 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
284 * the page allocator means a mempolicy is in effect. Cpuset policy
285 * is enforced in get_page_from_freelist().
288 !nodes_subset(node_states
[N_MEMORY
], *oc
->nodemask
)) {
289 oc
->totalpages
= total_swap_pages
;
290 for_each_node_mask(nid
, *oc
->nodemask
)
291 oc
->totalpages
+= node_present_pages(nid
);
292 return CONSTRAINT_MEMORY_POLICY
;
295 /* Check this allocation failure is caused by cpuset's wall function */
296 for_each_zone_zonelist_nodemask(zone
, z
, oc
->zonelist
,
297 high_zoneidx
, oc
->nodemask
)
298 if (!cpuset_zone_allowed(zone
, oc
->gfp_mask
))
299 cpuset_limited
= true;
301 if (cpuset_limited
) {
302 oc
->totalpages
= total_swap_pages
;
303 for_each_node_mask(nid
, cpuset_current_mems_allowed
)
304 oc
->totalpages
+= node_present_pages(nid
);
305 return CONSTRAINT_CPUSET
;
307 return CONSTRAINT_NONE
;
310 static int oom_evaluate_task(struct task_struct
*task
, void *arg
)
312 struct oom_control
*oc
= arg
;
313 unsigned long points
;
315 if (oom_unkillable_task(task
))
318 /* p may not have freeable memory in nodemask */
319 if (!is_memcg_oom(oc
) && !oom_cpuset_eligible(task
, oc
))
323 * This task already has access to memory reserves and is being killed.
324 * Don't allow any other task to have access to the reserves unless
325 * the task has MMF_OOM_SKIP because chances that it would release
326 * any memory is quite low.
328 if (!is_sysrq_oom(oc
) && tsk_is_oom_victim(task
)) {
329 if (test_bit(MMF_OOM_SKIP
, &task
->signal
->oom_mm
->flags
))
335 * If task is allocating a lot of memory and has been marked to be
336 * killed first if it triggers an oom, then select it.
338 if (oom_task_origin(task
)) {
343 points
= oom_badness(task
, oc
->totalpages
);
344 if (!points
|| points
< oc
->chosen_points
)
349 put_task_struct(oc
->chosen
);
350 get_task_struct(task
);
352 oc
->chosen_points
= points
;
357 put_task_struct(oc
->chosen
);
358 oc
->chosen
= (void *)-1UL;
363 * Simple selection loop. We choose the process with the highest number of
364 * 'points'. In case scan was aborted, oc->chosen is set to -1.
366 static void select_bad_process(struct oom_control
*oc
)
368 if (is_memcg_oom(oc
))
369 mem_cgroup_scan_tasks(oc
->memcg
, oom_evaluate_task
, oc
);
371 struct task_struct
*p
;
375 if (oom_evaluate_task(p
, oc
))
381 static int dump_task(struct task_struct
*p
, void *arg
)
383 struct oom_control
*oc
= arg
;
384 struct task_struct
*task
;
386 if (oom_unkillable_task(p
))
389 /* p may not have freeable memory in nodemask */
390 if (!is_memcg_oom(oc
) && !oom_cpuset_eligible(p
, oc
))
393 task
= find_lock_task_mm(p
);
396 * This is a kthread or all of p's threads have already
397 * detached their mm's. There's no need to report
398 * them; they can't be oom killed anyway.
403 pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n",
404 task
->pid
, from_kuid(&init_user_ns
, task_uid(task
)),
405 task
->tgid
, task
->mm
->total_vm
, get_mm_rss(task
->mm
),
406 mm_pgtables_bytes(task
->mm
),
407 get_mm_counter(task
->mm
, MM_SWAPENTS
),
408 task
->signal
->oom_score_adj
, task
->comm
);
415 * dump_tasks - dump current memory state of all system tasks
416 * @oc: pointer to struct oom_control
418 * Dumps the current memory state of all eligible tasks. Tasks not in the same
419 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
421 * State information includes task's pid, uid, tgid, vm size, rss,
422 * pgtables_bytes, swapents, oom_score_adj value, and name.
424 static void dump_tasks(struct oom_control
*oc
)
426 pr_info("Tasks state (memory values in pages):\n");
427 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n");
429 if (is_memcg_oom(oc
))
430 mem_cgroup_scan_tasks(oc
->memcg
, dump_task
, oc
);
432 struct task_struct
*p
;
441 static void dump_oom_summary(struct oom_control
*oc
, struct task_struct
*victim
)
443 /* one line summary of the oom killer context. */
444 pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
445 oom_constraint_text
[oc
->constraint
],
446 nodemask_pr_args(oc
->nodemask
));
447 cpuset_print_current_mems_allowed();
448 mem_cgroup_print_oom_context(oc
->memcg
, victim
);
449 pr_cont(",task=%s,pid=%d,uid=%d\n", victim
->comm
, victim
->pid
,
450 from_kuid(&init_user_ns
, task_uid(victim
)));
453 static void dump_header(struct oom_control
*oc
, struct task_struct
*p
)
455 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
456 current
->comm
, oc
->gfp_mask
, &oc
->gfp_mask
, oc
->order
,
457 current
->signal
->oom_score_adj
);
458 if (!IS_ENABLED(CONFIG_COMPACTION
) && oc
->order
)
459 pr_warn("COMPACTION is disabled!!!\n");
462 if (is_memcg_oom(oc
))
463 mem_cgroup_print_oom_meminfo(oc
->memcg
);
465 show_mem(SHOW_MEM_FILTER_NODES
, oc
->nodemask
);
466 if (is_dump_unreclaim_slabs())
467 dump_unreclaimable_slab();
469 if (sysctl_oom_dump_tasks
)
472 dump_oom_summary(oc
, p
);
476 * Number of OOM victims in flight
478 static atomic_t oom_victims
= ATOMIC_INIT(0);
479 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait
);
481 static bool oom_killer_disabled __read_mostly
;
483 #define K(x) ((x) << (PAGE_SHIFT-10))
486 * task->mm can be NULL if the task is the exited group leader. So to
487 * determine whether the task is using a particular mm, we examine all the
488 * task's threads: if one of those is using this mm then this task was also
491 bool process_shares_mm(struct task_struct
*p
, struct mm_struct
*mm
)
493 struct task_struct
*t
;
495 for_each_thread(p
, t
) {
496 struct mm_struct
*t_mm
= READ_ONCE(t
->mm
);
505 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
506 * victim (if that is possible) to help the OOM killer to move on.
508 static struct task_struct
*oom_reaper_th
;
509 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait
);
510 static struct task_struct
*oom_reaper_list
;
511 static DEFINE_SPINLOCK(oom_reaper_lock
);
513 bool __oom_reap_task_mm(struct mm_struct
*mm
)
515 struct vm_area_struct
*vma
;
519 * Tell all users of get_user/copy_from_user etc... that the content
520 * is no longer stable. No barriers really needed because unmapping
521 * should imply barriers already and the reader would hit a page fault
522 * if it stumbled over a reaped memory.
524 set_bit(MMF_UNSTABLE
, &mm
->flags
);
526 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
527 if (!can_madv_lru_vma(vma
))
531 * Only anonymous pages have a good chance to be dropped
532 * without additional steps which we cannot afford as we
535 * We do not even care about fs backed pages because all
536 * which are reclaimable have already been reclaimed and
537 * we do not want to block exit_mmap by keeping mm ref
538 * count elevated without a good reason.
540 if (vma_is_anonymous(vma
) || !(vma
->vm_flags
& VM_SHARED
)) {
541 struct mmu_notifier_range range
;
542 struct mmu_gather tlb
;
544 mmu_notifier_range_init(&range
, MMU_NOTIFY_UNMAP
, 0,
545 vma
, mm
, vma
->vm_start
,
547 tlb_gather_mmu(&tlb
, mm
, range
.start
, range
.end
);
548 if (mmu_notifier_invalidate_range_start_nonblock(&range
)) {
549 tlb_finish_mmu(&tlb
, range
.start
, range
.end
);
553 unmap_page_range(&tlb
, vma
, range
.start
, range
.end
, NULL
);
554 mmu_notifier_invalidate_range_end(&range
);
555 tlb_finish_mmu(&tlb
, range
.start
, range
.end
);
563 * Reaps the address space of the give task.
565 * Returns true on success and false if none or part of the address space
566 * has been reclaimed and the caller should retry later.
568 static bool oom_reap_task_mm(struct task_struct
*tsk
, struct mm_struct
*mm
)
572 if (!down_read_trylock(&mm
->mmap_sem
)) {
573 trace_skip_task_reaping(tsk
->pid
);
578 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
579 * work on the mm anymore. The check for MMF_OOM_SKIP must run
580 * under mmap_sem for reading because it serializes against the
581 * down_write();up_write() cycle in exit_mmap().
583 if (test_bit(MMF_OOM_SKIP
, &mm
->flags
)) {
584 trace_skip_task_reaping(tsk
->pid
);
588 trace_start_task_reaping(tsk
->pid
);
590 /* failed to reap part of the address space. Try again later */
591 ret
= __oom_reap_task_mm(mm
);
595 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
596 task_pid_nr(tsk
), tsk
->comm
,
597 K(get_mm_counter(mm
, MM_ANONPAGES
)),
598 K(get_mm_counter(mm
, MM_FILEPAGES
)),
599 K(get_mm_counter(mm
, MM_SHMEMPAGES
)));
601 trace_finish_task_reaping(tsk
->pid
);
603 up_read(&mm
->mmap_sem
);
608 #define MAX_OOM_REAP_RETRIES 10
609 static void oom_reap_task(struct task_struct
*tsk
)
612 struct mm_struct
*mm
= tsk
->signal
->oom_mm
;
614 /* Retry the down_read_trylock(mmap_sem) a few times */
615 while (attempts
++ < MAX_OOM_REAP_RETRIES
&& !oom_reap_task_mm(tsk
, mm
))
616 schedule_timeout_idle(HZ
/10);
618 if (attempts
<= MAX_OOM_REAP_RETRIES
||
619 test_bit(MMF_OOM_SKIP
, &mm
->flags
))
622 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
623 task_pid_nr(tsk
), tsk
->comm
);
624 sched_show_task(tsk
);
625 debug_show_all_locks();
628 tsk
->oom_reaper_list
= NULL
;
631 * Hide this mm from OOM killer because it has been either reaped or
632 * somebody can't call up_write(mmap_sem).
634 set_bit(MMF_OOM_SKIP
, &mm
->flags
);
636 /* Drop a reference taken by wake_oom_reaper */
637 put_task_struct(tsk
);
640 static int oom_reaper(void *unused
)
643 struct task_struct
*tsk
= NULL
;
645 wait_event_freezable(oom_reaper_wait
, oom_reaper_list
!= NULL
);
646 spin_lock(&oom_reaper_lock
);
647 if (oom_reaper_list
!= NULL
) {
648 tsk
= oom_reaper_list
;
649 oom_reaper_list
= tsk
->oom_reaper_list
;
651 spin_unlock(&oom_reaper_lock
);
660 static void wake_oom_reaper(struct task_struct
*tsk
)
662 /* mm is already queued? */
663 if (test_and_set_bit(MMF_OOM_REAP_QUEUED
, &tsk
->signal
->oom_mm
->flags
))
666 get_task_struct(tsk
);
668 spin_lock(&oom_reaper_lock
);
669 tsk
->oom_reaper_list
= oom_reaper_list
;
670 oom_reaper_list
= tsk
;
671 spin_unlock(&oom_reaper_lock
);
672 trace_wake_reaper(tsk
->pid
);
673 wake_up(&oom_reaper_wait
);
676 static int __init
oom_init(void)
678 oom_reaper_th
= kthread_run(oom_reaper
, NULL
, "oom_reaper");
681 subsys_initcall(oom_init
)
683 static inline void wake_oom_reaper(struct task_struct
*tsk
)
686 #endif /* CONFIG_MMU */
689 * mark_oom_victim - mark the given task as OOM victim
692 * Has to be called with oom_lock held and never after
693 * oom has been disabled already.
695 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
696 * under task_lock or operate on the current).
698 static void mark_oom_victim(struct task_struct
*tsk
)
700 struct mm_struct
*mm
= tsk
->mm
;
702 WARN_ON(oom_killer_disabled
);
703 /* OOM killer might race with memcg OOM */
704 if (test_and_set_tsk_thread_flag(tsk
, TIF_MEMDIE
))
707 /* oom_mm is bound to the signal struct life time. */
708 if (!cmpxchg(&tsk
->signal
->oom_mm
, NULL
, mm
)) {
709 mmgrab(tsk
->signal
->oom_mm
);
710 set_bit(MMF_OOM_VICTIM
, &mm
->flags
);
714 * Make sure that the task is woken up from uninterruptible sleep
715 * if it is frozen because OOM killer wouldn't be able to free
716 * any memory and livelock. freezing_slow_path will tell the freezer
717 * that TIF_MEMDIE tasks should be ignored.
720 atomic_inc(&oom_victims
);
721 trace_mark_victim(tsk
->pid
);
725 * exit_oom_victim - note the exit of an OOM victim
727 void exit_oom_victim(void)
729 clear_thread_flag(TIF_MEMDIE
);
731 if (!atomic_dec_return(&oom_victims
))
732 wake_up_all(&oom_victims_wait
);
736 * oom_killer_enable - enable OOM killer
738 void oom_killer_enable(void)
740 oom_killer_disabled
= false;
741 pr_info("OOM killer enabled.\n");
745 * oom_killer_disable - disable OOM killer
746 * @timeout: maximum timeout to wait for oom victims in jiffies
748 * Forces all page allocations to fail rather than trigger OOM killer.
749 * Will block and wait until all OOM victims are killed or the given
752 * The function cannot be called when there are runnable user tasks because
753 * the userspace would see unexpected allocation failures as a result. Any
754 * new usage of this function should be consulted with MM people.
756 * Returns true if successful and false if the OOM killer cannot be
759 bool oom_killer_disable(signed long timeout
)
764 * Make sure to not race with an ongoing OOM killer. Check that the
765 * current is not killed (possibly due to sharing the victim's memory).
767 if (mutex_lock_killable(&oom_lock
))
769 oom_killer_disabled
= true;
770 mutex_unlock(&oom_lock
);
772 ret
= wait_event_interruptible_timeout(oom_victims_wait
,
773 !atomic_read(&oom_victims
), timeout
);
778 pr_info("OOM killer disabled.\n");
783 static inline bool __task_will_free_mem(struct task_struct
*task
)
785 struct signal_struct
*sig
= task
->signal
;
788 * A coredumping process may sleep for an extended period in exit_mm(),
789 * so the oom killer cannot assume that the process will promptly exit
790 * and release memory.
792 if (sig
->flags
& SIGNAL_GROUP_COREDUMP
)
795 if (sig
->flags
& SIGNAL_GROUP_EXIT
)
798 if (thread_group_empty(task
) && (task
->flags
& PF_EXITING
))
805 * Checks whether the given task is dying or exiting and likely to
806 * release its address space. This means that all threads and processes
807 * sharing the same mm have to be killed or exiting.
808 * Caller has to make sure that task->mm is stable (hold task_lock or
809 * it operates on the current).
811 static bool task_will_free_mem(struct task_struct
*task
)
813 struct mm_struct
*mm
= task
->mm
;
814 struct task_struct
*p
;
818 * Skip tasks without mm because it might have passed its exit_mm and
819 * exit_oom_victim. oom_reaper could have rescued that but do not rely
820 * on that for now. We can consider find_lock_task_mm in future.
825 if (!__task_will_free_mem(task
))
829 * This task has already been drained by the oom reaper so there are
830 * only small chances it will free some more
832 if (test_bit(MMF_OOM_SKIP
, &mm
->flags
))
835 if (atomic_read(&mm
->mm_users
) <= 1)
839 * Make sure that all tasks which share the mm with the given tasks
840 * are dying as well to make sure that a) nobody pins its mm and
841 * b) the task is also reapable by the oom reaper.
844 for_each_process(p
) {
845 if (!process_shares_mm(p
, mm
))
847 if (same_thread_group(task
, p
))
849 ret
= __task_will_free_mem(p
);
858 static void __oom_kill_process(struct task_struct
*victim
, const char *message
)
860 struct task_struct
*p
;
861 struct mm_struct
*mm
;
862 bool can_oom_reap
= true;
864 p
= find_lock_task_mm(victim
);
866 put_task_struct(victim
);
868 } else if (victim
!= p
) {
870 put_task_struct(victim
);
874 /* Get a reference to safely compare mm after task_unlock(victim) */
878 /* Raise event before sending signal: task reaper must see this */
879 count_vm_event(OOM_KILL
);
880 memcg_memory_event_mm(mm
, MEMCG_OOM_KILL
);
883 * We should send SIGKILL before granting access to memory reserves
884 * in order to prevent the OOM victim from depleting the memory
885 * reserves from the user space under its control.
887 do_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, victim
, PIDTYPE_TGID
);
888 mark_oom_victim(victim
);
889 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
890 message
, task_pid_nr(victim
), victim
->comm
, K(mm
->total_vm
),
891 K(get_mm_counter(mm
, MM_ANONPAGES
)),
892 K(get_mm_counter(mm
, MM_FILEPAGES
)),
893 K(get_mm_counter(mm
, MM_SHMEMPAGES
)),
894 from_kuid(&init_user_ns
, task_uid(victim
)),
895 mm_pgtables_bytes(mm
) >> 10, victim
->signal
->oom_score_adj
);
899 * Kill all user processes sharing victim->mm in other thread groups, if
900 * any. They don't get access to memory reserves, though, to avoid
901 * depletion of all memory. This prevents mm->mmap_sem livelock when an
902 * oom killed thread cannot exit because it requires the semaphore and
903 * its contended by another thread trying to allocate memory itself.
904 * That thread will now get access to memory reserves since it has a
905 * pending fatal signal.
908 for_each_process(p
) {
909 if (!process_shares_mm(p
, mm
))
911 if (same_thread_group(p
, victim
))
913 if (is_global_init(p
)) {
914 can_oom_reap
= false;
915 set_bit(MMF_OOM_SKIP
, &mm
->flags
);
916 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
917 task_pid_nr(victim
), victim
->comm
,
918 task_pid_nr(p
), p
->comm
);
922 * No use_mm() user needs to read from the userspace so we are
925 if (unlikely(p
->flags
& PF_KTHREAD
))
927 do_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, p
, PIDTYPE_TGID
);
932 wake_oom_reaper(victim
);
935 put_task_struct(victim
);
940 * Kill provided task unless it's secured by setting
941 * oom_score_adj to OOM_SCORE_ADJ_MIN.
943 static int oom_kill_memcg_member(struct task_struct
*task
, void *message
)
945 if (task
->signal
->oom_score_adj
!= OOM_SCORE_ADJ_MIN
&&
946 !is_global_init(task
)) {
947 get_task_struct(task
);
948 __oom_kill_process(task
, message
);
953 static void oom_kill_process(struct oom_control
*oc
, const char *message
)
955 struct task_struct
*victim
= oc
->chosen
;
956 struct mem_cgroup
*oom_group
;
957 static DEFINE_RATELIMIT_STATE(oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
958 DEFAULT_RATELIMIT_BURST
);
961 * If the task is already exiting, don't alarm the sysadmin or kill
962 * its children or threads, just give it access to memory reserves
963 * so it can die quickly
966 if (task_will_free_mem(victim
)) {
967 mark_oom_victim(victim
);
968 wake_oom_reaper(victim
);
970 put_task_struct(victim
);
975 if (__ratelimit(&oom_rs
))
976 dump_header(oc
, victim
);
979 * Do we need to kill the entire memory cgroup?
980 * Or even one of the ancestor memory cgroups?
981 * Check this out before killing the victim task.
983 oom_group
= mem_cgroup_get_oom_group(victim
, oc
->memcg
);
985 __oom_kill_process(victim
, message
);
988 * If necessary, kill all tasks in the selected memory cgroup.
991 mem_cgroup_print_oom_group(oom_group
);
992 mem_cgroup_scan_tasks(oom_group
, oom_kill_memcg_member
,
994 mem_cgroup_put(oom_group
);
999 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1001 static void check_panic_on_oom(struct oom_control
*oc
)
1003 if (likely(!sysctl_panic_on_oom
))
1005 if (sysctl_panic_on_oom
!= 2) {
1007 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1008 * does not panic for cpuset, mempolicy, or memcg allocation
1011 if (oc
->constraint
!= CONSTRAINT_NONE
)
1014 /* Do not panic for oom kills triggered by sysrq */
1015 if (is_sysrq_oom(oc
))
1017 dump_header(oc
, NULL
);
1018 panic("Out of memory: %s panic_on_oom is enabled\n",
1019 sysctl_panic_on_oom
== 2 ? "compulsory" : "system-wide");
1022 static BLOCKING_NOTIFIER_HEAD(oom_notify_list
);
1024 int register_oom_notifier(struct notifier_block
*nb
)
1026 return blocking_notifier_chain_register(&oom_notify_list
, nb
);
1028 EXPORT_SYMBOL_GPL(register_oom_notifier
);
1030 int unregister_oom_notifier(struct notifier_block
*nb
)
1032 return blocking_notifier_chain_unregister(&oom_notify_list
, nb
);
1034 EXPORT_SYMBOL_GPL(unregister_oom_notifier
);
1037 * out_of_memory - kill the "best" process when we run out of memory
1038 * @oc: pointer to struct oom_control
1040 * If we run out of memory, we have the choice between either
1041 * killing a random task (bad), letting the system crash (worse)
1042 * OR try to be smart about which process to kill. Note that we
1043 * don't have to be perfect here, we just have to be good.
1045 bool out_of_memory(struct oom_control
*oc
)
1047 unsigned long freed
= 0;
1049 if (oom_killer_disabled
)
1052 if (!is_memcg_oom(oc
)) {
1053 blocking_notifier_call_chain(&oom_notify_list
, 0, &freed
);
1055 /* Got some memory back in the last second. */
1060 * If current has a pending SIGKILL or is exiting, then automatically
1061 * select it. The goal is to allow it to allocate so that it may
1062 * quickly exit and free its memory.
1064 if (task_will_free_mem(current
)) {
1065 mark_oom_victim(current
);
1066 wake_oom_reaper(current
);
1071 * The OOM killer does not compensate for IO-less reclaim.
1072 * pagefault_out_of_memory lost its gfp context so we have to
1073 * make sure exclude 0 mask - all other users should have at least
1074 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1075 * invoke the OOM killer even if it is a GFP_NOFS allocation.
1077 if (oc
->gfp_mask
&& !(oc
->gfp_mask
& __GFP_FS
) && !is_memcg_oom(oc
))
1081 * Check if there were limitations on the allocation (only relevant for
1082 * NUMA and memcg) that may require different handling.
1084 oc
->constraint
= constrained_alloc(oc
);
1085 if (oc
->constraint
!= CONSTRAINT_MEMORY_POLICY
)
1086 oc
->nodemask
= NULL
;
1087 check_panic_on_oom(oc
);
1089 if (!is_memcg_oom(oc
) && sysctl_oom_kill_allocating_task
&&
1090 current
->mm
&& !oom_unkillable_task(current
) &&
1091 oom_cpuset_eligible(current
, oc
) &&
1092 current
->signal
->oom_score_adj
!= OOM_SCORE_ADJ_MIN
) {
1093 get_task_struct(current
);
1094 oc
->chosen
= current
;
1095 oom_kill_process(oc
, "Out of memory (oom_kill_allocating_task)");
1099 select_bad_process(oc
);
1100 /* Found nothing?!?! */
1102 dump_header(oc
, NULL
);
1103 pr_warn("Out of memory and no killable processes...\n");
1105 * If we got here due to an actual allocation at the
1106 * system level, we cannot survive this and will enter
1107 * an endless loop in the allocator. Bail out now.
1109 if (!is_sysrq_oom(oc
) && !is_memcg_oom(oc
))
1110 panic("System is deadlocked on memory\n");
1112 if (oc
->chosen
&& oc
->chosen
!= (void *)-1UL)
1113 oom_kill_process(oc
, !is_memcg_oom(oc
) ? "Out of memory" :
1114 "Memory cgroup out of memory");
1115 return !!oc
->chosen
;
1119 * The pagefault handler calls here because it is out of memory, so kill a
1120 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1121 * killing is already in progress so do nothing.
1123 void pagefault_out_of_memory(void)
1125 struct oom_control oc
= {
1133 if (mem_cgroup_oom_synchronize(true))
1136 if (!mutex_trylock(&oom_lock
))
1139 mutex_unlock(&oom_lock
);